WorldWideScience

Sample records for microbial pathogens including

  1. Evolution of microbial pathogens

    National Research Council Canada - National Science Library

    DiRita, Victor J; Seifert, H. Steven

    2006-01-01

    ... A. Hogan vvi ■ CONTENTS 8. Evolution of Pathogens in Soil Rachel Muir and Man-Wah Tan / 131 9. Experimental Models of Symbiotic Host-Microbial Relationships: Understanding the Underpinnings of ...

  2. Evolution of microbial pathogens.

    OpenAIRE

    Morschhäuser, J; Köhler, G; Ziebuhr, W; Blum-Oehler, G; Dobrindt, U; Hacker, J

    2000-01-01

    Various genetic mechanisms including point mutations, genetic rearrangements and lateral gene transfer processes contribute to the evolution of microbes. Long-term processes leading to the development of new species or subspecies are termed macroevolution, and short-term developments, which occur during days or weeks, are considered as microevolution. Both processes, macro- and microevolution need horizontal gene transfer, which is particularly important for the development of pathogenic micr...

  3. High-throughput sequencing reveals microbial communities in drinking water treatment sludge from six geographically distributed plants, including potentially toxic cyanobacteria and pathogens.

    Science.gov (United States)

    Xu, Hangzhou; Pei, Haiyan; Jin, Yan; Ma, Chunxia; Wang, Yuting; Sun, Jiongming; Li, Hongmin

    2018-04-10

    The microbial community structures of drinking water treatment sludge (DWTS) generated for raw water (RW) from different locations and with different source types - including river water, lake water and reservoir water -were investigated using high-throughput sequencing. Because the unit operations in the six DWTPs were similar, community composition in fresh sludge may be determined by microbial community in the corresponding RW. Although Proteobacteria, Cyanobacteria, Bacteroidetes, Firmicutes, Verrucomicrobia, and Planctomycetes were the dominant phyla among the six DWTS samples, no single phylum exhibited similar abundance across all the samples, owing to differences in total phosphorus, chemical oxygen demand, Al, Fe, and chloride in RW. Three genera of potentially toxic cyanobacteria (Planktothrix, Microcystis and Cylindrospermopsis), and four potential pathogens (Escherichia coli, Bacteroides ovatus, Prevotella copri and Rickettsia) were found in sludge samples. Because proliferation of potentially toxic cyanobacteria and Rickettsia in RW was mainly affected by nutrients, while growth of Escherichia coli, Bacteroides ovatus and Prevotella copri in RW may be influenced by Fe, control of nutrients and Fe in RW is essential to decrease toxic cyanobacteria and pathogens in DWTS. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Different types of stainless steel used in equipment in meat plants do not affect the initial microbial transfer, including pathogens, from pork skin.

    Science.gov (United States)

    Larivière-Gauthier, Guillaume; Quessy, Sylvain; Fournaise, Sylvain; Letellier, Ann; Fravalo, Philippe

    2015-07-01

    This study describes and measures the impact of different compositions and finishes of stainless steel used in equipment in the meat industry on the transfer of natural flora and selected pathogens from artificially contaminated pork skin. It is known that the adhesion to surfaces of Listeria monocytogenes and Salmonella, 2 pathogens frequently found in contaminated pork meat, depends on the nature and roughness of the surface. Our results show no statistically significant differences in microbial transfer regardless of the types of stainless steel considered, with the highest measured transfer difference being 0.18 log colony-forming units (CFUs)/800 cm(2). Moreover, no differences in total microbial community were observed after transfer on the 5 types of stainless steel using single-strand conformation polymorphism (SSCP). It was concluded that the different characteristics of the stainless steel tested did not affect the initial bacterial transfer in this study.

  5. Adaptive value of sex in microbial pathogens.

    Science.gov (United States)

    Michod, Richard E; Bernstein, Harris; Nedelcu, Aurora M

    2008-05-01

    Explaining the adaptive value of sex is one of the great outstanding problems in biology. The challenge comes from the difficulty in identifying the benefits provided by sex, which must outweigh the substantial costs of sex. Here, we consider the adaptive value of sex in viruses, bacteria and fungi, and particularly the information available on the adaptive role of sex in pathogenic microorganisms. Our general theme is that the varied aspects of sex in pathogens illustrate the varied issues surrounding the evolution of sex generally. These include, the benefits of sex (in the short- and long-term), as well as the costs of sex (both to the host and to the pathogen). For the benefits of sex (that is, its adaptive value), we consider three hypotheses: (i) sex provides for effective and efficient recombinational repair of DNA damages, (ii) sex provides DNA for food, and (iii) sex produces variation and reduces genetic associations among alleles under selection. Although the evolution of sex in microbial pathogens illustrates these general issues, our paper is not a general review of theories for the evolution of sex in all organisms. Rather, we focus on the adaptive value of sex in microbial pathogens and conclude that in terms of short-term benefits, the DNA repair hypothesis has the most support and is the most generally applicable hypothesis in this group. In particular, recombinational repair of DNA damages may substantially benefit pathogens when challenged by the oxidative defenses of the host. However, in the long-term, sex may help get rid of mutations, increase the rate of adaptation of the population, and, in pathogens, may infrequently create new infective strains. An additional general issue about sex illustrated by pathogens is that some of the most interesting consequences of sex are not necessarily the reasons for which sex evolved. For example, antibiotic resistance may be transferred by bacterial sex, but this transfer is probably not the reason sex

  6. Microbial and viral pathogens in colorectal cancer.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2011-05-01

    The heterogenetic and sporadic nature of colorectal cancer has led to many epidemiological associations with causes of this disease. As our understanding of the underlying molecular processes in colorectal-cancer develops, the concept of microbial-epithelial interactions as an oncogenic trigger might provide a plausible hypothesis for the pathogenesis of colorectal cancer. By contrast with other cancers of the gastrointestinal tract (gastric carcinoma, mucosa-associated lymphoid-tissue lymphoma), a direct causal link between microbial infection (bacteria and viruses) and colorectal carcinoma has not been established. Studies support the involvement of these organisms in oncogenesis, however, in colorectal cancer, clinical data are lacking. Here, we discuss current evidence (both in vitro and clinical studies), and focus on a putative role for bacterial and viral pathogens as a cause of colorectal cancer.

  7. Microbial and viral pathogens in colorectal cancer.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    The heterogenetic and sporadic nature of colorectal cancer has led to many epidemiological associations with causes of this disease. As our understanding of the underlying molecular processes in colorectal-cancer develops, the concept of microbial-epithelial interactions as an oncogenic trigger might provide a plausible hypothesis for the pathogenesis of colorectal cancer. By contrast with other cancers of the gastrointestinal tract (gastric carcinoma, mucosa-associated lymphoid-tissue lymphoma), a direct causal link between microbial infection (bacteria and viruses) and colorectal carcinoma has not been established. Studies support the involvement of these organisms in oncogenesis, however, in colorectal cancer, clinical data are lacking. Here, we discuss current evidence (both in vitro and clinical studies), and focus on a putative role for bacterial and viral pathogens as a cause of colorectal cancer.

  8. Emerging microbial biocontrol strategies for plant pathogens.

    Science.gov (United States)

    Syed Ab Rahman, Sharifah Farhana; Singh, Eugenie; Pieterse, Corné M J; Schenk, Peer M

    2018-02-01

    To address food security, agricultural yields must increase to match the growing human population in the near future. There is now a strong push to develop low-input and more sustainable agricultural practices that include alternatives to chemicals for controlling pests and diseases, a major factor of heavy losses in agricultural production. Based on the adverse effects of some chemicals on human health, the environment and living organisms, researchers are focusing on potential biological control microbes as viable alternatives for the management of pests and plant pathogens. There is a growing body of evidence that demonstrates the potential of leaf and root-associated microbiomes to increase plant efficiency and yield in cropping systems. It is important to understand the role of these microbes in promoting growth and controlling diseases, and their application as biofertilizers and biopesticides whose success in the field is still inconsistent. This review focusses on how biocontrol microbes modulate plant defense mechanisms, deploy biocontrol actions in plants and offer new strategies to control plant pathogens. Apart from simply applying individual biocontrol microbes, there are now efforts to improve, facilitate and maintain long-term plant colonization. In particular, great hopes are associated with the new approaches of using "plant-optimized microbiomes" (microbiome engineering) and establishing the genetic basis of beneficial plant-microbe interactions to enable breeding of "microbe-optimized crops". Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The role of hyperparasitism in microbial pathogen ecology and evolution.

    Science.gov (United States)

    Parratt, Steven R; Laine, Anna-Liisa

    2016-08-01

    Many micro-organisms employ a parasitic lifestyle and, through their antagonistic interactions with host populations, have major impacts on human, agricultural and natural ecosystems. Most pathogens are likely to host parasites of their own, that is, hyperparasites, but how nested chains of parasites impact on disease dynamics is grossly neglected in the ecological and evolutionary literature. In this minireview we argue that the diversity and dynamics of micro-hyperparasites are an important component of natural host-pathogen systems. We use the current literature from a handful of key systems to show that observed patterns of pathogen virulence and disease dynamics may well be influenced by hyperparasites. Exploring these factors will shed light on many aspects of microbial ecology and disease biology, including resistance-virulence evolution, apparent competition, epidemiology and ecosystem stability. Considering the importance of hyperparasites in natural populations will have applied consequences for the field of biological control and therapeutic science, where hyperparastism is employed as a control mechanism but not necessarily ecologically understood.

  10. Machine learning for the meta-analyses of microbial pathogens' volatile signatures.

    Science.gov (United States)

    Palma, Susana I C J; Traguedo, Ana P; Porteira, Ana R; Frias, Maria J; Gamboa, Hugo; Roque, Ana C A

    2018-02-20

    Non-invasive and fast diagnostic tools based on volatolomics hold great promise in the control of infectious diseases. However, the tools to identify microbial volatile organic compounds (VOCs) discriminating between human pathogens are still missing. Artificial intelligence is increasingly recognised as an essential tool in health sciences. Machine learning algorithms based in support vector machines and features selection tools were here applied to find sets of microbial VOCs with pathogen-discrimination power. Studies reporting VOCs emitted by human microbial pathogens published between 1977 and 2016 were used as source data. A set of 18 VOCs is sufficient to predict the identity of 11 microbial pathogens with high accuracy (77%), and precision (62-100%). There is one set of VOCs associated with each of the 11 pathogens which can predict the presence of that pathogen in a sample with high accuracy and precision (86-90%). The implemented pathogen classification methodology supports future database updates to include new pathogen-VOC data, which will enrich the classifiers. The sets of VOCs identified potentiate the improvement of the selectivity of non-invasive infection diagnostics using artificial olfaction devices.

  11. Microbial minimalism: genome reduction in bacterial pathogens.

    Science.gov (United States)

    Moran, Nancy A

    2002-03-08

    When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.

  12. Including pathogen risk in life cycle assessment of wastewater management. 1. Estimating the burden of disease associated with pathogens.

    Science.gov (United States)

    Harder, Robin; Heimersson, Sara; Svanström, Magdalena; Peters, Gregory M

    2014-08-19

    The environmental performance of wastewater and sewage sludge management is commonly assessed using life cycle assessment (LCA), whereas pathogen risk is evaluated with quantitative microbial risk assessment (QMRA). This study explored the application of QMRA methodology with intent to include pathogen risk in LCA and facilitate a comparison with other potential impacts on human health considered in LCA. Pathogen risk was estimated for a model wastewater treatment system (WWTS) located in an industrialized country and consisting of primary, secondary, and tertiary wastewater treatment, anaerobic sludge digestion, and land application of sewage sludge. The estimation was based on eight previous QMRA studies as well as parameter values taken from the literature. A total pathogen risk (expressed as burden of disease) on the order of 0.2-9 disability-adjusted life years (DALY) per year of operation was estimated for the model WWTS serving 28,600 persons and for the pathogens and exposure pathways included in this study. The comparison of pathogen risk with other potential impacts on human health considered in LCA is detailed in part 2 of this article series.

  13. Assessing the Consequences of Microbial Infection in Field Trials: Seen, Unseen, Beneficial, Parasitic and Pathogenic

    Directory of Open Access Journals (Sweden)

    Mark E. Looseley

    2014-06-01

    Full Text Available Microbial infections of crop plants present an ongoing threat to agricultural production. However, in recent years, we have developed a more nuanced understanding of the ecological role of microbes and how they interact with plants. This includes an appreciation of the influence of crop physiology and environmental conditions on the expression of disease symptoms, the importance of non-pathogenic microbes on host plants and pathogens, and the capacity for plants to act as hosts for human pathogens. Alongside this we now have a variety of tools available for the identification and quantification of microbial infections on crops grown under field conditions. This review summarises some of the consequences of microbial infections in crop plants, and discusses how new and established assessment tools can be used to understand these processes. It challenges our current assumptions in yield loss relationships and offers understanding of the potential for more resilient crops.

  14. Investigating the Swimming of Microbial Pathogens Using Digital Holography.

    Science.gov (United States)

    Thornton, K L; Findlay, R C; Walrad, P B; Wilson, L G

    2016-01-01

    To understand much of the behaviour of microbial pathogens, it is necessary to image living cells, their interactions with each other and with host cells. Species such as Escherichia coli are difficult subjects to image: they are typically microscopic, colourless and transparent. Traditional cell visualisation techniques such as fluorescent tagging or phase-contrast microscopy give excellent information on cell behaviour in two dimensions, but no information about cells moving in three dimensions. We review the use of digital holographic microscopy for three-dimensional imaging at high speeds, and demonstrate its use for capturing the shape and swimming behaviour of three important model pathogens: E. coli, Plasmodium spp. and Leishmania spp.

  15. Sexual reproduction and the evolution of microbial pathogens.

    Science.gov (United States)

    Heitman, Joseph

    2006-09-05

    Three common systemic human fungal pathogens--Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus--have retained all the machinery to engage in sexual reproduction, and yet their populations are often clonal with limited evidence for recombination. Striking parallels have emerged with four protozoan parasites that infect humans: Toxoplasma gondii, Trypanosoma brucei, Trypanosoma cruzi and Plasmodium falciparum. Limiting sexual reproduction appears to be a common virulence strategy, enabling generation of clonal populations well adapted to host and environmental niches, yet retaining the ability to engage in sexual or parasexual reproduction and respond to selective pressure. Continued investigation of the sexual nature of microbial pathogens should facilitate both laboratory investigation and an understanding of the complex interplay between pathogens, hosts, vectors, and their environments.

  16. Microbial antagonism as a potential solution for controlling selected root pathogens of crops

    Science.gov (United States)

    Cooper, Sarah; Agnew, Linda; Pereg, Lily

    2016-04-01

    Root pathogens of crops can cause large reduction in yield, however, there is a limited range of effective methods to control such pathogens. Soilborne pathogens that infect roots often need to survive in the rhizosphere, where there is high competition from other organisms. In such hot spots of microbial activity and growth, supported by root exudates, microbes have evolved antagonistic mechanisms that give them competitive advantages in winning the limited resources. Among these mechanisms is antibiosis, with production of some significant antifungal compounds including, antibiotics, volatile organic compounds, hydrogen cyanide and lytic enzymes. Some of these mechanisms may suppress disease through controlling the growth of root pathogens. In this project we isolated various fungi and bacteria that suppress the growth of cotton pathogens in vitro. The pathogen-suppressive microbes were isolated from cotton production soils that are under different management strategies, with and without the use of organic amendments. The potential of pathogen-suppressing microbes for controlling the black root rot disease, caused by the soilborne pathogen Thielaviopsis basicola, was confirmed using soil assays. We identified isolates with potential use as inoculant for cotton production in Australia. Having isolated a diverse group of antagonistic microbes enhances the probability that some would survive well in the soil and provide an alternative approach to address the problem of root disease affecting agricultural crops.

  17. The Microbial DNA Index System (MiDIS): A tool for microbial pathogen source identification

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-08-09

    The microbial DNA Index System (MiDIS) is a concept for a microbial forensic database and investigative decision support system that can be used to help investigators identify the sources of microbial agents that have been used in a criminal or terrorist incident. The heart of the proposed system is a rigorous method for calculating source probabilities by using certain fundamental sampling distributions associated with the propagation and mutation of microbes on disease transmission networks. This formalism has a close relationship to mitochondrial and Y-chromosomal human DNA forensics, and the proposed decision support system is somewhat analogous to the CODIS and SWGDAM mtDNA databases. The MiDIS concept does not involve the use of opportunistic collections of microbial isolates and phylogenetic tree building as a basis for inference. A staged approach can be used to build MiDIS as an enduring capability, beginning with a pilot demonstration program that must meet user expectations for performance and validation before evolving into a continuing effort. Because MiDIS requires input from a a broad array of expertise including outbreak surveillance, field microbial isolate collection, microbial genome sequencing, disease transmission networks, and laboratory mutation rate studies, it will be necessary to assemble a national multi-laboratory team to develop such a system. The MiDIS effort would lend direction and focus to the national microbial genetics research program for microbial forensics, and would provide an appropriate forensic framework for interfacing to future national and international disease surveillance efforts.

  18. Molecular diagnostics for the detection and characterization of microbial pathogens.

    Science.gov (United States)

    Procop, Gary W

    2007-09-01

    New and advanced methods of molecular diagnostics are changing the way we practice clinical microbiology, which affects the practice of medicine. Signal amplification and real-time nucleic acid amplification technologies offer a sensitive and specific result with a more rapid turnaround time than has ever before been possible. Numerous methods of postamplification analysis afford the simultaneous detection and differentiation of numerous microbial pathogens, their mechanisms of resistance, and the construction of disease-specific assays. The technical feasibility of these assays has already been demonstrated. How these new, often more expensive tests will be incorporated into routine practice and the impact they will have on patient care remain to be determined. One of the most attractive uses for such techniques is to achieve a more rapid characterization of the infectious agent so that a narrower-spectrum antimicrobial agent may be used, which should have an impact on resistance patterns.

  19. Biomimicry of volatile-based microbial control for managing emerging fungal pathogens.

    Science.gov (United States)

    Gabriel, K T; Joseph Sexton, D; Cornelison, C T

    2018-05-01

    Volatile organic compounds (VOCs) are known to be produced by a wide range of micro-organisms and for a number of purposes. Volatile-based microbial inhibition in environments such as soil is well-founded, with numerous antimicrobial VOCs having been identified. Inhibitory VOCs are of interest as microbial control agents, as low concentrations of gaseous VOCs can elicit significant antimicrobial effects. Volatile organic compounds are organic chemicals typically characterized as having low molecular weight, low solubility in water, and high vapour pressure. Consequently, VOCs readily evaporate to the gaseous phase at standard temperature and pressure. This contact-independent antagonism presents unique advantages over traditional, contact-dependent microbial control methods, including increased surface exposure and reduced environmental persistence. This approach has been the focus of our recent research, with positive results suggesting it may be particularly promising for the management of emerging fungal pathogens, such as the causative agents of white-nose syndrome of bats and snake fungal disease, which are difficult or impossible to treat using traditional approaches. Here, we review the history of volatile-based microbial control, discuss recent progress in formulations that mimic naturally antagonistic VOCs, outline the development of a novel treatment device, and highlight areas where further work is needed to successfully deploy VOCs against existing and emerging fungal pathogens. © 2017 The Society for Applied Microbiology.

  20. Plastic potential: how the phenotypes and adaptations of pathogens are influenced by microbial interactions within plants.

    Science.gov (United States)

    O'Keeffe, Kayleigh R; Carbone, Ignazio; Jones, Corbin D; Mitchell, Charles E

    2017-08-01

    Predicting the effects of plant-associated microbes on emergence, spread, and evolution of plant pathogens demands an understanding of how pathogens respond to these microbes at two levels of biological organization: that of an individual pathogen and that of a pathogen population across multiple individual plants. We first examine the plastic responses of individual plant pathogens to microbes within a shared host, as seen through changes in pathogen growth and multiplication. We then explore the limited understanding of how within-plant microbial interactions affect pathogen populations and discuss the need to incorporate population-level observations with population genomic techniques. Finally, we suggest that integrating across levels will further our understanding of the ecological and evolutionary impacts of within-plant microbial interactions on pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System

    Directory of Open Access Journals (Sweden)

    Ronald Anderson

    2010-05-01

    Full Text Available In general antibiotics interact cooperatively with host defences, weakening and decreasing the virulence of microbial pathogens, thereby increasing vulnerability to phagocytosis and eradication by the intrinsic antimicrobial systems of the host. Antibiotics, however, also interact with host defences by several other mechanisms, some harmful, others beneficial. Harmful activities include exacerbation of potentially damaging inflammatory responses, a property of cell-wall targeted agents, which promotes the release of pro-inflammatory microbial cytotoxins and cell-wall components. On the other hand, inhibitors of bacterial protein synthesis, especially macrolides, possess beneficial anti-inflammatory/cytoprotective activities, which result from interference with the production of microbial virulence factors/cytotoxins. In addition to these pathogen-directed, anti-inflammatory activities, some classes of antimicrobial agent possess secondary anti-inflammatory properties, unrelated to their conventional antimicrobial activities, which target cells of the innate immune system, particularly neutrophils. This is a relatively uncommon, potentially beneficial property of antibiotics, which has been described for macrolides, imidazole anti-mycotics, fluoroquinolones, and tetracyclines. Although of largely unproven significance in the clinical setting, increasing awareness of the pro-inflammatory and anti-inflammatory properties of antibiotics may contribute to a more discerning and effective use of these agents.

  2. 77 FR 45350 - Notice of Availability of Microbial Risk Assessment Guideline: Pathogenic Microorganisms With...

    Science.gov (United States)

    2012-07-31

    ... ENVIRONMENTAL PROTECTION AGENCY Notice of Availability of Microbial Risk Assessment Guideline: Pathogenic Microorganisms With Focus on Food and Water AGENCY: Environmental Protection Agency (EPA). ACTION... risk assessment and also promote consistency in approaches and methods. The MRA Guideline can be...

  3. Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition

    NARCIS (Netherlands)

    Van Agtmaal, M.; Straathof, A.L.; Termorshuizen, Aad J; Lievens, Bart; Hoffland, Ellis; De Boer, W.

    2018-01-01

    There is increasing evidence that the soil microbial community produces a suite of volatile organic compounds that suppress plant pathogens. However, it remains unknown which soil properties and management practices influence volatile-mediated pathogen suppression. The aim of this study was to

  4. Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition

    NARCIS (Netherlands)

    Agtmaal, van Maaike; Straathof, Angela L.; Termorshuizen, Aad; Lievens, Bart; Hoffland, Ellis; Boer, de Wietse

    2018-01-01

    There is increasing evidence that the soil microbial community produces a suite of volatile organic compounds that suppress plant pathogens. However, it remains unknown which soil properties and management practices influence volatile-mediated pathogen suppression. The aim of this study was to

  5. Effect of postharvest practices including degreening on citrus carpoplane microbial biomes.

    Science.gov (United States)

    Gomba, A; Chidamba, L; Korsten, L

    2017-04-01

    To investigate the effect of commercial citrus packhouse processing steps on the fruit surface microbiome of Clementines and Palmer navel oranges. Viable bacteria, yeast and fungi counts, and the pyrosequencing analysis of the 16S rRNA and ITS were used to evaluate the community structure and population dynamics of phylloepiphytic bacteria and fungi associated with commercial postharvest processing. Drenching significantly reduced microbial counts in all cases except for yeasts on navels, while the extent of degreening effects varied between the citrus varieties. Pyrosequencing analysis showed a total of 4409 bacteria and 5792 fungi nonchimeric unique sequences with an average of 1102 bacteria and 1448 fungi reads per sample. Dominant phyla on the citrus carpoplane were Proteobacteria (53·5%), Actinobacteria (19·9%), Bacteroidetes (5·6%) and Deinococcus-Thermus (5·4%) for bacteria and Ascomycota (80·5%) and Basidiomycota (9·8%) for fungi. Beginning with freshly harvested fruit fungal diversity declined significantly after drenching, but had little effect on bacteria and populations recovered during degreening treatments, including those for Penicillium sp. Packhouse processing greatly influences microbial communities on the citrus carpoplane. A broad orange biome was described with pyrosequencing and gave insight into the likely survival and persistence of pathogens, especially as they may affect the quality and safety of the packed product. A close examination of the microbiota of fruit and the impact of intervention strategies on the ecological balance may provide a more durable approach to reduce losses and spoilage. © 2017 The Society for Applied Microbiology.

  6. Microbial transformation of (-)-isolongifolol by plant pathogenic fungus Glomerella cingulata.

    Science.gov (United States)

    Miyazawa, Mitsuo; Sakata, Kazuki; Ueda, Masashi

    2010-01-01

    The biotransformation of terpenoids using the plant pathogenic fungus as a biocatalyst to produce useful novel organic compounds was investigated. The biotransformation of sesquiterpen alcohol, (-)-isolongifolol (1) was investigated using plant pathogenic fungus Glomerella cingulata as a biocatalyst. Compound 1 was converted to (-)-(3R)-3-hydroxy-isolongifolol and (-)-(9R)-9-hydroxy-isolongifolol by G. cingulata.

  7. IPM potentials of microbial pathogens and diseases of mites

    NARCIS (Netherlands)

    van der Geest, L.P.S.; Ciancio, A.; Mukerji, K.G.

    2010-01-01

    An overview is given of diseases in mites, caused by infectious microorganisms. Many pathogens play an important role in the regulation of natural populations of mite populations and are for this reason subject of research on the feasibility to develop such pathogens to biological control agents.

  8. Pathogenic microbial ancient DNA: a problem or an opportunity?

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2006-01-01

    cloning. Yet these studies have used mobile insertion elements (e.g. IS 6110 in tuberculosis) or conserved loci (e.g. 16S) to detect the presence of pathogens, and very similar or identical sequences have been reported from environmental bacteria (Gilbert et al. 2004). For example, Rollo & Marota (1999......We agree with Donoghue & Spigelman (2005) that, although pathogen studies hold great potential, any discussion requires a critical assessment of the results to date. However, we did note, as did Pääbo et al. (2004), that the field of ancient pathogen DNA still lacks a series of well......-controlled and rigorous studies that address technical issues and reliability criteria. This is unfortunate, as the rapid evolutionary rate of many pathogens offers a unique means to establish the authenticity of ancient pathogen sequences-since they should clearly be ancestral to modern genetic diversity (e.g. Reid et...

  9. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens?

    Science.gov (United States)

    Dhusia, Kalyani; Bajpai, Archana; Ramteke, P W

    2018-01-10

    Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Assessment of a respiratory face mask for capturing air pollutants and pathogens including human influenza and rhinoviruses.

    Science.gov (United States)

    Zhou, S Steve; Lukula, Salimatu; Chiossone, Cory; Nims, Raymond W; Suchmann, Donna B; Ijaz, M Khalid

    2018-03-01

    Prevention of infection with airborne pathogens and exposure to airborne particulates and aerosols (environmental pollutants and allergens) can be facilitated through use of disposable face masks. The effectiveness of such masks for excluding pathogens and pollutants is dependent on the intrinsic ability of the masks to resist penetration by airborne contaminants. This study evaluated the relative contributions of a mask, valve, and Micro Ventilator on aerosol filtration efficiency of a new N95 respiratory face mask. The test mask was challenged, using standardized methods, with influenza A and rhinovirus type 14, bacteriophage ΦΧ174, Staphylococcus aureus ( S . aureus ), and model pollutants. The statistical significance of results obtained for different challenge microbial agents and for different mask configurations (masks with operational or nonoperational ventilation fans and masks with sealed Smart Valves) was assessed. The results demonstrate >99.7% efficiency of each test mask configuration for exclusion of influenza A virus, rhinovirus 14, and S . aureus and >99.3% efficiency for paraffin oil and sodium chloride (surrogates for PM 2.5 ). Statistically significant differences in effectiveness of the different mask configurations were not identified. The efficiencies of the masks for excluding smaller-size (i.e., rhinovirus and bacteriophage ΦΧ174) vs. larger-size microbial agents (influenza virus, S . aureus ) were not significantly different. The masks, with or without features intended for enhancing comfort, provide protection against both small- and large-size pathogens. Importantly, the mask appears to be highly efficient for filtration of pathogens, including influenza and rhinoviruses, as well as the fine particulates (PM 2.5 ) present in aerosols that represent a greater challenge for many types of dental and surgical masks. This renders this individual-use N95 respiratory mask an improvement over the former types of masks for protection against

  11. Pathogen self defense: mechanisms to counteract microbial antagonism

    NARCIS (Netherlands)

    Duffy, B.K.; Schouten, A.; Raaijmakers, J.M.

    2003-01-01

    Natural and agricultural ecosystems harbor a wide variety of microorganisms that play an integral role in plant health, crop productivity, and preservation of multiple ecosystem functions. Interactions within and among microbial communities are numerous and range from synergistic and mutualistic to

  12. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    Science.gov (United States)

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  13. Antimicrobial effect of Calotropis procera active principles against aquatic microbial pathogens isolated from shrimp and fishes

    Institute of Scientific and Technical Information of China (English)

    Subramanian Velmurugan; Vijayaragavan Thanga Viji; Mariavincent Michael Babu; Mary Josephine Punitha; Thavasimuthu Citarasu

    2012-01-01

    Objective: To study the influence of Calotropis procera (C. procera) active principles against aquatic microbial pathogens isolated from shrimp and fishes. Methods: C. procera leaf powder was serially extracted with hexane, ethyl acetate and methanol and screened by antibacterial, antifungal and antiviral activity against aquatic pathogens which isolated from shrimp/fish. After initial screening, the active extract was purified through column chromatography and again screened. Finally the active fractions were characterized by phytochemical analysis and GC-MS analysis. Results: In vitro antibacterial, antifungal and antiviral screening revealed that, the ethyl acetate extracts were effectively suppressed the bacterial pathogens Pseudomonas aeruginosa (P. aeruginosa), Vibrio harveyi (V. harveyi) and Aeromons hydrophila (A. hydrophila) of more than 20 mm zone of inhibition; the fungi Fusarium sp and the killer virus WSSV. The ethyl acetate extracts of C. procera incubated WSSV was failed to multiply its progeny in the in vivo system of shrimp P. monodon. The shrimp had 80% survival after WSSV challenge from the control group significantly (P<0.001) and also PCR detection confirmed that no WSSV transcription found in shrimp haemolymph. After purified the ethyl acetate extracts again antimicrobial screening performed and it concluded that the fraction namely F-II was effectively suppressed the bacterial growth and WSSV due to its enriched active principles such as cardiac glycosides, Phenols, alkaloids, Tannin and quinines. Surprisingly this fraction, F-II was effectively controlled the WSSV at 90% level at a highest significant level (P<0.001). Finally the structural characterization by GC-MS analysis revealed that, the F-II fraction contained Phenols including several other compounds such as 2,4-bis(1,1-dimethylethyl)-, Methyl tetradecanoate, Bicyclo[3.1.1] heptane, 2,6,6-trimethyl-, (1α,2β,5α)-and Hexadecanoic acid etc. Conclusions: The present study revealed

  14. Microbial Flora and Food Borne Pathogens on Minced Meat and ...

    African Journals Online (AJOL)

    BACKGROUND: Food-borne pathogens are the leading cause of illness and death in developing countries. Changes in eating habits, mass catering, unsafe food storage conditions and poor hygiene practices are major contributing factors to food associated illnesses. In Ethiopia, the widespread habit of raw beef ...

