WorldWideScience

Sample records for microbial source natural

  1. Bioactive natural products from novel microbial sources.

    Science.gov (United States)

    Challinor, Victoria L; Bode, Helge B

    2015-09-01

    Despite the importance of microbial natural products for human health, only a few bacterial genera have been mined for the new natural products needed to overcome the urgent threat of antibiotic resistance. This is surprising, given that genome sequencing projects have revealed that the capability to produce natural products is not a rare feature among bacteria. Even the bacteria occurring in the human microbiome produce potent antibiotics, and thus potentially are an untapped resource for novel compounds, potentially with new activities. This review highlights examples of bacteria that should be considered new sources of natural products, including anaerobes, pathogens, and symbionts of humans, insects, and nematodes. Exploitation of these producer strains, combined with advances in modern natural product research methodology, has the potential to open the way for a new golden age of microbial therapeutics. © 2015 New York Academy of Sciences.

  2. Synergistic microbial consortium for bioenergy generation from complex natural energy sources.

    Science.gov (United States)

    Wang, Victor Bochuan; Yam, Joey Kuok Hoong; Chua, Song-Lin; Zhang, Qichun; Cao, Bin; Chye, Joachim Loo Say; Yang, Liang

    2014-01-01

    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1:9 (v:v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs.

  3. Microbial fermented tea - a potential source of natural food preservatives

    NARCIS (Netherlands)

    Mo, H.Z.; Yang Zhu, Yang; Chen, Z.M.

    2008-01-01

    Antimicrobial activities of microbial fermented tea are much less known than its health beneficial properties. These antimicrobial activities are generated in natural microbial fermentation process with tea leaves as substrates. The antimicrobial components produced during the fermentation process

  4. Microbial Flocculant for Nature Soda

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Peiyong; Zhang, Tong; Chen, Cuixian

    2004-03-31

    Microbial flocculant for nature soda has been studied. Lactobacillus TRJ21, which was able to produce an excellent biopolymer flocculant for nature soda, was obtained in our lab. The microbial flocculant was mainly produced when the bacteria laid in stationary growth phase. Fructose or glucose, as carbon sources, were more favorable for the bacterial growth and flocculant production. The bacteria was able to use ammonium sulfate or Urea as nitrogen to produce flocculant, but was not able to use peptone effectively. High C/N ratio was more favorable to Lactobacillus TRJ21 growth and flocculant production than low C/N ratio. The biopolymer flocculant was mainly composed of polysaccharide and protein with a molecular weight 1.38x106 by gel permeation chromatography. It was able to be easily purified from the culture medium by acetone. Protein in the flocculant was tested for the flocculating activity ingredient by heating the flocculant.

  5. Non-microbial sources of microbial volatile organic compounds.

    Science.gov (United States)

    Choi, Hyunok; Schmidbauer, Norbert; Bornehag, Carl-Gustaf

    2016-07-01

    The question regarding the true sources of the purported microbial volatile organic compounds (MVOCs) remains unanswered. To identify microbial, as well as non-microbial sources of 28 compounds, which are commonly accepted as microbial VOCs (i.e. primary outcome of interest is Σ 28 VOCs). In a cross-sectional investigation of 390 homes, six building inspectors assessed water/mold damage, took air and dust samples, and measured environmental conditions (i.e., absolute humidity (AH, g/m(3)), temperature (°C), ventilation rate (ACH)). The air sample was analyzed for volatile organic compounds (μg/m(3)) and; dust samples were analyzed for total viable fungal concentration (CFU/g) and six phthalates (mg/g dust). Four benchmark variables of the underlying sources were defined as highest quartile categories of: 1) the total concentration of 17 propylene glycol and propylene glycol ethers (Σ17 PGEs) in the air sample; 2) 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (TMPD-MIB) in the air sample; 3) semi-quantitative mold index; and 4) total fungal load (CFU/g). Within severely damp homes, co-occurrence of the highest quartile concentration of either Σ17 PGEs or TMPD-MIB were respectively associated with a significantly higher median concentration of Σ 28 VOCs (8.05 and 13.38μg/m(3), respectively) compared to the reference homes (4.30 and 4.86μg/m(3), respectively, both Ps ≤0.002). Furthermore, the homes within the highest quartile range for Σ fungal load as well as AH were associated with a significantly increased median Σ 28 VOCs compared to the reference group (8.74 vs. 4.32μg/m(3), P=0.001). Within the final model of multiple indoor sources on Σ 28 VOCs, one natural log-unit increase in summed concentration of Σ17 PGEs, plus TMPD-MIB (Σ 17 PGEs + TMPD-MIB) was associated with 1.8-times (95% CI, 1.3-2.5), greater likelihood of having a highest quartile of Σ 28 VOCs, after adjusting for absolute humidity, history of repainting at least one room

  6. Salmonella source attribution based on microbial subtyping

    DEFF Research Database (Denmark)

    Barco, Lisa; Barrucci, Federica; Olsen, John Elmerdahl

    2013-01-01

    Source attribution of cases of food-borne disease represents a valuable tool for identifying and prioritizing effective food-safety interventions. Microbial subtyping is one of the most common methods to infer potential sources of human food-borne infections. So far, Salmonella microbial subtyping...... source attribution through microbial subtyping approach. It summarizes the available microbial subtyping attribution models and discusses the use of conventional phenotypic typing methods, as well as of the most commonly applied molecular typing methods in the European Union (EU) laboratories...

  7. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2015-04-01

    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined that both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".

  8. Genome engineering for microbial natural product discovery.

    Science.gov (United States)

    Choi, Si-Sun; Katsuyama, Yohei; Bai, Linquan; Deng, Zixin; Ohnishi, Yasuo; Kim, Eung-Soo

    2018-03-03

    The discovery and development of microbial natural products (MNPs) have played pivotal roles in the fields of human medicine and its related biotechnology sectors over the past several decades. The post-genomic era has witnessed the development of microbial genome mining approaches to isolate previously unsuspected MNP biosynthetic gene clusters (BGCs) hidden in the genome, followed by various BGC awakening techniques to visualize compound production. Additional microbial genome engineering techniques have allowed higher MNP production titers, which could complement a traditional culture-based MNP chasing approach. Here, we describe recent developments in the MNP research paradigm, including microbial genome mining, NP BGC activation, and NP overproducing cell factory design. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effect of Gamma radiation on microbial population of natural casings

    International Nuclear Information System (INIS)

    Trigo, M.J.; Fraqueza, M.J.

    1998-01-01

    The high microbial load of fresh and dry natural casings increases the risk of meat product contamination with pathogenic microorganims, agents of foodborn diseases. The aim of this work is to evaluate the killing effect of gamma radiation on the resident microbial population of pork and beef casings, to improve their hygiene and safety. Portions of fresh pork (small intestine and colon) and dry beef casings were irradiated in a Cobalt 60 source with absorbed doses of 1, 2, 5 and 10 kGy. The D 10 values of total aerobic microorganisms in the pork casings were 1.65 kGy for colon and 1.54 kGy for small intestine. The D 10 value found in beef dry casings (small intestine) was 10.17 kGy. Radurization with 5 kGy was able to reduce, at least, 6 logs the coliform bacteria in pork casings. The killing effect over faecal Streptococci was 4 logs for pork fresh casings and 2 logs for beef dry casings. Gamma radiation with 5 kGy proved to be a convenient method to reduce substantially the microbial population of pork fresh casings. Otherwise, the microbial population of beef dry casings still resisted to 10 kGy

  10. The Microbial DNA Index System (MiDIS): A tool for microbial pathogen source identification

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-08-09

    The microbial DNA Index System (MiDIS) is a concept for a microbial forensic database and investigative decision support system that can be used to help investigators identify the sources of microbial agents that have been used in a criminal or terrorist incident. The heart of the proposed system is a rigorous method for calculating source probabilities by using certain fundamental sampling distributions associated with the propagation and mutation of microbes on disease transmission networks. This formalism has a close relationship to mitochondrial and Y-chromosomal human DNA forensics, and the proposed decision support system is somewhat analogous to the CODIS and SWGDAM mtDNA databases. The MiDIS concept does not involve the use of opportunistic collections of microbial isolates and phylogenetic tree building as a basis for inference. A staged approach can be used to build MiDIS as an enduring capability, beginning with a pilot demonstration program that must meet user expectations for performance and validation before evolving into a continuing effort. Because MiDIS requires input from a a broad array of expertise including outbreak surveillance, field microbial isolate collection, microbial genome sequencing, disease transmission networks, and laboratory mutation rate studies, it will be necessary to assemble a national multi-laboratory team to develop such a system. The MiDIS effort would lend direction and focus to the national microbial genetics research program for microbial forensics, and would provide an appropriate forensic framework for interfacing to future national and international disease surveillance efforts.

  11. Microbial activities in soil near natural gas leaks

    Energy Technology Data Exchange (ETDEWEB)

    Adamse, A D; Hoeks, J; de Bont, J A.M.; van Kessel, J F

    1972-01-01

    From the present experiments it may be concluded that in the surroundings of natural gas leaks, methane, ethane and possibly some other components of the natural gas are oxidized by microbial activities as long as oxygen is available. This is demonstrated by an increased oxygen consumption and carbon dioxide production, as well as by increased numbers of different types of bacteria. The resulting deficiency of oxygen, the excess of carbon dioxide, and perhaps the formation of inhibitory amounts of ethylene, are considered to be mainly responsible for the death of trees near natural gas leaks. Also the long period of time needed by the soil to recover, may be due to prolonged microbial activities, as well as to the presence of e.g. ethylene. The present experiments suggest that especially methane-oxidizing bacteria of the Methylosinus trichosporium type were present in predominating numbers and consequently have mainly been responsible for the increased oxygen consumption. However, some fungi oxidizing components of natural gas, including methane and ethane may also have contributed to the increased microbial activities in the soil. The same will be true of a possible secondary microflora on products derived from microorganisms oxidizing natural gas components. 12 references, 9 figures, 7 tables.

  12. Establishing Standards on Colors from Natural Sources.

    Science.gov (United States)

    Simon, James E; Decker, Eric A; Ferruzzi, Mario G; Giusti, M Monica; Mejia, Carla D; Goldschmidt, Mark; Talcott, Stephen T

    2017-11-01

    Color additives are applied to many food, drug, and cosmetic products. With up to 85% of consumer buying decisions potentially influenced by color, appropriate application of color additives and their safety is critical. Color additives are defined by the U.S. Federal Food, Drug, and Cosmetic Act (FD&C Act) as any dye, pigment, or substance that can impart color to a food, drug, or cosmetic or to the human body. Under current U.S. Food and Drug Administration (FDA) regulations, colors fall into 2 categories as those subject to an FDA certification process and those that are exempt from certification often referred to as "natural" colors by consumers because they are sourced from plants, minerals, and animals. Certified colors have been used for decades in food and beverage products, but consumer interest in natural colors is leading market applications. However, the popularity of natural colors has also opened a door for both unintentional and intentional economic adulteration. Whereas FDA certifications for synthetic dyes and lakes involve strict quality control, natural colors are not evaluated by the FDA and often lack clear definitions and industry accepted quality and safety specifications. A significant risk of adulteration of natural colors exists, ranging from simple misbranding or misuse of the term "natural" on a product label to potentially serious cases of physical, chemical, and/or microbial contamination from raw material sources, improper processing methods, or intentional postproduction adulteration. Consistent industry-wide safety standards are needed to address the manufacturing, processing, application, and international trade of colors from natural sources to ensure quality and safety throughout the supply chain. © 2017 Institute of Food Technologists®.

  13. Sources and Contributions of Oxygen During Microbial Pyrite Oxidation: the Triple Oxygen Isotopes of Sulfate

    Science.gov (United States)

    Ziegler, K.; Coleman, M. L.; Mielke, R. E.; Young, E. D.

    2008-12-01

    expected based on published equilibrium values [2,3,4]. Our inferred ɛ18OSO4-H2O of at least ~+10‰ is similar to some reported values. These new insights into the close links between microbial life cycle and sources of sulfate oxygen during sulfide oxidation, and their oxygen isotopic expressions, will help elucidate the role of microbial oxidation in natural systems. If microbial populations in natural systems remain in a perpetual lag-phase due to constrains of chemistry, atmospheric oxygen will imprint its isotopic signature onto sulfate deposits. Ultimately, such data could be used as biosignatures on Early Earth or Mars. [1] Brunner and Coleman (2008) EPSL 270, 63-72. [2] Balci et al. (2007) GCA 71, 3796-3811. [3] Pisapia et al. (2007) GCA 71, 2474-2490. [4] Taylor et al. (1984) GCA 48, 2669-2678.

  14. Bentonite. Geotechnical barrier and source for microbial life

    International Nuclear Information System (INIS)

    Matschiavelli, Nicole; Kluge, Sindy; Cherkouk, Andrea; Steglich, Jennifer

    2017-01-01

    Due to their properties, namely a high swelling capacity and a low hydraulic conductivity, Bentonites fulfil as geotechnical barrier a sealing and buffering function in the nuclear waste repository. Depending on the mineral composition Bentonites contain many suitable electron-donors and -acceptors, enabling potential microbial life. For the potential repository of highly radioactive waste the microbial mediated transformation of Bentonite could influence its properties as a barrier material. Microcosms were set up containing Bentonite and anaerobic synthetic Opalinus-clay-pore water solution under an N_2/CO_2-atmosphere to elucidate the microbial potential within selected Bentonites. Substrates like acetate and lactate were supplemented to stimulate potential microbial activity. First results show that bentonites represent a source for microbial life, demonstrated by the consumption of lactate and the formation of pyruvate. Furthermore, microbial iron-reduction was determined, which plays a crucial role in Betonite-transformation.

  15. Bentonite. Geotechnical barrier and source for microbial life

    Energy Technology Data Exchange (ETDEWEB)

    Matschiavelli, Nicole; Kluge, Sindy; Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). HZDR Young Investigator Group; Steglich, Jennifer

    2017-06-01

    Due to their properties, namely a high swelling capacity and a low hydraulic conductivity, Bentonites fulfil as geotechnical barrier a sealing and buffering function in the nuclear waste repository. Depending on the mineral composition Bentonites contain many suitable electron-donors and -acceptors, enabling potential microbial life. For the potential repository of highly radioactive waste the microbial mediated transformation of Bentonite could influence its properties as a barrier material. Microcosms were set up containing Bentonite and anaerobic synthetic Opalinus-clay-pore water solution under an N{sub 2}/CO{sub 2}-atmosphere to elucidate the microbial potential within selected Bentonites. Substrates like acetate and lactate were supplemented to stimulate potential microbial activity. First results show that bentonites represent a source for microbial life, demonstrated by the consumption of lactate and the formation of pyruvate. Furthermore, microbial iron-reduction was determined, which plays a crucial role in Betonite-transformation.

  16. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing.

    Directory of Open Access Journals (Sweden)

    Arvind Murali Mohan

    Full Text Available Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.

  17. Phenotypic responses to interspecies competition and commensalism in a naturally-derived microbial co-culture

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nymul; Maezato, Yukari; McClure, Ryan S.; Brislawn, Colin J.; Mobberley, Jennifer M.; Isern, Nancy; Chrisler, William B.; Markillie, Lye Meng; Barney, Brett M.; Song, Hyun-Seob; Nelson, William C.; Bernstein, Hans C.

    2018-01-10

    The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL-58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesized – and confirmed – that co-cultivation under glucose as the sole carbon source would result in a competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL-48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold.

  18. Temporal Stability of the Microbial Community in Sewage-Polluted Seawater Exposed to Natural Sunlight Cycles and Marine Microbiota

    Science.gov (United States)

    Sassoubre, Lauren M.; Yamahara, Kevan M.

    2015-01-01

    Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources. PMID:25576619

  19. Recovery of valuable metals from polymetallic mine tailings by natural microbial consortium.

    Science.gov (United States)

    Vardanyan, Narine; Sevoyan, Garegin; Navasardyan, Taron; Vardanyan, Arevik

    2018-05-28

    Possibilities for the recovery of non-ferrous and precious metals from Kapan polymetallic mine tailings (Armenia) were studied. The aim of this paper was to study the possibilities of bioleaching of samples of concentrated tailings by the natural microbial consortium of drainage water. The extent of extraction of metals from the samples of concentrated tailings by natural microbial consortium reached 41-55% and 53-73% for copper and zinc, respectively. Metal leaching efficiencies of pure culture Leptospirillum ferrooxidans Teg were higher, namely 47-93% and 73-81% for copper and zinc, respectively. The content of gold in solid phase of tailings increased about 7-16% and 2-9% after bio-oxidation process by L. ferrooxidans Teg and natural microbial consortium, respectively. It was shown that bioleaching of the samples of tailings could be performed using the natural consortium of drainage water. However, to increase the intensity of the recovery of valuable metals, natural consortium of drainage water combined with iron-oxidizing L. ferrooxidans Teg has been proposed.

  20. Microbial Communities in the Vertical Atmosphere: Effects of Urbanization and the Natural Environment in Four North American Ecosystems

    Science.gov (United States)

    Docherty, K. M.; Lemmer, K. M.; Domingue, K. D.; Spring, A.; Kerber, T. V.; Mooney, M. M.

    2017-12-01

    Airborne transport of microbial communities is a key component of the global ecosystem because it serves as a mechanism for dispersing microbial life between all surface habitats on the planet. However, most of our understanding of airborne microbial distribution is derived from samples collected near the ground. Little is understood about how the vertical layers of the air may act as a habitat filter or how local terrestrial ecosystems contribute to a vast airborne microbial seedbank. Specifically, urbanization may fundamentally alter the terrestrial sources of airborne microbial biodiversity. To address this question, we conducted airborne sampling at minimally disturbed natural sites and paired urban sites in 4 different North American ecosystems: shortgrass steppe, desert scrub, eastern deciduous forest, and northern mesic forest. All natural area sites were co-located with NEON/Ameriflux tower sites collecting atmospheric data. We developed an airborne sampling platform that uses tethered helikites at 3 replicate locations within each ecosystem to launch remote-controlled sampler payloads. We designed sampler payloads to collect airborne bacteria and fungi from 150, 30 and 2 m above the ground. Payload requirements included: ability to be disinfected and remain contaminant-free during transport, remote open/close functionality, payload weight under 6 lbs and automated collection of weather data. After sampling for 6 hours at each location, we extracted DNA collected by the samplers. We also extracted DNA from soil and plant samples collected from each location, and characterized ground vegetation. We conducted bacterial 16S amplicon-based sequencing using Mi-Seq and sequence analysis using QIIME. We used ArcGIS to determine percent land use coverage. Our results demonstrate that terrestrial ecosystem type is the most important factor contributing to differences in airborne bacterial community composition, and that communities differed by ecosystem. The

  1. Coastal microbial mat diversity along a natural salinity gradient.

    Directory of Open Access Journals (Sweden)

    Henk Bolhuis

    Full Text Available The North Sea coast of the Dutch barrier island of Schiermonnikoog is covered by microbial mats that initiate a succession of plant communities that eventually results in the development of a densely vegetated salt marsh. The North Sea beach has a natural elevation running from the low water mark to the dunes resulting in gradients of environmental factors perpendicular to the beach. These gradients are due to the input of seawater at the low water mark and of freshwater from upwelling groundwater at the dunes and rainfall. The result is a natural and dynamic salinity gradient depending on the tide, rainfall and wind. We studied the microbial community composition in thirty three samples taken every ten meters along this natural salinity gradient by using denaturing gradient gel electrophoresis (DGGE of rRNA gene fragments. We looked at representatives from each Domain of life (Bacteria, Archaea and Eukarya and with a particular emphasis on Cyanobacteria. Analysis of the DGGE fingerprints together with pigment composition revealed three distinct microbial mat communities, a marine community dominated by diatoms as primary producers, an intermediate brackish community dominated by Cyanobacteria as primary producers and a freshwater community with Cyanobacteria and freshwater green algae.

  2. Microbial source tracking: a tool for identifying sources of microbial contamination in the food chain.

    Science.gov (United States)

    Fu, Ling-Lin; Li, Jian-Rong

    2014-01-01

    The ability to trace fecal indicators and food-borne pathogens to the point of origin has major ramifications for food industry, food regulatory agencies, and public health. Such information would enable food producers and processors to better understand sources of contamination and thereby take corrective actions to prevent transmission. Microbial source tracking (MST), which currently is largely focused on determining sources of fecal contamination in waterways, is also providing the scientific community tools for tracking both fecal bacteria and food-borne pathogens contamination in the food chain. Approaches to MST are commonly classified as library-dependent methods (LDMs) or library-independent methods (LIMs). These tools will have widespread applications, including the use for regulatory compliance, pollution remediation, and risk assessment. These tools will reduce the incidence of illness associated with food and water. Our aim in this review is to highlight the use of molecular MST methods in application to understanding the source and transmission of food-borne pathogens. Moreover, the future directions of MST research are also discussed.

  3. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source

    OpenAIRE

    Zhang, Jianbo; Sturla, Shana; Lacroix, Christophe; Schwab, Clarissa

    2018-01-01

    ABSTRACT Acrolein is a highly reactive electrophile causing toxic effects, such as DNA and protein adduction, oxidative stress, endoplasmic reticulum stress, immune dysfunction, and membrane damage. This Opinion/Hypothesis provides an overview of endogenous and exogenous acrolein sources, acrolein’s mode of action, and its metabolic fate. Recent reports underpin the finding that gut microbial glycerol metabolism leading to the formation of reuterin is an additional source of endogenous acrole...

  4. Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed.

    Science.gov (United States)

    Leiva, Eduardo D; Rámila, Consuelo d P; Vargas, Ignacio T; Escauriaza, Cristian R; Bonilla, Carlos A; Pizarro, Gonzalo E; Regan, John M; Pasten, Pablo A

    2014-01-01

    Rivers in northern Chile have arsenic (As) concentrations at levels that are toxic for humans and other organisms. Microorganism-mediated redox reactions have a crucial role in the As cycle; the microbial oxidation of As (As(III) to As(V)) is a critical transformation because it favors the immobilization of As in the solid phase. We studied the role of microbial As oxidation for controlling the mobility of As in the extreme environment found in the Chilean Altiplano (i.e., > 4000 meters above sea level (masl) and Azufre River sub-basin, where the natural attenuation of As from hydrothermal discharge (pH 4-6) was observed. As(III) was actively oxidized by a microbial consortium, leading to a significant decrease in the dissolved As concentrations and a corresponding increase in the sediment's As concentration downstream of the hydrothermal source. In-situ oxidation experiments demonstrated that the As oxidation required biological activity, and microbiological molecular analysis confirmed the presence of As(III)-oxidizing groups (aroA-like genes) in the system. In addition, the pH measurements and solid phase analysis strongly suggested that the As removal mechanism involved adsorption or coprecipitation with Fe-oxyhydroxides. Taken together, these results indicate that the microorganism-mediated As oxidation contributed to the attenuation of As concentrations and the stabilization of As in the solid phase, therefore controlling the amount of As transported downstream. This study is the first to demonstrate the microbial oxidation of As in Altiplano basins and its relevance in the immobilization of As. © 2013.

  5. Marine and estuarine natural microbial biofilms: ecological and biogeochemical dimensions

    Directory of Open Access Journals (Sweden)

    O. Roger Anderson

    2016-08-01

    Full Text Available Marine and estuarine microbial biofilms are ubiquitously distributed worldwide and are increasingly of interest in basic and applied sciences because of their unique structural and functional features that make them remarkably different from the biota in the plankton. This is a review of some current scientific knowledge of naturally occurring microbial marine and estuarine biofilms including prokaryotic and microeukaryotic biota, but excluding research specifically on engineering and applied aspects of biofilms such as biofouling. Because the microbial communities including bacteria and protists are integral to the fundamental ecological and biogeochemical processes that support biofilm communities, particular attention is given to the structural and ecological aspects of microbial biofilm formation, succession, and maturation, as well as the dynamics of the interactions of the microbiota in biofilms. The intent is to highlight current state of scientific knowledge and possible avenues of future productive research, especially focusing on the ecological and biogeochemical dimensions.

  6. Assessment of the microbial quality of river water sources in rural ...

    African Journals Online (AJOL)

    drinie

    2002-07-03

    Jul 3, 2002 ... Assessment of the microbial quality of river water sources ... These untreated water sources are used for drinking and domestic purposes and pose a serious threat to ... These diseases cause crippling, devastating and debilitating effects ..... gastrointestinal illness, due mainly by enteric viruses in sewage.

  7. Coastal Microbial Mat Diversity along a Natural Salinity Gradient

    NARCIS (Netherlands)

    Bolhuis, H.; Fillinger, L.; Stal, L.J.

    2013-01-01

    The North Sea coast of the Dutch barrier island of Schiermonnikoog is covered by microbial mats that initiate a succession of plant communities that eventually results in the development of a densely vegetated salt marsh. The North Sea beach has a natural elevation running from the low water mark to

  8. Total Synthesis of Natural Products of Microbial Origins(Recent Topics of the Agricultunal Biological Science in Tohoku University)

    OpenAIRE

    Hiromasa, KIYOTA; Shigefumi, KUWAHARA; Laboratory of Applied Bioorganic Chemistry, Division of Bioscience & Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University; Laboratory of Applied Bioorganic Chemistry, Division of Bioscience & Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University

    2008-01-01

    Microorganisms are an important rich source of secondary metabolites, which could be useful leads to valuable agrochemicals and/or medicinal drugs. This mini-review describes our recent achievements on the total synthesis of biologically active natural products of microbial origins: pteridic acids A and B (strong plant growth promoters), epoxyquinols A and B (anti-angiogenic compounds), communiols A-F, G, and H, and macrotetrolide α (antibiotics), pyricuol and tabtoxinine-β-lactam (phytotoxin...

  9. [Advances in metabolic engineering for the microbial production of naturally occurring terpenes-limonene and bisabolene: a mini review].

    Science.gov (United States)

    Pang, Yaru; Hu, Zhihui; Xiao, Dongguang; Yu, Aiqun

    2018-01-25

    Limonene (C₁₀H₁₆) and bisabolene (C₁₅H₂₄) are both naturally occurring terpenes in plants. Depending on the number of C₅ units, limonene and bisabolene are recognized as representative monoterpenes and sesquiterpenes, respectively. Limonene and bisabolene are important pharmaceutical and nutraceutical products used in the prevention and treatment of cancer and many other diseases. In addition, they can be used as starting materials to produce a range of commercially valuable products, such as pharmaceuticals, nutraceuticals, cosmetics, and biofuels. The low abundance or yield of limonene and bisabolene in plants renders their isolation from plant sources non-economically viable. Isolation of limonene and bisabolene from plants also suffers from low efficiency and often requires harsh reaction conditions, prolonged reaction times, and expensive equipment cost. Recently, the rapid developments in metabolic engineering of microbes provide a promising alternative route for producing these plant natural products. Therefore, producing limonene and bisabolene by engineering microbial cells into microbial factories is becoming an attractive alternative approach that can overcome the bottlenecks, making it more sustainable, environmentally friendly and economically competitive. Here, we reviewed the status of metabolic engineering of microbes that produce limonene and bisabolene including microbial hosts, key enzymes, metabolic pathways and engineering of limonene/bisabolene biosynthesis. Furthermore, key challenges and future perspectives were discussed.

  10. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession.

    Science.gov (United States)

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-06

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  11. Microbial utilization of naturally occurring hydrocarbons at the Guaymas Basin hydrothermal vent site

    International Nuclear Information System (INIS)

    Bazylinski, D.A.; Wirsen, C.O.; Jannasch, H.W.

    1989-01-01

    The Guaymas Basin (Gulf of California; depth, 2,000 m) is a site of hydrothermal activity in which petroliferous materials is formed by thermal alteration of deposited planktonic and terrestrial organic matter. We investigated certain components of these naturally occurring hydrocarbons as potential carbon sources for a specific microflora at these deep-sea vent sites. Respiratory conversion of [1- 14 C]hexadecane and [1(4,5,8)- 14 C]naphthalene to 14 CO 2 was observed at 4 degree C and 25 degree C, and some was observed at 55 degree C, but none was observed at 80 degree C. Bacterial isolates were capable of growing on both substrates as the sole carbon source. All isolates were aerobic and mesophilic with respect to growth on hydrocarbons but also grew at low temperatures (4 to 5 degree C). These results correlate well with previous geochemical analyses, indicating microbial hydrocarbon degradation, and show that at least some of the thermally produced hydrocarbons at Guaymas Basin are significant carbon sources to vent microbiota

  12. New paradigms for Salmonella source attribution based on microbial subtyping.

    NARCIS (Netherlands)

    Mughini-Gras, Lapo; Franz, Eelco; van Pelt, Wilfrid

    Microbial subtyping is the most common approach for Salmonella source attribution. Typically, attributions are computed using frequency-matching models like the Dutch and Danish models based on phenotyping data (serotyping, phage-typing, and antimicrobial resistance profiling). Herewith, we

  13. An open source platform for multi-scale spatially distributed simulations of microbial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Segre, Daniel [Boston Univ., MA (United States)

    2014-08-14

    The goal of this project was to develop a tool for facilitating simulation, validation and discovery of multiscale dynamical processes in microbial ecosystems. This led to the development of an open-source software platform for Computation Of Microbial Ecosystems in Time and Space (COMETS). COMETS performs spatially distributed time-dependent flux balance based simulations of microbial metabolism. Our plan involved building the software platform itself, calibrating and testing it through comparison with experimental data, and integrating simulations and experiments to address important open questions on the evolution and dynamics of cross-feeding interactions between microbial species.

  14. Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces.

    Science.gov (United States)

    Tecon, Robin; Or, Dani

    2017-03-06

    Mounting evidence suggests that natural microbial communities exhibit a high level of spatial organization at the micrometric scale that facilitate ecological interactions and support biogeochemical cycles. Microbial patterns are difficult to study definitively in natural environments due to complex biodiversity, observability and variable physicochemical factors. Here, we examine how trophic dependencies give rise to self-organized spatial patterns of a well-defined bacterial consortium grown on hydrated surfaces. The model consortium consisted of two Pseudomonas putida mutant strains that can fully degrade the aromatic hydrocarbon toluene. We demonstrated that obligate cooperation in toluene degradation (cooperative mutualism) favored convergence of 1:1 partner ratio and strong intermixing at the microscale (10-100 μm). In contrast, competition for benzoate, a compound degraded independently by both strains, led to distinct segregation patterns. Emergence of a persistent spatial pattern has been predicted for surface attached microbial activity in liquid films that mediate diffusive exchanges while permitting limited cell movement (colony expansion). This study of a simple microbial consortium offers mechanistic glimpses into the rules governing the assembly and functioning of complex sessile communities, and points to general principles of spatial organization with potential applications for natural and engineered microbial systems.

  15. Natural sources of ionizing radiations

    International Nuclear Information System (INIS)

    Marej, A.N.

    1984-01-01

    Natural sources of ionizing radiations are described in detail. The sources are subdivided into sources of extraterrestrial origin (cosmic radiation) and sources of terrestrial origin. Data on the concentration of different nuclides in rocks, various soils, ground waters, atmospheric air, tissues of plants and animals, various food stuffs are presented. The content of natural radionuclides in environmental objects, related to human activities, is discussed

  16. Microbial colonization of biopolymeric thin films containing natural compounds and antibiotics fabricated by MAPLE

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, PO Box MG-36, Bucharest-Magurele (Romania); Surdu, A.V.; Grumezescu, A.M.; Oprea, A.E.; Trusca, R.; Vasile, O. [Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, Polizu Street No. 1–7, 011061 Bucharest (Romania); Dorcioman, G.; Visan, A.; Socol, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, PO Box MG-36, Bucharest-Magurele (Romania); Mihaiescu, D. [Faculty of Applied Chemistry and Materials Science, Department of Organic Chemistry, Politehnica University of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Enculescu, M. [National Institute of Materials Physics, PO Box MG-7, Bucharest-Magurele (Romania); Chifiriuc, M.C. [Microbiology Immunology Department, Faculty of Biology, Research Institute of the University of Bucharest—ICUB, Research Institute of the University of Bucharest, 77206 Bucharest (Romania); Boehm, R.D.; Narayan, R.J. [Biomedical Engineering, University of North Carolina, Chapel Hill, NC (United States); Chrisey, D.B. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA (United States)

    2015-05-01

    Highlights: • We deposited thin composite quercetin/polyvinylpyrrolidone/antibiotic films with close resemblance to the starting/drop-cast composition by MAPLE. • Quercetin flavonoid shows an anti-biofilm activity comparable to that of the tested large-spectrum antibiotics (norfloxacin or cefuroxime), especially in case of 72 h biofilms. • These results could account for the possible use of quercetin as an alternative to antibiotics to combat the mature biofilms developed on different substrates. • MAPLE may be used to produce implantable medical devices that provide a relatively long term in vitro stability and resistance to the growth of microorganisms. - Abstract: Although a great number of antibiotics are currently available, they are often rendered ineffective by the ability of microbial strains to develop genetic resistance and to grow in biofilms. Since many antimicrobial agents poorly penetrate biofilms, biofilm-associated infections often require high concentrations of antimicrobial agents for effective treatment. Among the various strategies that may be used to inhibit microbial biofilms, one strategy that has generated significant interest involves the use of bioactive surfaces that are resistant to microbial colonization. In this respect, we used matrix assisted pulsed laser evaporation (MAPLE) involving a pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) to obtain thin composite biopolymeric films containing natural (flavonoid) or synthetic (antibiotic) compounds as bioactive substances. Chemical composition and film structures were investigated by Fourier transform infrared spectroscopy and X-ray diffraction. Films morphology was studied by scanning electron microscopy and transmission electron microscopy. The antimicrobial assay of the microbial biofilms formed on these films was assessed by the viable cell counts method. The flavonoid-containing thin films showed increased resistance to microbial colonization

  17. Microbial colonization of biopolymeric thin films containing natural compounds and antibiotics fabricated by MAPLE

    International Nuclear Information System (INIS)

    Cristescu, R.; Surdu, A.V.; Grumezescu, A.M.; Oprea, A.E.; Trusca, R.; Vasile, O.; Dorcioman, G.; Visan, A.; Socol, G.; Mihailescu, I.N.; Mihaiescu, D.; Enculescu, M.; Chifiriuc, M.C.; Boehm, R.D.; Narayan, R.J.; Chrisey, D.B.

    2015-01-01

    Highlights: • We deposited thin composite quercetin/polyvinylpyrrolidone/antibiotic films with close resemblance to the starting/drop-cast composition by MAPLE. • Quercetin flavonoid shows an anti-biofilm activity comparable to that of the tested large-spectrum antibiotics (norfloxacin or cefuroxime), especially in case of 72 h biofilms. • These results could account for the possible use of quercetin as an alternative to antibiotics to combat the mature biofilms developed on different substrates. • MAPLE may be used to produce implantable medical devices that provide a relatively long term in vitro stability and resistance to the growth of microorganisms. - Abstract: Although a great number of antibiotics are currently available, they are often rendered ineffective by the ability of microbial strains to develop genetic resistance and to grow in biofilms. Since many antimicrobial agents poorly penetrate biofilms, biofilm-associated infections often require high concentrations of antimicrobial agents for effective treatment. Among the various strategies that may be used to inhibit microbial biofilms, one strategy that has generated significant interest involves the use of bioactive surfaces that are resistant to microbial colonization. In this respect, we used matrix assisted pulsed laser evaporation (MAPLE) involving a pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) to obtain thin composite biopolymeric films containing natural (flavonoid) or synthetic (antibiotic) compounds as bioactive substances. Chemical composition and film structures were investigated by Fourier transform infrared spectroscopy and X-ray diffraction. Films morphology was studied by scanning electron microscopy and transmission electron microscopy. The antimicrobial assay of the microbial biofilms formed on these films was assessed by the viable cell counts method. The flavonoid-containing thin films showed increased resistance to microbial colonization

  18. Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces

    OpenAIRE

    Tecon, Robin; Or, Dani

    2017-01-01

    Mounting evidence suggests that natural microbial communities exhibit a high level of spatial organization at the micrometric scale that facilitate ecological interactions and support biogeochemical cycles. Microbial patterns are difficult to study definitively in natural environments due to complex biodiversity, observability and variable physicochemical factors. Here, we examine how trophic dependencies give rise to self-organized spatial patterns of a well-defined bacterial consortium grow...

  19. Microbial utilisation of natural organic wastes

    Science.gov (United States)

    Ilyin, V. K.; Smirnov, I. A.; Soldatov, P. E.; Korniushenkova, I. N.; Grinin, A. S.; Lykov, I. N.; Safronova, S. A.

    2004-03-01

    The waste management strategy for the future should meet the benefits of humanity safety, respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. The biological treatment method is based upon the biodegradation of organic substances by various microorganisms. The advantage of the biodegradation waste management in general: it allows to diminish the volume of organic wastes, the biological hazard of the wastes is controlled and this system may be compatible with the other systems. The objectives of our study were: to evaluate effectiveness of microbial biodegradation of non-pretreated substrate, to construct phneumoautomatic digester for organic wastes biodegradation and to study microbial characteristics of active sludge samples used as inoculi in biodegradation experiment. The technology of vegetable wastes treatment was elaborated in IBMP and BMSTU. For this purpose the special unit was created where the degradation process is activated by enforced reinvention of portions of elaborated biogas into digester. This technology allows to save energy normally used for electromechanical agitation and to create optimal environment for anaerobic bacteria growth. The investigations were performed on waste simulator, which imitates physical and chemical content of food wastes calculated basing on the data on food wastes of moderate Russian city. The volume of created experimental sample of digester is 40 l. The basic system elements of device are digesters, gas receiver, remover of drops and valve monitoring and thermal control system. In our testing we used natural food wastes to measure basic parameters and time of biodegradation process. The diminution rate of organic gained 76% from initial mass taking part within 9 days of fermentation. The biogas production achieved 46 l per 1 kg of substrate

  20. Social interaction in synthetic and natural microbial communities.

    Science.gov (United States)

    Xavier, Joao B

    2011-04-12

    Social interaction among cells is essential for multicellular complexity. But how do molecular networks within individual cells confer the ability to interact? And how do those same networks evolve from the evolutionary conflict between individual- and population-level interests? Recent studies have dissected social interaction at the molecular level by analyzing both synthetic and natural microbial populations. These studies shed new light on the role of population structure for the evolution of cooperative interactions and revealed novel molecular mechanisms that stabilize cooperation among cells. New understanding of populations is changing our view of microbial processes, such as pathogenesis and antibiotic resistance, and suggests new ways to fight infection by exploiting social interaction. The study of social interaction is also challenging established paradigms in cancer evolution and immune system dynamics. Finding similar patterns in such diverse systems suggests that the same 'social interaction motifs' may be general to many cell populations.

  1. HSQC-TOCSY Fingerprinting for Prioritization of Polyketide- and Peptide-Producing Microbial Isolates.

    Science.gov (United States)

    Buedenbender, Larissa; Habener, Leesa J; Grkovic, Tanja; Kurtböke, D İpek; Duffy, Sandra; Avery, Vicky M; Carroll, Anthony R

    2018-04-27

    Microbial products are a promising source for drug leads as a result of their unique structural diversity. However, reisolation of already known natural products significantly hampers the discovery process, and it is therefore important to incorporate effective microbial isolate selection and dereplication protocols early in microbial natural product studies. We have developed a systematic approach for prioritization of microbial isolates for natural product discovery based on heteronuclear single-quantum correlation-total correlation spectroscopy (HSQC-TOCSY) nuclear magnetic resonance profiles in combination with antiplasmodial activity of extracts. The HSQC-TOCSY experiments allowed for unfractionated microbial extracts containing polyketide and peptidic natural products to be rapidly identified. Here, we highlight how this approach was used to prioritize extracts derived from a library of 119 ascidian-associated actinomycetes that possess a higher potential to produce bioactive polyketides and peptides.

  2. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  3. Changes in microbial communities associated with the sea anemone Anemonia viridis in a natural pH gradient.

    Science.gov (United States)

    Meron, Dalit; Buia, Maria-Cristina; Fine, Maoz; Banin, Ehud

    2013-02-01

    Ocean acidification, resulting from rising atmospheric carbon dioxide concentrations, is a pervasive stressor that can affect many marine organisms and their symbionts. Studies which examine the host physiology and microbial communities have shown a variety of responses to the ocean acidification process. Recently, several studies were conducted based on field experiments, which take place in natural CO(2) vents, exposing the host to natural environmental conditions of varying pH. This study examines the sea anemone Anemonia viridis which is found naturally along the pH gradient in Ischia, Italy, with an aim to characterize whether exposure to pH impacts the holobiont. The physiological parameters of A. viridis (Symbiodinium density, protein, and chlorophyll a+c concentration) and its microbial community were monitored. Although reduction in pH was seen to have had an impact on composition and diversity of associated microbial communities, no significant changes were observed in A. viridis physiology, and no microbial stress indicators (i.e., pathogens, antibacterial activity, etc.) were detected. In light of these results, it appears that elevated CO(2) does not have a negative influence on A. viridis that live naturally in the site. This suggests that natural long-term exposure and dynamic diverse microbial communities may contribute to the acclimation process of the host in a changing pH environment.

  4. Biofilm formation and microbial community analysis of the simulated river bioreactor for contaminated source water remediation.

    Science.gov (United States)

    Xu, Xiang-Yang; Feng, Li-Juan; Zhu, Liang; Xu, Jing; Ding, Wei; Qi, Han-Ying

    2012-06-01

    The start-up pattern of biofilm remediation system affects the biofilm characteristics and operating performances. The objective of this study was to evaluate the performances of the contaminated source water remediation systems with different start-up patterns in view of the pollutants removal performances and microbial community succession. The operating performances of four lab-scale simulated river biofilm reactors were examined which employed different start-up methods (natural enrichment and artificial enhancement via discharging sediment with influent velocity gradient increase) and different bio-fillers (Elastic filler and AquaMats® ecobase). At the same time, the microbial communities of the bioreactors in different phases were analyzed by polymerase chain reaction, denaturing gradient gel electrophoresis, and sequencing. The pollutants removal performances became stable in the four reactors after 2 months' operation, with ammonia nitrogen and permanganate index (COD(Mn)) removal efficiencies of 84.41-94.21% and 69.66-76.60%, respectively. The biomass of mature biofilm was higher in the bioreactors by artificial enhancement than that by natural enrichment. Microbial community analysis indicated that elastic filler could enrich mature biofilm faster than AquaMats®. The heterotrophic bacteria diversity of biofilm decreased by artificial enhancement, which favored the ammonia-oxidizing bacteria (AOB) developing on the bio-fillers. Furthermore, Nitrosomonas- and Nitrosospira-like AOB coexisted in the biofilm, and Pseudomonas sp., Sphaerotilus sp., Janthinobacterium sp., Corynebacterium aurimucosum were dominant in the oligotrophic niche. Artificial enhancement via the combination of sediment discharging and influent velocity gradient increasing could enhance the biofilm formation and autotrophic AOB enrichment in oligotrophic niche.

  5. Capturing microbial sources distributed in a mixed-use watershed within an integrated environmental modeling workflow

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few provide loading rates on land surfaces and point sources to the waterbody network. This paper describes the underlying equations for microbial loading rates associated with 1) land-applied ...

  6. Genome-reconstruction for eukaryotes from complex natural microbial communities.

    Science.gov (United States)

    West, Patrick T; Probst, Alexander J; Grigoriev, Igor V; Thomas, Brian C; Banfield, Jillian F

    2018-04-01

    Microbial eukaryotes are integral components of natural microbial communities, and their inclusion is critical for many ecosystem studies, yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies, we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k -mer-based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation, and prediction of metabolic potential. We used this approach to test the effect of addition of organic carbon on a geyser-associated microbial community and detected a substantial change of the community metabolism, with selection against almost all candidate phyla bacteria and archaea and for eukaryotes. Near complete genomes were reconstructed for three fungi placed within the Eurotiomycetes and an arthropod. While carbon fixation and sulfur oxidation were important functions in the geyser community prior to carbon addition, the organic carbon-impacted community showed enrichment for secreted proteases, secreted lipases, cellulose targeting CAZymes, and methanol oxidation. We demonstrate the broader utility of EukRep by reconstructing and evaluating relatively high-quality fungal, protist, and rotifer genomes from complex environmental samples. This approach opens the way for cultivation-independent analyses of whole microbial communities. © 2018 West et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Nature's palette: the search for natural blue colorants.

    Science.gov (United States)

    Newsome, Andrew G; Culver, Catherine A; van Breemen, Richard B

    2014-07-16

    The food and beverage industry is seeking to broaden the palette of naturally derived colorants. Although considerable effort has been devoted to the search for new blue colorants in fruits and vegetables, less attention has been directed toward blue compounds from other sources such as bacteria and fungi. The current work reviews known organic blue compounds from natural plant, animal, fungal, and microbial sources. The scarcity of blue-colored metabolites in the natural world relative to metabolites of other colors is discussed, and structural trends common among natural blue compounds are identified. These compounds are grouped into seven structural classes and evaluated for their potential as new color additives.

  8. Recognition of microbial glycolipids by Natural Killer T cells

    Directory of Open Access Journals (Sweden)

    Dirk Michael Zajonc

    2015-08-01

    Full Text Available T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the Major Histocompatibility (MHC family (MHC I and II, lipids, glycolipids and lipopeptides can be presented by the non-classical MHC member CD1. The best studied subset of lipid-reactive T cells are Type I Natural killer T (iNKT cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi the causative agents of Lyme disease and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR, leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18 and TCR stimulation. Many microbes carry TLR antigens and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here we will review the molecular basis of iNKT cell

  9. A Statistical Framework for Microbial Source Attribution

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S P; Allen, J E; Cunningham, C T

    2009-04-28

    This report presents a general approach to inferring transmission and source relationships among microbial isolates from their genetic sequences. The outbreak transmission graph (also called the transmission tree or transmission network) is the fundamental structure which determines the statistical distributions relevant to source attribution. The nodes of this graph are infected individuals or aggregated sub-populations of individuals in which transmitted bacteria or viruses undergo clonal expansion, leading to a genetically heterogeneous population. Each edge of the graph represents a transmission event in which one or a small number of bacteria or virions infects another node thus increasing the size of the transmission network. Recombination and re-assortment events originate in nodes which are common to two distinct networks. In order to calculate the probability that one node was infected by another, given the observed genetic sequences of microbial isolates sampled from them, we require two fundamental probability distributions. The first is the probability of obtaining the observed mutational differences between two isolates given that they are separated by M steps in a transmission network. The second is the probability that two nodes sampled randomly from an outbreak transmission network are separated by M transmission events. We show how these distributions can be obtained from the genetic sequences of isolates obtained by sampling from past outbreaks combined with data from contact tracing studies. Realistic examples are drawn from the SARS outbreak of 2003, the FMDV outbreak in Great Britain in 2001, and HIV transmission cases. The likelihood estimators derived in this report, and the underlying probability distribution functions required to calculate them possess certain compelling general properties in the context of microbial forensics. These include the ability to quantify the significance of a sequence 'match' or &apos

  10. Microbial production of value-added nutraceuticals.

    Science.gov (United States)

    Wang, Jian; Guleria, Sanjay; Koffas, Mattheos Ag; Yan, Yajun

    2016-02-01

    Nutraceuticals are important natural bioactive compounds that confer health-promoting and medical benefits to humans. Globally growing demands for value-added nutraceuticals for prevention and treatment of human diseases have rendered nutraceuticals a multi-billion dollar market. However, supply limitations and extraction difficulties from natural sources such as plants, animals or fungi, restrict the large-scale use of nutraceuticals. Metabolic engineering via microbial production platforms has been advanced as an eco-friendly alternative approach for production of value-added nutraceuticals from simple carbon sources. Microbial platforms like the most widely used Escherichia coli and Saccharomyces cerevisiae have been engineered as versatile cell factories for production of diverse and complex value-added chemicals such as phytochemicals, prebiotics, polysaccaharides and poly amino acids. This review highlights the recent progresses in biological production of value-added nutraceuticals via metabolic engineering approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Microbial production of natural gas from coal and organic-rich shale

    Science.gov (United States)

    Orem, William

    2013-01-01

    Natural gas is an important component of the energy mix in the United States, producing greater energy yield per unit weight and less pollution compared to coal and oil. Most of the world’s natural gas resource is thermogenic, produced in the geologic environment over time by high temperature and pressure within deposits of oil, coal, and shale. About 20 percent of the natural gas resource, however, is produced by microorganisms (microbes). Microbes potentially could be used to generate economic quantities of natural gas from otherwise unexploitable coal and shale deposits, from coal and shale from which natural gas has already been recovered, and from waste material such as coal slurry. Little is known, however, about the microbial production of natural gas from coal and shale.

  12. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources.

    Science.gov (United States)

    Ni, Jun; Tao, Fei; Du, Huaiqing; Xu, Ping

    2015-09-02

    Plant secondary metabolites have been attracting people's attention for centuries, due to their potentials; however, their production is still difficult and costly. The rich diversity of microbes and microbial genome sequence data provide unprecedented gene resources that enable to develop efficient artificial pathways in microorganisms. Here, by mimicking a natural pathway of plants using microbial genes, a new metabolic route was developed in E. coli for the synthesis of vanillin, the most widely used flavoring agent. A series of factors were systematically investigated for raising production, including efficiency and suitability of genes, gene dosage, and culture media. The metabolically engineered strain produced 97.2 mg/L vanillin from l-tyrosine, 19.3 mg/L from glucose, 13.3 mg/L from xylose and 24.7 mg/L from glycerol. These results show that the metabolic route enables production of natural vanillin from low-cost substrates, suggesting that it is a good strategy to mimick natural pathways for artificial pathway design.

  13. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources

    Science.gov (United States)

    Ni, Jun; Tao, Fei; Du, Huaiqing; Xu, Ping

    2015-01-01

    Plant secondary metabolites have been attracting people’s attention for centuries, due to their potentials; however, their production is still difficult and costly. The rich diversity of microbes and microbial genome sequence data provide unprecedented gene resources that enable to develop efficient artificial pathways in microorganisms. Here, by mimicking a natural pathway of plants using microbial genes, a new metabolic route was developed in E. coli for the synthesis of vanillin, the most widely used flavoring agent. A series of factors were systematically investigated for raising production, including efficiency and suitability of genes, gene dosage, and culture media. The metabolically engineered strain produced 97.2 mg/L vanillin from l-tyrosine, 19.3 mg/L from glucose, 13.3 mg/L from xylose and 24.7 mg/L from glycerol. These results show that the metabolic route enables production of natural vanillin from low-cost substrates, suggesting that it is a good strategy to mimick natural pathways for artificial pathway design. PMID:26329726

  14. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review

    Science.gov (United States)

    Zhu, Tingting; Dittrich, Maria

    2016-01-01

    Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnologies, such as metal remediation, carbon sequestration, enhanced oil recovery, and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed. PMID:26835451

  15. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review

    Directory of Open Access Journals (Sweden)

    Tingting eZhu

    2016-01-01

    Full Text Available Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation (MCP, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnology such as metal remediation, carbon sequestration, enhanced oil recovery and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed.

  16. Fecal indicator organism modeling and microbial source tracking in environmental waters: Chapter 3.4.6

    Science.gov (United States)

    Nevers, Meredith; Byappanahalli, Muruleedhara; Phanikumar, Mantha S.; Whitman, Richard L.

    2016-01-01

    Mathematical models have been widely applied to surface waters to estimate rates of settling, resuspension, flow, dispersion, and advection in order to calculate movement of particles that influence water quality. Of particular interest are the movement, survival, and persistence of microbial pathogens or their surrogates, which may contaminate recreational water, drinking water, or shellfish. Most models devoted to microbial water quality have been focused on fecal indicator organisms (FIO), which act as a surrogate for pathogens and viruses. Process-based modeling and statistical modeling have been used to track contamination events to source and to predict future events. The use of these two types of models require different levels of expertise and input; process-based models rely on theoretical physical constructs to explain present conditions and biological distribution while data-based, statistical models use extant paired data to do the same. The selection of the appropriate model and interpretation of results is critical to proper use of these tools in microbial source tracking. Integration of the modeling approaches could provide insight for tracking and predicting contamination events in real time. A review of modeling efforts reveals that process-based modeling has great promise for microbial source tracking efforts; further, combining the understanding of physical processes influencing FIO contamination developed with process-based models and molecular characterization of the population by gene-based (i.e., biological) or chemical markers may be an effective approach for locating sources and remediating contamination in order to protect human health better.

  17. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    International Nuclear Information System (INIS)

    Francis, A.J.

    1985-10-01

    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs

  18. Characterization of the deep microbial life in the Altmark natural gas reservoir

    Science.gov (United States)

    Morozova, D.; Alawi, M.; Vieth-Hillebrand, A.; Kock, D.; Krüger, M.; Wuerdemann, H.; Shaheed, M.

    2010-12-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of approximately 3500 m, is characterised by high salinity (420 g/l) and temperatures up to 127°C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery), the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism), DGGE (Denaturing Gradient Gel Electrophoresis) and 16S rRNA cloning. First results of the baseline survey indicate the presence of microorganisms similar to representatives from other deep environments. The sequence analyses revealed the presence of several H2-oxidising bacteria (Hydrogenophaga sp

  19. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges.

    Science.gov (United States)

    Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan D W

    2007-05-01

    Natural products isolated from sponges are an important source of new biologically active compounds. However, the development of these compounds into drugs has been held back by the difficulties in achieving a sustainable supply of these often-complex molecules for pre-clinical and clinical development. Increasing evidence implicates microbial symbionts as the source of many of these biologically active compounds, but the vast majority of the sponge microbial community remain uncultured. Metagenomics offers a biotechnological solution to this supply problem. Metagenomes of sponge microbial communities have been shown to contain genes and gene clusters typical for the biosynthesis of biologically active natural products. Heterologous expression approaches have also led to the isolation of secondary metabolism gene clusters from uncultured microbial symbionts of marine invertebrates and from soil metagenomic libraries. Combining a metagenomic approach with heterologous expression holds much promise for the sustainable exploitation of the chemical diversity present in the sponge microbial community.

  20. Thoughts Toward a Theory of Natural Selection: The Importance of Microbial Experimental Evolution.

    Science.gov (United States)

    Dykhuizen, Daniel

    2016-01-08

    Natural selection should no longer be thought of simply as a primitive (magical) concept that can be used to support all kinds of evolutionary theorizing. We need to develop causal theories of natural selection; how it arises. Because the factors contributing to the creation of natural selection are expected to be complex and intertwined, theories explaining the causes of natural selection can only be developed through the experimental method. Microbial experimental evolution provides many benefits that using other organisms does not. Microorganisms are small, so millions can be housed in a test tube; they have short generation times, so evolution over hundreds of generations can be easily studied; they can grow in chemically defined media, so the environment can be precisely defined; and they can be frozen, so the fitness of strains or populations can be directly compared across time. Microbial evolution experiments can be divided into two types. The first is to measure the selection coefficient of two known strains over the first 50 or so generations, before advantageous mutations rise to high frequency. This type of experiment can be used to directly test hypotheses. The second is to allow microbial cultures to evolve over many hundreds or thousands of generations and follow the genetic changes, to infer what phenotypes are selected. In the last section of this article, I propose that selection coefficients are not constant, but change as the population becomes fitter, introducing the idea of the selection space. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  1. Dereplication of Microbial Natural Products by LC-DAD-TOFMS

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Månsson, Maria; Rank, Christian

    2011-01-01

    Dereplication, the rapid identification of known compounds present in a mixture, is crucial to the fast discovery of novel natural products. Determining the elemental composition of compounds in mixtures and tentatively identifying natural products using MS/MS and UV/vis spectra is becoming easier...... with advances in analytical equipment and better compound databases. Here we demonstrate the use of LC-UV/vis-MS-based dereplication using data from UV/vis diode array detection and ESI+/ESI– time-of-flight MS for assignment of 719 microbial natural product and mycotoxin reference standards. ESI+ was the most...... unambiguously using multiple adduct ions, while a further 41% of the compounds were detected only as [M – H]−. The most reliable interpretations of conflicting ESI+ and ESI– data on a chromatographic peak were from the ionization polarity with the most intense ionization. Poor ionization was most common...

  2. Microbial Diversity and Mineralogical-Mechanical Properties of Calcitic Cave Speleothems in Natural and in Vitro Biomineralization Conditions

    Directory of Open Access Journals (Sweden)

    Navdeep K. Dhami

    2018-02-01

    Full Text Available Natural mineral formations are a window into important processes leading to carbon storage and mineralized carbonate structures formed through abiotic and biotic processes. In the current study, we made an attempt to undertake a comprehensive approach to characterize the mineralogical, mechanical, and microbial properties of different kinds of speleothems from karstic caves; with an aim to understand the bio-geo-chemical processes in speleothem structures and their impact on nanomechanical properties. We also investigated the biomineralization abilities of speleothem surface associated microbial communities in vitro. Mineralogical profiling using techniques such as X-ray powder Diffraction (XRD and Tescan Integrated Mineral Analyzer (TIMA demonstrated that calcite was the dominant mineral in the majority of speleothems with Energy Dispersive X-ray Analysis (EDS indicating a few variations in the elemental components. Differing proportions of polymorphs of calcium carbonate such as aragonite and vaterite were also recorded. Significant variations in trace metal content were recorded through Inductively Coupled Plasma Mass Spectrometer (ICP-MS. Scanning Electron Microscopy (SEM analysis revealed differences in morphological features of the crystals which varied from triangular prismatic shapes to etched spiky forms. Microbial imprints and associations were seen in a few sections. Analysis of the associated microbial diversity showed significant differences between various speleothems at Phylum level; although Proteobacteria and Actinobacteria were found to be the predominant groups. Genus level microbial associations showed a relationship with the geochemistry, mineralogical composition, and metal content of the speleothems. The assessment of nanomechanical properties measured by Nanoindentation revealed that the speleothems with a dominance of calcite were stronger than the speleothems with mixed calcium carbonate polymorphs and silica content

  3. Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests

    Energy Technology Data Exchange (ETDEWEB)

    Stitt, Caroline R. [Mills College, Oakland, CA (United States)

    2013-09-16

    Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using a unique radiocarbon (14C) tracer. Results from the dark incubation of organic and mineral soils are heavily influenced by site characteristics when incubated at optimal microbial activity temperature. Sites with considerable differences in temperature, texture, and location differ in carbon source attribution, indicating that site characteristics play a role in soil respiration.

  4. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya.

    Science.gov (United States)

    Malavi, Derick Nyabera; Muzhingi, Tawanda; Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly ( P contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log 10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree.

  5. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    Science.gov (United States)

    Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly (P contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree. PMID:29808161

  6. Growth and element flux at fine taxonomic resolution in natural microbial communities

    Science.gov (United States)

    Hungate, Bruce; Mau, Rebecca; Schwartz, Egbert; Caporaso, J. Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J.; Liu, Cindy M.; McHugh, Theresa; Marks, Jane C.; Morrissey, Ember; Price, Lance B.