  15. CONDUCTING-POLYMER NANOWIRE IMMUNOSENSOR ARRAYS FOR MICROBIAL PATHOGENS

    Science.gov (United States)

    The lack of methods for routine rapid and sensitive detection and quantification of specific pathogens has limited the amount of information available on their occurrence in drinking water and other environmental samples. The nanowire biosensor arrays developed in this study w...

  16. TLR-dependent human mucosal epithelial cell responses to microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Paola eMassari

    2014-08-01

    Full Text Available AbstractToll-Like Receptor (TLR signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in humans as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites, specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners, their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.

  17. QMRAcatch: Microbial Quality Simulation of Water Resources including Infection Risk Assessment.

    Science.gov (United States)

    Schijven, Jack; Derx, Julia; de Roda Husman, Ana Maria; Blaschke, Alfred Paul; Farnleitner, Andreas H

    2015-09-01

    Given the complex hydrologic dynamics of water catchments and conflicts between nature protection and public water supply, models may help to understand catchment dynamics and evaluate contamination scenarios and may support best environmental practices and water safety management. A catchment model can be an educative tool for investigating water quality and for communication between parties with different interests in the catchment. This article introduces an interactive computational tool, QMRAcatch, that was developed to simulate concentrations in water resources of , a human-associated microbial source tracking (MST) marker, enterovirus, norovirus, , and as target microorganisms and viruses (TMVs). The model domain encompasses a main river with wastewater discharges and a floodplain with a floodplain river. Diffuse agricultural sources of TMVs that discharge into the main river are not included in this stage of development. The floodplain river is fed by the main river and may flood the plain. Discharged TMVs in the river are subject to dilution and temperature-dependent degradation. River travel times are calculated using the Manning-Gauckler-Strickler formula. Fecal deposits from wildlife, birds, and visitors in the floodplain are resuspended in flood water, runoff to the floodplain river, or infiltrate groundwater. Fecal indicator and MST marker data facilitate calibration. Infection risks from exposure to the pathogenic TMVs by swimming or drinking water consumption are calculated, and the required pathogen removal by treatment to meet a health-based quality target can be determined. Applicability of QMRAcatch is demonstrated by calibrating the tool for a study site at the River Danube near Vienna, Austria, using field TMV data, including a sensitivity analysis and evaluation of the model outcomes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Biological activity of the non-microbial fraction of kefir: antagonism against intestinal pathogens.

    Science.gov (United States)

    Iraporda, Carolina; Abatemarco Júnior, Mário; Neumann, Elisabeth; Nunes, Álvaro Cantini; Nicoli, Jacques R; Abraham, Analía G; Garrote, Graciela L

    2017-08-01

    Kefir is a fermented milk obtained by the activity of kefir grains which are composed of lactic and acetic acid bacteria, and yeasts. Many beneficial health effects have been associated with kefir consumption such as stimulation of the immune system and inhibition of pathogenic microorganisms. The biological activity of kefir may be attributed to the presence of a complex microbiota as well as the microbial metabolites that are released during fermentation. The aim of this work was to characterise the non-microbial fraction of kefir and to study its antagonism against Escherichia coli, Salmonella spp. and Bacillus cereus. During milk fermentation there was a production of organic acids, mainly lactic and acetic acid, with a consequent decrease in pH and lactose content. The non-microbial fraction of kefir added to nutrient broth at concentrations above 75% v/v induced a complete inhibition of pathogenic growth that could be ascribed to the presence of un-dissociated lactic acid. In vitro assays using an intestinal epithelial cell model indicated that pre-incubation of cells with the non-microbial fraction of kefir did not modify the association/invasion of Salmonella whereas pre-incubation of Salmonella with this fraction under conditions that did not affect their viability significantly decreased the pathogen's ability to invade epithelial cells. Lactate exerted a protective effect against Salmonella in a mouse model, demonstrating the relevance of metabolites present in the non-microbial fraction of kefir produced during milk fermentation.

  19. Current knowledge on groundwater microbial pathogens and their control

    Science.gov (United States)

    Macler, Bruce A.; Merkle, Jon C.

    Those who drink groundwater that has not been disinfected are at increased risk of infection and disease from pathogenic microorganisms. Recent studies have shown that up to half of all US drinking-water wells tested had evidence of fecal contamination. A significant fraction of all waterborne disease outbreaks is associated with groundwater. An estimated 750,000 to 5.9million illnesses per year result from contaminated groundwaters in the US. Mortality from these illnesses may be 1400-9400 deaths per year. Control of these pathogens starts with source-water protection activities to prevent fecal contamination of aquifers and wells. These include assessment of wellhead vulnerability to fecal contamination and correction of identified deficiencies. Correction may include control of sources or rehabilitation of the well itself. Disinfection can serve as a useful barrier and is recommended as a prudent public-health policy for all groundwater systems. Ceux qui boivent une eau souterraine non désinfectée présentent un risque accru d'infection et de maladie par des germes pathogènes. De récentes études ont montré que près de la moitié de tous les puits américains testés, captés pour l'eau potable, sont soumis à une contamination fécale. Une fraction significative de l'ensemble des premières manifestations de maladies liées à l'eau est associée aux eaux souterraines. On estime qu'entre 750 000 et 5,9millions de personnes sont malades chaque année aux États-Unis à cause d'eaux souterraines polluées. La mortalité parmi ces malades doit ètre de l'ordre de 1400 à 9400 décès par an. La protection contre ces germes pathogènes commence avec des mesures prises au niveau du captage pour empècher la pollution des aquifères et des puits. Celles-ci comprennent une évaluation de la vulnérabilité des tètes de puits à la pollution fécale et une correction des insuffisances mises en évidence. Cette correction peut comprendre une maîtrise des sources

  20. Global Warming and Trans-Boundary Movement of Waterborne Microbial Pathogens - Book Chapter

    Science.gov (United States)

    Subtle increases in temperature can have profound impacts on the prevalence of various waterborne microbial pathogens. Such impacts may be seen in three major areas, 1) fecally contaminated drinking water, 2) fresh produce that has been irrigated or processed with contaminated wa...

  1. Nucleic acid probes in the diagnosis of human microbial pathogens

    International Nuclear Information System (INIS)

    Hyypia, T.; Huovinen, P.; Holmberg, M.; Pettersson, U.

    1989-01-01

    The development of effective vaccines and antimicrobial drugs against infectious diseases has been among the most successful achievements in modern medicine. The control of these diseases requires efficient diagnostic methods for the evaluation of the prevalence of diseases and for initiation of specific treatment. Virtually all known microbes can be specifically identified today but in many cases further development is needed for more accurate, rapid, easy-to-use, and inexpensive diagnostic assays. Cell culture facilities are needed for the isolation of viruses in clinical specimens. Any gene of any known microorganism can be cloned in a vector and produced in large amounts economically and then used in diagnostic assays for the identification of the pathogen. The application of the nucleic acid hybridization methods in detection of human pathogens has received considerable attention during the past few years. This paper presents examples of this application of gene technology

  2. Microbial diversity and putative opportunistic pathogens in dishwasher biofilm communities

    DEFF Research Database (Denmark)

    Raghupathi, Prem Krishnan; Zupančič, Jerneja; Brejnrod, Asker Daniel

    2018-01-01

    impact the abundance of microbial groups, and investigated on the inter- and intra-kingdom interactions that shape these biofilms. The age, the usage frequency and hardness of incoming tap water of dishwashers had significant impact on bacterial and fungal composition. Representatives ofCandidaspp. were...... and interactions were vital in the process of biofilm formation, where mixed complexes of the two, bacteria and fungi, could provide a preliminary biogenic structure for the establishment of these biofilms.IMPORTANCEWorldwide demand for household appliances, such as dishwashers and washing machines, is increasing...

  3. Microbial Community Composition Impacts Pathogen Iron Availability during Polymicrobial Infection.

    Directory of Open Access Journals (Sweden)

    Apollo Stacy

    2016-12-01

    Full Text Available Iron is an essential nutrient for bacterial pathogenesis, but in the host, iron is tightly sequestered, limiting its availability for bacterial growth. Although this is an important arm of host immunity, most studies examine how bacteria respond to iron restriction in laboratory rather than host settings, where the microbiome can potentially alter pathogen strategies for acquiring iron. One of the most important transcriptional regulators controlling bacterial iron homeostasis is Fur. Here we used a combination of RNA-seq and chromatin immunoprecipitation (ChIP-seq to characterize the iron-restricted and Fur regulons of the biofilm-forming opportunistic pathogen Aggregatibacter actinomycetemcomitans. We discovered that iron restriction and Fur regulate 4% and 3.5% of the genome, respectively. While most genes in these regulons were related to iron uptake and metabolism, we found that Fur also directly regulates the biofilm-dispersing enzyme Dispersin B, allowing A. actinomycetemcomitans to escape from iron-scarce environments. We then leveraged these datasets to assess the availability of iron to A. actinomycetemcomitans in its primary infection sites, abscesses and the oral cavity. We found that A. actinomycetemcomitans is not restricted for iron in a murine abscess mono-infection, but becomes restricted for iron upon co-infection with the oral commensal Streptococcus gordonii. Furthermore, in the transition from health to disease in human gum infection, A. actinomycetemcomitans also becomes restricted for iron. These results suggest that host iron availability is heterogeneous and dependent on the infecting bacterial community.

  4. Appraisal of Microbial Evolution to Commensalism and Pathogenicity in Humans

    Directory of Open Access Journals (Sweden)

    Asit Ranjan Ghosh

    2013-01-01

    Full Text Available The human body is host to a number of microbes occurring in various forms of host-microbe associations, such as commensals, mutualists, pathogens and opportunistic symbionts. While this association with microbes in certain cases is beneficial to the host, in many other cases it seems to offer no evident benefit or motive. The emergence and re-emergence of newer varieties of infectious diseases with causative agents being strains that were once living in the human system makes it necessary to study the environment and the dynamics under which this host microbe relationship thrives. The present discussion examines this interaction while tracing the origins of this association, and attempts to hypothesize a possible framework of selective pressures that could have lead microbes to inhabit mammalian host systems.

  5. Model-Based Analysis of the Potential of Macroinvertebrates as Indicators for Microbial Pathogens in Rivers

    Directory of Open Access Journals (Sweden)

    Rubén Jerves-Cobo

    2018-03-01

    Full Text Available The quality of water prior to its use for drinking, farming or recreational purposes must comply with several physicochemical and microbiological standards to safeguard society and the environment. In order to satisfy these standards, expensive analyses and highly trained personnel in laboratories are required. Whereas macroinvertebrates have been used as ecological indicators to review the health of aquatic ecosystems. In this research, the relationship between microbial pathogens and macrobenthic invertebrate taxa was examined in the Machangara River located in the southern Andes of Ecuador, in which 33 sites, according to their land use, were chosen to collect physicochemical, microbiological and biological parameters. Decision tree models (DTMs were used to generate rules that link the presence and abundance of some benthic families to microbial pathogen standards. The aforementioned DTMs provide an indirect, approximate, and quick way of checking the fulfillment of Ecuadorian regulations for water use related to microbial pathogens. The models built and optimized with the WEKA package, were evaluated based on both statistical and ecological criteria to make them as clear and simple as possible. As a result, two different and reliable models were obtained, which could be used as proxy indicators in a preliminary assessment of pollution of microbial pathogens in rivers. The DTMs can be easily applied by staff with minimal training in the identification of the sensitive taxa selected by the models. The presence of selected macroinvertebrate taxa in conjunction with the decision trees can be used as a screening tool to evaluate sites that require additional follow up analyses to confirm whether microbial water quality standards are met.

  6. Differential Microbial Diversity in Drosophila melanogaster: Are Fruit Flies Potential Vectors of Opportunistic Pathogens?

    Directory of Open Access Journals (Sweden)

    Luis A. Ramírez-Camejo

    2017-01-01

    Full Text Available Drosophila melanogaster has become a model system to study interactions between innate immunity and microbial pathogens, yet many aspects regarding its microbial community and interactions with pathogens remain unclear. In this study wild D. melanogaster were collected from tropical fruits in Puerto Rico to test how the microbiota is distributed and to compare the culturable diversity of fungi and bacteria. Additionally, we investigated whether flies are potential vectors of human and plant pathogens. Eighteen species of fungi and twelve species of bacteria were isolated from wild flies. The most abundant microorganisms identified were the yeast Candida inconspicua and the bacterium Klebsiella sp. The yeast Issatchenkia hanoiensis was significantly more common internally than externally in flies. Species richness was higher in fungi than in bacteria, but diversity was lower in fungi than in bacteria. The microbial composition of flies was similar internally and externally. We identified a variety of opportunistic human and plant pathogens in flies such as Alcaligenes faecalis, Aspergillus flavus, A. fumigatus, A. niger, Fusarium equiseti/oxysporum, Geotrichum candidum, Klebsiella oxytoca, Microbacterium oxydans, and Stenotrophomonas maltophilia. Despite its utility as a model system, D. melanogaster can be a vector of microorganisms that represent a potential risk to plant and public health.

  7. The response of CD1d-restricted invariant NKT cells to microbial pathogens and their products

    Directory of Open Access Journals (Sweden)

    Luc eVan Kaer

    2015-05-01

    Full Text Available Invariant natural killer T (iNKT cells become activated during a wide variety of infections. This includes organisms lacking cognate CD1d-binding glycolipid antigens recognized by the semi-invariant T cell receptor of iNKT cells. Additional studies have shown that iNKT cells also become activated in vivo in response to microbial products such as bacterial lipopolysaccharide, a potent inducer of cytokine production in antigen-presenting cells (APCs. Other studies have shown that iNKT cells are highly responsive to stimulation by cytokines such as interleukin-12. These findings have led to the concept that microbial pathogens can activate iNKT cells either directly via glycolipids, or indirectly by inducing cytokine production in APCs. iNKT cells activated in this manner produce multiple cytokines that can influence the outcome of infection, usually in favor of the host, although potent iNKT cell activation may contribute to an uncontrolled cytokine storm and sepsis. One aspect of the response of iNKT cells to microbial pathogens is that it is short-lived and followed by an extended time period of unresponsiveness to reactivation. This refractory period may represent a means to avoid chronic activation and cytokine production by iNKT cells, thus protecting the host against some of the negative effects of iNKT cell activation, but potentially putting the host at risk for secondary infections. These effects of microbial pathogens and their products on iNKT cells are not only important for understanding the role of these cells in immune responses against infections but also for the development of iNKT cell-based therapies.

  8. Middle East Desert Dust Exposure: Health Risks from Metals and Microbial Pathogens

    Science.gov (United States)

    Lyles, M. B.

    2014-12-01

    In the Middle East, dust and sand storms are a persistent problem and can deliver significant amounts of micro-particulates via inhalation into the mouth, nasal pharynx, & lungs due to the fine size and abundance of these micro-particulates. The chronic and acute health risks of this dust inhalation have not been well studied nor has the dust been effectively characterized as to its chemical composition, mineral content, or microbial flora. Scientific experiments were designed to study the Kuwaiti and Iraqi dust as to its physical, chemical, and biological characteristics and for its potential to cause adverse health effects. First, dust samples from different locations were collected and processed and exposure data collected. Initial chemical and physical characterization of each sample including particle size distribution and inorganic analysis was conducted, followed by characterization of biologic flora of the dust, including bacteria, fungi and viruses. Data indicates that the mineralized dust is composed of calcium carbonate over a matrix of metallic silicate nanocrystals containing a variety of trace and heavy metals constituting ~3 % of the PM10 particles by weight, of which ~1% is bioaccessible aluminum and reactive iron, each. The particles also consist of ~1% bioavailable aluminum and reactive iron each. Microbial analysis reveals a significant biodiversity of bacterial, fungi, and viruses of which ~30% are known pathogens. Of the microbes identified, several have hemolytic properties and most have significant antibiotic resistance. Viral analysis indicates a tremendous amount of virons with a large percent of RNA viruses. The level of total suspended particle mass at PM 10 along with environmental & physiological conditions present constitute an excessive exposure to micro-particulates including PM 2.5 and the potential for adverse health effects. Reported data on cell culture and animal studies have indicated a high level of toxicity to these dust

  9. Sequestered Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio Provide Variable Protection from Microbial Pathogens.

    Science.gov (United States)

    Hovey, Kyle J; Seiter, Emily M; Johnson, Erin E; Saporito, Ralph A

    2018-03-01

    Most amphibians produce their own defensive chemicals; however, poison frogs sequester their alkaloid-based defenses from dietary arthropods. Alkaloids function as a defense against predators, and certain types appear to inhibit microbial growth. Alkaloid defenses vary considerably among populations of poison frogs, reflecting geographic differences in availability of dietary arthropods. Consequently, environmentally driven differences in frog defenses may have significant implications regarding their protection against pathogens. While natural alkaloid mixtures in dendrobatid poison frogs have recently been shown to inhibit growth of non-pathogenic microbes, no studies have examined the effectiveness of alkaloids against microbes that infect these frogs. Herein, we examined how alkaloid defenses in the dendrobatid poison frog, Oophaga pumilio, affect growth of the known anuran pathogens Aeromonas hydrophila and Klebsiella pneumoniae. Frogs were collected from five locations throughout Costa Rica that are known to vary in their alkaloid profiles. Alkaloids were isolated from individual skins, and extracts were assayed against both pathogens. Microbe subcultures were inoculated with extracted alkaloids to create dose-response curves. Subsequent spectrophotometry and cell counting assays were used to assess growth inhibition. GC-MS was used to characterize and quantify alkaloids in frog extracts, and our results suggest that variation in alkaloid defenses lead to differences in inhibition of these pathogens. The present study provides the first evidence that alkaloid variation in a dendrobatid poison frog is associated with differences in inhibition of anuran pathogens, and offers further support that alkaloid defenses in poison frogs confer protection against both pathogens and predators.

  10. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers.

    Science.gov (United States)

    Li, Huan; Li, Shang; Tang, Wei; Yang, Yang; Zhao, Jianfu; Xia, Siqing; Zhang, Weixian; Wang, Hong

    2018-06-01

    Secondary water supply systems (SWSSs) refer to the in-building infrastructures (e.g., water storage tanks) used to supply water pressure beyond the main distribution systems. The purpose of this study was to investigate the influence of SWSSs on microbial community structure and the occurrence of opportunistic pathogens, the latter of which are an emerging public health concern. Higher numbers of bacterial 16S rRNA genes, Legionella and mycobacterial gene markers were found in public building taps served by SWSSs relative to the mains, regardless of the flushing practice (P water retention time, warm temperature and loss of disinfectant residuals promoted microbial growth and colonization of potential pathogens in SWSSs. Varied levels of microbial community shifts were found in different types of SWSSs during water transportation from the distribution main to taps, highlighting the critical role of SWSSs in shaping the drinking water microbiota. Overall, the results provided insight to factors that might aid in controlling pathogen proliferation in real-world water systems using SWSSs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Microbial diversity and prevalence of foodborne pathogens in cheap and junk foods consumed by primary schoolchildren.

    Science.gov (United States)

    Kim, M J; Kim, S A; Kang, Y S; Hwang, I G; Rhee, M S

    2013-07-01

    Aerobic plate counts (APC), coliforms, Bacillus cereus, Escherichia coli and eight foodborne pathogens were tested in 1008 cheap and junk foods, including candies, dried cakes, chewing gum, chocolate, dried and seasoned seafood, ice cream, and sugary foods. APCs were positive for 342 samples (33·9%), and the majority of the counts were 2-3 log CFU g(-1) or ml(-1) (average: 1·10 log CFU g(-1) or ml(-1) ). Most samples (97·3%) contained no coliforms (average: 0·07 log CFU g(-1) or ml(-1) ). Bacillus cereus was detected in 68 samples (average: 0·14 log CFU g(-1) or ml(-1) ). Escherichia coli and Listeria monocytogenes were detected in 6 and 1 samples, respectively, whereas other foodborne pathogens were not isolated. The highest bacterial counts were associated with dried and seasoned seafood products and dried cakes, suggesting that appropriate regulations of these food types should be considered. Cheap and junk foods were produced mainly in developing countries, but there were no significant differences in the bacterial counts among different countries of origin. The presence of foodborne pathogens may pose a risk for children. These results suggest that there is cause for deeper concern about the safety of these foods and that effective countermeasures should be established to improve their microbiological safety. Food safety is especially important for children, but only limited information is available about the microbiological quality of cheap and junk foods that are consumed frequently by primary schoolchildren (e.g. dried cakes, candies and chocolates). The present study investigated the microbial quality of cheap and junk foods, and our results indicate that these foods are a potential health risk for children, therefore, deeper concern about the safety of these foods and effective countermeasures should be established to improve their microbiological safety. The present study may contribute to the development of an appropriate child food

  12. Rearing Water Treatment Induces Microbial Selection Influencing the Microbiota and Pathogen Associated Transcripts of Cod (Gadus morhua Larvae

    Directory of Open Access Journals (Sweden)

    Ragnhild I. Vestrum

    2018-05-01

    Full Text Available We have previously shown that K-selection and microbial stability in the rearing water increases survival and growth of Atlantic cod (Gadus morhua larvae, and that recirculating aquaculture systems (RAS are compatible with this. Here, we have assessed how water treatment influenced the larval microbiota and host responses at the gene expression level. Cod larvae were reared with two different rearing water systems: a RAS and a flow-through system (FTS. The water microbiota was examined using a 16S rDNA PCR/DGGE strategy. RNA extracted from larvae at 8, 13, and 17 days post hatching was used for microbiota and microarray gene expression analysis. Bacterial cDNA was synthesized and used for 16S rRNA amplicon 454 pyrosequencing of larval microbiota. Both water and larval microbiota differed significantly between the systems, and the larval microbiota appeared to become more dissimilar between systems with time. In total 4 phyla were identified for all larvae: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The most profound difference in larval microbiota was a high abundance of Arcobacter (Epsilonproteobacteria in FTS larvae (34 ± 9% of total reads. Arcobacter includes several species that are known pathogens for humans and animals. Cod larval transcriptome responses were investigated using an oligonucleotide gene expression microarray covering approximately 24,000 genes. Interestingly, FTS larvae transcriptional profiles revealed an overrepresentation of upregulated transcripts associated with responses to pathogens and infections, such as c1ql3-like, pglyrp-2-like and zg16, compared to RAS larvae. In conclusion, distinct water treatment systems induced differences in the larval microbiota. FTS larvae showed up-regulation of transcripts associated with responses to microbial stress. These results are consistent with the hypothesis that RAS promotes K-selection and microbial stability by maintaining a microbial load close to the

  13. Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    2009-09-01

    Full Text Available Marine snow (small amorphous aggregates with colloidal properties is present in all oceans of the world. Surface water warming and the consequent increase of water column stability can favour the coalescence of marine snow into marine mucilage, large marine aggregates representing an ephemeral and extreme habitat. Marine mucilage characterize aquatic systems with altered environmental conditions.We investigated, by means of molecular techniques, viruses and prokaryotes within the mucilage and in surrounding seawater to examine the potential of mucilage to host new microbial diversity and/or spread marine diseases. We found that marine mucilage contained a large and unexpectedly exclusive microbial biodiversity and hosted pathogenic species that were absent in surrounding seawater. We also investigated the relationship between climate change and the frequency of mucilage in the Mediterranean Sea over the last 200 years and found that the number of mucilage outbreaks increased almost exponentially in the last 20 years. The increasing frequency of mucilage outbreaks is closely associated with the temperature anomalies.We conclude that the spreading of mucilage in the Mediterranean Sea is linked to climate-driven sea surface warming. The mucilage can act as a controlling factor of microbial diversity across wide oceanic regions and could have the potential to act as a carrier of specific microorganisms, thereby increasing the spread of pathogenic bacteria.

  14. Microbial Indicators, Pathogens, and Antibiotic Resistance in Groundwater Impacted by Animal Farming: Field Scale to Basin Scale

    Science.gov (United States)

    Harter, T.; Li, X.; Atwill, E. R.; Packman, A. I.

    2015-12-01

    Several surveys of microbial indicators and pathogens were conducted to determine the impact of confined animal farming operations (CAFOs) on shallow, local, and regional groundwater quality in the Central Valley aquifer system, California. The aquifer system consists of highly heterogeneous, alluvial, unconsolidated coarse- to fine-grained sediments and is among the largest aquifers in the U.S.. Overlying landuse includes 3 million ha of irrigated agriculture and 1.7 million mature dairy cows in nearly 1,500 CAFOs. A multi-scale survey of water-borne indicator pathogens (Enterococcus spp. and generic E. coli) and of three water-borne pathogens (Campylobacter, Salmonella, and E. coli O157:H7) was conducted at five different spatial scales, increasing with distance from animal sources of these enteric microbial organisms: moist surfaces within individual CAFO sub-systems (calf-hutches, heifer corrals, mature cow stalls, hospital barn etc.), first encountered (shallow) groundwater immediately below these sub-systems, production aquifer below CAFOs, production aquifer near CAFOs, and production aquifer away from CAFOs. Where found, indicator pathogens were tested for antibiotic resistance. Hundreds of samples were collected at each scale: continuously during irrigation events and seasonally over a multi-year period at the three smaller site-scales; and in a one-time survey at the two larger, regional scales. All three pathogens were frequently detected in moist surface samples across CAFO sub-systems, albeit at concentrations several orders of magnitude lower than enteric indicators. Two of the three pathogens (but not Campylobacter) were also detected in first encountered groundwater, at 3-9 m below ground surface, in 1% of samples. No pathogens were found at the production aquifer scales. Generic E. coli was detected in ¼ of first encountered groundwater samples, and in 4% of production aquifer samples, while Enterococcus spp. was ubiquitously present across the

  15. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-01-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  16. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. Microbial Murders Crime Scene Investigation: An Active Team-Based Learning Project that Enhances Student Enthusiasm and Comprehension of Clinical Microbial Pathogens.

    Science.gov (United States)

    Steel, J Jordan

    2017-01-01

    Microbial disease knowledge is a critical component of microbiology courses and is beneficial for many students' future careers. Microbiology courses traditionally cover core concepts through lectures and labs, but specific instruction on microbial diseases varies greatly depending on the instructor and course. A common project involves students researching and presenting a disease to the class. This method alone is not very effective, and course evaluations have consistently indicated that students felt they lacked adequate disease knowledge; therefore, a more hands-on and interactive disease project was developed called Microbial Murders. For this team-based project, a group of students chooses a pathogen, researches the disease, creates a "mugshot" of the pathogen, and develops a corresponding "crime scene," where a hypothetical patient has died from the microbe. Each group gives a presentation introducing the microbial pathogen, signs/symptoms, treatments, and overall characteristics. The students then visit each other's crime scenes to match the pathogen with the correct crime scene by critically thinking through the clues. This project has shown remarkable success. Surveys indicate that 73% of students thought the project helped them understand the material and 84% said it was worth their time. Student participation, excitement, understanding, and application of microbial disease knowledge have increased and are evident through an increase in course evaluations and in student assessment scores. This project is easy to implement and can be used in a wide variety of biology, microbiology, or health classes for any level (middle school through college).

  18. Transmutation of Personal Glucose Meters into Portable and Highly Sensitive Microbial Pathogen Detection Platform.

    Science.gov (United States)

    Wang, Zhenzhen; Chen, Zhaowei; Gao, Nan; Ren, Jinsong; Qu, Xiaogang

    2015-10-07

    Herein, for the first time, we presented a simple and general approach by using personal glucose meters (PGM) for portable and ultrasensitive detection of microbial pathogens. Upon addition of pathogenic bacteria, glucoamylase-quaternized magnetic nanoparticles (GA-QMNPS) conjugates were disrupted by the competitive multivalent interactions between bacteria and QMNPS, resulting in the release of GA. After magnetic separation, the free GA could catalyze the hydrolysis of amylose into glucose for quantitative readout by PGM. In such way, PGM was transmuted into a bacterial detection device and extremely low detection limits down to 20 cells mL(-1) was achieved. More importantly, QMNPS could inhibit the growth of the bacteria and destroy its cellular structure, which enabled bacteria detection and inhibition simultaneously. The simplicity, portability, sensitivity and low cost of presented work make it attractive for clinical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Determination of human pathogen profiles in food by quality assured microbial assays. Proceedings of a final Research Coordination Meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-15

    This publication includes the results of a Coordinated Research Project (CRP). Major food microbial contaminants were identified in some of the main foods exported in the international food market. Thousands of samples in a wide variety of foods were selected to be studied during different points of the food chain: meat (chicken, beef and pork), seafood (shellfish such as shrimp, prawns, scampi, squid, and lobsters, and different types of fish such as salmon, cuttle fish, rohu, fin herring, catfish, milkfish, and tilapia), spices (pepper, paprika), frozen vegetables (asparagus, peas and corn) and other products (coconut and dairy products). The analysis included pathogenic bacteria such as Salmonella spp. (several serotypes), Escherichia coli, E. coli 0157:H7, Staphylococcus aureus, Clostridium perfringens, Bacillus cereus, Vibrio choleare, Vibrio parahaemolitycus and Yersinia enterolítica. This publication includes data that may be used to conduct better risk assessments on food by importing as well as exporting countries.

  20. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Science.gov (United States)

    Khalaf, Eman M.; Raizada, Manish N.

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated cucurbits

  1. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Eman M. Khalaf

    2018-02-01

    Full Text Available The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum. The endophytes were also assayed in planta (leaf disk and detached leaf bioassays for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169 exhibited antagonism to the five phytopathogens, of which 68% (50/73 of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169 of endophytes emitted host defense inducing VOCs (acetoin/diacetyl and 62% (104/169 secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated

  2. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Eman M. Khalaf

    2018-02-01

    Full Text Available The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanidermatum. The endophytes were also assayed in planta (leaf disk and detached leaf bioassays for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169 exhibited antagonism to the five phytopathogens, of which 68% (50/73 of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169 of endophytes emitted host defense inducing VOCs (acetoin/diacetyl and 62% (104/169 secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated

  3. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments

    Science.gov (United States)

    Qin, Ke; Struewing, Ian; Domingo, Jorge Santo; Lytle, Darren

    2017-01-01

    The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L. pneumophila, Mycobacterium spp., P. aeruginosa, V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management

  4. Microbial Inhibition of Fusarium Pathogens and Biological Modification of Trichothecenes in Cereal Grains

    Directory of Open Access Journals (Sweden)

    Urszula Wachowska

    2017-12-01

    Full Text Available Fungi of the genus Fusarium infect cereal crops during the growing season and cause head blight and other diseases. Their toxic secondary metabolites (mycotoxins contaminate grains. Several dozen toxic compounds produced by fungal pathogens have been identified to date. Type B trichothecenes—deoxynivalenol, its acetyl derivatives and nivalenol (produced mainly by F. graminearum and F. culmorum—are most commonly detected in cereal grains. “T-2 toxin” (produced by, among others, F. sporotrichioides belongs to type-A trichothecenes which are more toxic than other trichothecenes. Antagonistic bacteria and fungi can affect pathogens of the genus Fusarium via different modes of action: direct (mycoparasitism or hyperparasitism, mixed-path (antibiotic secretion, production of lytic enzymes and indirect (induction of host defense responses. Microbial modification of trichothecenes involves acetylation, deacetylation, oxidation, de-epoxidation, and epimerization, and it lowers the pathogenic potential of fungi of the genus Fusarium. Other modifing mechanisms described in the paper involve the physical adsorption of mycotoxins in bacterial cells and the conjugation of mycotoxins to glucose and other compounds in plant and fungal cells. The development of several patents supports the commercialization and wider application of microorganisms biodegrading mycotoxins in grains and, consequently, in feed additives.

  5. Molecular methods for pathogen and microbial community detection and characterization: current and potential application in diagnostic microbiology.

    Science.gov (United States)

    Sibley, Christopher D; Peirano, Gisele; Church, Deirdre L

    2012-04-01

    Clinical microbiology laboratories worldwide have historically relied on phenotypic methods (i.e., culture and biochemical tests) for detection, identification and characterization of virulence traits (e.g., antibiotic resistance genes, toxins) of human pathogens. However, limitations to implementation of molecular methods for human infectious diseases testing are being rapidly overcome allowing for the clinical evaluation and implementation of diverse technologies with expanding diagnostic capabilities. The advantages and limitation of molecular techniques including real-time polymerase chain reaction, partial or whole genome sequencing, molecular typing, microarrays, broad-range PCR and multiplexing will be discussed. Finally, terminal restriction fragment length polymorphism (T-RFLP) and deep sequencing are introduced as technologies at the clinical interface with the potential to dramatically enhance our ability to diagnose infectious diseases and better define the epidemiology and microbial ecology of a wide range of complex infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Conserved Patterns of Microbial Immune Escape: Pathogenic Microbes of Diverse Origin Target the Human Terminal Complement Inhibitor Vitronectin via a Single Common Motif.

    Directory of Open Access Journals (Sweden)

    Teresia Hallström

    Full Text Available Pathogenicity of many microbes relies on their capacity to resist innate immunity, and to survive and persist in an immunocompetent human host microbes have developed highly efficient and sophisticated complement evasion strategies. Here we show that different human pathogens including Gram-negative and Gram-positive bacteria, as well as the fungal pathogen Candida albicans, acquire the human terminal complement regulator vitronectin to their surface. By using truncated vitronectin fragments we found that all analyzed microbial pathogens (n = 13 bound human vitronectin via the same C-terminal heparin-binding domain (amino acids 352-374. This specific interaction leaves the terminal complement complex (TCC regulatory region of vitronectin accessible, allowing inhibition of C5b-7 membrane insertion and C9 polymerization. Vitronectin complexed with the various microbes and corresponding proteins was thus functionally active and inhibited complement-mediated C5b-9 deposition. Taken together, diverse microbial pathogens expressing different structurally unrelated vitronectin-binding molecules interact with host vitronectin via the same conserved region to allow versatile control of the host innate immune response.

  7. DMPD: Toll-like receptors and the host defense against microbial pathogens: bringingspecificity to the innate-immune system. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15075354 Toll-like receptors and the host defense against microbial pathogens: brin...oc Biol. 2004 May;75(5):749-55. Epub 2004 Jan 14. (.png) (.svg) (.html) (.csml) Show Toll-like receptors and the host defense again...immune system. PubmedID 15075354 Title Toll-like receptors and the host defense against microbial pathogens:

  8. Characterization of the cell surface properties of drinking water pathogens by microbial adhesion to hydrocarbon and electrophoretic mobility measurements.

    Science.gov (United States)

    Popovici, Jonathan; White, Colin P; Hoelle, Jill; Kinkle, Brian K; Lytle, Darren A

    2014-06-01

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregation, adhesion to surfaces, and stability of the cells within the aqueous environments. These cell characteristics are unique to the bacterial species and are a reflection of the large diversity of surface structures, proteins, and appendages of microorganisms. CSH and EPM of bacterial cells contribute substantially to the effectiveness of drinking water treatment to remove them, and therefore an investigation of these properties will be useful in predicting their removal through drinking water treatment processes and transport through drinking water distribution systems. EPM and CSH measurements of six microbiological pathogen or surrogate species suspended in phosphate-buffered water are reported in this work. Two strains of Vibrio cholerae were hydrophobic, while three strains of Escherichia coli were hydrophilic. Bacillus cereus was categorized as moderately hydrophobic. The strains of E. coli had the highest (most negative) EPM. Based on the measurements, E. coli species is predicted to be most difficult to remove from water while V. cholerae will be the easiest to remove. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Assessment and impact of microbial fecal pollution and human enteric pathogens in a coastal community.

    Science.gov (United States)

    Lipp, E K; Farrah, S A; Rose, J B

    2001-04-01

    The goals of this study were to assess watersheds impacted by high densities of OSDS (onsite sewage disposal systems) for evidence of fecal contamination and evaluate the occurrence of human pathogens in coastal waters off west Florida. Eleven stations (representing six watersheds) were intensively sampled for microbial indicators of fecal pollution (fecal coliform bacteria, enterococci, Clostridium perfringens and coliphage) and the human enteric pathogens, Cryptosporidium, Giardia, and enteroviruses during the summer rainy season (May-September 1996). Levels of all indicators ranged between 4000 CFU/100 ml. Cryptosporidium and Giardia were detected infrequently (6.8% and 2.3% of samples tested positive, respectively). Conversely, infectious enteroviruses were detected at low levels in 5 of the 6 watersheds sampled. Using cluster analysis, sites were grouped into two categories, high and low risks, based on combined levels of indicators. These results suggest that stations of highest pollution risk were located within areas of high OSDS densities. Furthermore, data indicate a subsurface transport of contaminated water to surface waters. The high prevalence of enteroviruses throughout the study area suggests a chronic pollution problem and potential risk to recreational swimmers in and around Sarasota Bay.

  10. Evaluation of Pathogen Removal in a Solar Sludge Drying Facility Using Microbial Indicators

    Directory of Open Access Journals (Sweden)

    D. İpek Kurtböke

    2010-02-01

    Full Text Available South East Queensland is one of the fastest growing regions in Australia with a correspondingly rapid increase in sewage production. In response, local councils are investing in more effective and sustainable options for the treatment and reuse of domestic and industrial effluents. A novel, evaporative solar dryer system has been installed on the Sunshine Coast to convert sewage sludge into a drier, usable form of biosolids through solar radiation exposure resulting in decreased moisture concentration and pathogen reduction. Solar-dried biosolids were analyzed for selected pathogenic microbial, metal and organic contaminants at the end of different drying cycles in a collaborative study conducted with the Regional Council. Although fecal coliforms were found to be present, enteroviruses, parasites, E. coli, and Salmonella sp. were not detected in the final product. However, elevated levels of zinc and copper were still present which restricted public use of the biosolids. Dilution of the dried biosolids with green waste as well as composting of the biosolids is likely to lead to the production of an environmentally safe, Class A end-product.

  11. Peracetic Acid (PAA Disinfection: Inactivation of Microbial Indicators and Pathogenic Bacteria in a Municipal Wastewater Plant

    Directory of Open Access Journals (Sweden)

    Silvia Bonetta

    2017-06-01

    Full Text Available Several studies have noted that treated and untreated wastewaters are primary contributors of a variety of pathogenic microorganisms to the aquatic ecosystem. Conventional wastewater treatment may not be sufficient to achieve microbiologically safe effluent to be discharged into natural waters or reused, thus requiring wastewater effluents to be disinfected. In recent years, peracetic acid (PAA has been adopted as a disinfectant for wastewater effluents. The aim of this study was to evaluate the disinfection efficiency of PAA at low doses (range 0.99–2.10 mg/L against microbial indicators and pathogenic bacteria in a municipal wastewater plant. Samples of untreated sewage and effluents before and after PAA treatment were collected seasonally for 1 year and were analysed for pathogenic Campylobacter, Salmonella spp., E. coli O157:H7 and E. coli virulence genes using molecular methods; moreover, the detection of specific microbial indicators (E. coli, faecal coliforms, enterococci, C. perfringens and Salmonella spp. were carried out using culturing methods. Salmonella spp. DNA was found in all untreated sewage and effluent before PAA treatment, whereas it was recovered in 50% of the samples collected after PAA treatment. Although E. coli O157:H7 was never identified, the occurrence of Shiga-like toxin I amplicons was identified in 75% of the untreated sewage samples, in 50% of the effluents assayed before PAA treatment, and in 25% of the effluents assayed after PAA treatment, whereas the stx2 gene was never found. Campylobacter coli was only detected in one effluent sample before PAA treatment. In the effluents after PAA treatment, a lower load of indicator bacteria was observed compared to the effluents before treatment. The results of this study highlight that the use of low doses of PAA seems to lead to an improvement of the microbiological quality of the effluent, although it is not sufficient to guarantee its suitability for irrigation

  12. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis.

    Science.gov (United States)

    Wyrsch, Ethan R; Roy Chowdhury, Piklu; Chapman, Toni A; Charles, Ian G; Hammond, Jeffrey M; Djordjevic, Steven P

    2016-01-01

    Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance.

  13. Correlations between Microbial Indicators, Pathogens, and Environmental Factors in a Subtropical Estuary

    Science.gov (United States)

    Ortega, Cristina; Solo-Gabriele, Helena M.; Abdelzaher, Amir; Wright, Mary; Deng, Yang; Stark, Lillian M.

    2009-01-01

    The objective of this study was to evaluate whether indicator microbes and physical-chemical parameters were correlated with pathogens within a tidally influenced estuary. Measurements included the analysis of physical-chemical parameters (pH, salinity, temperature, and turbidity), measurements of bacterial indicators (enterococci, fecal coliform, E. coli, and total coliform), viral indicators (somatic and MS2 coliphage), viral pathogens (enterovirus by culture), and protozoan pathogens (Cryptosporidium and Giardia). All pathogen results were negative with the exception of one sample which tested positive for culturable reovirus (8.5 MPN/100 L).. Notable physical-chemical parameters for this sample included low salinity (<1 ppt) and high water temperature (31 °C). Indicator bacteria and indicator virus levels for this sample were within average values typically measured within the study site and were low in comparison with levels observed in other freshwater environments. Overall results suggest that high levels of bacterial and viral indicators were associated with low salinity sites. PMID:19464704

  14. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris in their native and introduced range.

    Directory of Open Access Journals (Sweden)

    Philip J Lester

    Full Text Available When invasive species move to new environments they typically experience population bottlenecks that limit the probability that pathogens and parasites are also moved. The invasive species may thus be released from biotic interactions that can be a major source of density-dependent mortality, referred to as enemy release. We examined for evidence of enemy release in populations of the common wasp (Vespula vulgaris, which attains high densities and represents a major threat to biodiversity in its invaded range. Mass spectrometry proteomic methods were used to compare the microbial communities in wasp populations in the native (Belgium and England and invaded range (Argentina and New Zealand. We found no evidence of enemy release, as the number of microbial taxa was similar in both the introduced and native range. However, some evidence of distinctiveness in the microbial communities was observed between countries. The pathogens observed were similar to a variety of taxa observed in honey bees. These taxa included Nosema, Paenibacillus, and Yersina spp. Genomic methods confirmed a diversity of Nosema spp., Actinobacteria, and the Deformed wing and Kashmir bee viruses. We also analysed published records of bacteria, viruses, nematodes and fungi from both V. vulgaris and the related invader V. germanica. Thirty-three different microorganism taxa have been associated with wasps including Kashmir bee virus and entomophagous fungi such as Aspergillus flavus. There was no evidence that the presence or absence of these microorganisms was dependent on region of wasp samples (i.e. their native or invaded range. Given the similarity of the wasp pathogen fauna to that from honey bees, the lack of enemy release in wasp populations is probably related to spill-over or spill-back from bees and other social insects. Social insects appear to form a reservoir of generalist parasites and pathogens, which makes the management of wasp and bee disease difficult.

  15. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range.

    Science.gov (United States)

    Lester, Philip J; Bosch, Peter J; Gruber, Monica A M; Kapp, Eugene A; Peng, Lifeng; Brenton-Rule, Evan C; Buchanan, Joe; Stanislawek, Wlodek L; Archer, Michael; Corley, Juan C; Masciocchi, Maitè; Van Oystaeyen, Annette; Wenseleers, Tom

    2015-01-01

    When invasive species move to new environments they typically experience population bottlenecks that limit the probability that pathogens and parasites are also moved. The invasive species may thus be released from biotic interactions that can be a major source of density-dependent mortality, referred to as enemy release. We examined for evidence of enemy release in populations of the common wasp (Vespula vulgaris), which attains high densities and represents a major threat to biodiversity in its invaded range. Mass spectrometry proteomic methods were used to compare the microbial communities in wasp populations in the native (Belgium and England) and invaded range (Argentina and New Zealand). We found no evidence of enemy release, as the number of microbial taxa was similar in both the introduced and native range. However, some evidence of distinctiveness in the microbial communities was observed between countries. The pathogens observed were similar to a variety of taxa observed in honey bees. These taxa included Nosema, Paenibacillus, and Yersina spp. Genomic methods confirmed a diversity of Nosema spp., Actinobacteria, and the Deformed wing and Kashmir bee viruses. We also analysed published records of bacteria, viruses, nematodes and fungi from both V. vulgaris and the related invader V. germanica. Thirty-three different microorganism taxa have been associated with wasps including Kashmir bee virus and entomophagous fungi such as Aspergillus flavus. There was no evidence that the presence or absence of these microorganisms was dependent on region of wasp samples (i.e. their native or invaded range). Given the similarity of the wasp pathogen fauna to that from honey bees, the lack of enemy release in wasp populations is probably related to spill-over or spill-back from bees and other social insects. Social insects appear to form a reservoir of generalist parasites and pathogens, which makes the management of wasp and bee disease difficult.

  16. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis).

    Science.gov (United States)

    VanderWaal, Kimberly L; Atwill, Edward R; Isbell, Lynne A; McCowan, Brenda

    2014-03-01

    Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in

  17. The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as 'virulence genes'

    Directory of Open Access Journals (Sweden)

    Saunders Nigel J

    2006-05-01

    Full Text Available Abstract Background Neisseria meningitidis causes the life-threatening diseases meningococcal meningitis and meningococcal septicemia. Neisseria gonorrhoeae is closely related to the meningococcus, but is the cause of the very different infection, gonorrhea. A number of genes have been implicated in the virulence of these related yet distinct pathogens, but the genes that define and differentiate the species and their behaviours have not been established. Further, a related species, Neisseria lactamica is not associated with either type of infection in normally healthy people, and lives as a harmless commensal. We have determined which of the genes so far identified in the genome sequences of the pathogens are also present in this non-pathogenic related species. Results Thirteen unrelated strains of N. lactamica were investigated using comparative genome hybridization to the pan-Neisseria microarray-v2, which contains 2845 unique gene probes. The presence of 127 'virulence genes' was specifically addressed; of these 85 are present in N. lactamica. Of the remaining 42 'virulence genes' only 11 are present in all four of the sequenced pathogenic Neisseria. Conclusion Assessment of the complete dataset revealed that the vast majority of genes present in the pathogens are also present in N. lactamica. Of the 1,473 probes to genes shared by all four pathogenic genome sequences, 1,373 hybridize to N. lactamica. These shared genes cannot include genes that are necessary and sufficient for the virulence of the pathogens, since N. lactamica does not share this behaviour. This provides an essential context for the interpretation of gene complement studies of the pathogens.

  18. Including pathogen risk in life cycle assessment of wastewater management. 2. Quantitative comparison of pathogen risk to other impacts on human health.

    Science.gov (United States)

    Heimersson, Sara; Harder, Robin; Peters, Gregory M; Svanström, Magdalena

    2014-08-19

    Resource recovery from sewage sludge has the potential to save natural resources, but the potential risks connected to human exposure to heavy metals, organic micropollutants, and pathogenic microorganisms attract stakeholder concern. The purpose of the presented study was to include pathogen risks to human health in life cycle assessment (LCA) of wastewater and sludge management systems, as this is commonly omitted from LCAs due to methodological limitations. Part 1 of this article series estimated the overall pathogen risk for such a system with agricultural use of the sludge, in a way that enables the results to be integrated in LCA. This article (part 2) presents a full LCA for two model systems (with agricultural utilization or incineration of sludge) to reveal the relative importance of pathogen risk in relation to other potential impacts on human health. The study showed that, for both model systems, pathogen risk can constitute an important part (in this study up to 20%) of the total life cycle impacts on human health (expressed in disability adjusted life years) which include other important impacts such as human toxicity potential, global warming potential, and photochemical oxidant formation potential.

  19. Effect of ozonation on microbial fish pathogens, ammonia, nitrate, nitrite, and bod in simulated reuse hatchery water

    Energy Technology Data Exchange (ETDEWEB)

    Colberg, P.J.; Lingg, A.J.

    1978-10-01

    The effectiveness of ozone for eliminating fish pathogens and reducing nitrite, ammonia, and BOD associated with reuse hatchery systems was evaluated. Comparative survival rates of four bacterial fish pathogens and a bacterium-protozoan population during batch and continuous flow ozonation indicated a specific microbial ozone demand during batch treatment and 99% mortality of pathogens during continuous flow treatment. Oxidation of carbon and nitrite by ozone was rapid at low ozone concentrations; carbon and ammonia oxidation rates were pH dependent. The oxidation capacity of ozone in water was greatest at elevated pH even though lower ozone concentrations were used. Ozone treatment appears to be successful for disinfecting hatchery makeup water for recycling. However, the economics of such treatment are yet to be determined. (10 graphs, 28 references, 1 table)

  20. Distinct Trajectories of Massive Recent Gene Gains and Losses in Populations of a Microbial Eukaryotic Pathogen.

    Science.gov (United States)

    Hartmann, Fanny E; Croll, Daniel

    2017-11-01

    Differences in gene content are a significant source of variability within species and have an impact on phenotypic traits. However, little is known about the mechanisms responsible for the most recent gene gains and losses. We screened the genomes of 123 worldwide isolates of the major pathogen of wheat Zymoseptoria tritici for robust evidence of gene copy number variation. Based on orthology relationships in three closely related fungi, we identified 599 gene gains and 1,024 gene losses that have not yet reached fixation within the focal species. Our analyses of gene gains and losses segregating in populations showed that gene copy number variation arose preferentially in subtelomeres and in proximity to transposable elements. Recently lost genes were enriched in virulence factors and secondary metabolite gene clusters. In contrast, recently gained genes encoded mostly secreted protein lacking a conserved domain. We analyzed the frequency spectrum at loci segregating a gene presence-absence polymorphism in four worldwide populations. Recent gene losses showed a significant excess in low-frequency variants compared with genome-wide single nucleotide polymorphism, which is indicative of strong negative selection against gene losses. Recent gene gains were either under weak negative selection or neutral. We found evidence for strong divergent selection among populations at individual loci segregating a gene presence-absence polymorphism. Hence, gene gains and losses likely contributed to local adaptation. Our study shows that microbial eukaryotes harbor extensive copy number variation within populations and that functional differences among recently gained and lost genes led to distinct evolutionary trajectories. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Indication of Importance of Including Soil Microbial Characteristics into Biotope Valuation Method.

    Czech Academy of Sciences Publication Activity Database

    Trögl, J.; Pavlorková, Jana; Packová, P.; Seják, J.; Kuráň, P.; Kuráň, J.; Popelka, J.; Pacina, J.

    2016-01-01

    Roč. 8, č. 3 (2016), č. článku 253. ISSN 2071-1050 Institutional support: RVO:67985858 Keywords : biotope assessment * biotope valuation method * soil microbial communities Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.789, year: 2016

  2. Quantification of pathogenic microorganisms and microbial indicators in three wastewater reclamation and managed aquifer recharge facilities in Europe.

    Science.gov (United States)

    Levantesi, Caterina; La Mantia, Rosanna; Masciopinto, Costantino; Böckelmann, Uta; Ayuso-Gabella, M Neus; Salgot, Miquel; Tandoi, Valter; Van Houtte, Emmanuel; Wintgens, Thomas; Grohmann, Elisabeth

    2010-10-01

    Managed Aquifer Recharge (MAR) is becoming an attractive option for water storage in water reuse processes as it provides an additional treatment barrier to improve recharged water quality and buffers seasonal variations of water supply and demand. To achieve a better understanding about the level of pathogenic microorganisms and their relation with microbial indicators in these systems, five waterborne pathogens and four microbial indicators were monitored over one year in three European MAR sites operated with reclaimed wastewater. Giardia and Cryptosporidium (oo)cysts were found in 63.2 and 36.7% of the samples respectively. Salmonella spp. and helminth eggs were more rarely detected (16.3% and 12.5% of the samples respectively) and Campylobacter cells were only found in 2% of samples. At the Belgian site advanced tertiary treatment technology prior to soil aquifer treatment (SAT) produced effluent of drinking water quality, with no presence of the analysed pathogens. At the Spanish and Italian sites amelioration of microbiological water quality was observed between the MAR injectant and the recovered water. In particular Giardia levels decreased from 0.24-6.14 cysts/L to 0-0.01 cysts/L and from 0.4-6.2 cysts/L to 0-0.07 cysts/L in the Spanish and Italian sites respectively. Salmonella gene copies and Giardia cysts were however found in the water for final use and/or the recovered groundwater water at the two sites. Significant positive Spearman correlations (p<0.05, r(s) range: 0.45-0.95) were obtained, in all the three sites, between Giardia cysts and the most resistant microbial markers, Clostridium spores and bacteriophages. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis

    Science.gov (United States)

    Rohmer, Laurence; Hocquet, Didier; Miller, Samuel I.

    2011-01-01

    It is interesting to speculate that the evolutionary drive of microbes to develop pathogenic characteristics was to access the nutrient resources that animals provided. Environments in animals that pathogens colonize have also driven the evolution of new bacterial characteristics to maximize these new nutritional opportunities. This review focuses on genomic and functional aspects of pathogen metabolism that allow efficient utilization of nutrient resources provided by animals. Similar to genes encoding specific virulence traits, some genes encoding metabolic functions have been horizontally acquired by pathogens to provide a selective advantage in host tissues. Selective advantage in host tissues can also be gained in some circumstances by loss of function due to mutations that alter metabolic capabilities. Greater understanding of bacterial metabolism within host tissues should be important for increased understanding of host-pathogen interactions and the development of future therapeutic strategies. PMID:21600774

  4. Microbial community profiling of fresh basil and pitfalls in taxonomic assignment of enterobacterial pathogenic species based upon 16S rRNA amplicon sequencing.

    Science.gov (United States)

    Ceuppens, Siele; De Coninck, Dieter; Bottledoorn, Nadine; Van Nieuwerburgh, Filip; Uyttendaele, Mieke

    2017-09-18

    Application of 16S rRNA (gene) amplicon sequencing on food samples is increasingly applied for assessing microbial diversity but may as unintended advantage also enable simultaneous detection of any human pathogens without a priori definition. In the present study high-throughput next-generation sequencing (NGS) of the V1-V2-V3 regions of the 16S rRNA gene was applied to identify the bacteria present on fresh basil leaves. However, results were strongly impacted by variations in the bioinformatics analysis pipelines (MEGAN, SILVAngs, QIIME and MG-RAST), including the database choice (Greengenes, RDP and M5RNA) and the annotation algorithm (best hit, representative hit and lowest common ancestor). The use of pipelines with default parameters will lead to discrepancies. The estimate of microbial diversity of fresh basil using 16S rRNA (gene) amplicon sequencing is thus indicative but subject to biases. Salmonella enterica was detected at low frequencies, between 0.1% and 0.4% of bacterial sequences, corresponding with 37 to 166 reads. However, this result was dependent upon the pipeline used: Salmonella was detected by MEGAN, SILVAngs and MG-RAST, but not by QIIME. Confirmation of Salmonella sequences by real-time PCR was unsuccessful. It was shown that taxonomic resolution obtained from the short (500bp) sequence reads of the 16S rRNA gene containing the hypervariable regions V1-V3 cannot allow distinction of Salmonella with closely related enterobacterial species. In conclusion 16S amplicon sequencing, getting the status of standard method in microbial ecology studies of foods, needs expertise on both bioinformatics and microbiology for analysis of results. It is a powerful tool to estimate bacterial diversity but amenable to biases. Limitations concerning taxonomic resolution for some bacterial species or its inability to detect sub-dominant (pathogenic) species should be acknowledged in order to avoid overinterpretation of results. Copyright © 2017 Elsevier B

  5. Evaluation of methyl bromide alternatives efficacy against soil-borne pathogens, nematodes and soil microbial community.

    Directory of Open Access Journals (Sweden)

    Hongwei Xie

    Full Text Available Methyl bromide (MB and other alternatives were evaluated for suppression of Fusarium spp., Phytophthora spp., and Meloidogyne spp. and their influence on soil microbial communities. Both Fusarium spp. and Phytophthora spp. were significantly reduced by the MB (30.74 mg kg-1, methyl iodide (MI: 45.58 mg kg-1, metham sodium (MS: 53.92 mg kg-1 treatments. MS exhibited comparable effectiveness to MB in controlling Meloidogyne spp. and total nematodes, followed by MI at the tested rate. By contrast, sulfuryl fluoride (SF: 33.04 mg kg-1 and chloroform (CF: 23.68 mg kg-1 showed low efficacy in controlling Fusarium spp., Phytophthora spp., and Meloidogyne spp. MB, MI and MS significantly lowered the abundance of different microbial populations and microbial biomass in soil, whereas SF and CF had limited influence on them compared with the control. Diversity indices in Biolog studies decreased in response to fumigation, but no significant difference was found among treatments in PLFA studies. Principal component and cluster analyses of Biolog and PLFA data sets revealed that MB and MI treatments greatly influenced the soil microbial community functional and structural diversity compared with SF treatment. These results suggest that fumigants with high effectiveness in suppressing soil-borne disease could significantly influence soil microbial community.

  6. UV-Heat Treatments for the Control of Foodborne Microbial Pathogens in Chicken Broth

    Directory of Open Access Journals (Sweden)

    M. Gouma

    2015-01-01

    Full Text Available This investigation established the process criteria for using UV-C light and mild heat (UV-H treatment to inactivate 5-Log10 cycles (performance criterion of common foodborne pathogen populations, Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus, when inoculated in chicken broth. To define the target microorganism and the proper UV-H treatment conditions (including UV dose, treatment time, and temperature that would achieve the stated performance criterion, mathematical equations based on Geeraerd’s model were developed for each microorganism. For the sake of comparison, inactivation equations for heat treatments were also performed on the same chicken broth and for the same microorganisms. L. monocytogenes was the most UV-H resistant microorganism at all temperatures, requiring a UV dose between 6.10 J/mL (5.6 min and 2.26 J/mL (2.09 min to achieve 5-Log10 reductions. In comparison with UV treatments at room temperatures, the combination of UV and mild heat allowed both the UV dose and treatment time to be reduced by 30% and 63% at 55°C and 60°C, respectively. Compared to heat treatments, the UV-H process reduced the heating time for 5-Log10 reductions of all the investigated microorganisms in chicken broth from 20-fold to 2-fold when the operating temperature varied from 53 to 60°C.

  7. Comparison of filters for concentrating microbial indicators and pathogens in lake-water samples

    Science.gov (United States)

    Francy, Donna S.; Stelzer, Erin A.; Brady, Amie M.G.; Huitger, Carrie; Bushon, Rebecca N.; Ip, Hon S.; Ware, Michael W.; Villegas, Eric N.; Gallardo, Vincent; Lindquist, H.D. Alan

    2013-01-01

    Bacterial indicators are used to indicate increased health risk from pathogens and to make beach closure and advisory decisions; however, beaches are seldom monitored for the pathogens themselves. Studies of sources and types of pathogens at beaches are needed to improve estimates of swimming-associated health risks. It would be advantageous and cost-effective, especially for studies conducted on a regional scale, to use a method that can simultaneously filter and concentrate all classes of pathogens from the large volumes of water needed to detect pathogens. In seven recovery experiments, stock cultures of viruses and protozoa were seeded into 10-liter lake water samples, and concentrations of naturally occurring bacterial indicators were used to determine recoveries. For the five filtration methods tested, the highest median recoveries were as follows: glass wool for adenovirus (4.7%); NanoCeram for enterovirus (14.5%) and MS2 coliphage (84%); continuous-flow centrifugation (CFC) plus Virocap (CFC+ViroCap) for Escherichia coli (68.3%) and Cryptosporidium (54%); automatic ultrafiltration (UF) for norovirus GII (2.4%); and dead-end UF for Enterococcus faecalis (80.5%), avian influenza virus (0.02%), and Giardia (57%). In evaluating filter performance in terms of both recovery and variability, the automatic UF resulted in the highest recovery while maintaining low variability for all nine microorganisms. The automatic UF was used to demonstrate that filtration can be scaled up to field deployment and the collection of 200-liter lake water samples.

  8. CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening

    DEFF Research Database (Denmark)

    Wang, M.J.; Lamberth, K.; Harndahl, M.