    2015-04-01

    Microorganisms are the engines of global biogeochemical cycles, driving half of all photosynthesis and nearly all decomposition. Yet, quantifying the rates at which uncultured microbial taxa grow and transform elements in intact and highly diverse natural communities in the environment remains among the most pressing challenges in microbial ecology today. Here, we show how shifts in the density of DNA caused by stable isotope incorporation can be used to estimate the growth rates of individual bacterial taxa in intact soil communities. We found that the distribution of growth rates followed the familiar lognormal distribution observed for the abundances, biomasses, and traits of many organisms. Growth rates of most bacterial taxa increased in response to glucose amendment, though the increase in growth observed for many taxa was larger than could be explained by direct utilization of the added glucose for growth, illustrating that glucose addition indirectly stimulated the utilization of other substrates. Variation in growth rates and phylogenetic distances were quantitatively related, connecting evolutionary history and biogeochemical function in intact soil microbial communities. Our approach has the potential to identify biogeochemically significant taxa in the microbial community and quantify their contributions to element transformations and ecosystem processes.

  7. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    OpenAIRE

    Malavi, Derick Nyabera; Muzhingi, Tawanda; Abong’, George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were use...

  8. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    Directory of Open Access Journals (Sweden)

    Derick Nyabera Malavi

    2018-01-01

    Full Text Available Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs, hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly (P<0.05 reduced microbial load in OFSP cooked roots but the counts significantly (P<0.05 increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree.

  9. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia

    2016-05-01

    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  10. Potential sources of hydrocarbons and their microbial degradation in sediments from the deep geothermal Lusi site, Indonesia

    Science.gov (United States)

    Krueger, Martin; Mazzini, Adriano; Scheeder, Georg; Blumenberg, Martin

    2017-04-01

    The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems, which started in 2006 following an earthquake on Java Island. Since then it has been continuously producing hot and hydrocarbon rich mud from a central crater with peaks reaching 180.000 m3 per day. Numerous investigations focused on the study of microbial communities which thrive at offshore methane and oil seeps and mud volcanoes, however very little has been done on onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 as well as of liquid hydrocarbons originating from one or more km below the surface. While the source of the methane at Lusi is unambiuous, the origin of the seeping oil is still discussed. Both, source and maturity estimates from biomarkers, are in favor of a type II/III organic matter source. Likely the oils were formed from the studied black shales (deeper Ngimbang Fm.) which contained a Type III component in the Type II predominated organic matter. In all samples large numbers of active microorganisms were present. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade different hydrocarbons. The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Ongoing microbial activity in crater sediment samples under high temperatures (80-95C) indicate a deep origin of the involved microorganisms. First results of molecular analyses of the microbial community compositions confirm the above findings. This study represents an initial step to better understand onshore seepage systems and provides an ideal analogue for comparison with the better investigated offshore structures.

  11. Sampling natural biofilms: a new route to build efficient microbial anodes.

    Science.gov (United States)

    Erable, Benjamin; Roncato, Marie-Anne; Achouak, Wafa; Bergel, Alain

    2009-05-01

    Electrochemically active biofilms were constructed on graphite anodes under constant polarization at -0.1V vs saturated calomel reference (SCE) with 10 mM acetate as substrate. The reactors were inoculated with three different microbial samples that were drawn from exactly the same place in a French Atlantic coastal port (i) by scraping the biofilm that had formed naturally on the surface of a floating bridge, (ii) by taking marine sediments just under the floating bridge, and (iii) by taking nearby beach sand. Current densities of 2.0 A/m2 were reached using the biofilm sample as inoculum while only 0.4 A/m2 and 0.8 A/m2 were obtained using the underlying sediments and the beach sand, respectively. The structure of bacterial communities forming biofilms was characterized by denaturing gradient gel electrophoresis (DGGE) analysis, and revealed differences between samples with the increase in relative intensities of some bands and the appearance of others. Bacteria close related to Bacteroidetes, Halomonas, and Marinobacterium were retrieved only from the efficient EA-biofilms formed from natural biofilms, whereas, bacteria close related to Mesoflavibacter were predominant on biofilm formed from sediments. The marine biofilm was selected as the inoculum to further optimize the microbial anode. Epifluorescence microscopy and SEM confirmed that maintaining the electrode under constant polarization promoted rapid settlement of the electrode surface by a bacterial monolayer film. The microbial anode was progressively adapted to the consumption of acetate by three serial additions of substrate, thus improving the Coulombic efficiency of acetate consumption from 31 to 89%. The possible oxidation of sulfide played only a very small part in the current production and the biofilm was not able to oxidize hydrogen. Graphite proved to be more efficient than dimensionally stable anode (DSA) or stainless steel butthis result might be due to differences in the surface roughness

  12. From vineyard to winery: a source map of microbial diversity driving wine fermentation.

    Science.gov (United States)

    Morrison-Whittle, Peter; Goddard, Matthew R

    2018-01-01

    Humans have been making wine for thousands of years and microorganisms play an integral part in this process as they not only drive fermentation, but also significantly influence the flavour, aroma and quality of finished wines. Since fruits are ephemeral, they cannot comprise a permanent microbial habitat; thus, an age-old unanswered question concerns the origin of fruit and ferment associated microbes. Here we use next-generation sequencing approaches to examine and quantify the roles of native forest, vineyard soil, bark and fruit habitats as sources of fungal diversity in ferments. We show that microbial communities in harvested juice and ferments vary significantly across regions, and that while vineyard fungi account for ∼40% of the source of this diversity, uncultivated ecosystems outside of vineyards also prove a significant source. We also show that while communities in harvested juice resemble those found on grapes, these increasingly resemble fungi present on vine bark as the ferment proceeds. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Gut Microbial Glycerol Metabolism as an Endogenous Acrolein Source

    Directory of Open Access Journals (Sweden)

    Jianbo Zhang

    2018-01-01

    Full Text Available Acrolein is a highly reactive electrophile causing toxic effects, such as DNA and protein adduction, oxidative stress, endoplasmic reticulum stress, immune dysfunction, and membrane damage. This Opinion/Hypothesis provides an overview of endogenous and exogenous acrolein sources, acrolein’s mode of action, and its metabolic fate. Recent reports underpin the finding that gut microbial glycerol metabolism leading to the formation of reuterin is an additional source of endogenous acrolein. Reuterin is an antimicrobial multicomponent system consisting of 3-hydroxypropionaldehyde, its dimer and hydrate, and also acrolein. The major conclusion is that gut microbes can metabolize glycerol to reuterin and that this transformation occurs in vivo. Given the known toxicity of acrolein, the observation that acrolein is formed in the gut necessitates further investigations on functional relevance for gut microbiota and the host.

  14. Microbial source tracking and transfer hydrodynamics in rural catchments.

    Science.gov (United States)

    Murphy, Sinead; Bhreathnach, Niamh; O'Flaherty, Vincent; Jordan, Philip; Wuertz, Stefan

    2013-04-01

    In Ireland, bacterial pathogens from continual point source pollution and intermittent pollution from diffuse sources can impact both drinking water supplies and recreational waters. This poses a serious public health threat. Observing and establishing the source of faecal pollution is imperative for the protection of water quality and human health. Traditional culture methods to detect such pollution via faecal indicator bacteria have been widely utilised but do not decipher the source of pollution. To combat this, microbial source tracking, an important emerging molecular tool, is applied to detect host-specific markers in faecally contaminated waters. The aim of this study is to target ruminant and human-specific faecal Bacteroidales and Bacteroides 16S rRNA genes within rural river catchments in Ireland and investigate hydrological transfer dependencies. During storm events and non-storm periods, 1L untreated water samples, taken every 2 hours over a 48-hour time period at the spring (Cregduff) or outlet (Dunleer), and large (5-20L) untreated water samples were collected from two catchment sites. Cregduff is a spring emergence under a grassland karst landscape in Co. Mayo (west coast of Ireland) and Dunleer is a mixed landuse over till soils in Co. Louth (east coast). From a risk assessment point of view, the catchments are very different. Samples were filtered through 0.2µm nitrocellulose filters to concentrate bacterial cells which then underwent chemical extraction of total nucleic acids. Animal and human stool samples were also collected from the catchments to determine assay sensitivity and specificity following nucleic acid extraction. Aquifer response to seasonal events was assessed by monitoring coliforms and E. coli occurrence using the IDEXX Colisure® Quanti Tray®/2000 system in conjunction with chemical and hydrological parameters. Autoanalysers deployed at each catchment monitor multiple water parameters every 10 min such as phosphorus, nitrogen

  15. Automated genome mining of ribosomal peptide natural products

    Energy Technology Data Exchange (ETDEWEB)

    Mohimani, Hosein; Kersten, Roland; Liu, Wei; Wang, Mingxun; Purvine, Samuel O.; Wu, Si; Brewer, Heather M.; Pasa-Tolic, Ljiljana; Bandeira, Nuno; Moore, Bradley S.; Pevzner, Pavel A.; Dorrestein, Pieter C.

    2014-07-31

    Ribosomally synthesized and posttranslationally modified peptides (RiPPs), especially from microbial sources, are a large group of bioactive natural products that are a promising source of new (bio)chemistry and bioactivity (1). In light of exponentially increasing microbial genome databases and improved mass spectrometry (MS)-based metabolomic platforms, there is a need for computational tools that connect natural product genotypes predicted from microbial genome sequences with their corresponding chemotypes from metabolomic datasets. Here, we introduce RiPPquest, a tandem mass spectrometry database search tool for identification of microbial RiPPs and apply it for lanthipeptide discovery. RiPPquest uses genomics to limit search space to the vicinity of RiPP biosynthetic genes and proteomics to analyze extensive peptide modifications and compute p-values of peptide-spectrum matches (PSMs). We highlight RiPPquest by connection of multiple RiPPs from extracts of Streptomyces to their gene clusters and by the discovery of a new class III lanthipeptide, informatipeptin, from Streptomyces viridochromogenes DSM 40736 as the first natural product to be identified in an automated fashion by genome mining. The presented tool is available at cy-clo.ucsd.edu.

  16. Natural Colorants: Food Colorants from Natural Sources.

    Science.gov (United States)

    Sigurdson, Gregory T; Tang, Peipei; Giusti, M Mónica

    2017-02-28

    The color of food is often associated with the flavor, safety, and nutritional value of the product. Synthetic food colorants have been used because of their high stability and low cost. However, consumer perception and demand have driven the replacement of synthetic colorants with naturally derived alternatives. Natural pigment applications can be limited by lower stability, weaker tinctorial strength, interactions with food ingredients, and inability to match desired hues. Therefore, no single naturally derived colorant can serve as a universal alternative for a specified synthetic colorant in all applications. This review summarizes major environmental and biological sources for natural colorants as well as nature-identical counterparts. Chemical characteristics of prevalent pigments, including anthocyanins, carotenoids, betalains, and chlorophylls, are described. The possible applications and hues (warm, cool, and achromatic) of currently used natural pigments, such as anthocyanins as red and blue colorants, and possible future alternatives, such as purple violacein and red pyranoanthocyanins, are also discussed.

  17. Quantitative Microbial Risk Assessment for in Natural and Processed Cheeses

    Directory of Open Access Journals (Sweden)

    Heeyoung Lee

    2016-08-01

    Full Text Available This study evaluated the risk of Clostridium perfringens (C. perfringens foodborne illness from natural and processed cheeses. Microbial risk assessment in this study was conducted according to four steps: hazard identification, hazard characterization, exposure assessment, and risk characterization. The hazard identification of C. perfringens on cheese was identified through literature, and dose response models were utilized for hazard characterization of the pathogen. For exposure assessment, the prevalence of C. perfringens, storage temperatures, storage time, and annual amounts of cheese consumption were surveyed. Eventually, a simulation model was developed using the collected data and the simulation result was used to estimate the probability of C. perfringens foodborne illness by cheese consumption with @RISK. C. perfringens was determined to be low risk on cheese based on hazard identification, and the exponential model (r = 1.82×10−11 was deemed appropriate for hazard characterization. Annual amounts of natural and processed cheese consumption were 12.40±19.43 g and 19.46±14.39 g, respectively. Since the contamination levels of C. perfringens on natural (0.30 Log CFU/g and processed cheeses (0.45 Log CFU/g were below the detection limit, the initial contamination levels of natural and processed cheeses were estimated by beta distribution (α1 = 1, α2 = 91; α1 = 1, α2 = 309×uniform distribution (a = 0, b = 2; a = 0, b = 2.8 to be −2.35 and −2.73 Log CFU/g, respectively. Moreover, no growth of C. perfringens was observed for exposure assessment to simulated conditions of distribution and storage. These data were used for risk characterization by a simulation model, and the mean values of the probability of C. perfringens foodborne illness by cheese consumption per person per day for natural and processed cheeses were 9.57×10−14 and 3.58×10−14, respectively. These results indicate that probability of C. perfringens

  18. Alternative sources of natural rubber

    NARCIS (Netherlands)

    Mooibroek, H.; Cornish, K.

    2000-01-01

    Rubber (cis-1,4-polyisoprene) is one of the most important polymers naturally produced by plants because it is a strategic raw material used in more than 40,000 products, including more than 400 medical devices. The sole commercial source, at present, is natural rubber harvested from the Brazilian

  19. Decay of Fecal Indicator Bacteria and Microbial Source Tracking Markers in Cattle Feces

    Science.gov (United States)

    The survival of fecal indicator bacteria (FIB) and microbial source tracking (MST) markers in water microcosms and manure amended soils has been well documented; however, little is known about the survival of MST markers in bovine feces deposited on pastures. We conducted a study...

  20. Multiple approaches to microbial source tracking in tropical northern Australia

    KAUST Repository

    Neave, Matthew

    2014-09-16

    Microbial source tracking is an area of research in which multiple approaches are used to identify the sources of elevated bacterial concentrations in recreational lakes and beaches. At our study location in Darwin, northern Australia, water quality in the harbor is generally good, however dry-season beach closures due to elevated Escherichia coli and enterococci counts are a cause for concern. The sources of these high bacteria counts are currently unknown. To address this, we sampled sewage outfalls, other potential inputs, such as urban rivers and drains, and surrounding beaches, and used genetic fingerprints from E. coli and enterococci communities, fecal markers and 454 pyrosequencing to track contamination sources. A sewage effluent outfall (Larrakeyah discharge) was a source of bacteria, including fecal bacteria that impacted nearby beaches. Two other treated effluent discharges did not appear to influence sites other than those directly adjacent. Several beaches contained fecal indicator bacteria that likely originated from urban rivers and creeks within the catchment. Generally, connectivity between the sites was observed within distinct geographical locations and it appeared that most of the bacterial contamination on Darwin beaches was confined to local sources.

  1. Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products.

    Science.gov (United States)

    Kang, Hahk-Soo

    2017-02-01

    Genomics-based methods are now commonplace in natural products research. A phylogeny-guided mining approach provides a means to quickly screen a large number of microbial genomes or metagenomes in search of new biosynthetic gene clusters of interest. In this approach, biosynthetic genes serve as molecular markers, and phylogenetic trees built with known and unknown marker gene sequences are used to quickly prioritize biosynthetic gene clusters for their metabolites characterization. An increase in the use of this approach has been observed for the last couple of years along with the emergence of low cost sequencing technologies. The aim of this review is to discuss the basic concept of a phylogeny-guided mining approach, and also to provide examples in which this approach was successfully applied to discover new natural products from microbial genomes and metagenomes. I believe that the phylogeny-guided mining approach will continue to play an important role in genomics-based natural products research.

  2. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters

    Science.gov (United States)

    Before new, rapid quantitative PCR (qPCR) methods for recreational water quality assessment and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant soure has been...

  3. Natural and technologically enhanced sources of radon-222

    International Nuclear Information System (INIS)

    Travis, C.C.; Watson, A.P.; McDowell-Boyer, L.M.; Cotter, S.J.; Randolph, M.L.; Fields, D.E.

    1979-01-01

    An assessment of 222 Rn releases (curies/year) from major natural and technologically enhanced sources in the United States is presented. The resulting inhalation population dose commitments to the bronchial epithelium of the lung (lung-rem) are also estimated. The sources of radon considered are natural soil, evapotranspiration, potable water supplies, building materials, natural gas, uranium mining and milling, coal and phosphate mining, phosphate fertilizer, liquefied petroleum gas, geothermal power facilities, coal-fired power plants, and gas and oil wells. The most important natural source of 222 Rn is decay of 226 Ra in the soil and rocks of the earth's crust. This source results in approximately 40% of the total population dose from all sources of radon. The largest technoligcally enhanced contributor to population dose is airborne 222 Rn in building interiors, which is estimated to contribute 55% to the total population exposure to 222 Rn. Each of the other sources is estimated to contribute less than 3% to the total

  4. Global inventory of NOx sources

    International Nuclear Information System (INIS)

    Delmas, R.; Serca, D.; Jambert, C.

    1997-01-01

    Nitrogen oxides are key compounds for the oxidation capacity of the troposphere. Their concentration depends on the proximity of sources because of their short atmospheric lifetime. An accurate knowledge of the distribution of their sources and sinks is therefore crucial. At the global scale, the dominant sources of nitrogen oxides - combustion of fossil fuel (about 50%) and biomass burning (about 20%) - are basically anthropogenic. Natural sources, including lightning and microbial activity in soils, represent therefore less than 30% of total emissions. Fertilizer use in agriculture constitutes an anthropogenic perturbation to the microbial source. The methods to estimate the magnitude and distribution of these dominant sources of nitrogen oxides are discussed. Some minor sources which may play a specific role in tropospheric chemistry such as NO x emission from aircraft in the upper troposphere or input from production in the stratosphere from N 2 O photodissociation are also considered

  5. Deep microbial life in the Altmark natural gas reservoir: baseline characterization prior CO2 injection

    Science.gov (United States)

    Morozova, Daria; Shaheed, Mina; Vieth, Andrea; Krüger, Martin; Kock, Dagmar; Würdemann, Hilke

    2010-05-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of about 3500m, is characterised by high salinity fluid and temperatures up to 127° C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery) the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results of the baseline survey indicate the presence of microorganisms similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that

  6. RMS Titanic and the emergence of new concepts on consortial nature of microbial events.

    Science.gov (United States)

    Cullimore, D Roy; Pellegrino, Charles; Johnston, Lori

    2002-01-01

    The RMS Titanic sank in 1912 and created a historical event that still ripples through time. Stories were told and lessons learned but the science has only just begun. Today the fading remains of the ship resemble the hanging gardens of Babylon except that it is not plants that drape the walls but complex microbial growths called rusticles. These organisms have been found to be not a species, like plants and animals, but to be structures created by complex communities of bacterial species. Like the discovery of tube worms in the mid-oceanic vents, the nature of these rusticles presents another biological discovery of a fundamental nature. Essentially these microbial consortia on the RMS Titanic have generated structures of a mass that would rival whales and elephants while gradually extracting the iron from the steel. Rusticle-like consortia appear to play many roles within the environment, and it is perhaps the RMS Titanic that is showing that there is a new way to understand the form, function, and nature of microorganisms. This understanding would develop by considering the bacteria not as individual species functioning independently but as consortia of species functioning in community structures within a common habitat. This concept, if adopted, would change dramatically the manner in which a microbial ecologist and any scientist or engineer would view the occurrence of a slime, encrustation, biocolloid, rust flake, iron pan, salt deposit, and perhaps even some of the diseases that remain unexplained as a disease of unknown cause.

  7. Exposures to natural radiation sources. Annex B

    International Nuclear Information System (INIS)

    1982-01-01

    The assessment of the radiation doses from natural sources in humans is presented. Both external sources of extraterrestrial origin (cosmic rays) and of terrestrial origin, and internal sources, comprising the naturally-occurring radionuclides which are taken into the human body, are discussed. This Annex is to a large extent a summary of Annex B of the 1977 report of the Committee. The doses due to the radon isotopes and to their short-lived decay products are briefly reviewed.

  8. Constraining Biomarkers of Dissolved Organic Matter Sourcing Using Microbial Incubations of Vascular Plant Leachates of the California landscape

    Science.gov (United States)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.; Kaiser, K.; Spencer, R. G.; Guillemette, F.

    2017-12-01

    Source origin of dissolved organic matter (DOM) is crucial in determining reactivity, driving chemical and biological processing of carbon. DOM source biomarkers such as lignin (a vascular plant marker) and D-amino acids (bacterial markers) are well-established tools in tracing DOM origin and fate. The development of high-resolution mass spectrometry and optical studies has expanded our toolkit; yet despite these advances, our understanding of DOM sources and fate remains largely qualitative. Quantitative data on DOM pools and fluxes become increasingly necessary as we refine our comprehension of its composition. In this study, we aim to calibrate and quantify DOM source endmembers by performing microbial incubations of multiple vascular plant leachates, where total DOM is constrained by initial vascular plant input and microbial production. Derived endmembers may be applied to endmember mixing models to quantify DOM source contributions in aquatic systems.

  9. New paradigms for Salmonella source attribution based on microbial subtyping.

    Science.gov (United States)

    Mughini-Gras, Lapo; Franz, Eelco; van Pelt, Wilfrid

    2018-05-01

    Microbial subtyping is the most common approach for Salmonella source attribution. Typically, attributions are computed using frequency-matching models like the Dutch and Danish models based on phenotyping data (serotyping, phage-typing, and antimicrobial resistance profiling). Herewith, we critically review three major paradigms facing Salmonella source attribution today: (i) the use of genotyping data, particularly Multi-Locus Variable Number of Tandem Repeats Analysis (MLVA), which is replacing traditional Salmonella phenotyping beyond serotyping; (ii) the integration of case-control data into source attribution to improve risk factor identification/characterization; (iii) the investigation of non-food sources, as attributions tend to focus on foods of animal origin only. Population genetics models or simplified MLVA schemes may provide feasible options for source attribution, although there is a strong need to explore novel modelling options as we move towards whole-genome sequencing as the standard. Classical case-control studies are enhanced by incorporating source attribution results, as individuals acquiring salmonellosis from different sources have different associated risk factors. Thus, the more such analyses are performed the better Salmonella epidemiology will be understood. Reparametrizing current models allows for inclusion of sources like reptiles, the study of which improves our understanding of Salmonella epidemiology beyond food to tackle the pathogen in a more holistic way. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The natural sources of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Maximilien, R.

    1982-01-01

    Natural sources of ionizing radiation include external sources (cosmic rays, natural radionuclides present in the crust of the earth and in building materials) and internal sources (naturally occuring radionuclides in the human body, especially the potassium 40 and radon short lived decay products). The principal ways of human exposure to theses different components in ''normal'' areas are reviewed; some examples of the variability of exposure with respect to different regions of the world or the habits of life are given. Actual estimations of the doses delivered to the organs are presented; for the main contributors to population exposure, the conversion into effective dose equivalent has been made for allowing a better evaluation of their respective importance [fr

  11. Harnessing a methane-fueled, sediment-free mixed microbial community for utilization of distributed sources of natural gas.

    Science.gov (United States)

    Marlow, Jeffrey J; Kumar, Amit; Enalls, Brandon C; Reynard, Linda M; Tuross, Noreen; Stephanopoulos, Gregory; Girguis, Peter

    2018-06-01

    Harnessing the metabolic potential of uncultured microbial communities is a compelling opportunity for the biotechnology industry, an approach that would vastly expand the portfolio of usable feedstocks. Methane is particularly promising because it is abundant and energy-rich, yet the most efficient methane-activating metabolic pathways involve mixed communities of anaerobic methanotrophic archaea and sulfate reducing bacteria. These communities oxidize methane at high catabolic efficiency and produce chemically reduced by-products at a comparable rate and in near-stoichiometric proportion to methane consumption. These reduced compounds can be used for feedstock and downstream chemical production, and at the production rates observed in situ they are an appealing, cost-effective prospect. Notably, the microbial constituents responsible for this bioconversion are most prominent in select deep-sea sediments, and while they can be kept active at surface pressures, they have not yet been cultured in the lab. In an industrial capacity, deep-sea sediments could be periodically recovered and replenished, but the associated technical challenges and substantial costs make this an untenable approach for full-scale operations. In this study, we present a novel method for incorporating methanotrophic communities into bioindustrial processes through abstraction onto low mass, easily transportable carbon cloth artificial substrates. Using Gulf of Mexico methane seep sediment as inoculum, optimal physicochemical parameters were established for methane-oxidizing, sulfide-generating mesocosm incubations. Metabolic activity required >∼40% seawater salinity, peaking at 100% salinity and 35 °C. Microbial communities were successfully transferred to a carbon cloth substrate, and rates of methane-dependent sulfide production increased more than threefold per unit volume. Phylogenetic analyses indicated that carbon cloth-based communities were substantially streamlined and were

  12. Microcosm studies on iron and arsenic mobilization from aquifer sediments under different conditions of microbial activity and carbon source

    Science.gov (United States)

    Duan, Mengyu; Xie, Zuoming; Wang, Yanxin; Xie, Xianjun

    2009-05-01

    Microcosm experiments were conducted to understand the mechanism of microbially mediated mobilization of Fe and As from high arsenic aquifer sediments. Arsenic-resistant strains isolated from aquifer sediments of a borehole specifically drilled for this study at Datong basin were used as inoculated strains, and glucose and sodium acetate as carbon sources for the experiments. In abiotic control experiments, the maximum concentrations of Fe and As were only 0.47 mg/L and 0.9 μg/L, respectively. By contrast, the maximum contents of Fe and As in anaerobic microcosm experiments were much higher (up to 1.82 mg/L and 12.91 μg/L, respectively), indicating the crucial roles of microbial activities in Fe and As mobilization. The observed difference in Fe and As release with different carbon sources may be related to the difference in growth pattern and composition of microbial communities that develop in response to the type of carbon sources.

  13. Microbial Source Tracking in a Watershed Dominated by Swine

    Directory of Open Access Journals (Sweden)

    Joice F. Lubbers

    2010-09-01

    Full Text Available The high concentration of swine production in southeastern North Carolina generates public health concerns regarding the potential transport of pathogens from these production systems to nearby surface waters. The microbial source tracking (MST tool, antibiotic resistance analysis (ARA, was used to identify sources of E. coli in a segment of Six Runs Creek in Sampson County, North Carolina. Among 52 water samples, fecal coliform (FC counts averaged 272.1 ± 181.6 CFU/100 mL. Comparisons of isolates from water samples to an ARA library with an average rate of correct classification (ARCC of 94.3% indicated an average of 64% and 27.1% of 1,961 isolates from Six Runs Creek were associated with lagoon effluent and cattle manure respectively. The potential for aerosol transport of bacteria during lagoon spray events, as well as, the potential for wildlife to serve as a vehicle of transport for bacteria from fields and lagoons to nearby surface waters should be investigated further.

  14. Tapping the biotechnological potential of insect microbial symbionts: new insecticidal porphyrins

    OpenAIRE

    Martinez, Ana Fl?via Canovas; de Almeida, Lu?s Gustavo; Moraes, Luiz Alberto Beraldo; C?nsoli, Fernando Lu?s

    2017-01-01

    Background The demand for sustainable agricultural practices and the limited progress toward newer and safer chemicals for use in pest control maintain the impetus for research and identification of new natural molecules. Natural molecules are preferable to synthetic organic molecules because they are biodegradable, have low toxicity, are often selective and can be applied at low concentrations. Microbes are one source of natural insecticides, and microbial insect symbionts have attracted att...

  15. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    Science.gov (United States)

    Mueller, Ryan S.; Denef, Vincent J.; Kalnejais, Linda H.; Suttle, K. Blake; Thomas, Brian C.; Wilmes, Paul; Smith, Richard L.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Shah, Menesh B.; VerBekmoes, Nathan C.; Hettich, Robert L.; Banfield, Jillian F.

    2010-01-01

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems. We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism's metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ.

  16. Engineering Microbial Cells for the Biosynthesis of Natural Compounds of Pharmaceutical Significance

    Directory of Open Access Journals (Sweden)

    Philippe Jeandet

    2013-01-01

    Full Text Available Microbes constitute important platforms for the biosynthesis of numerous molecules of pharmaceutical interest such as antitumor, anticancer, antiviral, antihypertensive, antiparasitic, antioxidant, immunological agents, and antibiotics as well as hormones, belonging to various chemical families, for instance, terpenoids, alkaloids, polyphenols, polyketides, amines, and proteins. Engineering microbial factories offers rich opportunities for the production of natural products that are too complex for cost-effective chemical synthesis and whose extraction from their originating plants needs the use of many solvents. Recent progresses that have been made since the millennium beginning with metabolic engineering of microorganisms for the biosynthesis of natural products of pharmaceutical significance will be reviewed.

  17. Potential microbial risk factors related to soil amendments and irrigation water of potato crops.

    Science.gov (United States)

    Selma, M V; Allende, A; López-Gálvez, F; Elizaquível, P; Aznar, R; Gil, M I

    2007-12-01

    This study assesses the potential microbial risk factors related to the use of soil amendments and irrigation water on potato crops, cultivated in one traditional and two intensive farms during two harvest seasons. The natural microbiota and potentially pathogenic micro-organisms were evaluated in the soil amendment, irrigation water, soil and produce. Uncomposted amendments and residual and creek water samples showed the highest microbial counts. The microbial load of potatoes harvested in spring was similar among the tested farms despite the diverse microbial levels of Listeria spp. and faecal coliforms in the potential risk sources. However, differences in total coliform load of potato were found between farms cultivated in the autumn. Immunochromatographic rapid tests and the BAM's reference method (Bacteriological Analytical Manual; AOAC International) were used to detect Escherichia coli O157:H7 from the potential risk sources and produce. Confirmation of the positive results by polymerase chain reaction procedures showed that the immunochromatographic assay was not reliable as it led to false-positive results. The potentially pathogenic micro-organisms of soil amendment, irrigation water and soil samples changed with the harvest seasons and the use of different agricultural practices. However, the microbial load of the produce was not always influenced by these risk sources. Improvements in environmental sample preparation are needed to avoid interferences in the use of immunochromatographic rapid tests. The potential microbial risk sources of fresh produce should be regularly controlled using reliable detection methods to guarantee their microbial safety.

  18. Invited review: Microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters.

    Science.gov (United States)

    Gatti, Monica; Bottari, Benedetta; Lazzi, Camilla; Neviani, Erasmo; Mucchetti, Germano

    2014-02-01

    The robustness of the starter culture during cheese fermentation is enhanced by the presence of a rich consortium of microbes. Natural starters are consortia of microbes undoubtedly richer than selected starters. Among natural starters, natural whey starters (NWS) are the most common cultures currently used to produce different varieties of cheeses. Undefined NWS are typically used for Italian cooked, long-ripened, extra-hard, raw milk cheeses, such as Parmigiano Reggiano and Grana Padano. Together with raw milk microbiota, NWS are responsible for most cheese characteristics. The microbial ecology of these 2 cheese varieties is based on a complex interaction among starter lactic acid bacteria (SLAB) and nonstarter lactic acid bacteria (NSLAB), which are characterized by their different abilities to grow in a changing substrate. This review aims to summarize the latest findings on Parmigiano Reggiano and Grana Padano to better understand the dynamics of SLAB, which mainly arise from NWS, and NSLAB, which mainly arise from raw milk, and their possible role in determining the characteristics of these cheeses. The review is presented in 4 main sections. The first summarizes the main microbiological and chemical properties of the ripened cheese as determined by cheese-making process variables, as these variables may affect microbial growth. The second describes the microbiota of raw milk as affected by specific milk treatments, from milking to the filling of the cheese milk vat. The third describes the microbiota of NWS, and the fourth reviews the knowledge available on microbial dynamics from curd to ripened cheese. As the dynamics and functionality of complex undefined NWS is one of the most important areas of focus in current food microbiology research, this review may serve as a good starting point for implementing future studies on microbial diversity and functionality of undefined cheese starter cultures. Copyright © 2014 American Dairy Science Association

  19. Molecular characterization of bacteriophages for microbial source tracking in Korea.

    Science.gov (United States)

    Lee, Jung Eun; Lim, Mi Young; Kim, Sei Yoon; Lee, Sunghee; Lee, Heetae; Oh, Hyun-Myung; Hur, Hor-Gil; Ko, Gwangpyo

    2009-11-01

    We investigated coliphages from various fecal sources, including humans and animals, for microbial source tracking in South Korea. Both somatic and F+-specific coliphages were isolated from 43 fecal samples from farms, wild animal habitats, and human wastewater plants. Somatic coliphages were more prevalent and abundant than F+ coliphages in all of the tested fecal samples. We further characterized 311 F+ coliphage isolates using RNase sensitivity assays, PCR and reverse transcription-PCR, and nucleic acid sequencing. Phylogenetic analyses were performed based on the partial nucleic acid sequences of 311 F+ coliphages from various sources. F+ RNA coliphages were most prevalent among geese (95%) and were least prevalent in cows (5%). Among the genogroups of F+ RNA coliphages, most F+ coliphages isolated from animal fecal sources belonged to either group I or group IV, and most from human wastewater sources were in group II or III. Some of the group I coliphages were present in both human and animal source samples. F+ RNA coliphages isolated from various sources were divided into two main clusters. All F+ RNA coliphages isolated from human wastewater were grouped with Qbeta-like phages, while phages isolated from most animal sources were grouped with MS2-like phages. UniFrac significance statistical analyses revealed significant differences between human and animal bacteriophages. In the principal coordinate analysis (PCoA), F+ RNA coliphages isolated from human waste were distinctively separate from those isolated from other animal sources. However, F+ DNA coliphages were not significantly different or separate in the PCoA. These results demonstrate that proper analysis of F+ RNA coliphages can effectively distinguish fecal sources.

  20. Differential Decay of Cattle-associated Fecal Indicator Bacteria and Microbial Source Tracking Markers in Fresh and Marine Water

    Science.gov (United States)

    Background: Fecal indicator bacteria (FIB) have a long history of use in the assessment of the microbial quality of recreational waters. However, quantification of FIB provides no information about the pollution source(s) and relatively little is known about their fate in the amb...

  1. Estimating true human and animal host source contribution in quantitative microbial source tracking using the Monte Carlo method.

    Science.gov (United States)

    Wang, Dan; Silkie, Sarah S; Nelson, Kara L; Wuertz, Stefan

    2010-09-01

    Cultivation- and library-independent, quantitative PCR-based methods have become the method of choice in microbial source tracking. However, these qPCR assays are not 100% specific and sensitive for the target sequence in their respective hosts' genome. The factors that can lead to false positive and false negative information in qPCR results are well defined. It is highly desirable to have a way of removing such false information to estimate the true concentration of host-specific genetic markers and help guide the interpretation of environmental monitoring studies. Here we propose a statistical model based on the Law of Total Probability to predict the true concentration of these markers. The distributions of the probabilities of obtaining false information are estimated from representative fecal samples of known origin. Measurement error is derived from the sample precision error of replicated qPCR reactions. Then, the Monte Carlo method is applied to sample from these distributions of probabilities and measurement error. The set of equations given by the Law of Total Probability allows one to calculate the distribution of true concentrations, from which their expected value, confidence interval and other statistical characteristics can be easily evaluated. The output distributions of predicted true concentrations can then be used as input to watershed-wide total maximum daily load determinations, quantitative microbial risk assessment and other environmental models. This model was validated by both statistical simulations and real world samples. It was able to correct the intrinsic false information associated with qPCR assays and output the distribution of true concentrations of Bacteroidales for each animal host group. Model performance was strongly affected by the precision error. It could perform reliably and precisely when the standard deviation of the precision error was small (≤ 0.1). Further improvement on the precision of sample processing and q

  2. Recent innovation in microbial source tracking using bacterial real-time PCR markers in shellfish

    International Nuclear Information System (INIS)

    Mauffret, A.; Mieszkin, S.; Morizur, M.; Alfiansah, Y.; Lozach, S.; Gourmelon, M.

    2013-01-01

    Highlights: ► DNA extraction from intravalvular liquid is promising for microbial source tracking in oysters. ► Host-associated bacterial markers in shellfish digestive tissues were difficult to assess with real-time PCR. ► DNA extracts from shellfish flesh appeared to have low inhibitor levels but low marker levels. ► Protocol transfer from one shellfish species to another does not appear possible. -- Abstract: We assessed the capacity of real-time PCR markers to identify the origin of contamination in shellfish. Oyster, cockles or clams were either contaminated with fecal materials and host-associated markers designed from Bacteroidales or Catellicoccus marimammalium 16S RNA genes were extracted from their intravalvular liquid, digestive tissues or shellfish flesh. Extraction of bacterial DNA from the oyster intravalvular liquid with FastDNA spin kit for soil enabled the selected markers to be quantified in 100% of artificially contaminated samples, and the source of contamination to be identified in 13 out of 38 naturally contaminated batches from European Class B and Class C areas. However, this protocol did not enable the origin of the contamination to be identified in cockle or clam samples. Although results are promising for extracts from intravalvular liquid in oyster, it is unlikely that a single protocol could be the best across all bacterial markers and types of shellfish

  3. Occupational exposure to natural sources of radiation

    International Nuclear Information System (INIS)

    Ortiz, T.; Sciocchetti, G.; Rannou, A.

    1993-01-01

    The most important natural sources of radiation are analyzed. The situation in France, Italy, and Spain concerning protection against natural radiation is described, including the identification of sources, and defined practices, organizations charged of national surveys and the responsibility of regulatory bodies and the role of operating management. The activities of the international organizations (ICRP, CEC and IAEA) are presented and discussed, and existing actions toward harmonization in the CEC, IAEA and other international programs is also discussed. (R.P.) 23 refs., 2 tabs

  4. Return of naturally sourced Pb to Atlantic surface waters

    NARCIS (Netherlands)

    Bridgestock, L.; van de Flierdt, T.; Rehkämper, M.; Paul, P.; Middag, R.; Milne, A.; Lohan, M.C.; Baker, A.; Chance, R.; Khondoker, R.; Strekopytov, S.; Humphreys-Williams, E.; Achterberg, E.P.; Rijkenberg, M.J.A.; Gerringa, L.J.A.; De Baar, H.J.W.

    2016-01-01

    Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources duringthe past century, predominantly due to leaded petrol usage. Here, based on Pb isotopemeasurements, we reassess the importance of natural and anthropogenic Pb sources to thetropical North Atlantic following the

  5. Radio Source Morphology: 'nature or nuture'?

    Science.gov (United States)

    Banfield, Julie; Emonts, Bjorn; O'Sullivan, Shane

    2012-10-01

    Radio sources, emanating from supermassive black-holes in the centres of active galaxies, display a large variety of morphological properties. It is a long-standing debate to what extent the differences between various types of radio sources are due to intrinsic properties of the central engine (`nature') or due to the properties of the interstellar medium that surrounds the central engine and host galaxy (`nurture'). Settling this `nature vs. nurture' debate for nearby radio galaxies, which can be studied in great detail, is vital for understanding the properties and evolution of radio galaxies throughout the Universe. We propose to observe the radio galaxy NGC 612 where previous observations have detected the presence of a large-scale HI bridge between the host galaxy and a nearby galaxy NGC 619. We request a total of 13 hrs in the 750m array-configuration to determine whether or not the 100 kpc-scale radio source morphology is directly related to the intergalactic distribution of neutral hydrogen gas.

  6. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    Science.gov (United States)

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  7. mcaGUI: microbial community analysis R-Graphical User Interface (GUI).

    Science.gov (United States)

    Copeland, Wade K; Krishnan, Vandhana; Beck, Daniel; Settles, Matt; Foster, James A; Cho, Kyu-Chul; Day, Mitch; Hickey, Roxana; Schütte, Ursel M E; Zhou, Xia; Williams, Christopher J; Forney, Larry J; Abdo, Zaid

    2012-08-15

    Microbial communities have an important role in natural ecosystems and have an impact on animal and human health. Intuitive graphic and analytical tools that can facilitate the study of these communities are in short supply. This article introduces Microbial Community Analysis GUI, a graphical user interface (GUI) for the R-programming language (R Development Core Team, 2010). With this application, researchers can input aligned and clustered sequence data to create custom abundance tables and perform analyses specific to their needs. This GUI provides a flexible modular platform, expandable to include other statistical tools for microbial community analysis in the future. The mcaGUI package and source are freely available as part of Bionconductor at http://www.bioconductor.org/packages/release/bioc/html/mcaGUI.html

  8. Cascading influence of inorganic nitrogen sources on DOM production, composition, lability and microbial community structure in the open ocean.

    Science.gov (United States)

    Goldberg, S J; Nelson, C E; Viviani, D A; Shulse, C N; Church, M J

    2017-09-01

    Nitrogen frequently limits oceanic photosynthesis and the availability of inorganic nitrogen sources in the surface oceans is shifting with global change. We evaluated the potential for abrupt increases in inorganic N sources to induce cascading effects on dissolved organic matter (DOM) and microbial communities in the surface ocean. We collected water from 5 m depth in the central North Pacific and amended duplicate 20 liter polycarbonate carboys with nitrate or ammonium, tracking planktonic carbon fixation, DOM production, DOM composition and microbial community structure responses over 1 week relative to controls. Both nitrogen sources stimulated bulk phytoplankton, bacterial and DOM production and enriched Synechococcus and Flavobacteriaceae; ammonium enriched for oligotrophic Actinobacteria OM1 and Gammaproteobacteria KI89A clades while nitrate enriched Gammaproteobacteria SAR86, SAR92 and OM60 clades. DOM resulting from both N enrichments was more labile and stimulated growth of copiotrophic Gammaproteobacteria (Alteromonadaceae and Oceanospirillaceae) and Alphaproteobacteria (Rhodobacteraceae and Hyphomonadaceae) in weeklong dark incubations relative to controls. Our study illustrates how nitrogen pulses may have direct and cascading effects on DOM composition and microbial community dynamics in the open ocean. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Importance of microbial natural products and the need to revitalize their discovery.

    Science.gov (United States)

    Demain, Arnold L

    2014-02-01

    Microbes are the leading producers of useful natural products. Natural products from microbes and plants make excellent drugs. Significant portions of the microbial genomes are devoted to production of these useful secondary metabolites. A single microbe can make a number of secondary metabolites, as high as 50 compounds. The most useful products include antibiotics, anticancer agents, immunosuppressants, but products for many other applications, e.g., antivirals, anthelmintics, enzyme inhibitors, nutraceuticals, polymers, surfactants, bioherbicides, and vaccines have been commercialized. Unfortunately, due to the decrease in natural product discovery efforts, drug discovery has decreased in the past 20 years. The reasons include excessive costs for clinical trials, too short a window before the products become generics, difficulty in discovery of antibiotics against resistant organisms, and short treatment times by patients for products such as antibiotics. Despite these difficulties, technology to discover new drugs has advanced, e.g., combinatorial chemistry of natural product scaffolds, discoveries in biodiversity, genome mining, and systems biology. Of great help would be government extension of the time before products become generic.

  10. Resolution of habitat-associated ecogenomic signatures in bacteriophage genomes and application to microbial source tracking.

    Science.gov (United States)

    Ogilvie, Lesley A; Nzakizwanayo, Jonathan; Guppy, Fergus M; Dedi, Cinzia; Diston, David; Taylor, Huw; Ebdon, James; Jones, Brian V

    2018-04-01

    Just as the expansion in genome sequencing has revealed and permitted the exploitation of phylogenetic signals embedded in bacterial genomes, the application of metagenomics has begun to provide similar insights at the ecosystem level for microbial communities. However, little is known regarding this aspect of bacteriophage associated with microbial ecosystems, and if phage encode discernible habitat-associated signals diagnostic of underlying microbiomes. Here we demonstrate that individual phage can encode clear habitat-related 'ecogenomic signatures', based on relative representation of phage-encoded gene homologues in metagenomic data sets. Furthermore, we show the ecogenomic signature encoded by the gut-associated ɸB124-14 can be used to segregate metagenomes according to environmental origin, and distinguish 'contaminated' environmental metagenomes (subject to simulated in silico human faecal pollution) from uncontaminated data sets. This indicates phage-encoded ecological signals likely possess sufficient discriminatory power for use in biotechnological applications, such as development of microbial source tracking tools for monitoring water quality.

  11. Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils.

    Science.gov (United States)

    Espenberg, Mikk; Truu, Marika; Mander, Ülo; Kasak, Kuno; Nõlvak, Hiie; Ligi, Teele; Oopkaup, Kristjan; Maddison, Martin; Truu, Jaak

    2018-03-16

    Tropical peatlands, which play a crucial role in the maintenance of different ecosystem services, are increasingly drained for agriculture, forestry, peat extraction and human settlement purposes. The present study investigated the differences between natural and drained sites of a tropical peatland in the community structure of soil bacteria and archaea and their potential to perform nitrogen transformation processes. The results indicate significant dissimilarities in the structure of soil bacterial and archaeal communities as well as nirK, nirS, nosZ, nifH and archaeal amoA gene-possessing microbial communities. The reduced denitrification and N 2 -fixing potential was detected in the drained tropical peatland soil. In undisturbed peatland soil, the N 2 O emission was primarily related to nirS-type denitrifiers and dissimilatory nitrate reduction to ammonium, while the conversion of N 2 O to N 2 was controlled by microbes possessing nosZ clade I genes. The denitrifying microbial community of the drained site differed significantly from the natural site community. The main reducers of N 2 O were microbes harbouring nosZ clade II genes in the drained site. Additionally, the importance of DNRA process as one of the controlling mechanisms of N 2 O fluxes in the natural peatlands of the tropics revealed from the results of the study.

  12. Microbial xanthophylls.

    Science.gov (United States)

    Bhosale, Prakash; Bernstein, Paul S

    2005-09-01

    Xanthophylls are oxygenated carotenoids abundant in the human food supply. Lutein, zeaxanthin, and cryptoxanthin are major xanthophyll carotenoids in human plasma. The consumption of these xanthophylls is directly associated with reduction in the risk of cancers, cardiovascular disease, age-related macular degeneration, and cataract formation. Canthaxanthin and astaxanthin also have considerable importance in aquaculture for salmonid and crustacean pigmentation, and are of commercial interest for the pharmaceutical and food industries. Chemical synthesis is a major source for the heavy demand of xanthophylls in the consumer market; however, microbial producers also have potential as commercial sources. In this review, we discuss the biosynthesis, commercial utility, and major microbial sources of xanthophylls. We also present a critical review of current research and technologies involved in promoting microbes as potential commercial sources for mass production.

  13. Microbial diversity in restored wetlands of San Francisco Bay

    Energy Technology Data Exchange (ETDEWEB)

    Theroux, Susanna [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Hartman, Wyatt [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; He, Shaomei [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Univ. of Wisconsin, Madison, WI (United States); Tringe, Susannah [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2013-12-09

    Wetland ecosystems may serve as either a source or a sink for atmospheric carbon and greenhouse gases. This delicate carbon balance is influenced by the activity of belowground microbial communities that return carbon dioxide and methane to the atmosphere. Wetland restoration efforts in the San Francisco Bay-Delta region may help to reverse land subsidence and possibly increase carbon storage in soils. However, the effects of wetland restoration on microbial communities, which mediate soil metabolic activity and carbon cycling, are poorly studied. In an effort to better understand the underlying factors which shape the balance of carbon flux in wetland soils, we targeted the microbial communities in a suite of restored and historic wetlands in the San Francisco Bay-Delta region. Using DNA and RNA sequencing, coupled with greenhouse gas monitoring, we profiled the diversity and metabolic potential of the wetland soil microbial communities along biogeochemical and wetland age gradients. Our results show relationships among geochemical gradients, availability of electron acceptors, and microbial community composition. Our study provides the first genomic glimpse into microbial populations in natural and restored wetlands of the San Francisco Bay-Delta region and provides a valuable benchmark for future studies.

  14. The Effect of Initial Inoculum Source on the Microbial Community Structure and Dynamics in Laboratory-Scale Sequencing Batch Reactors

    KAUST Repository

    Hernandez, Susana

    2011-07-01

    Understanding the factors that shapes the microbial community assembly in activated sludge wastewater treatment processes provide a conceptual foundation for improving process performance. The aim of this study was to compare two major theories (deterministic theory and neutral theory) regarding the assembly of microorganisms in activated sludge: Six lab-scale activated sludge sequencing batch reactors were inoculated with activated sludge collected from three different sources (domestic, industrial, and sugar industry WWTP). Additionally, two reactors were seeded with equal proportion of sludge from the three WWTPs. Duplicate reactors were used for each sludge source (i.e. domestic, industrial, sugar and mix). Reactors were operated in parallel for 11 weeks under identical conditions. Bacterial diversity and community structure in the eight SBRs were assessed by 16S rRNA gene pyrosequencing. The 16S rRNA gene sequences were analyzed using taxonomic and clustering analysis and by measuring diversity indices (Shannon-weaver and Chao1 indices). Cluster analysis revealed that the microbial community structure was dynamic and that replicate reactors evolved differently. Also the microbial community structure in the SBRs seeded with a different sludge did not converge after 11 weeks of operation under identical conditions. These results suggest that history and distribution of taxa in the source inoculum were stronger regulating factors in shaping bacterial community structure than environmental factors. This supports the neutral theory which states that the assembly of the local microbial community from the metacommunity is random and is regulated by the size and diversity of the metacommunity. Furthermore, sludge performance, measured by COD and ammonia removal, confirmed that broad-scale functions (e.g. COD removal) are not influenced by dynamics in the microbial composition, while specific functions (e.g. nitrification) are more susceptible to these changes.

  15. Non-microbial methane emissions from soils

    Science.gov (United States)

    Wang, Bin; Hou, Longyu; Liu, Wei; Wang, Zhiping

    2013-12-01

    Traditionally, methane (CH4) is anaerobically formed by methanogenic archaea. However, non-microbial CH4 can also be produced from geologic processes, biomass burning, animals, plants, and recently identified soils. Recognition of non-microbial CH4 emissions from soils remains inadequate. To better understand this phenomenon, a series of laboratory incubations were conducted to examine effects of temperature, water, and hydrogen peroxide (H2O2) on CH4 emissions under both aerobic and anaerobic conditions using autoclaved (30 min, 121 °C) soils and aggregates (>2000 μm, A1; 2000-250 μm, A2; 250-53 μm, M1; and A2 > A1 > M2 and C-based emission an order of M2 > M1 > A1 > A2, demonstrating that both organic carbon quantity and property are responsible for CH4 emissions from soils at the scale of aggregate. Whole soil-based order of A2 > A1 > M1 > M2 suggests that non-microbial CH4 release from forest soils is majorly contributed by macro-aggregates (i.e., >250 μm). The underlying mechanism is that organic matter through thermal treatment, photolysis, or reactions with free radicals produce CH4, which, in essence, is identical with mechanisms of other non-microbial sources, indicating that non-microbial CH4 production may be a widespread phenomenon in nature. This work further elucidates the importance of non-microbial CH4 formation which should be distinguished from the well-known microbial CH4 formation in order to define both roles in the atmospheric CH4 global budget.

  16. Microbial habitability of Europa sustained by radioactive sources.

    Science.gov (United States)

    Altair, Thiago; de Avellar, Marcio G B; Rodrigues, Fabio; Galante, Douglas

    2018-01-10

    There is an increasing interest in the icy moons of the Solar System due to their potential habitability and as targets for future exploratory missions, which include astrobiological goals. Several studies have reported new results describing the details of these moons' geological settings; however, there is still a lack of information regarding the deep subsurface environment of the moons. The purpose of this article is to evaluate the microbial habitability of Europa constrained by terrestrial analogue environments and sustained by radioactive energy provided by natural unstable isotopes. The geological scenarios are based on known deep environments on Earth, and the bacterial ecosystem is based on a sulfate-reducing bacterial ecosystem found 2.8 km below the surface in a basin in South Africa. The results show the possibility of maintaining the modeled ecosystem based on the proposed scenarios and provides directions for future models and exploration missions for a more complete evaluation of the habitability of Europa and of icy moons in general.

  17. Guiding bioprocess design by microbial ecology.

    Science.gov (United States)

    Volmer, Jan; Schmid, Andreas; Bühler, Bruno

    2015-06-01

    Industrial bioprocess development is driven by profitability and eco-efficiency. It profits from an early stage definition of process and biocatalyst design objectives. Microbial bioprocess environments can be considered as synthetic technical microbial ecosystems. Natural systems follow Darwinian evolution principles aiming at survival and reproduction. Technical systems objectives are eco-efficiency, productivity, and profitable production. Deciphering technical microbial ecology reveals differences and similarities of natural and technical systems objectives, which are discussed in this review in view of biocatalyst and process design and engineering strategies. Strategies for handling opposing objectives of natural and technical systems and for exploiting and engineering natural properties of microorganisms for technical systems are reviewed based on examples. This illustrates the relevance of considering microbial ecology for bioprocess design and the potential for exploitation by synthetic biology strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Microbial Characterization of Table Olives Processed According to Spanish and Natural Styles

    Directory of Open Access Journals (Sweden)

    Daniela Campaniello

    2005-01-01

    Full Text Available A study on the microflora of table olives »Bella di Cerignola«, produced according to Spanish style and natural processing, is presented. The samples (olives and brines were taken at different fermentation phases; olives, before treatments, were analyzed too. pH was monitored and microbial populations were assessed by standard plate count. Determination of the following microbial groups was carried out: mesophilic bacteria, lactic acid bacteria, Enterobacteriaceae, Pseudomonadaceae, staphylococci, Micrococcaceae and yeasts. In the second phase, the identification of mesophilic bacteria, lactic acid bacteria and yeasts was performed. The amount of lactic acid bacteria and yeasts increased during the storage in all the samples, but no significant differences were observed between the two styles. At the end of fermentation an increase of Pseudomonadaceae cell load was observed, which was absent in the first phase of fermentation. The samples analyzed were extremely unsteady, therefore the addition of starter lactic acid bacteria could standardize olive processing. Lactobacillus plantarum, Bacillus spp. (mainly B. subtilis and Candida spp. were the predominant species at the end of the processing.

  19. A Customized DNA Microarray for Microbial Source Tracking ...

    Science.gov (United States)

    It is estimated that more than 160, 000 miles of rivers and streams in the United States are impaired due to the presence of waterborne pathogens. These pathogens typically originate from human and other animal fecal pollution sources; therefore, a rapid microbial source tracking (MST) method is needed to facilitate water quality assessment and impaired water remediation. We report a novel qualitative DNA microarray technology consisting of 453 probes for the detection of general fecal and host-associated bacteria, viruses, antibiotic resistance, and other environmentally relevant genetic indicators. A novel data normalization and reduction approach is also presented to help alleviate false positives often associated with high-density microarray applications. To evaluate the performance of the approach, DNA and cDNA was isolated from swine, cattle, duck, goose and gull fecal reference samples, as well as soiled poultry liter and raw municipal sewage. Based on nonmetric multidimensional scaling analysis of results, findings suggest that the novel microarray approach may be useful for pathogen detection and identification of fecal contamination in recreational waters. The ability to simultaneously detect a large collection of environmentally important genetic indicators in a single test has the potential to provide water quality managers with a wide range of information in a short period of time. Future research is warranted to measure microarray performance i

  20. Origin of fecal contamination in waters from contrasted areas: stanols as Microbial Source Tracking markers.

    Science.gov (United States)

    Derrien, M; Jardé, E; Gruau, G; Pourcher, A M; Gourmelon, M; Jadas-Hécart, A; Pierson Wickmann, A C

    2012-09-01

    Improving the microbiological quality of coastal and river waters relies on the development of reliable markers that are capable of determining sources of fecal pollution. Recently, a principal component analysis (PCA) method based on six stanol compounds (i.e. 5β-cholestan-3β-ol (coprostanol), 5β-cholestan-3α-ol (epicoprostanol), 24-methyl-5α-cholestan-3β-ol (campestanol), 24-ethyl-5α-cholestan-3β-ol (sitostanol), 24-ethyl-5β-cholestan-3β-ol (24-ethylcoprostanol) and 24-ethyl-5β-cholestan-3α-ol (24-ethylepicoprostanol)) was shown to be suitable for distinguishing between porcine and bovine feces. In this study, we tested if this PCA method, using the above six stanols, could be used as a tool in "Microbial Source Tracking (MST)" methods in water from areas of intensive agriculture where diffuse fecal contamination is often marked by the co-existence of human and animal sources. In particular, well-defined and stable clusters were found in PCA score plots clustering samples of "pure" human, bovine and porcine feces along with runoff and diluted waters in which the source of contamination is known. A good consistency was also observed between the source assignments made by the 6-stanol-based PCA method and the microbial markers for river waters contaminated by fecal matter of unknown origin. More generally, the tests conducted in this study argue for the addition of the PCA method based on six stanols in the MST toolbox to help identify fecal contamination sources. The data presented in this study show that this addition would improve the determination of fecal contamination sources when the contamination levels are low to moderate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Afforestation impacts microbial biomass and its natural {sup 13}C and {sup 15}N abundance in soil aggregates in central China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junjun; Zhang, Qian; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli, E-mail: xlcheng@fudan.edu.cn

    2016-10-15

    We investigated soil microbial biomass and its natural abundance of δ{sup 13}C and δ{sup 15}N in aggregates (> 2000 μm, 250–2000 μm, 53–250 μm and < 53 μm) of afforested (implementing woodland and shrubland plantations) soils, adjacent croplands and open area (i.e., control) in the Danjiangkou Reservoir area of central China. The afforested soils averaged higher microbial biomass carbon (MBC) and nitrogen (MBN) levels in all aggregates than in open area and cropland, with higher microbial biomass in micro-aggregates (< 250 μm) than in macro-aggregates (> 2000 μm). The δ{sup 13}C of soil microbial biomass was more enriched in woodland soils than in other land use types, while δ{sup 15}N of soil microbial biomass was more enriched compared with that of organic soil in all land use types. The δ{sup 13}C and δ{sup 15}N of microbial biomass were positively correlated with the δ{sup 13}C and δ{sup 15}N of organic soil across aggregates and land use types, whereas the {sup 13}C and {sup 15}N enrichment of microbial biomass exhibited linear decreases with the corresponding C:N ratio of organic soil. Our results suggest that shifts in the natural {sup 13}C and {sup 15}N abundance of microbial biomass reflect changes in the stabilization and turnover of soil organic matter (SOM) and thereby imply that afforestation can greatly impact SOM accumulation over the long-term. - Highlights: • Afforested soils averaged higher microbial biomass in all aggregates than cropland. • Microbial biomass was higher in micro-aggregates than in macro-aggregates. • δ{sup 13}C and δ{sup 15}N of microbe positively correlated with δ{sup 13}C and δ{sup 15}N of organic soil. • {sup 13}C and {sup 15}N enrichment of microbe was negatively related to with soil C:N ratio.

  2. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Sobecky, Patricia A. [Univ. of Alabama, Tuscaloosa, AL (United States)

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  3. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    International Nuclear Information System (INIS)

    Sobecky, Patricia A.