    2007-01-01

    are present in the emerging bird flu isolates. Our study demonstrates that present technology enables a fast global screening for T cell immune epitopes of potential diagnostics and vaccine interest. This technology includes immuno-bioinformatics predictors with the capacity to perform fast genome-, pathogen......-, and HLA-wide searches for immune targets. To exploit this new potential, a coordinated international effort to analyze the precious source of information represented by rare patients, such as the current victims of bird flu, would be essential....

  9. Simulation of enteric pathogen concentrations in locally-collected greywater and wastewater for microbial risk assessments

    Science.gov (United States)

    As decentralized water reuse continues to gain popularity, risk-based treatment guidance is increasingly sought for the protection of public health. However, efforts to evaluate pathogen risks and log-reduction requirements have been hindered by an incomplete understanding of pat...

  10. Microbial pathogens in source and treated waters from drinking water treatment plants in the US

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...

  11. Microbial Assessment and Prevalence of Foodborne Pathogens in Natural Cheeses in Japan

    Directory of Open Access Journals (Sweden)

    Firew Kassa Esho

    2013-01-01

    Full Text Available The production and consumption of domestic natural cheese in Japan is increasing year by year. More than ninety percent of domestic natural cheese is produced in Hokkaido region of Japan, while information on its quality and safety related to foodborne pathogens is limited. To assess the microbiological safety of domestic natural cheese, a total of 126 natural cheese samples produced in Hokkaido were collected from December, 2012, to July, 2013. In addition to standard plate count (SPC and coliform counts, the prevalence study of three pathogens (Listeria monocytogenes, pathogenic Escherichia coli, and Salmonella spp. was performed on each sample. Real-time PCR and matrix-assisted laser desorption-ionization time-of-flight mass spectrometer methods were employed for identification of presumptive pathogens. Coliform was detected in 25 samples (19.8% with a minimum of 25 cfu/g and a maximum of more than 3.0 × 106 cfu/g. Salmonella spp. and L. monocytogenes were not isolated from any of the samples. Only one sample (0.80% showed positive PCR amplification for ipaH gene suggesting possible contamination of enteroinvasive E. coli or Shigella in this product. Overall results indicate that natural cheeses produced in Hokkaido region were satisfactory microbiological quality according to existing international standards.

  12. Microbial Biosensor for the Detection of Protease-Virulent Factors from Pathogens

    Science.gov (United States)

    2017-04-28

    pathogen signalling molecules. With that goal in mind , researchers have developed various types of biosensors that detect infectious determinants...life to boost their capability for rapid determination of clean water sources during field deployment. Despite the promising results of these studies

  13. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae : Implications for the microbial "pan-genome"

    NARCIS (Netherlands)

    Tettelin, H; Masignani, [No Value; Cieslewicz, MJ; Donati, C; Medini, D; Ward, NL; Angiuoli, SV; Crabtree, J; Jones, AL; Durkin, AS; DeBoy, RT; Davidsen, TM; Mora, M; Scarselli, M; Ros, IMY; Peterson, JD; Hauser, CR; Sundaram, JP; Nelson, WC; Madupu, R; Brinkac, LM; Dodson, RJ; Rosovitz, MJ; Sullivan, SA; Daugherty, SC; Haft, DH; Selengut, J; Gwinn, ML; Zhou, LW; Zafar, N; Khouri, H; Radune, D; Dimitrov, G; Watkins, K; O'Connor, KJB; Smith, S; Utterback, TR; White, O; Rubens, CE; Grandi, G; Madoff, LC; Kasper, DL; Telford, JL; Wessels, MR; Rappuoli, R; Fraser, CM

    2005-01-01

    The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and

  14. Pathogenic bacteria and microbial-source tracking markers in Brandywine Creek Basin, Pennsylvania and Delaware, 2009-10

    Science.gov (United States)

    Duris, Joseph W.; Reif, Andrew G.; Olson, Leif E.; Johnson, Heather E.

    2011-01-01

    virulent type of pathogenic E. coli, was found only in the West Branch and main stem at high flow but was not found in the East Branch under similar conditions. However, it must be noted that throughout the entire year of sampling there were occasions, during both high and normal flows, when both the East and West Branches were potential contributors of pathogen and microbial-source tracking markers to the main stem. Therefore, this study indicates that under selected conditions (high flow, October through March), West Branch Brandywine Creek Basin was the most likely source of elevated FIB densities in the main stem. These elevated densities are associated with more frequent detection of selected pathogenic E. coli markers (rfbO157 stx1) and are associated with MST markers of bovine source. However, during other times of the year, both the West Branch and East Branch Basins are acting as potential sources of FIB and fecally derived pathogens.

  15. Microbial Pathogens Implicated in Reproductive Health Infections in a Special Treatment Clinic in Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    Adenike Ogunshe

    2009-03-01

    Full Text Available Objective: The lack of adequate recognition of health importance of non-HIV reproductive health infections (RHIs in Nigeria has led into this study, which was to determine clinical pathogens in non-HIV RHI in Nigeria using a tertiary health facility as case study.Materials and Methods: A nine-year investigation was carried out between 1997 and 2005 on 4047 (n = 1626 males; n = 2421 females patients presenting at Special Treatment Clinic (STC of University College Hospital (UCH Ibadan, Nigeria. Routine laboratory procedures using appropriate culture media, culture conditions, and current phenotypic taxonomic tools for classification of isolated pathogens were employed.Results: Age (p = 0.019 and gender (p<0.0001 were related to the recovery rates of pathogens Candida species (55.6 %, Neisseria gonorrhoae (11.1%, Gardenella vaginalis (10.3%, Escherichia coli (9.2 %, Klebsiella sp. (4.2%, streptococci (4.0%, Staphylococcus aureus (2.3%, Proteus sp., (1.8%, Haemophilus ducreyi (0.5%, Trichomonas vaginalis (0.44% and Pseudomonas aeruginosa (0.18%. Candida and Gardenella vaginalis species were mostly recovered from female patients, while N.gonorrhoeae were mostly isolated from male patients. Age brackets for the recovery of pathogens were Neisseria gonorrhoeae (16-30 years; Gardenella vaginalis (21-25 and 31-35 years and C.albicans (21-30 years.Conclusion: Candida, Neisseria gonorrhoea and Gadrenella vaginalis were the most recovered pathogens from patients presenting at Special Treatment Clinic of a tertiary health institution in Nigeria, and the relationship between age, gender and the aetiological agents was statistically significant.

  16. Enhancement of microbial quality and inactivation of pathogenic bacteria by gamma irradiation of ready-to-cook Iranian barbecued chicken

    Science.gov (United States)

    Fallah, Aziz A.; Siavash Saei-Dehkordi, S.; Rahnama, Mohammad

    2010-10-01

    Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 °C for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D10 values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.

  17. Enhancement of microbial quality and inactivation of pathogenic bacteria by gamma irradiation of ready-to-cook Iranian barbecued chicken

    International Nuclear Information System (INIS)

    Fallah, Aziz A.; Siavash Saei-Dehkordi, S.; Rahnama, Mohammad

    2010-01-01

    Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 o C for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D 10 values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.

  18. Enhancement of microbial quality and inactivation of pathogenic bacteria by gamma irradiation of ready-to-cook Iranian barbecued chicken

    Energy Technology Data Exchange (ETDEWEB)

    Fallah, Aziz A., E-mail: a_a_falah@yahoo.co [Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahre-Kord University, Shahre-Kord 34141 (Iran, Islamic Republic of); Research Institute of Zoonotic Diseases, Shahre-Kord University, Shahre-Kord 34141 (Iran, Islamic Republic of); Siavash Saei-Dehkordi, S. [Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahre-Kord University, Shahre-Kord 34141 (Iran, Islamic Republic of); Research Institute of Zoonotic Diseases, Shahre-Kord University, Shahre-Kord 34141 (Iran, Islamic Republic of); Rahnama, Mohammad [Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Zabol, Zabol 98615 (Iran, Islamic Republic of)

    2010-10-15

    Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 {sup o}C for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D{sub 10} values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.

  19. The importance of virulence prediction and gene networks in microbial risk assessment

    DEFF Research Database (Denmark)

    Wassenaar, Gertrude Maria; Gamieldien, Junaid; Shatkin, JoAnne

    2007-01-01

    For microbial risk assessment, it is necessary to recognize and predict Virulence of bacterial pathogens, including their ability to contaminate foods. Hazard characterization requires data on strain variability regarding virulence and survival during food processing. Moreover, information...... and characterization of microbial hazards, including emerging pathogens, in the context of microbial risk assessment....

  20. Approaches for Reverse Line Blot-Based Detection of Microbial Pathogens in Ixodes ricinus Ticks Collected in Austria and Impact of the Chosen Method.

    Science.gov (United States)

    Schötta, Anna-Margarita; Wijnveld, Michiel; Stockinger, Hannes; Stanek, Gerold

    2017-07-01

    Ticks transmit a large number of pathogens capable of causing human disease. In this study, the PCR-reverse line blot (RLB) method was used to screen for pathogens in a total of 554 Ixodes ricinus ticks collected from all provinces of Austria. These pathogens belong to the genera Borrelia , Rickettsiae , Anaplasma / Ehrlichia (including " Candidatus Neoehrlichia"), Babesia , and Coxiella The pathogens with the highest detected prevalence were spirochetes of the Borrelia burgdorferi sensu lato complex, in 142 ticks (25.6%). Borrelia afzelii (80/142) was the most frequently detected species, followed by Borrelia burgdorferi sensu stricto (38/142) and Borrelia valaisiana (36/142). Borrelia garinii/Borrelia bavariensis , Borrelia lusitaniae , and Borrelia spielmanii were found in 28 ticks, 5 ticks, and 1 tick, respectively. Rickettsia spp. were detected in 93 ticks (16.8%): R. helvetica (39/93), R. raoultii (38/93), R. monacensis (2/93), and R. slovaca (1/93). Thirteen Rickettsia samples remain uncharacterized. " Candidatus Neoehrlichia mikurensis," Babesia spp. ( B. venatorum , B. divergens , B. microti ), and Anaplasma phagocytophilum were found in 4.5%, 2.7%, and 0.7%, respectively. Coxiella burnetii was not detected. Multiple microorganisms were detected in 40 ticks (7.2%), and the cooccurrence of Babesia spp. and " Candidatus Neoehrlichia mikurensis" showed a significant positive correlation. We also compared different PCR-RLBs for detection of Borrelia burgdorferi sensu lato and Rickettsia spp. and showed that different detection approaches provide highly diverse results, indicating that analysis of environmental samples remains challenging. IMPORTANCE This study determined the wide spectrum of tick-borne bacterial and protozoal pathogens that can be encountered in Austria. Surveillance of (putative) pathogenic microorganisms occurring in the environment is of medical importance, especially when those agents can be transmitted by ticks and cause disease. The

  1. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems.

    Science.gov (United States)

    Brooks, John P; Adeli, Ardeshir; McLaughlin, Michael R

    2014-06-15

    The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vast changes to the microbial biota and ecological structure of both the pig and waste manure lagoon wastewater. While some of these changes may not be negative, it is possible that CAFOs can enrich antibiotic resistant bacteria or pathogens based on farm type, thereby influencing the impact imparted by the land application of its respective wastewater. The purpose of this study was to measure the microbial constituents of swine-sow, -nursery, and -finisher farm manure lagoon wastewater and determine the changes induced by farm management. A total of 37 farms were visited in the Mid-South USA and analyzed for the genes 16S rRNA, spaQ (Salmonella spp.), Camp-16S (Campylobacter spp.), tetA, tetB, ermF, ermA, mecA, and intI using quantitative PCR. Additionally, 16S rRNA sequence libraries were created. Overall, it appeared that finisher farms were significantly different from nursery and sow farms in nearly all genes measured and in 16S rRNA clone libraries. Nearly all antibiotic resistance genes were detected in all farms. Interestingly, the mecA resistance gene (e.g. methicillin resistant Staphylococcus aureus) was below detection limits on most farms, and decreased as the pigs aged. Finisher farms generally had fewer antibiotic resistance genes, which corroborated previous phenotypic data; additionally, finisher farms produced a less diverse 16S rRNA sequence library. Comparisons of Camp-16S and spaQ GU (genomic unit) values to previous culture data demonstrated ratios from 10 to 10,000:1 depending on farm type, indicating viable but not cultivatable bacteria were dominant. The current study indicated that swine farm management schemes positively and negatively affect microbial and antibiotic resistant populations in CAFO wastewater which has future "downstream" implications from both an environmental and public health perspective. Published by Elsevier Ltd.

  2. Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed

    Science.gov (United States)

    Bed sediments of streams and rivers may store high concentrations of fecal indicator bacteria (FIB) and pathogens. Due to resuspension events, these contaminants can be mobilized into the water column and affect overall water quality. Other bacterial indicators such as microbial ...

  3. QMRA (quantitative microbial risk assessment) and HACCP (hazard analysis and critical control points) for management of pathogens in wastewater and sewage sludge treatment and reuse.

    Science.gov (United States)

    Westrell, T; Schönning, C; Stenström, T A; Ashbolt, N J

    2004-01-01

    Hazard Analysis and Critical Control Points (HACCP) was applied for identifying and controlling exposure to pathogenic microorganisms encountered during normal sludge and wastewater handling at a 12,500 m3/d treatment plant utilising tertiary wastewater treatment and mesophilic sludge digestion. The hazardous scenarios considered were human exposure during treatment, handling, soil application and crop consumption, and exposure via water at the wetland-area and recreational swimming. A quantitative microbial risk assessment (QMRA), including rotavirus, adenovirus, haemorrhagic E. coli, Salmonella, Giardia and Cryptosporidium, was performed in order to prioritise pathogen hazards for control purposes. Human exposures were treated as individual risks but also related to the endemic situation in the general population. The highest individual health risk from a single exposure was via aerosols for workers at the belt press for sludge dewatering (virus infection risk = 1). The largest impact on the community would arise if children ingested sludge at the unprotected storage site, although in the worst-case situation the largest number of infections would arise through vegetables fertilised with sludge and eaten raw (not allowed in Sweden). Acceptable risk for various hazardous scenarios, treatment and/or reuse strategies could be tested in the model.

  4. Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms.

    Science.gov (United States)

    Gomes, Fernanda; Saavedra, Maria José; Henriques, Mariana

    2016-04-01

    Bovine mastitis (BM) is a disease with high incidence worldwide and one of the most relevant bovine pathologies and the most costly to the dairy industry. BM is an inflammation of the udder and represents one of the most difficult veterinary diseases to control. Biofilm formation is considered a selective advantage for pathogens causing mastitis, facilitating bacterial persistence in the udder. In fact, recently some authors drew attention to the biofilm formation ability presented by several mastitis causing pathogens and to its possible relation with recurrent mastitis infections and with the increased resistance to antimicrobial agents and host immune defence system. Actually, up to now, several researchers reported the potential role of cells in this mode of growth in the previous facts mentioned. As a consequence of the presence of biofilms, the infection here focused is more difficult to treat and eradicate, making this problem a more relevant pressing issue. Thus, we believe that a deeper knowledge of these structures in mastitis can help to determine the best control strategy to be used in veterinary practice in order to reduce losses in the dairy industry and to ensure milk safety and quality. The aim of this paper was to review the existing research and consequently to provide an overview of the role of biofilms in BM infections. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Near ultraviolet radiation (280-400 nm): Direct and indirect effects on microbial pathogens

    International Nuclear Information System (INIS)

    Asthana, A.

    1993-01-01

    Responses of pigmented pathogenic fungi and E. coli strains differing in DNA repair and catalase proficiency to direct and indirect effects of ultraviolet radiation were evaluated. Pigments in the four fungal pathogens of Citrus differed in their ability to protect against direct UV and damage by UV-A -mediated phototoxins of both host and non-host origin. UV-A and UV-B did not inactivate the fungal species. Differential protection in wild type strains of the two Fusarium spp. and in the wild type strains of the two Penicilium spp. against UV-C was observed. Wild type and mutants with altered coloration in Penicilium spp. protected to varying extent against both α-T and 8-MOP in the presence of UV-A. UV-B irradiation of E. coli resulted in inactivation of strains deficient in DNA excision repair. Plasmid DNA damaged in vitro by UV-B from lamp systems as well as by sunlight, and transformed in vivo into bacterial cells lacking specific nucleases showed reduced transformation in DNA excision repair strains. UV-B enriched wavelengths isolated from a solar simulator affected plasmid DNA in a similar manner as UV-B from lamp systems. Sunlight, however affected the membrane of whole cells. Concentration of foliar furanocoumarins of Citrus jambhiri decreased with UV-B irradiation. Phototoxicity to Fusarium spp. was accounted for, in part, by furanocoumarins, psoralen and bergapten (5-MOP) and others. Pure psoralen and 5-MOP affected both Fusarium spp. similarly and carotenoids protected only partially in the wild type strains. Citrus targetted the cell membrane in Fusarium spp.l and in E. coli strains; carotenoids in both of which protected against such damage. Loss in structural integrity of plasmid DNA when treated with citral and UV-A correlated with loss in transforming activity. Biological damage to membrane and DNA was due to the production of hydrogen peroxide. Fruit-rot pathogens Penicilium spp. were not affected by either furanocoumarins or citrals

  6. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea

    Science.gov (United States)

    Zarsky, Jakub D.; Stibal, Marek; Hodson, Andy; Sattler, Birgit; Schostag, Morten; Hansen, Lars H.; Jacobsen, Carsten S.; Psenner, Roland

    2013-09-01

    The aggregation of surface debris particles on melting glaciers into larger units (cryoconite) provides microenvironments for various microorganisms and metabolic processes. Here we investigate the microbial community on the surface of Aldegondabreen, a valley glacier in Svalbard which is supplied with carbon and nutrients from different sources across its surface, including colonies of seabirds. We used a combination of geochemical analysis (of surface debris, ice and meltwater), quantitative polymerase chain reactions (targeting the 16S ribosomal ribonucleic acid and amoA genes), pyrosequencing and multivariate statistical analysis to suggest possible factors driving the ecology of prokaryotic microbes on the surface of Aldegondabreen and their potential role in nitrogen cycling. The combination of high nutrient input with subsidy from the bird colonies, supraglacial meltwater flow and the presence of fine, clay-like particles supports the formation of centimetre-scale cryoconite aggregates in some areas of the glacier surface. We show that a diverse microbial community is present, dominated by the cyanobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria, that are well-known in supraglacial environments. Importantly, ammonia-oxidizing archaea were detected in the aggregates for the first time on an Arctic glacier.

  7. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea

    International Nuclear Information System (INIS)

    Zarsky, Jakub D; Sattler, Birgit; Psenner, Roland; Stibal, Marek; Schostag, Morten; Jacobsen, Carsten S; Hodson, Andy; Hansen, Lars H

    2013-01-01

    The aggregation of surface debris particles on melting glaciers into larger units (cryoconite) provides microenvironments for various microorganisms and metabolic processes. Here we investigate the microbial community on the surface of Aldegondabreen, a valley glacier in Svalbard which is supplied with carbon and nutrients from different sources across its surface, including colonies of seabirds. We used a combination of geochemical analysis (of surface debris, ice and meltwater), quantitative polymerase chain reactions (targeting the 16S ribosomal ribonucleic acid and amoA genes), pyrosequencing and multivariate statistical analysis to suggest possible factors driving the ecology of prokaryotic microbes on the surface of Aldegondabreen and their potential role in nitrogen cycling. The combination of high nutrient input with subsidy from the bird colonies, supraglacial meltwater flow and the presence of fine, clay-like particles supports the formation of centimetre-scale cryoconite aggregates in some areas of the glacier surface. We show that a diverse microbial community is present, dominated by the cyanobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria, that are well-known in supraglacial environments. Importantly, ammonia-oxidizing archaea were detected in the aggregates for the first time on an Arctic glacier. (letter)

  8. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea

    Energy Technology Data Exchange (ETDEWEB)

    Zarsky, Jakub D; Sattler, Birgit; Psenner, Roland [Institute of Ecology, University of Innsbruck, Innsbruck (Austria); Stibal, Marek; Schostag, Morten; Jacobsen, Carsten S [Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen (Denmark); Hodson, Andy [Department of Geography, University of Sheffield, Sheffield (United Kingdom); Hansen, Lars H, E-mail: j.zarsky@gmail.com [Department of Biology, University of Copenhagen, Copenhagen (Denmark)

    2013-09-15

    The aggregation of surface debris particles on melting glaciers into larger units (cryoconite) provides microenvironments for various microorganisms and metabolic processes. Here we investigate the microbial community on the surface of Aldegondabreen, a valley glacier in Svalbard which is supplied with carbon and nutrients from different sources across its surface, including colonies of seabirds. We used a combination of geochemical analysis (of surface debris, ice and meltwater), quantitative polymerase chain reactions (targeting the 16S ribosomal ribonucleic acid and amoA genes), pyrosequencing and multivariate statistical analysis to suggest possible factors driving the ecology of prokaryotic microbes on the surface of Aldegondabreen and their potential role in nitrogen cycling. The combination of high nutrient input with subsidy from the bird colonies, supraglacial meltwater flow and the presence of fine, clay-like particles supports the formation of centimetre-scale cryoconite aggregates in some areas of the glacier surface. We show that a diverse microbial community is present, dominated by the cyanobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria, that are well-known in supraglacial environments. Importantly, ammonia-oxidizing archaea were detected in the aggregates for the first time on an Arctic glacier. (letter)

  9. The causes and consequences of antibiotic resistance evolution in microbial pathogens

    DEFF Research Database (Denmark)

    Jochumsen, Nicholas

    pleiotropy as they conferred a decreased growth rate in the absence of colistin and also rendered the colistin resistant strains susceptible towards all tested classes of β-lactams. The results suggest that colistin/β-lactam combination therapy could be used to reduce the risk of resistance evolution during......The evolution of antimicrobial resistance in bacterial pathogens is a growing global health problem that is gradually making the successful treatment of infectious diseases more difficult. Antimicrobial peptides have been proposed as promising candidates for future drug development as they retain...... activity against bacteria resistant to conventional antibiotics and because resistance evolution is expected to be unlikely since the peptides have complex modes of action due to their interaction with the bacterial membrane. The work presented in this thesis has involved studies to increase our...

  10. MICROBIAL LOAD AND MULTIPLE DRUG RESISTANCE OF PATHOGENIC BACTERIA ISOLATED FROM FEACES AND BODY SURFACES OF COCKROACHES IN AN URBAN AREA OF SOUTHWESTERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Monsuru Adebayo Adeleke

    2012-06-01

    Full Text Available This study investigates the microbial load and antibiotic susceptibility pattern of pathogenic bacteria isolated from the faeces and body surfaces of cockroaches in Osogbo, Southwestern Nigeria. The cockroaches collected from residential areas and hospital vicinities were screened for microbial load and antibiotic susceptibility pattern using standard protocols. A total of twenty- three microorganisms namely Klebsiella aerogenes, Bacillius cereus, Proteus spp, Staphyloccocus aureus, S. saprophyticus, Enteroccocus faecalis, Staphylococus epididermis, E. coli, Listeria monoctogene, Proteus mirabilis, Citrobacter species, Pseudomonas aeruginosa, Psuedomonas species, Seretia mensence, Candida albicans, Candida spp., Aspergilius spp., A. flavus, A. fumigates, Mucor species and Penicilium species were isolated. The microbial load of the microorganisms was significantly higher in the isolates from hospital as compared with the residential area (p<0.05 with the exception of Canidida species, Mucor and Penicillium which had higher or equal microbial load at the residential areas. All the pathogenic bacteria isolated had multiple resistance to antibiotics most importantly, Ampicillin, Augumentin, Amoxicillin and Septrin (30μg. Efforts geared towards controlling the insects will be indispensable in curbing the wide spread of multi-drug resistant pathogens in the study area.

  11. Mechanistic investigation on microbial toxicity of nano hydroxyapatite on implant associated pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Baskar, K. [Department of Biotechnology, University of Madras, Guindy Campus, Chennai, Tamil Nadu (India); Anusuya, T. [Department of Nanotechnology, SRM University, Kattankulathur, Tamil Nadu (India); Devanand Venkatasubbu, G., E-mail: gdevanandvenkatasubbu@gmail.com [Department of Nanotechnology, SRM University, Kattankulathur, Tamil Nadu (India)

    2017-04-01

    The use of atomic scale inorganic nanoparticles (NPs) to fight against pathogenic microorganisms is a recent trend in biomedical area which overcomes the limitations of organic compounds in terms of stability, shelf life and bioactivity. One such Calcium phosphate based biomaterial is hydroxyapatite (HA), considered as potential bioactive compound with excellent biocompatibility, osteointegrity and biodegradability. Osteomyelitis, the implant associated infection, is the major problem worldwide responsible for the majority of implant failure cases. Since HA is used as a coating material of implants, only few reports were available on its antimicrobial activity and cytotoxicity whereas no reports on its possible antimicrobial mechanism. In this present study, the HA-NPs were synthesized by wet chemical precipitation and were characterized using X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The synthesized HA-NPs were evaluated for antimicrobial activity against implant associated bacterial pathogens. The study also explores the mechanistic action of HA-NPs in killing of bacteria by determining the reactive oxygen species (ROS) generation, DNA fragmentation, Lactate dehydrogenase (LDH) leakage and cellular interaction. In addition the cytotoxicity of HA-NPs was determined by MTT assay and Fluorescence Microscopic analysis. The results revealed that, the synthesized HA-NPs showed good antibacterial activity for tested bacterial species and the possible antibacterial mechanism were due to the lack of membrane integrity and cytotoxic studies shows the concentration dependent changes in cell viability. - Highlights: • Antibacterial activity against Gram − ve bacterium • Mechanism of antibacterial activity is analyzed. • DNA fragmentation, growth curve, LDH, ROS are analyzed. • The mechanism is by damaging cell membrane. • Hydroxyapatite is biocompatible.

  12. Plant Pathogenic Microbial Communication Affected by Elevated Temperature in Pectobacterium carotovorum subsp. carotovorum.

    Science.gov (United States)

    Saha, N D; Chaudhary, A; Singh, S D; Singh, D; Walia, S; Das, T K

    2015-11-01

    Gram-negative plant pathogenic bacteria regulate specific gene expression in a population density-dependent manner by sensing level of Acyl-Homoserine Lactone (HSL) molecules which they produce and liberate to the environment, called Quorum Sensing (QS). The production of virulence factors (extracellular enzyme viz. cellulase, pectinase, etc.) in Pectobacterium carotovorum subsp. carotovorum (Pcc) is under strong regulation of QS. The QS signal molecule, N-(3-oxohexanoyl)-L-Homoserine Lactone (OHHL) was found as the central regulatory system for the virulence factor production in Pcc and is also under strict regulation of external environmental temperature. Under seven different incubation temperatures (24, 26, 28, 30, 33, 35, and 37 °C) in laboratory condition, highest amount of OHHL (804 violacein unit) and highest (79 %) Disease Severity Index (DSI) were measured at 33 °C. The OHHL production kinetics showed accumulation of highest concentration of OHHL at late log phase of the growth but diminution in the concentration occurred during stationary phase onwards to death phase. At higher temperature (35 and 37 °C) exposure, OHHL was not at detectable range. The effect of temperature on virulence factor production is the concomitant effect of HSL production and degradation which justifies less disease severity index in cross-inoculated tomato fruits incubated at 35 and 37 °C. The nondetection of the OHHL in the elevated temperature may because of degradation as these signal molecules are quite sensitive and prone to get degraded under different physical factors. This result provides the rationale behind the highest disease severity up to certain elevated temperature and leaves opportunities for investigation on mutation, co-evolution of superior plant pathogen with more stable HSL signals-mediated pathogenesis under global warming context.

  13. Mass spectrometry-based bacterial proteomics: focus on dermatological associated microbial pathogens

    Directory of Open Access Journals (Sweden)

    Youcef eSoufi

    2016-02-01

    Full Text Available The composition of human skin acts as a natural habitat for various bacterial species that function in a commensal and symbiotic fashion. In a healthy individual, bacterial flora serves to protect the host. Under certain conditions such as minor trauma, impaired host immunity, or environmental factors, the risk of developing skin infections is increased. Although a large majority of bacterial associated skin infections are common, a portion can potentially manifest into clinically significant morbidity. For example, Gram positive species that typically reside on the skin such as Staphylococcus and Streptococcus can cause numerous epidermal (impetigo, ecthyma and dermal (cellulitis, necrotizing fasciitis, erysipelas skin infections. Moreover, the increasing incidence of bacterial antibiotic resistance represents a serious challenge to modern medicine and threatens the health care system. Therefore, it is critical to develop tools and strategies that can allow us to better elucidate the nature and mechanism of bacterial virulence. To this end, mass spectrometry (MS-based proteomics has been revolutionizing biomedical research, and has positively impacted the microbiology field. Advances in MS technologies have paved the way for numerous bacterial proteomes and their respective post translational modifications (PTMs to be accurately identified and quantified in a high throughput and robust fashion. This technological platform offers critical information with regards to signal transduction, adherence, and microbial-host interactions associated with bacterial pathogenesis. This mini-review serves to highlight the current progress proteomics has contributed towards the understanding of bacteria that are associated with skin related diseases, infections, and antibiotic resistance.

  14. Development of a standardized differential-reflective bioassay for microbial pathogens

    Science.gov (United States)

    Wilhelm, Jay; Auld, J. R. X.; Smith, James E.

    2008-04-01

    This research examines standardizing a method for the rapid/semi-automated identification of microbial contaminates. It introduces a method suited to test for food/water contamination, serology, urinalysis and saliva testing for any >1 micron sized molecule that can be effectively bound to an identifying marker with exclusivity. This optical biosensor method seeks to integrate the semi-manual distribution of a collected sample onto a "transparent" substrate array of binding sites that will then be applied to a standard optical data disk and run for analysis. The detection of most microbe species is possible in this platform because the relative scale is greater than the resolution of the standard-scale digital information on a standard CD or DVD. This paper explains the critical first stage in the advance of this detection concept. This work has concentrated on developing the necessary software component needed to perform highly sensitive small-scale recognition using the standard optical disk as a detection platform. Physical testing has made significant progress in demonstrating the ability to utilize a standard optical drive for the purposes of micro-scale detection through the exploitation of CIRC error correction. Testing has also shown a definable trend in the optimum scale and geometry of micro-arrayed attachment sites for the technology's concept to reach achievement.

  15. Microbial contamination of red meat and consideration of gamma irradiation effects for increasing the shelf-life and decontamination of pathogenic microorganisms

    International Nuclear Information System (INIS)

    Motamedee Sadeh, F.; Majd, F.; Fathollahee, H.; Arbabi, K.; Mohammad Beygi Abhari, M.

    2003-01-01

    Red meat has a lot of microbial flora from different sources. Prevention of outbreak of food born diseases that are caused by pathogenic agents and prevention of microbial spoilage of meat that makes many losses to the human health and economic of society are very important. Also, different methods for decreasing the microbial flora under a standard allowance for increasing the shelf life and decontamination of microbial pathogens have been proposed. In this research, irradiation technique was used for this purposes. After drawing dose/survival curves for all kinds of meats microbial contamination, an optimum dose of 3 kGy for decreasing the contamination and specially for decontamination of salmonella was obtained. When meat is irradiated by 3 kGy gamma rays, it can be kept in a 4-7 d ig C refrigerator for 2 week without appearing any spoilage nor color changes or odor. Also, some of biochemical factors were analyzed and amounts of 16 amino acids were measured in the irradiated and controlled samples and no difference was observed between the samples

  16. How often do they have sex? A comparative analysis of the population structure of seven eukaryotic microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Nicolás Tomasini

    Full Text Available The model of predominant clonal evolution (PCE proposed for micropathogens does not state that genetic exchange is totally absent, but rather, that it is too rare to break the prevalent PCE pattern. However, the actual impact of this "residual" genetic exchange should be evaluated. Multilocus Sequence Typing (MLST is an excellent tool to explore the problem. Here, we compared online available MLST datasets for seven eukaryotic microbial pathogens: Trypanosoma cruzi, the Fusarium solani complex, Aspergillus fumigatus, Blastocystis subtype 3, the Leishmania donovani complex, Candida albicans and Candida glabrata. We first analyzed phylogenetic relationships among genotypes within each dataset. Then, we examined different measures of branch support and incongruence among loci as signs of genetic structure and levels of past recombination. The analyses allow us to identify three types of genetic structure. The first was characterized by trees with well-supported branches and low levels of incongruence suggesting well-structured populations and PCE. This was the case for the T. cruzi and F. solani datasets. The second genetic structure, represented by Blastocystis spp., A. fumigatus and the L. donovani complex datasets, showed trees with weakly-supported branches but low levels of incongruence among loci, whereby genetic structuration was not clearly defined by MLST. Finally, trees showing weakly-supported branches and high levels of incongruence among loci were observed for Candida species, suggesting that genetic exchange has a higher evolutionary impact in these mainly clonal yeast species. Furthermore, simulations showed that MLST may fail to show right clustering in population datasets even in the absence of genetic exchange. In conclusion, these results make it possible to infer variable impacts of genetic exchange in populations of predominantly clonal micro-pathogens. Moreover, our results reveal different problems of MLST to determine the

  17. Diallylthiosulfinate (Allicin), a Volatile Antimicrobial from Garlic (Allium sativum), Kills Human Lung Pathogenic Bacteria, Including MDR Strains, as a Vapor.

    Science.gov (United States)

    Reiter, Jana; Levina, Natalja; van der Linden, Mark; Gruhlke, Martin; Martin, Christian; Slusarenko, Alan J

    2017-10-12

    Garlic ( Allium sativum ) has potent antimicrobial activity due to allicin (diallylthiosulfinate) synthesized by enzyme catalysis in damaged garlic tissues. Allicin gives crushed garlic its characteristic odor and its volatility makes it potentially useful for combating lung infections. Allicin was synthesized (>98% pure) by oxidation of diallyl disulfide by H₂O₂ using formic acid as a catalyst and the growth inhibitory effect of allicin vapor and allicin in solution to clinical isolates of lung pathogenic bacteria from the genera Pseudomonas , Streptococcus , and Staphylococcus , including multi-drug resistant (MDR) strains, was demonstrated. Minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) were determined and compared to clinical antibiotics using standard European Committee on Antimicrobial Susceptibility Testing (EUCAST) procedures. The cytotoxicity of allicin to human lung and colon epithelial and murine fibroblast cells was tested in vitro and shown to be ameliorated by glutathione (GSH). Similarly, the sensitivity of rat precision-cut lung slices (PCLS) to allicin was decreased by raising the [GSH] to the approximate blood plasma level of 1 mM. Because allicin inhibited bacterial growth as a vapor, it could be used to combat bacterial lung infections via direct inhalation. Since there are no volatile antibiotics available to treat pulmonary infections, allicin, particularly at sublethal doses in combination with oral antibiotics, could make a valuable addition to currently available treatments.

  18. Diallylthiosulfinate (Allicin, a Volatile Antimicrobial from Garlic (Allium sativum, Kills Human Lung Pathogenic Bacteria, Including MDR Strains, as a Vapor

    Directory of Open Access Journals (Sweden)

    Jana Reiter

    2017-10-01

    Full Text Available Garlic (Allium sativum has potent antimicrobial activity due to allicin (diallylthiosulfinate synthesized by enzyme catalysis in damaged garlic tissues. Allicin gives crushed garlic its characteristic odor and its volatility makes it potentially useful for combating lung infections. Allicin was synthesized (>98% pure by oxidation of diallyl disulfide by H2O2 using formic acid as a catalyst and the growth inhibitory effect of allicin vapor and allicin in solution to clinical isolates of lung pathogenic bacteria from the genera Pseudomonas, Streptococcus, and Staphylococcus, including multi-drug resistant (MDR strains, was demonstrated. Minimal inhibitory (MIC and minimal bactericidal concentrations (MBC were determined and compared to clinical antibiotics using standard European Committee on Antimicrobial Susceptibility Testing (EUCAST procedures. The cytotoxicity of allicin to human lung and colon epithelial and murine fibroblast cells was tested in vitro and shown to be ameliorated by glutathione (GSH. Similarly, the sensitivity of rat precision-cut lung slices (PCLS to allicin was decreased by raising the [GSH] to the approximate blood plasma level of 1 mM. Because allicin inhibited bacterial growth as a vapor, it could be used to combat bacterial lung infections via direct inhalation. Since there are no volatile antibiotics available to treat pulmonary infections, allicin, particularly at sublethal doses in combination with oral antibiotics, could make a valuable addition to currently available treatments.

  19. Deriving site-specific soil clean-up values for metals and metalloids: rationale for including protection of soil microbial processes.

    Science.gov (United States)

    Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen

    2014-07-01

    Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of

  20. Medical Devices; Immunology and Microbiology Devices; Classification of the Device To Detect and Identify Microbial Pathogen Nucleic Acids in Cerebrospinal Fluid. Final order.

    Science.gov (United States)

    2017-10-20

    The Food and Drug Administration (FDA or we) is classifying the device to detect and identify microbial pathogen nucleic acids in cerebrospinal fluid into class II (special controls). The special controls that will apply to the device type are identified in this order and will be part of the codified language for the device to detect and identify microbial pathogen nucleic acids in cerebrospinal fluid’s classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  1. Laboratory simulation reveals significant impacts of ocean acidification on microbial community composition and host-pathogen interactions between the blood clam and Vibrio harveyi.

    Science.gov (United States)

    Zha, Shanjie; Liu, Saixi; Su, Wenhao; Shi, Wei; Xiao, Guoqiang; Yan, Maocang; Liu, Guangxu

    2017-12-01

    It has been suggested that climate change may promote the outbreaks of diseases in the sea through altering the host susceptibility, the pathogen virulence, and the host-pathogen interaction. However, the impacts of ocean acidification (OA) on the pathogen components of bacterial community and the host-pathogen interaction of marine bivalves are still poorly understood. Therefore, 16S rRNA high-throughput sequencing and host-pathogen interaction analysis between blood clam (Tegillarca granosa) and Vibrio harveyi were conducted in the present study to gain a better understanding of the ecological impacts of ocean acidification. The results obtained revealed a significant impact of ocean acidification on the composition of microbial community at laboratory scale. Notably, the abundance of Vibrio, a major group of pathogens to many marine organisms, was significantly increased under ocean acidification condition. In addition, the survival rate and haemolytic activity of V. harveyi were significantly higher in the presence of haemolymph of OA treated T. granosa, indicating a compromised immunity of the clam and enhanced virulence of V. harveyi under future ocean acidification scenarios. Conclusively, the results obtained in this study suggest that future ocean acidification may increase the risk of Vibrio pathogen infection for marine bivalve species, such as blood clams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. ANTIMICROBIAL ACTIVITY OF ETHANOL EXTRACT OF SATUREJA HORTENSIS L. TOWARDS PATHOGENIC MICROBIAL STRAINS

    Directory of Open Access Journals (Sweden)

    Kotyuk L. A.

    2014-12-01

    Full Text Available The paper provides the information on the component composition of ethereal oil of Satureja hortensis cultivated in Zhytomyr Polissya. In the ethereal oil of summer savory, 19 components were identified: carvacrol (89,07%, γ-terpinene (3,53%, α-thujone (1,7%, camphora (1,48%, terpinen-4 ol 4 (0,91%, β-bisabolen (0,56%, β-caryophyllene (0,45%, bitsiklogermakren (0,38% para-cymene (0,34%, 1,8-cineole (0,33%, trans-sabinengidrat (0.25%, 1-octen-3-ol (0.20%, spatulenol (0,18%, β-thujone (0,14%, eugenol (0,11%, geranylacetate (0,11%, humulene (0,09%, α-terpinene (0,09%, octanol-3 (0,07%. A high carvacrol content determines antimicrobial properties of summer savory. The antimicrobial activity of S. hortensis extract was studied in accordance with the common methodology of determining the sensitivity of microorganisms to antibacterial preparations. The aboveground part of plants harvested in the last ten-day period of August, in the flowering phase, was used in the experiments. The raw material was reduced to fragments of 1-1.5mm according to the requirements of pharmacopoeia. The extract of S. hortensis was obtained by the method of maceration in 40% ethyl alcohol at a ratio of 1:5 and the concentration of 200mg/ml. The availability of antimicrobial activity of extracted substances in the structure of the substances studied was determined by the way of comparison of their minimum inhibiting concentrations (MIC and minimum bactericidal/fungicidal concentrations (MBC/MFC with those in 40% ethyl alcohol. The paper investigates the biological activity of 40 % ethanol extract of Satureja hortensis herb grown under the conditions of Ukrainian Polissya as to golden staphylococcus (Staphylococcus aureus, coliform bacillus Escherichia coli, Pseudomonas aeruginosa and Candida albicans which are pathogenic in reference to other organisms. It has been shown that S. hortensis extract was characterized by antimicrobial activity since extracted substances

  3. ANTIMICROBIAL ACTIVITY OF ETHANOL EXTRACT OF SATUREJA HORTENSIS L. TOWARDS PATHOGENIC MICROBIAL STRAINS

    Directory of Open Access Journals (Sweden)

    L. A. Kotyuk

    2014-12-01

    Full Text Available The paper provides the information on the component composition of ethereal oil of Satureja hortensis cultivated in Zhytomyr Polissya. In the ethereal oil of summer savory, 19 components were identified: carvacrol (89,07%, γ-terpinene (3,53%, α-thujone (1,7%, camphora (1,48%, terpinen-4 ol 4 (0,91%, β-bisabolen (0,56%, β-caryophyllene (0,45%, bitsiklogermakren (0,38% para-cymene (0,34%, 1,8-cineole (0,33%, trans-sabinengidrat (0.25%, 1-octen-3-ol (0.20%, spatulenol (0,18%, β-thujone (0,14%, eugenol (0,11%, geranylacetate (0,11%, humulene (0,09%, α-terpinene (0,09%, octanol-3 (0,07%. A high carvacrol content determines antimicrobial properties of summer savory. The antimicrobial activity of S. hortensis extract was studied in accordance with the common methodology of determining the sensitivity of microorganisms to antibacterial preparations. The aboveground part of plants harvested in the last ten-day period of August, in the flowering phase, was used in the experiments. The raw material was reduced to fragments of 1-1.5mm according to the requirements of pharmacopoeia. The extract of S. hortensis was obtained by the method of maceration in 40% ethyl alcohol at a ratio of 1:5 and the concentration of 200mg/ml. The availability of antimicrobial activity of extracted substances in the structure of the substances studied was determined by the way of comparison of their minimum inhibiting concentrations (MIC and minimum bactericidal/fungicidal concentrations (MBC/MFC with those in 40% ethyl alcohol. The paper investigates the biological activity of 40 % ethanol extract of Satureja hortensis herb grown under the conditions of Ukrainian Polissya as to golden staphylococcus (Staphylococcus aureus, coliform bacillus Escherichia coli, Pseudomonas aeruginosa and Candida albicans which are pathogenic in reference to other organisms. It has been shown that S. hortensis extract was characterized by antimicrobial activity since extracted substances

  4. Surface Enhanced Raman Spectroscopy for the Rapid Detection and Identification of Microbial Pathogens in Human Serum

    Science.gov (United States)

    2014-12-11

    Percival, S.L., et al., Microbiology of the skin and the role of biofilms in infection. International wound journal , 2012. 9(1): p. 14-32. 2. Geffers...several fields of study including archaeology, arts, agriculture , environmental science, geosciences, astrobiology, forensics, and material science. In...MO). UltraPure distilled water (ddH2O) was purchased from Life Technologies (Grand Island, NY), nutrient agar was purchased from BD Biosciences (San

  5. Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection.

    Directory of Open Access Journals (Sweden)

    Martin S Davey

    2011-05-01

    Full Text Available Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8. In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN-γ and tumor necrosis factor (TNF-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1, and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD-associated bacterial peritonitis--characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity--show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in

  6. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens.

    Science.gov (United States)

    Al-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen; Wink, Michael

    2015-02-15

    The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml). Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75-1). In time-kill assays all three

  7. Human Neutrophil Clearance of Bacterial Pathogens Triggers Anti-Microbial γδ T Cell Responses in Early Infection

    Science.gov (United States)

    Roberts, Gareth W.; Heuston, Sinéad; Brown, Amanda C.; Chess, James A.; Toleman, Mark A.; Gahan, Cormac G. M.; Hill, Colin; Parish, Tanya; Williams, John D.; Davies, Simon J.; Johnson, David W.; Topley, Nicholas; Moser, Bernhard; Eberl, Matthias

    2011-01-01

    Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-γ and tumor necrosis factor (TNF)-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in early

  8. Use of amplicon sequencing to improve sensitivity in PCR-based detection of microbial pathogen in environmental samples.

    Science.gov (United States)

    Saingam, Prakit; Li, Bo; Yan, Tao

    2018-06-01

    DNA-based molecular detection of microbial pathogens in complex environments is still plagued by sensitivity, specificity and robustness issues. We propose to address these issues by viewing them as inadvertent consequences of requiring specific and adequate amplification (SAA) of target DNA molecules by current PCR methods. Using the invA gene of Salmonella as the model system, we investigated if next generation sequencing (NGS) can be used to directly detect target sequences in false-negative PCR reaction (PCR-NGS) in order to remove the SAA requirement from PCR. False-negative PCR and qPCR reactions were first created using serial dilutions of laboratory-prepared Salmonella genomic DNA and then analyzed directly by NGS. Target invA sequences were detected in all false-negative PCR and qPCR reactions, which lowered the method detection limits near the theoretical minimum of single gene copy detection. The capability of the PCR-NGS approach in correcting false negativity was further tested and confirmed under more environmentally relevant conditions using Salmonella-spiked stream water and sediment samples. Finally, the PCR-NGS approach was applied to ten urban stream water samples and detected invA sequences in eight samples that would be otherwise deemed Salmonella negative. Analysis of the non-target sequences in the false-negative reactions helped to identify primer dime-like short sequences as the main cause of the false negativity. Together, the results demonstrated that the PCR-NGS approach can significantly improve method sensitivity, correct false-negative detections, and enable sequence-based analysis for failure diagnostics in complex environmental samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Microbial pathogens in raw pork, chicken, and beef: benefit estimates for control using irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, T.

    1985-12-01

    Various control procedures have been suggested for reducing foodborne infectious diseases. Receiving considerable attention is irradiation. This report estimates the medical and wage (or productivity) benefits associated with prevention of five human diseases transmitted by beef, pork, and chicken. (These diseases can also be transmitted by other vectors, such as eggs, milk, and pets. But these sources are not included in the analysis.) All of these foodborne infectious diseases - salmonellosis, campylobacteriosis, trichinosis, tapeworm, and toxoplasmosis - could be significantly reduced by irradiating meat and poultry. The Food and Drug Administration (FDA) has just approved irradiation of pork to prevent trichinosis (50FR 29658-59) and is considering approval of irradiation of chicken to kill Salmonella. 22 references.

  10. Microbial pathogens in raw pork, chicken, and beef: benefit estimates for control using irradiation

    International Nuclear Information System (INIS)

    Roberts, T.

    1985-01-01

    Various control procedures have been suggested for reducing foodborne infectious diseases. Receiving considerable attention is irradiation. This report estimates the medical and wage (or productivity) benefits associated with prevention of five human diseases transmitted by beef, pork, and chicken. (These diseases can also be transmitted by other vectors, such as eggs, milk, and pets. But these sources are not included in the analysis.) All of these foodborne infectious diseases - salmonellosis, campylobacteriosis, trichinosis, tapeworm, and toxoplasmosis - could be significantly reduced by irradiating meat and poultry. The Food and Drug Administration (FDA) has just approved irradiation of pork to prevent trichinosis (50FR 29658-59) and is considering approval of irradiation of chicken to kill Salmonella. 22 references

  11. Use of static Quantitative Microbial Risk Assessment to determine pathogen risks in an unconfined carbonate aquifer used for Managed Aquifer Recharge.

    Science.gov (United States)

    Toze, Simon; Bekele, Elise; Page, Declan; Sidhu, Jatinder; Shackleton, Mark

    2010-02-01

    Managed Aquifer Recharge (MAR) is becoming a mechanism used for recycling treated wastewater and captured urban stormwater and is being used as a treatment barrier to remove contaminants such as pathogens from the recharged water. There is still a need, however, to demonstrate the effectiveness of MAR to reduce any residual risk of pathogens in the recovered water. A MAR research site recharging secondary treated wastewater in an unconfined carbonate aquifer was used in conjunction with a static Quantitative Microbial Risk Assessment (QMRA) to assess the microbial pathogen risk in the recovered water following infiltration and aquifer passage. The research involved undertaking a detailed hydrogeological assessment of the aquifer at the MAR site and determining the decay rates of reference pathogens from an in-situ decay study. These variables along with literature data were then used in the static QMRA which demonstrated that the recovered water at this site did not meet the Australian Guidelines for recycled water when used for differing private green space irrigation scenarios. The results also confirmed the importance of obtaining local hydrogeological data as local heterogeneity can influence of residence time in the aquifer which, in turn, influences the outcomes. The research demonstrated that a static QMRA can be used to determine the residual risk from pathogens in recovered water and showed that it can be a valuable tool in the preliminary design and operation of MAR systems and the incorporation of complementary engineered treatment processes to ensure that there is acceptable health risk from the recovered water. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  12. Management of plant pathogens and pests using microbial biological control agents. In: Trigiano, R.N. and Ownley, B.H., editors. Plant Pathology Concepts and Laboratory Exercises

    Science.gov (United States)

    All parts of plants face continual attack by plant pathogens and insects. Some insects are vectors of pathogens. Plant pests can be controlled by a variety of methods including application of pesticides but one of the most stainable and environmentally friendly approaches is biological control. Mic...

  13. Enhancement of host defense against pathogens by antimicrobial peptides : a new approach to combat microbial drug resistance

    NARCIS (Netherlands)

    Does, Anne Margaretha van der

    2011-01-01

    Due to their abilities to eliminate pathogens and modulate host’s immune responses, antimicrobial peptides are considered as potential alternatives for the treatment of infections with (multi-drug resistant) pathogens. In this thesis the immunomodulatory actions of two peptides have been

  14. Microbial Profile of Soil-Free versus In-Soil Grown Lettuce and Intervention Methodologies to Combat Pathogen Surrogates and Spoilage Microorganisms on Lettuce

    Directory of Open Access Journals (Sweden)

    Sujata A. Sirsat

    2013-11-01

    Full Text Available Aquaponics is an effective method to practice sustainable agriculture and is gaining popularity in the US; however, the microbial safety of aquaponically grown produce needs to be ascertained. Aquaponics is a unique marriage of fish production and soil-free produce (e.g., leafy greens production. Fish are raised in fresh water tanks that are connected to water filled beds where fruits and vegetables are grown. The fish bi-products create nutrient-rich water that provides the key elements for the growth of plants and vegetables. The objective of this study was to perform a comparative analysis of the microbial safety and quality of aquaponic lettuce and soil grown lettuce (conventional, bagged, certified organic, and field lettuce. Following this, an intervention study was performed to combat foodborne pathogen surrogates (Salmonella and E. coli, spoilage, and fecal microorganisms using 2.5% acetic acid. The results of the comparative analysis study showed that aquaponically grown lettuce had significantly lower concentration of spoilage and fecal microorganisms compared to in-soil grown lettuce. The intervention study showed that diluted vinegar (2.5% acetic acid significantly reduced Salmonella, E. coli, coliforms, and spoilage microorganisms on fresh lettuce by 2 to 3 log CFU/g. Irrespective of growing methods (in-soil or soilless, it is crucial to incorporate good agricultural practices to reduce microbial contamination on fresh produce. The intervention employed in this study can be proposed to small farmers and consumers to improve quality and safety of leafy greens.

  15. Microbial Profile of Soil-Free versus In-Soil Grown Lettuce and Intervention Methodologies to Combat Pathogen Surrogates and Spoilage Microorganisms on Lettuce.

    Science.gov (United States)

    Sirsat, Sujata A; Neal, Jack A

    2013-11-11

    Aquaponics is an effective method to practice sustainable agriculture and is gaining popularity in the US; however, the microbial safety of aquaponically grown produce needs to be ascertained. Aquaponics is a unique marriage of fish production and soil-free produce (e.g., leafy greens) production. Fish are raised in fresh water tanks that are connected to water filled beds where fruits and vegetables are grown. The fish bi-products create nutrient-rich water that provides the key elements for the growth of plants and vegetables. The objective of this study was to perform a comparative analysis of the microbial safety and quality of aquaponic lettuce and soil grown lettuce (conventional, bagged, certified organic, and field lettuce). Following this, an intervention study was performed to combat foodborne pathogen surrogates ( Salmonella and E. coli ), spoilage, and fecal microorganisms using 2.5% acetic acid. The results of the comparative analysis study showed that aquaponically grown lettuce had significantly lower concentration of spoilage and fecal microorganisms compared to in-soil grown lettuce. The intervention study showed that diluted vinegar (2.5% acetic acid) significantly reduced Salmonella , E. coli , coliforms, and spoilage microorganisms on fresh lettuce by 2 to 3 log CFU/g. Irrespective of growing methods (in-soil or soilless), it is crucial to incorporate good agricultural practices to reduce microbial contamination on fresh produce. The intervention employed in this study can be proposed to small farmers and consumers to improve quality and safety of leafy greens.

  16. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains.

    Science.gov (United States)

    Gugala, Natalie; Lemire, Joe A; Turner, Raymond J

    2017-06-01

    The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.

  17. Long-term monitoring of waterborne pathogens and microbial source tracking markers in paired agricultural watersheds under controlled and conventional tile drainage management.

    Science.gov (United States)

    Wilkes, Graham; Brassard, Julie; Edge, Thomas A; Gannon, Victor; Gottschall, Natalie; Jokinen, Cassandra C; Jones, Tineke H; Khan, Izhar U H; Marti, Romain; Sunohara, Mark D; Topp, Edward; Lapen, David R

    2014-06-01

    Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Long-Term Monitoring of Waterborne Pathogens and Microbial Source Tracking Markers in Paired Agricultural Watersheds under Controlled and Conventional Tile Drainage Management

    Science.gov (United States)

    Wilkes, Graham; Brassard, Julie; Edge, Thomas A.; Gannon, Victor; Gottschall, Natalie; Jokinen, Cassandra C.; Jones, Tineke H.; Khan, Izhar U. H.; Marti, Romain; Sunohara, Mark D.; Topp, Edward

    2014-01-01

    Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization. PMID:24727274

  19. Chase the direct impact of rainfall into groundwater in Mt. Fuji from multiple analyses including microbial DNA

    Science.gov (United States)

    Kato, Kenji; Sugiyama, Ayumi; Nagaosa, Kazuyo; Tsujimura, Maki

    2016-04-01

    A huge amount of groundwater is stored in subsurface environment of Mt. Fuji, the largest volcanic mountain in Japan. Based on the concept of piston flow transport of groundwater an apparent residence time was estimated to ca. 30 years by 36Cl/Cl ratio (Tosaki et al., 2011). However, this number represents an averaged value of the residence time of groundwater which had been mixed before it flushes out. We chased signatures of direct impact of rainfall into groundwater to elucidate the routes of groundwater, employing three different tracers; stable isotopic analysis (delta 18O), chemical analysis (concentration of silica) and microbial DNA analysis. Though chemical analysis of groundwater shows an averaged value of the examined water which was blended by various water with different sources and routes in subsurface environment, microbial DNA analysis may suggest the place where they originated, which may give information of the source and transport routes of the water examined. Throughout the in situ observation of four rainfall events showed that stable oxygen isotopic ratio of spring water and shallow groundwater obtained from 726m a.s.l. where the average recharge height of rainfall was between 1500 and 1800 m became higher than the values before a torrential rainfall, and the concentration of silica decreased after this event when rainfall exceeded 300 mm in precipitation of an event. In addition, the density of Prokaryotes in spring water apparently increased. Those changes did not appear when rainfall did not exceed 100 mm per event. Thus, findings shown above indicated a direct impact of rainfall into shallow groundwater, which appeared within a few weeks of torrential rainfall in the studied geological setting. In addition, increase in the density of Archaea observed at deep groundwater after the torrential rainfall suggested an enlargement of the strength of piston flow transport through the penetration of rainfall into deep groundwater. This finding was

  20. Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA

    Science.gov (United States)

    Sugiyama, Ayumi; Masuda, Suguru; Nagaosa, Kazuyo; Tsujimura, Maki; Kato, Kenji

    2018-02-01

    A total of 2 to 3 million tons of spring water flushes out from the foot of Mt. Fuji, the largest volcanic mountain in Japan. Based on the concept of piston flow transport, residence time of stored groundwater at Mt. Fuji was estimated at ˜ 15-30 years by the 36Cl / Cl ratio (Tosaki et al., 2011). This range, however, represents the average residence time of groundwater that was mixed before it flushed out. To elucidate the route of groundwater in a given system, we determined signatures of direct impacts of rainfall on groundwater, using microbial, stable isotopic (δ18O), and chemical analyses (concentration of silica). Chemical analysis of the groundwater gave an average value of the water, which was already mixed with waters from various sources and routes in the subsurface environment. The microbial analysis suggested locations of water origin and paths. In situ observation during four rainfall events revealed that the stable oxygen isotopic signature obtained from spring water (at 726 m a.s.l., site SP-0 m) and shallow groundwater (at 150 m a.s.l., site GW-42 m), where the average recharge height from rainfall was 1700-1800 m, became greater than values observed prior to a torrential rain producing more than 300 mm of precipitation. The concentration of silica decreased after this event. In addition, the abundance of Bacteria in spring water increased, suggesting the influence of heavy rain. Such changes did not appear when rainfall was less than 100 mm per event. The above findings indicate a rapid flow of rain through the shallow part of the aquifer, which appeared within a few weeks of torrential rain extracting abundant microbes from soil in the studied geologic setting. Interestingly, we found that after the torrential rain, the abundance of Archaea increased in the deep groundwater at site GW-550 m, ˜ 12 km downstream of SP-0 m. However, chemical parameters did not show any change after the event. This suggests that strengthened piston flow caused by

  1. Viral pathogen discovery

    Science.gov (United States)

    Chiu, Charles Y

    2015-01-01

    Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease. PMID:23725672

  2. Characterization of the microbial community in a lotic environment to assess the effect of pollution on nitrifying and potentially pathogenic bacteria.

    Science.gov (United States)

    Medeiros, J D; Araújo, L X; da Silva, V L; Diniz, C G; Cesar, D E; Del'Duca, A; Coelho, C M

    2014-08-01

    This study aimed to investigate microbes involved in the nitrogen cycle and potentially pathogenic bacteria from urban and rural sites of the São Pedro stream. Water samples were collected from two sites. A seasonal survey of bacterial abundance was conducted. The dissolved nutrient content was analysed. PCR and FISH analysis were performed to identify and quantify microbes involved in the nitrogen cycle and potentially pathogenic bacteria. The seasonal survey revealed that the bacterial abundance was similar along the year on the rural area but varied on the urban site. Higher concentration of dissolved nutrients in the urban area indicated a eutrophic system. Considering the nitrifying microbes, the genus Nitrobacter was found, especially in the urban area, and may act as the principal bacteria in converting nitrite into nitrate at this site. The molecular markers napA, amoA, and nfrA were more accumulated at the urban site, justifying the higher content of nutrients metabolised by these enzymes. Finally, high intensity of amplicons from Enterococcus, Streptococcus, Bacteroides/Prevotella/Porphyromonas, Salmonella, S. aureus, P. aeruginosa and the diarrheagenic lineages of E. coli were observed at the urban site. These results indicate a change in the structure of the microbial community imposed by anthrophic actions. The incidence of pathogenic bacteria in aquatic environments is of particular importance to public health, emphasising the need for sewage treatment to minimise the environmental impacts associated with urbanisation.

  3. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis

    OpenAIRE

    Wyrsch, Ethan R.; Roy Chowdhury, Piklu; Chapman, Toni A.; Charles, Ian G.; Hammond, Jeffrey M.; Djordjevic, Steven P.

    2016-01-01

    Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging...

  4. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure as influenced by three swine management systems

    Science.gov (United States)

    The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vastly different microbial constituents in both the pig and the manure lagoons used to treat the fecal waste of the operation. While some of these changes may not be negative, it is possible th...