    2015-01-01

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  4. Community Assessment of Natural Food Sources of Vitamin A ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Community Assessment of Natural Food Sources of Vitamin A: Guidelines for an Ethnographic Protocol. Book cover Community Assessment of Natural Food Sources of Vitamin A: Guidelines for an Ethnographic. Auteur(s) : L. Blum, P.J. Pelto, G.H. Pelto, and H.V. Kuhnlein. Maison(s) d'édition : INFDC, IDRC. 1 janvier 1997.

  5. Community Assessment of Natural Food Sources of Vitamin A ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    1 janv. 1997 ... Community Assessment of Natural Food Sources of Vitamin A : Guidelines for an Ethnographic Protocol. Couverture du livre Community Assessment of Natural Food Sources of Vitamin A : Guidelines for an. Auteur(s):. L. Blum, P.J. Pelto, G.H. Pelto et H.V. Kuhnlein. Maison(s) d'édition: INFDC, CRDI.

  6. Alternative natural seasoning to improve the microbial stability of low-salt beef patties.

    Science.gov (United States)

    García-Lomillo, Javier; González-SanJosé, M A Luisa; Del Pino-García, Raquel; Rivero-Pérez, M A Dolores; Muñiz-Rodríguez, Pilar

    2017-07-15

    The meat industry is seeking new strategies to reduce the sodium content of meat products without shortening their shelf-life. Natural seasonings as salt alternatives are more appreciated than chemical preservatives and also enable the incorporation of interesting nutrients. The present work studies the potential of a new red wine pomace seasoning (RWPS), derived from wine pomace, to inhibit spoilage growth in beef patties with different salt levels (2%, 1.5% and 1%) held in storage at 4°C. The use of RWPS (2% w/w) improved the microbial stability of the patties, delaying total aerobic mesophilic, and lactic acid bacteria growth, especially in samples with low salt levels. Satisfactory results were obtained in modified-atmosphere and air-packaged patties. RWPS also enabled the incorporation of fiber and phenolic compounds, and increased potassium and calcium levels. In summary, RWPS presented an interesting potential as a seasoning in meat products, enabling salt reduction without compromising their microbial stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The perils and promises of microbial abundance: novel natures and model ecosystems, from artisanal cheese to alien seas.

    Science.gov (United States)

    Paxson, Heather; Helmreich, Stefan

    2014-04-01

    Microbial life has been much in the news. From outbreaks of Escherichia coli to discussions of the benefits of raw and fermented foods to recent reports of life forms capable of living in extreme environments, the modest microbe has become a figure for thinking through the presents and possible futures of nature, writ large as well as small. Noting that dominant representations of microbial life have shifted from an idiom of peril to one of promise, we argue that microbes--especially when thriving as microbial communities--are being upheld as model ecosystems in a prescriptive sense, as tokens of how organisms and human ecological relations with them could, should, or might be. We do so in reference to two case studies: the regulatory politics of artisanal cheese and the speculative research of astrobiology. To think of and with microbial communities as model ecosystems offers a corrective to the scientific determinisms we detect in some recent calls to attend to the materiality of scientific objects.

  8. The maturing of microbial ecology.

    Science.gov (United States)

    Schmidt, Thomas M

    2006-09-01

    A.J. Kluyver and C.B. van Niel introduced many scientists to the exceptional metabolic capacity of microbes and their remarkable ability to adapt to changing environments in The Microbe's Contribution to Biology. Beyond providing an overview of the physiology and adaptability of microbes, the book outlined many of the basic principles for the emerging discipline of microbial ecology. While the study of pure cultures was highlighted, provided a unifying framework for understanding the vast metabolic potential of microbes and their roles in the global cycling of elements, extrapolation from pure cultures to natural environments has often been overshadowed by microbiologists inability to culture many of the microbes seen in natural environments. A combination of genomic approaches is now providing a culture-independent view of the microbial world, revealing a more diverse and dynamic community of microbes than originally anticipated. As methods for determining the diversity of microbial communities become increasingly accessible, a major challenge to microbial ecologists is to link the structure of natural microbial communities with their functions. This article presents several examples from studies of aquatic and terrestrial microbial communities in which culture and culture-independent methods are providing an enhanced appreciation for the microbe's contribution to the evolution and maintenance of life on Earth, and offers some thoughts about the graduate-level educational programs needed to enhance the maturing field of microbial ecology.

  9. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers.

    Science.gov (United States)

    Paniagua-Michel, José de Jesús; Olmos-Soto, Jorge; Morales-Guerrero, Eduardo Roberto

    2014-01-01

    Currently, efforts are being made to utilize more natural biological systems as alternatives as a way to replace fossil forms of carbon. There is a growing concern at global level to have nontoxic, nonhazardous surface-active agents; contrary to synthetic surfactants, their biological counterparts or biosurfactants play a primary function, facilitating microbial presence in environments dominated by hydrophilic-hydrophobic interfaces. Algal and microbial biosurfactants/bioemulsifiers from marine and deep-sea environments are attracting major interest due to their structural and functional diversity as molecules actives of surface and an alternative biomass to replace fossil forms of carbon. Algal and microbial surfactants are lipid in nature and classified as glycolipids, phospholipids, lipopeptides, natural lipids, fatty acids, and lipopolysaccharides. These metabolic bioactive products are applicable in a number of industries and processes, viz., food processing, pharmacology, and bioremediation of oil-polluted environments. This chapter presents an update of the progress and potentialities of the principal producers of exopolysaccharide (EPS)-type biosurfactants and bioemulsifiers, viz., macro- and microalgae (cyanobacteria and diatoms) and bacteria from marine and extreme environments. Particular interest is centered into new sources and applications, viz., marine and deep-sea environments and promissory uses of these EPSs as biosurfactants/emulsifiers and other polymeric roles. The enormous benefits of these molecules encourage their discovery, exploitation, and development of new microbial EPSs that could possess novel industrial importance and corresponding innovations. © 2014 Elsevier Inc. All rights reserved.

  10. Microbial genome mining for accelerated natural products discovery: is a renaissance in the making?

    Science.gov (United States)

    Bachmann, Brian O; Van Lanen, Steven G; Baltz, Richard H

    2014-02-01

    Microbial genome mining is a rapidly developing approach to discover new and novel secondary metabolites for drug discovery. Many advances have been made in the past decade to facilitate genome mining, and these are reviewed in this Special Issue of the Journal of Industrial Microbiology and Biotechnology. In this Introductory Review, we discuss the concept of genome mining and why it is important for the revitalization of natural product discovery; what microbes show the most promise for focused genome mining; how microbial genomes can be mined; how genome mining can be leveraged with other technologies; how progress on genome mining can be accelerated; and who should fund future progress in this promising field. We direct interested readers to more focused reviews on the individual topics in this Special Issue for more detailed summaries on the current state-of-the-art.

  11. Drivers of Microbial Risk for Direct Potable Reuse and de Facto Reuse Treatment Schemes: The Impacts of Source Water Quality and Blending

    Science.gov (United States)

    Chaudhry, Rabia M.; Hamilton, Kerry A.; Haas, Charles N.; Nelson, Kara L.

    2017-01-01

    Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA) Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water) with four hypothetical Direct Potable Reuse (DPR) scenarios for Norovirus, Cryptosporidium, and Salmonella. Consumer microbial risks of surface source water quality (impacted by 0–100% treated wastewater effluent) were assessed. Additionally, we assessed risks for different blending ratios (0–100% surface water blended into advanced-treated DPR water) when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10−4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10−4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR. PMID:28608808

  12. Drivers of Microbial Risk for Direct Potable Reuse and de Facto Reuse Treatment Schemes: The Impacts of Source Water Quality and Blending

    Directory of Open Access Journals (Sweden)

    Rabia M. Chaudhry

    2017-06-01

    Full Text Available Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water with four hypothetical Direct Potable Reuse (DPR scenarios for Norovirus, Cryptosporidium, and Salmonella. Consumer microbial risks of surface source water quality (impacted by 0–100% treated wastewater effluent were assessed. Additionally, we assessed risks for different blending ratios (0–100% surface water blended into advanced-treated DPR water when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10−4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10−4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR.

  13. Drivers of Microbial Risk for Direct Potable Reuse and de Facto Reuse Treatment Schemes: The Impacts of Source Water Quality and Blending.

    Science.gov (United States)

    Chaudhry, Rabia M; Hamilton, Kerry A; Haas, Charles N; Nelson, Kara L

    2017-06-13

    Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA) Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water) with four hypothetical Direct Potable Reuse (DPR) scenarios for Norovirus, Cryptosporidium , and Salmonella . Consumer microbial risks of surface source water quality (impacted by 0-100% treated wastewater effluent) were assessed. Additionally, we assessed risks for different blending ratios (0-100% surface water blended into advanced-treated DPR water) when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10 -4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10 -4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR.

  14. Porosity and Organic Carbon Controls on Naturally Reduced Zone (NRZ) Formation Creating Microbial ';Hotspots' for Fe, S, and U Cycling in Subsurface Sediments

    Science.gov (United States)

    Jones, M. E.; Janot, N.; Bargar, J.; Fendorf, S. E.

    2013-12-01

    Previous studies have illustrated the importance of Naturally Reduced Zones (NRZs) within saturated sediments for the cycling of metals and redox sensitive contaminants. NRZs can provide a source of reducing equivalents such as reduced organic compounds or hydrogen to stimulate subsurface microbial communities. These NRZ's are typically characterized by low permeability and elevated concentrations of organic carbon and trace metals. However, both the formation of NRZs and their importance to the overall aquifer carbon remineralization is not fully understood. Within NRZs the hydrolysis of particulate organic carbon (POC) and subsequent fermentation of dissolved organic carbon (DOC) to form low molecular weight dissolved organic carbon (LMW-DOC) provides electron donors necessary for the respiration of Fe, S, and in the case of the Rifle aquifer, U. Rates of POC hydrolysis and subsequent fermentation have been poorly constrained and rates in excess and deficit to the rates of subsurface anaerobic respiratory processes have been suggested. In this study, we simulate the development of NRZ sediments in diffusion-limited aggregates to investigate the physical and chemical conditions required for NRZ formation. Effects of sediment porosity and POC loading on Fe, S, and U cycling on molecular and nanoscale are investigated with synchrotron-based Near Edge X-ray Absorption Fine Structure Spectroscopy (NEXAFS). Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Fourier Transform Infrared spectroscopy (FTIR) are used to characterize the transformations in POC and DOC. Sediment aggregates are inoculated with the natural microbial biota from the Rifle aquifer and population dynamics are monitored by 16S RNA analysis. Overall, establishment of low permeability NRZs within the aquifer stimulate microbial respiration beyond the diffusion-limited zones and can limit the transport of U through a contaminated aquifer. However, the long-term stability of

  15. Microbial bioinformatics 2020.

    Science.gov (United States)

    Pallen, Mark J

    2016-09-01

    Microbial bioinformatics in 2020 will remain a vibrant, creative discipline, adding value to the ever-growing flood of new sequence data, while embracing novel technologies and fresh approaches. Databases and search strategies will struggle to cope and manual curation will not be sustainable during the scale-up to the million-microbial-genome era. Microbial taxonomy will have to adapt to a situation in which most microorganisms are discovered and characterised through the analysis of sequences. Genome sequencing will become a routine approach in clinical and research laboratories, with fresh demands for interpretable user-friendly outputs. The "internet of things" will penetrate healthcare systems, so that even a piece of hospital plumbing might have its own IP address that can be integrated with pathogen genome sequences. Microbiome mania will continue, but the tide will turn from molecular barcoding towards metagenomics. Crowd-sourced analyses will collide with cloud computing, but eternal vigilance will be the price of preventing the misinterpretation and overselling of microbial sequence data. Output from hand-held sequencers will be analysed on mobile devices. Open-source training materials will address the need for the development of a skilled labour force. As we boldly go into the third decade of the twenty-first century, microbial sequence space will remain the final frontier! © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology.

    Science.gov (United States)

    Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung

    2016-01-01

    In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Impact of natural organic matter coatings on the microbial reduction of iron oxides

    Science.gov (United States)

    Poggenburg, Christine; Mikutta, Robert; Schippers, Axel; Dohrmann, Reiner; Guggenberger, Georg

    2018-03-01

    Iron (Fe) oxyhydroxides are important constituents of the soil mineral phase known to stabilize organic matter (OM) under oxic conditions. In an anoxic milieu, however, these Fe-organic associations are exposed to microbial reduction, releasing OM into soil solution. At present, only few studies have addressed the influence of adsorbed natural OM (NOM) on the reductive dissolution of Fe oxyhydroxides. This study therefore examined the impact of both the composition and concentration of adsorbed NOM on microbial Fe reduction with regard to (i) electron shuttling, (ii) complexation of Fe(II,III), (iii) surface site coverage and/or pore blockage, and (iv) aggregation. Adsorption complexes with varying carbon loadings were synthesized using different Fe oxyhydroxides (ferrihydrite, lepidocrocite, goethite, hematite, magnetite) and NOM of different origin (extracellular polymeric substances from Bacillus subtilis, OM extracted from soil Oi and Oa horizons). The adsorption complexes were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, electrophoretic mobility and particle size measurements, and OM desorption. Incubation experiments under anaerobic conditions were conducted for 16 days comparing two different strains of dissimilatory Fe(III)-reducing bacteria (Shewanella putrefaciens, Geobacter metallireducens). Mineral transformation during reduction was assessed via XRD and FTIR. Microbial reduction of the pure Fe oxyhydroxides was controlled by the specific surface area (SSA) and solubility of the minerals. For Shewanella putrefaciens, the Fe reduction of adsorption complexes strongly correlated with the concentration of potentially usable electron-shuttling molecules for NOM concentrations <2 mg C L-1, whereas for Geobacter metallireducens, Fe reduction depended on the particle size and thus aggregation of the adsorption complexes. These diverging results suggest that

  18. Microbial ecology-based engineering of Microbial Electrochemical Technologies.

    Science.gov (United States)

    Koch, Christin; Korth, Benjamin; Harnisch, Falk

    2018-01-01

    Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Differential Decay of Cattle-associated Fecal Indicator Bacteria and Microbial Source Tracking Markers in Fresh and Marine Water (ASM 2017 Presentation)

    Science.gov (United States)

    Background: Fecal indicator bacteria (FIB) have a long history of use in the assessment of the microbial quality of recreational waters. However, quantification of FIB provides no information about the pollution source(s) and relatively little is known about their fate in the amb...

  20. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Science.gov (United States)

    Larsen, Peter; Gilbert, Jack

    2013-01-01

    In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm.) from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  1. Separating contributions from natural and anthropogenic sources in atmospheric methane from the Black Sea region, Romania

    International Nuclear Information System (INIS)

    Cuna, Stela; Pendall, Elise; Miller, John B.; Tans, Pieter P.; Dlugokencky, Ed; White, James W.C.

    2008-01-01

    The Danube Delta-Black Sea region of Romania is an important wetland, and this preliminary study evaluates the significance of this region as a source of atmospheric CH 4 . Measurements of the mixing ratio and δ 13 C in CH 4 are reported from air and water samples collected at eight sites in the Danube Delta. High mixing ratios of CH 4 were found in air (2500-14,000 ppb) and dissolved in water samples (∼1-10 μmol L -1 ), demonstrating that the Danube Delta is an important natural source of CH 4 . The intercepts on Keeling plots of about -62 per mille show that the main source of CH 4 in this region is microbial, probably resulting primarily from acetate fermentation. Atmospheric CH 4 and CO data from the NOAA/ESRL (National Oceanic and Atmospheric Administration/Earth System Research Laboratory) were used to make a preliminary estimate of biogenic CH 4 at the Black Sea sampling site at Constanta (BSC). These data were used to calculate ratios of CH 4 /CO in air samples, and using an assumed CH 4 /CO anthropogenic emissions ratio of 0.6, fossil fuel emissions at BSC were estimated. Biogenic CH 4 emissions were then estimated by a simple mass balance approach. Keeling plots of well-mixed air from the BSC site suggested a stronger wetland source in summer and a stronger fossil fuel source in winter

  2. Detection of Metabolism Function of Microbial Community of Corpses by Biolog-Eco Method.

    Science.gov (United States)

    Jiang, X Y; Wang, J F; Zhu, G H; Ma, M Y; Lai, Y; Zhou, H

    2016-06-01

    To detect the changes of microbial community functional diversity of corpses with different postmortem interval (PMI) and to evaluate forensic application value for estimating PMI. The cultivation of microbial community from the anal swabs of a Sus scrofa and a human corpse placed in field environment from 0 to 240 h after death was performed using the Biolog-Eco Microplate and the variations of the absorbance values were also monitored. Combined with the technology of forensic pathology and flies succession, the metabolic characteristics and changes of microbial community on the decomposed corpse under natural environment were also observed. The diversity of microbial metabolism function was found to be negatively correlated with the number of maggots in the corpses. The freezing processing had the greatest impact on average well color development value at 0 h and the impact almost disappeared after 48 h. The diversity of microbial metabolism of the samples became relatively unstable after 192 h. The principal component analysis showed that 31 carbon sources could be consolidated for 5 principal components (accumulative contribution ratio >90%).The carbon source tsquare-analysis showed that N -acetyl- D -glucosamine and L -serine were the dominant carbon sources for estimating the PMI (0=240 h) of the Sus scrofa and human corpse. The Biolog-Eco method can be used to reveal the metabolic differences of the carbon resources utilization of the microbial community on the corpses during 0-240 h after death, which could provide a new basis for estimating the PMI. Copyright© by the Editorial Department of Journal of Forensic Medicine

  3. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell

    Science.gov (United States)

    Miceli, Joseph F.; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I.; Krajmalnik-Brown, Rosa

    2014-01-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (~11 A/m2) and Coulombic efficiency (~70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ~80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed micro bial cultures containing complementing biochemical pathways. PMID:25048958

  4. Microbial Therapeutics Designed for Infant Health.

    LENUS (Irish Health Repository)

    Watkins, Claire

    2017-10-01

    Acknowledgment of the gut microbiome as a vital asset to health has led to multiple studies attempting to elucidate its mechanisms of action. During the first year of life, many factors can cause fluctuation in the developing gut microbiome. Host genetics, maternal health status, mode of delivery, gestational age, feeding regime, and perinatal antibiotic usage, are known factors which can influence the development of the infant gut microbiome. Thus, the microbiome of vaginally born, exclusively breastfed infants at term, with no previous exposure to antibiotics, either directly or indirectly from the mother, is to be considered the "gold standard." Moreover, the use of prebiotics as an aid for the development of a healthy gut microbiome is equally as important in maintaining gut homeostasis. Breastmilk, a natural prebiotic source, provides optimal active ingredients for the growth of beneficial microbial species. However, early life disorders such as necrotising enterocolitis, childhood obesity, and even autism have been associated with an altered\\/disturbed gut microbiome. Subsequently, microbial therapies have been introduced, in addition to suitable prebiotic ingredients, which when administered, may aid in the prevention of a microbial disturbance in the gastrointestinal tract. The aim of this mini-review is to highlight the beneficial effects of different probiotic and prebiotic treatments in early life, with particular emphasis on the different conditions which negatively impact microbial colonisation at birth.

  5. Microbial Therapeutics Designed for Infant Health

    Directory of Open Access Journals (Sweden)

    Claire Watkins

    2017-10-01

    Full Text Available Acknowledgment of the gut microbiome as a vital asset to health has led to multiple studies attempting to elucidate its mechanisms of action. During the first year of life, many factors can cause fluctuation in the developing gut microbiome. Host genetics, maternal health status, mode of delivery, gestational age, feeding regime, and perinatal antibiotic usage, are known factors which can influence the development of the infant gut microbiome. Thus, the microbiome of vaginally born, exclusively breastfed infants at term, with no previous exposure to antibiotics, either directly or indirectly from the mother, is to be considered the “gold standard.” Moreover, the use of prebiotics as an aid for the development of a healthy gut microbiome is equally as important in maintaining gut homeostasis. Breastmilk, a natural prebiotic source, provides optimal active ingredients for the growth of beneficial microbial species. However, early life disorders such as necrotising enterocolitis, childhood obesity, and even autism have been associated with an altered/disturbed gut microbiome. Subsequently, microbial therapies have been introduced, in addition to suitable prebiotic ingredients, which when administered, may aid in the prevention of a microbial disturbance in the gastrointestinal tract. The aim of this mini-review is to highlight the beneficial effects of different probiotic and prebiotic treatments in early life, with particular emphasis on the different conditions which negatively impact microbial colonisation at birth.

  6. Selective whole genome amplification for resequencing target microbial species from complex natural samples.

    Science.gov (United States)

    Leichty, Aaron R; Brisson, Dustin

    2014-10-01

    Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host-microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >10(5)-fold amplification of the target genomes with genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2-9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs. Copyright © 2014 by the Genetics Society of America.

  7. Basaltic substrate composition affects microbial community development and acts as a source of nutrients in the deep biosphere

    Science.gov (United States)

    Bailey, B.; Sudek, L.; Templeton, A.; Staudigel, H.; Tebo, B.; Moyer, C.; Davis, R.

    2006-12-01

    Studies of the oceanic crust over the past decade have revealed that in spite of the oligotrophic nature of this environment, a diverse biosphere is present in the upper 1 km of basaltic crust. The key energy source in this setting may be the high content of transistion metals (Fe, Mn) found in the basaltic glass, but in order to discover the role of Fe and Mn in the deep biosphere, we must first determine which microbes are present and how they attain the necessary metabolites for proliferation. Our work contributes to both questions through the use of molecular microbiology techniques and the exposure of specifically designed substrates on the ocean floor. Loihi Seamount off the southeast coast of the Big Island of Hawai'i provides a unique laboratory for the study of distribution and population of microbial communities associated with iron rich environments on the ocean floor. Iron oxide flocculent material (floc) dominates the direct and diffuse hydrothermal venting areas on Loihi which makes it a prime target for understanding the role of iron in biological systems in the deep biosphere. We collected iron oxide floc and basaltic glass from pillow basalts around several hydrothermal vents on the crater rim, within the pit crater Pele's Pit, and from deep off of the southern rift zone of Loihi using the HURL PISCES IV/V submersibles. We also deployed basaltic glass sand amended with various nutrients (phosphate, oxidized and reduced iron, manganese) and recovered them in subsequent years to determine how substrate composition affects community structure. We extracted DNA from both rock and iron flocs and used t-RFLP to obtain a genetic fingerprint of the microbial communities associated with each substrate. From olivine and tholeiitic basalt enrichments, it appears that substrate composition strongly influences microbial colonization and subsequent community development even when deployed in the same conditions. Culturing efforts have yielded several iron

  8. Application of 13C-labeling and 13C-13C COSY NMR experiments in the structure determination of a microbial natural product.

    Science.gov (United States)

    Kwon, Yun; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2014-08-01

    The elucidation of the structures of complex natural products bearing many quaternary carbons remains challenging, even in this advanced spectroscopic era. (13)C-(13)C COSY NMR spectroscopy shows direct couplings between (13)C and (13)C, which comprise the backbone of a natural product. Thus, this type of experiment is particularly useful for natural products bearing consecutive quaternary carbons. However, the low sensitivity of (13)C-based NMR experiments, due to the low natural abundance of the (13)C nucleus, is problematic when applying these techniques. Our efforts in the (13)C labeling of a microbial natural product, cyclopiazonic acid (1), by feeding (13)C-labeled glucose to the fungal culture, enabled us to acquire (13)C-(13)C COSY NMR spectra on a milligram scale that clearly show the carbon backbone of the compound. This is the first application of (13)C-(13)C COSY NMR experiments for a natural product. The results suggest that (13)C-(13)C COSY NMR spectroscopy can be routinely used for the structure determination of microbial natural products by (13)C-enrichment of a compound with (13)C-glucose.

  9. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    International Nuclear Information System (INIS)

    Son, Ahjeong; Schmidt, Carl J.; Shin, Hyejin; Cha, Daniel K.

    2011-01-01

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  10. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ahjeong, E-mail: ason@auburn.edu [Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Schmidt, Carl J. [Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 (United States); Shin, Hyejin [Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (United States); Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

    2011-01-30

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  11. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Directory of Open Access Journals (Sweden)

    Peter Larsen

    Full Text Available In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm. from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  12. Evaluation of some microbial agents, natural and chemical compounds for controlling tomato leaf miner, Tuta absoluta (Meyrick (Lepidoptera: Gelechiidae

    Directory of Open Access Journals (Sweden)

    Abd El-Ghany Nesreen M.

    2016-12-01

    Full Text Available Solanaceous plants have a great economic impact in Egypt. These groups of plants include potatoes, tomatoes and eggplants. The new invasive pest of tomatoes, Tuta absoluta (Meyrick causes the greatest crop losses which can range from 60 to 100%. After its detection in Egypt during the last half of 2009, it spread quickly to all provinces in the country. We aiming to propose a sustainable control program for this devastating pest. In this research we tested three groups of control agents. The first was microbial and natural, the second - plant extracts and the third - chemical insecticides. Our results showed that the impact of T. absoluta can be greatly reduced by the use of sustainable control measures represented by different insecticide groups. Bioassay experiments showed that this devastating pest can be controlled with some compounds that give high mortality rates. Of these compounds, spinosad and Beauveria bassiana, microbial control agents, followed by azadirachtin, gave the best results in controlling T. absoluta. Of the chemical insecticides, lambda-cyhalotrin was the most effective, followed by lufenuron and profenofos. In conclusion we encourage farmers to use microbial and natural control measures in combating the tomato leafminer, T. absoluta, in Integrated Pest Mangement (IPM programs.

  13. Effects of Calcium Source on Biochemical Properties of Microbial CaCO3 Precipitation.

    Science.gov (United States)

    Xu, Jing; Du, Yali; Jiang, Zhengwu; She, Anming

    2015-01-01

    The biochemical properties of CaCO3 precipitation induced by Sporosarcina pasteurii, an ureolytic type microorganism, were investigated. Effects of calcium source on the precipitation process were examined, since calcium source plays a key role in microbiologically induced mineralization. Regardless of the calcium source type, three distinct stages in the precipitation process were identified by Ca(2+), NH4 (+), pH and cell density monitoring. Compared with stage 1 and 3, stage 2 was considered as the most critical part since biotic CaCO3 precipitation occurs during this stage. Kinetics studies showed that the microbial CaCO3 precipitation rate for calcium lactate was over twice of that for calcium nitrate, indicating that calcium lactate is more beneficial for the cell activity, which in turn determines urease production and CaCO3 precipitation. X-ray diffraction analysis confirmed the CaCO3 crystal as calcite, although scanning electron microscopy revealed a difference in crystal size and morphology if calcium source was different. The findings of this paper further suggest a promising application of microbiologically induced CaCO3 precipitation in remediation of surface and cracks of porous media, e.g., cement-based composites, particularly by using organic source of calcium lactate.

  14. Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production

    Science.gov (United States)

    Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.

    2014-12-01

    Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.

  15. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.

  16. Strategies for microbial synthesis of high-value phytochemicals

    Science.gov (United States)

    Li, Sijin; Li, Yanran; Smolke, Christina D.

    2018-03-01

    Phytochemicals are of great pharmaceutical and agricultural importance, but often exhibit low abundance in nature. Recent demonstrations of industrial-scale production of phytochemicals in yeast have shown that microbial production of these high-value chemicals is a promising alternative to sourcing these molecules from native plant hosts. However, a number of challenges remain in the broader application of this approach, including the limited knowledge of plant secondary metabolism and the inefficient reconstitution of plant metabolic pathways in microbial hosts. In this Review, we discuss recent strategies to achieve microbial biosynthesis of complex phytochemicals, including strategies to: (1) reconstruct plant biosynthetic pathways that have not been fully elucidated by mining enzymes from native and non-native hosts or by enzyme engineering; (2) enhance plant enzyme activity, specifically cytochrome P450 activity, by improving efficiency, selectivity, expression or electron transfer; and (3) enhance overall reaction efficiency of multi-enzyme pathways by dynamic control, compartmentalization or optimization with the host's metabolism. We also highlight remaining challenges to — and future opportunities of — this approach.

  17. Microbial processes in coastal pollution

    International Nuclear Information System (INIS)

    Capone, D.G.; Bauer, J.E.

    1992-01-01

    In this chapter, the authors describe the nature and range of some of the interactions that can occur between the microbiota and environmental contaminants in coastal areas. The implications of such interactions are also discussed. Pollutant types include inorganic nutrients, heavy metals, bulk organics, organic contaminants, pathogenic microorganisms and microbial pollutants. Both the effects of pollutants such as petroleum hydrocarbons on natural microbial populations and the mitigation of contaminant effects by complexation and biodegradation are considered. Finally, several areas of emerging concerns are presented that involve a confluence of biogeochemistry, microbial ecology and applied and public health microbiology. These concerns range in relevance from local/regional to oceanic/global scales. 308 ref

  18. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic

    DEFF Research Database (Denmark)

    Daley, Kiley; Hansen, Lisbeth Truelstrup; Jamieson, Rob C.

    2017-01-01

    plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks......Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank...... inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung-each has a population of 0.2 mg/L free chlorine). Some buildings...

  19. Integrated characterization of natural attenuation of a PCE plume after thermal remediation of the source zone - incl. dual isotope and microbial techniques

    DEFF Research Database (Denmark)

    Broholm, Mette Martina

    dechlorination 1-1.5 km downstream the source area, where the plume descends into more reduced groundwater. The objective of the new (2014) study is to evaluate how the source remediation has impacted the plume and in particular the natural attenuation within the plume. A large monitoring campaign including...... down-gradient which co-inside with the reduction in redox conditions. The findings document a significant increase in cDCE degradation without accumulation of VC. This reduces the risk posed by the contaminant plume to the drinking water resource. This project is unique in the integrated...... area, resulted in the release of dissolved organic matter and some geochemical changes. This has had an effect on redox conditions and biodegradation by reductive dechlorination particularly in the near source area. However, also in the further downstream area of the plume redox and contaminant levels...

  20. The Study of Microbial Environmental Processes Related to the Natural Attenuation of Uranium at the Rifle Site using Systems-level Biology

    Energy Technology Data Exchange (ETDEWEB)

    Methe, Barbara [J. Craig Venter Inst. (JCVI), Rockville, MD (United States); Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahadevan, Krishna [Univ. of Toronto, ON (Canada)

    2016-08-31

    Microbes exist in communities in the environment where they are fundamental drivers of global carbon, nutrient and metal cycles. In subsurface environments, they possess significant metabolic potential to affect these global cycles including the transformation of radionuclides. This study examined the influence of microbial communities in sediment zones undergoing biogeochemical cycling of carbon, nutrients and metals including natural attenuation of uranium. This study examined the relationship of both the microbiota (taxonomy) and their metabolic capacity (function) in driving carbon, nutrient and metal cycles including uranium reduction at the Department of Energy (DOE) Rifle Integrated Field Research Challenge (RIFRC). Objectives of this project were: 1) to apply systems-level biology through application of ‘metaomics’ approaches (collective analyses of whole microbial community DNA, RNA and protein) to the study of microbial environmental processes and their relationship to C, N and metals including the influence of microbial communities on uranium contaminant mobility in subsurface settings undergoing natural attenuation, 2) improve methodologies for data generation using metaomics (collectively metagenomics, metatranscriptomics and proteomics) technologies and analysis and interpretation of that data and 3) use the data generated from these studies towards microbial community-scale metabolic modeling. The strategy for examining these subsurface microbial communities was to generate sequence reads from microbial community DNA (metagenomics or whole genome shotgun sequencing (WGS)) and RNA (metatranscriptomcs or RNAseq) and protein information using proteomics. Results were analyzed independently and through computational modeling. Overall, the community model generated information on the microbial community structure that was observed using metaomic approaches at RIFRC sites and thus provides an important framework for continued community modeling

  1. Methylmercury in the Gulf of Trieste (Northern Adriatic Sea: From Microbial Sources to Seafood Consumers

    Directory of Open Access Journals (Sweden)

    Mark E. Hines

    2014-01-01

    Full Text Available The Gulf of Trieste (northern Adriatic Sea is one of the most mercury-polluted areas in the Mediterranean and in the world due to the past mining activity in the Idrija region (western Slovenia. The link between microbial production of toxic methylmercury (MeHg, and its bioaccumulation and biomagnification in marine food webs of the gulf is at present rather poorly characterized but is critical to understanding the links between sources and higher trophic levels, such as fish, that are ultimately vectors of human and wildlife exposure. This overview explores three major topics: (i the microbial biogeochemical cycling of Hg in the area, (ii the trophic transfer and bioaccumulation of MeHg in pelagic and benthic marine food webs, and (iii human exposure to Hg through marine fish and shellfish consumption. These are important goals since the Gulf of Trieste is an area of great economical importance.

  2. Occurrence and sources of natural and anthropogenic lipid tracers in surface soils from arid urban areas of Saudi Arabia

    International Nuclear Information System (INIS)

    Rushdi, Ahmed I.; Al-Mutlaq, Khalid F.; El-Mubarak, Aarif H.; Al-Saleh, Mohammed A.; El-Otaibi, Mubarak T.; Ibrahim, Sami M.M.; Simoneit, Bernd R.T.

    2016-01-01

    Soil particles contain a variety of natural and anthropogenic organic components, and in urban areas can be considered as local collectors of pollutants. Surface soil samples were taken from ten urban areas in Riyadh during early winter of 2007. They were extracted with dichloromethane-methanol mixture and the extracts were analyzed by gas chromatography-mass spectrometry. The major compounds were unresolved complex mixture (UCM), plasticizers, n-alkanes, carbohydrates, n-alkanoic acids, hopanes, n-alkanols, and sterols. Vegetation detritus was the major natural source of organic compounds (24.0 ± 15.7%) in samples from areas with less human activities and included n-alkanes, n-alkanoic acids, n-alkanols, sterols and carbohydrates. Vehicular emission products and discarded plastics were the major anthropogenic sources in the soil particles (53.3 ± 21.3% and 22.7 ± 10.7%, respectively). The anthropogenic tracers were UCM, plasticizers, n-alkanes, hopanes and traces of steranes. Vegetation and human activities control the occurrence and distribution of natural and anthropogenic extractable organic matter in this arid urban area. - Highlights: • Human activities influence the distribution of EOM in soils of urban arid regions. • Petroleum residues and plastics are the dominant anthropogenic input. • Low soil organic matter and moisture limit microbial/fungal alteration. - This work shows that human activities are critical factors that influence the characteristics and distribution of EOM in soils of arid urban regions.

  3. Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages

    Directory of Open Access Journals (Sweden)

    M. E. Nowak

    2017-08-01

    Full Text Available Isotopes of dissolved inorganic carbon (DIC are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e., carbonate equilibria and biotic factors influence the δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in the δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE, a platform to study how water transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the NETPATH geochemical modeling program, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less, DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU were depleted in 14C compared to a deeper, oxic, aquifer complex (HTL. Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate considerably different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells. Changes in 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C-depleted OM derived from recycled microbial carbon and sedimentary organic matter as well as water–rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses. Our findings

  4. Identification of Biodegradation Pathways in a Multi-Process Phytoremediation System (MPPS) Using Natural Abundance 14C Analysis of PLFA

    Science.gov (United States)

    Cowie, B. R.; Greenberg, B. M.; Slater, G. F.

    2008-12-01

    Optimizing remediation of petroleum-contaminated soils requires thorough understanding of the mechanisms and pathways involved in a proposed remediation system. In many engineered and natural attenuation systems, multiple degradation pathways may contribute to observed contaminant mass losses. In this study, biodegradation in the soil microbial community was identified as a major pathway for petroleum hydrocarbon removal in a Multi-Process Phytoremediation System (MPPS) using natural abundance 14C analysis of Phospholipid Fatty Acids (PLFA). In contaminated soils, PLFA were depleted in Δ14C to less than -800‰, directly demonstrating microbial uptake and utilization of petroleum derived carbon (Δ14C = -992‰) during bioremediation. Mass balance indicated that more than 80% of microbial carbon was derived from petroleum hydrocarbons and a maximum of 20% was produced from metabolism of modern carbon sources. In contrast, in a nearby uncontaminated control soil, the microbial community maintained a nearly modern 14C signature, suggesting preferential degradation of more labile, recent carbon. Mass balance using δ13C and Δ14C of soil CO2 demonstrated that mineralization of petroleum carbon contributed 60-65% of soil CO2 at the contaminated site. The remainder was derived from atmospheric (27-30%) and decomposition of non- petroleum natural organic carbon (5-10%). The clean control exhibited substantially lower CO2 concentrations that were derived from atmospheric (55%) and natural organic carbon (45%) sources. This study highlights the value of using multiple carbon isotopes to identify degradation pathways in petroleum- contaminated soils undergoing phytoremediation and the power of natural abundance 14C to detect petroleum metabolism in natural microbial communities.

  5. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    Science.gov (United States)

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  6. Informatic search strategies to discover analogues and variants of natural product archetypes.

    Science.gov (United States)

    Johnston, Chad W; Connaty, Alex D; Skinnider, Michael A; Li, Yong; Grunwald, Alyssa; Wyatt, Morgan A; Kerr, Russell G; Magarvey, Nathan A

    2016-03-01

    Natural products are a crucial source of antimicrobial agents, but reliance on low-resolution bioactivity-guided approaches has led to diminishing interest in discovery programmes. Here, we demonstrate that two in-house automated informatic platforms can be used to target classes of biologically active natural products, specifically, peptaibols. We demonstrate that mass spectrometry-based informatic approaches can be used to detect natural products with high sensitivity, identifying desired agents present in complex microbial extracts. Using our specialised software packages, we could elaborate specific branches of chemical space, uncovering new variants of trichopolyn and demonstrating a way forward in mining natural products as a valuable source of potential pharmaceutical agents.

  7. Soil microbial activity in Aleppo pine stands naturally regenerated after fire: silvicultural management and induced drought

    Directory of Open Access Journals (Sweden)

    D. Moya

    2013-01-01

    Full Text Available In post-fire restoration, early monitoring is mandatory to check impacts and ecosystem responses to apply proper management according to social standards and ecological conditions. In areas where the natural regeneration was successful, excessive tree density can be found which induces to high intraspecific competence and assisted restoration management could be adequate. In addition, climatic changes will have large impacts on vegetation productivity and resilience since the regional models for south-eastern Spain predicts a rainfall decrease of about 20% and temperature increase of 4.5 ºC. The microbial biomass could be used as indicator of ecosystem recovery, since it is negatively affected by wildfires and depends on fire characteristics, vegetation and soil properties. Our aim is to determine how forest management may affect the ecosystem recovery in different climatic scenarios, included drought scenarios with and without forest management (thinning.We compared soil physicochemical properties and microbial activity in four scenarios: unmanaged and thinned stands in two rainfall scenarios (under induced drought. The study areas were set close to Yeste (Albacete where Aleppo pine forest were burned in summer 1994 (nearly 14000 ha. We set sixteen rectangular plots (150 m2; 15 m ×10 m implementing experimental silvicultural treatments: thinning eight plots in 2004, reducing the naturally recovered tree density from about 12000 to 1600 pine trees ha-1. In addition, in half the plots, we induced drought conditions from about 500 to 400 mm (20% from March 2009. In every plot, we monitored temperature at ground level (Ts, 10 cm depth (T10d and soil relative humidity (RH. Taking into account season of the year and canopy coverage, we collected soil samples in mid-winter (ending January 2011 and mid-spring (ending May 2011 under pine trees and in bare soil. The soil samples were used to evaluate soil physicochemical properties and soil microbial

  8. Use of natural compounds to improve the microbial stability of Amaranth-based homemade fresh pasta.

    Science.gov (United States)

    Del Nobile, M A; Di Benedetto, N; Suriano, N; Conte, A; Lamacchia, C; Corbo, M R; Sinigaglia, M

    2009-04-01

    A study on the use of natural antimicrobial compounds to improve the microbiological stability of refrigerated amaranth-based homemade fresh pasta is presented in this work. In particular, the antimicrobial activity of thymol, lemon extract, chitosan and grapefruit seed extract (GFSE) has been tested against mesophilic and psychrotrophic bacteria, total coliforms, Staphylococcus spp., yeasts and moulds. A sensory analysis on both fresh and cooked pasta was also run. Results suggest that chitosan and GFSE strongly increase the microbial acceptability limit of the investigated spoilage microorganisms, being the former the most effective. Thymol efficiently reduces the growth of mesophilic bacteria, psychrotrophic bacteria and Staphylococcus spp., whereas it does not affect, substantially, the growth cycle of total coliforms. Lemon extract is the less effective in preventing microbial growth. In fact, it is able to delay only total mesophilic and psychrotrophic bacterial evolution. From a sensorial point of view no significant differences were recorded between the control samples and all the types of loaded amaranth-based pasta.

  9. Microbial conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lau, P. [National Research Council of Canada, Ottawa, ON (Canada). Bioconversion and Sustainable Development

    2006-07-01

    Microbes are a biomass and an valuable resource. This presentation discussed microbial conversion technologies along with background information on microbial cells, their characteristics and microbial diversity. Untapped opportunities for microbial conversion were identified. Metagenomic and genome mining approaches were also discussed, as they can provide access to uncultivated or unculturable microorganisms in communal populations and are an unlimited resource for biocatalysts, novel genes and metabolites. Genome mining was seen as an economical approach. The presentation also emphasized that the development of microbial biorefineries would require significant insights into the relevant microorganisms and that biocatalysts were the ultimate in sustainability. In addition, the presentation discussed the natural fibres initiative for biochemicals and biomaterials. Anticipated outputs were identified and work in progress of a new enzyme-retting cocktail to provide diversity and/or consistency in fibre characteristics for various applications were also presented. It was concluded that it is necessary to leverage understanding of biological processes to produce bioproducts in a clean and sustainable manner. tabs., figs.

  10. Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning

    Science.gov (United States)

    Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.

    2007-12-01

    The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms

  11. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  12. Enhancing Management Tools: Molecular Genetic Tracking to Target Microbial Pollution Sources in South Florida Coral Reefs, Year 1 - CRCP project #1114

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Both coastal inlets and treated wastewater outfalls are recognized as major pathways for microbial contaminants from Land-Based Sources of Pollution (LBSP) to enter...

  13. Microbial drivers of spatial heterogeneity of nitrous oxide pulse dynamics following drought in an experimental tropical rainforest

    Science.gov (United States)

    Young, J. C.; Sengupta, A.; U'Ren, J.; Van Haren, J. L. M.; Meredith, L. K.

    2017-12-01

    Nitrous oxide (N2O) is a long-lived, potent greenhouse gas with increasing atmospheric concentrations. Soil microbes in agricultural and natural ecosystems are the dominant source of N2O, which involves complex interactions between N-cycling microbes, metabolisms, soil properties, and plants. Tropical rainforests are the largest natural source of N2O, however the microbial and environmental drivers are poorly understood as few studies have been performed in these environments. Thus, there is an urgent need for further research to fill in knowledge gaps regarding tropical N-cycling, and the response of soil microbial communities to changes in precipitation patterns, temperature, nitrogen deposition, and land use. To address this data gap, we performed a whole-forest drought in the tropical rainforest biome in Biosphere 2 (B2) and analyzed connections between soil microbes, forest heterogeneity, and N2O emissions. The B2 rainforest is the hottest tropical rainforest on Earth, and is an important model system for studying the response of tropical forests to warming with controlled experimentation. In this study, we measured microbial community abundance and diversity profiles (16S rRNA and ITS2 amplicon sequencing) along with their association with soil properties (e.g. pH, C, N) during the drought and rewetting at five locations (3 depths), including regions that have been previously characterized with high and low N2O drought pulse dynamics (van Haren et al., 2005). In this study, we present the spatial distribution of soil microbial communities within the rainforest at Biosphere 2 and their correlations with edaphic factors. In particular, we focus on microbial, soil, and plant factors that drive high and low N2O pulse zones. As in the past, we found that N2O emissions were highest in response to rewetting in a zone hypothesized to be rich in nutrients from a nearby sugar palm. We will characterize microbial indicator species and nitrogen cycling genes to better

  14. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.

    2015-07-30

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  15. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.; Wallack, Maxwell J; Kim, Kyoung-Yeol; He, Weihua; Feng, Yujie; Saikaly, Pascal

    2015-01-01

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  16. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology

    KAUST Repository

    Rashid, Mamoon; Stingl, Ulrich

    2015-01-01

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70–80% of microbial diversity – recently called the “microbial dark matter” – remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology.

  17. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology.

    Science.gov (United States)

    Rashid, Mamoon; Stingl, Ulrich

    2015-12-01

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70-80% of microbial diversity - recently called the "microbial dark matter" - remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology

    KAUST Repository

    Rashid, Mamoon

    2015-09-25

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70–80% of microbial diversity – recently called the “microbial dark matter” – remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology.

  19. Production of hydrogen by microbial fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S.; Cox, D.; Levandowsky, M.

    1988-01-01

    Production of hydrogen by defined and undefined bacterial cultures was studied, using pure sugars (glucose and maltose) or natural sources rich in either pure sugars or polysaccharides. The latter included sugar cane juice, corn pulp (enzymatically treated or untreated), and enzymatically treated paper. Mixed microbial flora from sewage and landfill sediments, as well as pure and mixed cultures of known coliform bacteria produced mixtures of hydrogen and carbon dioxide at 37/sup 0/C and 55/sup 0/C, with hydrogen concentrations as high as 87%. In the case of the pure glucose substrate, an average yield of 0.7 mol hydrogen per mol glucose was obtained.

  20. Multi-year microbial source tracking study characterizing fecal contamination in an urban watershed

    Science.gov (United States)

    Bushon, Rebecca N.; Brady, Amie M. G.; Christensen, Eric D.; Stelzer, Erin A.

    2017-01-01

    Microbiological and hydrological data were used to rank tributary stream contributions of bacteria to the Little Blue River in Independence, Missouri. Concentrations, loadings and yields of E. coli and microbial source tracking (MST) markers, were characterized during base flow and storm events in five subbasins within Independence, as well as sources entering and leaving the city through the river. The E. coli water quality threshold was exceeded in 29% of base-flow and 89% of storm-event samples. The total contribution of E. coli and MST markers from tributaries within Independence to the Little Blue River, regardless of streamflow, did not significantly increase the median concentrations leaving the city. Daily loads and yields of E. coli and MST markers were used to rank the subbasins according to their contribution of each constituent to the river. The ranking methodology used in this study may prove useful in prioritizing remediation in the different subbasins.

  1. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

    KAUST Repository

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E.

    2011-01-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs

  2. Starting up microbial enhanced oil recovery.

    Science.gov (United States)

    Siegert, Michael; Sitte, Jana; Galushko, Alexander; Krüger, Martin

    2014-01-01

    This chapter gives the reader a practical introduction into microbial enhanced oil recovery (MEOR) including the microbial production of natural gas from oil. Decision makers who consider the use of one of these technologies are provided with the required scientific background as well as with practical advice for upgrading an existing laboratory in order to conduct microbiological experiments. We believe that the conversion of residual oil into natural gas (methane) and the in situ production of biosurfactants are the most promising approaches for MEOR and therefore focus on these topics. Moreover, we give an introduction to the microbiology of oilfields and demonstrate that in situ microorganisms as well as injected cultures can help displace unrecoverable oil in place (OIP). After an initial research phase, the enhanced oil recovery (EOR) manager must decide whether MEOR would be economical. MEOR generally improves oil production but the increment may not justify the investment. Therefore, we provide a brief economical assessment at the end of this chapter. We describe the necessary state-of-the-art scientific equipment to guide EOR managers towards an appropriate MEOR strategy. Because it is inevitable to characterize the microbial community of an oilfield that should be treated using MEOR techniques, we describe three complementary start-up approaches. These are: (i) culturing methods, (ii) the characterization of microbial communities and possible bio-geochemical pathways by using molecular biology methods, and (iii) interfacial tension measurements. In conclusion, we hope that this chapter will facilitate a decision on whether to launch MEOR activities. We also provide an update on relevant literature for experienced MEOR researchers and oilfield operators. Microbiologists will learn about basic principles of interface physics needed to study the impact of microorganisms living on oil droplets. Last but not least, students and technicians trying to understand

  3. Optimal source coding, removable noise elimination, and natural coordinate system construction for general vector sources using replicator neural networks

    Science.gov (United States)

    Hecht-Nielsen, Robert

    1997-04-01

    A new universal one-chart smooth manifold model for vector information sources is introduced. Natural coordinates (a particular type of chart) for such data manifolds are then defined. Uniformly quantized natural coordinates form an optimal vector quantization code for a general vector source. Replicator neural networks (a specialized type of multilayer perceptron with three hidden layers) are the introduced. As properly configured examples of replicator networks approach minimum mean squared error (e.g., via training and architecture adjustment using randomly chosen vectors from the source), these networks automatically develop a mapping which, in the limit, produces natural coordinates for arbitrary source vectors. The new concept of removable noise (a noise model applicable to a wide variety of real-world noise processes) is then discussed. Replicator neural networks, when configured to approach minimum mean squared reconstruction error (e.g., via training and architecture adjustment on randomly chosen examples from a vector source, each with randomly chosen additive removable noise contamination), in the limit eliminate removable noise and produce natural coordinates for the data vector portions of the noise-corrupted source vectors. Consideration regarding selection of the dimension of a data manifold source model and the training/configuration of replicator neural networks are discussed.

  4. Early warning system for detection of microbial contamination of source waters

    DEFF Research Database (Denmark)

    Mogensen, Claus Tilsted; Bentien, Anders; Lau, Mogens

    2011-01-01

    Ensuring chemical and microbial water quality is an ever increasing important issue world-wide. Currently, determination of microbial water quality is a time (and money) consuming manual laboratory process. We have developed and field-tested an online and real-time sensor for measuring the microb...

  5. Microbial Hazards of Street-Vended Grilled Chicken Intestine

    Directory of Open Access Journals (Sweden)

    Ma. Patricia Azanza

    1998-12-01

    Full Text Available Microbial hazards associated with street-vended grilled chicken intestine (isaw were studied. Grilling of isaw effected ≥89.00% decrease in the total microbial load of the sample. Cooked isaw contained about 105-106 cfu/g aerobic plate counts and 103-104 MPN/g coliform counts. Salmonella per 25 g sample was isolated from cooked isaw samples. Grilling eliminated Staphylococcus aureus and Listeria monocytogenes cells initially present in pre-cooked samples. Different sauces of isaw showed increasing numbers of total aerobic microorganisms and coliform during vending operations. The total plate counts and coliform counts of the sour sauce, which ranged from 103-105 cfu/g and 101 MPN/g, respectively, were observed to be lower than those found in the sweet sauce. Sources of microbial contaminants of grilled chicken isaw included the natural flora of the raw materials, contaminations from food-contact surfaces, bamboo skewers, and the hands of the food handlers. Among the critical control points identified in the street-vending operation of chicken isaw were the control of time and temperature during cooking and hold-on periods during vending operations.

  6. On the Nature of Orion Source I

    Science.gov (United States)

    Báez-Rubio, A.; Jiménez-Serra, I.; Martín-Pintado, J.; Zhang, Q.; Curiel, S.

    2018-01-01

    The Kleinmann–Low nebula in Orion, the closest region of massive star formation, harbors Source I, whose nature is under debate. Knowledge of this source may have profound implications for our understanding of the energetics of the hot core in Orion KL since it might be the main heating source in the region. The spectral energy distribution of this source in the radio is characterized by a positive spectral index close to 2, which is consistent with (i) thermal bremsstrahlung emission of ionized hydrogen gas produced by a central massive protostar, or (ii) photospheric bremsstrahlung emission produced by electrons when deflected by the interaction with neutral and molecular hydrogen like Mira-like variable stars. If ionized hydrogen gas were responsible for the observed continuum emission, its modeling would predict detectable emission from hydrogen radio recombination lines (RRLs). However, our SMA observations were obtained with a high enough sensitivity to rule out that the radio continuum emission arises from a dense hypercompact H II region because the H26α line would have been detected, in contrast with our observations. To explain the observational constraints, we investigate further the nature of the radio continuum emission from source I. We have compared available radio continuum data with the predictions from our upgraded non-LTE 3D radiative transfer model, MOdel for REcombination LInes, to show that radio continuum fluxes and sizes can only be reproduced by assuming both dust and bremsstrahlung emission from neutral gas. The dust emission contribution is significant at ν ≥ 43 GHz. In addition, our RRL peak intensity predictions for the ionized metals case are consistent with the nondetection of Na and K RRLs at millimeter and submillimeter wavelengths.

  7. Explorative Solid-Phase Extraction (E-SPE) for Accelerated Microbial Natural Product Discovery, Dereplication, and Purification

    DEFF Research Database (Denmark)

    Månsson, Maria; Phipps, Richard Kerry; Gram, Lone

    2010-01-01

    Microbial natural products (NP) cover a high chemical diversity, and in consequence extracts from microorganisms are often complex to analyze and purify. A distribution analysis of calculated pK(a) values from the 34390 records in Antibase2008 revealed that within pH 2-11, 44% of all included......-phase extraction" (E-SPE) protocol using SAX, Oasis MAX, SCX, and LH-20 columns for targeted exploitation of chemical functionalities. E-SPE provides a minimum of fractions (15) for chemical and biological analyses and implicates development into a preparative scale methodology. Overall, this allows fast extract...

  8. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  9. Effects of grain source, grain processing, and protein degradability on rumen kinetics and microbial protein synthesis in Boer kids.

    Science.gov (United States)

    Brassard, M-E; Chouinard, P Y; Berthiaume, R; Tremblay, G F; Gervais, R; Martineau, R; Cinq-Mars, D

    2015-11-01

    Microbial protein synthesis in the rumen would be optimized when dietary carbohydrates and proteins have synchronized rates and extent of degradation. The aim of this study was to evaluate the effect of varying ruminal degradation rate of energy and nitrogen sources on intake, nitrogen balance, microbial protein yield, and kinetics of nutrients in the rumen of growing kids. Eight Boer goats (38.2 ± 3.0 kg) were used. The treatments were arranged in a split-plot Latin square design with grain sources (barley or corn) forming the main plots (squares). Grain processing methods and levels of protein degradability formed the subplots in a 2 × 2 factorial arrangement for a total of 8 dietary treatments. The grain processing method was rolling for barley and cracking for corn. Levels of protein degradability were obtained by feeding untreated soybean meal (SBM) or heat-treated soybean meal (HSBM). Each experimental period lasted 21 d, consisting of a 10-d adaptation period, a 7-d digestibility determination period, and a 4-d rumen evacuation and sampling period. Kids fed with corn had higher purine derivatives (PD) excretion when coupled with SBM compared with HSBM and the opposite occurred with barley-fed kids ( ≤ 0.01). Unprocessed grain offered with SBM led to higher PD excretion than with HSBM whereas protein degradability had no effect when processed grain was fed ( ≤ 0.03). Results of the current experiment with high-concentrate diets showed that microbial N synthesis could be maximized in goat kids by combining slowly fermented grains (corn or unprocessed grains) with a highly degradable protein supplement (SBM). With barley, a more rapidly fermented grain, a greater microbial N synthesis was observed when supplementing a low-degradable protein (HSBM).

  10. Effects of acid deposition on microbial processes in natural waters

    International Nuclear Information System (INIS)

    Gilmour, C.C.

    1992-01-01

    Biogeochemical processes mediated by microorganisms are not adversely affected by the acidification of natural waters to the same extent as are the life cycles of higher organisms. Basic processes, e.g., primary production and organic matter decomposition, are not slowed in moderately acidified systems and do not generally decline above a pH of 5. More specifically, the individual components of the carbon, nitrogen, and sulfur cycles are, with few exceptions, also acid resistant. The influence of acid deposition on microbial processes is more often stimulation of nitrogen and sulfur cycling, often leading to alkalinity production, which mitigates the effect of strong acid deposition. Bacterial sulfate reduction and denitrification in sediments are two of the major processes that can be stimulated by sulfate and nitrate deposition, respectively, and result in ANC (acid-neutralizing capacity) generation. One of the negative effects of acid deposition is increased mobilization and bioaccumulation of some metals. Bacteria appear to play an important role, especially in mercury cycling, with acidification leading to increased bacterial methylation of mercury and subsequent bioaccumulation in higher organisms

  11. Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source

    Directory of Open Access Journals (Sweden)

    J. L. Dixon

    2011-09-01

    Full Text Available Methanol is the second most abundant organic gas in the atmosphere after methane, and is ubiquitous in the troposphere. It plays a significant role in atmospheric oxidant chemistry and is biogeochemically active. Large uncertainties exist about whether the oceans are a source or sink of methanol to the atmosphere. Even less is understood about what reactions in seawater determine its concentration, and hence flux across the sea surface interface. We report here concentrations of methanol between 151–296 nM in parts of the oligotrophic North Atlantic, with corresponding microbial uptake rates between 2–146 nM d−1, suggesting turnover times as low as 1 day (1–25 days in surface waters of the oligotrophic tropical North East Atlantic. Methanol is mainly (≥97% used by microbes for obtaining energy in oligotrophic regions, which contrasts with shelf and coastal areas where between 20–50% can be used for cell growth. Comparisons of microbial methanol oxidation rates with parallel determinations of bacterial leucine uptake suggest that methanol contributes on average 13% to bacterial carbon demand in the central northern Atlantic gyre (maximum of 54%. In addition, the contribution that methanol makes to bacterial carbon demand varies as a power function of chlorophyll a concentrations; suggesting for concentrations <0.2 μg l−1 that methanol can make a significant contribution to bacterial carbon demand. However, our low air to sea methanol flux estimates of 7.2–13 μmol m−2 d−1 suggest that the atmosphere is not a major methanol source. We conclude that there must be a major, as yet unidentified, in situ oceanic methanol source in these latitudes which we suggest is sunlight driven decomposition of organic matter.

  12. Investigations on microbial leaching of zircon by means of spark source mass spectrometry

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.; Bullmann, M.; Iske, U.

    1985-01-01

    Spark source mass spectrometry is a useful method for chemical element analysis of geological and biological samples. This sensitive technique (detection limit down to the ppb-range) is used to analyze leaching processes by means of several microorganisms. The problem of microbial leaching of chemical resistent materials was tested under laboratory condition with regard to possible analytical and technical applications. Leaching of metalls with chemolithotrophic and heterotrophic, organic acids producing microorganisms has been investigated with zircon from Baltic Shield containing 0.7% rare earth elements and 1.67% hafnium. When zircon is leached with strains of Thiobacillus ferroxidans the rare earth elements, Hf, Th, and U mostly (about 80%) can be recovered. (author)

  13. Comparison of hydrocarbon gases in soils from natural seeps and anthropogenic sources

    International Nuclear Information System (INIS)

    Ririe, G.T.; Sweeney, R.E.