  5. Microbial population analysis of the salivary glands of ticks; a possible strategy for the surveillance of bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Yongjin Qiu

    Full Text Available Ticks are one of the most important blood-sucking vectors for infectious microorganisms in humans and animals. When feeding they inject saliva, containing microbes, into the host to facilitate the uptake of blood. An understanding of the microbial populations within their salivary glands would provide a valuable insight when evaluating the vectorial capacity of ticks. Three tick species (Ixodes ovatus, I. persulcatus and Haemaphysalis flava were collected in Shizuoka Prefecture of Japan between 2008 and 2011. Each tick was dissected and the salivary glands removed. Bacterial communities in each salivary gland were characterized by 16S amplicon pyrosequencing using a 454 GS-Junior Next Generation Sequencer. The Ribosomal Database Project (RDP Classifier was used to classify sequence reads at the genus level. The composition of the microbial populations of each tick species were assessed by principal component analysis (PCA using the Metagenomics RAST (MG-RAST metagenomic analysis tool. Rickettsia-specific PCR was used for the characterization of rickettsial species. Almost full length of 16S rDNA was amplified in order to characterize unclassified bacterial sequences obtained in I. persulcatus female samples. The numbers of bacterial genera identified for the tick species were 71 (I. ovatus, 127 (I. persulcatus and 59 (H. flava. Eighteen bacterial genera were commonly detected in all tick species. The predominant bacterial genus observed in all tick species was Coxiella. Spiroplasma was detected in Ixodes, and not in H. flava. PCA revealed that microbial populations in tick salivary glands were different between tick species, indicating that host specificities may play an important role in determining the microbial complement. Four female I. persulcatus samples contained a high abundance of several sequences belonging to Alphaproteobacteria symbionts. This study revealed the microbial populations within the salivary glands of three species of

  6. CT-Guided Biopsy in Suspected Spondylodiscitis--The Association of Paravertebral Inflammation with Microbial Pathogen Detection.

    Directory of Open Access Journals (Sweden)

    Daniel Spira

    Full Text Available To search for imaging characteristics distinguishing patients with successful from those with futile microbiological pathogen detection by CT-guided biopsy in suspected spondylodiscitis.34 consecutive patients with suspected spondylodiscitis underwent CT-guided biopsy for pathogen detection. MR-images were assessed for inflammatory infiltration of disks, adjacent vertebrae, epidural and paravertebral space. CT-images were reviewed for arrosion of adjacent end plates and reduced disk height. Biopsy samples were sent for microbiological examination in 34/34 patients, and for additional histological analysis in 28/34 patients.Paravertebral infiltration was present in all 10/10 patients with positive microbiology and occurred in only 12/24 patients with negative microbiology, resulting in a sensitivity of 100% and a specificity of 50% for pathogen detection. Despite its limited sensitivities, epidural infiltration and paravertebral abscesses showed considerably higher specificities of 83.3% and 90.9%, respectively. Paravertebral infiltration was more extensive in patients with positive as compared to negative microbiology (p = 0.002. Even though sensitivities for pathogen detection were also high in case of vertebral and disk infiltration, or end plate arrosion, specificities remained below 10%.Inflammatory infiltration of the paravertebral space indicated successful pathogen detection by CT-guided biopsy. Specificity was increased by the additional occurrence of epidural infiltration or paravertebral abscesses.

  7. Microbial Quality, Safety, and Pathogen Detection by Using Quantitative PCR of Raw Salad Vegetables Sold in Dhanbad City, India.

    Science.gov (United States)

    Mritunjay, Sujeet K; Kumar, Vipin

    2017-01-01

    Consumption of ready-to-eat fresh vegetables has increased worldwide, with a consequent increase in outbreaks caused by foodborne pathogens. In the Indian subcontinent, raw fresh vegetables are usually consumed without washing or other decontamination procedures, thereby leading to new food safety threats. In this study, the microbiological quality and pathogenic profile of raw salad vegetables was evaluated through standard protocols. In total, 480 samples (60 each of eight different salad vegetables) of cucumber, tomato, carrot, coriander, cabbage, beetroot, radish, and spinach were collected from different locations in Dhanbad, a city famous for its coal fields and often called the "Coal Capital of India." The samples were analyzed for total plate count, total coliforms, Escherichia coli , E. coli O157:H7, Listeria monocytogenes , and Salmonella spp. Incidences of pathogens were detected through quantitative PCR subsequent to isolation. Results showed that 46.7% (for total plate counts) and 30% (for total coliforms) of samples were unacceptable for consumption per the Food Safety and Standards Authority of India. Pathogenic microorganisms were detected in 3.7% of total samples. E. coli O157:H7 was detected in three samples of spinach (2) and beetroot ( 1 ); L. monocytogenes was detected in 14 samples of spinach ( 8 ), tomato ( 3 ), cucumber ( 2 ), and radish ( 1 ); and Salmonella spp. were detected in 16 samples of spinach ( 7 ), tomato ( 3 ), beetroot ( 2 ), cucumber ( 2 ), carrot ( 1 ), and radish ( 1 ). Pathogens were not detected in any of the cabbage and coriander samples.

  8. Processes for managing pathogens.

    Science.gov (United States)

    Godfree, Alan; Farrell, Joseph

    2005-01-01

    Wastewater contains human, animal, and plant pathogens capable of causing viral, bacterial, or parasitic infections. There are several routes whereby sewage pathogens may affect human health, including direct contact, contamination of food crops, zoonoses, and vectors. The range and numbers of pathogens in municipal wastewater vary with the level of endemic disease in the community, discharges from commercial activities, and seasonal factors. Regulations to control pathogen risk in the United States and Europe arising from land application of biosolids are based on the concept of multiple barriers to the prevention of transmission. The barriers are (i) treatment to reduce pathogen content and vector attraction, (ii) restrictions on crops grown on land to which biosolids have been applied, and (iii) minimum intervals following application and grazing or harvesting. Wastewater treatment reduces number of pathogens in the wastewater by concentrating them with the solids in the sludge. Although some treatment processes are designed specifically to inactivate pathogens, many are not, and the actual mechanisms of microbial inactivation are not fully understood for all processes. Vector attraction is reduced by stabilization (reduction of readily biodegradable material) and/or incorporation immediately following application. Concerns about health risks have renewed interest in the effects of treatment (on pathogens) and advanced treatment methods, and work performed in the United States suggests that Class A pathogen reduction can be achieved less expensively than previously thought. Effective pathogen risk management requires control to the complete chain of sludge treatment, biosolids handling and application, and post-application activities. This may be achieved by adherence to quality management systems based on hazard analysis critical control point (HACCP) principles.

  9. Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA

    Directory of Open Access Journals (Sweden)

    A. Sugiyama

    2018-02-01

    Full Text Available A total of 2 to 3 million tons of spring water flushes out from the foot of Mt. Fuji, the largest volcanic mountain in Japan. Based on the concept of piston flow transport, residence time of stored groundwater at Mt. Fuji was estimated at  ∼  15–30 years by the 36Cl ∕ Cl ratio (Tosaki et al., 2011. This range, however, represents the average residence time of groundwater that was mixed before it flushed out. To elucidate the route of groundwater in a given system, we determined signatures of direct impacts of rainfall on groundwater, using microbial, stable isotopic (δ18O, and chemical analyses (concentration of silica. Chemical analysis of the groundwater gave an average value of the water, which was already mixed with waters from various sources and routes in the subsurface environment. The microbial analysis suggested locations of water origin and paths. In situ observation during four rainfall events revealed that the stable oxygen isotopic signature obtained from spring water (at 726 m a.s.l., site SP-0 m and shallow groundwater (at 150 m a.s.l., site GW-42 m, where the average recharge height from rainfall was 1700–1800 m, became greater than values observed prior to a torrential rain producing more than 300 mm of precipitation. The concentration of silica decreased after this event. In addition, the abundance of Bacteria in spring water increased, suggesting the influence of heavy rain. Such changes did not appear when rainfall was less than 100 mm per event. The above findings indicate a rapid flow of rain through the shallow part of the aquifer, which appeared within a few weeks of torrential rain extracting abundant microbes from soil in the studied geologic setting. Interestingly, we found that after the torrential rain, the abundance of Archaea increased in the deep groundwater at site GW-550 m,  ∼  12 km downstream of SP-0 m. However, chemical parameters did not show any change

  10. Quantification of disease progression of several microbial pathogens on Arabidopsis thaliana using real-time fluorescence PCR

    NARCIS (Netherlands)

    Brouwer, M.; Lievens, B.; Hemelrijck, van W.; Ackerveken, van den G.; Cammue, B.P.A.; Thomma, B.P.H.J.

    2003-01-01

    An accurate monitoring of disease progression is important to evaluate disease susceptibility phenotypes. Over the years, Arabidopsis thaliana has become the model species to serve as a host in plant-pathogen interactions. Despite the efforts to study genetic mechanisms of host defense, little

  11. Pathogen recognition in the innate immune response.

    Science.gov (United States)

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  12. A novel photo-biological engineering method for Salvia miltiorrhiza-mediated fabrication of silver nanoparticles using LED lights sources and its effectiveness against Aedes aegypti mosquito larvae and microbial pathogens

    Science.gov (United States)

    In this study, Salvia miltiorrhiza-synthesized Ag nanoparticles (AgNPs) fabricated using sunlight or various LED lights were studied for their biophysical features and evaluated as larvicides against Aedes aegypti mosquitoes and growth inhibitors on different species of microbial pathogens. AgNPs pr...

  13. Population Abundance of Potentially Pathogenic Organisms in Intestinal Microbiome of Jungle Crow (Corvus macrorhynchos Shown with 16S rRNA Gene-Based Microbial Community Analysis

    Directory of Open Access Journals (Sweden)

    Isamu Maeda

    2013-01-01

    Full Text Available Jungle Crows (Corvus macrorhynchos prefer human habitats because of their versatility in feeding accompanied with human food consumption. Therefore, it is important from a public health viewpoint to characterize their intestinal microbiota. However, no studies have been involved in molecular characterization of the microbiota based on huge and reliable number of data acquisition. In this study, 16S rRNA gene-based microbial community analysis coupled with the next-generation DNA sequencing techniques was applied to the taxonomic classification of intestinal microbiome for three jungle crows. Clustering of the reads into 130 operational taxonomic units showed that at least 70% of analyzed sequences for each crow were highly homologous to Eimeria sp., which belongs to the protozoan phylum Apicomplexa. The microbiotas of three crows also contained potentially pathogenic bacteria with significant percentages, such as the genera Campylobacter and Brachyspira. Thus, the profiling of a large number of 16S rRNA gene sequences in crow intestinal microbiomes revealed the high-frequency existence or vestige of potentially pathogenic microorganisms.

  14. Antimicrobial activity of ceftaroline and other anti-infective agents against microbial pathogens recovered from the surgical intensive care patient population: a prevalence analysis.

    Science.gov (United States)

    Edmiston, Charles E; Krepel, Candace J; Leaper, David; Ledeboer, Nathan A; Mackey, Tami-Lea; Graham, Mary Beth; Lee, Cheong; Rossi, Peter J; Brown, Kellie R; Lewis, Brian D; Seabrook, Gary R

    2014-12-01

    Ceftaroline is a new parenteral cephalosporin agent with excellent activity against methicillin-sensitive (MSSA) and resistant strains of Staphylococcus aureus (MRSA). Critically ill surgical patients are susceptible to infection, often by multi-drug-resistant pathogens. The activity of ceftaroline against such pathogens has not been described. Three hundred thirty-five consecutive microbial isolates were collected from surgical wounds or abscesses, respiratory, urine, and blood cultures from patients in the surgical intensive care unit (SICU) of a major tertiary medical center. Using Clinical and Laboratory Standards Institute (CLSI) standard methodology and published breakpoints, all aerobic, facultative anaerobic isolates were tested against ceftaroline and selected comparative antimicrobial agents. All staphylococcal isolates were susceptible to ceftaroline at a breakpoint of ≤1.0 mcg/mL. In addition, ceftaroline exhibited excellent activity against all streptococcal clinical isolates and non-ESBL-producing strains of Enterobacteriaceae (93.5%) recovered from SICU patients. Ceftaroline was inactive against ESBL-producing Enterobacteriaceae, Pseudomonas aeruginosa, vancomycin-resistant enterococci, and selective gram-negative anaerobic bacteria. At present, ceftaroline is the only cephalosporin agent that is active against community and healthcare-associated MRSA. Further studies are needed to validate the benefit of this novel broad-spectrum anti-infective agent for the treatment of susceptible serious infections in the SICU patient population.

  15. The PDB database is a rich source of alpha-helical anti-microbial peptides to combat disease causing pathogens [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    2015-06-01

    Full Text Available The therapeutic potential of α-helical anti-microbial peptides (AH-AMP to combat pathogens is fast gaining prominence. Based on recently published open access software for characterizing α-helical peptides (PAGAL, we elucidate a search methodology (SCALPEL that leverages the massive structural data pre-existing in the PDB database to obtain AH-AMPs belonging to the host proteome. We provide in vitro validation of SCALPEL on plant pathogens (Xylella fastidiosa, Xanthomonas arboricola and Liberibacter crescens by identifying AH-AMPs that mirror the function and properties of cecropin B, a well-studied AH-AMP. The identified peptides include a linear AH-AMP present within the existing structure of phosphoenolpyruvate carboxylase (PPC20, and an AH-AMP mimicing the properties of the two α-helices of cecropin B from chitinase (CHITI25. The minimum inhibitory concentration of these peptides are comparable to that of cecropin B, while anionic peptides used as control failed to show any inhibitory effect on these pathogens. Substitute therapies in place of conventional chemotherapies using membrane permeabilizing peptides like these might also prove effective to target cancer cells. The use of native structures from the same organism could possibly ensure that administration of such peptides will be better tolerated and not elicit an adverse immune response. We suggest a similar approach to target Ebola epitopes, enumerated using PAGAL recently, by selecting suitable peptides from the human proteome, especially in wake of recent reports of cationic amphiphiles inhibiting virus entry and infection.

  16. Development of a TaqMan Array Card for Acute-Febrile-Illness Outbreak Investigation and Surveillance of Emerging Pathogens, Including Ebola Virus.

    Science.gov (United States)

    Liu, Jie; Ochieng, Caroline; Wiersma, Steve; Ströher, Ute; Towner, Jonathan S; Whitmer, Shannon; Nichol, Stuart T; Moore, Christopher C; Kersh, Gilbert J; Kato, Cecilia; Sexton, Christopher; Petersen, Jeannine; Massung, Robert; Hercik, Christine; Crump, John A; Kibiki, Gibson; Maro, Athanasia; Mujaga, Buliga; Gratz, Jean; Jacob, Shevin T; Banura, Patrick; Scheld, W Michael; Juma, Bonventure; Onyango, Clayton O; Montgomery, Joel M; Houpt, Eric; Fields, Barry

    2016-01-01

    Acute febrile illness (AFI) is associated with substantial morbidity and mortality worldwide, yet an etiologic agent is often not identified. Convalescent-phase serology is impractical, blood culture is slow, and many pathogens are fastidious or impossible to cultivate. We developed a real-time PCR-based TaqMan array card (TAC) that can test six to eight samples within 2.5 h from sample to results and can simultaneously detect 26 AFI-associated organisms, including 15 viruses (chikungunya, Crimean-Congo hemorrhagic fever [CCHF] virus, dengue, Ebola virus, Bundibugyo virus, Sudan virus, hantaviruses [Hantaan and Seoul], hepatitis E, Marburg, Nipah virus, o'nyong-nyong virus, Rift Valley fever virus, West Nile virus, and yellow fever virus), 8 bacteria (Bartonella spp., Brucella spp., Coxiella burnetii, Leptospira spp., Rickettsia spp., Salmonella enterica and Salmonella enterica serovar Typhi, and Yersinia pestis), and 3 protozoa (Leishmania spp., Plasmodium spp., and Trypanosoma brucei). Two extrinsic controls (phocine herpesvirus 1 and bacteriophage MS2) were included to ensure extraction and amplification efficiency. Analytical validation was performed on spiked specimens for linearity, intra-assay precision, interassay precision, limit of detection, and specificity. The performance of the card on clinical specimens was evaluated with 1,050 blood samples by comparison to the individual real-time PCR assays, and the TAC exhibited an overall 88% (278/315; 95% confidence interval [CI], 84% to 92%) sensitivity and a 99% (5,261/5,326, 98% to 99%) specificity. This TaqMan array card can be used in field settings as a rapid screen for outbreak investigation or for the surveillance of pathogens, including Ebola virus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. MICROBIAL PROFILE AND ANTIBIOTIC SUSCEPTIBILITY PATTERNS OF PATHOGENS CAUSING VENTILATOR- ASSOCIATED PNEUMONIA AT INTENSIVE CARE UNIT, SESTRE MILOSRDNICE UNIVERSITY HOSPITAL CENTER, ZAGREB, CROATIA.

    Science.gov (United States)

    Turković, Tihana Magdić; Grginić, Ana Gverić; Cucujić, Branka Đuras; Gašpar, Božena; Širanović, Mladen; Perić, Mladen

    2015-06-01

    Ventilator-associated pneumonia (VAP) is very common in many intensive care Units, but there are still many uncertainties about VAP, especially about the choice of initial empiric antibiotics. The incidence of specific pathogens with different susceptibility patterns causing VAP varies from hospital to hospital. This is the reason why empiric initial antibiotic treatment for VAP should be based not only on general guidelines (that recommend therapy according to the presence of risk factors for multidrug-resistant bacteria), but also on up-to-date information on local epidemiology. The aim of this study was to determine the microbial profile of pathogens causing VAP and their antibiotic susceptibility patterns. The study was conducted in the 15-bed surgical and neurosurgical Intensive Care Unit, Department of Anesthesiology and Intensive Care, Sestre milosrdnice University Hospital Center, Zagreb, Croatia. Retrospective data were collected from September 2009 to March 2013. All patients that developed VAP during the study period were eligible for the study. According to study results, the incidence of VAP was 29.4%. The most commonly isolated bacterium was Staphylococcus aureus (21.1%), followed by Pseudomonas aeruginosa (19.0%) and Acinetobacter species (13.6%). All Staphylococcus aureus isolates were susceptible to vancomycin and linezolid. Pseudomonas aeruginosa showed 100% susceptibility to cefepime and very high susceptibility to pip'eracillin-tazobactam (96%), ceftazidime (93%) and ciprofloxacin (89%). Ampicillin-sulbactam was highly effective for Acinetobacter species, showing resistance in only 8% of isolates. In conclusion, according to study data, appropriate empiric antibiotic therapy for patients with VAP without risk factors for multidrug-resistant bacteria is ceftriaxone and for patients with risk factors for multidrug-resistant bacteria ampicillin-sulbactam plus cefepime plus vancomycin or linezolid.

  18. Microbial Indicators, Opportunistic Bacteria, and Pathogenic Protozoa for Monitoring Urban Wastewater Reused for Irrigation in the Proximity of a Megacity.

    Science.gov (United States)

    Fonseca-Salazar, María Alejandra; Díaz-Ávalos, Carlos; Castañón-Martínez, María Teresa; Tapia-Palacios, Marco Antonio; Mazari-Hiriart, Marisa

    2016-12-01

    In Latin America and the Caribbean, with a population of approximately 580 million inhabitants, less than 20 % of wastewater is treated. Megacities in this region face common challenges and problems related with water quality and sanitation, which require urgent actions, such as changes in the sustainable use of water resources. The Mexico City Metropolitan Area is one of the most populous urban agglomerations in the world, with over 20 million inhabitants, and is no exception to the challenges of sustainable water management. For more than 100 years, wastewater from Mexico City has been transported north to the Mezquital Valley, which is ranked as the largest wastewater-irrigated area in the world. In this study, bacteria and pathogenic protozoa were analyzed to determine the association between the presence of such microorganisms and water types (WTs) across sampling sites and seasons in Mexico City and the Mezquital Valley. Our results show a difference in microbiological water quality between sampling sites and WTs. There is no significant interaction between sampling sites and seasons in terms of bacterial concentration, demonstrating that water quality remains constant at each site regardless of whether it is the dry or the rainy season. The results illustrate the quantity of these microorganisms in wastewater, provide a current diagnosis of water quality across the area which could affect the health of residents in both Mexico City and the Mezquital Valley, and demonstrate the need to transition in the short term to treat wastewater from a local to a regional scale.

  19. Fluconazole-Pyridoxine Bis-Triazolium Compounds with Potent Activity against Pathogenic Bacteria and Fungi Including Their Biofilm-Embedded Forms

    Directory of Open Access Journals (Sweden)

    Marsel R. Garipov

    2017-01-01

    Full Text Available Two novel quaternary ammonium salts, bis-triazolium derivatives of fluconazole and pyridoxine, were synthesized by reaction of fluconazole with pyridoxine-based synthetic intermediates. The leading compound demonstrated pronounced antimycotic and antibacterial in vitro activity, comparable to or exceeding that of the reference antifungal (fluconazole, terbinafine and antibacterial/antiseptic (miramistin, benzalkonium chloride agents. In contrast to many antimicrobials, the leading compound was also active against biofilm-embedded staphylococci and Escherichia coli. While no biofilm structure destruction occurred, all compounds were able to diffuse into the matrix and reduce the number of colony-forming units by three orders of magnitude at 16 × MBC. The leading compound was significantly less toxic than miramistin and benzalkonium chloride and more toxic than the reference antifungal drugs. The obtained results make the described chemotype a promising starting point for the development of new broad-spectrum antimicrobial therapies with powerful effect on fungal and bacterial pathogens including their biofilm-embedded forms.

  20. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY: CONTROL OF PATHOGENS AND VECTOR ATTRACTION IN SEWAGE SLUDGE (INCLUDING DOMESTIC SEWAGE) UNDER 40 CFR PART 503

    Science.gov (United States)

    This document describes the federal requirements concerning pathogens in sewage sludge applied to land or placed on a surface disposal site, and it provides guidance concerning those requirements. The document is intended for: (1) Owners and operators of treatment works treati...

  1. Evaluating Microbial Pathogens in Reservoirs

    National Research Council Canada - National Science Library

    Gunnison, Douglas

    1999-01-01

    ...: As part of its ongoing mission in water quality, the U.S. Army Corps of Engineers constructs and operates a wide variety of water resource projects along streams and rivers in the United States...

  2. [Antibacterial actin of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7 (Part 2). Effect of sodium chloride and temperature on bactericidal activity].

    Science.gov (United States)

    Entani, E; Asai, M; Tsujihata, S; Tsukamoto, Y; Ohta, M

    1997-05-01

    Bactericidal effects of various kinds of AWASEZU (processed vinegar, 2.5% acidity) on food-borne pathogenic bacteria including Escherichia coli O157:H7 and other bacteria were examined. the order of bactericidal activities was NIHAIZU (3.5% NaCl was added) > SANBA-IZU (3.5% NaCl and 10% sucrose were added) > plain vinegar (spirit vinegar) > AMAZU (10% sucrose was added). This indicates that their activities were enhanced by the addition of sodium chloride and suppressed by the addition of sugar. On the other hand, when soy sauce was used instead of sodium chloride, the order of bactericidal activities was plain vinegar > AMAZU > NIHAIZU > SANBAIZU. This is mainly because their activities were suppressed by the increase in the pH value. The effect of sodium chloride (0.01-15%) and temperature (10-50 degrees C) on bactericidal activities against E. coli O157:H7 in spirit vinegar (0.5-2.5% acidity) was further examined. When vinegar was used in combination with sodium chloride, predominant synergism on the bactericidal activity was observed. Their activities were markedly enhanced by the addition of sodium chloride in proportion to the concentration. In addition to this, at higher temperatures spirit vinegar killed bacteria much more rapidly. It should be noted that the bactericidal activity of spirit vinegar was extremely enhanced by the combined use of the addition of sodium chloride and the rise of temperature. For example, in 2.5% acidity vinegar, the time required for 3 log decrease in viable cell numbers at 20 degrees C was shortened to 1/140-fold by the addition of 5% sodium chloride, shortened to 1/51-fold by the rise of the reaction temperature at 40 degrees C, and shortened to 1/830-fold; 0.89 minutes by both the addition of 5% sodium chloride and the rise of temperature at 40 degrees C. In order to propose the methods to prevent food poisoning by bacterial infection, bactericidal activities of vinegar solution containing sodium chloride on cooking tools and

  3. Microbial processes in coastal pollution

    International Nuclear Information System (INIS)

    Capone, D.G.; Bauer, J.E.

    1992-01-01

    In this chapter, the authors describe the nature and range of some of the interactions that can occur between the microbiota and environmental contaminants in coastal areas. The implications of such interactions are also discussed. Pollutant types include inorganic nutrients, heavy metals, bulk organics, organic contaminants, pathogenic microorganisms and microbial pollutants. Both the effects of pollutants such as petroleum hydrocarbons on natural microbial populations and the mitigation of contaminant effects by complexation and biodegradation are considered. Finally, several areas of emerging concerns are presented that involve a confluence of biogeochemistry, microbial ecology and applied and public health microbiology. These concerns range in relevance from local/regional to oceanic/global scales. 308 ref

  4. Evolutionary biology of bacterial and fungal pathogens

    National Research Council Canada - National Science Library

    Baquero, F

    2008-01-01

    ... and Evolutionary Dynamics of Pathogens * 21 Keith A. Crandall and Marcos Pérez-Losada II. Evolutionary Genetics of Microbial Pathogens 4. Environmental and Social Influences on Infectious Disea...

  5. Effects of including NaOH-treated corn straw as a substitute for wheat hay in the ration of lactating cows on performance, digestibility, and rumen microbial profile.

    Science.gov (United States)

    Jami, E; Shterzer, N; Yosef, E; Nikbachat, M; Miron, J; Mizrahi, I

    2014-03-01

    This study measured the effects of including 5% NaOH-treated corn straw (T-CS) as a substitute for 15% wheat hay in the control total mixed ration (TMR) of lactating cows on performance, digestibility, and rumen microbial profile. Two groups of 21 cows each, similar in initial performance, were fed individually 1 of the 2 TMR examined. Voluntary dry matter intake of cows fed the control TMR was 4.3% higher than that of the T-CS cows, but in vivo dry matter and organic matter digestibilities of both groups were similar. Crude protein digestibility was higher in the control cows but digestibility of neutral detergent fiber polysaccharides (cellulose and hemicelluloses) was higher in the T-CS TMR. This was followed by 4.6% reduction in rumination time of the T-CS group. A slightly higher milk yield was observed in the control cows compared with the T-CS group; however, milk fat and milk protein content were higher in cows fed the T-CS TMR. This was reflected in 1.3% increase in energy-corrected milk yield and 5.34% increase in production efficiency (energy-corrected milk yield/intake) of the T-CS cows compared with the control. Welfare of the cows, as assessed by length of daily recumbence time, was improved by feeding the T-CS TMR relative to the control group. As a whole, the rumen bacterial community was significantly modulated in the T-CS group in the experimental period compared with the preexperimental period, whereas the bacterial community of the control group remained unchanged during this period. Out of the 8 bacterial species that were quantified using real-time PCR, a notable decrease in cellulolytic bacteria was observed in the T-CS group, as well as an increase in lactic acid-utilizing bacteria. These results illustrate the effect of T-CS on the composition of rumen microbiota, which may play a role in improving the performance of the lactating cow. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies.

    Science.gov (United States)

    Delaunois, Bertrand; Jeandet, Philippe; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan; Cordelier, Sylvain

    2014-01-01

    Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.

  7. Multidrug-resistant Enterobacteriaceae including metallo-β-lactamase producers are predominant pathogens of healthcare-associated infections in an Indian teaching hospital

    Directory of Open Access Journals (Sweden)

    J B Sarma

    2011-01-01

    Full Text Available Purpose: A study was carried out in an Indian teaching hospital in 2009 to detect the rate of surgical site infections (SSI and peripheral vascular access site infections. Materials and Methods: The study was a point-prevalence study involving over 300 patients. The presence of infection was determined according to the CDC criteria. Swabs were taken from the infected sites and identification and sensitivity were carried out using VITEK® 2 automated system. Characterisation of β-lactamase was carried out at ARRML, Colindale, London. Results: The rate of SSI was 15% for the clean and clean-contaminated categories while that for the dirty contaminated category was 85% (NNIS risk index 0. Cultures yielded definite or probable pathogens from 64% (9/14 of the patients with SSI. In 1/3 rd of the cultures, Staphylococcus aureus was grown and the rest had Enterobacteriaceae, either extended-spectrum β-lactamase (ESBL producers or Amp-C hyperproducers and, alarmingly, three isolates were positive for newly recognised New Delhi metallo-β-lactamase-1 (NDM-1. In medicine, 87% (n = 99 of the patients had a peripheral IV access device, 55% developed associated phlebitis/infection and, in seven, probable pathogens were isolated (Candida species and Escherichia coli producing ESBL and NDM-1, respectively, Staphylococcus aureus and Enterococcus faecium. All ESBL and metallo-β-lactamase producers were resistant to multiple classes of antimicrobials, the latter being sensitive only to colistin and tigecycline. The study also found that all post-operative patients were on antibiotics, 92% on IV [213 defined daily doses (DDD/100 post-op patients] limited mainly to the third-generation cephalosporins (26% and aminoglycosides (24% and imidazole derivatives (30%. In medicine, 83% (n = 82 were on IV antibiotics (123 DDD/100 bed-days, limited mainly to the third-generation cephalosporins (74%. Conclusion: Indiscriminate use of antibiotics is a major problem

  8. Management of microbial food safety in Arab countries.

    Science.gov (United States)

    Kamleh, Rabih; Jurdi, Mey; Annous, Bassam A

    2012-11-01

    Microbial food safety remains a major economic and public health concern in Arab countries. Over the past several years, many of these countries have attempted to revise and upgrade food quality control and surveillance programs; however, these systems vary in scope and effectiveness. This review addresses the major reported foodborne outbreaks and multidrug resistance of pathogenic microorganisms isolated from food products. Major foodborne pathogens of concern included Brucella spp., Clostridium botulinum, fecal coliforms, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella, and Staphylococcus aureus. Measures for managing microbial food hazards based on a comprehensive risk analysis also are proposed.

  9. A meta-analysis of soil microbial biomass responses to forest disturbances

    Directory of Open Access Journals (Sweden)

    Sandra Robin Holden

    2013-06-01

    Full Text Available Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm and biotic (insect, pathogen disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7%, 19.1%, and 41.7% reductions in microbial biomass, respectively. In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics.

  10. Isolation and Characterization of Avian Influenza Viruses, Including Highly Pathogenic H5N1, from Poultry in Live Bird Markets in Hanoi, Vietnam, in 2001

    Science.gov (United States)

    Nguyen, Doan C.; Uyeki, Timothy M.; Jadhao, Samadhan; Maines, Taronna; Shaw, Michael; Matsuoka, Yumiko; Smith, Catherine; Rowe, Thomas; Lu, Xiuhua; Hall, Henrietta; Xu, Xiyan; Balish, Amanda; Klimov, Alexander; Tumpey, Terrence M.; Swayne, David E.; Huynh, Lien P. T.; Nghiem, Ha K.; Nguyen, Hanh H. T.; Hoang, Long T.; Cox, Nancy J.; Katz, Jacqueline M.