    1993-01-01

    Soil gas geochemical data are commonly used in site assessments to determine the nature and extent of soil contamination. There are also a number of sites where soil gas data can be used to infer the nature and approximate extent of free product or high concentration of dissolved contaminant in ground waters. The authors have conducted a variety of soil gas investigations in support of UNOCAL's site assessment and remediation efforts that have included studies on abandoned oil fields. Because many of these abandoned oil field sites will be used for residential development it is necessary to distinguish the type of soil gas data that are to be expected from natural sources from those derived from subsurface contamination. Data have been collected from a number of active and abandoned oil fields where a variety of subsurface contaminants including spilled crude oil, condensate, and solvents have been found. In several of these sites the authors have found evidence for both natural sources of soil gas anomalies, and anomalies associated with anthropogenic sources/causes. The distinction becomes particularly important when remedial options are being evaluated because it is impossible to remediate most natural sources

  14. Radiological Protection Experience with natural sources of radiation

    International Nuclear Information System (INIS)

    Quindos, L. S.; Fernandez, P. L.; Vinuela, J.; Arteche, J.; Sainz, G.; Gomez, J.; Matarranz

    2003-01-01

    During the last twenty five years the research Radon Group of the Medical Physics Unit of the University of Cantabria has been involved in projects concerning the measurement of natural radiation, in special that coming from radon gas. At this moment we have available for this field a lot of information in different formats, as paper, video and CD, interesting not only for public in general but also for professionals interested in the evaluation of doses coming from natural sources of radiation. (Author)

  15. Trends in microbial control techniques for poultry products.

    Science.gov (United States)

    Silva, Filomena; Domingues, Fernanda C; Nerín, Cristina

    2018-03-04

    Fresh poultry meat and poultry products are highly perishable foods and high potential sources of human infection due to the presence of several foodborne pathogens. Focusing on the microbial control of poultry products, the food industry generally implements numerous preventive measures based on the Hazard Analysis and Critical Control Points (HACCP) food safety management system certification together with technological steps, such as refrigeration coupled to modified atmosphere packaging that are able to control identified potential microbial hazards during food processing. However, in recent years, to meet the demand of consumers for minimally processed, high-quality, and additive-free foods, technologies are emerging associated with nonthermal microbial inactivation, such as high hydrostatic pressure, irradiation, and natural alternatives, such as biopreservation or the incorporation of natural preservatives in packaging materials. These technologies are discussed throughout this article, emphasizing their pros and cons regarding the control of poultry microbiota and their effects on poultry sensory properties. The discussion for each of the preservation techniques mentioned will be provided with as much detail as the data and studies provided in the literature for poultry meat and products allow. These new approaches, on their own, have proved to be effective against a wide range of microorganisms in poultry meat. However, since some of these emergent technologies still do not have full consumer's acceptability and, taking into consideration the hurdle technology concept for poultry processing, it is suggested that they will be used as combined treatments or, more frequently, in combination with modified atmosphere packaging.

  16. Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review

    Directory of Open Access Journals (Sweden)

    Darine Trabelsi

    2013-01-01

    Full Text Available The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research.

  17. Microbial quality of a marine tidal pool

    CSIR Research Space (South Africa)

    Genthe, Bettina

    1995-01-01

    Full Text Available In this study the source of microbial pollution to a tidal pool was investigated. Both adjacent seawater which could contribute to possible faecal pollution and potential direct bather pollution were studied. The microbial quality of the marine...

  18. Microbial effects on the release and attenuation of arsenic in the shallow subsurface of a natural geochemical anomaly

    International Nuclear Information System (INIS)

    Drahota, Petr; Falteisek, Lukáš; Redlich, Aleš; Rohovec, Jan; Matoušek, Tomáš; Čepička, Ivan

    2013-01-01

    Critical factors leading to arsenic release and attenuation from the shallow subsurface were studied with multidisciplinary approach in the natural gold–arsenic geochemical anomaly at Mokrsko (Czech Republic). The results show that microbial reduction promotes arsenic release from Fe(III) (hydr)oxides and Fe(III) arsenates, thereby enhancing dissolved arsenic in the shallow groundwater at average concentration of 7.76 mg/L. In the organic-rich aggregates and wood particles, however, microbial sulfate reduction triggers the formation of realgar deposits, leading to accumulation of As in the distinct organic-rich patches of the shallow subsurface. We conclude that precipitation of realgar in the shallow subsurface of soil/sediment depends on specific and non-trivial combination of water and rock chemistry, microbial community composition and spatial organisation of the subsurface zone, where speciation in saturated environments varied on a centimeter scale from reduced (decomposed wood, H 2 S and realgar present) to oxidized (goethite and arsenate minerals are present). Highlights: •Very high As(III) concentrations were detected in the shallow groundwater. •Arsenic is bound to Fe(III) (hydr)oxides, Fe(III) arsenates and newly-formed realgar. •Reductive dissolution of Fe(III) and As(V) minerals by bacteria leads to mobilization of arsenic. •Precipitation of realgar is constrained to anaerobic domains around and within organic particles. -- Microbial reduction of Fe(III) and As(V) minerals leads to mobilization of As and induces a mineralogical transition toward realgar formation

  19. Metaproteomics of Microbiota in Naturally Fermented Soybean Paste, Da-jiang.

    Science.gov (United States)

    Zhang, Ping; Zhang, Pengfei; Xie, Mengxi; An, Feiyu; Qiu, Boshu; Wu, Rina

    2018-05-01

    Da-jiang is a typical traditional fermented soybean product in China. At present, the proteins in da-jiang are needed to be explored. The composition and species of microbial proteins in traditional fermented da-jiang were analyzed by metaproteomics based on sodium dodecyl sulfonate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The results showed that the number and variety of microbial proteins in the traditional fermented da-jiang from different regions were different. The production site influences the fermentation in da-jiang. Then we analyzed the functions of the microbial proteins identified in da-jiang, and found that they were mainly involved in the process of protein synthesis, glycometabolism and nucleic acid synthesis. In addtion, we compared the proteins composition in different da-jiang. There are 51 common proteins of naturally fermented da-jiang, and 25 common microbial sources. The main commonly microbial sources of fungal proteins are Saccharomyces cerevisiae and Schizosaccharomyces; the main commonly microbial sources of bacterial proteins are Enterococcus faecalis, Leuconostoc mesenteroides, Acinetobacter baumannii, and Bacillus subtilis. These common microbes play the predominant role in da-jiang fermentation. The present results help us to understand the fermentation of da-jiang and improve the quality and safety of final products in the future. The study illustrated metaproteome of microbiota in traditional fermented soybean paste, da-jiang, by sodium dodecyl sulfonate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). A method of extracting metaproteome from microbiota in da-jiang was attempted. The findings help to understand the fermentation of da-jiang and improve the quality and safety of da-jiang in fermented industry. © 2018 Institute of Food Technologists®.

  20. [Effects of adding straw carbon source to root knot nematode diseased soil on soil microbial biomass and protozoa abundance].

    Science.gov (United States)

    Zhang, Si-Hui; Lian, Jian-Hong; Cao, Zhi-Ping; Zhao, Li

    2013-06-01

    A field experiment with successive planting of tomato was conducted to study the effects of adding different amounts of winter wheat straw (2.08 g x kg(-1), 1N; 4.16 g x kg(-1), 2N; and 8.32 g x kg(-1), 4N) to the soil seriously suffered from root knot nematode disease on the soil microbial biomass and protozoa abundance. Adding straw carbon source had significant effects on the contents of soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) and the abundance of soil protozoa, which all decreased in the order of 4N > 2N > 1N > CK. The community structure of soil protozoa also changed significantly under straw addition. In the treatments with straw addition, the average proportion of fagellate, amoeba, and ciliates accounted for 36.0%, 59.5%, and 4.5% of the total protozoa, respectively. Under the same adding amounts of wheat straw, there was an increase in the soil MBC and MBN contents, MBC/MBN ratio, and protozoa abundance with increasing cultivation period.

  1. A Synthetic Ecology Perspective: How Well Does Behavior of Model Organisms in the Laboratory Predict Microbial Activities in Natural Habitats?

    Science.gov (United States)

    Yu, Zheng; Krause, Sascha M B; Beck, David A C; Chistoserdova, Ludmila

    2016-01-01

    In this perspective article, we question how well model organisms, the ones that are easy to cultivate in the laboratory and that show robust growth and biomass accumulation, reflect the dynamics and interactions of microbial communities observed in nature. Today's -omics toolbox allows assessing the genomic potential of microbes in natural environments in a high-throughput fashion and at a strain-level resolution. However, understanding of the details of microbial activities and of the mechanistic bases of community function still requires experimental validation in simplified and fully controlled systems such as synthetic communities. We have studied methane utilization in Lake Washington sediment for a few decades and have identified a number of species genetically equipped for this activity. We have also identified co-occurring satellite species that appear to form functional communities together with the methanotrophs. Here, we compare experimental findings from manipulation of natural communities involved in metabolism of methane in this niche with findings from manipulation of synthetic communities assembled in the laboratory of species originating from the same study site, from very simple (two-species) to rather complex (50-species) synthetic communities. We observe some common trends in community dynamics between the two types of communities, toward representation of specific functional guilds. However, we also identify strong discrepancies between the dominant methane oxidizers in synthetic communities compared to natural communities, under similar incubation conditions. These findings highlight the challenges that exist in using the synthetic community approach to modeling dynamics and species interactions in natural communities.

  2. Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance.

    Science.gov (United States)

    Lange, Lene; Huang, Yuhong; Busk, Peter Kamp

    2016-03-01

    Discovery of keratin-degrading enzymes from fungi and bacteria has primarily focused on finding one protease with efficient keratinase activity. Recently, an investigation was conducted of all keratinases secreted from a fungus known to grow on keratinaceous materials, such as feather, horn, and hooves. The study demonstrated that a minimum of three keratinases is needed to break down keratin, an endo-acting, an exo-acting, and an oligopeptide-acting keratinase. Further, several studies have documented that disruption of sulfur bridges of the keratin structure acts synergistically with the keratinases to loosen the molecular structure, thus giving the enzymes access to their substrate, the protein structure. With such complexity, it is relevant to compare microbial keratin decomposition with the microbial decomposition of well-studied polymers such as cellulose and chitin. Interestingly, it was recently shown that the specialized enzymes, lytic polysaccharide monoxygenases (LPMOs), shown to be important for breaking the recalcitrance of cellulose and chitin, are also found in keratin-degrading fungi. A holistic view of the complex molecular self-assembling structure of keratin and knowledge about enzymatic and boosting factors needed for keratin breakdown have been used to formulate a hypothesis for mode of action of the LPMOs in keratin decomposition and for a model for degradation of keratin in nature. Testing such hypotheses and models still needs to be done. Even now, the hypothesis can serve as an inspiration for designing industrial processes for keratin decomposition for conversion of unexploited waste streams, chicken feather, and pig bristles into bioaccessible animal feed.

  3. Assessment of statistical methods used in library-based approaches to microbial source tracking.

    Science.gov (United States)

    Ritter, Kerry J; Carruthers, Ethan; Carson, C Andrew; Ellender, R D; Harwood, Valerie J; Kingsley, Kyle; Nakatsu, Cindy; Sadowsky, Michael; Shear, Brian; West, Brian; Whitlock, John E; Wiggins, Bruce A; Wilbur, Jayson D

    2003-12-01

    Several commonly used statistical methods for fingerprint identification in microbial source tracking (MST) were examined to assess the effectiveness of pattern-matching algorithms to correctly identify sources. Although numerous statistical methods have been employed for source identification, no widespread consensus exists as to which is most appropriate. A large-scale comparison of several MST methods, using identical fecal sources, presented a unique opportunity to assess the utility of several popular statistical methods. These included discriminant analysis, nearest neighbour analysis, maximum similarity and average similarity, along with several measures of distance or similarity. Threshold criteria for excluding uncertain or poorly matched isolates from final analysis were also examined for their ability to reduce false positives and increase prediction success. Six independent libraries used in the study were constructed from indicator bacteria isolated from fecal materials of humans, seagulls, cows and dogs. Three of these libraries were constructed using the rep-PCR technique and three relied on antibiotic resistance analysis (ARA). Five of the libraries were constructed using Escherichia coli and one using Enterococcus spp. (ARA). Overall, the outcome of this study suggests a high degree of variability across statistical methods. Despite large differences in correct classification rates among the statistical methods, no single statistical approach emerged as superior. Thresholds failed to consistently increase rates of correct classification and improvement was often associated with substantial effective sample size reduction. Recommendations are provided to aid in selecting appropriate analyses for these types of data.

  4. Graphene-Based Flexible Micrometer-Sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.; Qaisi, Ramy M.; Hussain, Muhammad Mustafa

    2013-01-01

    Microbial fuel cells harvest electrical energy produced by bacteria during the natural decomposition of organic matter. We report a micrometer-sized microbial fuel cell that is able to generate nanowatt-scale power from microliters of liquids

  5. Anaerobic microbial dehalogenation

    NARCIS (Netherlands)

    Smidt, H.; Vos, de W.M.

    2004-01-01

    The natural production and anthropogenic release of halogenated hydrocarbons into the environment has been the likely driving force for the evolution of an unexpectedly high microbial capacity to dehalogenate different classes of xenobiotic haloorganics. This contribution provides an update on the

  6. Defining Disturbance for Microbial Ecology.

    Science.gov (United States)

    Plante, Craig J

    2017-08-01

    Disturbance can profoundly modify the structure of natural communities. However, microbial ecologists' concept of "disturbance" has often deviated from conventional practice. Definitions (or implicit usage) have frequently included climate change and other forms of chronic environmental stress, which contradict the macrobiologist's notion of disturbance as a discrete event that removes biomass. Physical constraints and disparate biological characteristics were compared to ask whether disturbances fundamentally differ in microbial and macroorganismal communities. A definition of "disturbance" for microbial ecologists is proposed that distinguishes from "stress" and other competing terms, and that is in accord with definitions accepted by plant and animal ecologists.

  7. Variation in Microbial Identification System accuracy for yeast identification depending on commercial source of Sabouraud dextrose agar.

    Science.gov (United States)

    Kellogg, J A; Bankert, D A; Chaturvedi, V

    1999-06-01

    The accuracy of the Microbial Identification System (MIS; MIDI, Inc. ) for identification of yeasts to the species level was compared by using 438 isolates grown on prepoured BBL Sabouraud dextrose agar (SDA) and prepoured Remel SDA. Correct identification was observed for 326 (74%) of the yeasts cultured on BBL SDA versus only 214 (49%) of yeasts grown on Remel SDA (P < 0.001). The commercial source of the SDA used in the MIS procedure significantly influences the system's accuracy.

  8. Metagenomic exploration of microbial community in mine tailings of Malanjkhand copper project, India

    Directory of Open Access Journals (Sweden)

    Abhishek Gupta

    2017-06-01

    Full Text Available Mine tailings from copper mines are considered as one of the sources of highly hazardous acid mine drainage (AMD due to bio-oxidation of its sulfidic constituents. This study was designed to understand microbial community composition and potential for acid generation using samples from mine tailings of Malanjkhand copper project (MCP, India through 16S rRNA gene based amplicon sequencing approach (targeting V4 region. Three tailings samples (T1, T2 and T3 with varied physiochemical properties selected for the study revealed distinct microbial assemblages. Sample (T3 with most extreme nature (pH 3.0 exhibited abundance of Proteobacteria, Fimicutes, Actinobacteria and/or Nitrospirae. Metagenomic sequences are available under the BioProject ID PRJNA361456.

  9. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations.

    Science.gov (United States)

    Lenski, Richard E

    2017-10-01

    Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of Escherichia coli in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria's mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.

  10. Contribution on the study of microbial effects on the leaching of radionuclides embedded in nuclear waste engineered barriers

    International Nuclear Information System (INIS)

    Spor, H.

    1994-05-01

    The aim of this work is to study the different interactions mechanisms between microorganisms and radioelements in conditions similar to those of a radioactive waste disposal site and to determine all the mechanisms due to microbial effects on the leaching of radionuclides embedded in nuclear waste engineered barriers. In this work are presented the different following points: - a bibliographic study on the microorganisms-radioelements interactions; - the conditions of metabolites production during the microbial growth (influence of the nature of the carbonated source, pH effects, aerobiosis conditions...); the mechanisms of a direct effect for determining the importance of the bio-sorption mechanism by microorganisms; the fact that the microbial biomass can strongly interact with actinides, heavy metals and radioelements; the effects of microorganisms on storage materials (cement and clay) containing radioelements (uranium, cesium); the complexation capacities of the organic and mineral acids produced during the microbial growth. (O.M.)

  11. Total mercury and methyl-mercury contents and accumulation in polar microbial mats.

    Science.gov (United States)

    Camacho, Antonio; Rochera, Carlos; Hennebelle, Raphaëlle; Ferrari, Christophe; Quesada, Antonio

    2015-03-15

    Although polar regions are considered isolated and pristine areas, the organisms that inhabit these zones are exposed to global pollution. Heavy metals, such as mercury, are global pollutants and can reach almost any location on Earth. Mercury may come from natural, volcanic or geological sources, or result from anthropogenic sources, in particular industrial or mining activities. In this study, we have investigated one of the most prominent biological non-marine communities in both polar regions, microbial mats, in terms of their Hg and methyl-mercury (MeHg) concentrations and accumulation capacities. The main hypotheses posed argued on the importance of different factors, and to test them, we have measured Hg concentrations in microbial mats that were collected from 6 locations in different ecological situations. For this purpose, the direct anthropogenic impacts, volcanic influences, proximity to the seashore, latitudinal gradients and C contents were investigated. Our results show that, other than the direct anthropogenic influence, none of the other hypotheses alone satisfactorily explains the Hg content in microbial mats. In contrast, the MeHg contents were noticeably different between the investigated locations, with a higher proportion of MeHg on the McMurdo Ice Shelf (Antarctica) and a lower proportion on Ward Hunt Island (High Arctic). Furthermore, our results from in situ experiments indicated that the microbial mats from South Shetland Islands could quickly accumulate (48 h) Hg when Hg dissolved salts were supplied. Over short-term periods, these mats do not transform Hg into MeHg under field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Optimization of supercritical carbon dioxide treatment for the inactivation of the natural microbial flora in cubed cooked ham.

    Science.gov (United States)

    Ferrentino, Giovanna; Balzan, Sara; Spilimbergo, Sara

    2013-02-15

    This study aims to investigate the effects of supercritical carbon dioxide (SC-CO₂) treatment on the inactivation of the natural microbial flora in cubed cooked ham. Response surface methodology with a central composite design was applied to determine the optimal process conditions and investigate the effect of three independent variables (pressure, temperature and treatment time). Additionally, analyses of texture, pH and color together with a storage study of the product were performed to determine its microbial and qualitative stability. Response surface analysis revealed that 12 MPa, 50 °C, 5 min were the optimal conditions to obtain about 3.0, 1.6, and 2.5 Log(CFU/g) reductions of mesophilic aerobic bacteria, psychrophilic bacteria and lactic acid bacteria respectively. Inactivation to undetectable levels of yeasts and molds and coliforms was also obtained. A storage study of 30 days at 4 °C was carried out on the treated product (12 MPa, 50 °C, 5 min) monitoring microbial growth, pH, texture, and color parameters (L*, a*, b* and ΔE). Microbial loads slightly increased and after 30 days of storage reached the same levels detected in the fresh product. Color parameters (L*, a*, b*) showed slight variations while pH and texture did not change significantly. On the basis of the results obtained, SC-CO₂ can be considered a promising technique to microbiologically stabilize cubed cooked ham and, in general, cut/sliced meat products without affecting its quality attributes. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Biofilm growth on polyvinylchloride surface incubated in suboptimal microbial warm water and effect of sanitizers on biofilm removal post biofilm formation

    Science.gov (United States)

    An in vitro experiment was conducted to understand the nature of biofilm growth on polyvinyl chloride (PVC) surface when exposed to sub optimal quality microbial water (> 4 log10 cfu/ml) obtained from poultry drinking water source mimicking water in waterlines during the first week of poultry broodi...

  14. Microbial ecology of artisanal italian cheese: Molecular microbial characterization by culture-independent method

    International Nuclear Information System (INIS)

    Colombo, E.; Scarpellini, M.; Franzatti, L.; Dioguardi, L.

    2009-01-01

    Present study will treat the next topics: ecology of the natural and man made environments and functional diversity of bacteria. The microbial communities in artisanal goat cheeses produced in mountain pastures (typical farms) in Piemonte mountain (North of Italy) change a lot during precessing and ripening time. Moreover cheese microbial ecosystems are different in each small dairy because adventitious microflora can come from the environment and contamination the milk before the cheese making process and the product during manufacture and ripening. (Author)

  15. Microbial ecology of artisanal italian cheese: Molecular microbial characterization by culture-independent method

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, E.; Scarpellini, M.; Franzatti, L.; Dioguardi, L.

    2009-07-01

    Present study will treat the next topics: ecology of the natural and man made environments and functional diversity of bacteria. The microbial communities in artisanal goat cheeses produced in mountain pastures (typical farms) in Piemonte mountain (North of Italy) change a lot during precessing and ripening time. Moreover cheese microbial ecosystems are different in each small dairy because adventitious microflora can come from the environment and contamination the milk before the cheese making process and the product during manufacture and ripening. (Author)

  16. Variation in Microbial Identification System Accuracy for Yeast Identification Depending on Commercial Source of Sabouraud Dextrose Agar

    OpenAIRE

    Kellogg, James A.; Bankert, David A.; Chaturvedi, Vishnu

    1999-01-01

    The accuracy of the Microbial Identification System (MIS; MIDI, Inc.) for identification of yeasts to the species level was compared by using 438 isolates grown on prepoured BBL Sabouraud dextrose agar (SDA) and prepoured Remel SDA. Correct identification was observed for 326 (74%) of the yeasts cultured on BBL SDA versus only 214 (49%) of yeasts grown on Remel SDA (P < 0.001). The commercial source of the SDA used in the MIS procedure significantly influences the system’s accuracy.

  17. PCR-DGGE fingerprints of microbial successional changes during ...

    African Journals Online (AJOL)

    PCR-DGGE fingerprints of microbial successional changes during fermentation of cereal-legume weaning foods. ... African Journal of Biotechnology ... Phenotypic identification and monitoring of the dynamics of naturally occurring microbial community responsible for the spontaneous fermentation of different cereal-legume ...

  18. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic.

    Science.gov (United States)

    Daley, Kiley; Truelstrup Hansen, Lisbeth; Jamieson, Rob C; Hayward, Jenny L; Piorkowski, Greg S; Krkosek, Wendy; Gagnon, Graham A; Castleden, Heather; MacNeil, Kristen; Poltarowicz, Joanna; Corriveau, Emmalina; Jackson, Amy; Lywood, Justine; Huang, Yannan

    2017-06-13

    Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung-each has a population of water conveyance. Generally, the source and drinking water was of satisfactory microbial quality, containing Escherichia coli levels of water in households receiving trucked water contained less than the recommended 0.2 mg/L of free chlorine, while piped drinking water in Iqaluit complied with Health Canada guidelines for residual chlorine (i.e. >0.2 mg/L free chlorine). Some buildings in the four communities contained manganese (Mn), copper (Cu), iron (Fe) and/or lead (Pb) concentrations above Health Canada guideline values for the aesthetic (Mn, Cu and Fe) and health (Pb) objectives. Corrosion of components of the drinking water distribution system (household storage tanks, premise plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks in buildings and ultimately at the tap.

  19. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances.

    Science.gov (United States)

    Xu, Jianping

    2006-06-01

    Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic

  20. Microbial biosurfactants with their high-value functional properties

    Science.gov (United States)

    Microbial world is a rich source for finding valuable industrial chemicals and ingredients. Specifically, many microbial metabolites are surface-active compounds that can be developed into bio-based surfactants, detergents, and emulsifiers. Techno-economic analyses for the production of bio-based ...

  1. A Workflow to Model Microbial Loadings in Watersheds

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated wit...

  2. Microbial characterization for the Source-Term Waste Test Program (STTP) at Los Alamos

    International Nuclear Information System (INIS)

    Leonard, P.A.; Strietelmeier, B.A.; Pansoy-Hjelvik, M.E.; Villarreal, R.

    1999-01-01

    The effects of microbial activity on the performance of the proposed underground nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico are being studied at Los Alamos National Laboratory (LANL) as part of an ex situ large-scale experiment. Actual actinide-containing waste is being used to predict the effect of potential brine inundation in the repository in the distant future. The study conditions are meant to simulate what might exist should the underground repository be flooded hundreds of years after closure as a result of inadvertent drilling into brine pockets below the repository. The Department of Energy (DOE) selected LANL to conduct the Actinide Source-Term Waste Test Program (STTP) to confirm the predictive capability of computer models being developed at Sandia National Laboratory

  3. Microbial characterization for the Source-Term Waste Test Program (STTP) at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, P.A.; Strietelmeier, B.A.; Pansoy-Hjelvik, M.E.; Villarreal, R.

    1999-04-01

    The effects of microbial activity on the performance of the proposed underground nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico are being studied at Los Alamos National Laboratory (LANL) as part of an ex situ large-scale experiment. Actual actinide-containing waste is being used to predict the effect of potential brine inundation in the repository in the distant future. The study conditions are meant to simulate what might exist should the underground repository be flooded hundreds of years after closure as a result of inadvertent drilling into brine pockets below the repository. The Department of Energy (DOE) selected LANL to conduct the Actinide Source-Term Waste Test Program (STTP) to confirm the predictive capability of computer models being developed at Sandia National Laboratory.

  4. Community Assessment of Natural Food Sources of Vitamin A ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    1997-01-01

    Jan 1, 1997 ... This manual presents a practical step-by-step guide for assessing various aspects of natural food sources of vitamin A within a community and is essential for any research program involved in alleviating vitamin A deficiency.

  5. NATURAL ANTIMICROBIAL AGENT USE IN THE PRESERVATION OF FRUITS AND VEGETABLES

    Directory of Open Access Journals (Sweden)

    Elvia Nereyda Rodríguez Sauceda

    2011-01-01

    Full Text Available Today has been a need to find alternatives of conservation, because it has been associated with consumption of poison chemical preservatives. The demand for minimally processed fresh products is increasing, and interest in natural antimicrobial agents (derived from plants, so now looking for the combination of two or more factors that interact additively or synergistically controlling population microbial, allowing it to fresh produce similar products with less additives, it should be noted that the rate of microbial spoilage depends not only on microorganisms but also the chemical combination of product and type of initial microbial load. That is why the main aim of food processing is to provide comfort to humans through a safe, nutritionally adequate and meet the expectations of taste, aroma and appearance, so the use of natural food additives involves the isolation, purification, stabilization and incorporation of these compounds to food antimicrobial purposes, without adversely affecting the sensory characteristics. In general, every time we discover more plants or parts thereof which contain natural antimicrobials, such as including phenolic compounds from bark, stems, leaves, flowers, organic acids present in fruits and phytoalexins produced in plants, so as will not only safer, but better food quality and type of antimicrobials that are regarded as potentially safer sources.

  6. Characterization of microbial degradation of oxytetracycline in river ...

    African Journals Online (AJOL)

    Characterization of microbial degradation of oxytetracycline in river water and sediment using reversed phase high performance liquid chromatography. ... African Journal of Biotechnology ... The present results have shown that microbial degradation plays a major role in the removal of OTC in natural environments.

  7. Effects of different sources of protein on digestive characteristics, microbial efficiency, and nutrient flow in dairy goats

    Directory of Open Access Journals (Sweden)

    Nivea Regina de Oliveira Felisberto

    2011-10-01

    Full Text Available Diets formulated with protein sources presenting different resistance to ruminal degradation were compared by evaluating ruminal parameters, production and microbial efficiency and nutrients flow to the omasum in goats. Eight rumen cannulated non-lactating, non-pregnant goats were distributed in a 4 × 4 Latin square design with two replicates. Treatments consisted of four diets where different sources of plant protein accounted for the major protein source named soybean meal, source of higher ruminal degradability, and three other sources of higher resistance of degradation: roasted soybean, corn gluten meal, and cottonseed cake. Amounts of rumen protein were similar among rations; however, flows of dry matter, protein and non-fiber carbohydrate to omasum were higher for diets with protein source with reduced rumen degradation rate. Higher values of rumen ammonia were obtained by using ration with soybean meal as major source of protein. Higher values of pH were obtained for rations with roasted soybean e cottonseed cake. Regarding kinetic of transit, similar values were found among rations. Diets with protein sources presenting reduced ruminal degradation increase nutrients flow to the omasum in goats and alter digestive parameters such as pH and ammonia without compromising bacteria growth and efficiency, which grants their use for dairy goats with similar efficiency to rations using more degradable sources of protein.

  8. Batteryless, wireless sensor powered by a sediment microbial fuel cell.

    Science.gov (United States)

    Donovan, Conrad; Dewan, Alim; Heo, Deukhyoun; Beyenal, Haluk

    2008-11-15

    Sediment microbial fuel cells (SMFCs) are considered to be an alternative renewable power source for remote monitoring. There are two main challenges to using SMFCs as power sources: 1) a SMFC produces a low potential at which most sensor electronics do not operate, and 2) a SMFC cannot provide continuous power, so energy from the SMFC must be stored and then used to repower sensor electronics intermittently. In this study, we developed a SMFC and a power management system (PMS) to power a batteryless, wireless sensor. A SMFC operating with a microbial anode and cathode, located in the Palouse River, Pullman, Washington, U.S.A., was used to demonstrate the utility of the developed system. The designed PMS stored microbial energy and then started powering the wireless sensor when the SMFC potential reached 320 mV. It continued powering until the SMFC potential dropped below 52 mV. The system was repowered when the SMFC potential increased to 320 mV, and this repowering continued as long as microbial reactions continued. We demonstrated that a microbial fuel cell with a microbial anode and cathode can be used as an effective renewable power source for remote monitoring using custom-designed electronics.

  9. 2nd Workshop on the Nature of the High-Energy Unidentified Sources

    CERN Document Server

    Cheng, K S; Multiwavelength Approach to Unidentified Gamma-Ray Sources

    2005-01-01

    Nearly one half of the point-like gamma-ray sources detected by EGRET instrument of the late Compton satellite are still defeating our attempts at identifying them. To establish the origin and nature of these enigmatic sources has become a major problem of current high-energy astrophysics. The second workshop on Multiwavelength Approach to Unidentified Gamma-ray Sources intends to shed new and fresh light on the problem of the nature of these mysterious sources and the objects behind them. The proceedings contain 46 contributed papers in this subject, which cover theoretical models on gamma-ray sources as well as the best multiwavelength strategies for the identification of the promising candidates. The topics of this conference also include energetic phenomena ocurring both in galactic and extragalactic scenarios, phenomena that might lead to the appearance of what we have called high-energy unidentified sources. The book will be of interest for all active researchers in the high-energy astrophysics and rela...

  10. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina

    2015-01-08

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  11. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina; Moitinho-Silva, Lucas; Brü mmer, Franz; Cannistraci, Carlo V.; Ravasi, Timothy; Hentschel, Ute

    2015-01-01

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  12. Microbial community functional change during vertebrate carrion decomposition.

    Directory of Open Access Journals (Sweden)

    Jennifer L Pechal

    Full Text Available Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects. Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition.

  13. Task-Modulated Cortical Representations of Natural Sound Source Categories

    DEFF Research Database (Denmark)

    Hjortkjær, Jens; Kassuba, Tanja; Madsen, Kristoffer Hougaard

    2018-01-01

    In everyday sound environments, we recognize sound sources and events by attending to relevant aspects of an acoustic input. Evidence about the cortical mechanisms involved in extracting relevant category information from natural sounds is, however, limited to speech. Here, we used functional MRI...

  14. Anaerobic treatment of palm oil mill effluent in batch reactor with digested biodiesel waste as starter and natural zeolite for microbial immobilization

    Science.gov (United States)

    Setyowati, Paulina Adina Hari; Halim, Lenny; Mellyanawaty, Melly; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2017-05-01

    Palm oil mill effluent (POME) is the wastewater discharged from sludge separation, sterilization, and clarification process of palm oil industries. Each ton of palm oil produces about half ton of high organic load wastewater. Up to now, POME treatment is done in lagoon, leaving major problems in land requirement and greenhouse gasses release. The increasing of palm oil production provokes the urgency of appropriate technology application in treating POME to prevent the greenhouse gasses emission while exploit POME as renewable energy source. The purposes of this study were firstly to test the effectiveness of using the digested biodiesel waste as the inoculum and secondly to evaluate the effectiveness of natural zeolite addition in minimizing the inhibitory effect in digesting POME. It was expected that the oil-degrading bacteria in the inoculum would shorten the adaptation period in digesting POME. Furthermore, the consortium formation of anaerobic bacteria accelerated by natural zeolite powder addition would increase the microbial resistance to the inhibitors contained in the POME. The batch digesters, containing 0 (control); 17; 38; and 63 g natural zeolite/g sCOD substrate were observed for 43 days. The result showed that zeolite addition did not give significant effect on sCOD reduction (97.3-98.6% of initial sCOD). Moreover, addition of immobilization media up to 17 g natural zeolite/g stimulated the acidification and biogas production up to 10% higher than control. The purity of methane produced with various amount of immobilization media did not differ for each variation, i.e. 50-54% v/v methane. The increasing amount of natural zeolite up to 63 g/g sCOD did not significantly enhance biogas product rate nor methane content.

  15. Bacterial synergism in lignocellulose biomass degradation : Complementary roles of degraders as influenced by complexity of the carbon source

    NARCIS (Netherlands)

    Cortes Tolalpa, Larisa; Falcao Salles, Joana; van Elsas, Jan

    2017-01-01

    Lignocellulosic biomass (LCB) is an attractive source of carbon for the production of sugars and other chemicals. Due to its inherent complexity and heterogeneity, efficient biodegradation requires the actions of different types of hydrolytic enzymes. In nature, complex microbial communities that

  16. New microbial source of the antifungal allylamine “Terbinafine”

    Directory of Open Access Journals (Sweden)

    Maged S. Abdel-Kader

    2017-03-01

    Full Text Available The isolated active compound “F12” from the culture media of the Streptomyces sp. KH-F12 was identified using different spectroscopic techniques. Both 1D- and 2D-NMR as well as HRESIMS were utilized to characterize the structure of the isolated compound. ‘F12” was found to be the known systemic antifungal drug terbinafine marketed under the name “Lamisil”. Full analysis of the COSY, HSQC and HMBC enables the full assignment of proton and carbon atoms. Terbinafine is a synthetic allylamine and is reported here for the first time from natural source.

  17. Biotechnological Processes in Microbial Amylase Production.

    Science.gov (United States)

    Gopinath, Subash C B; Anbu, Periasamy; Arshad, M K Md; Lakshmipriya, Thangavel; Voon, Chun Hong; Hashim, Uda; Chinni, Suresh V

    2017-01-01

    Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.

  18. What is microbial community ecology?

    Science.gov (United States)

    Konopka, Allan

    2009-11-01

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property.

  19. MICROBIAL DEGRADATION OF SEVEN AMIDES BY SUSPENDED BACTERIAL POPULATIONS

    Science.gov (United States)

    Microbial transformation rate constants were determined for seven amides in natural pond water. A second-order mathematical rate expression served as the model for describing the microbial transformation. Also investigated was the relationship between the infrared spectra and the...

  20. Tapping the biotechnological potential of insect microbial symbionts: new insecticidal porphyrins.

    Science.gov (United States)

    Martinez, Ana Flávia Canovas; de Almeida, Luís Gustavo; Moraes, Luiz Alberto Beraldo; Cônsoli, Fernando Luís

    2017-06-27

    The demand for sustainable agricultural practices and the limited progress toward newer and safer chemicals for use in pest control maintain the impetus for research and identification of new natural molecules. Natural molecules are preferable to synthetic organic molecules because they are biodegradable, have low toxicity, are often selective and can be applied at low concentrations. Microbes are one source of natural insecticides, and microbial insect symbionts have attracted attention as a source of new bioactive molecules because these microbes are exposed to various selection pressures in their association with insects. Analytical techniques must be used to isolate and characterize new compounds, and sensitive analytical tools such as mass spectrometry and high-resolution chromatography are required to identify the least-abundant molecules. We used classical fermentation techniques combined with tandem mass spectrometry to prospect for insecticidal substances produced by the ant symbiont Streptomyces caniferus. Crude extracts from this bacterium showed low biological activity (less than 10% mortality) against the larval stage of the fall armyworm Spodoptera frugiperda. Because of the complexity of the crude extract, we used fractionation-guided bioassays to investigate if the low toxicity was related to the relative abundance of the active molecule, leading to the isolation of porphyrins as active molecules. Porphyrins are a class of photoactive molecules with a broad range of bioactivity, including insecticidal. The active fraction, containing a mixture of porphyrins, induced up to 100% larval mortality (LD 50  = 37.7 μg.cm -2 ). Tandem mass-spectrometry analyses provided structural information for two new porphyrin structures. Data on the availability of porphyrins in 67 other crude extracts of ant ectosymbionts were also obtained with ion-monitoring experiments. Insect-associated bacterial symbionts are a rich source of bioactive compounds. Exploring

  1. Marine actinobacteria: an important source of bioactive natural products.

    Science.gov (United States)

    Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon

    2014-07-01

    Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The potential for microbial life in a Canadian high-level nuclear fuel waste disposal vault

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.

    1989-12-01

    Recent studies have concluded that microbial contamination of a nuclear fuel waste disposal vault is inevitable. Factors that will affect the development of substantial population of micro-organisms include: physiological tolerance of microbes; fluid movement in a vault; availability of nutrients; and availability of energy sources. It is difficult to resolve whether microbial growth will either positively or negatively affect the performance of a vault. One of the necessary steps towards ultimately answering this question is to assess the potential for microbial growth in a disposal vault, based on a nutrient and energy budget. This report gives a quantitative (but conservative) inventory of nutrients and potential energy sources present in a Canadian nuclear fuel waste vault, which hypothetically could support the growth of micro-organisms. Maximum population densities are calculated based on these inventories and assuming that all conditions for microbial growth are optimal, although this will certainly not be the case. Laboratory studies under the vault-relevant conditions are being performed to put realistic boundaries on the calculated numbers. Initial results from these studies, combined with data from a natural analogue site indicate that the calculated population densities could be overestimated by four to five orders of magnitude. Limited data show no effect of the presence of microbes on the transport of Tc, I, and Sr in backfill sand columns. Additional work is needed to address transport effects on buffer and backfill clay columns

  3. Artificial intelligence methods applied for quantitative analysis of natural radioactive sources

    International Nuclear Information System (INIS)

    Medhat, M.E.

    2012-01-01

    Highlights: ► Basic description of artificial neural networks. ► Natural gamma ray sources and problem of detections. ► Application of neural network for peak detection and activity determination. - Abstract: Artificial neural network (ANN) represents one of artificial intelligence methods in the field of modeling and uncertainty in different applications. The objective of the proposed work was focused to apply ANN to identify isotopes and to predict uncertainties of their activities of some natural radioactive sources. The method was tested for analyzing gamma-ray spectra emitted from natural radionuclides in soil samples detected by a high-resolution gamma-ray spectrometry based on HPGe (high purity germanium). The principle of the suggested method is described, including, relevant input parameters definition, input data scaling and networks training. It is clear that there is satisfactory agreement between obtained and predicted results using neural network.

  4. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  5. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  6. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles

    Science.gov (United States)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge

    2010-05-01

    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  7. Design and construction of synthetic microbial consortia in China

    Directory of Open Access Journals (Sweden)

    Ming-Zhu Ding

    2016-12-01

    Full Text Available The rapid development of synthetic biology enables the design, construction and optimization of synthetic microbial consortia to achieve specific functions. In China, the “973” project-“Design and Construction of Microbial Consortia” was funded by the National Basic Research Program of China in January 2014. It was proposed to address the fundamental challenges in engineering natural microbial consortia and reconstructing microbial consortia to meet industrial demands. In this review, we will introduce this “973” project, including the significance of microbial consortia, the fundamental scientific issues, the recent research progresses, and some case studies about synthetic microbial consortia in the past two and a half years.

  8. A Workflow to Model Microbial Loadings in Watersheds (proceedings)

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated wit...

  9. Observational constraints on the physical nature of submillimetre source multiplicity: chance projections are common

    Science.gov (United States)

    Hayward, Christopher C.; Chapman, Scott C.; Steidel, Charles C.; Golob, Anneya; Casey, Caitlin M.; Smith, Daniel J. B.; Zitrin, Adi; Blain, Andrew W.; Bremer, Malcolm N.; Chen, Chian-Chou; Coppin, Kristen E. K.; Farrah, Duncan; Ibar, Eduardo; Michałowski, Michał J.; Sawicki, Marcin; Scott, Douglas; van der Werf, Paul; Fazio, Giovanni G.; Geach, James E.; Gurwell, Mark; Petitpas, Glen; Wilner, David J.

    2018-05-01

    Interferometric observations have demonstrated that a significant fraction of single-dish submillimetre (submm) sources are blends of multiple submm galaxies (SMGs), but the nature of this multiplicity, i.e. whether the galaxies are physically associated or chance projections, has not been determined. We performed spectroscopy of 11 SMGs in six multicomponent submm sources, obtaining spectroscopic redshifts for nine of them. For an additional two component SMGs, we detected continuum emission but no obvious features. We supplement our observed sources with four single-dish submm sources from the literature. This sample allows us to statistically constrain the physical nature of single-dish submm source multiplicity for the first time. In three (3/7, { or} 43^{+39 }_{ -33} {per cent at 95 {per cent} confidence}) of the single-dish sources for which the nature of the blending is unambiguous, the components for which spectroscopic redshifts are available are physically associated, whereas 4/7 (57^{+33 }_{ -39} per cent) have at least one unassociated component. When components whose spectra exhibit continuum but no features and for which the photometric redshift is significantly different from the spectroscopic redshift of the other component are also considered, 6/9 (67^{+26 }_{ -37} per cent) of the single-dish sources are comprised of at least one unassociated component SMG. The nature of the multiplicity of one single-dish source is ambiguous. We conclude that physically associated systems and chance projections both contribute to the multicomponent single-dish submm source population. This result contradicts the conventional wisdom that bright submm sources are solely a result of merger-induced starbursts, as blending of unassociated galaxies is also important.

  10. Cell immobilization for production of lactic acid biofilms do it naturally.

    Science.gov (United States)

    Dagher, Suzanne F; Ragout, Alicia L; Siñeriz, Faustino; Bruno-Bárcena, José M

    2010-01-01

    Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef.

    Science.gov (United States)

    Marcelino, Vanessa Rossetto; Morrow, Kathleen M; van Oppen, Madeleine J H; Bourne, David G; Verbruggen, Heroen

    2017-10-01

    The health and functioning of reef-building corals is dependent on a balanced association with prokaryotic and eukaryotic microbes. The coral skeleton harbours numerous endolithic microbes, but their diversity, ecological roles and responses to environmental stress, including ocean acidification (OA), are not well characterized. This study tests whether pH affects the diversity and structure of prokaryotic and eukaryotic algal communities associated with skeletons of Porites spp. using targeted amplicon (16S rRNA gene, UPA and tufA) sequencing. We found that the composition of endolithic communities in the massive coral Porites spp. inhabiting a naturally high pCO 2 reef (avg. pCO 2 811 μatm) is not significantly different from corals inhabiting reference sites (avg. pCO 2 357 μatm), suggesting that these microbiomes are less disturbed by OA than previously thought. Possible explanations may be that the endolithic microhabitat is highly homeostatic or that the endolithic micro-organisms are well adapted to a wide pH range. Some of the microbial taxa identified include nitrogen-fixing bacteria (Rhizobiales and cyanobacteria), algicidal bacteria in the phylum Bacteroidetes, symbiotic bacteria in the family Endozoicomoniaceae, and endolithic green algae, considered the major microbial agent of reef bioerosion. Additionally, we test whether host species has an effect on the endolithic community structure. We show that the endolithic community of massive Porites spp. is substantially different and more diverse than that found in skeletons of the branching species Seriatopora hystrix and Pocillopora damicornis. This study reveals highly diverse and structured microbial communities in Porites spp. skeletons that are possibly resilient to OA. © 2017 John Wiley & Sons Ltd.

  12. Influence of organic carbon sources and isotope exchange processes between water and nitrate on the fractionation of the stable isotopes 15N/14N and 18O/16O in dissolved nitrate during microbial dentrification in groundwater

    International Nuclear Information System (INIS)

    Wunderlich, Anja A.L.

    2012-01-01

    Stable isotopes of nitrate are commonly used to determine sources and degradation of nitrate. In this study, nitrite oxidizing bacteria were found to promote an oxygen isotope exchange between water and nitrate under anoxic conditions. Also, different carbon sources were found to influence the enrichment of stable isotopes in nitrate during microbial denitrification. Both results refine the stable isotope model of nitrate in respect to nitrate source determination and microbial nitrate reduction.

  13. [Mineral waters from several Brazilian natural sources].

    Science.gov (United States)

    Rebelo, M A; Araujo, N C

    1999-01-01

    To divulge information on the chemical composition and physical-chemical features of some mineral waters from Brazilian natural sources that will be of useful protocol investigation and patient advice. The survey was based on bottle labels of non-gaseous mineral waters commercially available in the city of Rio de Janeiro. The íon concentration of each mineral was calculated from the salt content. 36 springs were enralled from different states of the country. The pH (25 degrees C), 4.1 to 9.3, varied on dependence of the source and it was linearey correlated with the cations calcium, magnesium and sodium and the anion bicarbonate. It was atributed to high alkalinity (about 70% of bicarbonate in the molecula-gram) of these salts. The calcium (0.3 to 42 mg/l), magnesium (0.0 to 18 mg/l) and bicarbonate (4 to 228 mg/l) contents are relatively low. The mineral content of the Brazilian springs enrolled in this survey is low; about 70% of the sources having calcium and magnesium less than 10 mg/l and 1.0 mg/l, respectively, similar to local tap water.

  14. Microbial ecology of denitrification in biological wastewater treatment.

    Science.gov (United States)

    Lu, Huijie; Chandran, Kartik; Stensel, David

    2014-11-01

    Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters

    KAUST Repository

    Kiely, Patrick D.; Cusick, Roland; Call, Douglas F.; Selembo, Priscilla A.; Regan, John M.; Logan, Bruce E.

    2011-01-01

    Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current. © 2010 Elsevier Ltd.

  16. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie

    2015-01-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses, with or with...... of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.......Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses....... The microbial growth caused changes in the crude oil–brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil–brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition...

  17. Literature: A Natural Source for Teaching English in ESL/ EFL Classrooms

    Directory of Open Access Journals (Sweden)

    Muhammed Ali Chalikendy

    2015-11-01

    Full Text Available This paper explores the ways in which literature function as a source and as a meaningful context for teaching and learning English as a second language or foreign language. It claims that literature is an authentic, stimulating and appealing material to the learners. Therefore, it encourages interaction, promotes language development and motivates learners in the process of learning. Traditionally it is taught as an academic subject without considering its potential in ESL/EFL classrooms. The paper argues that literature can be used as an effective source for teaching English language and the target culture; furthermore, it is used as a natural context for integrating language skills and systems. This paper demonstrates how a poem is used as a natural source or a material for developing English language and integrating the four language skills, grammar and vocabulary through communicative tasks and activities.

  18. Contamination with uranium from natural and anthropological sources

    International Nuclear Information System (INIS)

    Todorov, Peter Todorov; Ilieva, Elica Nikolova

    2005-01-01

    Our world is radioactive and always was since it was created. Radioactive elements are often called radioactive isotopes or radionuclides. Radionuclides are found in the environment as naturally occurring elements and as products or byproducts of nuclear technologies. One of the most common radionuclides is Uranium (U). U with atomic number of 92 is the heaviest known natural element. All U isotopes are radioactive. So it is very important their quantity to be under control. Natural U is used in the generation of nuclear fuel. U - 235 is one of two fissile materials used for the production of nuclear weapons and in some nuclear reactors as a source of energy. Because of its use in the fission process U is found in large quantities in stored nuclear waste. Other important source of U to the environment was the nuclear weapon tests, especially during the second half of 20th century. Artificial radionuclides may also be released into the environment from non - nuclear cycle activities in industry and research and from usage in diagnostic and therapeutic medicine. Erosion of agricultural soils may input the 238 U decay radionuclides into drinking water supplies in areas with heavy fertilizer usage. The most common routes of U contamination are through handling, ingesting and inhaling. Inhaling and ingesting increase the risk of lung and bone cancer. U is also chemically toxic at high concentrations. U may also affect reproductive organs and the foetus, and may increase the risk of leukemia and soft tissue cancer. (authors)

  19. Microbial production strategies and applications of lycopene and other terpenoids.

    Science.gov (United States)

    Ma, Tian; Deng, Zixin; Liu, Tiangang

    2016-01-01

    Terpenoids are a large class of compounds that have far-reaching applications and economic value, particularly those most commonly found in plants; however, the extraction and synthesis of these compounds is often expensive and technically challenging. Recent advances in microbial metabolic engineering comprise a breakthrough that may enable the efficient, cost-effective production of these limited natural resources. Via the engineering of safe, industrial microorganisms that encode product-specific enzymes, and even entire metabolic pathways of interest, microbial-derived semisynthetic terpenoids may soon replace plant-derived terpenoids as the primary source of these valuable compounds. Indeed, the recent metabolic engineering of an Escherichia coli strain that produces the precursor to lycopene, a commercially and medically important compound, with higher yields than those in tomato plants serves as a successful example. Here, we review the recent developments in the metabolic engineering of microbes for the production of certain terpenoid compounds, particularly lycopene, which has been increasingly used in pharmaceuticals, nutritional supplements, and cosmetics. Furthermore, we summarize the metabolic engineering strategies used to achieve successful microbial production of some similar compounds. Based on this overview, there is a reason to believe that metabolic engineering comprises an optimal approach for increasing the production of lycopene and other terpenoids.

  20. Invasion by Cordgrass Increases Microbial Diversity and Alters Community Composition in a Mangrove Nature Reserve

    Directory of Open Access Journals (Sweden)

    Min Liu

    2017-12-01

    Full Text Available Invasion by exotic plant species can alter ecosystem function and reduce native plant diversity, but relatively little is known about their effects on belowground microbial communities. Here we investigated the effects of exotic cordgrass (Spartina alterniflora invasion on the distribution of soil bacterial communities in a mangrove nature reserve of the Jiulong River Estuary, southeast China using high-throughput sequencing of 16S rRNA gene and multivariate statistical analysis. Our results showed that S. alterniflora invasion altered soil properties, and significantly increased soil bacterial taxa richness, primarily by stimulating an increase in conditionally rare or rare taxa, and changes in community composition and function. Abundant, conditionally rare and rare subcommunities exhibited similar response patterns to environment changes, with both conditionally rare and rare taxa showing a stronger response than abundant ones. Habitat generalists were detected among abundant, conditionally rare and rare taxa, whereas habitat specialists were only identified among conditionally rare taxa and rare taxa. In addition, we found that vegetation was the key factor driving these patterns. However, our comparative analysis indicated that both environmental selection, and neutral process, significantly contributed to soil bacterial community assembly. These results could improve the understanding of the microbial processes and mechanisms of cordgrass invasion, and offer empirical data of use in the restoration and management of the mangrove wetlands.

  1. Biotechnological Processes in Microbial Amylase Production

    Directory of Open Access Journals (Sweden)

    Subash C. B. Gopinath

    2017-01-01

    Full Text Available Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi amylase is discussed along with its production methods from the laboratory to industrial scales.

  2. Kisameet Glacial Clay: an Unexpected Source of Bacterial Diversity.

    Science.gov (United States)

    Svensson, Sarah L; Behroozian, Shekooh; Xu, Wanjing; Surette, Michael G; Li, Loretta; Davies, Julian

    2017-05-23

    Widespread antibiotic resistance among bacterial pathogens is providing the impetus to explore novel sources of antimicrobial agents. Recently, the potent antibacterial activity of certain clay minerals has stimulated scientific interest in these materials. One such example is Kisameet glacial clay (KC), an antibacterial clay from a deposit on the central coast of British Columbia, Canada. However, our understanding of the active principles of these complex natural substances is incomplete. Like soils, clays may possess complex mixtures of bacterial taxa, including the Actinobacteria , a clade known to be rich in antibiotic-producing organisms. Here, we present the first characterization of both the microbial and geochemical characteristics of a glacial clay deposit. KC harbors surprising bacterial species richness, with at least three distinct community types. We show that the deposit has clines of inorganic elements that can be leached by pH, which may be drivers of community structure. We also note the prevalence of Gallionellaceae in samples recovered near the surface, as well as taxa that include medically or economically important bacteria such as Actinomycetes and Paenibacillus These results provide insight into the microbial taxa that may be the source of KC antibacterial activity and suggest that natural clays may be rich sources of microbial and molecular diversity. IMPORTANCE Identifying and characterizing the resident microbial populations (bacteria, viruses, protozoa, and fungi) is key to understanding the ecology, chemistry, and homeostasis of virtually all sites on Earth. The Kisameet Bay deposit in British Columbia, Canada, holds a novel glacial clay with a history of medicinal use by local indigenous people. We previously showed that it has potent activity against a variety of antibiotic-resistant bacteria, suggesting it could complement our dwindling arsenal of antibiotics. Here, we have characterized the microbiome of this deposit to gain insight

  3. Inferring energy sources in constructed wetlands through stable isotope analysis of microbial biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Jurkowski, K.; Ciborowski, J. [Windsor Univ., ON (Canada); Daly, C. [Suncor Energy, Fort McMurray, AB (Canada)

    2010-07-01

    This study presented a novel method of sequestering the microbial biofilm in constructed wetland ecosystems. Artificial substrates were fixed within 8 wetlands differing in age and construction materials over a 2 year period at oil sands lease sites in northeastern Alberta. Autotrophic and heterotrophic biofilm samples were collected from both the subsurface and epibenthic zones of the pipe surfaces of each submerged substrate assembly. A mixing model of d13C, d15N and d34S isotopic signatures was used to assess the contribution of 4 potential nutrient sources of the biofilm. Samples included dominant living and senescent emergent as well as submergent macrophytes, particulate organic matter, dissolved organic carbon, and invertebrates. The samples were collected to compare the biofilm signatures of each wetland in relation to the heterotrophic processes caused by the assimilation of oil sands-derived hydrocarbons and autochthonous detrital pools.

  4. Inferring energy sources in constructed wetlands through stable isotope analysis of microbial biofilms

    International Nuclear Information System (INIS)

    Jurkowski, K.; Ciborowski, J.; Daly, C.

    2010-01-01

    This study presented a novel method of sequestering the microbial biofilm in constructed wetland ecosystems. Artificial substrates were fixed within 8 wetlands differing in age and construction materials over a 2 year period at oil sands lease sites in northeastern Alberta. Autotrophic and heterotrophic biofilm samples were collected from both the subsurface and epibenthic zones of the pipe surfaces of each submerged substrate assembly. A mixing model of d13C, d15N and d34S isotopic signatures was used to assess the contribution of 4 potential nutrient sources of the biofilm. Samples included dominant living and senescent emergent as well as submergent macrophytes, particulate organic matter, dissolved organic carbon, and invertebrates. The samples were collected to compare the biofilm signatures of each wetland in relation to the heterotrophic processes caused by the assimilation of oil sands-derived hydrocarbons and autochthonous detrital pools.

  5. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds.

    Science.gov (United States)

    Schempp, Florence M; Drummond, Laura; Buchhaupt, Markus; Schrader, Jens

    2018-03-14

    Terpenoid flavor and fragrance compounds are of high interest to the aroma industry. Microbial production offers an alternative sustainable access to the desired terpenoids independent of natural sources. Genetically engineered microorganisms can be used to synthesize terpenoids from cheap and renewable resources. Due to its modular architecture, terpenoid biosynthesis is especially well suited for the microbial cell factory concept: a platform host engineered for a high flux toward the central C 5 prenyl diphosphate precursors enables the production of a broad range of target terpenoids just by varying the pathway modules converting the C 5 intermediates to the product of interest. In this review typical terpenoid flavor and fragrance compounds marketed or under development by biotech and aroma companies are given, and the specificities of the aroma market are discussed. The main part of this work focuses on key strategies and recent advances to engineer microbes to become efficient terpenoid producers.

  6. Gammarus-Microbial Interactions: A Review

    Directory of Open Access Journals (Sweden)

    Daniel Nelson

    2011-01-01

    Full Text Available Gammarus spp. are typically classified as shredders under the functional feeding group classification. In the wild and in the laboratory, Gammarus spp. will often shred leaves, breaking them down into finer organic matter fractions. However, leaf litter is a poor quality food source (i.e., high C : N and C : P ratios and very little leaf material is assimilated by shredders. In freshwater habitats leaf litter is colonized rapidly (within ∼1-2 weeks by aquatic fungi and bacteria, making the leaves more palatable and nutritious to consumers. Several studies have shown that Gammarus spp. show preference for conditioned leaves over nonconditioned leaves and certain fungal species to others. Furthermore, Gammarus spp. show increased survival and growth rates when fed conditioned leaves compared to non-conditioned leaves. Thus, Gammarus spp. appear to rely on the microbial biofilm associated with leaf detritus as a source of carbon and/or essential nutrients. Also, Gammarus spp. can have both positive and negative effects on the microbial communities on which they fed, making them an important component of the microbial loop in aquatic ecosystems.

  7. Isolation and Screening of Lipase Producing Microorganisms from Natural Sources

    Czech Academy of Sciences Publication Activity Database

    Singh, M. G.; Chandraveer, C.; Tripathi, Abishek

    2017-01-01

    Roč. 44, č. 1 (2017), s. 19-23 ISSN 0304-5250 Institutional support: RVO:67179843 Keywords : lipase assay * natural sources * screening * submerged fermentation Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7)

  8. Microbial interactions involving sulfur bacteria : implications for the ecology and evolution of bacterial communities

    NARCIS (Netherlands)

    Overmann, J; van Gemerden, H

    2000-01-01

    A major goal of microbial ecology is the identification and characterization of those microorganisms which govern transformations in natural ecosystems. This review summarizes our present knowledge of microbial interactions in the natural sulfur cycle. Central to the discussion is the recent

  9. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms

    Directory of Open Access Journals (Sweden)

    Varese Giovanna C

    2010-02-01

    Full Text Available Abstract Background The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure via enrichment (i.e., serial growth transfers on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. Results In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms on Diesel (G1 and HiQ Diesel (G2, respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30°C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20°C for several months. Conclusions ENZ-G1 and ENZ-G2 are very similar highly enriched consortia

  10. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms.