    2005-01-01

    Since 1997, outbreaks of highly pathogenic (HP) H5N1 and circulation of H9N2 viruses among domestic poultry in Asia have posed a threat to public health. To better understand the extent of transmission of avian influenza viruses (AIV) to humans in Asia, we conducted a cross-sectional virologic study in live bird markets (LBM) in Hanoi, Vietnam, in October 2001. Specimens from 189 birds and 18 environmental samples were collected at 10 LBM. Four influenza A viruses of the H4N6 (n = 1), H5N2 (n = 1), and H9N3 (n = 2) subtypes were isolated from healthy ducks for an isolation frequency of over 30% from this species. Two H5N1 viruses were isolated from healthy geese. The hemagglutinin (HA) genes of these H5N1 viruses possessed multiple basic amino acid motifs at the cleavage site, were HP for experimentally infected chickens, and were thus characterized as HP AIV. These HA genes shared high amino acid identities with genes of other H5N1 viruses isolated in Asia during this period, but they were genetically distinct from those of H5N1 viruses isolated from poultry and humans in Vietnam during the early 2004 outbreaks. These viruses were not highly virulent for experimentally infected ducks, mice, or ferrets. These results establish that HP H5N1 viruses with properties similar to viruses isolated in Hong Kong and mainland China circulated in Vietnam as early as 2001, suggest a common source for H5N1 viruses circulating in these Asian countries, and provide a framework to better understand the recent widespread emergence of HP H5N1 viruses in Asia. PMID:15767421

  11. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    Science.gov (United States)

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  12. Microbial Profile of Soil-Free versus In-Soil Grown Lettuce and Intervention Methodologies to Combat Pathogen Surrogates and Spoilage Microorganisms on Lettuce

    OpenAIRE

    Sirsat, Sujata A.; Neal, Jack A.

    2013-01-01

    Aquaponics is an effective method to practice sustainable agriculture and is gaining popularity in the US; however, the microbial safety of aquaponically grown produce needs to be ascertained. Aquaponics is a unique marriage of fish production and soil-free produce (e.g., leafy greens) production. Fish are raised in fresh water tanks that are connected to water filled beds where fruits and vegetables are grown. The fish bi-products create nutrient-rich water that provides the key elements for...

  13. Microbial profiling, neural network and semantic web: an integrated information system for human pathogen risk management, prevention and surveillance in food safety

    Science.gov (United States)

    It is estimated that food-borne pathogens cause approximately 76 million cases of gastrointestinal illnesses, 325,000 hospitalizations, and 5,000 deaths in the United States annually. Genomic, proteomic, and metabolomic studies, particularly, genome sequencing projects are providing valuable inform...

  14. Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspe...

  15. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris

    Science.gov (United States)

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Grace, Karen M [Los Alamos, NM; Grace, Wynne K [Los Alamos, NM; Shreve, Andrew P [Santa Fe, NM

    2009-06-02

    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  16. In vitro activity of the siderophore monosulfactam BAL30072 against contemporary Gram-negative pathogens from New York City, including multidrug-resistant isolates.

    Science.gov (United States)

    Landman, David; Singh, Manisha; El-Imad, Badiaa; Miller, Ezra; Win, Thida; Quale, John

    2014-06-01

    The in vitro activity of BAL30072 was assessed against clinical isolates from NYC hospitals, including isolates from a citywide surveillance study and a collection of isolates with well-characterised resistance mechanisms. BAL30072 was the most active β-lactam against Pseudomonas aeruginosa (MIC50/90, 0.25/1 μg/mL), Acinetobacter baumannii (MIC50/90, 4/>64 μg/mL) and KPC-possessing Klebsiella pneumoniae (MIC50/90, 4/>64 μg/mL). Combining BAL30072 with meropenem resulted in a ≥ 4-fold decrease in the BAL30072 MIC90 both for A. baumannii and K. pneumoniae. For isolates with a BAL30072 MIC>4 μg/mL, addition of a sub-MIC concentration of colistin resulted in a four-fold decrease in the BAL30072 MIC in 44% of P. aeruginosa, 82% of A. baumannii and 23% of K. pneumoniae. Using sub-MIC concentrations, BAL30072 plus colistin was bactericidal against 4 of 11 isolates in time-kill studies. BAL30072 MICs were frequently lower for P. aeruginosa and K. pneumoniae when tested using Mueller-Hinton agar versus Iso-Sensitest agar or Mueller-Hinton broth. Against the well-characterised isolates, reduced susceptibility to BAL30072 correlated with mexA and mexX expression (P. aeruginosa), adeB expression (A. baumannii) and presence of SHV-type ESBLs (A. baumannii and K. pneumoniae). BAL30072 shows promising activity against contemporary Gram-negatives, including MDR P. aeruginosa, A. baumannii and K. pneumoniae. Enhanced activity was often present when BAL30072 was combined with meropenem or colistin. BAL30072 MICs were influenced by the testing method, particularly for P. aeruginosa and K. pneumoniae. Further in vivo studies are warranted to determine the potential clinical utility of BAL30072 alone and combined with other agents. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. Microbial contaminants in Pakistan: a review

    Directory of Open Access Journals (Sweden)

    Maida Kanwal

    2016-04-01

    Full Text Available Worldwide contamination of surface waters with microbial pathogens is of substantial health concern. These contaminants are usually transmitted by improper sanitation measures, unsafe waste disposal, excretions from patients, and physical contacts, i.e., sexual and nonsexual. Majority of these microbial pathogens have been categorized into three classes, i.e., bacteria, viruses and protozoa. Pakistan, being a developing country, is facing a noteworthy threat due to microbial contamination. In Pakistan, bacterial contaminants are reported extensively followed by viral and protozoa contaminants. The health issues associated with bacterial population includes dysentery, abdominal pain, headache, diarrhea etc.; and usually includes faecal and total coliforms, E. coli, Salmonella, Shigella and Campylobacter. The cases related to viral contamination are lesser but chronic and evidenced the presence of HCV, HAV, HEV viruses causing hepatitis, and other hepatic disorders. Lastly, the health impacts associated with protozoans are least reported; and a number of diseases such as giardia, cryptosporidium and toxoplasma have been linked with this class of contaminants. The current review compiles information of these biological contaminants along with their health issues in Pakistan. Moreover, potential sources and fate of microbial contaminants are also discussed.

  18. AMPK in Pathogens.

    Science.gov (United States)

    Mesquita, Inês; Moreira, Diana; Sampaio-Marques, Belém; Laforge, Mireille; Cordeiro-da-Silva, Anabela; Ludovico, Paula; Estaquier, Jérôme; Silvestre, Ricardo

    2016-01-01

    During host-pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host-pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.

  19. Toward a better guard of coastal water safety—Microbial distribution in coastal water and their facile detection

    International Nuclear Information System (INIS)

    Xie, Yunxuan; Qiu, Ning; Wang, Guangyi

    2017-01-01

    Prosperous development in marine-based tourism has raised increasing concerns over the sanitary quality of coastal waters with potential microbial contamination. The World Health Organization has set stringent standards over a list of pathogenic microorganisms posing potential threats to people with frequent coastal water exposure and has asked for efficient detection procedures for pathogen facile identification. Inspection of survey events regarding the occurrence of marine pathogens in recreational beaches in recent years has reinforced the need for the development of a rapid identification procedure. In this review, we examine the possibility of recruiting uniform molecular assays to identify different marine pathogens and the feasibility of appropriate biomarkers, including enterochelin biosynthetic genes, for general toxicity assays. The focus is not only on bacterial pathogens but also on other groups of infectious pathogens. The ultimate goal is the development of a handy method to more efficiently and rapidly detect marine pathogens. - Highlights: • Culture-based approaches and molecular approaches can be used to describe pathogenic microbial distribution in coastal area. • Beach sand is a hidden habitat for pathogenic microorganisms. • qPCR is an efficient detection technique to identify pathogenic microbes and their potential pathogenicity. • Enterochelin synthase gene can be used as single molecular biomarker for multiple pathogen identification.

  20. Plant Pathogenicity in Spaceflight Environments

    OpenAIRE

    Bishop, Deborah L.; Levine, Howard G.; Anderson, Anne J.

    1996-01-01

    Plants grown in microgravity are subject to many environmental stresses, which may promote microbial growth and result in pathogenicity to the plant. Recent plant experiments with super dwarf wheat aboard the NASA Space Shuttle and NASA/Russian Mir Space Station returned from the mission with severe degrees of fungal contamination. Understanding the cause of such microbial contamination and methods to eliminate it are necessary prerequisites for continued plant growth and development studies ...

  1. Changes in microbial composition and the prevalence of foodborne pathogens in crab marinated in soy sauce produced by six manufacturing plants.

    Science.gov (United States)

    Kim, Sun Ae; Choi, Eun Sook; Kim, Nam Hee; Kim, Hye Won; Lee, Na Young; Cho, Tae Jin; Jo, Jun Il; Kim, Soon Han; Lee, Soon Ho; Ha, Sang Do; Rhee, Min Suk

    2017-04-01

    The present study examined the changes in microbiological composition during the production process of crab marinated in soy sauce, potential microbial hazards, potential contamination routes and effective critical control points. Crab and soy sauce samples were obtained from six different manufacturing plants at different stages, and their microbiological content was comprehensively assessed by quantitative and qualitative analyses. The results revealed the following: (1) the final products contained 4.0 log colony-forming units (CFU) g -1 aerobic plate counts (APCs) and 1.1 log CFU g -1 coliforms, which may have been introduced from the raw materials (the level of APCs in raw crab and soy sauce mixed with other ingredients was 3.8 log CFU g -1 and 4.0 log CFU mL -1 respectively); (2) marination of crab in soy sauce may allow cross-contamination by coliforms; (3) only Bacillus cereus and Staphylococcus aureus were qualitatively detected in samples at different stages of manufacture (detection rate of 28 and 5.6% respectively), and these bacteria may impact the microbiological quality and safety of crab marinated in soy sauce; and (4) bacterial counts were either maintained or increased during the manufacturing process (suggesting that no particular step can be targeted to reduce bacterial counts). Proper management of raw materials and the marination process are effective critical control points, and alternative interventions may be needed to control bacterial quantity. The results provide important basic information about the production of crab marinated in soy sauce and may facilitate effective implementation of sanitary management practices in related industries and research fields. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Exploiting fruit byproducts for eco-friendly nanosynthesis: Citrus × clementina peel extract mediated fabrication of silver nanoparticles with high efficacy against microbial pathogens and rat glial tumor C6 cells.

    Science.gov (United States)

    Saratale, Rijuta Ganesh; Shin, Han-Seung; Kumar, Gopalakrishnan; Benelli, Giovanni; Ghodake, Gajanan S; Jiang, Yuan Yuan; Kim, Dong Su; Saratale, Ganesh Dattatraya

    2018-04-01

    Process byproducts from the fruit industry may represent a cheap and reliable source of green reducing agents to be used in current bio-nanosynthesis. This study reports the use of orange (Citrus × clementina) peel aqueous extract (OPE) for one-pot green synthesis of silver nanoparticles (AgNPs) with high effectiveness against various microbial pathogens as well as rat glial tumor C6 cells. The effects of various operational parameters on the synthesis of AgNPs were systematically investigated. The morphology, particle size, and properties of synthesized AgNPs were characterized using UV-visible spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and Fourier transform infrared spectroscopy. High-resolution transmission electron microscopy shows that the nanoparticles are mostly spherical in shape and monodispersed, with an average particle size of 15-20 nm. Notably, the OPE-synthesized AgNPs were stable up to 6 months without change in their properties. Low doses of OPE-AgNPs inhibited the growth of human pathogens Escherichia coli, Bacillus cereus, and Staphylococcus aureus. The minimum inhibitory concentration and minimum bactericidal concentration of AgNPs against selected pathogenic bacteria were determined. OPE-AgNPs exhibited strong antioxidant activity in terms of ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging (IC 50 49.6 μg/mL) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging (IC 50 63.4 μg/mL). OPE-AgNPs showed dose-dependent response against rat glial tumor C6 cells (LD 50 60 μg/mL) showing a promising potential as anticancer agents. Overall, the current investigation highlighted a cheap green technology route to synthesize AgNPs using OPE byproducts and could potentially be utilized in biomedical, cosmetic, and pharmaceutical industry.

  3. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7).

    Science.gov (United States)

    Jinu, U; Gomathi, M; Saiqa, I; Geetha, N; Benelli, G; Venkatachalam, P

    2017-04-01

    This research focused on green engineering and characterization of silver (PcAgNPs) and copper nanoparticles (PcCuNPs) using Prosopis cineraria (Pc) leaf extract prepared by using microwave irradiation. We studied their enhanced antimicrobial activity on human pathogens as well as cytotoxicity on breast cancer cells (MCF-7). Biofabricated silver and copper nanoparticles exhibited UV-Visible absorbance peaks at 420 nm and 575 nm, confirming the bioreduction and stabilization of nanoparticles. Nanoparticles were characterized by FTIR, XRD, FESEM, and EDX analysis. FTIR results indicated the presence of alcohols, alkanes, aromatics, phenols, ethers, benzene, amines and amides that were possibly involved in the reduction and capping of silver and copper ions. XRD analysis was performed to confirm the crystalline nature of the silver and copper nanoparticles. FESEM analysis suggested that the nanoparticles were hexagonal or spherical in shape with size ranging from 20 to 44.49 nm and 18.9-32.09 nm for AgNPs and CuNPs, respectively. EDX analysis confirmed the presence of silver and copper elemental signals in the nanoparticles. The bioengineered silver and copper nanohybrids showed enhanced antimicrobial activity against Gram-positive and Gram-negative MDR human pathogens. MTT assay results indicated that CuNPs show potential cytotoxic effect followed by AgNPs against MCF-7 cancer cell line. IC 50 were 65.27 μg/ml, 37.02 μg/ml and 197.3 μg/ml for PcAgNPs, PcCuNPs and P. cineraria leaf extracts, respectively, treated MCF-7 cells. The present investigation highlighted an effective protocol for microwave-assisted synthesis of biomolecule-loaded silver and copper nanoparticles with enhanced antibacterial and anticancer activity. Results strongly suggested that bioengineered AgNPs and CuNPs could be used as potential tools against microbial pathogens and cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Do the Microbiota Influence Vaccines and Protective Immunity to Pathogens? Issues of Sovereignty, Federalism, and Points-Testing in the Prokaryotic and Eukaryotic Spaces of the Host-Microbial Superorganism.

    Science.gov (United States)

    Macpherson, Andrew J

    2018-02-01

    In contrast to live attenuated vaccines, which are designed to induce immunity through a time-limited bloom in systemic tissues, the microbiota is a persistent feature of body surfaces, especially the intestine. The immune responses to the microbiota are idiosyncratic depending on the niche intimacy of different taxa and generally adapt the host to avoid overgrowth and maintain mutualism rather than to eliminate the organisms of that taxon. Both the microbiota and the host have so much molecular cross talk controlling each other, that the prokaryotic and the eukaryotic spaces of the host-microbial superorganism are federal rather than sovereign. This molecular cross talk is vital for the immune system to develop its mature form. Nevertheless, the microbiota/host biomass spaces are rather well separated: The microbiota also limits colonization and penetration of pathogens through intense metabolic competition. Immune responses to those members of the microbiota mutually adapted to intimate association at mucosal surfaces have attractive potential durability, but for clinical use as persistent vehicles they would require personalization and engineered reversibility to manage the immune context and complications in individual human subjects. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy; Mavromatis, Charalampos Harris; Bokil, Nilesh J.; Schembri, Mark A.; Sweet, Matthew J.

    2016-01-01

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  6. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy

    2016-01-24

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  7. Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation

    Directory of Open Access Journals (Sweden)

    Tsen Shaw-Wei D

    2012-07-01

    Full Text Available Abstract The threat of emerging pathogens and microbial drug resistance has spurred tremendous efforts to develop new and more effective antimicrobial strategies. Recently, a novel ultrashort pulsed (USP laser technology has been developed that enables efficient and chemical-free inactivation of a wide spectrum of viral and bacterial pathogens. Such a technology circumvents the need to introduce potentially toxic chemicals and could permit safe and environmentally friendly pathogen reduction, with a multitude of possible applications including the sterilization of pharmaceuticals and blood products, and the generation of attenuated or inactivated vaccines.

  8. Microbial Surface Colonization and Biofilm Development in Marine Environments

    Science.gov (United States)

    2015-01-01

    SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. PMID:26700108

  9. Pathogen Decontamination of Food Crop Soil: A Review.

    Science.gov (United States)

    Gurtler, Joshua B

    2017-09-01

    The purpose of this review is to delineate means of decontaminating soil. This information might be used to mitigate soil-associated risks of foodborne pathogens. The majority of the research in the published literature involves inactivation of plant pathogens in soil, i.e., those pathogens harmful to fruit and vegetable production and ornamental plants. Very little has been published regarding the inactivation of foodborne human pathogens in crop soil. Nevertheless, because decontamination techniques for plant pathogens might also be useful methods for eliminating foodborne pathogens, this review also includes inactivation of plant pathogens, with appropriate discussion and comparisons, in the hopes that these methods may one day be validated against foodborne pathogens. Some of the major soil decontamination methods that have been investigated and are covered include chemical decontamination (chemigation), solarization, steaming, biofumigation, bacterial competitive exclusion, torch flaming, microwave treatment, and amendment with biochar. Other innovative means of inactivating foodborne pathogens in soils may be discovered and explored in the future, provided that these techniques are economically feasible in terms of chemicals, equipment, and labor. Food microbiology and food safety researchers should reach out to soil scientists and plant pathologists to create links where they do not currently exist and strengthen relationships where they do exist to take advantage of multidisciplinary skills. In time, agricultural output and the demand for fresh produce will increase. With advances in the sensitivity of pathogen testing and epidemiological tracebacks, the need to mitigate preharvest bacterial contamination of fresh produce will become paramount. Hence, soil decontamination technologies may become more economically feasible and practical in light of increasing the microbial safety of fresh produce.

  10. Microbes versus microbes: control of pathogens in the food chain.

    Science.gov (United States)

    Jordan, Kieran; Dalmasso, Marion; Zentek, Juergen; Mader, Anneluise; Bruggeman, Geert; Wallace, John; De Medici, Dario; Fiore, Alfonsina; Prukner-Radovcic, Estella; Lukac, Maja; Axelsson, Lars; Holck, Askild; Ingmer, Hanne; Malakauskas, Mindaugas

    2014-12-01

    Foodborne illness continues as a considerable threat to public health. Despite improved hygiene management systems and increased regulation, pathogenic bacteria still contaminate food, causing sporadic cases of illness and disease outbreaks worldwide. For many centuries, microbial antagonism has been used in food processing to improve food safety. An understanding of the mode of action of this microbial antagonism has been gained in recent years and potential applications in food and feed safety are now being explored. This review focuses on the potential opportunities presented, and the limitations, of using microbial antagonism as a biocontrol mechanism to reduce contamination along the food chain; including animal feed as its first link. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  11. Microbial bioinformatics 2020.

    Science.gov (United States)

    Pallen, Mark J

    2016-09-01

    Microbial bioinformatics in 2020 will remain a vibrant, creative discipline, adding value to the ever-growing flood of new sequence data, while embracing novel technologies and fresh approaches. Databases and search strategies will struggle to cope and manual curation will not be sustainable during the scale-up to the million-microbial-genome era. Microbial taxonomy will have to adapt to a situation in which most microorganisms are discovered and characterised through the analysis of sequences. Genome sequencing will become a routine approach in clinical and research laboratories, with fresh demands for interpretable user-friendly outputs. The "internet of things" will penetrate healthcare systems, so that even a piece of hospital plumbing might have its own IP address that can be integrated with pathogen genome sequences. Microbiome mania will continue, but the tide will turn from molecular barcoding towards metagenomics. Crowd-sourced analyses will collide with cloud computing, but eternal vigilance will be the price of preventing the misinterpretation and overselling of microbial sequence data. Output from hand-held sequencers will be analysed on mobile devices. Open-source training materials will address the need for the development of a skilled labour force. As we boldly go into the third decade of the twenty-first century, microbial sequence space will remain the final frontier! © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Microbial accumulation of uranium

    International Nuclear Information System (INIS)

    Zhang Wei; Dong Faqin; Dai Qunwei

    2005-01-01

    The mechanism of microbial accumulation of uranium and the effects of some factors (including pH, initial uranium concentration, pretreatment of bacteria, and so on) on microbial accumulation of uranium are discussed briefly. The research direction and application prospect are presented. (authors)

  13. Microbial control of pollution

    Energy Technology Data Exchange (ETDEWEB)

    Fry, J C; Gadd, G M; Herbert, R A; Jones, C W; Watson-Craik, I A [eds.

    1992-01-01

    12 papers are presented on the microbial control of pollution. Topics covered include: bioremediation of oil spills; microbial control of heavy metal pollution; pollution control using microorganisms and magnetic separation; degradation of cyanide and nitriles; nitrogen removal from water and waste; and land reclamation and restoration.

  14. Bioactive natural products from novel microbial sources.

    Science.gov (United States)

    Challinor, Victoria L; Bode, Helge B

    2015-09-01

    Despite the importance of microbial natural products for human health, only a few bacterial genera have been mined for the new natural products needed to overcome the urgent threat of antibiotic resistance. This is surprising, given that genome sequencing projects have revealed that the capability to produce natural products is not a rare feature among bacteria. Even the bacteria occurring in the human microbiome produce potent antibiotics, and thus potentially are an untapped resource for novel compounds, potentially with new activities. This review highlights examples of bacteria that should be considered new sources of natural products, including anaerobes, pathogens, and symbionts of humans, insects, and nematodes. Exploitation of these producer strains, combined with advances in modern natural product research methodology, has the potential to open the way for a new golden age of microbial therapeutics. © 2015 New York Academy of Sciences.

  15. The pathogenic persona of community-associated oral streptococci.

    Science.gov (United States)

    Whitmore, Sarah E; Lamont, Richard J

    2011-07-01

    The mitis group streptococci (MGS) are widespread in the oral cavity and are traditionally associated with oral health. However, these organisms have many attributes that contribute to the development of pathogenic oral communities. MGS adhere rapidly to saliva-coated tooth surfaces, thereby providing an attachment substratum for more overtly pathogenic organisms such as Porphyromonas gingivalis, and the two species assemble into heterotypic communities. Close physical association facilitates physiologic support, and pathogens such as Aggregatibacter actinomycetemcomitans display resource partitioning to favour carbon sources generated by streptococcal metabolism. MGS exchange information with community members through a number of interspecies signalling systems including AI-2 and contact dependent mechanisms. Signal transduction systems induced in P. gingivalis are based on protein dephosphorylation mediated by the tyrosine phosphatase Ltp1, and converge on a LuxR-family transcriptional regulator, CdhR. Phenotypic responses in P. gingivalis include regulation of hemin uptake systems and gingipain activity, processes that are intimately linked to the virulence of the organism. Furthermore, communities of S. gordonii with P. gingivalis or with A. actinomycetemcomitans are more pathogenic in animal models than the constituent species alone. We propose that MGS should be considered accessory pathogens, organisms whose pathogenic potential only becomes evident in the context of a heterotypic microbial community. © 2011 Blackwell Publishing Ltd.

  16. Microbial safety of foods

    International Nuclear Information System (INIS)

    Bandekar, J.R.

    2013-01-01

    Despite advances in hygiene, consumer knowledge and food treatment and processing, food-borne diseases have become one of the most widespread public health problems in the world to-day. About two thirds of all outbreaks are traced to microbial contaminated food - one of the most hazardous being Clostridium botulinum, E. coli 0157: H7 and Salmonella. The pathogens can be introduced in the food products anywhere in the food chain and hence it is of prime important to have microbial vigilance in the entire food chain. WHO estimates that food-borne and water-borne diarrhoeal diseases taken together kill about 2.2 million people annually. The infants, children, elderly and immune-compromised people are particularly susceptible to food-borne diseases. Unsafe food causes many acute and life-long diseases, ranging from diarrhoeal diseases to various forms of cancer. A number of factors such as emergence of new food-borne pathogens, development of drug resistance in the pathogens, changing life style, global trade of food etc. are responsible for the continued persistence of food-borne diseases. Due to consumer demand, a number of Ready-To-Eat (RTE) minimally processed foods are increasingly marketed. However, there is increased risk of food-borne diseases with these products. The food-borne disease outbreaks due to E. coli O157:H7, Listeria monocytogenes, Salmonella and Campylobacter are responsible for recall of many foods resulting in heavy losses to food industry. The development of multi drug resistant pathogens due to indiscriminate use of antibiotics is also a major problem. Food Technology Division of Bhabha Atomic Research Centre has been working on food-borne bacterial pathogens particularly Salmonella, Campylobacter, Vibrio and Aeromonas species, their prevalence in export quality seafood as well in foods sold in retail market such as poultry, fish, sprouts and salads. These pathogens from Indian foods have been characterized for the presence of virulence genes

  17. Fibers as carriers of microbial particles

    Directory of Open Access Journals (Sweden)

    Rafał L. Górny

    2015-08-01

    Full Text Available Background: The aim of the study was to assess the ability of natural, synthetic and semi-synthetic fibers to transport microbial particles. Material and Methods: The simultaneously settled dust and aerosol sampling was carried out in 3 industrial facilities processing natural (cotton, silk, flax, hemp, synthetic (polyamide, polyester, polyacrylonitrile, polypropylene and semi-synthetic (viscose fibrous materials; 2 stables where horses and sheep were bred; 4 homes where dogs or cats were kept and 1 zoo lion pavilion. All samples were laboratory analyzed for their microbiological purity. The isolated strains were qualitatively identified. To identify the structure and arrangement of fibers that may support transport of microbial particles, a scanning electron microscopy analysis was performed. Results: Both settled and airborne fibers transported analogous microorganisms. All synthetic, semi-synthetic and silk fibers, present as separated threads with smooth surface, were free from microbial contamination. Natural fibers with loose packing and rough surface (e.g., wool, horse hair, sheaf packing and septated surface (e.g., flax, hemp or present as twisted ribbons with corrugated surface (cotton were able to carry up to 9×105 cfu/g aerobic bacteria, 3.4×104 cfu/g anaerobic bacteria and 6.3×104 cfu/g of fungi, including pathogenic strains classified by Directive 2000/54/EC in hazard group 2. Conclusions: As plant and animal fibers are contaminated with a significant number of microorganisms, including pathogens, all of them should be mechanically eliminated from the environment. In factories, if the manufacturing process allows, they should be replaced by synthetic or semi-synthetic fibers. To avoid unwanted exposure to harmful microbial agents on fibers, the containment measures that efficiently limit their presence and dissemination in both occupational and non-occupational environments should be introduced. Med Pr 2015;66(4:511–523

  18. [Fibers as carriers of microbial particles].

    Science.gov (United States)

    Górny, Rafał L; Ławniczek-Wałczyk, Anna; Stobnicka, Agata; Gołofit-Szymczak, Małgorzata; Cyprowski, Marcin

    2015-01-01

    The aim of the study was to assess the ability of natural, synthetic and semi-synthetic fibers to transport microbial particles. The simultaneously settled dust and aerosol sampling was carried out in 3 industrial facilities processing natural (cotton, silk, flax, hemp), synthetic (polyamide, polyester, polyacrylonitrile, polypropylene) and semi-synthetic (viscose) fibrous materials; 2 stables where horses and sheep were bred; 4 homes where dogs or cats were kept and 1 zoo lion pavilion. All samples were laboratory analyzed for their microbiological purity. The isolated strains were qualitatively identified. To identify the structure and arrangement of fibers that may support transport of microbial particles, a scanning electron microscopy analysis was performed. Both settled and airborne fibers transported analogous microorganisms. All synthetic, semi-synthetic and silk fibers, present as separated threads with smooth surface, were free from microbial contamination. Natural fibers with loose packing and rough surface (e.g., wool, horse hair), sheaf packing and septated surface (e.g., flax, hemp) or present as twisted ribbons with corrugated surface (cotton) were able to carry up to 9×10(5) cfu/g aerobic bacteria, 3.4×10(4) cfu/g anaerobic bacteria and 6.3×10(4) cfu/g of fungi, including pathogenic strains classified by Directive 2000/54/EC in hazard group 2. As plant and animal fibers are contaminated with a significant number of microorganisms, including pathogens, all of them should be mechanically eliminated from the environment. In factories, if the manufacturing process allows, they should be replaced by synthetic or semi-synthetic fibers. To avoid unwanted exposure to harmful microbial agents on fibers, the containment measures that efficiently limit their presence and dissemination in both occupational and non-occupational environments should be introduced. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  19. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Science.gov (United States)

    Baron, Julianne L; Vikram, Amit; Duda, Scott; Stout, Janet E; Bibby, Kyle

    2014-01-01

    Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  20. Microbial mito-pathogens: fact or fiction?

    NARCIS (Netherlands)

    Bongaerts, G.P.A.; Heuvel, L.P.W.J. van den

    2008-01-01

    Mitochondria are bacteria-like semi-autonomous intracellular organelles that function as the powerhouses of eukaryotic cells. Inactivation or destruction of these organelles may have far-reaching consequences regarding the viability of the cells and thus of tissues, organs and finally even the body.

  1. Molecular mimicry modulates plant host responses to pathogens.

    Science.gov (United States)

    Ronald, Pamela; Joe, Anna

    2018-01-25

    Pathogens often secrete molecules that mimic those present in the plant host. Recent studies indicate that some of these molecules mimic plant hormones required for development and immunity. This Viewpoint reviews the literature on microbial molecules produced by plant pathogens that functionally mimic molecules present in the plant host. This article includes examples from nematodes, bacteria and fungi with emphasis on RaxX, a microbial protein produced by the bacterial pathogen Xanthomonas oryzae pv. oryzae. RaxX mimics a plant peptide hormone, PSY (plant peptide containing sulphated tyrosine). The rice immune receptor XA21 detects sulphated RaxX but not the endogenous peptide PSY. Studies of the RaxX/XA21 system have provided insight into both host and pathogen biology and offered a framework for future work directed at understanding how XA21 and the PSY receptor(s) can be differentially activated by RaxX and endogenous PSY peptides. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Pathogen Loading From Canada Geese Faeces in Freshwater: Potential Risks to Human Health Through Recreational Water Exposure.