    Science.gov (United States)

    Zanaroli, Giulio; Di Toro, Sara; Todaro, Daniela; Varese, Giovanna C; Bertolotto, Antonio; Fava, Fabio

    2010-02-16

    The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation) is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure) via enrichment (i.e., serial growth transfers) on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures) of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms) on Diesel (G1) and HiQ Diesel (G2), respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30 degrees C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20 degrees C for several months. ENZ-G1 and ENZ-G2 are very similar highly enriched consortia of bacteria and a fungus capable of

  11. Microbial electrosynthesis of biochemicals

    NARCIS (Netherlands)

    Bajracharya, S.

    2016-01-01

    Microbial electrosynthesis (MES) is an electricity-driven production of chemicals from low-value waste using microorganisms as biocatalysts. MES from CO2 comprises conversion of CO2 to multi-carbon compounds employing microbes at the cathode which use electricity as an energy source. This thesis

  12. Spatial Autocorrelation, Source Water and the Distribution of Total and Viable Microbial Abundances within a Crystalline Formation to a Depth of 800 m

    Directory of Open Access Journals (Sweden)

    E. D. Beaton

    2017-09-01

    Full Text Available Proposed radioactive waste repositories require long residence times within deep geological settings for which we have little knowledge of local or regional subsurface dynamics that could affect the transport of hazardous species over the period of radioactive decay. Given the role of microbial processes on element speciation and transport, knowledge and understanding of local microbial ecology within geological formations being considered as host formations can aid predictions for long term safety. In this relatively unexplored environment, sampling opportunities are few and opportunistic. We combined the data collected for geochemistry and microbial abundances from multiple sampling opportunities from within a proposed host formation and performed multivariate mixing and mass balance (M3 modeling, spatial analysis and generalized linear modeling to address whether recharge can explain how subsurface communities assemble within fracture water obtained from multiple saturated fractures accessed by boreholes drilled into the crystalline formation underlying the Chalk River Laboratories site (Deep River, ON, Canada. We found that three possible source waters, each of meteoric origin, explained 97% of the samples, these are: modern recharge, recharge from the period of the Laurentide ice sheet retreat (ca. ∼12000 years before present and a putative saline source assigned as Champlain Sea (also ca. 12000 years before present. The distributed microbial abundances and geochemistry provide a conceptual model of two distinct regions within the subsurface associated with bicarbonate – used as a proxy for modern recharge – and manganese; these regions occur at depths relevant to a proposed repository within the formation. At the scale of sampling, the associated spatial autocorrelation means that abundances linked with geochemistry were not unambiguously discerned, although fine scale Moran’s eigenvector map (MEM coefficients were correlated with

  13. Microbial growth in Acrocomia aculeata pulp oil, Jatropha curcas oil, and their respective biodiesels under simulated storage conditions

    Directory of Open Access Journals (Sweden)

    Juciana Clarice Cazarolli

    2016-12-01

    Full Text Available With increasing demands for biodiesel in Brazil, diverse oil feedstocks have been investigated for their potentials for biodiesel production. Due to the high biodegradability of natural oils and their respective biodiesels, microbial growths and consequent deterioration of final product quality are generally observed during storage. This study was aimed at evaluating the susceptibility of Acrocomia aculeata pulp oil and Jatropha curcas oil as well as their respective biodiesels to biodeterioration during a simulated storage period. The experiment was conducted in microcosms containing oil/biodiesel and an aqueous phase over 30 d. The levels of microbial contamination included biodiesel and oil as received, inoculated with fungi, and sterile. Samples were collected every 7 d to measure pH, surface tension, acidity index, and microbial biomass. The initial and final ester contents of the biodiesels were also determined by gas chromatography. The major microbial biomass was detected in A. aculeata pulp and J. curcas biodiesels. Significant reductions in pH values were observed for treatments with A. aculeata pulp biodiesel as a carbon source (p

  14. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.; Sutula, Martha; Caron, David A.; Chao, Yi; Farrara, John D.; Frenzel, Hartmut; Jones, Burton; Robertson, George; McLaughlin, Karen; Sengupta, Ashmita

    2014-01-01

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  15. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.

    2014-01-26

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  16. Abiogenic and Microbial Controls on Volatile Fatty Acids in Precambrian Crustal Fracture Waters

    Science.gov (United States)

    McDermott, J. M.; Heuer, V.; Tille, S.; Moran, J.; Slater, G.; Sutcliffe, C. N.; Glein, C. R.; Hinrichs, K. U.; Sherwood Lollar, B.

    2015-12-01

    Saline fracture waters within the Precambrian Shield rocks of Canada and South Africa have been sequestered underground over geologic timescales up to 1.1-1.8 Ga [1, 2]. These fluids are rich in H2 derived from radiolysis and hydration of mafic and ultramafic rocks [1, 2, 3] and host a low-biomass, low-diversity microbial ecosystem at some sites [2]. The abiogenic or biogenic nature of geochemical processes has important implications for bioavailable carbon sources and the role played by abiotic organic synthesis in sustaining a chemosynthetic deep biosphere. Volatile fatty acids (VFAs) are simple carboxylic acids that may support microbial communities in such environments, such as those found in terrestrial [4] and deep-sea [5] hot springs. We present abundance and δ13C analysis for VFAs in a spectrum of Canadian Shield fluids characterized by varying dissolved H2, CH4, and C2+ n-alkane compositions. Isotope mass balance indicates that microbially mediated fermentation of carbon-rich graphitic sulfides may produce the elevated levels of acetate (39-273 μM) found in Birchtree and Thompson mine. In contrast, thermodynamic considerations and isotopic signatures of the notably higher acetate (1.2-1.9 mM), as well as formate and propionate abundances (371-816 μM and 20-38 μM, respectively) found at Kidd Creek mine suggest a role for abiogenic production via reduction of dissolved inorganic carbon with H2 for formate, and oxidation of C2+ n-alkanes for acetate and propionate, along with possible microbial cycling. VFAs comprise the bulk of dissolved and total organic carbon in the mines surveyed, and as such represent a potential key substrate for life. [1] Holland et al. (2013) Nature 497: 367-360. [2] Lin et al. (2006) Science 314: 479-482. [3] Sherwood Lollar et al. (2014) Nature 516: 379-382. [4] Windman et al. (2007) Astrobiology 7(6): 873-890. [5] Lang et al. (2010) Geochim. Cosmochim. Acta 92: 82-99.

  17. Microbial ecology and genomics: A crossroads of opportunity

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, David A. [University of Washington; Tiedje, James M. [Michigan State University

    2002-08-30

    Microbes have dominated life on Earth for most of its 4.5 billionyear history. They are the foundation of the biosphere, controlling the biogeochemical cycles and affecting geology, hydrology, and local and global climates. All life is completely dependent upon them. Humans cannot survive without the rich diversity of microbes, but most microbial species can survive without humans. Extraordinary advances in molecular technology have fostered an explosion of information in microbial biology. It is now known that microbial species in culture poorly represent their natural diversity—which dwarfs conventions established for the visible world. This was revealed over the last decade using newer molecular tools to explore environmental diversity and has sparked an explosive growth in microbial ecology and technologies that may profit from the bounty of natural biochemical diversity. Several colloquia and meetings have helped formulate policy recommendations to enable sustained research programs in these areas. One such colloquium organized by the American Academy of Microbiology (“The Microbial World: Foundation of the Biosphere,” 1997) made two key recommendations: (1) develop a more complete inventory of living organisms and the interagency cooperation needed to accomplish this goal, and (2) develop strategies to harvest this remarkable biological diversity for the benefit of science, technology, and society. Complete genome sequence information was identified as an essential part of strategy development, and the recommendation was made to sequence the genome of at least one species of each of the major divisions of microbial life.

  18. Energy, ecology and the distribution of microbial life.

    Science.gov (United States)

    Macalady, Jennifer L; Hamilton, Trinity L; Grettenberger, Christen L; Jones, Daniel S; Tsao, Leah E; Burgos, William D

    2013-07-19

    Mechanisms that govern the coexistence of multiple biological species have been studied intensively by ecologists since the turn of the nineteenth century. Microbial ecologists in the meantime have faced many fundamental challenges, such as the lack of an ecologically coherent species definition, lack of adequate methods for evaluating population sizes and community composition in nature, and enormous taxonomic and functional diversity. The accessibility of powerful, culture-independent molecular microbiology methods offers an opportunity to close the gap between microbial science and the main stream of ecological theory, with the promise of new insights and tools needed to meet the grand challenges humans face as planetary engineers and galactic explorers. We focus specifically on resources related to energy metabolism because of their direct links to elemental cycling in the Earth's history, engineering applications and astrobiology. To what extent does the availability of energy resources structure microbial communities in nature? Our recent work on sulfur- and iron-oxidizing autotrophs suggests that apparently subtle variations in the concentration ratios of external electron donors and acceptors select for different microbial populations. We show that quantitative knowledge of microbial energy niches (population-specific patterns of energy resource use) can be used to predict variations in the abundance of specific taxa in microbial communities. Furthermore, we propose that resource ratio theory applied to micro-organisms will provide a useful framework for identifying how environmental communities are organized in space and time.

  19. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Science.gov (United States)

    2010-04-01

    ... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production... concerning natural gas as the primary energy source for qualifying small power production facilities. For purposes of deciding whether natural gas may be considered as waste as the primary energy source pursuant...

  20. Laying hens behave differently in artificially and naturally sourced ammoniated environments.

    Science.gov (United States)

    Pokharel, B B; Dos Santos, V M; Wood, D; Van Heyst, B; Harlander-Matauschek, A

    2017-12-01

    Laying hens are chronically exposed to high levels of ammonia (NH3), one of the most abundant aerial pollutants in poultry houses. Tests for aversion to NH3 in laying hens have used artificially sourced NH3/air mixtures (i.e., from a gas cylinder) showing that birds prefer fresh air to NH3. However, artificially sourced NH3/air mixtures may not accurately reflect barn air conditions, where manure emits a variety of gases. Herein, we investigated whether laying hens differentiate between artificially and naturally sourced NH3/air mixtures and how exposure to NH3 affects foraging and aversive behavior. A total of 20 laying hens was exposed to artificially sourced [A] (from an anhydrous NH3 cylinder) and naturally sourced [N] (from conspecific laying hen excreta) gas mixtures. Hens were exposed to A and N mixtures with NH3 concentrations of 25 and 45 ppm, as well as fresh air [FA]. During the experiment, all birds were exposed to each treatment 3 times using a custom-built polycarbonate chamber, containing a foraging area (containing raisins, mealworms, and feed mix) and a gas delivery system. All testing sessions were video recorded, analyzed with INTERACT® software, and subjected to a GLIMMIX procedure in SAS. Our results showed that the laying hens spent less time foraging overall (P hens were more likely to forage for a longer time (with fewer interruptions) in N than in A treatments (P hens also reacted with greater aversion towards treatment A compared to treatment N (P hens of our study preferred fresh to ammoniated air and that they behaved differently in artificially and naturally sourced NH3/air mixtures, possibly due to the presence of familiar stimuli from the excreta. These findings have implications for new developments in methodological approaches for behavioral testing and for recommendations regarding NH3 levels inside poultry barns. © 2017 Poultry Science Association Inc.

  1. Microbial production of antioxidant food ingredients via metabolic engineering.

    Science.gov (United States)

    Lin, Yuheng; Jain, Rachit; Yan, Yajun

    2014-04-01

    Antioxidants are biological molecules with the ability to protect vital metabolites from harmful oxidation. Due to this fascinating role, their beneficial effects on human health are of paramount importance. Traditional approaches using solvent-based extraction from food/non-food sources and chemical synthesis are often expensive, exhaustive, and detrimental to the environment. With the advent of metabolic engineering tools, the successful reconstitution of heterologous pathways in Escherichia coli and other microorganisms provides a more exciting and amenable alternative to meet the increasing demand of natural antioxidants. In this review, we elucidate the recent progress in metabolic engineering efforts for the microbial production of antioxidant food ingredients - polyphenols, carotenoids, and antioxidant vitamins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Use of Growing Cells of Pseudomonas aeruginosa for Synthesis of the Natural Vanillin via Conversion of Isoeugenol

    OpenAIRE

    Ashengroph, Morahem; Nahvi, Iraj; Zarkesh-Esfahani, Hamid; Momenbeik, Fariborz

    2011-01-01

    The great demand of people for consumption of natural additives resulted in producing natural vanillin. There are plant sources and chemical procedures for vanillin production but microbial bioconversions are being sought as a suitable alternative. In the present work, the ability to produce vanillin from isoeugenol was screened using growing cultures of various bacteria. Among the 56 strains of bacteria isolated from the soil environments of Iran, a Gram-negative rod designated as strain ISP...

  3. ANTI-MICROBIAL AND ANTI-AMOEBIC ACTIVITY SOME AZOMETHINES - POTENTIAL TEXTILE DYESTUFFS

    Directory of Open Access Journals (Sweden)

    DJORDJEVIC Dragan

    2016-05-01

    Full Text Available In this paper, new synthesized three azomethine derivatives applied in dyeing textiles checking the anti-microbial properties of active components, at the same time [1-3]. The emphasis is thrown on the verification of anti-microbial properties that are important for obtaining textile with significantly improved performance. All compounds were characterized and evaluated for their anti-microbial activity against 7 pathogenic bacteria, 1 parasitic protozoan and 1 fungus. It estimated anti-bacterial activity in vitro against the following microorganisms Staphylococcus aureus, Bacillus anthracis, Streptococcus faecalis, Enterobacter sp., Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, and Candida albicans. The anti-amoebic activity in vitro was evaluated against the HM1: IMSS strain of Entamoeba histolytica and the results were compared with the standard drug, metronidazole. The synthesized azomethines, showed very good substantivity for wool fibers, gave fine coloring, with good degree of exhaustion after dyeing. The combination of extended synthetic analogues of natural molecules leads to discovery of chemical entities which might be excellent anti-microbial and anti-amoebic compounds as depicted in our results. Being highly the effects this compound can be explored in future as an option for decreasing pathogenic potential of infecting from different sources. Azomethines containing hydrazone (dyestuff 1 and phenylhydrazone (dyestuff 2 as moiety show average yield and moderate inhibition activity while azomethines containing thiosemicarbazone (dyestuff 3 as moiety show higher yield and greater inhibition activity towards gram-negative and gram-positive bacteria as well as a fungus.

  4. Bioconversion of natural gas to liquid fuel: opportunities and challenges.

    Science.gov (United States)

    Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T

    2014-01-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Microbial diversity arising from thermodynamic constraints

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  6. Microbial diversity arising from thermodynamic constraints.

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-11-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments.

  7. Elucidating Microbial Adaptation Dynamics via Autonomous Exposure and Sampling

    Science.gov (United States)

    Grace, Joseph M.; Verseux, Cyprien; Gentry, Diana; Moffet, Amy; Thayabaran, Ramanen; Wong, Nathan; Rothschild, Lynn

    2013-01-01

    The adaptation of micro-organisms to their environments is a complex process of interaction between the pressures of the environment and of competition. Reducing this multifactorial process to environmental exposure in the laboratory is a common tool for elucidating individual mechanisms of evolution, such as mutation rates. Although such studies inform fundamental questions about the way adaptation and even speciation occur, they are often limited by labor-intensive manual techniques. Current methods for controlled study of microbial adaptation limit the length of time, the depth of collected data, and the breadth of applied environmental conditions. Small idiosyncrasies in manual techniques can have large effects on outcomes; for example, there are significant variations in induced radiation resistances following similar repeated exposure protocols. We describe here a project under development to allow rapid cycling of multiple types of microbial environmental exposure. The system allows continuous autonomous monitoring and data collection of both single species and sampled communities, independently and concurrently providing multiple types of controlled environmental pressure (temperature, radiation, chemical presence or absence, and so on) to a microbial community in dynamic response to the ecosystem's current status. When combined with DNA sequencing and extraction, such a controlled environment can cast light on microbial functional development, population dynamics, inter- and intra-species competition, and microbe-environment interaction. The project's goal is to allow rapid, repeatable iteration of studies of both natural and artificial microbial adaptation. As an example, the same system can be used both to increase the pH of a wet soil aliquot over time while periodically sampling it for genetic activity analysis, or to repeatedly expose a culture of bacteria to the presence of a toxic metal, automatically adjusting the level of toxicity based on the

  8. Evaluating the source of streamwater nitrate using d15N and d18O in nitrate in two watersheds in New Hampshire, USA

    Science.gov (United States)

    Linda H. Pardo; Carol Kendall; Jennifer Pett-Ridge; Cecily C.Y. Chang; Cecily C.Y. Chang

    2004-01-01

    The natural abundance of nitrogen and oxygen isotopes in nitrate can be a powerful tool for identifying the source of nitrate in streamwater in forested watersheds, because the two main sources of nitrate, atmospheric deposition and microbial nitrification, have distinct d18O values. Using a simple mixing model, we estimated the relative fractions in streamwater...

  9. Microbial recycling of glycerol to biodiesel.

    Science.gov (United States)

    Yang, Liu; Zhu, Zhi; Wang, Weihua; Lu, Xuefeng

    2013-12-01

    The sustainable supply of lipids is the bottleneck for current biodiesel production. Here microbial recycling of glycerol, byproduct of biodiesel production to biodiesel in engineered Escherichia coli strains was reported. The KC3 strain with capability of producing fatty acid ethyl esters (FAEEs) from glucose was used as a starting strain to optimize fermentation conditions when using glycerol as sole carbon source. The YL15 strain overexpressing double copies of atfA gene displayed 1.7-fold increase of FAEE productivity compared to the KC3 strain. The titer of FAEE in YL15 strain reached to 813 mg L(-1) in minimum medium using glycerol as sole carbon source under optimized fermentation conditions. The titer of glycerol-based FAEE production can be significantly increased by both genetic modifications and fermentation optimization. Microbial recycling of glycerol to biodiesel expands carbon sources for biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Study on the synergic effect of natural compounds on the microbial quality decay of packed fish hamburger.

    Science.gov (United States)

    Corbo, M R; Speranza, B; Filippone, A; Granatiero, S; Conte, A; Sinigaglia, M; Del Nobile, M A

    2008-10-31

    The effectiveness of natural compounds in slowing down the microbial quality decay of refrigerated fish hamburger is addressed in this study. In particular, the control of the microbiological spoilage by combined use of three antimicrobials, and the determination of their optimal composition to extend the fish hamburger Microbiological Stability Limit (MAL) are the main objectives of this work. Thymol, grapefruit seed extract (GFSE) and lemon extract were tested for monitoring the cell growth of the main fish spoilage microorganisms (Pseudomonas fluorescens, Photobacterium phosphoreum and Shewanella putrefaciens), inoculated in fish hamburgers, and the growth of mesophilic and psychrotrophic bacteria. A Central Composite Design (CCD) was developed to highlight a possible synergic effect of the above natural compounds. Results showed an increase in the MAL value for hamburgers mixed with the antimicrobial compounds, compared to the control sample. The optimal antimicrobial compound composition, which corresponds to the maximal MAL value determined in this study, is: 110 mgL(-1) of thymol, 100 mgL(-1) of GFSE and 120 mgL(-1) of lemon extract. The presence of the natural compounds delay the sensorial quality decay without compromising the flavor of the fish hamburgers.

  11. Developing and using artificial soils to analyze soil microbial processes

    Science.gov (United States)

    Gao, X.; Cheng, H. Y.; Boynton, L.; Masiello, C. A.; Silberg, J. J.

    2017-12-01

    Microbial diversity and function in soils are governed by soil characteristics such as mineral composition, particles size and aggregations, soil organic matter (SOM), and availability of nutrients and H2O. The spatial and temporal heterogeneity of soils creates a range of niches (hotspots) differing in the availability of O2, H2O, and nutrients, which shapes microbial activities at scales ranging from nanometer to landscape. Synthetic biologists often examine microbial response trigged by their environment conditions in nutrient-rich aqueous media using single strain microbes. While these studies provided useful insight in the role of soil microbes in important soil biogeochemical processes (e.g., C cycling, N cycling, etc.), the results obtained from the over-simplified model systems are often not applicable natural soil systems. On the contrary, soil microbiologists examine microbial processes in natural soils using longer incubation time. However, due to its physical, chemical and biological complexity of natural soils, it is often difficult to examine soil characteristics independently and understand how each characteristic influences soil microbial activities and their corresponding soil functioning. Therefore, it is necessary to bridge the gap and develop a model matrix to exclude unpredictable influences from the environment while still reliably mimicking real environmental conditions. The objective of this study is to design a range of ecologically-relevant artificial soils with varying texture (particle size distribution), structure, mineralogy, SOM content, and nutrient heterogeneity. We thoroughly characterize the artificial soils for pH, active surface area and surface morphology, cation exchange capacity (CEC), and water retention curve. We demonstrate the effectiveness of the artificial soils as useful matrix for microbial processes, such as microbial growth and horizontal gene transfer (HGT), using the gas-reporting biosensors recently developed in

  12. Microstructure, microbial profile and quality characteristics of high-pressure-treated chicken nuggets.

    Science.gov (United States)

    Devatkal, Suresh; Anurag, Rahul; Jaganath, Bindu; Rao, Srinivasa

    2015-10-01

    High-pressure processing (300 MPa for 5 min) as a non-thermal post-processing intervention was employed to improve the shelf life and qualities of cooked refrigerated chicken nuggets. Pomegranate peel extract (1%) was also used as a source of natural antioxidant and antimicrobial in chicken nuggets. Microstructure, microbial profile, instrumental colour, texture profile and lipid oxidation were evaluated. High-pressure treatment and pomegranate peel extract did not influence significantly the colour and textural properties of cooked chicken nuggets. Thiobarbituric acid reactive substance values significantly (p chicken nuggets were the major spoilage bacteria. © The Author(s) 2014.

  13. Influence of organic carbon sources and isotope exchange processes between water and nitrate on the fractionation of the stable isotopes {sup 15}N/{sup 14}N and {sup 18}O/{sup 16}O in dissolved nitrate during microbial dentrification in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Anja A.L.

    2012-11-02

    Stable isotopes of nitrate are commonly used to determine sources and degradation of nitrate. In this study, nitrite oxidizing bacteria were found to promote an oxygen isotope exchange between water and nitrate under anoxic conditions. Also, different carbon sources were found to influence the enrichment of stable isotopes in nitrate during microbial denitrification. Both results refine the stable isotope model of nitrate in respect to nitrate source determination and microbial nitrate reduction.

  14. Microbial diversity and metabolic networks in acid mine drainage habitats

    Directory of Open Access Journals (Sweden)

    Celia eMendez-Garcia

    2015-05-01

    Full Text Available Acid mine drainage (AMD emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics technologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and ultra-micro-archaea demand their inclusion in the microbial characterisation of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including ultra-micro-archaeal and eukaryotic diversity in these ecosystems and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.

  15. Doses arising from natural radiation sources in Hong Kong

    International Nuclear Information System (INIS)

    Tso Man-yin, W.

    1993-01-01

    The first reactor of the Daya Bay Nuclear Power Plant, located 30 km from Hong Kong, should become operational at the end of 1993. People in Hong Kong are more concerned with their exposures to radiation, both man-made and natural. The local environmental background radiation baseline values should be established well before 1993 so that the radiological impact of the power plant on the environment can be assessed. However, there has not been much information on these aspects. In view of the situation, the Radioisotope Unit of the University of Hong Kong has launched a series of studies with the general goal of gaining a better understanding of Hong Kong's natural background radiation and a more accurate estimate of the natural radiation exposure of the local people. The scope of the measurement programmes is described and the doses from the various sources are derived. (1 tab.)

  16. Tracking natural and anthropogenic Pb exposure to its geological source.

    Science.gov (United States)

    Evans, Jane; Pashley, Vanessa; Madgwick, Richard; Neil, Samantha; Chenery, Carolyn

    2018-01-31

    Human Pb exposure comes from two sources: (i) natural uptake through ingestion of soils and typified by populations that predate mining activity and (ii) anthropogenic exposure caused by the exposure to Pb derived from ore deposits. Currently, the measured concentration of Pb within a sample is used to discriminate between these two exposure routes, with the upper limit for natural exposure in skeletal studies given as 0.5 or 0.7 mg/kg in enamel and 0.5/0.7 μg/dL in blood. This threshold approach to categorising Pb exposure does not distinguish between the geological origins of the exposure types. However, Pb isotopes potentially provide a more definitive means of discriminating between sources. Whereas Pb from soil displays a crustal average 238 U/ 204 Pb (μ) value of c 9.7, Pb from ore displays a much wider range of evolution pathways. These characteristics are transferred into tooth enamel, making it possible to characterize human Pb exposure in terms of the primary source of ingested Pb and to relate mining activity to geotectonic domains. We surmise that this ability to discriminate between silicate and sulphide Pb exposure will lead to a better understanding of the evolution of early human mining activity and development of exposure models through the Anthropocene.

  17. Systems biology of Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Navid, A; Ghim, C; Fenley, A; Yoon, S; Lee, S; Almaas, E

    2008-04-11

    Microbes exist naturally in a wide range of environments, spanning the extremes of high acidity and high temperature to soil and the ocean, in communities where their interactions are significant. We present a practical discussion of three different approaches for modeling microbial communities: rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with detailed examples. Each approach is best fit to different levels of system representation, and they have different needs for detailed biological input. Thus, this set of approaches is able to address the operation and function of microbial communities on a wide range of organizational levels.

  18. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review

    Directory of Open Access Journals (Sweden)

    Omena Bernard Ojuederie

    2017-12-01

    Full Text Available Environmental pollution from hazardous waste materials, organic pollutants and heavy metals, has adversely affected the natural ecosystem to the detriment of man. These pollutants arise from anthropogenic sources as well as natural disasters such as hurricanes and volcanic eruptions. Toxic metals could accumulate in agricultural soils and get into the food chain, thereby becoming a major threat to food security. Conventional and physical methods are expensive and not effective in areas with low metal toxicity. Bioremediation is therefore an eco-friendly and efficient method of reclaiming environments contaminated with heavy metals by making use of the inherent biological mechanisms of microorganisms and plants to eradicate hazardous contaminants. This review discusses the toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation. It also emphasized the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate, highlighting recent advances in microbial bioremediation and phytoremediation for the removal of heavy metals from the environment as well as future prospects and limitations. However, strict adherence to biosafety regulations must be followed in the use of biotechnological methods to ensure safety of the environment.

  19. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review

    Science.gov (United States)

    Ojuederie, Omena Bernard

    2017-01-01

    Environmental pollution from hazardous waste materials, organic pollutants and heavy metals, has adversely affected the natural ecosystem to the detriment of man. These pollutants arise from anthropogenic sources as well as natural disasters such as hurricanes and volcanic eruptions. Toxic metals could accumulate in agricultural soils and get into the food chain, thereby becoming a major threat to food security. Conventional and physical methods are expensive and not effective in areas with low metal toxicity. Bioremediation is therefore an eco-friendly and efficient method of reclaiming environments contaminated with heavy metals by making use of the inherent biological mechanisms of microorganisms and plants to eradicate hazardous contaminants. This review discusses the toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation. It also emphasized the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate, highlighting recent advances in microbial bioremediation and phytoremediation for the removal of heavy metals from the environment as well as future prospects and limitations. However, strict adherence to biosafety regulations must be followed in the use of biotechnological methods to ensure safety of the environment. PMID:29207531

  20. Attributing Methane and Carbon Dioxide Emissions from Anthropogenic and Natural Sources Using AVIRIS-NG

    Science.gov (United States)

    Thorpe, A. K.; Frankenberg, C.; Thompson, D. R.; Duren, R. M.; Aubrey, A. D.; Bue, B. D.; Green, R. O.; Gerilowski, K.; Krings, T.; Borchardt, J.; Kort, E. A.; Sweeney, C.; Conley, S. A.; Roberts, D. A.; Dennison, P. E.; Ayasse, A.

    2016-12-01

    Imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) can map large regions with the high spatial resolution necessary to resolve methane (CH4) and carbon dioxide (CO2) emissions. This capability is aided by real time detection and geolocation of gas plumes, permitting unambiguous identification of individual emission source locations and communication to ground teams for rapid follow up. We present results from AVIRIS-NG flight campaigns in the Four Corners region (Colorado and New Mexico) and the San Joaquin Valley (California). Over three hundred plumes were observed, reflecting emissions from anthropogenic and natural sources. Examples of plumes will be shown for a number of sources, including CH4 from well completions, gas processing plants, tanks, pipeline leaks, natural seeps, and CO2 from power plants. Despite these promising results, an imaging spectrometer built exclusively for quantitative mapping of gas plumes would have improved sensitivity compared to AVIRIS-NG. For example, an instrument providing a 1 nm spectral sampling (2,000-2,400 micron) would permit mapping CH4, CO2, H2O, CO, and N2O from more diffuse sources using both airborne and orbital platforms. The ability to identify emission sources offers the potential to constrain regional greenhouse gas budgets and improve partitioning between anthropogenic and natural emission sources. Because the CH4 lifetime is only about 9 years and CH4 has a Global Warming Potential 86 times that of CO2 for a 20 year time interval, mitigating these emissions is a particularly cost-effective approach to reduce overall atmospheric radiative forcing. Fig. 1. True color image subset with superimposed gas plumes showing concentrations in ppmm. Left: AVIRIS-NG observed CH4 plumes from natural gas processing plant extending over 500 m downwind of multiple emissions sources. Right: Multiple CO2 plumes observed from coal-fired power plant.

  1. [Fibers as carriers of microbial particles].

    Science.gov (United States)

    Górny, Rafał L; Ławniczek-Wałczyk, Anna; Stobnicka, Agata; Gołofit-Szymczak, Małgorzata; Cyprowski, Marcin

    2015-01-01

    The aim of the study was to assess the ability of natural, synthetic and semi-synthetic fibers to transport microbial particles. The simultaneously settled dust and aerosol sampling was carried out in 3 industrial facilities processing natural (cotton, silk, flax, hemp), synthetic (polyamide, polyester, polyacrylonitrile, polypropylene) and semi-synthetic (viscose) fibrous materials; 2 stables where horses and sheep were bred; 4 homes where dogs or cats were kept and 1 zoo lion pavilion. All samples were laboratory analyzed for their microbiological purity. The isolated strains were qualitatively identified. To identify the structure and arrangement of fibers that may support transport of microbial particles, a scanning electron microscopy analysis was performed. Both settled and airborne fibers transported analogous microorganisms. All synthetic, semi-synthetic and silk fibers, present as separated threads with smooth surface, were free from microbial contamination. Natural fibers with loose packing and rough surface (e.g., wool, horse hair), sheaf packing and septated surface (e.g., flax, hemp) or present as twisted ribbons with corrugated surface (cotton) were able to carry up to 9×10(5) cfu/g aerobic bacteria, 3.4×10(4) cfu/g anaerobic bacteria and 6.3×10(4) cfu/g of fungi, including pathogenic strains classified by Directive 2000/54/EC in hazard group 2. As plant and animal fibers are contaminated with a significant number of microorganisms, including pathogens, all of them should be mechanically eliminated from the environment. In factories, if the manufacturing process allows, they should be replaced by synthetic or semi-synthetic fibers. To avoid unwanted exposure to harmful microbial agents on fibers, the containment measures that efficiently limit their presence and dissemination in both occupational and non-occupational environments should be introduced. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  2. Fibers as carriers of microbial particles

    Directory of Open Access Journals (Sweden)

    Rafał L. Górny

    2015-08-01

    Full Text Available Background: The aim of the study was to assess the ability of natural, synthetic and semi-synthetic fibers to transport microbial particles. Material and Methods: The simultaneously settled dust and aerosol sampling was carried out in 3 industrial facilities processing natural (cotton, silk, flax, hemp, synthetic (polyamide, polyester, polyacrylonitrile, polypropylene and semi-synthetic (viscose fibrous materials; 2 stables where horses and sheep were bred; 4 homes where dogs or cats were kept and 1 zoo lion pavilion. All samples were laboratory analyzed for their microbiological purity. The isolated strains were qualitatively identified. To identify the structure and arrangement of fibers that may support transport of microbial particles, a scanning electron microscopy analysis was performed. Results: Both settled and airborne fibers transported analogous microorganisms. All synthetic, semi-synthetic and silk fibers, present as separated threads with smooth surface, were free from microbial contamination. Natural fibers with loose packing and rough surface (e.g., wool, horse hair, sheaf packing and septated surface (e.g., flax, hemp or present as twisted ribbons with corrugated surface (cotton were able to carry up to 9×105 cfu/g aerobic bacteria, 3.4×104 cfu/g anaerobic bacteria and 6.3×104 cfu/g of fungi, including pathogenic strains classified by Directive 2000/54/EC in hazard group 2. Conclusions: As plant and animal fibers are contaminated with a significant number of microorganisms, including pathogens, all of them should be mechanically eliminated from the environment. In factories, if the manufacturing process allows, they should be replaced by synthetic or semi-synthetic fibers. To avoid unwanted exposure to harmful microbial agents on fibers, the containment measures that efficiently limit their presence and dissemination in both occupational and non-occupational environments should be introduced. Med Pr 2015;66(4:511–523

  3. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses

    International Nuclear Information System (INIS)

    Kim, Heejung; Kaown, Dugin; Mayer, Bernhard; Lee, Jin-Yong; Hyun, Yunjung; Lee, Kang-Kun

    2015-01-01

    An integrated study based on hydrogeochemical, microbiological and dual isotopic approaches for nitrate and sulfate was conducted to elucidate sources and biogeochemical reactions governing groundwater contaminants in different seasons and under different land use in a basin of Korea. The land use in the study area is comprised of forests (58.0%), vegetable fields (27.6%), rice paddy fields (11.4%) and others (3.0%). The concentrations of NO 3 –N and SO 4 2− in groundwater in vegetable fields were highest with 4.2–15.2 mg L −1 and 1.6–19.7 mg L −1 respectively, whereas under paddy fields NO 3 –N concentrations ranged from 0 to 10.7 mg L −1 and sulfate concentrations were ~ 15 mg L −1 . Groundwater with high NO 3 –N concentrations of > 10 mg L −1 had δ 15 N–NO 3 − values ranging from 5.2 to 5.9‰ and δ 18 O values of nitrate between 2.7 and 4.6‰ suggesting that the nitrate was mineralized from soil organic matter that was amended by fertilizer additions. Elevated concentrations of SO 4 2− with δ 34 S–SO 4 2− values between 1 and 6‰ in aquifers in vegetable fields indicated that a mixture of sulfate from atmospheric deposition, mineralization of soil organic matter and from synthetic fertilizers is the source of groundwater sulfate. Elevated δ 18 O–NO 3 − and δ 18 O–SO 4 2− values in samples collected from the paddy fields indicated that denitrification and bacterial sulfate reduction are actively occurring removing sulfate and nitrate from the groundwater. This was supported by high occurrences of denitrifying and sulfate reducing bacteria in groundwater of the paddy fields as evidenced by 16S rRNA pyrosequencing analysis. This study shows that dual isotope techniques combined with microbial data can be a powerful tool for identification of sources and microbial processes affecting NO 3 − and SO 4 2− in groundwater in areas with intensive agricultural land use. - Highlights: • Dual isotope analyses identified

  4. Well water quality in rural Nicaragua using a low-cost bacterial test and microbial source tracking.

    Science.gov (United States)

    Weiss, Patricia; Aw, Tiong Gim; Urquhart, Gerald R; Galeano, Miguel Ruiz; Rose, Joan B

    2016-04-01

    Water-related diseases, particularly diarrhea, are major contributors to morbidity and mortality in developing countries. Monitoring water quality on a global scale is crucial to making progress in terms of population health. Traditional analytical methods are difficult to use in many regions of the world in low-resource settings that face severe water quality issues due to the inaccessibility of laboratories. This study aimed to evaluate a new low-cost method (the compartment bag test (CBT)) in rural Nicaragua. The CBT was used to quantify the presence of Escherichia coli in drinking water wells and aimed to determine the source(s) of any microbial contamination. Results indicate that the CBT is a viable method for use in remote rural regions. The overall quality of well water in Pueblo Nuevo, Nicaragua was deemed unsafe, and results led to the conclusion that animal fecal wastes may be one of the leading causes of well contamination. Elevation and depth of wells were not found to impact overall water quality. However rope-pump wells had a 64.1% reduction in contamination when compared with simple wells.

  5. Microbial (per)chlorate reduction in hot subsurface environments

    NARCIS (Netherlands)

    Liebensteiner, M.

    2014-01-01

    The microbial reduction of chlorate and perchlorate has been known for long as a respiratory process of mesophilic bacteria that thrive in diverse environments such as soils, marine and freshwater sediments. Chlorate and perchlorate are found in nature deriving from anthropogenic and natural

  6. Microfluidics expanding the frontiers of microbial ecology.

    Science.gov (United States)

    Rusconi, Roberto; Garren, Melissa; Stocker, Roman

    2014-01-01

    Microfluidics has significantly contributed to the expansion of the frontiers of microbial ecology over the past decade by allowing researchers to observe the behaviors of microbes in highly controlled microenvironments, across scales from a single cell to mixed communities. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. In this article, we review applications of microfluidics that have resulted in insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control microbial processes such as biofilm formation and antibiotic resistance.

  7. Interlaboratory comparison of three microbial source tracking quantitative polymerase chain reaction (qPCR) assays from fecal-source and environmental samples

    Science.gov (United States)

    Stelzer, Erin A.; Strickler, Kriston M.; Schill, William B.

    2012-01-01

    During summer and early fall 2010, 15 river samples and 6 fecal-source samples were collected in West Virginia. These samples were analyzed by three laboratories for three microbial source tracking (MST) markers: AllBac, a general fecal indicator; BacHum, a human-associated fecal indicator; and BoBac, a ruminant-associated fecal indicator. MST markers were analyzed by means of the quantitative polymerase chain reaction (qPCR) method. The aim was to assess interlaboratory precision when the three laboratories used the same MST marker and shared deoxyribonucleic acid (DNA) extracts of the samples, but different equipment, reagents, and analyst experience levels. The term assay refers to both the markers and the procedure differences listed above. Interlaboratory precision was best for all three MST assays when using the geometric mean absolute relative percent difference (ARPD) and Friedman's statistical test as a measure of interlaboratory precision. Adjustment factors (one for each MST assay) were calculated using results from fecal-source samples analyzed by all three laboratories and applied retrospectively to sample concentrations to account for differences in qPCR results among labs using different standards and procedures. Following the application of adjustment factors to qPCR results, ARPDs were lower; however, statistically significant differences between labs were still observed for the BacHum and BoBac assays. This was a small study and two of the MST assays had 52 percent of samples with concentrations at or below the limit of accurate quantification; hence, more testing could be done to determine if the adjustment factors would work better if the majority of sample concentrations were above the quantification limit.

  8. Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir.

    Science.gov (United States)

    Walsh, Aaron M; Crispie, Fiona; Kilcawley, Kieran; O'Sullivan, Orla; O'Sullivan, Maurice G; Claesson, Marcus J; Cotter, Paul D

    2016-01-01

    Kefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides . Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. IMPORTANCE Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to understand

  9. Microbial Diversity and Lipid Abundance in Microbial Mats from a Sulfidic, Saline, Warm Spring in Utah, USA

    Science.gov (United States)

    Gong, J.; Edwardson, C.; Mackey, T. J.; Dzaugis, M.; Ibarra, Y.; Course 2012, G.; Frantz, C. M.; Osburn, M. R.; Hirst, M.; Williamson, C.; Hanselmann, K.; Caporaso, J.; Sessions, A. L.; Spear, J. R.

    2012-12-01

    The microbial diversity of Stinking Springs, a sulfidic, saline, warm spring northeast of the Great Salt Lake was investigated. The measured pH, temperature, salinity, and sulfide concentration along the flow path ranged from 6.64-7.77, 40-28° C, 2.9-2.2%, and 250 μM to negligible, respectively. Five sites were selected along the flow path and within each site microbial mats were dissected into depth profiles based on the color and texture of the mat layers. Genomic DNA was extracted from each layer, and the 16S rRNA gene was amplified and sequenced on the Roche 454 Titanium platform. Fatty acids were also extracted from the mat layers and analyzed by liquid chromatography and mass spectrometry. The mats at Stinking Springs were classified into roughly two morphologies with respect to their spatial distribution: loose, sometimes floating mats proximal to the spring source; and thicker, well-laminated mats distal to the spring source. Loosely-laminated mats were found in turbulent stream flow environments, whereas well-laminated mats were common in less turbulent sheet flows. Phototrophs, sulfur oxidizers, sulfate reducers, methanogens, other bacteria and archaea were identified by 16S rRNA gene sequences. Diatoms, identified by microscopy and lipid analysis were found to increase in abundance with distance from the source. Methanogens were generally more abundant in deeper mat laminae. Photoheterotrophs were found in all mat layers. Microbial diversity increased significantly with depth at most sites. In addition, two distinct microbial streamers were identified and characterized at the two fast flowing sites. These two streamer varieties were dominated by either cyanobacteria or flavobacteria. Overall, our genomic and lipid analysis suggest that the physical and chemical environment is more predictive of the community composition than mat morphology. Site Map

  10. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies

    KAUST Repository

    Logan, B. E.; Rabaey, K.

    2012-01-01

    Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a

  11. Microbial transformation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Francis, A.J.

    1982-01-01

    Micro-organisms play a significant role in the transformation of the radioactive waste and waste forms disposed of at shallow-land burial sites. Microbial degradation products of organic wastes may influence the transport of buried radionuclides by leaching, solubilization, and formation of organoradionuclide complexes. The ability of indigenous microflora of the radioactive waste to degrade the organic compounds under aerobic and anaerobic conditions was examined. Leachate samples were extracted with methylene chloride and analysed for organic compounds by gas chromatography and mass spectrometry. In general, several of the organic compounds in the leachates were degraded under aerobic conditions. Addition of a nitrogen source increased the rate of decomposition. Under anaerobic conditions, the degradation of the organics was very slow, and changes in concentrations of several acidic compounds were observed. Several low-molecular-weight organic acids are formed by breakdown of complex organic materials and are further metabolized by micro-organisms; hence these compounds are in a dynamic state, being both synthesized and destroyed. Addition of a nitrogen source had only a slight effect on these degradation rates. Tributyl phosphate, a compound used in the extraction of metal ions from solutions of reactor products, was not degraded under anaerobic conditions. The formation of straight- and branched-chain aliphatic acids and their long residence time in an anaerobic environment could significantly affect the migration of radionuclides from the disposal sites. The chemical and biological stabilities of the synthetic chelating and decontamination agents and of naturally occurring and microbially synthesized radionuclide complexes are among the major factors determining the mobility of radionuclides from a burial environment into the biosphere. (author)

  12. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    Science.gov (United States)

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-08-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.

  13. Radiation measurement practice for understanding statistical fluctuation of radiation count using natural radiation sources

    International Nuclear Information System (INIS)

    Kawano, Takao

    2014-01-01

    It is known that radiation is detected at random and the radiation counts fluctuate statistically. In the present study, a radiation measurement experiment was performed to understand the randomness and statistical fluctuation of radiation counts. In the measurement, three natural radiation sources were used. The sources were fabricated from potassium chloride chemicals, chemical fertilizers and kelps. These materials contain naturally occurring potassium-40 that is a radionuclide. From high schools, junior high schools and elementary schools, nine teachers participated to the radiation measurement experiment. Each participant measured the 1-min integration counts of radiation five times using GM survey meters, and 45 sets of data were obtained for the respective natural radiation sources. It was found that the frequency of occurrence of radiation counts was distributed according to a Gaussian distribution curve, although the obtained 45 data sets of radiation counts superficially looked to be fluctuating meaninglessly. (author)

  14. Cellular content of biomolecules in sub-seafloor microbial communities

    DEFF Research Database (Denmark)

    Braun, Stefan; Morono, Yuki; Becker, Kevin W.

    2016-01-01

    the lifetime of their microbial sources. Here we provide for the first time measurements of the cellular content of biomolecules in sedimentary microbial cells. We separated intact cells from sediment matrices in samples from surficial, deeply buried, organic-rich, and organic-lean marine sediments by density...... content. We find that the cellular content of biomolecules in the marine subsurface is up to four times lower than previous estimates. Our approach will facilitate and improve the use of biomolecules as proxies for microbial abundance in environmental samples and ultimately provide better global estimates......Microbial biomolecules, typically from the cell envelope, can provide crucial information about distribution, activity, and adaptations of sub-seafloor microbial communities. However, when cells die these molecules can be preserved in the sediment on timescales that are likely longer than...

  15. Effect of Carbohydrate Source and Cottonseed Meal Level in the Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Swamp Buffaloes

    Directory of Open Access Journals (Sweden)

    M. Wanapat

    2013-07-01

    Full Text Available The objective of this study was to investigate the effect of carbohydrate source and cottonseed meal level in the concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in swamp buffaloes. Four, 4-yr old rumen fistulated swamp buffaloes were randomly assigned to receive four dietary treatments according to a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A was carbohydrate source; cassava chip (CC and CC+rice bran at a ratio 3:1 (CR3:1, and factor B was level of cottonseed meal (CM; 109 g CP/kg (LCM and 328 g CP/kg (HCM in isonitrogenous diets (490 g CP/kg. Buffaloes received urea-treated rice straw ad libitum and supplemented with 5 g concentrate/kg BW. It was found that carbohydrate source did not affect feed intake, nutrient intake, digested nutrients, nutrient digestibility, ammonia nitrogen concentration, fungi and bacterial populations, or microbial protein synthesis (p>0.05. Ruminal pH at 6 h after feeding and the population of protozoa at 4 h after feeding were higher when buffalo were fed with CC than in the CR3:1 treatment (p0.05. Based on this experiment, concentrate with a low level of cottonseed meal could be fed with cassava chips as an energy source in swamp buffalo receiving rice straw.

  16. Natural radiation sources fabricated from potassic chemical fertilizers and application to radiation education

    International Nuclear Information System (INIS)

    Kawano, Takao

    2010-01-01

    Potassic chemical fertilizers contain potassium, a small part of which is potassium-40. Since potassium-40 is a naturally occurring radioisotope, potassic chemical fertilizers are often used for demonstrations of the existence of natural radioisotopes and radiation. To fabricate radiation sources as educational tools, the compression and formation method developed by our previous study was applied to 13 brands of commercially available chemical fertilizers containing different amounts of potassium. The suitability (size, weight, and solidness) of thus fabricated sources was examined and 12 of them were selected as easy-to-use radiation sources at radiation educational courses. The radiation strength (radiation count rate measured by a GM survey meter) and potassium content of the 12 sources were examined. It was found that the count rate was wholly proportional to the percentage of potassium, and a new educational application was proposed and discussed for understanding that the substance emitting radiation must be the potassium present in the raw fertilizers. (author)

  17. Effect of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty.

    Science.gov (United States)

    Sagdic, Osman; Ozturk, Ismet; Yilmaz, Mustafa Tahsin; Yetim, Hasan

    2011-09-01

    Grape pomace extracts were obtained from 5 different grape varieties grown in Turkey. The extracts were concentrated to obtain crude extracts; and incorporated into beef patties at 0% (Control), 1%, 2%, 5%, and 10% concentrations to test their antimicrobial effects in different storage periods (first, 12, 24, and 48 h). The numbers of microorganism were generally decreased by the extract concentration during the storage period. All the microorganisms tested were inhibited by the extract concentration of 10% in all the storage periods. Furthermore, the foodborne pathogens including Enterobacteriaceae and coliform bacteria, and the spoilage microorganisms including yeasts and moulds and lipolytic bacteria were also inhibited by 5% of Emir, Gamay, and Kalecik Karasi varieties in beef patties. Considering the results, the extracts of grape pomaces might be a good choice in the microbial shelf life extension of the food products as well as inhibiting the food pathogens as the case of beef patties. Grape pomace consists of seeds, skins, and stems, and an important by-product that is well known to be the rich source of phenolic compounds, both flavonoids and non-flavonoids. These substances have considerable beneficial effects on human health. The use of natural antimicrobial compounds, like plant extracts of herbs and spices for the preservation of foods has been very popular issue because of their antimicrobial activity. Therefore, grape pomace should be added into some food formulations to benefit from their protective effects. In this respect, this study reports the effect of addition of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. The results obtained in this study may be useful for food industry, which has recently tended to use natural antimicrobial sources in place of synthetic preservatives to prevent microbial spoilage. © 2011 Institute of Food Technologists®

  18. The Canadian approach to microbial studies in nuclear waste management and disposal

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.; Sargent, F.P.

    1998-01-01

    Many countries considering radioactive waste disposal have, or are considering programs to study and quantify microbial effects in terms of their particular disposal concept. Although there is an abundance of qualitative information, there is a need for quantitative data. Quantitative research should cover topics such as the kinetics of microbial activity in geological media, microbial effects on radionuclide migration in host rock (including effects of biofilms), tolerance to extreme conditions of radiation, heat and desiccation, microbially-influenced corrosion of waste containers and microbial gas production. The research should be performed in relevant disposal environments with the ultimate objective to quantify those effects that need to be included in models for predictive and safety assessment purposes. The Canadian approach to dealing with microbial effects involves a combination of pertinent, quantitative measurements from carefully designed laboratory studies and from large scale engineering experiments in AECL's Underground Research Laboratory (URL). The validity of these quantitative data is measured against observations from natural environments and analogues. An example is the viability of microbes in clay-based scaling materials. Laboratory studies have shown that the clay content of these barriers strongly affects microbial activity and movement. This is supported by natural environment and analogue observations that show clay deposits to contain very old tree segments and dense clay lenses in sediments to contain much smaller, less diverse and less active microbial populations than more porous sediments. This approach has allowed for focused, quantitative research on microbial effects in Canada. (author)

  19. The information science of microbial ecology.

    Science.gov (United States)

    Hahn, Aria S; Konwar, Kishori M; Louca, Stilianos; Hanson, Niels W; Hallam, Steven J

    2016-06-01

    A revolution is unfolding in microbial ecology where petabytes of 'multi-omics' data are produced using next generation sequencing and mass spectrometry platforms. This cornucopia of biological information has enormous potential to reveal the hidden metabolic powers of microbial communities in natural and engineered ecosystems. However, to realize this potential, the development of new technologies and interpretative frameworks grounded in ecological design principles are needed to overcome computational and analytical bottlenecks. Here we explore the relationship between microbial ecology and information science in the era of cloud-based computation. We consider microorganisms as individual information processing units implementing a distributed metabolic algorithm and describe developments in ecoinformatics and ubiquitous computing with the potential to eliminate bottlenecks and empower knowledge creation and translation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. FLAVONOID NATURAL SOURCES AND THEIR IMPORTANCE IN THE HUMAN DIET

    Directory of Open Access Journals (Sweden)

    Martina Danihelová

    2011-12-01

    Full Text Available Flavonoids as natural bioactive compounds are present in almost every sort of fruits, vegetables and from them derived products. Flavonols may be found mainly in fruits and vegetables, while flavones are abundant in herbs and spices. Rich natural sources of flavanols are tea, cocoa, grape seeds or apple skin. Flavanones are primarily found in a variety of citrus fruits and anthocyanidins in many coloured berries. Soy is rich in isoflavonoids. Average daily intake of flavonoids is approximately in the range of 150 to 300 mg. It strongly depends on individual, country and culture usages. In west countries main dietary sources of flavonoids consist of tea, wine and fruits, while in east countries there is consumed mainly soy with high isoflavonoid content. Many studies have shown, that intake of fruits and vegetables with high flavonoid content is associated with lowered risk of incidence of some diseases such as cardiovascular or cancer. These findings are attributed to experimentally confirmed biological effects of flavonoids - antioxidant, anti-inflammatory, anti-allergic, anticancer or cardioprotective. The final effect is however depending on their bioavailability, which is in the case of flavonoids not high, because in the nature dominating flavonoid glycosides can poorly penetrate through lipophilic cell membranes. Final effective molecules are flavonoid metabolites, that more or less retain their biological activities. doi: 10.5219/160

  1. Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia.

    Science.gov (United States)

    Ben Said, Sami; Or, Dani

    2017-01-01

    The metabolic diversity present in microbial communities enables cooperation toward accomplishing more complex tasks than possible by a single organism. Members of a consortium communicate by exchanging metabolites or signals that allow them to coordinate their activity through division of labor. In contrast with monocultures, evidence suggests that microbial consortia self-organize to form spatial patterns, such as observed in biofilms or in soil aggregates, that enable them to respond to gradient, to improve resource interception and to exchange metabolites more effectively. Current biotechnological applications of microorganisms remain rudimentary, often relying on genetically engineered monocultures (e.g., pharmaceuticals) or mixed-cultures of partially known composition (e.g., wastewater treatment), yet the vast potential of "microbial ecological power" observed in most natural environments, remains largely underused. In line with the Unified Microbiome Initiative (UMI) which aims to "discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems," we propose in this concept paper to capitalize on ecological insights into the spatial and modular design of interlinked microbial consortia that would overcome limitations of natural systems and attempt to optimize the functionality of the members and the performance of the engineered consortium. The topology of the spatial connections linking the various members and the regulated fluxes of media between those modules, while representing a major engineering challenge, would allow the microbial species to interact. The modularity of such spatially linked microbial consortia (SLMC) could facilitate the design of scalable bioprocesses that can be incorporated as parts of a larger biochemical network. By reducing the need for a compatible growth environment for all species simultaneously, SLMC will dramatically expand the range of possible combinations of microorganisms and their

  2. Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals.

    Science.gov (United States)

    Dhamankar, Himanshu; Prather, Kristala L J

    2011-08-01

    The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. An overview of natural antimicrobials role in food.

    Science.gov (United States)

    Pisoschi, Aurelia Magdalena; Pop, Aneta; Georgescu, Cecilia; Turcuş, Violeta; Olah, Neli Kinga; Mathe, Endre

    2018-01-01

    The present paper aims to review the natural food preservatives with antimicrobial properties emphasizing their importance for the future of food manufacturing and consumers' health. The extraction procedures applied to natural antimicrobials will be considered, followed by the description of some natural preservatives' antimicrobial mechanism of action, including (i) membrane rupture with ATP-ase activity inhibition, (ii) leakage of essential biomolecules from the cell, (iii) disruption of the proton motive force and (iiii) enzyme inactivation. Moreover, a provenance-based classification of natural antimicrobials is discussed by considering the sources of origin for the major natural preservative categories: plants, animals, microbes and fungi. As well, the structure influence on the antimicrobial potential is considered. Natural preservatives could also constitute a viable alternative to address the critical problem of microbial resistance, and to hamper the negative side effects of some synthetic compounds, while meeting the requirements for food safety, and exerting no negative impact on nutritional and sensory attributes of foodstuffs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Microbial Activity and Silica Degradation in Rice Straw

    Science.gov (United States)

    Kim, Esther Jin-kyung

    Abundantly available agricultural residues like rice straw have the potential to be feedstocks for bioethanol production. Developing optimized conditions for rice straw deconstruction is a key step toward utilizing the biomass to its full potential. One challenge associated with conversion of rice straw to bioenergy is its high silica content as high silica erodes machinery. Another obstacle is the availability of enzymes that hydrolyze polymers in rice straw under industrially relevant conditions. Microbial communities that colonize compost may be a source of enzymes for bioconversion of lignocellulose to products because composting systems operate under thermophilic and high solids conditions that have been shown to be commercially relevant. Compost microbial communities enriched on rice straw could provide insight into a more targeted source of enzymes for the breakdown of rice straw polysaccharides and silica. Because rice straw is low in nitrogen it is important to understand the impact of nitrogen concentrations on the production of enzyme activity by the microbial community. This study aims to address this issue by developing a method to measure microbial silica-degrading activity and measure the effect of nitrogen amendment to rice straw on microbial activity and extracted enzyme activity during a high-solids, thermophilic incubation. An assay was developed to measure silica-degrading enzyme or silicase activity. This process included identifying methods of enzyme extraction from rice straw, identifying a model substrate for the assay, and optimizing measurement techniques. Rice straw incubations were conducted with five different levels of nitrogen added to the biomass. Microbial activity was measured by respiration and enzyme activity. A microbial community analysis was performed to understand the shift in community structure with different treatments. With increased levels of nitrogen, respiration and cellulose and hemicellulose degrading activity

  5. Natural attenuation of herbicides

    DEFF Research Database (Denmark)

    Tuxen, Nina; Højberg, Anker Lajer; Broholm, Mette Martina

    2002-01-01

    A field injection experiment in a sandy, aerobic aquifer showed that two phenoxy acids MCPP (mecoprop) and dichlorprop were degraded within I in downgradient of the injection wells after an apparent lag period. The plume development and microbial measurements indicated that microbial growth gover....... The observations may be important for application of natural attenuation as a remedy in field scale systems....

  6. Microbial hydrocarbon degradation - bioremediation of oil spills

    Energy Technology Data Exchange (ETDEWEB)

    Atlas, R M [Louisville Univ., KY (United States). Dept. of Biology

    1991-01-01

    Bioremediation has become a major method employed in restoration of oil-polluted environments that makes use of natural microbial biodegradative activities. Bioremediation of petroleum pollutants overcomes the factors limiting rates of microbial hydrocarbon biodegradation. Often this involves using the enzymatic capabilities of the indigenous hydrocarbon-degrading microbial populations and modifying environmental factors, particularly concentrations of molecular oxygen, fixed forms of nitrogen and phosphate to achieve enhanced rates of hydrocarbon biodegradation. Biodegradation of oily sludges and bioremediation of oil-contaminated sites has been achieved by oxygen addition-e.g. by tilling soils in landfarming and by adding hydrogen peroxide or pumping oxygen into oiled aquifers along with addition of nitrogen- and phosphorous-containing fertilizers. The success of seeding oil spills with microbial preparations is ambiguous. Successful bioremediation of a major marine oil spill has been achieved based upon addition of nitrogen and phosphorus fertilizers. (author).

  7. Microbial synthesis of alka(enes

    Directory of Open Access Journals (Sweden)

    Weihua eWang

    2013-10-01

    Full Text Available Alka(enes are the predominant constituents of gasoline, diesel, and jet fuels. They can be produced naturally by a wide range of microorganisms. Bio- alka(enes can be used as drop-in biofuels. To date, five microbial pathways that convert free fatty acids or fatty acid derivatives into alka(enes have been identified or reconstituted. The discoveries open a door to achieve microbial production of alka(enes with high efficiency. The modules derived from these alka(ene biosynthetic pathways can be assembled as biological parts and synthetic biology strategies can be employed to optimize the metabolic pathways and improve alka(ene production.

  8. [Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the Rainy Area of West China].

    Science.gov (United States)

    Zhou, Shi Xing; Zou, Cheng; Xiao, Yong Xiang; Xiang, Yuan Bin; Han, Bo Han; Tang, Jian Dong; Luo, Chao; Huang, Cong de

    2017-01-01

    To understand the effects of increasing nitrogen deposition on soil microbial biomass carbon (MBC) and nitrogen(MBN), an in situ experiment was conducted in a natural evergreen broad-leaved forest in Ya'an City, Sichuan Province. Four levels of nitrogen deposition were set: i.e., control (CK, 0 g N·m -2 ·a -1 ), low nitrogen (L, 5 g N·m -2 ·a -1 ), medium nitrogen (M, 15 g N·m -2 ·a -1 ), and high nitrogen (H, 30 g N·m -2 ·a -1 ). The results indicated that nitrogen deposition significantly decreased MBC and MBN in the 0-10 cm soil layer, and as N de-position increased, the inhibition effect was enhanced. L and M treatments had no significant effect on MBC and MBN in the 10-20 cm soil layer, while H treatment significantly reduced. The influence of N deposition on MBC and MBN was weakened with the increase of soil depth. MBC and MBN had obvious seasonal dynamic, which were highest in autumn and lowest in summer both in the 0-10 and 10-20 cm soil layers. The fluctuation ranges of soil microbial biomass C/N were respectively 10.58-11.19 and 9.62-12.20 in the 0-10 cm and 10-20 cm soil layers, which indicated that the fungi hold advantage in the soil microbial community in this natural evergreen broad-leaved forest.

  9. Effects of heavy metals on soil microbial community

    Science.gov (United States)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  10. Humic substances-mediated microbial reductive dehalogenation of triclosan

    Science.gov (United States)

    Wang, L.; Xu, S.; Yang, Y.

    2015-12-01

    The role of natural organic matter in regulating the redox reactions as an electron shuttle has received lots of attention, because it can significantly affect the environmental degradation of contaminants and biogeochemical cycles of major elements. However, up to date, limited studies examined the role of natural organic matter in affecting the microbial dehalogenation of emergent organohalides, a critical detoxification process. In this study, we investigated the humic substance (HS)-mediated microbial dehalogenation of triclosan, a widely used antimicrobial agent. We found that the presence of HS stimulated the microbial degradation of triclosan by Shewanella putrefaciens CN-32. In the absence of HS, the triclosan was degraded gradually, achieving 8.6% residual at 8 days. With HS, the residual triclosan was below 2% after 4 days. Cl- was confirmed by ion chromatography analysis, but the dehalogenation processes and other byproducts warrant further investigations. The impact of HS on the degradation of triclosan was highly dependent on the concentration of HS. When the HS was below 15 mg/L, the degradation rate constant for triclosan increased with the organic carbon concentration. Beyond that point, the increased organic carbon concentration decreased the degradation of triclosan. Microbially pre-reduced HS abiotically reduced triclosan, testifying the electron shuttling processes. These results indicate that dissolved organic matter plays a dual role in regulating the degradation of triclosan: it mediates electron transport and inhibits the bioavailability through complexation. Such novel organic matter-mediated reactions for organohalides are important for evaluating the natural attenuation of emergent contaminants and designing cost-effective engineering treatment.

  11. Exposure to natural sources of radiation in Spain

    International Nuclear Information System (INIS)

    Quindos, L.S.; Fernandez, P.L.; Soto, J.

    1992-01-01

    Studies carried by us during last three years have produced a map of natural radiation for Spain. The map contains, by administrative region, the respective contributions of terrestrial gamma rays, both outdoors and indoors, cosmic rays and indoor radon. Terrestrial gamma rays have been measured outdoors 'in situ' in more than 1,000 locations. Data for indoor gamma rays were derived from the radioactivity content of more typical spanish building materials as also by 'in situ'measurements in approximately 100 houses. The cosmic ray component is calculated from latitude and altitude. Values for indoor radon exposure have been derived from a national survey and covering more than 2,000 individual measurements employing active and passive detectors. When account is taken of exposures elsewhere, the mean annual effective dose equivalent from these sources is evaluated. Doses from thoron decay products and internal exposure due to natural activity retained in the body from diet are not dealt with in this evaluation. (author)

  12. Predicting taxonomic and functional structure of microbial communities in acid mine drainage.

    Science.gov (United States)

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-06-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  13. Microbial ecology and biogeochemistry of continental Antarctic soils.

    Science.gov (United States)

    Cowan, Don A; Makhalanyane, Thulani P; Dennis, Paul G; Hopkins, David W

    2014-01-01

    The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbor microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths) possess a genetic capacity for nitrogen and carbon cycling, polymer degradation, and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  14. Isolation and Preparation of Nanoscale Bioapatites from Natural Sources: A Review

    Czech Academy of Sciences Publication Activity Database

    Šupová, Monika

    2014-01-01

    Roč. 14, č. 1 (2014), s. 546-563 ISSN 1533-4880 R&D Projects: GA ČR(CZ) GA106/09/1000 Institutional support: RVO:67985891 Keywords : bioapatites * calcium phosphate * hydroxyapatite * natural sources Subject RIV: JJ - Other Materials Impact factor: 1.556, year: 2014

  15. Natural Remediation at Savannah River Site

    International Nuclear Information System (INIS)

    Lewis, C. M.; Van Pelt, R.

    2002-01-01

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  16. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Directory of Open Access Journals (Sweden)

    Marie Ragon

    Full Text Available BACKGROUND: The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta and ascomycete fungi (Ascomycota dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. CONCLUSIONS/SIGNIFICANCE: Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in

  17. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single

  18. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general

  19. Summary of the co-ordinated research project on development, standardization and validation of nuclear based technologies for estimating microbial protein supply in ruminant livestock for improving productivity

    International Nuclear Information System (INIS)

    Jayasuriya, M.C.N.

    1999-01-01

    A major constraint to animal production in developing countries is poor nutrition due to inadequate or fluctuating nutrient supply. This results in low rates of reproduction and production as well as increased susceptibility to disease and mortality. Microbial cells formed as a result of rumen degradation of carbohydrates under anaerobic conditions are a major source of protein for ruminants. They provide the majority of the amino acids that the host animal requires for tissue maintenance, growth and production. In roughage-fed ruminants, micro-organisms are virtually the only source of protein. Therefore, a knowledge of the microbial contribution to the nutrition of the host animal is essential to developing feed supplementation strategies for improving ruminant production. While this factor has been recognized for many years, it has been extremely difficult to determine the microbial protein contribution to ruminant nutrition. The methods generally used for determining microbial protein production depend on the use of natural microbial markers such as RNA (ribonucleic acid) and DAPA (diamino-pimelic acid) or of isotopes 35 S, 15 N or 32 P. However, these methods involve surgical intervention such as post-rumen cannulation and complex procedures that require accurate and quantitative information on both digesta and microbial marker flow. A calorimetric technique using enzymatic procedures was developed for measuring purine derivatives (PD) in urine under a Technical Contract. With knowledge of the amount of PD excreted in the urine, the microbial protein supply to the host animal can be estimated. The principle of the method is that nucleic acids leaving the rumen are essentially of microbial origin. The nucleic acids are extensively digested in the small intestine and the resulting purines are absorbed

  20. New directions in coral reef microbial ecology.

    Science.gov (United States)

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. Applications of Microbial Enzymes in Food Industry

    Directory of Open Access Journals (Sweden)

    Binod Parameswaran

    2018-01-01

    Full Text Available The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  2. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants

    DEFF Research Database (Denmark)

    Mapari, Sameer Shamsuddin; Nielsen, Kristian Fog; Larsen, Thomas Ostenfeld

    2005-01-01

    The production of many currently authorized natural food colorants has a number of disadvantages, including a dependence on the supply of raw materials and variations in pigment extraction. Fungi provide a readily available alternative source of naturally derived food colorants that could easily...... be produced in high yields. The recent authorization of a fungal food colorant has fuelled research to explore the extraordinary chemical diversity and biodiversity of fungi for the biotechnological production of pigments as natural food colorants. These studies require an appropriate use of chernotaxonomic...... technology, in the future it should be possible to employ metabolic engineering to create microbial cell factories for the production of food colorants....

  3. Effects of Carbon in Flooded Paddy Soils: Implications for Microbial Activity and Arsenic Mobilization

    Science.gov (United States)

    Avancha, S.; Boye, K.

    2014-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (originating from erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Microbial activity will enhance or decrease the mobilization of arsenic depending on their metabolic pathways. Among the microbes naturally residing in the soil are denitrifying bacteria, sulfate reducers, metal reducers (Fe, Mn), arsenic reducers, methanogens, and fermenters, whose activity varies based on the presence of oxygen. The purpose of the experiment was to assess how different amendments affect the microbial activity and the arsenic mobilization during the transition from aerobic to anaerobic metabolism after flooding of naturally contaminated Cambodian soil. In a batch experiment, we investigated how the relative metabolic rate of naturally occurring microbes could vary with different types of organic carbon. The experiment was designed to measure the effects of various sources of carbon (dried rice straw, charred rice straw, manure, and glucose) on the microbial activity and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. All amendments were added based on the carbon content in order to add 0.036 g of carbon per vial. The soil was flooded with a 10mM TRIS buffer solution at pH 7.04 in airtight 25mL serum vials and kept at 25 °C. We prepared 14 replicates per treatment to sample both gas and solution. On each sampling point, the solution replicates were sampled destructively. The gas replicates continued on and were sampled for both gas and solution on the final day of the experiment. We measured pH, total arsenic, methane, carbon dioxide, and nitrous oxide at 8 hours, 1.5 days, 3.33 days, and 6.33 days from the start of the experiment.

  4. Microbial biotechnology addressing the plastic waste disaster.

    Science.gov (United States)

    Narancic, Tanja; O'Connor, Kevin E

    2017-09-01

    Oceans are a major source of biodiversity, they provide livelihood, and regulate the global ecosystem by absorbing heat and CO 2 . However, they are highly polluted with plastic waste. We are discussing here microbial biotechnology advances with the view to improve the start and the end of life of biodegradable polymers, which could contribute to the sustainable use of marine and coastal ecosystems (UN Sustainability development goal 14). © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Alterações na matéria orgânica e na biomassa microbiana em solo de mata natural submetido a diferentes manejos Changes in organic matter and in microbial biomass of a natural forest soil under different management

    Directory of Open Access Journals (Sweden)

    MILTON MARCHIORI JÚNIOR

    2000-06-01

    Full Text Available Avaliou-se, em um Latossolo Roxo, o efeito de diferentes formas de manejo do solo sobre a matéria orgânica do solo e na biomassa microbiana. Os tratamentos usados foram: mata natural; mata natural até 1976 e café até 1994 (amostragem na projeção da copa e na entrelinha; mata natural até 1976, café até 1991 e milho até 1994; mata natural até 1940, café até 1960, citros até 1978, e cana-de-açúcar até 1994 (amostragem na linha e na entrelinha. A mata natural apresentou os maiores valores de C orgânico no solo e na fração humina e os menores valores foram obtidos nas áreas com cana-de-açúcar, que apresentaram os maiores valores de C microbiano em relação à mata natural. O uso agrícola do solo aumentou a porcentagem de C orgânico na forma de ácidos húmicos e fúlvicos, em relação à mata natural. Em geral, o solo apresentou mais de 74% do C orgânico na forma de húmus residual.The effect of soil management on forms of carbon and microbial biomass was studied in a Typic Euthortox soil. The treatments tested were: natural forest; natural forest till 1976 and coffee till 1994 (sampling on the shoot projection and between lines ; natural forest till 1976, coffee till 1991 and corn till 1994; natural forest till 1940, coffee till 1960, citrus till 1978 and sugar cane till 1994 (sampling on the planting line and between lines . The treatment with sugar cane presented the largest values of microbial carbon in relation to the natural forest. The agricultural management of soil increased the percentage of organic carbon in humic and fulvic acids forms. The soil presented more than 74% of organic carbon in the form of residual humus.

  6. Microbial Forensics: A Scientific Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Keim, Paul

    2003-02-17

    Microorganisms have been used as weapons in criminal acts, most recently highlighted by the terrorist attack using anthrax in the fall of 2001. Although such ''biocrimes'' are few compared with other crimes, these acts raise questions about the ability to provide forensic evidence for criminal prosecution that can be used to identify the source of the microorganisms used as a weapon and, more importantly, the perpetrator of the crime. Microbiologists traditionally investigate the sources of microorganisms in epidemiological investigations, but rarely have been asked to assist in criminal investigations. A colloquium was convened by the American Academy of Microbiology in Burlington, Vermont, on June 7-9, 2002, in which 25 interdisciplinary, expert scientists representing evolutionary microbiology, ecology, genomics, genetics, bioinformatics, forensics, chemistry, and clinical microbiology, deliberated on issues in microbial forensics. The colloquium's purpose was to consider issues relating to microbial forensics, which included a detailed identification of a microorganism used in a bioattack and analysis of such a microorganism and related materials to identify its forensically meaningful source--the perpetrators of the bioattack. The colloquium examined the application of microbial forensics to assist in resolving biocrimes with a focus on what research and education are needed to facilitate the use of microbial forensics in criminal investigations and the subsequent prosecution of biocrimes, including acts of bioterrorism. First responders must consider forensic issues, such as proper collection of samples to allow for optimal laboratory testing, along with maintaining a chain of custody that will support eventual prosecution. Because a biocrime may not be immediately apparent, a linkage must be made between routine diagnosis, epidemiological investigation, and criminal investigation. There is a need for establishing standard operating

  7. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heejung [School of Earth and Environmental Sciences (BK21 SEES), Seoul National University, Seoul 151–747 (Korea, Republic of); Kaown, Dugin, E-mail: dugin1@snu.ac.kr [School of Earth and Environmental Sciences (BK21 SEES), Seoul National University, Seoul 151–747 (Korea, Republic of); Mayer, Bernhard [Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta (Canada); Lee, Jin-Yong [Department of Geology, Kangwon National University, Chuncheon 200–701 (Korea, Republic of); Hyun, Yunjung [Planning and Management Group, Korea Environment Institute, Sejong 339-007 (Korea, Republic of); Lee, Kang-Kun [School of Earth and Environmental Sciences (BK21 SEES), Seoul National University, Seoul 151–747 (Korea, Republic of)

    2015-11-15

    An integrated study based on hydrogeochemical, microbiological and dual isotopic approaches for nitrate and sulfate was conducted to elucidate sources and biogeochemical reactions governing groundwater contaminants in different seasons and under different land use in a basin of Korea. The land use in the study area is comprised of forests (58.0%), vegetable fields (27.6%), rice paddy fields (11.4%) and others (3.0%). The concentrations of NO{sub 3}–N and SO{sub 4}{sup 2−} in groundwater in vegetable fields were highest with 4.2–15.2 mg L{sup −1} and 1.6–19.7 mg L{sup −1} respectively, whereas under paddy fields NO{sub 3}–N concentrations ranged from 0 to 10.7 mg L{sup −1} and sulfate concentrations were ~ 15 mg L{sup −1}. Groundwater with high NO{sub 3}–N concentrations of > 10 mg L{sup −1} had δ{sup 15}N–NO{sub 3}{sup −} values ranging from 5.2 to 5.9‰ and δ{sup 18}O values of nitrate between 2.7 and 4.6‰ suggesting that the nitrate was mineralized from soil organic matter that was amended by fertilizer additions. Elevated concentrations of SO{sub 4}{sup 2−} with δ{sup 34}S–SO{sub 4}{sup 2−} values between 1 and 6‰ in aquifers in vegetable fields indicated that a mixture of sulfate from atmospheric deposition, mineralization of soil organic matter and from synthetic fertilizers is the source of groundwater sulfate. Elevated δ{sup 18}O–NO{sub 3}{sup −} and δ{sup 18}O–SO{sub 4}{sup 2−} values in samples collected from the paddy fields indicated that denitrification and bacterial sulfate reduction are actively occurring removing sulfate and nitrate from the groundwater. This was supported by high occurrences of denitrifying and sulfate reducing bacteria in groundwater of the paddy fields as evidenced by 16S rRNA pyrosequencing analysis. This study shows that dual isotope techniques combined with microbial data can be a powerful tool for identification of sources and microbial processes affecting NO{sub 3}{sup

  8. A Predictive Model for Microbial Counts on Beaches where Intertidal Sand is the Primary Source

    Science.gov (United States)

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K.; Solo-Gabriele, Helena M.; Wang, John D.; Fleming, Lora E.

    2015-01-01

    Human health protection at recreational beaches requires accurate and timely information on microbiological conditions to issue advisories. The objective of this study was to develop a new numerical mass balance model for enterococci levels on nonpoint source beaches. The significant advantage of this model is its easy implementation, and it provides a detailed description of the cross-shore distribution of enterococci that is useful for beach management purposes. The performance of the balance model was evaluated by comparing predicted exceedances of a beach advisory threshold value to field data, and to a traditional regression model. Both the balance model and regression equation predicted approximately 70% the advisories correctly at the knee depth and over 90% at the waist depth. The balance model has the advantage over the regression equation in its ability to simulate spatiotemporal variations of microbial levels, and it is recommended for making more informed management decisions. PMID:25840869

  9. Mercury-impacted scrap metal: Source and nature of the mercury.

    Science.gov (United States)

    Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent

  10. [Oxidation of sulfur-containing substrates by aboriginal and experimentally designed microbial communities].

    Science.gov (United States)

    Pivovarova, T A; Bulaev, A G; Roshchupko, P V; Belyĭ, A V; Kondrat'eva, T F

    2012-01-01

    Aboriginal and experimental (constructed of pure microbial cultures) communities of acidophilic chemolithotrophs have been studied. The oxidation of elemental sulfur, sodium thiosulfate, and potassium tetrathionate as sole sources of energy has been monitored. The oxidation rate of the experimental community is higher as compared to the aboriginal community isolated from a flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore. The degree of oxidation of the mentioned S substrates amounts to 17.91, 68.30, and 93.94% for the experimental microbial community and to 10.71, 56.03, and 79.50% for the aboriginal community, respectively. The degree of oxidation of sulfur sulfide forms in the ore flotation concentrate is 59.15% by the aboriginal microbial community and 49.40% by the experimental microbial community. Despite a higher rate of oxidation of S substrates as a sole source of energy by the experimental microbial community, the aboriginal community oxidizes S substrates at a higher rate in the flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore, from which it was isolated. Bacterial-chemical oxidation of the flotation concentrate by the aboriginal microbial community allows for the extraction of an additional 32.3% of gold from sulfide minerals, which is by 5.7% larger compared to the yield obtained by the experimental microbial community.

  11. Global Microbial Identifier

    DEFF Research Database (Denmark)

    Wielinga, Peter; Hendriksen, Rene S.; Aarestrup, Frank Møller

    2017-01-01

    ) will likely also enable a much better understanding of the pathogenesis of the infection and the molecular basis of the host response to infection. But the full potential of these advances will only transpire if the data in this area become transferable and thereby comparable, preferably in open-source...... of microorganisms, for the identification of relevant genes and for the comparison of genomes to detect outbreaks and emerging pathogens. To harness the full potential of WGS, a shared global database of genomes linked to relevant metadata and the necessary software tools needs to be generated, hence the global...... microbial identifier (GMI) initiative. This tool will ideally be used in amongst others in the diagnosis of infectious diseases in humans and animals, in the identification of microorganisms in food and environment, and to track and trace microbial agents in all arenas globally. This will require...

  12. Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment

    International Nuclear Information System (INIS)

    Zhu, Xiuping; Logan, Bruce E.

    2013-01-01

    Highlights: ► A new type of electro-Fenton system was developed for wastewater treatment. ► Degradation efficiency of organic pollutants was substantially improved. ► Operation cost was greatly reduced compared to other microbial fuel cell designs. -- Abstract: Electro-Fenton reactions can be very effective for organic pollutant degradation, but they typically require non-sustainable electrical power to produce hydrogen peroxide. Two-chamber microbial fuel cells (MFCs) have been proposed for pollutant treatment using Fenton-based reactions, but these types of MFCs have low power densities and require expensive membranes. Here, more efficient dual reactor systems were developed using a single-chamber MFC as a low-voltage power source to simultaneously accomplish H 2 O 2 generation and Fe 2+ release for the Fenton reaction. In tests using phenol, 75 ± 2% of the total organic carbon (TOC) was removed in the electro-Fenton reactor in one cycle (22 h), and phenol was completely degraded to simple and readily biodegradable organic acids. Compared to previously developed systems based on two-chamber MFCs, the degradation efficiency of organic pollutants was substantially improved. These results demonstrate that this system is an energy-efficient and cost-effective approach for industrial wastewater treatment of certain pollutants

  13. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in urban streams

    Science.gov (United States)

    Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.

    2017-12-01

    New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.

  14. Photosynthetic Microbial Mats are Exemplary Sources of Diverse Biosignatures (Invited)

    Science.gov (United States)

    Des Marais, D. J.; Jahnke, L. L.

    2013-12-01

    Marine cyanobacterial microbial mats are widespread, compact, self-contained ecosystems that create diverse biosignatures and have an ancient fossil record. Within the mats, oxygenic photosynthesis provides organic substrates and O2 to the community. Both the absorption and scattering of light change the intensity and spectral composition of incident radiation as it penetrates a mat. Some phototrophs utilize infrared light near the base of the photic zone. A mat's upper layers can become highly reduced and sulfidic at night. Counteracting gradients of O2 and sulfide shape the chemical environment and provide daily-contrasting microenvironments separated on a scale of a few mm. Radiation hazards (UV, etc.), O2 and sulfide toxicity elicit motility and other physiological responses. This combination of benefits and hazards of light, O2 and sulfide promotes the allocation of various essential mat processes between light and dark periods and to various depths in the mat. Associated nonphotosynthetic communities, including anaerobes, strongly influence many of the ecosystem's overall characteristics, and their processes affect any biosignatures that enter the fossil record. A biosignature is an object, substance and/or pattern whose origin specifically requires a biological agent. The value of a biosignature depends not only on the probability of life creating it, but also on the improbability of nonbiological processes producing it. Microbial mats create biosignatures that identify particular groups of organisms and also reveal attributes of the mat ecosystem. For example, branched hydrocarbons and pigments can be diagnostic of cyanobacteria and other phototrophic bacteria, and isoprenoids can indicate particular groups of archea. Assemblages of lipid biosignatures change with depth due to changes in microbial populations and diagenetic transformations of organic matter. The 13C/12C values of organic matter and carbonates reflect isotopic discrimination by particular

  15. The Role of Soil Organic Matter, Nutrients, and Microbial Community Structure on the Performance of Microbial Fuel Cells

    Science.gov (United States)

    Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.

    2011-12-01

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial

  16. Graphene-Based Flexible Micrometer-Sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.

    2013-10-23

    Microbial fuel cells harvest electrical energy produced by bacteria during the natural decomposition of organic matter. We report a micrometer-sized microbial fuel cell that is able to generate nanowatt-scale power from microliters of liquids. The sustainable design is comprised of a graphene anode, an air cathode, and a polymer-based substrate platform for flexibility. The graphene layer was grown on a nickel thin film by using chemical vapor deposition at atmospheric pressure. Our demonstration provides a low-cost option to generate useful power for lab-on-chip applications and could be promising to rapidly screen and scale up microbial fuel cells for water purification without consuming excessive power (unlike other water treatment technologies).

  17. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Zhang, Xiao-Tao; Hou, Du-Jie [China Univ. of Geosciences, Beijing (China). The Key Lab. of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism; She, Yue-Hui [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology; Li, Hua-Min [Beijing Bioscience Research Center (China); Shu, Fu-Chang; Wang, Zheng-Liang [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Yu, Long-Jiang [Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology

    2012-08-15

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. (orig.)

  18. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    Science.gov (United States)

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.

  19. INDIGO - INtegrated data warehouse of microbial genomes with examples from the red sea extremophiles.

    KAUST Repository

    Alam, Intikhab

    2013-12-06

    The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes.

  20. INDIGO - INtegrated data warehouse of microbial genomes with examples from the red sea extremophiles.

    KAUST Repository

    Alam, Intikhab; Antunes, André ; Kamau, Allan; Ba Alawi, Wail; Kalkatawi, Manal M.; Stingl, Ulrich; Bajic, Vladimir B.

    2013-01-01

    The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes.

  1. Characterization of fatty acid-producing wastewater microbial communities using next generation sequencing technologies

    Science.gov (United States)

    While wastewater represents a viable source of bacterial biodiesel production, very little is known on the composition of these microbial communities. We studied the taxonomic diversity and succession of microbial communities in bioreactors accumulating fatty acids using 454-pyro...

  2. Improvement of phosphorus availability by microbial phytase in broilers and pigs

    NARCIS (Netherlands)

    Simons, P.C.M.; Versteegh, H.A.J.; Jongbloed, A.W.; Kemme, P.A.; Slump, P.; Bos, K.D.; Wolters, M.G.E.; Beudeker, R.F.; Verschoor, G.J.

    2005-01-01

    Techniques have been developed to produce microbial phytase for addition to diets for simple-stomached animals, with the aim to improve phosphorus availability from phytate-P in plant sources. The activityof the crude microbial phytase showed pH optima at pH 5-5 and 2·5. The enzyme was able to

  3. Improved performance of microbial fuel cells enriched with natural microbial inocula and treated by electrical current

    International Nuclear Information System (INIS)

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun

    2013-01-01

    Microbial fuel cells (MFCs) are increasingly attracting attention as a sustainable technology as they convert chemical energy in organic wastes to electricity. In this study, the effects of different inoculum sources (river sediment, activated sludge and anaerobic sludge) and electrical current stimulation were evaluated using single-chamber air-cathode MFCs as model reactors based on performance in enrichment process and electrochemical characteristics of the reactors. The result revealed the rapid anodic biofilm development and substrate utilization of the anaerobic sludge-inoculated MFC. It was also found that the river sediment-inoculated MFC achieved the highest power output of 195 μW, or 98 mW m −2 , due to better developed anodic biofilm confirmed by scanning electron microscopy. The current stimulation enhanced the anodic biofilm attachment over time, and therefore reduced the MFC internal resistance by 27%, increased the electrical capacitance by four folds, and improved the anodic biofilm resilience against substrate deprivation. For mature MFCs, a transient application of a negative voltage (−3 V) improved the cathode activity and maximum power output by 37%. This improvement was due to the bactericidal effect of the electrode potential higher than +1.5 V vs. SHE, demonstrating a substantial benefit of treating MFC cathode after long-term operation using suitable direct electrical current. -- Highlights: •Voltage stimulation (+2 V) during inoculation reduced MFC internal resistance and improved biofilm resilience. •Voltage stimulation increased biofilm electrical capacitance by 5-fold. •Negative voltage stimulation (−3 V) enhanced the maximum power output by 37%. •River sediment MFC obtained higher power due to better anodic biofilm coverage. •Anaerobic sludge quickly developed anodic biofilm for MFC and quickly utilized volatile fatty acids

  4. Microbial mutualism at a distance: The role of geometry in diffusive exchanges

    Science.gov (United States)

    Peaudecerf, François J.; Bunbury, Freddy; Bhardwaj, Vaibhav; Bees, Martin A.; Smith, Alison G.; Goldstein, Raymond E.; Croze, Ottavio A.

    2018-02-01

    The exchange of diffusive metabolites is known to control the spatial patterns formed by microbial populations, as revealed by recent studies in the laboratory. However, the matrices used, such as agarose pads, lack the structured geometry of many natural microbial habitats, including in the soil or on the surfaces of plants or animals. Here we address the important question of how such geometry may control diffusive exchanges and microbial interaction. We model mathematically mutualistic interactions within a minimal unit of structure: two growing reservoirs linked by a diffusive channel through which metabolites are exchanged. The model is applied to study a synthetic mutualism, experimentally parametrized on a model algal-bacterial co-culture. Analytical and numerical solutions of the model predict conditions for the successful establishment of remote mutualisms, and how this depends, often counterintuitively, on diffusion geometry. We connect our findings to understanding complex behavior in synthetic and naturally occurring microbial communities.

  5. Conversion of rainforest into agroforestry and monoculture plantation in China: Consequences for soil phosphorus forms and microbial community.

    Science.gov (United States)

    Wang, Jinchuang; Ren, Changqi; Cheng, Hanting; Zou, Yukun; Bughio, Mansoor Ahmed; Li, Qinfen

    2017-10-01

    Microbial communities and their associated enzyme activities affect quantity and quality of phosphorus (P) in soils. Land use change is likely to alter microbial community structure and feedback on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to land use and shifts in the amount and quality of soil phosphorus (P). We investigated effects of the conversion of rainforests into rubber agroforests (AF), young rubber (YR), and mature rubber (MR) plantations on soil P fractions (i.e., labile P, moderately labile P, occluded P, Ca P, and residual P) in Hainan Island, Southern China. Microbial community composition and microbial enzyme were assayed to assess microbial community response to forest conversion. In addition, we also identified soil P fractions that were closely related to soil microbial and chemical properties in these forests. Conversion of forest to pure rubber plantations and agroforestry system caused a negative response in soil microorganisms and activity. The bacteria phospholipid fatty acid (PLFAs) levels in young rubber, mature rubber and rubber agroforests decreased after forest conversion, while the fungal PLFAs levels did not change. Arbuscular mycorrhizal fungi (AMF) (16:1w5c) had the highest value of 0.246μmol(gOC) -1 in natural forest, followed by rubber agroforests, mature rubber and young rubber. Level of soil acid phosphatase activity declined soon (5 years) after forest conversion compared to natural forest, but it improved in mature rubber and agroforestry system. Labile P, moderately labile P, occluded P and residual P were highest in young rubber stands, while moderately labile, occluded and residual P were lowest in rubber agroforestry system. Soil P fractions such as labile P, moderately labile P, and Ca P were the most important contributors to the variation in soil microbial community composition. We also found that soil P factions differ significantly among

  6. Lignicolous fungi as potential natural sources of antioxidants

    Directory of Open Access Journals (Sweden)

    Karaman Maja A.

    2005-01-01

    Full Text Available As a result of an interest in natural derived metabolites around the world higher fungi (Basidiomycotina have taken on great importance in biochemical investigations. A large number of structurally divergent compounds - both cellular components and secondary metabolites - have been extracted and found to possess significant biological activity, such as an immunomodulative effect on the human body. Effects of fungal biomolecules as potential natural antioxidants have not been examined so far. Biochemical analysis have included in vitro testing of the influence of different extracts (water methanol, chloroform of selected fungal sporocarps on Fe2+/ascorbate-induced lipid peroxidation (LP in a lecithin liposome system by TBA assay, as well as various other procedures. Qualitative analysis by TLC revealed a distinction both between different extracts of the same fungal species and between similar extracts of different species. The results obtained on antioxidative activities (LP inhibition and "scavenging" activity indicate that MeOH extracts manifested a degree of activity higher than that of CHCl3 extracts with respect to antioxidative activity, the extracts can be ranged in the following declining order: Ganoderma lucidum, Ganoderma applanatum Meripilus giganteus, and Flammulina velutipes. The obtained results suggest that the analyzed fungi are of potential interest as sources of strong natural antioxidants in the food and cosmetics industries, whereas synthetic ones have proved to be carcinogenic.

  7. Efficacy and Stability studies of microbial folate fortified fruit juices prepared using probiotic microorganism.

    Science.gov (United States)

    Deep, S; Ojha, S; Kundu, S

    2017-07-31

    Folate, natural form of water soluble vitamin folic acid, is significant for humans as involved in most important metabolic reactions i.e. nucleotide synthesis and amino acid inter conversions. Thus its deficiency causes neural tube defects in newborns and cardiovascular diseases, and cancers. Humans cannot synthesize folate de novo so consumption through diet is essential. Natural food sources, supplements and fortified food products are the choices available to complete the Daily recommended intake. However microbial fortification using probiotics recently gained wide attention due to dual advantage of natural food matrix with enhanced folate content along with the probiotics benefits. Current study was focused on the microbial fortification of fruit juices and their efficacy and stability studies. Freshly filtered orange and tomato juice was prepared and inoculated with Streptococcus thermophilus NCIM 2904. Incubation was done at 40°C and samples were collected at different time interval. Folate extraction was done using human plasma and content was measured by microbiological assay using Lactobacillus casei NCIM No. 2364. Efficacy and stability studies were carried out to ensure the quality of juices to be consumed in terms of folate content, viable cell count and pH after 4 weeks of storage at low temperature. Positive results were observed as folate content was quite stable whereas viable cell count was also found to be significant till some time without adding any preservatives. The results indicated that fortified fruit juices could be used as probiotic beverages with enhanced folate content.

  8. Microbial ecology and biogeochemistry of continental Antarctic soils

    Directory of Open Access Journals (Sweden)

    Don A Cowan

    2014-04-01

    Full Text Available The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbour microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths possess a genetic capacity for nitrogen and carbon cycling, polymer degradation and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  9. Employment of Near Full-Length Ribosome Gene TA-Cloning and Primer-Blast to Detect Multiple Species in a Natural Complex Microbial Community Using Species-Specific Primers Designed with Their Genome Sequences.

    Science.gov (United States)

    Zhang, Huimin; He, Hongkui; Yu, Xiujuan; Xu, Zhaohui; Zhang, Zhizhou

    2016-11-01

    It remains an unsolved problem to quantify a natural microbial community by rapidly and conveniently measuring multiple species with functional significance. Most widely used high throughput next-generation sequencing methods can only generate information mainly for genus-level taxonomic identification and quantification, and detection of multiple species in a complex microbial community is still heavily dependent on approaches based on near full-length ribosome RNA gene or genome sequence information. In this study, we used near full-length rRNA gene library sequencing plus Primer-Blast to design species-specific primers based on whole microbial genome sequences. The primers were intended to be specific at the species level within relevant microbial communities, i.e., a defined genomics background. The primers were tested with samples collected from the Daqu (also called fermentation starters) and pit mud of a traditional Chinese liquor production plant. Sixteen pairs of primers were found to be suitable for identification of individual species. Among them, seven pairs were chosen to measure the abundance of microbial species through quantitative PCR. The combination of near full-length ribosome RNA gene library sequencing and Primer-Blast may represent a broadly useful protocol to quantify multiple species in complex microbial population samples with species-specific primers.

  10. Shallow Aquifer Methane Gas Source Assessment

    Science.gov (United States)

    Coffin, R. B.; Murgulet, D.; Rose, P. S.; Hay, R.

    2014-12-01

    Shale gas can contribute significantly to the world's energy demand. Hydraulic fracturing (fracking) on horizontal drill lines developed over the last 15 years makes formerly inaccessible hydrocarbons economically available. From 2000 to 2035 shale gas is predicted to rise from 1% to 46% of the total natural gas for the US. A vast energy resource is available in the United States. While there is a strong financial advantage to the application of fracking there is emerging concern about environmental impacts to groundwater and air quality from improper shale fracking operations. Elevated methane (CH4) concentrations have been observed in drinking water throughout the United States where there is active horizontal drilling. Horizontal drilling and hydraulic-fracturing can increase CH4 transport to aquifers, soil and the vadose zone. Seepage can also result from casing failure in older wells. However, there is strong evidence that elevated CH4 concentrations can be associated with topographic and hydrogeologic features, rather than shale-gas extraction processes. Carbon isotope geochemistry can be applied to study CH4source(s) in shallow vadose zone and groundwater systems. A preliminary TAMU-CC isotope data set from samples taken at different locations in southern Texas shows a wide range of CH4 signatures suggesting multiple sources of methane and carbon dioxide. These data are interpreted to distinguish regions with methane contributions from deep-sourced horizontal drilling versus shallow system microbial production. Development of a thorough environmental assessment using light isotope analysis can provide understanding of shallow anthropogenic versus natural CH4sources and assist in identifying regions that require remedial actions.

  11. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction.

    Science.gov (United States)

    Murali Mohan, Arvind; Hartsock, Angela; Bibby, Kyle J; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  12. Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients

    Science.gov (United States)

    Shah, Syed Adnan Ali; Tan, Huey Ling; Sultan, Sadia; Mohd Faridz, Muhammad Afifi Bin; Mohd Shah, Mohamad Azlan Bin; Nurfazilah, Sharifah; Hussain, Munawar

    2014-01-01

    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids. PMID:25003642

  13. Nature and magnitude of the problem of spent radiation sources

    International Nuclear Information System (INIS)

    1991-09-01

    Various types of sealed radiation sources are widely used in industry, medicine and research. Virtually all countries have some sealed sources. The activity in the sources varies from kilobecquerels in consumer products to hundreds of pentabecquerels in facilities for food irradiation. Loss or misuse of sealed sources can give rise to accidents resulting in radiation exposure of workers and members of the general public, and can also give rise to extensive contamination of land, equipment and buildings. In extreme cases the exposure can be lethal. Problems of safety relating to spent radiation sources have been under consideration within the Agency for some years. The first objective of the project has been to prepare a comprehensive report reviewing the nature and background of the problem, also giving an overview of existing practices for the management of spent radiation sources. This report is the fulfilment of this first objective. The safe management of spent radiation sources cannot be studied in isolation from their normal use, so it has been necessary to include some details which are relevant to the use of radiation sources in general, although that area is outside the scope of this report. The report is limited to radiation sources made up of radioactive material. The Agency is implementing a comprehensive action plan for assistance to Member States, especially the developing countries, in all aspects of the safe management of spent radiation sources. The Agency is further seeking to establish regional or global solutions to the problems of long-term storage of spent radiation sources, as well as finding routes for the disposal of sources when it is not feasible to set up safe national solutions. The cost of remedial actions after an accident with radiation sources can be very high indeed: millions of dollars. If the Agency can help to prevent even one such single accident, the cost of its whole programme in this field would be more than covered. Refs

  14. Assessment of microbial processes on radionuclide mobility in shallow land burial

    International Nuclear Information System (INIS)

    Colombo, P.; Tate, R.L. III; Weiss, A.J.

    1982-07-01

    The impact of microbial metabolism of the organic substituents of low level radioactive wastes on radionuclide mobility in disposal sites, the nature of the microbial transformations involved in this metabolism and the effect of the prevailing environmental parameters on the quantities and types of metabolic intermediates accumulated were examined. Since both aerobic and anaerobic periods can occur during trench ecosystem development, oxidation capacities of the microbial community in the presence and absence of oxygen were analyzed. Results of gas studies performed at three commercial low level radioactive waste disposal sites were reviewed. Several deficiencies in available data were determined. Further research needs are suggested. This assessment has demonstrated that the biochemical capabilities expressed within the low level radioactive waste disposal site are common to a wide variety of soil bacteria. Hence, assuming trenches would not be placed in sites with such extreme abiotic conditions that all microbial activity is precluded, the microbial populations needed for colonization and decomposition of the organic waste substances are readily provided from the waste itself and from the soil of existing and any proposed disposal sites. Indeed, considering the ubiquity of occurrence of the microorganisms responsible for waste decomposition and the chemical nature of the organic waste material, long-term prevention of biodecomposition is difficult, if not impossible

  15. Natural radioactivity in some drinking water sources of coastal, northern, eastern and AlJazera regions in Syria

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Byrakdar, E.; Amin, Y.; Abu Baker, S.

    2003-01-01

    Naturally occurring radionuclides in drinking water sources of coastal, northern, eastern and AlJazera regions in Syria have been determined. Samples were collected during the year of 2000 at two periods from the main water sources, from which water being transported for drinking or from houses. Results have shown that most concentrations of the measured naturally occurring radionuclides ( 222 Rn, 222 Ra, 210 Po, 234 U, 238 U) were within the natural levels and below the higher permissible limits of International Organizations. In addition, variations in concentrations from region to another have been observed; these variations may be due to differences in geological formations and water sources (well, spring, surface water). Moreover, the obtained data in this study and other published data for other regions can be used for establishing the radiation map for natural radioactivity in drinking water in Syria. (author)

  16. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC GENETIC MARKERS IN HUMAN FECAL MICROBIAL COMMUNITIES

    Science.gov (United States)

    Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for mo...

  17. Natural selection promotes antigenic evolvability

    NARCIS (Netherlands)

    Graves, C.J.; Ros, V.I.D.; Stevenson, B.; Sniegowski, P.D.; Brisson, D.

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide

  18. Microbial contaminants in Pakistan: a review

    Directory of Open Access Journals (Sweden)

    Maida Kanwal

    2016-04-01

    Full Text Available Worldwide contamination of surface waters with microbial pathogens is of substantial health concern. These contaminants are usually transmitted by improper sanitation measures, unsafe waste disposal, excretions from patients, and physical contacts, i.e., sexual and nonsexual. Majority of these microbial pathogens have been categorized into three classes, i.e., bacteria, viruses and protozoa. Pakistan, being a developing country, is facing a noteworthy threat due to microbial contamination. In Pakistan, bacterial contaminants are reported extensively followed by viral and protozoa contaminants. The health issues associated with bacterial population includes dysentery, abdominal pain, headache, diarrhea etc.; and usually includes faecal and total coliforms, E. coli, Salmonella, Shigella and Campylobacter. The cases related to viral contamination are lesser but chronic and evidenced the presence of HCV, HAV, HEV viruses causing hepatitis, and other hepatic disorders. Lastly, the health impacts associated with protozoans are least reported; and a number of diseases such as giardia, cryptosporidium and toxoplasma have been linked with this class of contaminants. The current review compiles information of these biological contaminants along with their health issues in Pakistan. Moreover, potential sources and fate of microbial contaminants are also discussed.

  19. An analysis of the sponge Acanthostrongylophora igens’ microbiome yields an actinomycete that produces the natural product manzamine A

    Directory of Open Access Journals (Sweden)

    Amanda Leigh Waters

    2014-10-01

    Full Text Available Sponges have generated significant interest as a source of bioactive and elaborate secondary metabolites that hold promise for the development of novel therapeutics for the control of an array of human diseases. However, research and development of marine natural products can often be hampered by the difficulty associated with obtaining a stable and sustainable production source. Herein we report the first successful characterization and utilization of the microbiome of a marine invertebrate to identify a sustainable production source for an important natural product scaffold. Through molecular-microbial community analysis, optimization of fermentation conditions and MALDI-MS imaging, we provide the first report of a sponge-associated bacterium (Micromonospora sp. that produces the manzamine class of antimalarials from the Indo-Pacific sponge Acanthostrongylophora ingens (Thiele, 1899 (Class Demospongiae, Order Haplosclerida, Family Petrosiidae. These findings suggest that a general strategy of analysis of the macroorganism’s microbiome could significantly transform the field of natural products drug discovery by gaining access to not only novel drug leads, but the potential for sustainable production sources and biosynthetic genes at the same time.

  20. Microbial communities in bentonite formations and their interactions with uranium

    International Nuclear Information System (INIS)

    López-Fernández, Margarita; Fernández-Sanfrancisco, Omar; Moreno-García, Alberto; Martín-Sánchez, Inés; Sánchez-Castro, Iván; Merroun, Mohamed Larbi

    2014-01-01

    Highlights: • Microbial diversity of Spanish bentonites was studied. • High number of aerobe and facultative anaerobe microbes were isolated from bentonites. • Natural bentonite microbes are able to tolerate high U concentrations. • U is immobilized by the cells of the strain Rhodotorula mucilaginosa BII-R8 as U(VI) phosphates. - Abstract: A reliable performance assessment of deep geological disposal of nuclear waste depends on better knowledge of radionuclide interactions with natural microbes of geological formations (granitic rock, clay, salts) used to host these disposal systems. In Spain, clay deposits from Cabo de Gata region, Almeria, are investigated for this purpose. The present work characterizes the culture-dependent microbial diversity of two bentonite samples (BI and BII) recovered from Spanish clay deposits. The evaluation of aerobe and facultative anaerobe microbial populations shows the presence of a high number of cultivable bacteria (e.g. Stenotrophomonas, Micrococcus, Arthrobacter, Kocuria, Sphingomonas, Bacillus, Pseudomonas, etc.) affiliated to three phyla Proteobacteria, Actinobacteria, and Firmicutes. In addition, a pigmented yeast strain BII-R8 related to Rhodotorula mucilaginosa was also recovered from these formations. The minimal inhibitory concentrations of uranium for the growth of these natural isolates were found to range from 4 to 10.0 mM. For instance, strain R. mucilaginosa BII-R8 was shown to tolerate up to 8 mM of U. Flow cytometry studies indicated that the high U tolerance of this yeast isolate is a biologically mediated process. Microscopically dense intracellular and cell wall-bound precipitates were observed by Scanning Transmission Electron Microscopy-High-Angle Annular Dark-Field (STEM-HAADF). Energy Dispersive X-ray (EDX) element-distribution maps showed the presence of U and P within these accumulates, indicating the ability of cells to precipitate U as U(VI) phosphate minerals. Fundamental understanding of the

  1. Microbial communities in bentonite formations and their interactions with uranium

    Energy Technology Data Exchange (ETDEWEB)

    López-Fernández, Margarita; Fernández-Sanfrancisco, Omar; Moreno-García, Alberto; Martín-Sánchez, Inés; Sánchez-Castro, Iván; Merroun, Mohamed Larbi, E-mail: merroun@ugr.es

    2014-10-15

    Highlights: • Microbial diversity of Spanish bentonites was studied. • High number of aerobe and facultative anaerobe microbes were isolated from bentonites. • Natural bentonite microbes are able to tolerate high U concentrations. • U is immobilized by the cells of the strain Rhodotorula mucilaginosa BII-R8 as U(VI) phosphates. - Abstract: A reliable performance assessment of deep geological disposal of nuclear waste depends on better knowledge of radionuclide interactions with natural microbes of geological formations (granitic rock, clay, salts) used to host these disposal systems. In Spain, clay deposits from Cabo de Gata region, Almeria, are investigated for this purpose. The present work characterizes the culture-dependent microbial diversity of two bentonite samples (BI and BII) recovered from Spanish clay deposits. The evaluation of aerobe and facultative anaerobe microbial populations shows the presence of a high number of cultivable bacteria (e.g. Stenotrophomonas, Micrococcus, Arthrobacter, Kocuria, Sphingomonas, Bacillus, Pseudomonas, etc.) affiliated to three phyla Proteobacteria, Actinobacteria, and Firmicutes. In addition, a pigmented yeast strain BII-R8 related to Rhodotorula mucilaginosa was also recovered from these formations. The minimal inhibitory concentrations of uranium for the growth of these natural isolates were found to range from 4 to 10.0 mM. For instance, strain R. mucilaginosa BII-R8 was shown to tolerate up to 8 mM of U. Flow cytometry studies indicated that the high U tolerance of this yeast isolate is a biologically mediated process. Microscopically dense intracellular and cell wall-bound precipitates were observed by Scanning Transmission Electron Microscopy-High-Angle Annular Dark-Field (STEM-HAADF). Energy Dispersive X-ray (EDX) element-distribution maps showed the presence of U and P within these accumulates, indicating the ability of cells to precipitate U as U(VI) phosphate minerals. Fundamental understanding of the

  2. Water Sources and Their Protection from the Impact of Microbial Contamination in Rural Areas of Beijing, China

    Directory of Open Access Journals (Sweden)

    Hairong Li

    2013-03-01

    Full Text Available Bacterial contamination of drinking water is a major public health problem in rural China. To explore bacterial contamination in rural areas of Beijing and identify possible causes of bacteria in drinking water samples, water samples were collected from wells in ten rural districts of Beijing, China. Total bacterial count, total coliforms and Escherichia coli in drinking water were then determined and water source and wellhead protection were investigated. The bacterial contamination in drinking water was serious in areas north of Beijing, with the total bacterial count, total coliforms and Escherichia coli in some water samples reaching 88,000 CFU/mL, 1,600 MPN/100 mL and 1,600 MPN/100 mL, respectively. Water source types, well depth, whether the well was adequately sealed and housed, and whether wellhead is above or below ground were the main factors influencing bacterial contamination levels in drinking water. The bacterial contamination was serious in the water of shallow wells and wells that were not closed, had no well housing or had a wellhead below ground level. The contamination sources around wells, including village dry toilets and livestock farms, were well correlated with bacterial contamination. Total bacterial counts were affected by proximity to sewage ditches and polluting industries, however, proximity to landfills did not influence the microbial indicators.

  3. Microbial desalination cells for energy production and desalination

    KAUST Repository

    Kim, Younggy; Logan, Bruce E.

    2013-01-01

    Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving

  4. The Role of Natural Products in Drug Discovery and Development against Neglected Tropical Diseases

    Directory of Open Access Journals (Sweden)

    Peter Mubanga Cheuka

    2016-12-01

    Full Text Available Endemic in 149 tropical and subtropical countries, neglected tropical diseases (NTDs affect more than 1 billion people annually, including 875 million children in developing economies. These diseases are also responsible for over 500,000 deaths per year and are characterized by long-term disability and severe pain. The impact of the combined NTDs closely rivals that of malaria and tuberculosis. Current treatment options are associated with various limitations including widespread drug resistance, severe adverse effects, lengthy treatment duration, unfavorable toxicity profiles, and complicated drug administration procedures. Natural products have been a valuable source of drug regimens that form the cornerstone of modern pharmaceutical care. In this review, we highlight the potential that remains untapped in natural products as drug leads for NTDs. We cover natural products from plant, marine, and microbial sources including natural-product-inspired semi-synthetic derivatives which have been evaluated against the various causative agents of NTDs. Our coverage is limited to four major NTDs which include human African trypanosomiasis (sleeping sickness, leishmaniasis, schistosomiasis and lymphatic filariasis.

  5. Review on production, characterization and applications of microbial levan.

    Science.gov (United States)

    Srikanth, Rapala; Reddy, Chinta H S S Sundhar; Siddartha, Gudimalla; Ramaiah, M Janaki; Uppuluri, Kiran Babu

    2015-04-20

    Levan is a homopolymer of fructose naturally obtained from both plants and microorganisms. Microbial levans are more advantageous, economical and industrially feasible with numerous applications. Bacterial levans are much larger than those produced by plants with multiple branches and molecular weights ranging from 2 to 100 million Da. However levans from plants generally have molecular weights ranging from about 2000 to 33,000 Da. Microbial levans have wide range of applications in food, medicine, pharmaceutical, cosmetic and commercial industrial sectors. With excellent polymeric medicinal properties and ease of production, microbial levan appear as a valuable and versatile biopolymer of the future. The present article summarizes and discusses the most essential properties of bioactive microbial levan and recent developments in its production, characterization and the emerging applications in health and industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A Requirements-Based Exploration of Open-Source Software Development Projects--Towards a Natural Language Processing Software Analysis Framework

    Science.gov (United States)

    Vlas, Radu Eduard

    2012-01-01

    Open source projects do have requirements; they are, however, mostly informal, text descriptions found in requests, forums, and other correspondence. Understanding such requirements provides insight into the nature of open source projects. Unfortunately, manual analysis of natural language requirements is time-consuming, and for large projects,…

  7. Cranberry: A good source of natural antioxidants

    Directory of Open Access Journals (Sweden)

    Tumbas Vesna T.

    2006-01-01

    Full Text Available The influence of extracts of cranbeny fruit and mixed tea (containing 40% cranberry on stable 1,1-diphenyl-2-picrylhydrazyl (DPPH radicals has been investigated by electron spin resonance (ESR spectroscopy. All investigated extracts possess very high antioxidant activity, which increased dose-dependently at mass concentrations ranging from 0.5 to 3.5 mg/ml. The high contents of phenolic s (3.60-4.52 mg/g, anthocyanins (0.23-1.52 mg/g, flavan-3-ols (1.25-3.05 mg/g and vitamin C (0.07-0.15 mg/g in investigated extracts indicated that these compounds significantly contributed to the antioxidant activity. All these results show that the extracts of cranberry fruit and mixed tea can be used as easily accessible source of natural antioxidants and as a possible food supplement.

  8. Microbial pattern of pressure ulcer in pediatric patients

    Science.gov (United States)

    Paramita, D. A.; Khairina; Lubis, N. Z.

    2018-03-01

    Pressure ulcer (PU) is a localized trauma to the skin and or tissue beneath which lies in bony prominence due to pressure or pressure that combines with a sharp surface. Several studies have found that PU is a common problem in pediatrics population. Infection at the site of a PU is the most common complication in which the PU may host a resistant microorganism and may turn into a local infection that will be the source of bacteremia in hospitalized patients. To reveal which is the most common microbial species that underlie in pressure ulcer of pediatrics patients.A cross-sectional study was conducted in July-September 2017, involving 18 PU pediatric patients in Haji Adam Malik Hospital. To each subject, swab culture from the ulcer was madein microbial laboratory in Haji Adam Malik Hospital to determine the microbial pattern. This study found that the most common microbial pattern in pressure ulcers of pediatrics patient in Haji Adam Malik Hospital is Acinetobacter baumannii (22.2%).

  9. Effect of oil spill on the microbial population in Andaman Sea around Nicobar Island

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, R.

    The microbial studiees of the follow up cruise by FORV Sagar Sampada (cruise No. 113), 9 months after the oil spill in the Andaman Sea due to accident of VLCC Maersk Navigator revealed disturbance in the natural microbial population. Higher...

  10. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie; Lantz, Anna Eliasson

    2015-06-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.

  11. Bioprospecting Deep-Sea Actinobacteria for Novel Anti-infective Natural Products

    Directory of Open Access Journals (Sweden)

    Dongbo Xu

    2018-04-01

    Full Text Available The global prevalence of drug resistance has created an urgent need for the discovery of novel anti-infective drugs. The major source of antibiotics in current clinical practice is terrestrial actinobacteria; the less-exploited deep-sea actinobacteria may serve as an unprecedented source of novel natural products. In this study, we evaluated 50 actinobacteria strains derived from diverse deep water sponges and environmental niches for their anti-microbial activities against a panel of pathogens including Candida albicans, Clostridium difficile, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA, and Pseudomonas aeruginosa. More than half of the tested strains (27 were identified as active in at least one assay. The rare earth salt lanthanum chloride (LaCl3 was shown to be as an effective elicitor. Among the 27 strains, the anti-microbial activity of 15 were induced or enhanced by the addition of LaCl3. This part of study focused on one strain R818, in which potent antifungal activity was induced by the addition of LaCl3. We found that the LaCl3-activated metabolites in R818 are likely antimycin-type compounds. One of them, compound 1, has been purified. Spectroscopic analyses including HR-MS and 1D NMR indicated that this compound is urauchimycin D. The antifungal activity of compound 1 was confirmed with a minimal inhibitory concentration (MIC of 25 μg/mL; the purified compound also showed a moderate activity against C. difficile. Additional notable strains are: strain N217 which showed both antifungal and antibacterial (including P. aeruginosa activities and strain M864 which showed potent activity against C. difficile with an MIC value (0.125 μg/mL lower than those of vancomycin and metronidazole. Our preliminary studies show that deep-sea actinobacteria is a promising source of anti-infective natural products.

  12. Microbial photosynthesis in the harnessing of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Pirt, S J

    1982-01-01

    The shortage of fossil fuels restricts the world supply of reduced carbon compounds and energy sources. Biotechnology offers the most feasible route to renewing the supplies of reduced carbon compounds. This involves recycling of CO/sub 2/ through photosynthesis. Conventional agriculture has little or no potential for supplying biomass and its derivatives on sufficient scale to offer an alternative to the fossil fuels. The agricultural wastes, on the whole, are intractable to conversion into useful carbon and energy sources and in any case are not available in amounts to provide a significant alternative to the fossil fuels. In contrast, microbial photosynthesis, optimised in photobioreactors, has vast potential to provide organic matter on a scale to match the consumption of fossil fuels. The quantative study of microbial photosynthesis as a biotechnological route to biomass has been neglected. As a result there is a chaos of conflicting data on fundamental parameters, for example, the photosynthetic efficiency of biomass production. New photosynthetic biotechnology with fully controlled continuous-culture systems is providing unequivocal values for the parameters. For the scale-up of microbial photosynthesis a tubular-loop reactor is proposed. (Refs. 14).

  13. Microbial enhancement of compost extracts based on cattle rumen content compost - characterisation of a system.

    Science.gov (United States)

    Shrestha, Karuna; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Midmore, David J

    2011-09-01

    Microbially enhanced compost extracts ('compost tea') are being used in commercial agriculture as a source of nutrients and for their perceived benefit to soil microbiology, including plant disease suppression. Rumen content material is a waste of cattle abattoirs, which can be value-added by conversion to compost and 'compost tea'. A system for compost extraction and microbial enhancement was characterised. Molasses amendment increased bacterial count 10-fold, while amendment based on molasses and 'fish and kelp hydrolysate' increased fungal count 10-fold. Compost extract incubated at 1:10 (w/v) dilution showed the highest microbial load, activity and humic/fulvic acid content compared to other dilutions. Aeration increased the extraction efficiency of soluble metabolites, and microbial growth rate, as did extraction of compost without the use of a constraining bag. A protocol of 1:10 dilution and aerated incubation with kelp and molasses amendments is recommended to optimise microbial load and fungal-to-bacterial ratio for this inoculum source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effect of Carbohydrate Sources and Levels of Cotton Seed Meal in Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Young Dairy Bulls

    Directory of Open Access Journals (Sweden)

    M. Wanapat

    2013-04-01

    Full Text Available The objective of this study was to investigate the effect of levels of cottonseed meal with various carbohydrate sources in concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in dairy bulls. Four, 6 months old dairy bulls were randomly assigned to receive four dietary treatments according to a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A was carbohydrate source; cassava chip (CC and cassava chip+rice bran in the ratio of 3:1 (CR3:1, and factor B was cotton seed meal levels in the concentrate; 109 g CP/kg (LCM and 328 g CP/kg (HCM at similar overall CP levels (490 g CP/kg. Bulls received urea-lime treated rice straw ad libitum and were supplemented with 10 g of concentrate/kg BW. It was found that carbohydrate source and level of cotton seed meal did not have significant effects on ruminal pH, ammonia nitrogen concentration, microbial protein synthesis or feed intake. Animals which received CC showed significantly higher BUN concentration, ruminal propionic acid and butyric acid proportions, while dry matter, organic matter digestibility, populations of total viable bacteria and proteolytic bacteria were lower than those in the CR3:1 treatment. The concentration of total volatile fatty acids was higher in HCM than LCM treatments, while the concentration of butyric acid was higher in LCM than HCM treatments. The population of proteolytic bacteria with the LCM treatments was higher than the HCM treatments; however other bacteria groups were similar among the different levels of cotton seed meal. Bulls which received LCM had higher protein digestibility than those receiving HCM. Therefore, using high levels of cassava chip and cotton seed meal might positively impact on energy and nitrogen balance for the microbial population in the rumen of the young dairy bull.

  15. Microbial mineral illization of montmorillonite in low-permeability oil reservoirs for microbial enhanced oil recovery.

    Science.gov (United States)

    Cui, Kai; Sun, Shanshan; Xiao, Meng; Liu, Tongjing; Xu, Quanshu; Dong, Honghong; Wang, Di; Gong, Yejing; Sha, Te; Hou, Jirui; Zhang, Zhongzhi; Fu, Pengcheng

    2018-05-11

    Microbial mineral illization has been investigated for its role in the extraction and recovery of metals from ores. Here we report our application of mineral bioillization for the microbial enhanced oil recovery in low-permeability oil reservoirs. It aimed to reveal the etching mechanism of the four Fe (III)-reducing microbial strains under anaerobic growth conditions on the Ca-montmorillonite. The mineralogical characterization of the Ca-montmorillonite was performed by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and energy dispersive spectrometer. Results showed that the microbial strains could efficiently reduce Fe (III) at an optimal rate of 71 %, and alter the crystal lattice structure of the lamella to promote the interlayer cation exchange, and to efficiently inhibit the Ca-montmorillonite swelling at an inhibitory rate of 48.9 %. Importance Microbial mineral illization is ubiquitous in the natural environment. Microbes in low-permeability reservoirs are able to enable the alteration of the structure and phase of the Fe-poor minerals by reducing Fe (III) and inhibiting clay swelling which is still poorly studied. This study aimed to reveal the interaction mechanism between Fe (III)-reducing bacterial strains and Ca-montmorillonite under anaerobic atmosphere, and to investigate the extent and rates of Fe (III) reduction and phase changes with their activities. Application of Fe (III)-reducing bacteria will provide a new way to inhibit clay swelling, to elevate reservoir permeability, and to reduce pore throat resistance after water flooding for enhanced oil recovery in low-permeability reservoirs. Copyright © 2018 American Society for Microbiology.

  16. Microbial Diversity in Soil Treatment Systems for Wastewater

    Science.gov (United States)

    Van Cuyk, S.; Spear, J.; Siegrist, R.; Pace, N.

    2002-05-01

    There is an increasing awareness and concern over land based wastewater system performance with respect to the removal of bacteria and virus. The goal of this work is to describe and identify the organismal composition of the microbiota in the applied wastewater effluent, the rich biomat that develops at the infiltrative surface, and in the soil percolate in order to aid in the understanding of bacterial and virus purification in soil treatment systems. The traditional reliance on pure culture techniques to describe microbiota is circumvented by the employment of a molecular approach. Microbial community characterization is underway based on cloning and sequencing of 16S rRNA genes for phylogenetic analyses, to determine the nature and quantity of microbiota that constitute these ecosystems. Knowledge of the organisms naturally present can influence the design and treatment capacity of these widely used land based systems. Laboratory, intermediate and field scale systems are currently under study. Since human pathogens are known to exist in sewage effluents, their removal in wastewater infiltration systems and within the underlying soil are in need of a more fundamental understanding. The relationship between design parameters and environmental conditions, including a microbial characterization, is essential for the prevention of contamination in groundwater sources. Preliminary results indicate the presence of uncultured organisms and phylogenetic kinds that had not been detected in these systems using other methods. Acinetobacter johnsonii and Acrobacter cryaerophilus were the two dominant species found in septic tank effluent, comprising 20% and 11% of the library respectively. In soil samples collected from the infiltrative surface of a column dosed with STE, there was no dominant bacterial species present. Percolate samples collected from the outflow of the column showed that a tuber borchii symbiont, a common soil microorganism, dominated the bacterial

  17. Using Deep UV Raman Spectroscopy to Identify In Situ Microbial Activity

    Science.gov (United States)

    Sapers, H. M.; Wanger, G.; Amend, J.; Orphan, V. J.; Bhartia, R.

    2017-12-01

    Microbial communities living in close association with lithic substrates play a critical role in biogeochemical cycles. Understanding the interactions between microorganisms and their abiotic substrates requires knowledge of microbial activity. Identifying active cells adhered to complex environmental substrates, especially in low biomass systems, remains a challenge. Stable isotope probing (SIP) provides a means to trace microbial activity in environmental systems. Active members of the community take up labeled substrates and incorporate the labels into biomolecules that can be detected through downstream analyses. Here we show for the first time that Deep UV (248 nm) Raman spectroscopy can differentiate microbial cells labeled with stable isotopes. Previous studies have used Raman spectroscopy with a 532 nm source to identify active bacterial cells by measuring a Raman shift between peaks corresponding to amino acids incorporating 13C compared to controls. However, excitation at 532 nm precludes detection on complex substrates due to high autofluorescence of native minerals. Excitation in the DUV range offers non-destructive imaging on mineral surfaces - retaining critical contextual information. We prepared cultures of E. coli grown in 50 atom% 13C glucose spotted onto Al wafers to test the ability of DUV Raman spectroscopy to differentiate labeled and unlabeled cells. For the first time, we are able to demonstrate a distinct and repeatable shift between cells grown in labeled media and unlabeled media when imaged on Al wafers with DUV Raman spectroscopy. The Raman spectra are dominated by the characteristic Raman bands of guanine. The dominant marker peak for guanine attributed to N7-C8 and C8-N9 ring stretching and C8-H in-plane bending, is visible at 1480 cm-1 in the unlabeled cells and is blue-shifted by 20 wavenumbers to 1461 cm-1 in the labeled cells. The ability of DUV Raman to effectively identify regions containing cells that have incorporated isotopic

  18. Effects of gene-augmentation on the formation, characteristics and microbial community of 2,4-dichlorophenoxyacetic acid degrading aerobic microbial granules

    International Nuclear Information System (INIS)

    Quan, Xiang-chun; Ma, Jing-yun; Xiong, Wei-cong; Yang, Zhi-feng

    2011-01-01

    Highlights: ► The first study to cultivate aerobic granules capable of utilizing 2,4-D as the sole carbon source. ► Granules cultivated through gene-augmentation were first compared systematically with the control on granule formation, degradation kinetics, morphology, and microbial community. ► The first report on the fate of transconjugats in the granules during long term operation after bioaugmentation. ► The first study to isolate in dominant bacteria in 2,4-D degrading microbial granules. - Abstract: Development of 2,4-dichlorophenoxyacetic acid (2,4-D) degrading aerobic granular sludge was conducted in two sequencing batch reactors (SBR) with one bioaugmented with a plasmid pJP4 donor strain Pseudomonas putida SM1443 and the other as a control. Half-matured aerobic granules pre-grown on glucose were used as the starting seeds and a two-stage operation strategy was applied. Granules capable of utilizing 2,4-D (about 500 mg/L) as the sole carbon source was successfully cultivated in both reactors. Gene-augmentation resulted in the enhancement of 2,4-D degradation rates by the percentage of 65–135% for the granules on Day 18, and 6–24% for the granules on Day 105. Transconjugants receiving plasmid pJP4 were established in the granule microbial community after bioaugmentation and persisted till the end of operation. Compared with the control granules, the granules in the bioaugmented reactor demonstrated a better settling ability, larger size, more abundant microbial diversity and stronger tolerance to 2,4-D. The finally obtained granules in the bioaugmented and control reactor had a granule size of around 600 μm and 500 μm, a Shannon–Weaver diversity index (H) of 0.96 and 0.55, respectively. A shift in microbial community was found during the granulation process.

  19. The nature of the EGRET source 3EG J1621+8203

    International Nuclear Information System (INIS)

    Mukherjee, R.; Stern, D.; Halpern, J.; Mirabal, N.; Gotthelf, E.V.

    2001-01-01

    We present broad-band observations of 3EG J1621+8203 in an effort to understand the nature of this source. We have examined X-ray images of the field from the ROSAT PSPC, ROSAT HRI, and ASCA GIS to search for a possible counterpart to the EGRET source. We find several faint X-ray point sources in the gamma-ray error circle. Preliminary analysis indicates that most of the point sources correspond to stars or to faint radio sources. Of the nearly 40% identified sources in the 3EG Catalog, the vast majority are blazars, but there is no blazer candidate in the error circle of 3EG J1621+8203. Of the notable objects in the EGRET error circle, one is the bright FR I radio galaxy NGC 6251 at a redshift of 0.0249. If NGC 6251 is the counterpart to the EGRET source 3EG J1621+8203, then it would be the second radio galaxy to be detected by EGRET. The first was Centaurus A. Cen A provided the first clear evidence of the detection above 100 MeV of an AGN with a large-inclination jet. If the identification with NGC 6251 is correct, the apparent gamma-ray luminosity of 3EG J1621+8203 is lower than that of other EGRET blazars; just as in the case of Cen A

  20. Investigating Microbial Biofilm Formations on Crustal Rock Substrates

    Science.gov (United States)

    Weiser, M.; D'Angelo, T.; Carr, S. A.; Orcutt, B.

    2017-12-01

    Ocean crust hosts microbial life that, in some cases, alter the component rocks as a means of obtaining energy. Variations in crust lithology, included trace metal and mineral content, as well as the chemistry of the fluids circulating through them, provide substrates for some microbes to metabolize, leading to formation of biofilm community structures. Microbes have different parameters for the situations in which they will form biofilms, but they must have some source of energy in excess at the site of biofilm formation for them to become stationary and form the carbohydrate-rich structures connecting the cells to one another and the substrate. Generally, the requirements for microbes to form biofilms on crustal minerals are unclear. We designed two experiments to test (1) mineral preference and biofilm formation rates by natural seawater microbial communities, and (2) biofilm development as a function of phosphate availability for an organism isolated from subseafloor ocean crust. In Experiment 1, we observed that phyric basalt groundmass is preferentially colonized over aphyric basalt or metal sulfides in a shallow water and oxic seawater environment. In experiment 2, tests of the anaerobic heterotroph Thalassospira bacteria isolated from oceanic crustal fluids showed that they preferentially form biofilms, lose motility, and increase exponentially in number over time in higher-PO4 treatments (50 micromolar), including with phosphate-doped basalts, than in treatments with low phosphate concentrations (0.5 micromolar) often found in crustal fluids. These observations suggest phosphate as a main driver of biofilm formation in subsurface crust. Overall, these data suggest that the drivers of microbial biofilm formation on crustal substrates are selective to the substrate conditions, which has important implications for estimating the global biomass of life harbored in oceanic crust.

  1. Internalisation of microbes in vegetables: microbial load of Ghanaian vegetables and the relationship with different water sources of irrigation.

    Science.gov (United States)

    Donkor, Eric S; Lanyo, R; Kayang, Boniface B; Quaye, Jonathan; Edoh, Dominic A

    2010-09-01

    The occurrence of pathogens in the internal parts of vegetables is usually associated with irrigation water or contaminated soil and could pose risk to consumers as the internalised pathogens are unaffected by external washing. This study was carried out to assess the rate of internalisation of microbes in common Ghanaian vegetables. Standard microbiological methods were employed in microbial enumeration of vegetables collected at the market and farm levels, as well as irrigation water and soil samples. The overall mean counts of vegetables were 4.0 x 10(3) cfu g(-1); 8.1 x 10(2) cfu g(-1); 2.0 x 10(2) cfu g(-1); 3.5 x 10(2) cfu g(-1) for total bacteria, coliform counts, faecal coliform counts and yeast counts, respectively. The rate of internalisation of coliforms in vegetables irrigated with stream/well water was 2.7 times higher than those irrigated with pipe water. The mean coliform counts (4.7 x 10(7) cfu g(-1)) and faecal coliform counts (1.8 x 10(6) cfu g(-1)) of soil samples were similar to those of stream water suggesting both sources exerted similar contamination rates on the vegetables. Generally, there were no significant variations between the rates of internalisation of microbes at the market and farm levels at p vegetables mainly occurred at the farm level. The study has shown that microbial contamination of vegetables in Ghana is not limited to the external surface, but internal vegetable parts could harbour high microbial loads and pose risk to consumers. Safety practices associated with the commodity should therefore not be limited to external washing only. There is the additional need of heating vegetables to eliminate microbes both externally and internally before consumption.

  2. FATTY ACID STABLE ISOTOPE INDICATORS OF MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    Science.gov (United States)

    The soil microbial community plays an important role in tropical ecosystem functioning because of its importance in the soil organic matter (SOM) cycle. We have measured the stable carbon isotopic ratio (delta13C) of individual phospholipid fatty acids (PLFAs) in a variety of tr...

  3. The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Or, D.; Gulez, Gamze

    2008-01-01

    Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless, no experim....... The PSM constitutes a tool uniquely adapted to study the influence of liquid film geometry on microbial processes. It should therefore contribute to uncovering mechanisms of microbial adaptation to unsaturated environments.......Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless......, no experimental systems are available that allow real-time observation of bacterial processes in liquid films of controlled thickness. We propose a novel, inexpensive, easily operated experimental platform, termed the porous surface model (PSM) that enables quantitative real-time microscopic observations...

  4. Investigation of Seismic Waves from Non-Natural Sources: A Case Study for Building Collapse and Surface Explosion

    Science.gov (United States)

    Houng, S.; Hong, T.

    2013-12-01

    The nature and excitation mechanism of incidents or non-natural events have been widely investigated using seismological techniques. With introduction of dense seismic networks, small-sized non-natural events such as building collapse and chemical explosions are well recorded. Two representative non-natural seismic sources are investigated. A 5-story building in South Korea, Sampoong department store, was collapsed in June 25, 1995, causing casualty of 1445. This accident is known to be the second deadliest non-terror-related building collapse in the world. The event was well recorded by a local station in ~ 9 km away. P and S waves were recorded weak, while monotonic Rayleigh waves were observed well. The origin time is determined using surface-wave arrival time. The magnitude of event is determined to be 1.2, which coincides with a theoretical estimate based on the mass and volume of building. Synthetic waveforms are modeled for various combinations of velocity structures and source time functions, which allow us to constrain the process of building collapse. It appears that the building was collapsed once within a couple of seconds. We also investigate a M2.1 chemical explosion at a fertilizer plant in Texas on April 18, 2013. It was reported that more than one hundred people were dead or injured by the explosion. Seismic waveforms for nearby stations are collected from Incorporated Research Institution of Seismology (IRIS). The event was well recorded at stations in ~500 km away from the source. Strong acoustic signals were observed at stations in a certain great-circle direction. This observation suggests preferential propagation of acoustic waves depending on atmospheric environment. Waveform cross-correlation, spectral analysis and waveform modeling are applied to understand the source physics. We discuss the nature of source and source excitation mechanism.

  5. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    Science.gov (United States)

    Jahnke, Linda L.; Embaye, Tsege; Turk, Kendra A.

    2003-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments where microorganisms had virtually no competition apart from the harsh conditions of hypersalinity, desiccation and intense light. Today, the modern counterparts of these microbial ecosystems find appropriate niches in only a few places where extremes eliminate eukaryotic grazers. Answers to many outstanding questions about the evolution of microorganisms and their environments on early Earth are best answered through study of these extant analogs. Lipids associated with various groups of bacteria can be valuable biomarkers for identification of specific groups of microorganisms both in ancient organic-rich sedimentary rocks (geolipids) and contemporary microbial communities (membrane lipids). Use of compound specific isotope analysis adds additional refinement to the identification of biomarker source, so that it is possible to take advantage of the 3C-depletions associated with various functional groups of organisms (i.e. autotrophs, heterotrophs, methanotrophs, methanogens) responsible for the cycling of carbon within a microbial community. Our recent work has focused on a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico which support the abundant growth of Microcoleus-dominated microbial mats. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface.

  6. Diverse origins of Arctic and Subarctic methane point source emissions identified with multiply-substituted isotopologues

    Science.gov (United States)

    Douglas, P. M. J.; Stolper, D. A.; Smith, D. A.; Walter Anthony, K. M.; Paull, C. K.; Dallimore, S.; Wik, M.; Crill, P. M.; Winterdahl, M.; Eiler, J. M.; Sessions, A. L.

    2016-09-01

    Methane is a potent greenhouse gas, and there are concerns that its natural emissions from the Arctic could act as a substantial positive feedback to anthropogenic global warming. Determining the sources of methane emissions and the biogeochemical processes controlling them is important for understanding present and future Arctic contributions to atmospheric methane budgets. Here we apply measurements of multiply-substituted isotopologues, or clumped isotopes, of methane as a new tool to identify the origins of ebullitive fluxes in Alaska, Sweden and the Arctic Ocean. When methane forms in isotopic equilibrium, clumped isotope measurements indicate the formation temperature. In some microbial methane, however, non-equilibrium isotope effects, probably related to the kinetics of methanogenesis, lead to low clumped isotope values. We identify four categories of emissions in the studied samples: thermogenic methane, deep subsurface or marine microbial methane formed in isotopic equilibrium, freshwater microbial methane with non-equilibrium clumped isotope values, and mixtures of deep and shallow methane (i.e., combinations of the first three end members). Mixing between deep and shallow methane sources produces a non-linear variation in clumped isotope values with mixing proportion that provides new constraints for the formation environment of the mixing end-members. Analyses of microbial methane emitted from lakes, as well as a methanol-consuming methanogen pure culture, support the hypothesis that non-equilibrium clumped isotope values are controlled, in part, by kinetic isotope effects induced during enzymatic reactions involved in methanogenesis. Our results indicate that these kinetic isotope effects vary widely in microbial methane produced in Arctic lake sediments, with non-equilibrium Δ18 values spanning a range of more than 5‰.

  7. An integrated study to analyze soil microbial community structure and metabolic potential in two forest types.

    Science.gov (United States)

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Yang, Caiyun; Yang, Yunfeng; Zhou, Jizhong; Li, Diqiang

    2014-01-01

    Soil microbial metabolic potential and ecosystem function have received little attention owing to difficulties in methodology. In this study, we selected natural mature forest and natural secondary forest and analyzed the soil microbial community and metabolic potential combing the high-throughput sequencing and GeoChip technologies. Phylogenetic analysis based on 16S rRNA sequencing showed that one known archaeal phylum and 15 known bacterial phyla as well as unclassified phylotypes were presented in these forest soils, and Acidobacteria, Protecobacteria, and Actinobacteria were three of most abundant phyla. The detected microbial functional gene groups were related to different biogeochemical processes, including carbon degradation, carbon fixation, methane metabolism, nitrogen cycling, phosphorus utilization, sulfur cycling, etc. The Shannon index for detected functional gene probes was significantly higher (PThe regression analysis showed that a strong positive (Pthe soil microbial functional gene diversity and phylogenetic diversity. Mantel test showed that soil oxidizable organic carbon, soil total nitrogen and cellulose, glucanase, and amylase activities were significantly linked (Pthe relative abundance of corresponded functional gene groups. Variance partitioning analysis showed that a total of 81.58% of the variation in community structure was explained by soil chemical factors, soil temperature, and plant diversity. Therefore, the positive link of soil microbial structure and composition to functional activity related to ecosystem functioning was existed, and the natural secondary forest soil may occur the high microbial metabolic potential. Although the results can't directly reflect the actual microbial populations and functional activities, this study provides insight into the potential activity of the microbial community and associated feedback responses of the terrestrial ecosystem to environmental changes.

  8. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    Science.gov (United States)

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms.

  9. Marine Vibrionaceae as a source of bioactive natural products

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Gram, Lone

    an ecological function. Using chemical profiling, vibrio strains were compared on a global scale, revealing that the production of certain compounds is a conserved feature independent of sample locations. Chemical screening techniques such as explorative solid-phase extraction led to the isolation of two novel...... that some strains were capable of producing antibacterial compounds when grown on natural substrates such as chitin or seaweed. One Vibrio coralliilyticus strain was capable of producing the antibacterial compound when using chitin as the sole carbon source and in a live chitin model system, suggesting...... of which possess biological activities attractive for alternative strategies in antibacterial therapy....

  10. Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities.

    Science.gov (United States)

    Mahadevan, Radhakrishnan; Henson, Michael A

    2012-01-01

    Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research.

  11. mcaGUI: microbial community analysis R-Graphical User Interface (GUI)

    OpenAIRE

    Copeland, Wade K.; Krishnan, Vandhana; Beck, Daniel; Settles, Matt; Foster, James A.; Cho, Kyu-Chul; Day, Mitch; Hickey, Roxana; Schütte, Ursel M.E.; Zhou, Xia; Williams, Christopher J.; Forney, Larry J.; Abdo, Zaid

    2012-01-01

    Summary: Microbial communities have an important role in natural ecosystems and have an impact on animal and human health. Intuitive graphic and analytical tools that can facilitate the study of these communities are in short supply. This article introduces Microbial Community Analysis GUI, a graphical user interface (GUI) for the R-programming language (R Development Core Team, 2010). With this application, researchers can input aligned and clustered sequence data to create custom abundance ...

  12. Microbial Ecology and Evolution in the Acid Mine Drainage Model System.

    Science.gov (United States)

    Huang, Li-Nan; Kuang, Jia-Liang; Shu, Wen-Sheng

    2016-07-01

    Acid mine drainage (AMD) is a unique ecological niche for acid- and toxic-metals-adapted microorganisms. These low-complexity systems offer a special opportunity for the ecological and evolutionary analyses of natural microbial assemblages. The last decade has witnessed an unprecedented interest in the study of AMD communities using 16S rRNA high-throughput sequencing and community genomic and postgenomic methodologies, significantly advancing our understanding of microbial diversity, community function, and evolution in acidic environments. This review describes new data on AMD microbial ecology and evolution, especially dynamics of microbial diversity, community functions, and population genomes, and further identifies gaps in our current knowledge that future research, with integrated applications of meta-omics technologies, will fill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Actinomycetes, an Inexhaustible Source of Naturally Occurring Antibiotics

    Directory of Open Access Journals (Sweden)

    Yōko Takahashi

    2018-05-01

    Full Text Available Global public health faces a desperate situation, due to the lack of effective antibiotics. Coordinated steps need to be taken, worldwide, to rectify this situation and protect the advances in modern medicine made over the last 100 years. Work at Japan’s Kitasato Institute has been in the vanguard of many such advances, and work is being proactively tailored to promote the discovery of urgently needed antimicrobials. Efforts are being concentrated on actinomycetes, the proven source of most modern antibiotics. We devised a novel physicochemical screening mechanism, whereby simple physico-chemical properties, in conjunction with related detection methods, such as LC/MS, LC/UV, and polarity, could be used to identify or predict new compounds in a culture broth, simply by comparing results with existing databases. New compounds are isolated, purified, and their structure determined before being tested for any bioactivity. We used lyophilized actinomycete strains from the Kitasato Microbial Library, most more than 35 years old, and found 330 strains were producers of useful bioactive substances. We also tested organisms found in fresh samples collected in the complex environments from around plant roots, as well as from sediments of mangrove forests and oceans, resulting in the discovery of 36 novel compounds from 11 actinomycete strains. A compound, designated iminimycin, containing an iminium ion in the structure was discovered from the culture broth of Streptomyces griseus OS-3601, which had been stored for a long time as a streptomycin-producing strain. This represented the first iminium ion discovery in actinomycetes. Compounds with a cyclopentadecane skeleton containing 5,6-dihydro-4-hydroxyl-2-pyrone ring and tetrahydrofuran ring, designated mangromicins, were isolated from the culture broth of Lechevalieria aerocolonigenes K10-0216 obtained from sediment in a mangrove forest. These structures are extremely unique among natural compounds

  14. The uranium source-term mineralogy and geochemistry at the Broubster natural analogue site, Caithness

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Pearce, J.M.; Basham, I.R.; Hyslop, E.K.

    1991-01-01

    The British Geological Survey (BGS) has been conducting a coordinated research programme at the Broubster natural analogue site in Caithness, north Scotland. This work on a natural radioactive geochemical system has been carried out with the aim of improving our confidence in using predictive models of radionuclide migration in the geosphere. This report is one of a series being produced and it concentrates on the mineralogical characterization of the uranium distribution in the limestone unit considered as the 'source-term' in the natural analogue model

  15. Studying Microbial Mat Functioning Amidst "Unexpected Diversity": Methodological Approaches and Initial Results from Metatranscriptomes of Mats Over Diel cycles, iTags from Long Term Manipulations, and Biogeochemical Cycling in Simplified Microbial Mats Constructed from Cultures

    Science.gov (United States)

    Bebout, B.; Bebout, L. E.; Detweiler, A. M.; Everroad, R. C.; Lee, J.; Pett-Ridge, J.; Weber, P. K.

    2014-12-01

    Microbial mats are famously amongst the most diverse microbial ecosystems on Earth, inhabiting some of the most inclement environments known, including hypersaline, dry, hot, cold, nutrient poor, and high UV environments. The high microbial diversity of microbial mats makes studies of microbial ecology notably difficult. To address this challenge, we have been using a combination of metagenomics, metatranscriptomics, iTags and culture-based simplified microbial mats to study biogeochemical cycling (H2 production, N2 fixation, and fermentation) in microbial mats collected from Elkhorn Slough, Monterey Bay, California. Metatranscriptomes of microbial mats incubated over a diel cycle have revealed that a number of gene systems activate only during the day in Cyanobacteria, while the remaining appear to be constitutive. The dominant cyanobacterium in the mat (Microcoleus chthonoplastes) expresses several pathways for nitrogen scavenging undocumented in cultured strains, as well as the expression of two starch storage and utilization cycles. Community composition shifts in response to long term manipulations of mats were assessed using iTags. Changes in community diversity were observed as hydrogen fluxes increased in response to a lowering of sulfate concentrations. To produce simplified microbial mats, we have isolated members of 13 of the 15 top taxa from our iTag libraries into culture. Simplified microbial mats and simple co-cultures and consortia constructed from these isolates reproduce many of the natural patterns of biogeochemical cycling in the parent natural microbial mats, but against a background of far lower overall diversity, simplifying studies of changes in gene expression (over the short term), interactions between community members, and community composition changes (over the longer term), in response to environmental forcing.

  16. Pathogen self defense: mechanisms to counteract microbial antagonism

    NARCIS (Netherlands)

    Duffy, B.K.; Schouten, A.; Raaijmakers, J.M.

    2003-01-01

    Natural and agricultural ecosystems harbor a wide variety of microorganisms that play an integral role in plant health, crop productivity, and preservation of multiple ecosystem functions. Interactions within and among microbial communities are numerous and range from synergistic and mutualistic to

  17. Ceramic Proppant Design for In-situ Microbially Enhanced Methane Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, Taylor D. [Univ. of Utah, Salt Lake City, UT (United States); Mclennan, John [Univ. of Utah, Salt Lake City, UT (United States); Fuertez, John [Univ. of Utah, Salt Lake City, UT (United States); Han, Kyu-Bum [Univ. of Utah, Salt Lake City, UT (United States)

    2017-12-29

    This project designed a new type of multi-functional lightweight proppant. The proppant is utilized as the conventional lightweight proppant but also transports microorganisms to coalbed reservoirs. The proppant is coated with a polymer which protects the methanogenic microorganisms and serves as a time-release delivery for methane generation. To produce the multifunctional proppant, we assigned five tasks: 1) culturing methanogenic microbes from natural carbon sources; 2) identifying optimized growth and methanogenesis conditions for the microbial consortia; 3) synthesizing the lightweight ceramic proppant; 4) encapsulating the consortia and proppant; and 5) demonstrating lab scale simulated performance by monitoring in-situ methane generation and hydraulic conductivity. Task 1) To evaluate the feasibility of ex-situ cultivation, natural microbial populations were collected from various hydrocarbon-rich environments and locations characterized by natural methanogenesis. Different rank coals, complex hydrocarbon sources, hydrocarbon seeps, and natural biogenic environments were incorporated in the sampling. Three levels of screening allowed selection of microbial populations, favorable nutrient amendments, sources of the microbial community, and quantification of methane produced from various coal types. Incubation periods of up to 24 weeks were evaluated at 23°C. Headspace concentrations of CH4 and CO2 were analyzed by gas chromatography. After a two-week incubation period of the most promising microbes, generated headspace gas concentrations reached 873,400 ppm for methane and 176,370 ppm for carbon dioxide. Task 2) A central composite design (CCD) was used to explore a broad range of operational conditions, examine the effects of the important environmental factors, such as temperature, pH and salt concentration, and query a feasible region of operation to maximize methane production from coal. Coal biogasification was optimal for this

  18. Theoretical microbial ecology without species

    Science.gov (United States)

    Tikhonov, Mikhail

    2017-09-01

    Ecosystems are commonly conceptualized as networks of interacting species. However, partitioning natural diversity of organisms into discrete units is notoriously problematic and mounting experimental evidence raises the intriguing question whether this perspective is appropriate for the microbial world. Here an alternative formalism is proposed that does not require postulating the existence of species as fundamental ecological variables and provides a naturally hierarchical description of community dynamics. This formalism allows approaching the species problem from the opposite direction. While the classical models treat a world of imperfectly clustered organism types as a perturbation around well-clustered species, the presented approach allows gradually adding structure to a fully disordered background. The relevance of this theoretical construct for describing highly diverse natural ecosystems is discussed.

  19. Microbial products II

    Energy Technology Data Exchange (ETDEWEB)

    Pape, H; Rehm, H J [eds.

    1986-01-01

    The present volume deals mainly with compounds which have been detected as natural microbial products. Part 1 of this volume introduces the general aspects of the overproduction of metabolites and the concepts and genetics of secondary metabolism. Compounds such as nucleosides, nucleotides, coenzymes, vitamins and lipids are dealt with in part 2. Part 3 then is devoted to products and antibiotics with uses im medicine, veterinary medicine, plant protection and metabolites with antitumor activity. Several secondary metabolites have found uses in human and animal health care. With 244 figs., 109 tabs.

  20. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source

    International Nuclear Information System (INIS)

    Chang, Yi-Huang; Chang, Ku-Shang; Lee, Ching-Fu; Hsu, Chuan-Liang; Huang, Cheng-Wei; Jang, Hung-Der

    2015-01-01

    To realize the feasibility of biodiesel production from high-lipid cell culture, microbial lipid production by the oleaginous yeasts was studied using glucose and sucrose as carbon source. Among the tested strains, Cryptococcus sp. SM5S05 accumulated the highest levels of intracellular lipids. The crude lipid contents of Cryptococcus sp. cultured in yeast malt agar reached 30% on a dry weight basis. The accumulation of lipids strongly depended on carbon/nitrogen ratio and nitrogen concentration. The highest content of lipids, measured at a carbon/nitrogen ratio of 60–90 and at a nitrogen concentration of 0.2%, was 60–57% lipids in the dry biomass. Batch cultures using corncob hydrolysate demonstrated that there was minimal inhibitory effect with a reducing sugar concentration of 60 g l −1 or higher. Batch cultures of Cryptococcus sp. SM5S05 in the corncob hydrolysate medium with 60 g l −1 glucose resulted in a dry biomass, lipid yields, and content of 12.6 g l −1 , 7.6 g l −1 , and 60.2%, respectively. The lipids contained mainly long-chain saturated and unsaturated fatty acids with 16 and 18 carbon atoms. The fatty acid profile of Cryptococcus oils was quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with corncob hydrolysate being utilized as the raw material for the oleaginous yeast. The results showed that the microbial lipid from Cryptococcus sp. was a potential alternative resource for biodiesel production. - Highlights: • Microbial oil production from oleaginous yeast Cryptococcus sp. was studied. • Accumulation of lipid strongly depended on C/N ratio and nitrogen concentration. • Cultures in hydrolysate medium with 60 g/l glucose resulted in maximum lipid yields. • Maximal lipid content in the Cryptococcus sp. were 60.2% on dried weight basis

  2. Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms

    Science.gov (United States)

    Martin, Belinda C.; George, Suman J.; Price, Charles A.; Shahsavari, Esmaeil; Ball, Andrew S.; Tibbett, Mark; Ryan, Megan H.

    2016-09-01

    Petroleum hydrocarbons (PHCs) are among the most prevalent sources of environmental contamination. It has been hypothesized that plant root exudation of low molecular weight organic acid anions (carboxylates) may aid degradation of PHCs by stimulating heterotrophic microbial activity. To test their potential implication for bioremediation, we applied two commonly exuded carboxylates (citrate and malonate) to uncontaminated and diesel-contaminated microcosms (10 000 mg kg-1; aged 40 days) and determined their impact on the microbial community and PHC degradation. Every 48 h for 18 days, soil received 5 µmol g-1 of (i) citrate, (ii) malonate, (iii) citrate + malonate or (iv) water. Microbial activity was measured daily as the flux of CO2. After 18 days, changes in the microbial community were assessed by a community-level physiological profile (CLPP) and 16S rRNA bacterial community profiles determined by denaturing gradient gel electrophoresis (DGGE). Saturated PHCs remaining in the soil were assessed by gas chromatography-mass spectrometry (GC-MS). Cumulative soil respiration increased 4- to 6-fold with the addition of carboxylates, while diesel contamination resulted in a small, but similar, increase across all carboxylate treatments. The addition of carboxylates resulted in distinct changes to the microbial community in both contaminated and uncontaminated soils but only a small increase in the biodegradation of saturated PHCs as measured by the n-C17 : pristane biomarker. We conclude that while the addition of citrate and malonate had little direct effect on the biodegradation of saturated hydrocarbons present in diesel, their effect on the microbial community leads us to suggest further studies using a variety of soils and organic acids, and linked to in situ studies of plants, to investigate the role of carboxylates in microbial community dynamics.

  3. Sources and Nature of Secondary School Teachers' Education in Computer-Related Ergonomics

    Science.gov (United States)

    Dockrell, Sara; Fallon, Enda; Kelly, Martina; Galvin, Rose

    2009-01-01

    Teachers' knowledge of computer-related ergonomics in education will have an effect on the learning process and the work practices of their students. However little is known about teacher education in this area. The study aimed to investigate the sources and nature of secondary school teachers' education about computer-related ergonomics. It also…

  4. Temporal and Spatial Distribution of the Microbial Community of Winogradsky Columns.

    Directory of Open Access Journals (Sweden)

    David J Esteban

    Full Text Available Winogradsky columns are model microbial ecosystems prepared by adding pond sediment to a clear cylinder with additional supplements and incubated with light. Environmental gradients develop within the column creating diverse niches that allow enrichment of specific bacteria. The enrichment culture can be used to study soil and sediment microbial community structure and function. In this study we used a 16S rRNA gene survey to characterize the microbial community dynamics during Winogradsky column development to determine the rate and extent of change from the source sediment community. Over a period of 60 days, the microbial community changed from the founding pond sediment population: Cyanobacteria, Chloroflexi, Nitrospirae, and Planctomycetes increased in relative abundance over time, while most Proteobacteria decreased in relative abundance. A unique, light-dependent surface biofilm community formed by 60 days that was less diverse and dominated by a few highly abundant bacteria. 67-72% of the surface community was comprised of highly enriched taxa that were rare in the source pond sediment, including the Cyanobacteria Anabaena, a member of the Gemmatimonadetes phylum, and a member of the Chloroflexi class Anaerolinea. This indicates that rare taxa can become abundant under appropriate environmental conditions and supports the hypothesis that rare taxa serve as a microbial seed bank. We also present preliminary findings that suggest that bacteriophages may be active in the Winogradsky community. The dynamics of certain taxa, most notably the Cyanobacteria, showed a bloom-and-decline pattern, consistent with bacteriophage predation as predicted in the kill-the-winner hypothesis. Time-lapse photography also supported the possibility of bacteriophage activity, revealing a pattern of colony clearance similar to formation of viral plaques. The Winogradsky column, a technique developed early in the history of microbial ecology to enrich soil

  5. Common Hydraulic Fracturing Fluid Additives Alter the Structure and Function of Anaerobic Microbial Communities.

    Science.gov (United States)

    Mumford, Adam C; Akob, Denise M; Klinges, J Grace; Cozzarelli, Isabelle M

    2018-04-15

    The development of unconventional oil and gas (UOG) resources results in the production of large volumes of wastewater containing a complex mixture of hydraulic fracturing chemical additives and components from the formation. The release of these wastewaters into the environment poses potential risks that are poorly understood. Microbial communities in stream sediments form the base of the food chain and may serve as sentinels for changes in stream health. Iron-reducing organisms have been shown to play a role in the biodegradation of a wide range of organic compounds, and so to evaluate their response to UOG wastewater, we enriched anaerobic microbial communities from sediments collected upstream (background) and downstream (impacted) of an UOG wastewater injection disposal facility in the presence of hydraulic fracturing fluid (HFF) additives: guar gum, ethylene glycol, and two biocides, 2,2-dibromo-3-nitrilopropionamide (DBNPA) and bronopol (C 3 H 6 BrNO 4 ). Iron reduction was significantly inhibited early in the incubations with the addition of biocides, whereas amendment with guar gum and ethylene glycol stimulated iron reduction relative to levels in the unamended controls. Changes in the microbial community structure were observed across all treatments, indicating the potential for even small amounts of UOG wastewater components to influence natural microbial processes. The microbial community structure differed between enrichments with background and impacted sediments, suggesting that impacted sediments may have been preconditioned by exposure to wastewater. These experiments demonstrated the potential for biocides to significantly decrease iron reduction rates immediately following a spill and demonstrated how microbial communities previously exposed to UOG wastewater may be more resilient to additional spills. IMPORTANCE Organic components of UOG wastewater can alter microbial communities and biogeochemical processes, which could alter the rates of

  6. Microbial water quality of treated water and raw water sources in the ...

    African Journals Online (AJOL)

    Microbial water quality is an essential aspect in the provision of potable water for domestic use. The provision of adequate amounts of safe water for domestic purposes has become difficult for most municipalities mandated to do so in Zimbabwe. Morton-Jaffray Treatment Plant supplies potable water to Harare City and ...

  7. Microbial water quality of treated water and raw water sources in the ...

    African Journals Online (AJOL)

    2015-10-05

    Oct 5, 2015 ... assessed for microbial quality using hydrogen sulphide test and .... existence of the same problem in other cities and towns in ... (2011). Urine jars were placed in the Panasonic ... were assembled and stored away from direct sunlight, at room .... view was conducted with the Drug and Toxicology Information.

  8. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions.

    Science.gov (United States)

    Watts, Joy E M; Schreier, Harold J; Lanska, Lauma; Hale, Michelle S

    2017-06-01

    As the human population increases there is an increasing reliance on aquaculture to supply a safe, reliable, and economic supply of food. Although food production is essential for a healthy population, an increasing threat to global human health is antimicrobial resistance. Extensive antibiotic resistant strains are now being detected; the spread of these strains could greatly reduce medical treatment options available and increase deaths from previously curable infections. Antibiotic resistance is widespread due in part to clinical overuse and misuse; however, the natural processes of horizontal gene transfer and mutation events that allow genetic exchange within microbial populations have been ongoing since ancient times. By their nature, aquaculture systems contain high numbers of diverse bacteria, which exist in combination with the current and past use of antibiotics, probiotics, prebiotics, and other treatment regimens-singularly or in combination. These systems have been designated as "genetic hotspots" for gene transfer. As our reliance on aquaculture grows, it is essential that we identify the sources and sinks of antimicrobial resistance, and monitor and analyse the transfer of antimicrobial resistance between the microbial community, the environment, and the farmed product, in order to better understand the implications to human and environmental health.

  9. Microbial Pre-exposure and Vectorial Competence of Anopheles Mosquitoes

    Directory of Open Access Journals (Sweden)

    Constentin Dieme

    2017-12-01

    Full Text Available Anopheles female mosquitoes can transmit Plasmodium, the malaria parasite. During their aquatic life, wild Anopheles mosquito larvae are exposed to a huge diversity of microbes present in their breeding sites. Later, adult females often take successive blood meals that might also carry different micro-organisms, including parasites, bacteria, and viruses. Therefore, prior to Plasmodium ingestion, the mosquito biology could be modulated at different life stages by a suite of microbes present in larval breeding sites, as well as in the adult environment. In this article, we highlight several naturally relevant scenarios of Anopheles microbial pre-exposure that we assume might impact mosquito vectorial competence for the malaria parasite: (i larval microbial exposures; (ii protist co-infections; (iii virus co-infections; and (iv pathogenic bacteria co-infections. In addition, significant behavioral changes in African Anopheles vectors have been associated with increasing insecticide resistance. We discuss how these ethological modifications may also increase the repertoire of microbes to which mosquitoes could be exposed, and that might also influence their vectorial competence. Studying Plasmodium–Anopheles interactions in natural microbial environments would efficiently contribute to refining the transmission risks.

  10. Microbial changes during pregnancy, birth and infancy

    Directory of Open Access Journals (Sweden)

    Meital Nuriel-Ohayon

    2016-07-01

    Full Text Available Several healthy developmental processes such as pregnancy, fetal development and infant development include a multitude of physiological changes: weight gain, hormonal and metabolic changes, as well as immune changes. In this review we present an additional important factor which both influences and is affected by these physiological processes- the microbiome. We summarize the known changes in microbiota composition at a variety of body sites including gut, vagina, oral cavity and placenta, throughout pregnancy, fetal development and early childhood. There is still a lot to be discovered; yet several pieces of research point to the healthy desired microbial changes. Future research is likely to unravel precise roles and mechanisms of the microbiota in gestation; perhaps linking the metabolic, hormonal and immune changes together. Although some research has started to link microbial dysbiosis and specific microbial populations with unhealthy pregnancy complications, it is important to first understand the context of the natural healthy microbial changes occurring. Until recently the placenta and developing fetus were considered to be germ free, containing no apparent microbiome. We present multiple study results showing distinct microbiota compositions in the placenta and meconium, alluding to early microbial colonization. These results may change dogmas and our overall understanding of the importance and roles of microbiota from the beginning of life. We further review the main factors shaping the infant microbiome- modes of delivery, feeding, weaning, and exposure to antibiotics. Taken together, we are starting to build a broader understanding of healthy vs. abnormal microbial alterations throughout major developmental time-points.

  11. Reprint of Design of synthetic microbial communities for biotechnological production processes.

    Science.gov (United States)

    Jagmann, Nina; Philipp, Bodo

    2014-12-20

    In their natural habitats microorganisms live in multi-species communities, in which the community members exhibit complex metabolic interactions. In contrast, biotechnological production processes catalyzed by microorganisms are usually carried out with single strains in pure cultures. A number of production processes, however, may be more efficiently catalyzed by the concerted action of microbial communities. This review will give an overview of organismic interactions between microbial cells and of biotechnological applications of microbial communities. It focuses on synthetic microbial communities that consist of microorganisms that have been genetically engineered. Design principles for such synthetic communities will be exemplified based on plausible scenarios for biotechnological production processes. These design principles comprise interspecific metabolic interactions via cross-feeding, regulation by interspecific signaling processes via metabolites and autoinducing signal molecules, and spatial structuring of synthetic microbial communities. In particular, the implementation of metabolic interdependencies, of positive feedback regulation and of inducible cell aggregation and biofilm formation will be outlined. Synthetic microbial communities constitute a viable extension of the biotechnological application of metabolically engineered single strains and enlarge the scope of microbial production processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Sources of CO2 efflux from soil and review of partitioning methods

    International Nuclear Information System (INIS)

    Kuzyakov, Y.

    2006-01-01

    Five main biogenic sources of CO 2 efflux from soils have been distinguished and described according to their turnover rates and the mean residence time of carbon. They are root respiration, rhizomicrobial respiration, decomposition of plant residues, the priming effect induced by root exudation or by addition of plant residues, and basal respiration by microbial decomposition of soil organic matter (SOM). These sources can be grouped in several combinations to summarize CO 2 efflux from the soil including: root-derived CO 2 , plant-derived CO 2 , SOM-derived CO 2 , rhizosphere respiration, heterotrophic microbial respiration (respiration by heterotrophs), and respiration by autotrophs. These distinctions are important because without separation of SOM-derived CO 2 from plant-derived CO 2 , measurements of total soil respiration have very limited value for evaluation of the soil as a source or sink of atmospheric CO 2 and for interpreting the sources of CO 2 and the fate of carbon within soils and ecosystems. Additionally, the processes linked to the five sources of CO 2 efflux from soil have various responses to environmental variables and consequently to global warming. This review describes the basic principles and assumptions of the following methods which allow SOM-derived and root-derived CO 2 efflux to be separated under laboratory and field conditions: root exclusion techniques, shading and clipping, tree girdling, regression, component integration, excised roots and in situ root respiration; continuous and pulse labeling, 13 C natural abundance and FACE, and radiocarbon dating and bomb- 14 C. A short sections cover the separation of the respiration of autotrophs and that of heterotrophs, i.e. the separation of actual root respiration from microbial respiration, as well as methods allowing the amount of CO 2 evolved by decomposition of plant residues and by priming effects to be estimated. All these methods have been evaluated according to their inherent

  13. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    Science.gov (United States)

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p urban soils influenced the nature and activities of the microbial communities.

  14. Microbial activity in bentonite buffers. Literature study

    Energy Technology Data Exchange (ETDEWEB)

    Ratto, M.; Itavaara, M.

    2012-07-01

    The proposed disposal concept for high-level radioactive wastes involves storing the wastes underground in copper-iron containers embedded in buffer material of compacted bentonite. Hydrogen sulphide production by sulphate-reducing prokaryotes is a potential mechanism that could cause corrosion of waste containers in repository conditions. The prevailing conditions in compacted bentonite buffer will be harsh. The swelling pressure is 7-8 MPa, the amount of free water is low and the average pore and pore throat diameters are small. This literature study aims to assess the potential of microbial activity in bentonite buffers. Literature on the environmental limits of microbial life in extreme conditions and the occurrence of sulphatereducing prokaryotes in extreme environments is reviewed briefly and the results of published studies characterizing microbes and microbial processes in repository conditions or in relevant subsurface environments are presented. The presence of bacteria, including SRBs, has been confirmed in deep groundwater and bentonite-based materials. Sulphate reducers have been detected in various high-pressure environments, and sulphate-reduction based on hydrogen as an energy source is considered a major microbial process in deep subsurface environments. In bentonite, microbial activity is strongly suppressed, mainly due to the low amount of free water and small pores, which limit the transport of microbes and nutrients. Spore-forming bacteria have been shown to survive in compacted bentonite as dormant spores, and they are able to resume a metabolically active state after decompaction. Thus, microbial sulphide production may increase in repository conditions if the dry density of the bentonite buffer is locally reduced. (orig.)

  15. Defining the Core Microbiome in Corals' Microbial Soup.

    Science.gov (United States)

    Hernandez-Agreda, Alejandra; Gates, Ruth D; Ainsworth, Tracy D

    2017-02-01

    Corals are considered one of the most complex microbial biospheres studied to date, hosting thousands of bacterial phylotypes in species-specific associations. There are, however, substantial knowledge gaps and challenges in understanding the functional significance of bacterial communities and bacterial symbioses of corals. The ubiquitous nature of some bacterial interactions has only recently been investigated and an accurate differentiation between the healthy (symbiotic) and unhealthy (dysbiotic) microbial state has not yet been determined. Here we review the complexity of the coral holobiont, coral microbiome diversity, and recently proposed bacterial symbioses of corals. We provide insight into coupling the core microbiome framework with community ecology principals, and draw on the theoretical insights from other complex systems, to build a framework to aid in deciphering ecologically significant microbes within a corals' microbial soup. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region

    Science.gov (United States)

    Pirrone, N.; Costa, P.; Pacyna, J. M.; Ferrara, R.

    This report discusses past, current and projected mercury emissions to the atmosphere from major industrial sources, and presents a first assessment of the contribution to the regional mercury budget from selected natural sources. Emissions (1995 estimates) from fossil fuels combustion (29.8 t yr -1) , cement production (28.8 t yr -1) and incineration of solid wastes (27.6 t yr -1) , all together account for about 82% of the regional anthropogenic total (105.7 t yr -1) . Other industrial sources in the region are smelters (4.8 t yr -1) , iron-steel plants (4.8 t yr -1) and other minor sources (chlor-alkali plants, crematoria, chemicals production) that have been considered together in the miscellaneous category (9.6 t yr -1) . Regional emissions from anthropogenic sources increased at a rate of 3% yr-1 from 1983 to 1995 and are projected to increase at a rate of 1.9% yr-1 in the next 25 years, if no improvement in emission control policy occurs. On a country-by-country basis, France is the leading emitter country with 22.6 t yr -1 followed by Turkey (16.1 t yr -1) , Italy (11.4 t yr -1) , Spain (9.1 t yr -1) , the former Yugoslavia 7.9 ( t yr -1) , Morocco (6.9 t yr -1) , Bulgaria (6.8 t yr -1) , Egypt (6.1 t yr -1) , Syria (3.6 t yr -1) , Libya (2.9 t yr -1) , Tunisia (2.8 t yr -1) and Greece (2.7 t yr -1) , whereas the remaining countries account for less than 7% of the regional total. The annual emission from natural sources is 110 t yr -1, although this figure only includes the volatilisation of elemental mercury from surface waters and emissions from volcanoes, whereas the contribution due to the degassing of mercury from top soil and vegetation has not been included in this first assessment. Therefore, natural and anthropogenic sources in the Mediterranean region release annually about 215 t of mercury, which represents a significant contribution to the total mercury budget released in Europe and to the global atmosphere.

  17. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.; Madilyn Fletcher

    2000-06-01

    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media

  18. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2000-06-01

    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media.

  19. Acetate enhances startup of a H₂-producing microbial biocathode.

    Science.gov (United States)

    Jeremiasse, Adriaan W; Hamelers, Hubertus V M; Croese, Elsemiek; Buisman, Cees J N

    2012-03-01

    H(2) can be produced from organic matter with a microbial electrolysis cell (MEC). To decrease MEC capital costs, a cathode is needed that is made of low-cost material and produces H(2) at high rate. A microbial biocathode is a low-cost candidate, but suffers from a long startup and a low H(2) production rate. In this study, the effects of cathode potential and carbon source on microbial biocathode startup were investigated. Application of a more negative cathode potential did not decrease the startup time of the biocathode. If acetate instead of bicarbonate was used as carbon source, the biocathode started up more than two times faster. The faster startup was likely caused by a higher biomass yield for acetate than for bicarbonate, which was supported by thermodynamic calculations. To increase the H(2) production rate, a flow through biocathode fed with acetate was investigated. This biocathode produced 2.2 m(3) H(2) m(-3)  reactor day(-1) at a cathode potential of -0.7 V versus NHE, which was seven times that of a parallel flow biocathode of a previous study. Copyright © 2011 Wiley Periodicals, Inc.

  20. Effects of the source of energy and minerals on microbial protein synthesis in rumen using 35S as indicator. Part of a coordinated programme on tracer techniques in studies on the use of non-protein nitrogen in ruminants

    International Nuclear Information System (INIS)

    Durant, M.

    1976-05-01

    Part I. The effect of the nature of carbohydrates and minerals on microbial growth in vitro was studied in vitro to intensify rumen microbial protein synthesis from non-protein nitrogen, using phosphorus incorporation (PR). The nature of starch greatly influences urea utilization. Among the tropical tubers studied, yam Cayenesis and canna Edulis give lower urea utilization than cassava and yam Dumetorum. However, this can be improved by processing. The effects are greatest when the proportion of urea to processed cereal is ca. 4-5%. S-addition as sulfate improves urea utilization with both natural and purified diets. Part II. Results from the Jouy and Ghent laboratories were analyzed statistically, to check the accuracy of the 32 P method for estimating microbial growth, using protein-free substrates. The linear relationship between PR and every other variable was studied. Two multivariate analyses, principal components and multiple regression, were applied. Net NH 3 utilization was predicted using the equations for substrates with proteins likely to be degraded. This method appears more accurate than using the N/P ratio in microflora. Equations should only be used under the specific experiments described

  1. Automated cleaning of fan coil units with a natural detergent-disinfectant product

    Directory of Open Access Journals (Sweden)

    Di Onofrio Valeria

    2010-10-01

    Full Text Available Abstract Background Air conditioning systems represent one important source of microbial pollutants for indoor air. In the past few years, numerous strategies have been conceived to reduce the contamination of air conditioners, mainly in hospital settings. The biocidal detergent BATT2 represents a natural product obtained through extraction from brown seaweeds, that has been tested previously on multidrug-resistant microorganisms. Methods BATT2 has been utilized for the disinfection of fan coil units from four air conditioning systems located in hospital environments with a mean degree of risk. Samples were collected from the air supplied by the conditioning systems and from the surfaces of fan coil units, before and after sanitization procedures. Total microbial counts at 37°C and 22°C and mycotic count at 32°C were evaluated. Staphylococci and Pseudomonas aeruginosa were also detected on surfaces samples. Results The biodetergent was able to reduce up 50% of the microbial pollution of fan coil units surfaces and air supplied by the air conditioners. Conclusions BATT2 could be considered for cleaning/disinfection of air conditioning systems, that should be performed on the basis of accurate and verifiable sanitization protocols.

  2. Synthetic microbial ecology and the dynamic interplay between microbial genotypes.

    Science.gov (United States)

    Dolinšek, Jan; Goldschmidt, Felix; Johnson, David R

    2016-11-01

    Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.

  3. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.

    Science.gov (United States)

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A

    2016-04-05

    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.

  4. Microbial Profiling Of Cyanobacteria From VIT Lake

    Directory of Open Access Journals (Sweden)

    Swati Singh

    2015-08-01

    Full Text Available The application of molecular biological methods to study the diversity and ecology of micro-organisms in natural environments has been practice in mid-1980. The aim of our research is to access the diversity composition and functioning of complex microbial community found in VIT Lake. Molecular ecology is a new field in which microbes can be recognized and their function can be understood at the DNA or RNA level which is useful for constructing genetically modified microbes by recombinant DNA technology for reputed use in the environment. In this research first we will isolate cyanobacteria in lab using conventional methods like broth culture and spread plate method then we will analyze their morphology using various staining methods and DNA and protein composition using electrophoresis method. The applications of community profiling approaches will advance our understanding of the functional role of microbial diversity in VIT Lake controls on microbial community composition.

  5. Microbial Community Patterns Associated with Automated Teller Machine Keypads in New York City.

    Science.gov (United States)

    Bik, Holly M; Maritz, Julia M; Luong, Albert; Shin, Hakdong; Dominguez-Bello, Maria Gloria; Carlton, Jane M

    2016-01-01

    In densely populated urban environments, the distribution of microbes and the drivers of microbial community assemblages are not well understood. In sprawling metropolitan habitats, the "urban microbiome" may represent a mix of human-associated and environmental taxa. Here we carried out a baseline study of automated teller machine (ATM) keypads in New York City (NYC). Our goal was to describe the biodiversity and biogeography of both prokaryotic and eukaryotic microbes in an urban setting while assessing the potential source of microbial assemblages on ATM keypads. Microbial swab samples were collected from three boroughs (Manhattan, Queens, and Brooklyn) during June and July 2014, followed by generation of Illumina MiSeq datasets for bacterial (16S rRNA) and eukaryotic (18S rRNA) marker genes. Downstream analysis was carried out in the QIIME pipeline, in conjunction with neighborhood metadata (ethnicity, population, age groups) from the NYC Open Data portal. Neither the 16S nor 18S rRNA datasets showed any clustering patterns related to geography or neighborhood demographics. Bacterial assemblages on ATM keypads were dominated by taxonomic groups known to be associated with human skin communities ( Actinobacteria , Bacteroides , Firmicutes , and Proteobacteria ), although SourceTracker analysis was unable to identify the source habitat for the majority of taxa. Eukaryotic assemblages were dominated by fungal taxa as well as by a low-diversity protist community containing both free-living and potentially pathogenic taxa ( Toxoplasma , Trichomonas ). Our results suggest that ATM keypads amalgamate microbial assemblages from different sources, including the human microbiome, eukaryotic food species, and potentially novel extremophilic taxa adapted to air or surfaces in the built environment. DNA obtained from ATM keypads may thus provide a record of both human behavior and environmental sources of microbes. IMPORTANCE Automated teller machine (ATM) keypads represent

  6. Long-term dust aerosol production from natural sources in Iceland.

    Science.gov (United States)

    Dagsson-Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur

    2017-02-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland is volcanic sandy deserts. Not only do natural emissions from these sources influenced by strong winds affect regional air quality in Iceland ("Reykjavik haze"), but dust particles are transported over the Atlantic ocean and Arctic Ocean >1000 km at times. The aim of this paper is to place Icelandic dust production area into international perspective, present long-term frequency of dust storm events in northeast Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in northeast Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the northeastern erosion area, indicating extreme dust plume activity and erosion within the northeastern deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and Aeolian transport during dust/volcanic ash storms in Iceland, which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust may contribute to the Arctic air pollution. Long-term records of meteorological dust observations from Northeast Iceland indicate the frequency of dust events from Icelandic deserts. The research involves a 60-year period and

  7. Investigation Of The Origin Of Various Water Sources In The Vicinity Of Ngancar Dam, Wonogiri Using Natural Isotopes

    International Nuclear Information System (INIS)

    Sidauruk, Paston; Indrojoyo; Wibagoyo; Pratikno, Bungkus; Evarista Ristin, P.I.

    2000-01-01

    The investigation of the origin of various water sources in the vicinity of Ngancar Dam, Wonogiri, using natural isotopes technique has been conducted. The study includes collecting and analyzing water samples from various sources in the vicinity of the dam such as reservoir water, water discharges, springs, local water well, rain water, water from piezometer and observation wells. For this investigation, natural isotopes composition and hydro chemical ions of the samples have been analyzed and interpreted. From the data interpretation, it is concluded that most of the water in various sources originated from water reservoir

  8. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  9. Chemical Biology of Microbial Anticancer Natural Products

    DEFF Research Database (Denmark)

    Bladt, Tanja Thorskov; Gotfredsen, Charlotte Held

    than 100 years. New natural products (NPs) are continually discovered and with the increase in selective biological assays, previously described compounds often also display novel bioactivities, justifying their presence in novel screening efforts. Screening and discovery of compounds with activity...... towards chronic lymphocytic leukemia (CLL) cells is crucial since CLL is considered as an incurable disease. To discover novel agents that targets CLL cells is complicated. CLL cells rapidly undergo apoptosis in vitro when they are removed from their natural microenvironment, even though they are long...

  10. Investigations on the effect of forage source, grinding, and urea supplementation on ruminal fermentation and microbial protein flow in a semi-continuous rumen simulation system.

    Science.gov (United States)

    Hildebrand, Bastian; Boguhn, Jeannette; Rodehutscord, Markus

    2011-10-01

    The objective of the present study was to compare the effect of maize silage and grass silage on microbial fermentation and protein flow in a semi-continuous rumen simulation system (Rusitec) when milling screen size (MSS) during grinding was varied. Oven-dried silages were milled through screens of 1, 4 or 9 mm pore size and incubated for 48 h in a Rusitec system. Furthermore, the effect of N supplementation to maize silage (MSS: 4 mm) was investigated and single dose vs. continuous infusion of urea-N were compared. Degradation of organic matter (OM), crude protein (CP), fibre fractions and non-structural carbohydrates (NSC) as well as short-chain fatty acid production differed significantly between forage sources. Urea-N supplementation improved the degradation of NSC, but not that of fibre fractions in maize silage. The way of urea supply had only marginal effects on fermentation characteristics. An increase in MSS, and consequently in mean feed particle size, led to an improvement in the degradation of OM, CP and NSC, but efficiency of microbial net protein synthesis (EMPS; mg microbial N flow/g degraded OM) and the microbial amino acid profile were less affected. EMPS was higher in grass silage than in maize silage and was improved by urea-N supplementation in maize silage. This study indicates that fermentation of NSC as well as EMPS during incubation of maize silage was limited by availability of NH3-N. Furthermore, an increase in MSS above 1 mm seems to improve fermentation of silages in the Rusitec system.

  11. Recent progress in synthetic biology for microbial production of C3-C10 alcohols

    Directory of Open Access Journals (Sweden)

    Edna N. Lamsen

    2012-06-01

    Full Text Available The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. While microbial ethanol production is well established, higher chain alcohols possess chemical properties that are more similar to gasoline. Unfortunately, these alcohols (except 1-butanol are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. Synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of these advanced biofuels. This review concentrates on recent developments in synthetic biology to produce higher-chain alcohols as viable renewable replacements for traditional fuel.

  12. Effects of Culture and 2-Hydroxy-4-(Methylthio-Butanoic Acid on Rumen Fermentation and Microbial Populations between Different Roughage Sources

    Directory of Open Access Journals (Sweden)

    H. Sun

    2014-09-01

    Full Text Available An in vitro experiment was conducted to evaluate the effects of Aspergillus oryzae culture (AOC and 2-hydroxy-4-(methylthio-butanoic acid (HMB on rumen fermentation and microbial populations between different roughage sources. Two roughage sources (Chinese wild rye [CWR] vs corn silage [CS] were assigned in a 2×3 factorial arrangement with HMB (0 or 15 mg and AOC (0, 3, or 6 mg. Gas production (GP, microbial protein (MCP and total volatile fatty acid (VFA were increased in response to addition of HMB and AOC (p<0.01 for the two roughages. The HMB and AOC showed inconsistent effects on ammonia-N with different substrates. For CWR, neither HMB nor AOC had significant effect on molar proportion of individual VFA. For CS, acetate was increased (p = 0.02 and butyrate was decreased (p<0.01 by adding HMB and AOC. Increase of propionate was only occurred with AOC (p<0.01. Populations of protozoa (p≤0.03 and fungi (p≤0.02 of CWR were differently influenced by HMB and AOC. Percentages of F. succinogenes, R. albus, and R. flavefaciens (p<0.01 increased when AOC was added to CWR. For CS, HMB decreased the protozoa population (p = 0.01 and increased the populations of F. succinogenes and R. albus (p≤0.03. Populations of fungi, F. succinogenes (p = 0.02 and R. flavefacien (p = 0.03 were increased by adding AOC. The HMB×AOC interactions were noted in MCP, fungi and R. flavefacien for CWR and GP, ammonia-N, MCP, total VFA, propionate, acetate/propionate (A/P and R. albus for CS. It is inferred that addition of HMB and AOC could influence rumen fermentation of forages by increasing the number of rumen microbes.

  13. Microbial profile of a kefir sample preparations: grains in natura and lyophilized and fermented suspension

    Directory of Open Access Journals (Sweden)

    Rafaela Strada de Oliveira Bergmann

    2010-12-01

    Full Text Available Probiotics are supplementary foods developed by microbial strains that improve animal health beyond basic nutrition. Probiotics are consumed orally, regardless of being considered as normal inhabitants of the intestines, able to survive in enzimatic and biliary secretions. Kefir is a probiotic originated from the old continent, fermented by several bacteria and yeasts, encapsulated in a polyssacharide matrix, and resembles jelly grains. Kefir is also presented as its sourish product both in sugary or milky suspensions containing vitamins, aminoacids, peptides, carbohydrates, ethanol, and volatile compounds. Kefir is known to have a diverse microbial content depending on the country and fermentative substrates, which cause distinct probiotic effects. In this sense, the purpose of this work was to isolate, identify, and quantify the microbial content of a native sugary kefir sample (fermented suspension and lyophilized natural grains. Serial dilutions were plated on Rogosa agar (AR and De Man, Rogosa and Sharpe (MRS, for Lactobacillus; Brain Heart Infusion (BHI, for total bacteria; Sabouraud-Dextrose-Agar (SDA, for yeasts and filamentous fungi; Thioglycolate Agar (TA, for Streptococcus, Acetobacteria and Leuconostoc; and Coconut Water Agar (CWA, and CWA supplemented with yeast extract (CWAY, for various genera. Genera and species for all strains were identified through biochemical reactions and specific API systems. The microbial profile of kefir was different from other sources of grains despite the presence of similar microorganisms and others which have not been reported yet. The data obtained with the CWA and CWAE media suggest that both substrates are alternative and salutary media for culture of kefir strains.

  14. Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Heidi L.; Dahl, Amy L.; Nolan, Melissa A.; Gaillard, Jean-Francois; Stahl, David A.

    2008-04-26

    Little is known about the long-term impacts of metal contamination on the microbiota of anoxic lake sediments. In this study, we examined microbial biomass and metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, and zinc) in the sediments of Lake DePue, a backwater lake located near a former zinc smelter. Sediment core samples were examined using two independent measures for microbial biomass (total microscopic counts and total phospholipid-phosphate concentrations), and for various fractions of each metal (pore water extracts, sequential extractions, and total extracts of all studied metals and zinc speciation by X-ray absorption fine structure (XAFS). Zinc concentrations were up to 1000 times higher than reported for sediments in the adjacent Illinois River, and ranged from 21,400 mg/kg near the source to 1,680 mg/kg near the river. However, solid metal fractions were not well correlated with pore water concentrations, and were not good predictors of biomass concentrations. Instead, biomass, which varied among sites by as much as two-times, was inversely correlated with concentrations of pore water zinc and arsenic as established by multiple linear regression. Monitoring of other parameters known to naturally influence biomass in sediments (e.g., organic carbon concentrations, nitrogen concentrations, pH, sediment texture, and macrophytes) revealed no differences that could explain observed biomass trends. This study provides strong support for control of microbial abundance by pore water metal concentrations in contaminated freshwater sediments.

  15. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Assessing Impacts of Unconventional Natural Gas Extraction on Microbial Communities in Headwater Stream Ecosystems in Northwestern Pennsylvania

    Directory of Open Access Journals (Sweden)

    Ryan eTrexler

    2014-11-01

    Full Text Available Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale play. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity (MSA+. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity (MSA-. For example, OTUs within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA- sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems.

  17. Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania

    Science.gov (United States)

    Trexler, Ryan; Solomon, Caroline; Brislawn, Colin J.; Wright, Justin R.; Rosenberger, Abigail; McClure, Erin E.; Grube, Alyssa M.; Peterson, Mark P.; Keddache, Mehdi; Mason, Olivia U.; Hazen, Terry C.; Grant, Christopher J.; Lamendella, Regina

    2014-01-01

    Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA− sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems. PMID:25408683

  18. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient

    OpenAIRE

    Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, a...

  19. In situ and Enriched Microbial Community Composition and Function Associated with Coal Bed Methane from Powder River Basin Coals

    Science.gov (United States)

    Barnhart, Elliott; Davis, Katherine; Varonka, Matthew; Orem, William; Fields, Matthew

    2016-04-01

    Coal bed methane (CBM) is a relatively clean source of energy but current CBM production techniques have not sustained long-term production or produced enough methane to remain economically practical with lower natural gas prices. Enhancement of the in situ microbial community that actively generates CBM with the addition of specific nutrients could potentially sustain development. CBM production more than doubled from native microbial populations from Powder River Basin (PRB) coal beds, when yeast extract and several individual components of yeast extract (proteins and amino acids) were added to laboratory microcosms. Microbial populations capable of hydrogenotrophic (hydrogen production/utilization) methanogenesis were detected in situ and under non-stimulated conditions. Stimulation with yeast extract caused a shift in the community to microorganisms capable of acetoclastic (acetate production/utilization) methanogenesis. Previous isotope analysis from CBM production wells indicated a similar microbial community shift as observed in stimulation experiments: hydrogenotrophic methanogenesis was found throughout the PRB, but acetoclastic methanogenesis dominated major recharge areas. In conjunction, a high proportion of cyanobacterial and algal SSU rRNA gene sequences were detected in a CBM well within a major recharge area, suggesting that these phototrophic organisms naturally stimulate methane production. In laboratory studies, adding phototrophic (algal) biomass stimulated CBM production by PRB microorganisms similarly to yeast extract (~40μg methane increase per gram of coal). Analysis of the British thermal unit (BTU) content of coal from long-term incubations indicated >99.5% of BTU content remained after CBM stimulation with either algae or yeast extract. Biomimicry of in situ algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate

  20. Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification.

    Science.gov (United States)

    Frank, Richard A; Roy, James W; Bickerton, Greg; Rowland, Steve J; Headley, John V; Scarlett, Alan G; West, Charles E; Peru, Kerry M; Parrott, Joanne L; Conly, F Malcolm; Hewitt, L Mark

    2014-01-01

    The objective of this study was to identify chemical components that could distinguish chemical mixtures in oil sands process-affected water (OSPW) that had potentially migrated to groundwater in the oil sands development area of northern Alberta, Canada. In the first part of the study, OSPW samples from two different tailings ponds and a broad range of natural groundwater samples were assessed with historically employed techniques as Level-1 analyses, including geochemistry, total concentrations of naphthenic acids (NAs) and synchronous fluorescence spectroscopy (SFS). While these analyses did not allow for reliable source differentiation, they did identify samples containing significant concentrations of oil sands acid-extractable organics (AEOs). In applying Level-2 profiling analyses using electrospray ionization high resolution mass spectrometry (ESI-HRMS) and comprehensive multidimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF/MS) to samples containing appreciable AEO concentrations, differentiation of natural from OSPW sources was apparent through measurements of O2:O4 ion class ratios (ESI-HRMS) and diagnostic ions for two families of suspected monoaromatic acids (GC × GC-TOF/MS). The resemblance between the AEO profiles from OSPW and from 6 groundwater samples adjacent to two tailings ponds implies a common source, supporting the use of these complimentary analyses for source identification. These samples included two of upward flowing groundwater collected <1 m beneath the Athabasca River, suggesting OSPW-affected groundwater is reaching the river system.

  1. Behavioral Responses of Concholepas concholepas (Bruguière, 1789) Larvae to Natural and Artificial Settlement Cues and Microbial Films.

    Science.gov (United States)

    Rodriguez, S R; Riquelme, C; Campos, E O; Chavez, P; Brandan, E; Inestrosa, N C

    1995-12-01

    The behavioral responses of veliger larvae of the gastropod Concholepas concholepas were studied in the presence of different natural and artificial settlement cues and microbial films. Early pre-competent larvae stopped swimming, sank (due to ciliary arrests, retraction of the velum into the shell, or both), and remained inactive on the substratum when exposed to conspecific mucus and hemolymph. In both cases the effect was time-dependent and the number of larvae showing these behaviors decreased over time. Larvae exposed to NH4Cl (ammonium ion) showed a similar time- and dose-dependent response. A positive and time-dependent response was also observed when larvae were exposed to different extracellular matrix (ECM) components (i.e., collagen, gelatin, and fibronectin) and sulfated polysaccharides (i.e., carrageenan, heparin, and chondroitin sulfate). In this case the larvae remained attached to the substratum. However, the effect of sulfated polysaccharides on C. concholepas larval behavior was faster than that observed with other ECM molecules. We also studied the responses of premetamorphic C. concholepas larvae exposed to different microbial films. In chemotaxis experiments with different films, with glass as the substratum, larvae showed a significant preference for multispecific and diatoms films. When shells of C. concholepas were used as the substratum, the preference for multispecific films was clear and significant. Likewise, larvae showed velar contractions in the presence of all the films tested. Larvae exposed to multispecific films and to the microalga Prasinocladus marinus showed an increased ciliar movement. The finding that mucus and hemolymph of conspecific adults and ECM molecules (mainly sulfated polysaccharides) induce the cessation of swimming of C. concholepas larvae suggests a possible role for cell-surface receptors in mediating the larval response of marine organisms. Likewise, the positive chemotaxis responses of C. concholepas larvae to

  2. Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration.

    Science.gov (United States)

    Carbone, Mariah S; Still, Christopher J; Ambrose, Anthony R; Dawson, Todd E; Williams, A Park; Boot, Claudia M; Schaeffer, Sean M; Schimel, Joshua P

    2011-09-01

    Moisture inputs drive soil respiration (SR) dynamics in semi-arid and arid ecosystems. However, determining the contributions of root and microbial respiration to SR, and their separate temporal responses to periodic drought and water pulses, remains poorly understood. This study was conducted in a pine forest ecosystem with a Mediterranean-type climate that receives seasonally varying precipitation inputs from both rainfall (in the winter) and fog-drip (primarily in the summer). We used automated SR measurements, radiocarbon SR source partitioning, and a water addition experiment to understand how SR, and its separate root and microbial sources, respond to seasonal and episodic changes in moisture. Seasonal changes in SR were driven by surface soil water content and large changes in root respiration contributions. Superimposed on these seasonal patterns were episodic pulses of precipitation that determined the short-term SR patterns. Warm season precipitation pulses derived from fog-drip, and rainfall following extended dry periods, stimulated the largest SR responses. Microbial respiration dominated these SR responses, increasing within hours, whereas root respiration responded more slowly over days. We conclude that root and microbial respiration sources respond differently in timing and magnitude to both seasonal and episodic moisture inputs. These findings have important implications for the mechanistic representation of SR in models and the response of dry ecosystems to changes in precipitation patterns.

  3. A High-Throughput Screening Platform of Microbial Natural Products for the Discovery of Molecules with Antibiofilm Properties against Salmonella

    Science.gov (United States)

    Paytubi, Sonia; de La Cruz, Mercedes; Tormo, Jose R.; Martín, Jesús; González, Ignacio; González-Menendez, Victor; Genilloud, Olga; Reyes, Fernando; Vicente, Francisca; Madrid, Cristina; Balsalobre, Carlos

    2017-01-01

    In this report, we describe a High-Throughput Screening (HTS) to identify compounds that inhibit biofilm formation or cause the disintegration of an already formed biofilm using the Salmonella Enteritidis 3934 strain. Initially, we developed a new methodology for growing Salmonella biofilms suitable for HTS platforms. The biomass associated with biofilm at the solid-liquid interface was quantified by staining both with resazurin and crystal violet, to detect living cells and total biofilm mass, respectively. For a pilot project, a subset of 1120 extracts from the Fundación MEDINA's collection was examined to identify molecules with antibiofilm activity. This is the first validated HTS assay of microbial natural product extracts which allows for the detection of four types of activities which are not mutually exclusive: inhibition of biofilm formation, detachment of the preformed biofilm and antimicrobial activity against planktonic cells or biofilm embedded cells. Currently, several extracts have been selected for further fractionation and purification of the active compounds. In one of the natural extracts patulin has been identified as a potent molecule with antimicrobial activity against both, planktonic cells and cells within the biofilm. These findings provide a proof of concept that the developed HTS can lead to the discovery of new natural compounds with antibiofilm activity against Salmonella and its possible use as an alternative to antimicrobial therapies and traditional disinfectants. PMID:28303128

  4. Anthropogenic and natural sources of acidity and metals and their influence on the structure of stream food webs

    International Nuclear Information System (INIS)

    Hogsden, Kristy L.; Harding, Jon S.

    2012-01-01

    We compared food web structure in 20 streams with either anthropogenic or natural sources of acidity and metals or circumneutral water chemistry in New Zealand. Community and diet analysis indicated that mining streams receiving anthropogenic inputs of acidic and metal-rich drainage had much simpler food webs (fewer species, shorter food chains, less links) than those in naturally acidic, naturally high metal, and circumneutral streams. Food webs of naturally high metal streams were structurally similar to those in mining streams, lacking fish predators and having few species. Whereas, webs in naturally acidic streams differed very little from those in circumneutral streams due to strong similarities in community composition and diets of secondary and top consumers. The combined negative effects of acidity and metals on stream food webs are clear. However, elevated metal concentrations, regardless of source, appear to play a more important role than acidity in driving food web structure. - Highlights: ► Food webs in acid mine drainage impacted streams are small and extremely simplified. ► Conductivity explained differences in food web properties between streams. ► Number of links and web size accounted for much dissimilarity between food webs. ► Food web structure was comparable in naturally acidic and circumneutral streams. - Food web structure differs in streams with anthropogenic and natural sources of acidity and metals.

  5. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  6. Effects of graded levels of microbial phytase on apparent total tract digestibility of calcium and phosphorus and standardized total tract digestibility of phosphorus in four sources of canola meal and in soybean meal fed to growing pigs.

    Science.gov (United States)

    She, Y; Liu, Y; Stein, H H

    2017-05-01

    One hundred twenty pigs were used to determine effects of graded levels of microbial phytase on the apparent total tract digestibility (ATTD) of P and Ca and the standardized total tract digestibility (STTD) of P in 4 sources of canola meal and in 1 source of soybean meal (SBM) fed to growing pigs. The 4 sources of canola meal were produced from 1 source of high-protein canola seeds and 2 sources of conventional canola seeds with 1 of the conventional canola seeds being divided into 2 separate batches before crushing. Pigs (16.2 ± 5.3 kg initial BW) were individually housed in metabolism crates and were randomly allotted to 1 of 20 diets in a 5 × 4 factorial arrangement of treatments with 5 ingredients and 4 levels of phytase. There were 6 replicate pigs per diet. Five basal diets based on high-protein canola meal (CM-HP), high-temperature processed canola meal (CM-HT), low-temperature processed canola meal (CM-LT), conventional canola meal (CM-CV), or SBM were formulated. The basal diets contained no phytase. Fifteen additional diets were prepared by adding approximately 500, 1,500, or 2,500 phytase units/kg to each of the 5 basal diets. Feces were quantitatively collected for 5 d based on the marker-to-marker approach after a 7-d adaptation period. Results indicated that supplementation of microbial phytase increased (linear, phytase also increased (linear and quadratic, phytase was added, but no differences were observed in the ATTD and STTD of P in SBM, CM-HP, CM-HT, or CM-CV if the highest amount of phytase were added (interaction, phytase on the STTD of P in CM-HP, CM-HT, CM-LT, CM-CV, and SBM. In conclusion, inclusion of graded levels of microbial phytase increased the ATTD and STTD of P in CM-HP, CM-HT, CM-LT, CM-CV, and SBM and the response to microbial phytase added to each ingredient can be predicted by regression equations.

  7. Importance of microbial pest control agents and their metabolites In relation to the natural microbiota on strawberry

    DEFF Research Database (Denmark)

    Jensen, Birgit; Knudsen, Inge M. B.; Jensen, Dan Funck

    control. A series of laboratory, growth chamber, semi-field and field experiments using strawberry as a model plant focusing on commercial microbial pest control products (MPCPs) or laboratory MPCAs expected to be on the market within 10 years served as our experimental platform. Initially the background...... level of indigenous microbial communities and their mycotoxins/metabolites on strawberries was examined in a field survey with 4 conventional and 4 organic growers with different production practise and geographic distribution. Culturable bacteria, yeasts and filamentous fungi were isolated...... and identified using both chemotaxonomy (fatty acids and metabolite profiling) and morphological characteristics. Microbial communities on strawberries were complex including potential plant pathogens, opportunistic human pathogens, plant disease biocontrol agents and mycotoxin producers. Bacteria were the most...

  8. Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest.

    Science.gov (United States)

    Rousk, Johannes; Rousk, Kathrin

    2018-05-07

    Heavy metals are some of the most persistent and potent anthropogenic environmental contaminants. Although heavy metals may compromise microbial communities and soil fertility, it is challenging to causally link microbial responses to heavy metals due to various confounding factors, including correlated soil physicochemistry or nutrient availability. A solution is to investigate whether tolerance to the pollutant has been induced, called Pollution Induced Community Tolerance (PICT). In this study, we investigated soil microbial responses to a century-old gradient of metal ore pollution in an otherwise pristine subarctic birch forest generated by a railway source of iron ore transportation. To do this, we determined microbial biomass, growth, and respiration rates, and bacterial tolerance to Zn and Cu in replicated distance transects (1 m-4 km) perpendicular to the railway. Microbial biomass, growth and respiration rates were stable across the pollution gradient. The microbial community structure could be distinguished between sampled distances, but most of the variation was explained by soil pH differences, and it did not align with distance from the railroad pollution source. Bacterial tolerance to Zn and Cu started from background levels at 4 km distance from the pollution source, and remained at background levels for Cu throughout the gradient. Yet, bacterial tolerance to Zn increased 10-fold 100 m from the railway source. Our results show that the microbial community structure, size and performance remained unaffected by the metal ore exposure, suggesting no impact on ecosystem functioning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats.

    Science.gov (United States)

    Abecia, Leticia; Jiménez, Elisabeth; Martínez-Fernandez, Gonzalo; Martín-García, A Ignacio; Ramos-Morales, Eva; Pinloche, Eric; Denman, Stuart E; Newbold, C Jamie; Yáñez-Ruiz, David R

    2017-01-01

    The aim of this work was to evaluate the effect of feeding management during the first month of life (natural with the mother, NAT, or artificial with milk replacer, ART) on the rumen microbial colonization and the host innate immune response. Thirty pregnant goats carrying two fetuses were used. At birth one kid was taken immediately away from the doe and fed milk replacer (ART) while the other remained with the mother (NAT). Kids from groups received colostrum during first 2 days of life. Groups of four kids (from ART and NAT experimental groups) were slaughtered at 1, 3, 7, 14, 21 and 28 days of life. On the sampling day, after slaughtering, the rumen content was sampled and epithelial rumen tissue was collected. Pyrosequencing analyses of the bacterial community structure on samples collected at 3, 7, 14 and 28 days showed that both systems promoted significantly different colonization patterns (P = 0.001). Diversity indices increased with age and were higher in NAT feeding system. Lower mRNA abundance was detected in TLR2, TLR8 and TLR10 in days 3 and 5 compared to the other days (7, 14, 21 and 28). Only TLR5 showed a significantly different level of expression according to the feeding system, presenting higher mRNA abundances in ART kids. PGLYRP1 showed significantly higher abundance levels in days 3, 5 and 7, and then experienced a decline independently of the feeding system. These observations confirmed a highly diverse microbial colonisation from the first day of life in the undeveloped rumen, and show that the colonization pattern substantially differs between pre-ruminants reared under natural or artificial milk feeding systems. However, the rumen epithelial immune development does not differentially respond to distinct microbial colonization patterns.

  10. Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats.

    Directory of Open Access Journals (Sweden)

    Leticia Abecia

    Full Text Available The aim of this work was to evaluate the effect of feeding management during the first month of life (natural with the mother, NAT, or artificial with milk replacer, ART on the rumen microbial colonization and the host innate immune response. Thirty pregnant goats carrying two fetuses were used. At birth one kid was taken immediately away from the doe and fed milk replacer (ART while the other remained with the mother (NAT. Kids from groups received colostrum during first 2 days of life. Groups of four kids (from ART and NAT experimental groups were slaughtered at 1, 3, 7, 14, 21 and 28 days of life. On the sampling day, after slaughtering, the rumen content was sampled and epithelial rumen tissue was collected. Pyrosequencing analyses of the bacterial community structure on samples collected at 3, 7, 14 and 28 days showed that both systems promoted significantly different colonization patterns (P = 0.001. Diversity indices increased with age and were higher in NAT feeding system. Lower mRNA abundance was detected in TLR2, TLR8 and TLR10 in days 3 and 5 compared to the other days (7, 14, 21 and 28. Only TLR5 showed a significantly different level of expression according to the feeding system, presenting higher mRNA abundances in ART kids. PGLYRP1 showed significantly higher abundance levels in days 3, 5 and 7, and then experienced a decline independently of the feeding system. These observations confirmed a highly diverse microbial colonisation from the first day of life in the undeveloped rumen, and show that the colonization pattern substantially differs between pre-ruminants reared under natural or artificial milk feeding systems. However, the rumen epithelial immune development does not differentially respond to distinct microbial colonization patterns.

  11. Comparative analysis of chemical similarity methods for modular natural products with a hypothetical structure enumeration algorithm.

    Science.gov (United States)

    Skinnider, Michael A; Dejong, Chris A; Franczak, Brian C; McNicholas, Paul D; Magarvey, Nathan A

    2017-08-16

    Natural products represent a prominent source of pharmaceutically and industrially important agents. Calculating the chemical similarity of two molecules is a central task in cheminformatics, with applications at multiple stages of the drug discovery pipeline. Quantifying the similarity of natural products is a particularly important problem, as the biological activities of these molecules have been extensively optimized by natural selection. The large and structurally complex scaffolds of natural products distinguish their physical and chemical properties from those of synthetic compounds. However, no analysis of the performance of existing methods for molecular similarity calculation specific to natural products has been reported to date. Here, we present LEMONS, an algorithm for the enumeration of hypothetical modular natural product structures. We leverage this algorithm to conduct a comparative analysis of molecular similarity methods within the unique chemical space occupied by modular natural products using controlled synthetic data, and comprehensively investigate the impact of diverse biosynthetic parameters on similarity search. We additionally investigate a recently described algorithm for natural product retrobiosynthesis and alignment, and find that when rule-based retrobiosynthesis can be applied, this approach outperforms conventional two-dimensional fingerprints, suggesting it may represent a valuable approach for the targeted exploration of natural product chemical space and microbial genome mining. Our open-source algorithm is an extensible method of enumerating hypothetical natural product structures with diverse potential applications in bioinformatics.

  12. Isolation and characterization of (15Z)-lycopene thermally generated from a natural source

    Energy Technology Data Exchange (ETDEWEB)

    Takehara, Munenori, E-mail: takehara@mat.usp.ac.jp [Department of Materials Science, The University of Shiga Prefecture, Hassaka, Hikone 522-8533 (Japan); Kuwa, Takahiro; Inoue, Yoshinori; Kitamura, Chitoshi [Department of Materials Science, The University of Shiga Prefecture, Hassaka, Hikone 522-8533 (Japan); Honda, Masaki [Research & Development Division, Kagome Co., Ltd., Nishitomiyama, Nasushiobara 329-2762 (Japan)

    2015-11-06

    (15Z)-Lycopene was prepared by thermal isomerization of (all-E)-lycopene derived from tomatoes, and isolated by using a series of chromatographies. The fine red crystalline powder of (15Z)-lycopene was obtained from 556 mg of (all-E)-lycopene with a yield of 0.6 mg (purity: reversed-phase HPLC, 97.2%; normal-phase HPLC, ≥99.9%), and {sup 1}H and {sup 13}C NMR spectra of the isomer were fully assigned. More refined computational analyses that considered differences in the energy levels of the conformers involved in isomerization have also determined the stabilities of (15Z)-lycopene and other geometric isomers, along with the activation energies during isomerization from the all-E form. The fine control of conditions for HPLC separation and an advanced theoretical insight into geometric isomerization have led to the discovery of the 15Z-isomer generated from a natural source. - Highlights: • (15Z)-lycopene, isomerized from the all-E form of a natural source, was purified. • The obtained (15Z)-lycopene was structurally identified by an NMR analysis. • A modified theoretical study accounted for the generation of the 15Z-isomer. • This study demonstrated the occurrence of the isomer from a natural origin.

  13. Isolation and characterization of (15Z)-lycopene thermally generated from a natural source

    International Nuclear Information System (INIS)

    Takehara, Munenori; Kuwa, Takahiro; Inoue, Yoshinori; Kitamura, Chitoshi; Honda, Masaki

    2015-01-01

    (15Z)-Lycopene was prepared by thermal isomerization of (all-E)-lycopene derived from tomatoes, and isolated by using a series of chromatographies. The fine red crystalline powder of (15Z)-lycopene was obtained from 556 mg of (all-E)-lycopene with a yield of 0.6 mg (purity: reversed-phase HPLC, 97.2%; normal-phase HPLC, ≥99.9%), and 1 H and 13 C NMR spectra of the isomer were fully assigned. More refined computational analyses that considered differences in the energy levels of the conformers involved in isomerization have also determined the stabilities of (15Z)-lycopene and other geometric isomers, along with the activation energies during isomerization from the all-E form. The fine control of conditions for HPLC separation and an advanced theoretical insight into geometric isomerization have led to the discovery of the 15Z-isomer generated from a natural source. - Highlights: • (15Z)-lycopene, isomerized from the all-E form of a natural source, was purified. • The obtained (15Z)-lycopene was structurally identified by an NMR analysis. • A modified theoretical study accounted for the generation of the 15Z-isomer. • This study demonstrated the occurrence of the isomer from a natural origin.

  14. Environmental drivers of differences in microbial community structure in crude oil reservoirs across a methanogenic gradient

    Directory of Open Access Journals (Sweden)

    Jenna L Shelton

    2016-09-01

    Full Text Available Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow up-dip wells was different than the 17 deeper, down-dip wells, and that

  15. Onshore Wind Speed Modulates Microbial Aerosols along an Urban Waterfront

    Directory of Open Access Journals (Sweden)

    M. Elias Dueker

    2017-11-01

    Full Text Available Wind blowing over aquatic and terrestrial surfaces produces aerosols, which include microbial aerosols. We studied the effect of onshore wind speeds on aerosol concentrations as well as total and culturable microbial aerosols (bacterial and viral at an urban waterfront (New York, NY, United States of America. We used two distinct methods to characterize microbial aerosol responses to wind speed: A culture-based exposure-plate method measuring viable bacterial deposition near-shore (CFU accumulation rate; and a culture-independent aerosol sampler-based method measuring total bacterial and viral aerosols (cells m−3 air. While ambient coarse (>2 µm and fine (0.3–2 µm aerosol particle number concentrations (regulated indicators of air quality decreased with increasing onshore wind speeds, total and depositing culturable bacterial aerosols and total viral aerosols increased. Taxonomic identification of the 16S rDNA of bacterial aerosol isolates suggested both terrestrial and aquatic sources. Wind appears to increase microbial aerosol number concentrations in the near-shore environment by onshore transport at low wind speeds (<4 m s−1, and increased local production and transport of new microbial aerosols from adjacent water surfaces at higher wind speeds (>4 m s−1. This study demonstrates a wind-modulated microbial connection between water and air in the coastal urban environment, with implications for public health management and urban microbial ecology.

  16. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  17. Exposure of the Spanish population to radiation from natural sources

    International Nuclear Information System (INIS)

    Garcia-Talavera, M.; Suarez, E.; Matarranz, J.L.; Salas, R.; Ramos, L.

    2006-01-01

    We have assessed the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 2.38 mSv, taking into account contributions from cosmic radiation (13.8%), terrestrial gamma radiation (39%), radon and thoron inhalation (34%) and ingestion (13.2%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors was derived from the M.A.R.N.A. (natural gamma radiation map of Spain). Indoor gamma ray exposure was calculated by multiplying the corresponding outdoor value by a conversion factor, which was obtained by a linear least-squares fit of experimental measurements. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion of water and foodstuffs we considered the results from a detailed study on consumption habits by age and geographical area in Spain, promoted by C.S.N., and average radioactivity values from UNSCEAR. (authors)

  18. Exposure of the Spanish population to radiation from natural sources

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Talavera, M.; Suarez, E.; Matarranz, J.L.; Salas, R.; Ramos, L. [Consejo de Seguridad Nuclear. Justo Dorado, Madrid (Spain)

    2006-07-01

    We have assessed the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 2.38 mSv, taking into account contributions from cosmic radiation (13.8%), terrestrial gamma radiation (39%), radon and thoron inhalation (34%) and ingestion (13.2%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors was derived from the M.A.R.N.A. (natural gamma radiation map of Spain). Indoor gamma ray exposure was calculated by multiplying the corresponding outdoor value conversion factor, which was obtained by a linear least-squares fit of experimental measurements. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion of water and foodstuffs we considered the results from a detailed study on consumption habits by age and geographical area in Spain, promoted by C.S.N., and average radioactivity values from UNSCEAR. (authors)

  19. Microbial mitigation-exacerbation continuum: a novel framework for microbiome effects on hosts in the face of stress.

    Science.gov (United States)

    David, Aaron S; Thapa-Magar, Khum B; Afkhami, Michelle E

    2018-03-01

    A key challenge to understanding microbiomes and their role in ecological processes is contextualizing their effects on host organisms, particularly when faced with environmental stress. One influential theory, the Stress Gradient Hypothesis, might predict that the frequency of positive interactions increases with stressful conditions such that microbial taxa would mitigate harmful effects on host performance. Yet, equally plausible is that microbial taxa could exacerbate these effects. Here, we introduce the Mitigation-Exacerbation Continuum as a novel framework to conceptualize microbial mediation of stress. We (1) use this continuum to quantify microbial mediation of stress for six plant species and (2) test the association between these continuum values and natural species' abundance. We factorially manipulated a common stress (allelopathy) and the presence of soil microbes to quantify microbial effects in benign and stressed environments for two critical early life-history metrics, seed germination and seedling biomass. Although we found evidence of both mitigation and exacerbation among the six species, exacerbation was more common. Across species, the degree of microbial-mediated effects on germination explained >80% of the variation of natural field abundances. Our results suggest a critical role of soil microbes in mediating plant stress responses, and a potential microbial mechanism underlying species abundance. © 2018 by the Ecological Society of America.

  20. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films.

    Science.gov (United States)

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Repouskou, Eftychia; Kroll, Kevin; Kolvenbach, Boris; Corvini, Philippe F-X; Fava, Fabio; Kalogerakis, Nicolas

    2017-01-01

    This study investigated the potential of bacterial-mediated polyethylene (PE) degradation in a two-phase microcosm experiment. During phase I, naturally weathered PE films were incubated for 6 months with the indigenous marine community alone as well as bioaugmented with strains able to grow in minimal medium with linear low-density polyethylene (LLDPE) as the sole carbon source. At the end of phase I the developed biofilm was harvested and re-inoculated with naturally weathered PE films. Bacteria from both treatments were able to establish an active population on the PE surfaces as the biofilm community developed in a time dependent way. Moreover, a convergence in the composition of these communities was observed towards an efficient PE degrading microbial network, comprising of indigenous species. In acclimated communities, genera affiliated with synthetic (PE) and natural (cellulose) polymer degraders as well as hydrocarbon degrading bacteria were enriched. The acclimated consortia (indigenous and bioaugmented) reduced more efficiently the weight of PE films in comparison to non-acclimated bacteria. The SEM images revealed a dense and compact biofilm layer and signs of bio-erosion on the surface of the films. Rheological results suggest that the polymers after microbial treatment had wider molecular mass distribution and a marginally smaller average molar mass suggesting biodegradation as opposed to abiotic degradation. Modifications on the surface chemistry were observed throughout phase II while the FTIR profiles of microbially treated films at month 6 were similar to the profiles of virgin PE. Taking into account the results, we can suggest that the tailored indigenous marine community represents an efficient consortium for degrading weathered PE plastics.

  1. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films.

    Directory of Open Access Journals (Sweden)

    Evdokia Syranidou

    Full Text Available This study investigated the potential of bacterial-mediated polyethylene (PE degradation in a two-phase microcosm experiment. During phase I, naturally weathered PE films were incubated for 6 months with the indigenous marine community alone as well as bioaugmented with strains able to grow in minimal medium with linear low-density polyethylene (LLDPE as the sole carbon source. At the end of phase I the developed biofilm was harvested and re-inoculated with naturally weathered PE films. Bacteria from both treatments were able to establish an active population on the PE surfaces as the biofilm community developed in a time dependent way. Moreover, a convergence in the composition of these communities was observed towards an efficient PE degrading microbial network, comprising of indigenous species. In acclimated communities, genera affiliated with synthetic (PE and natural (cellulose polymer degraders as well as hydrocarbon degrading bacteria were enriched. The acclimated consortia (indigenous and bioaugmented reduced more efficiently the weight of PE films in comparison to non-acclimated bacteria. The SEM images revealed a dense and compact biofilm layer and signs of bio-erosion on the surface of the films. Rheological results suggest that the polymers after microbial treatment had wider molecular mass distribution and a marginally smaller average molar mass suggesting biodegradation as opposed to abiotic degradation. Modifications on the surface chemistry were observed throughout phase II while the FTIR profiles of microbially treated films at month 6 were similar to the profiles of virgin PE. Taking into account the results, we can suggest that the tailored indigenous marine community represents an efficient consortium for degrading weathered PE plastics.

  2. Microbial flora analysis for the degradation of beta-cypermethrin.

    Science.gov (United States)

    Qi, Zhang; Wei, Zhang

    2017-03-01

    In the Xinjiang region of Eurasia, sustained long-term and continuous cropping of cotton over a wide expanse of land is practiced, which requires application of high levels of pyrethroid and other classes of pesticides-resulting in high levels of pesticide residues in the soil. In this study, soil samples were collected from areas of long-term continuous cotton crops with the aim of obtaining microbial resources applicable for remediation of pyrethroid pesticide contamination suitable for the soil type and climate of that area. Soil samples were first used to culture microbial flora capable of degrading beta-cypermethrin using an enrichment culture method. Structural changes and ultimate microbial floral composition during enrichment were analyzed by high-throughput sequencing. Four strains capable of degrading beta-cypermethrin were isolated and preliminarily classified. Finally, comparative rates and speeds of degradation of beta-cypermethrin between relevant microbial flora and single strains were determined. After continuous subculture for 3 weeks, soil sample microbial flora formed a new type of microbial flora by rapid succession, which showed stable growth by utilizing beta-cypermethrin as the sole carbon source (GXzq). This microbial flora mainly consisted of Pseudomonas, Hyphomicrobium, Dokdonella, and Methyloversatilis. Analysis of the microbial flora also permitted separation of four additional strains; i.e., GXZQ4, GXZQ6, GXZQ7, and GXZQ13 that, respectively, belonged to Streptomyces, Enterobacter, Streptomyces, and Pseudomonas. Under culture conditions of 37 °C and 180 rpm, the degradation rate of beta-cypermethrin by GXzq was as high as 89.84% within 96 h, which exceeded that achieved by the single strains GXZQ4, GXZQ6, GXZQ7, and GXZQ13 and their derived microbial flora GXh.

  3. Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica

    Directory of Open Access Journals (Sweden)

    Bradley M. Tebo

    2015-03-01

    Full Text Available The Earth’s crust hosts a subsurface, dark, and oligotrophic biosphere that is poorly understood in terms of the energy supporting its biomass production and impact on food webs at the Earth’s surface. Dark oligotrophic volcanic ecosystems (DOVEs are good environments for investigations of life in the absence of sunlight as they are poor in organics, rich in chemical reactants and well known for chemical exchange with Earth’s surface systems. Ice caves near the summit of Mt. Erebus (Antarctica offer DOVEs in a polar alpine environment that is starved in organics and with oxygenated hydrothermal circulation in highly reducing host rock. We surveyed the microbial communities using PCR, cloning, sequencing and analysis of the small subunit (16S ribosomal and Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RubisCO genes in sediment samples from three different caves, two that are completely dark and one that receives snow-filtered sunlight seasonally. The microbial communities in all three caves are composed primarily of Bacteria and fungi; Archaea were not detected. The bacterial communities from these ice caves display low phylogenetic diversity, but with a remarkable diversity of RubisCO genes including new deeply branching Form I clades, implicating the Calvin-Benson-Bassham cycle as a pathway of CO2 fixation. The microbial communities in one of the dark caves, Warren Cave, which has a remarkably low phylogenetic diversity, were analyzed in more detail to gain a possible perspective on the energetic basis of the microbial ecosystem in the cave. Atmospheric carbon (CO2 and CO, including from volcanic emissions, likely supplies carbon and/or some of the energy requirements of chemoautotrophic microbial communities in Warren Cave and probably other Mt. Erebus ice caves. Our work casts a first glimpse at Mt. Erebus ice caves as natural laboratories for exploring carbon, energy and nutrient sources in the subsurface biosphere and the

  4. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods.

    Science.gov (United States)

    Linares, Daniel M; Gómez, Carolina; Renes, Erica; Fresno, José M; Tornadijo, María E; Ross, R P; Stanton, Catherine

    2017-01-01

    Consumer interest in healthy lifestyle and health-promoting natural products is a major driving force for the increasing global demand of biofunctional dairy foods. A number of commercial sources sell synthetic formulations of bioactive substances for use as dietary supplements. However, the bioactive-enrichment of health-oriented foods by naturally occurring microorganisms during dairy fermentation is in increased demand. While participating in milk fermentation, lactic acid bacteria can be exploited in situ as microbial sources for naturally enriching dairy products with a broad range of bioactive components that may cover different health aspects. Several of these bioactive metabolites are industrially and economically important, as they are claimed to exert diverse health-promoting activities on the consumer, such as anti-hypertensive, anti-inflammatory, and anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation. This review aims at discussing the potential of these health-supporting bacteria as starter or adjunct cultures for the elaboration of dairy foods with a broad spectrum of new functional properties and added value.

  5. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods

    Directory of Open Access Journals (Sweden)

    Daniel M. Linares

    2017-05-01

    Full Text Available Consumer interest in healthy lifestyle and health-promoting natural products is a major driving force for the increasing global demand of biofunctional dairy foods. A number of commercial sources sell synthetic formulations of bioactive substances for use as dietary supplements. However, the bioactive-enrichment of health-oriented foods by naturally occurring microorganisms during dairy fermentation is in increased demand. While participating in milk fermentation, lactic acid bacteria can be exploited in situ as microbial sources for naturally enriching dairy products with a broad range of bioactive components that may cover different health aspects. Several of these bioactive metabolites are industrially and economically important, as they are claimed to exert diverse health-promoting activities on the consumer, such as anti-hypertensive, anti-inflammatory, and anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation. This review aims at discussing the potential of these health-supporting bacteria as starter or adjunct cultures for the elaboration of dairy foods with a broad spectrum of new functional properties and added value.

  6. Spatial Molecular Architecture of the Microbial Community of a Peltigera Lichen

    Science.gov (United States)

    Garg, Neha; Zeng, Yi; Edlund, Anna; Melnik, Alexey V.; Mohimani, Hosein; Gurevich, Alexey; Miao, Vivian; Schiffler, Stefan; Lim, Yan Wei; Luzzatto-Knaan, Tal; Cai, Shengxin; Rohwer, Forest; Pevzner, Pavel A.; Cichewicz, Robert H.; Alexandrov, Theodore

    2016-01-01

    ABSTRACT Microbes are commonly studied as individual species, but they exist as mixed assemblages in nature. At present, we know very little about the spatial organization of the molecules, including natural products that are produced within these microbial networks. Lichens represent a particularly specialized type of symbiotic microbial assemblage in which the component microorganisms exist together. These composite microbial assemblages are typically comprised of several types of microorganisms representing phylogenetically diverse life forms, including fungi, photosymbionts, bacteria, and other microbes. Here, we employed matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) imaging mass spectrometry to characterize the distributions of small molecules within a Peltigera lichen. In order to probe how small molecules are organized and localized within the microbial consortium, analytes were annotated and assigned to their respective producer microorganisms using mass spectrometry-based molecular networking and metagenome sequencing. The spatial analysis of the molecules not only reveals an ordered layering of molecules within the lichen but also supports the compartmentalization of unique functions attributed to various layers. These functions include chemical defense (e.g., antibiotics), light-harvesting functions associated with the cyanobacterial outer layer (e.g., chlorophyll), energy transfer (e.g., sugars) surrounding the sun-exposed cyanobacterial layer, and carbohydrates that may serve a structural or storage function and are observed with higher intensities in the non-sun-exposed areas (e.g., complex carbohydrates). IMPORTANCE Microbial communities have evolved over centuries to live symbiotically. The direct visualization of such communities at the chemical and functional level presents a challenge. Overcoming this challenge may allow one to visualize the spatial distributions of specific molecules involved in symbiosis and to define

  7. Endophytic Fungi as Novel Resources of natural Therapeutics

    Directory of Open Access Journals (Sweden)

    Maheshwari Rajamanikyam

    2017-08-01

    Full Text Available ABSTRACT Fungal endophytes constitute a major part of the unexplored fungal diversity. Endophytic fungi (EF are an important source for novel, potential and active metabolites. Plant-endophyte interaction and endophyte -endophyte interactions study provide insights into mutualism and metabolite production by fungi. Bioactive compounds produced by endophytes main function are helping the host plants to resist external biotic and abiotic stress, which benefit the host survival in return. These organisms mainly consist of members of the Ascomycota, Basidiomycota, Zygomycota and Oomycota. Recently, the genome sequencing technology has emerged as one of the most efficient tools that can provide whole information of a genome in a small period of time. Endophytes are fertile ground for drug discovery. EFare considered as the hidden members of the microbial world and represent an underutilized resource for new therapeutics and compounds. Endophytes are rich source of natural products displaying broad spectrum of biological activities like anticancer, antibacterial, antiviral, immunomodulatory, antidiabetic, antioxidant, anti-arthritis and anti-inflammatory.

  8. Studies on the effect of petroleum hydrocarbon on the microbial and ...

    African Journals Online (AJOL)

    SERVER

    2007-08-20

    Aug 20, 2007 ... Key words: Hydrocarbon, microbial counts, physico-chemical characteristics. INTRODUCTION. Petroleum ... carbons, whose composition also varies with the source. ... hydrocarbons into aquifers can lead to concentrations of.

  9. Isotopic identification of the source of methane in subsurface sediments of an area surrounded by waste disposal facilities

    International Nuclear Information System (INIS)

    Hackley, K.C.; Liu, C.L.; Trainor, D.

    1999-01-01

    The major source of methane (CH 4 ) in subsurface sediments on the property of a former hazardous waste treatment facility was determined using isotopic analyses measured on CH 4 and associated groundwater. The site, located on an earthen pier built into a shallow wetland lake, has had a history of waste disposal practices and is surrounded by landfills and other waste management facilities. Concentrations of CH 4 up to 70% were found in the headspace gases of several piezometers screened at 3 different depths (ranging from 8 to 17 m) in lacustrine and glacial till deposits. Possible sources of the CH 4 included a nearby landfill, organic wastes from previous impoundments and microbial gas derived from natural organic matter in the sediments.Isotopic analyses included δ 13 C, δD, 14 C, and 3 H on select CH 4 samples and δD and δ 18 O on groundwater samples. Methane from the deepest glacial till and intermediate lacustrine deposits had δ 13 C values from -79 to -82per thousand, typical of natural 'drift gas' generated by microbial CO 2 -reduction. The CH 4 from the shallow lacustrine deposits had δ 13 C values from -63 to -76per thousand, interpreted as a mixture between CH 4 generated by microbial fermentation and the CO 2 -reduction processes within the subsurface sediments. The δD values of all the CH 4 samples were quite negative ranging from -272 to -299per thousand. Groundwater sampled from the deeper zones also showed quite negative δD values that explained the light δD observed for the CH 4 . Radiocarbon analyses of the CH 4 showed decreasing 14 C activity with depth, from a high of 58 pMC in the shallow sediments to 2 pMC in the deeper glacial till. The isotopic data indicated the majority of CH 4 detected in the till deposits of this site was microbial CH 4 generated from naturally buried organic matter within the subsurface sediments. However, the isotopic data of CH 4 from the shallow piezometers was more variable and the possibility of some

  10. Isotopic identification of the source of methane in subsurface sediments of an area surrounded by waste disposal facilities

    Science.gov (United States)

    Hackley, Keith C.; Liu, Chao-Li; Trainor, D.

    1999-01-01

    The major source of methane (CH4) in subsurface sediments on the property of a former hazardous waste treatment facility was determined using isotopic analyses measured on CH4 and associated groundwater. The site, located on an earthen pier built into a shallow wetland lake, has had a history of waste disposal practices and is surrounded by landfills and other waste management facilities. Concentrations of CH4 up to 70% were found in the headspace gases of several piezometers screened at 3 different depths (ranging from 8 to 17 m) in lacustrine and glacial till deposits. Possible sources of the CH4 included a nearby landfill, organic wastes from previous impoundments and microbial gas derived from natural organic matter in the sediments. Isotopic analyses included ??13C, ??D, 14C, and 3H on select CH4 samples and ??D and ??18O on groundwater samples. Methane from the deepest glacial till and intermediate lacustrine deposits had ??13C values from -79 to -82???, typical of natural 'drift gas' generated by microbial CO2-reduction. The CH4 from the shallow lacustrine deposits had ??13C values from -63 to -76???, interpreted as a mixture between CH4 generated by microbial fermentation and the CO2-reduction processes within the subsurface sediments. The ??D values of all the CH4 samples were quite negative ranging from -272 to -299???. Groundwater sampled from the deeper zones also showed quite negative ??D values that explained the light ??D observed for the CH4. Radiocarbon analyses of the CH4 showed decreasing 14C activity with depth, from a high of 58 pMC in the shallow sediments to 2 pMC in the deeper glacial till. The isotopic data indicated the majority of CH4 detected in the fill deposits of this site was microbial CH4 generated from naturally buried organic matter within the subsurface sediments. However, the isotopic data of CH4 from the shallow piezometers was more variable and the possibility of some mixing with oxidized landfill CH4 could not be completely

  11. Microbial ecology and adaptation in cystic fibrosis airways

    DEFF Research Database (Denmark)

    Yang, Lei; Jelsbak, Lars; Molin, Søren

    2011-01-01

    Chronic infections in the respiratory tracts of cystic fibrosis (CF) patients are important to investigate, both from medical and from fundamental ecological points of view. Cystic fibrosis respiratory tracts can be described as natural environments harbouring persisting microbial communities...... constitute the selective forces that drive the evolution of the microbes after they migrate from the outer environment to human airways. Pseudomonas aeruginosa adapts to the new environment through genetic changes and exhibits a special lifestyle in chronic CF airways. Understanding the persistent...... colonization of microbial pathogens in CF patients in the context of ecology and evolution will expand our knowledge of the pathogenesis of chronic infections and improve therapeutic strategies....

  12. Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study

    Science.gov (United States)

    Kokkinaki, A.; Sleep, B. E.

    2011-12-01

    The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and

  13. Black Nitrogen as a source for the built-up of microbial biomass in soils

    Science.gov (United States)

    López-Martín, María; Milter, Anja; Knicker, Heike

    2016-04-01

    In areas with frequent wildfires, soil organic nitrogen (SON) is sequestered in pyrogenic organic matter (PyOM) due to heat-induced transformation of proteinaceous compounds into N-heterocycles, i.e. pyrrole, imidazole and indole compounds. These newly formed structures, known as Black Nitrogen (BN), have been assumed to be hardly degradable by microorganisms, thus being efficiently sequestered from the N cycle. On the other hand, a previous study showed that nitrogen of BN can be used by plants for the built-up of their biomass (de la Rosa and Knicker 2011). Thus, BN may play an important role as an N source during the recovery of the forest after a fire event. In order to obtain a more profound understanding of the role of BN within the N cycle in soils, we studied the bioavailability and incorporation of N derived from PyOM into microbial amino acids. For that, pots with soil from a burnt and an unburnt Cambisol located under a Mediterranean forest were covered with different amendments. The toppings were mixtures of unlabeled KNO3 with 15N labeled grass or 15N-labeled PyOM from burned grass and K15NO3 mixed with unlabeled grass material or PyOM. The pots were kept in the greenhouse under controlled conditions for 16 months and were sampled after 0.5, 1, 5, 8 and 16 months. From all samples the amino acids were extracted after hydrolysis (6 M HCl, 22 h, 110 °C) and quantified via gas chromatography mass spectrometry (GC/MS). The fate of 15N was followed by isotopic ratio mass spectrometry (IRMS). The results show that the contribution of extractable amino acids to total soil organic matter was always higher in the unburnt than in the burnt soil. However, with ongoing incubation their amount decreased. Already after 0.5 months, some PyOM-derived 15N was incorporated into the extractable amino acids and the amount increased with experiment time. Since this can only occur after prior microbial degradation of PyOM our results clearly support a lower biochemical

  14. An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery

    Directory of Open Access Journals (Sweden)

    Candice M. Brinkmann

    2017-09-01

    Full Text Available Microbial symbiotic communities of marine macro-organisms carry functional metabolic profiles different to the ones found terrestrially and within surrounding marine environments. These symbiotic bacteria have increasingly been a focus of microbiologists working in marine environments due to a wide array of reported bioactive compounds of therapeutic importance resulting in various patent registrations. Revelations of symbiont-directed host specific functions and the true nature of host-symbiont interactions, combined with metagenomic advances detecting functional gene clusters, will inevitably open new avenues for identification and discovery of novel bioactive compounds of biotechnological value from marine resources. This review article provides an overview on bioactive marine symbiotic organisms with specific emphasis placed on the sponge-associated ones and invites the international scientific community to contribute towards establishment of in-depth information of the environmental parameters defining selection and acquisition of true symbionts by the host organisms.

  15. Antifungal Microbial Agents for Food Biopreservation-A Review.

    Science.gov (United States)

    Leyva Salas, Marcia; Mounier, Jérôme; Valence, Florence; Coton, Monika; Thierry, Anne; Coton, Emmanuel

    2017-07-08

    Food spoilage is a major issue for the food industry, leading to food waste, substantial economic losses for manufacturers and consumers, and a negative impact on brand names. Among causes, fungal contamination can be encountered at various stages of the food chain (e.g., post-harvest, during processing or storage). Fungal development leads to food sensory defects varying from visual deterioration to noticeable odor, flavor, or texture changes but can also have negative health impacts via mycotoxin production by some molds. In order to avoid microbial spoilage and thus extend product shelf life, different treatments-including fungicides and chemical preservatives-are used. In parallel, public authorities encourage the food industry to limit the use of these chemical compounds and develop natural methods for food preservation. This is accompanied by a strong societal demand for 'clean label' food products, as consumers are looking for more natural, less severely processed and safer products. In this context, microbial agents corresponding to bioprotective cultures, fermentates, culture-free supernatant or purified molecules, exhibiting antifungal activities represent a growing interest as an alternative to chemical preservation. This review presents the main fungal spoilers encountered in food products, the antifungal microorganisms tested for food bioprotection, and their mechanisms of action. A focus is made in particular on the recent in situ studies and the constraints associated with the use of antifungal microbial agents for food biopreservation.

  16. Metagenomes from two microbial consortia associated with Santa Barbara seep oil.

    Science.gov (United States)

    Hawley, Erik R; Malfatti, Stephanie A; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Foster, Brian; Copeland, Alexander; del Rio, Tijana Glavina; Pati, Amrita; Jansson, Janet R; Gilbert, Jack A; Tringe, Susannah Green; Lorenson, Thomas D; Hess, Matthias

    2014-12-01

    The metagenomes from two microbial consortia associated with natural oils seeping into the Pacific Ocean offshore the coast of Santa Barbara (California, USA) were determined to complement already existing metagenomes generated from microbial communities associated with hydrocarbons that pollute the marine ecosystem. This genomics resource article is the first of two publications reporting a total of four new metagenomes from oils that seep into the Santa Barbara Channel. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers.

    Science.gov (United States)

    Kleinsteuber, Sabine; Schleinitz, Kathleen M; Vogt, Carsten

    2012-05-01

    Biodegradation of anthropogenic pollutants in shallow aquifers is an important microbial ecosystem service which is mainly brought about by indigenous anaerobic microorganisms. For the management of contaminated sites, risk assessment and control of natural attenuation, the assessment of in situ biodegradation and the underlying microbial processes is essential. The development of novel molecular methods, "omics" approaches, and high-throughput techniques has revealed new insight into complex microbial communities and their functions in anoxic environmental systems. This review summarizes recent advances in the application of molecular methods to study anaerobic microbial communities in contaminated terrestrial subsurface ecosystems. We focus on current approaches to analyze composition, dynamics, and functional diversity of subsurface communities, to link identity to activity and metabolic function, and to identify the ecophysiological role of not yet cultured microbes and syntrophic consortia. We discuss recent molecular surveys of contaminated sites from an ecological viewpoint regarding degrader ecotypes, abiotic factors shaping anaerobic communities, and biotic interactions underpinning the importance of microbial cooperation for microbial ecosystem services such as contaminant degradation.

  18. The binning of metagenomic contigs for microbial physiology of mixed cultures.

    Science.gov (United States)

    Strous, Marc; Kraft, Beate; Bisdorf, Regina; Tegetmeyer, Halina E

    2012-01-01

    So far, microbial physiology has dedicated itself mainly to pure cultures. In nature, cross feeding and competition are important aspects of microbial physiology and these can only be addressed by studying complete communities such as enrichment cultures. Metagenomic sequencing is a powerful tool to characterize such mixed cultures. In the analysis of metagenomic data, well established algorithms exist for the assembly of short reads into contigs and for the annotation of predicted genes. However, the binning of the assembled contigs or unassembled reads is still a major bottleneck and required to understand how the overall metabolism is partitioned over different community members. Binning consists of the clustering of contigs or reads that apparently originate from the same source population. In the present study eight metagenomic samples from the same habitat, a laboratory enrichment culture, were sequenced. Each sample contained 13-23 Mb of assembled contigs and up to eight abundant populations. Binning was attempted with existing methods but they were found to produce poor results, were slow, dependent on non-standard platforms or produced errors. A new binning procedure was developed based on multivariate statistics of tetranucleotide frequencies combined with the use of interpolated Markov models. Its performance was evaluated by comparison of the results between samples with BLAST and in comparison to existing algorithms for four publicly available metagenomes and one previously published artificial metagenome. The accuracy of the new approach was comparable or higher than existing methods. Further, it was up to a 100 times faster. It was implemented in Java Swing as a complete open source graphical binning application available for download and further development (http://sourceforge.net/projects/metawatt).

  19. The binning of metagenomic contigs for microbial physiology of mixed cultures

    Directory of Open Access Journals (Sweden)

    Marc eStrous

    2012-12-01

    Full Text Available So far, microbial physiology has dedicated itself mainly to pure cultures. In nature, cross feeding and competition are important aspects of microbial physiology and these can only be addressed by studying complete communities such as enrichment cultures. Metagenomic sequencing is a powerful tool to characterize such mixed cultures. In the analysis of metagenomic data, well established algorithms exist for the assembly of short reads into contigs and for the annotation of predicted genes. However, the binning of the assembled contigs or unassembled reads is still a major bottleneck and required to understand how the overall metabolism is partitioned over different community members. Binning consists of the clustering of contigs or reads that apparently originate from the same source population.In the present study eight metagenomic samples originating from the same habitat, a laboratory enrichment culture, were sequenced. Each sample contained 13-23 Mb of assembled contigs and up to eight abundant populations. Binning was attempted with existing methods but they were found to produce poor results, were slow, dependent on non-standard platforms or produced errors. A new binning procedure was developed based on multivariate statistics of tetranucleotide frequencies combined with the use of interpolated Markov models. Its performance was evaluated by comparison of the results between samples with BLAST and in comparison to exisiting algorithms for four publicly available metagenomes and one previously published artificial metagenome. The accuracy of the new approach was comparable or higher than existing methods. Further, it was up to a hunderd times faster. It was implemented in Java Swing as a complete open source graphical binning application available for download and further development (http://sourceforge.net/projects/metawatt.

  20. The fifth international conference on microbial enhanced oil recovery and related biotechnology for solving environmental problems: 1995 Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, R. [ed.

    1995-12-31

    This volume contains 41 papers covering the following topics: field trials of microbial enhanced recovery of oil; control and treatment of sour crudes and natural gas with microorganisms; bioremediation of hydrocarbon contamination in soils; microbial plugging processes; microbial waste water treatment; the use of microorganisms as biological indicators of oils; and characterization and behavior of microbial systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.