    Science.gov (United States)

    Gorham, T J; Lee, J

    2016-05-01

    Canada geese (Branta canadensis) faeces have been shown to contain pathogenic protozoa and bacteria in numerous studies over the past 15 years. Further, increases in both the Canada geese populations and their ideal habitat requirements in the United States (US) translate to a greater presence of these human pathogens in public areas, such as recreational freshwater beaches. Combining these factors, the potential health risk posed by Canada geese faeces at freshwater beaches presents an emerging public health issue that warrants further study. Here, literature concerning human pathogens in Canada geese faeces is reviewed and the potential impacts these pathogens may have on human health are discussed. Pathogens of potential concern include Campylobacter jejuni, Salmonella Typhimurium, Listeria monocytogenes, Helicobacter canadensis, Arcobacter spp., Enterohemorragic Escherichia coli pathogenic strains, Chlamydia psitacci, Cryptosporidium parvum and Giardia lamblia. Scenarios presenting potential exposure to pathogens eluted from faeces include bathers swimming in lakes, children playing with wet and dry sand impacted by geese droppings and other common recreational activities associated with public beaches. Recent recreational water-associated disease outbreaks in the US support the plausibility for some of these pathogens, including Cryptosporidium spp. and C. jejuni, to cause human illness in this setting. In view of these findings and the uncertainties associated with the real health risk posed by Canada geese faecal pathogens to users of freshwater lakes, it is recommended that beach managers use microbial source tracking and conduct a quantitative microbial risk assessment to analyse the local impact of Canada geese on microbial water quality during their decision-making process in beach and watershed management. © 2015 Blackwell Verlag GmbH.

  3. Microbial composition of guava (Psidium guajava), hibiscus ...

    African Journals Online (AJOL)

    Microbial composition of guava (Psidium guajava), hibiscus (Hibiscus-rosa sinensis), mango (Mangifera indica) and pumpkin (Telfairia occidentalis Hook) ... African Journal of Biotechnology ... The microbial genera isolated from this study showed that, both human and plant pathogens can colonize plants' phyllosphere.

  4. An ace up their sleeve: a transcriptomic approach exposes the AceI efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens

    Directory of Open Access Journals (Sweden)

    Karl A Hassan

    2015-04-01

    Full Text Available The era of antibiotics as a cure-all for bacterial infections appears to be coming to an end. The emergence of multidrug resistance in many hospital-associated pathogens has resulted in superbugs that are effectively untreatable. Multidrug efflux pumps are well known mediators of bacterial drug resistance. Genome sequencing efforts have highlighted an abundance of putative efflux pump genes in bacteria. However, it is not clear how many of these pumps play a role in antimicrobial resistance. Several studies have demonstrated that efflux pump genes that participate in drug resistance are typically under tight regulatory control and expressed only in response to their substrates. Consequently, changes in gene expression following antimicrobial shock treatments may be used to identify efflux pumps that mediate antimicrobial resistance, informing targeted functional analyses of these proteins. Using this approach we have characterised novel efflux pumps in both Gram-negative and Gram-positive bacteria. Notably, we recently applied this strategy to characterise the AceI efflux pump from Acinetobacter. AceI is a prototype for a new family of multidrug efflux proteins that is conserved across many proteobacterial lineages. Different efflux pumps in this family have been shown to confer resistance to biocides including chlorhexidine, dequalinium, benzalkonium, proflavine and/or acriflavine. The discovery of this novel family of multidrug efflux proteins raises the possibility that additional undiscovered intrinsic resistance proteins may be encoded in the core genomes of pathogenic bacteria.

  5. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.

    Science.gov (United States)

    Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J

    2012-11-01

    We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Microbial Forensics: A Scientific Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Keim, Paul

    2003-02-17

    Microorganisms have been used as weapons in criminal acts, most recently highlighted by the terrorist attack using anthrax in the fall of 2001. Although such ''biocrimes'' are few compared with other crimes, these acts raise questions about the ability to provide forensic evidence for criminal prosecution that can be used to identify the source of the microorganisms used as a weapon and, more importantly, the perpetrator of the crime. Microbiologists traditionally investigate the sources of microorganisms in epidemiological investigations, but rarely have been asked to assist in criminal investigations. A colloquium was convened by the American Academy of Microbiology in Burlington, Vermont, on June 7-9, 2002, in which 25 interdisciplinary, expert scientists representing evolutionary microbiology, ecology, genomics, genetics, bioinformatics, forensics, chemistry, and clinical microbiology, deliberated on issues in microbial forensics. The colloquium's purpose was to consider issues relating to microbial forensics, which included a detailed identification of a microorganism used in a bioattack and analysis of such a microorganism and related materials to identify its forensically meaningful source--the perpetrators of the bioattack. The colloquium examined the application of microbial forensics to assist in resolving biocrimes with a focus on what research and education are needed to facilitate the use of microbial forensics in criminal investigations and the subsequent prosecution of biocrimes, including acts of bioterrorism. First responders must consider forensic issues, such as proper collection of samples to allow for optimal laboratory testing, along with maintaining a chain of custody that will support eventual prosecution. Because a biocrime may not be immediately apparent, a linkage must be made between routine diagnosis, epidemiological investigation, and criminal investigation. There is a need for establishing standard operating

  7. Pathogen inactivation techniques.

    Science.gov (United States)

    Pelletier, J P R; Transue, S; Snyder, E L

    2006-01-01

    The desire to rid the blood supply of pathogens of all types has led to the development of many technologies aimed at the same goal--eradication of the pathogen(s) without harming the blood cells or generating toxic chemical agents. This is a very ambitious goal, and one that has yet to be achieved. One approach is to shun the 'one size fits all' concept and to target pathogen-reduction agents at the Individual component types. This permits the development of technologies that might be compatible with, for example, plasma products but that would be cytocidal and thus incompatible with platelet concentrates or red blood cell units. The technologies to be discussed include solvent detergent and methylene blue treatments--designed to inactivate plasma components and derivatives; psoralens (S-59--amotosalen) designed to pathogen-reduce units of platelets; and two products aimed at red blood cells, S-303 (a Frale--frangible anchor-linker effector compound) and Inactine (a binary ethyleneimine). A final pathogen-reduction material that might actually allow one material to inactivate all three blood components--riboflavin (vitamin B2)--is also under development. The sites of action of the amotosalen (S-59), the S-303 Frale, Inactine, and riboflavin are all localized in the nucleic acid part of the pathogen. Solvent detergent materials act by dissolving the plasma envelope, thus compromising the integrity of the pathogen membrane and rendering it non-infectious. By disrupting the pathogen's ability to replicate or survive, its infectivity is removed. The degree to which bacteria and viruses are affected by a particular pathogen-reducing technology relates to its Gram-positive or Gram-negative status, to the sporulation characteristics for bacteria, and the presence of lipid or protein envelopes for viruses. Concerns related to photoproducts and other breakdown products of these technologies remain, and the toxicology of pathogen-reduction treatments is a major ongoing area

  8. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    OpenAIRE

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the extracellular fungal pathogen Cladosporium fulvum serves as a model system to study host resistance and susceptibility in plant-pathogen interactions. Resistance to C. fulvum in tomato plants follows the ge...

  9. C. elegans germline-deficient mutants respond to pathogen infection using shared and distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Michael TeKippe

    2010-07-01

    Full Text Available Reproduction extracts a cost in resources that organisms are then unable to utilize to deal with a multitude of environmental stressors. In the nematode C. elegans, development of the germline shortens the lifespan of the animal and increases its susceptibility to microbial pathogens. Prior studies have demonstrated germline-deficient nematodes to have increased resistance to gram negative bacteria. We show that germline-deficient strains display increased resistance across a broad range of pathogens including gram positive and gram negative bacteria, and the fungal pathogen Cryptococcus neoformans. Furthermore, we show that the FOXO transcription factor DAF-16, which regulates longevity and immunity in C. elegans, appears to be crucial for maintaining longevity in both wild-type and germline-deficient backgrounds. Our studies indicate that germline-deficient mutants glp-1 and glp-4 respond to pathogen infection using common and different mechanisms that involve the activation of DAF-16.

  10. Pathogen intelligence

    Directory of Open Access Journals (Sweden)

    Michael eSteinert

    2014-01-01

    Full Text Available Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behaviour, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behaviour, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies.

  11. Current Technical Approaches for the Early Detection of Foodborne Pathogens: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Il-Hoon Cho

    2017-09-01

    Full Text Available The development of novel and high-tech solutions for rapid, accurate, and non-laborious microbial detection methods is imperative to improve the global food supply. Such solutions have begun to address the need for microbial detection that is faster and more sensitive than existing methodologies (e.g., classic culture enrichment methods. Multiple reviews report the technical functions and structures of conventional microbial detection tools. These tools, used to detect pathogens in food and food homogenates, were designed via qualitative analysis methods. The inherent disadvantage of these analytical methods is the necessity for specimen preparation, which is a time-consuming process. While some literature describes the challenges and opportunities to overcome the technical issues related to food industry legal guidelines, there is a lack of reviews of the current trials to overcome technological limitations related to sample preparation and microbial detection via nano and micro technologies. In this review, we primarily explore current analytical technologies, including metallic and magnetic nanomaterials, optics, electrochemistry, and spectroscopy. These techniques rely on the early detection of pathogens via enhanced analytical sensitivity and specificity. In order to introduce the potential combination and comparative analysis of various advanced methods, we also reference a novel sample preparation protocol that uses microbial concentration and recovery technologies. This technology has the potential to expedite the pre-enrichment step that precedes the detection process.

  12. Current Technical Approaches for the Early Detection of Foodborne Pathogens: Challenges and Opportunities.

    Science.gov (United States)

    Cho, Il-Hoon; Ku, Seockmo

    2017-09-30

    The development of novel and high-tech solutions for rapid, accurate, and non-laborious microbial detection methods is imperative to improve the global food supply. Such solutions have begun to address the need for microbial detection that is faster and more sensitive than existing methodologies (e.g., classic culture enrichment methods). Multiple reviews report the technical functions and structures of conventional microbial detection tools. These tools, used to detect pathogens in food and food homogenates, were designed via qualitative analysis methods. The inherent disadvantage of these analytical methods is the necessity for specimen preparation, which is a time-consuming process. While some literature describes the challenges and opportunities to overcome the technical issues related to food industry legal guidelines, there is a lack of reviews of the current trials to overcome technological limitations related to sample preparation and microbial detection via nano and micro technologies. In this review, we primarily explore current analytical technologies, including metallic and magnetic nanomaterials, optics, electrochemistry, and spectroscopy. These techniques rely on the early detection of pathogens via enhanced analytical sensitivity and specificity. In order to introduce the potential combination and comparative analysis of various advanced methods, we also reference a novel sample preparation protocol that uses microbial concentration and recovery technologies. This technology has the potential to expedite the pre-enrichment step that precedes the detection process.

  13. Optimise the microbial flora with milk and yoghurt to prevent disease.

    Science.gov (United States)

    Morris, James A

    2018-05-01

    Pathogenic bacteria, which are temporary or permanent members of our microbial flora, cause or contribute to a wide range of human disease at all ages. Conditions include Alzheimer's disease, atherosclerosis, diabetes mellitus, obesity, cancer, autoimmunity and psychosis, amongst others. The mechanism of damage is inflammation which can be chronic or acute. An optimal microbial flora includes a wide range of pathogenic bacteria in low dose. This allows specific immunity to be developed and maintained with minimal inflammatory damage. Human milk has evolved to deliver an optimal microbial flora to the infant. Cow's milk has the potential, following appropriate fortification, to maintain an optimal human microbial flora throughout life. Yoghurt is a fermented milk product in which bacteria normally present in milk convert sugars to lactic acid. The acid suppresses the growth of pathogens in the oral cavity, oropharynx and oesophagus. Thus yoghurt can restore an optimal flora in these regions in the short term. Since bacteria are transported between epithelial surfaces, yoghurt will also optimise the flora elsewhere. The judicious use of milk and yogurt could prevent a high proportion of human disease. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.

  14. Global Microbial Identifier

    DEFF Research Database (Denmark)

    Wielinga, Peter; Hendriksen, Rene S.; Aarestrup, Frank Møller

    2017-01-01

    ) will likely also enable a much better understanding of the pathogenesis of the infection and the molecular basis of the host response to infection. But the full potential of these advances will only transpire if the data in this area become transferable and thereby comparable, preferably in open-source...... of microorganisms, for the identification of relevant genes and for the comparison of genomes to detect outbreaks and emerging pathogens. To harness the full potential of WGS, a shared global database of genomes linked to relevant metadata and the necessary software tools needs to be generated, hence the global...... microbial identifier (GMI) initiative. This tool will ideally be used in amongst others in the diagnosis of infectious diseases in humans and animals, in the identification of microorganisms in food and environment, and to track and trace microbial agents in all arenas globally. This will require...

  15. Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory.

    Science.gov (United States)

    Shabuer, Gulimila; Ishida, Keishi; Pidot, Sacha J; Roth, Martin; Dahse, Hans-Martin; Hertweck, Christian

    2015-11-06

    Around 25% of vegetable food is lost worldwide because of infectious plant diseases, including microbe-induced decay of harvested crops. In wet seasons and under humid storage conditions, potato tubers are readily infected and decomposed by anaerobic bacteria (Clostridium puniceum). We found that these anaerobic plant pathogens harbor a gene locus (type II polyketide synthase) to produce unusual polyketide metabolites (clostrubins) with dual functions. The clostrubins, which act as antibiotics against other microbial plant pathogens, enable the anaerobic bacteria to survive an oxygen-rich plant environment. Copyright © 2015, American Association for the Advancement of Science.

  16. Biofilm and dental implant: The microbial link

    Directory of Open Access Journals (Sweden)

    Sangeeta Dhir

    2013-01-01

    Full Text Available Mouth provides a congenial environment for the growth of the microorganisms as compared to any other part of the human body by exhibiting an ideal nonshedding surface. Dental plaque happens to be a diverse community of the microorganisms found on the tooth surface. Periodontal disease and the peri-implant disease are specific infections that are originating from these resident microbial species when the balance between the host and the microbial pathogenicity gets disrupted. This review discusses the biofilms in relation to the peri-implant region, factors affecting its presence, and the associated treatment to manage this complex microbial colony. Search Methodology: Electronic search of the medline was done with the search words: Implants and biofilms/dental biofilm formation/microbiology at implant abutment interface/surface free energy/roughness and implant, periimplantitis/local drug delivery and dental implant. Hand search across the journals - clinical oral implant research, implant dentistry, journal of dental research, international journal of oral implantology, journal of prosthetic dentistry, perioodntology 2000, journal of periodontology were performed. The articles included in the review comprised of in vivo studies, in vivo (animal and human studies, abstracts, review articles.

  17. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  18. Unrelated facultative endosymbionts protect aphids against a fungal pathogen.

    Science.gov (United States)

    Łukasik, Piotr; van Asch, Margriet; Guo, Huifang; Ferrari, Julia; Godfray, H Charles J

    2013-02-01

    The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations. © 2012 Blackwell Publishing Ltd/CNRS.

  19. One cell, one love: a journal for microbial research

    Directory of Open Access Journals (Sweden)

    Didac Carmona-Gutierrez

    2014-01-01

    Full Text Available With their broad utility for biotechnology, their continuous menace as infectious pathogens, and as an integral part of our bodies (intestinal flora, unicellular organisms remain in the focus of global research. This interest has been further stimulated by the challenge to counteract the emergence of multi-resistant microbes, as well as by the recent advances in establishing unicellular organisms as valid models for human diseases. It is our great pleasure to launch the inaugural issue of Microbial Cell (MIC, an international, open-access, peer-reviewed journal dedicated to microbial research. MIC is committed to the publication of articles that deal with the characterization of unicellular organisms (or multicellular microorganisms in their response to internal and external stimuli and/or in the context of human health and disease. Thus, MIC covers heterogeneous topics in diverse areas ranging from microbial and general cell biology to molecular signaling, disease modeling and pathogen targeting. MIC’s Editorial Board counts with world-class leaders in a wide variety of fields, including microbiology, aging, evolution, biotechnology, ecology, biochemistry, infection biology, and human pathophysiology. We are convinced that MIC will appeal to readers from a broad scientific and medical background, including basic researchers, microbiologists, clinicians, educators and – we hope – policy makers as well as to any interested individual.

  20. Importance of microbial pest control agents and their metabolites In relation to the natural microbiota on strawberry

    DEFF Research Database (Denmark)

    Jensen, Birgit; Knudsen, Inge M. B.; Jensen, Dan Funck

    control. A series of laboratory, growth chamber, semi-field and field experiments using strawberry as a model plant focusing on commercial microbial pest control products (MPCPs) or laboratory MPCAs expected to be on the market within 10 years served as our experimental platform. Initially the background...... level of indigenous microbial communities and their mycotoxins/metabolites on strawberries was examined in a field survey with 4 conventional and 4 organic growers with different production practise and geographic distribution. Culturable bacteria, yeasts and filamentous fungi were isolated...... and identified using both chemotaxonomy (fatty acids and metabolite profiling) and morphological characteristics. Microbial communities on strawberries were complex including potential plant pathogens, opportunistic human pathogens, plant disease biocontrol agents and mycotoxin producers. Bacteria were the most...

  1. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-01-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  2. Future research needs involving pathogens in groundwater

    Science.gov (United States)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  3. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  4. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.

    Science.gov (United States)

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  5. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

    Directory of Open Access Journals (Sweden)

    Nam-Soo Jwa

    2017-09-01

    Full Text Available Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP-triggered immunity (PTI and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  6. Microbial ecology of watery kimchi.

    Science.gov (United States)

    Kyung, Kyu Hang; Medina Pradas, Eduardo; Kim, Song Gun; Lee, Yong Jae; Kim, Kyong Ho; Choi, Jin Joo; Cho, Joo Hyong; Chung, Chang Ho; Barrangou, Rodolphe; Breidt, Frederick

    2015-05-01

    The biochemistry and microbial ecology of 2 similar types of watery (mul) kimchi, containing sliced and unsliced radish and vegetables (nabak and dongchimi, respectively), were investigated. Samples from kimchi were fermented at 4, 10, and 20 °C were analyzed by plating on differential and selective media, high-performance liquid chromatography, and high-throughput DNA sequencing of 16S rDNA. Nabak kimchi showed similar trends as dongchimi, with increasing lactic and acetic acids and decreasing pH for each temperature, but differences in microbiota were apparent. Interestingly, bacteria from the Proteobacterium phylum, including Enterobacteriaceae, decreased more rapidly during fermentation at 4 °C in nabak cabbage fermentations compared with dongchimi. Although changes for Proteobacterium and Enterobacteriaceae populations were similar during fermentation at 10 and 20 °C, the homolactic stage of fermentation did not develop for the 4 and 10 °C samples of both nabak and dongchimi during the experiment. These data show the differences in biochemistry and microbial ecology that can result from preparation method and fermentation conditions of the kimchi, which may impact safety (Enterobacteriaceae populations may include pathogenic bacteria) and quality (homolactic fermentation can be undesirable, if too much acid is produced) of the product. In addition, the data also illustrate the need for improved methods for identifying and differentiating closely related lactic acid bacteria species using high-throughput sequencing methods. © 2015 Institute of Food Technologists®. This article has been contributed by US Government employees and their work is in the public domain in the USA.

  7. Microbial biosensors

    International Nuclear Information System (INIS)

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  8. Exploring the Association between Alzheimer’s Disease, Oral Health, Microbial Endocrinology and Nutrition

    Science.gov (United States)

    Harding, Alice; Gonder, Ulrike; Robinson, Sarita J.; Crean, StJohn; Singhrao, Sim K.

    2017-01-01

    Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer’s disease (AD). However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis, a keystone periodontal pathogen, with its companion species, orchestrates immune subversion in the host. Brushing and chewing on teeth supported by already injured soft tissues leads to bacteremias. As a result, a persistent systemic inflammatory response develops to periodontal pathogens. The pathogens, and the host’s inflammatory response, subsequently lead to the initiation and progression of multiple metabolic and inflammatory co-morbidities, including AD. Insufficient levels of essential micronutrients can lead to microbial dysbiosis through the growth of periodontal pathogens such as demonstrated for P. gingivalis under low hemin bioavailability. An individual’s diet also defines the consortium of microbial communities that take up residency in the oral and gastrointestinal (GI) tract microbiomes. Their imbalance can lead to behavioral changes. For example, probiotics enriched in Lactobacillus genus of bacteria, when ingested, exert some anti-inflammatory influence through common host/bacterial neurochemicals, both locally, and through sensory signaling back to the brain. Early life dietary behaviors may cause an imbalance in the host/microbial endocrinology through a dietary intake incompatible with a healthy GI tract microbiome later in life. This imbalance in host/microbial endocrinology may have a lasting impact on mental health. This observation opens up an opportunity to explore the mechanisms, which may underlie the previously detected relationship between diet, oral/GI microbial communities, to anxiety, cognition and sleep

  9. Exploring the Association between Alzheimer's Disease, Oral Health, Microbial Endocrinology and Nutrition.

    Science.gov (United States)

    Harding, Alice; Gonder, Ulrike; Robinson, Sarita J; Crean, StJohn; Singhrao, Sim K

    2017-01-01

    Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer's disease (AD). However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis , a keystone periodontal pathogen, with its companion species, orchestrates immune subversion in the host. Brushing and chewing on teeth supported by already injured soft tissues leads to bacteremias. As a result, a persistent systemic inflammatory response develops to periodontal pathogens. The pathogens, and the host's inflammatory response, subsequently lead to the initiation and progression of multiple metabolic and inflammatory co-morbidities, including AD. Insufficient levels of essential micronutrients can lead to microbial dysbiosis through the growth of periodontal pathogens such as demonstrated for P. gingivalis under low hemin bioavailability. An individual's diet also defines the consortium of microbial communities that take up residency in the oral and gastrointestinal (GI) tract microbiomes. Their imbalance can lead to behavioral changes. For example, probiotics enriched in Lactobacillus genus of bacteria, when ingested, exert some anti-inflammatory influence through common host/bacterial neurochemicals, both locally, and through sensory signaling back to the brain. Early life dietary behaviors may cause an imbalance in the host/microbial endocrinology through a dietary intake incompatible with a healthy GI tract microbiome later in life. This imbalance in host/microbial endocrinology may have a lasting impact on mental health. This observation opens up an opportunity to explore the mechanisms, which may underlie the previously detected relationship between diet, oral/GI microbial communities, to anxiety, cognition and sleep patterns

  10. Exploring the Association between Alzheimer’s Disease, Oral Health, Microbial Endocrinology and Nutrition

    Directory of Open Access Journals (Sweden)

    Alice Harding

    2017-12-01

    Full Text Available Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer’s disease (AD. However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis, a keystone periodontal pathogen, with its companion species, orchestrates immune subversion in the host. Brushing and chewing on teeth supported by already injured soft tissues leads to bacteremias. As a result, a persistent systemic inflammatory response develops to periodontal pathogens. The pathogens, and the host’s inflammatory response, subsequently lead to the initiation and progression of multiple metabolic and inflammatory co-morbidities, including AD. Insufficient levels of essential micronutrients can lead to microbial dysbiosis through the growth of periodontal pathogens such as demonstrated for P. gingivalis under low hemin bioavailability. An individual’s diet also defines the consortium of microbial communities that take up residency in the oral and gastrointestinal (GI tract microbiomes. Their imbalance can lead to behavioral changes. For example, probiotics enriched in Lactobacillus genus of bacteria, when ingested, exert some anti-inflammatory influence through common host/bacterial neurochemicals, both locally, and through sensory signaling back to the brain. Early life dietary behaviors may cause an imbalance in the host/microbial endocrinology through a dietary intake incompatible with a healthy GI tract microbiome later in life. This imbalance in host/microbial endocrinology may have a lasting impact on mental health. This observation opens up an opportunity to explore the mechanisms, which may underlie the previously detected relationship between diet, oral/GI microbial communities, to anxiety, cognition

  11. Impact of haylage harvest and storage technologies on forage microbial contamination

    OpenAIRE

    Artemyeva, O.; Duborezov, V.; Pavlyuchenkova, O.; Kotkovskaya, E.; Ralkova, V.; Peresyolkova, D.

    2014-01-01

    To develop bacteriological regulations for harvesting and storing haylage, microbial contamination of feeds has been studied using different technologies for harvesting haylage and laying fodder in trench and concrete ring silos, and rolls. It was noted that the analyzed forage samples had no pathogenic microorganisms and Enterobacteriaceae, including Salmonella. There was a lack of toxicity in all analyzed silage samples. The values for the number of mesophilic aerobic and elective anaerobic...

  12. Flow cytometric analysis of microbial contamination in food industry technological lines – initial study

    OpenAIRE

    Katarzyna Czaczyk; Wojciech Juzwa

    2012-01-01

    Background. Flow cytometry constitutes an alternative for traditional methods of microorganisms identifi cation and analysis, including methods requiring cultivation step. It enables the detection of pathogens and other microorganisms contaminants without the need to culture microbial cells meaning that the sample (water, waste or food e.g. milk, wine, beer) may be analysed directly. This leads to a signifi cant reduction of time required for analysis allowing monitoring of production process...

  13. Rapid methods: the detection of foodborne pathogens

    NARCIS (Netherlands)

    Beumer, R.R.; Hazeleger, W.C.

    2009-01-01

    Although bacteria are the first type of microorganisms that come to mind when discussing microbial food safety, they are by no means the only pathogenic foodborne microorganisms. Mycotoxin producing moulds, human enteric viruses, protozoan parasites and marine biotoxins are also of importance.

  14. Microbial micropatches within microbial hotspots

    Science.gov (United States)

    Smith, Renee J.; Tobe, Shanan S.; Paterson, James S.; Seymour, Justin R.; Oliver, Rod L.; Mitchell, James G.

    2018-01-01

    The spatial distributions of organism abundance and diversity are often heterogeneous. This includes the sub-centimetre distributions of microbes, which have ‘hotspots’ of high abundance, and ‘coldspots’ of low abundance. Previously we showed that 300 μl abundance hotspots, coldspots and background regions were distinct at all taxonomic levels. Here we build on these results by showing taxonomic micropatches within these 300 μl microscale hotspots, coldspots and background regions at the 1 μl scale. This heterogeneity among 1 μl subsamples was driven by heightened abundance of specific genera. The micropatches were most pronounced within hotspots. Micropatches were dominated by Pseudomonas, Bacteroides, Parasporobacterium and Lachnospiraceae incertae sedis, with Pseudomonas and Bacteroides being responsible for a shift in the most dominant genera in individual hotspot subsamples, representing up to 80.6% and 47.3% average abundance, respectively. The presence of these micropatches implies the ability these groups have to create, establish themselves in, or exploit heterogeneous microenvironments. These genera are often particle-associated, from which we infer that these micropatches are evidence for sub-millimetre aggregates and the aquatic polymer matrix. These findings support the emerging paradigm that the microscale distributions of planktonic microbes are numerically and taxonomically heterogeneous at scales of millimetres and less. We show that microscale microbial hotspots have internal structure within which specific local nutrient exchanges and cellular interactions might occur. PMID:29787564

  15. Human pathogen avoidance adaptations

    NARCIS (Netherlands)

    Tybur, J.M.; Lieberman, D.

    2016-01-01

    Over the past few decades, researchers have become increasingly interested in the adaptations guiding the avoidance of disease-causing organisms. Here we discuss the latest developments in this area, including a recently developed information-processing model of the adaptations underlying pathogen

  16. metaBIT, an integrative and automated metagenomic pipeline for analysing microbial profiles from high-throughput sequencing shotgun data

    DEFF Research Database (Denmark)

    Louvel, Guillaume; Der Sarkissian, Clio; Hanghøj, Kristian Ebbesen

    2016-01-01

    -throughput DNA sequencing (HTS). Here, we develop metaBIT, an open-source computational pipeline automatizing routine microbial profiling of shotgun HTS data. Customizable by the user at different stringency levels, it performs robust taxonomy-based assignment and relative abundance calculation of microbial taxa......, as well as cross-sample statistical analyses of microbial diversity distributions. We demonstrate the versatility of metaBIT within a range of published HTS data sets sampled from the environment (soil and seawater) and the human body (skin and gut), but also from archaeological specimens. We present......-friendly profiling of the microbial DNA present in HTS shotgun data sets. The applications of metaBIT are vast, from monitoring of laboratory errors and contaminations, to the reconstruction of past and present microbiota, and the detection of candidate species, including pathogens....

  17. Microbial interactions in drinking water biofilms

    OpenAIRE

    Simões, Lúcia C.; Simões, M.; Vieira, M. J.

    2007-01-01

    Drinking water distribution networks may be viewed as a large reactor where a number of chemical and microbiological processes are taking place. Control of microbial growth in drinking water distribution systems (DWDS) often achieved through the addition of disinfectants, is essential to limit the spread of waterborne pathogens. However, microorganisms can resist disinfection through protection within biofilms and resistant host cells. Recent studies into the microbial ecology ...

  18. Microbial Invasion vs. Tick Immune Regulation.

    Science.gov (United States)

    Sonenshine, Daniel E; Macaluso, Kevin R

    2017-01-01

    Ticks transmit a greater variety of pathogenic agents that cause disease in humans and animals than any other haematophagous arthropod, including Lyme disease, Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al., 2016). Although diverse explanations have been proposed to explain their remarkable vectorial capacity, among the most important are their blood feeding habit, their long term off-host survival, the diverse array of bioactive molecules that disrupt the host's natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and minimize inflammation to prevent immune rejection (Hajdušek et al., 2013). Moreover, the tick's unique intracellular digestive processes allow the midgut to provide a relatively permissive microenvironment for survival of invading microbes. Although tick-host-pathogen interactions have evolved over more than 300 million years (Barker and Murrell, 2008), few microbes have been able to overcome the tick's innate immune system, comprising both humoral and cellular processes that reject them. Similar to most eukaryotes, the signaling pathways that regulate the innate immune response, i.e., the Toll, IMD (Immunodeficiency) and JAK-STAT (Janus Kinase/ Signal Transducers and Activators of Transcription) also occur in ticks (Gulia-Nuss et al., 2016). Recognition of pathogen-associated molecular patterns (PAMPs) on the microbial surface triggers one or the other of these pathways. Consequently, ticks are able to mount an impressive array of humoral and cellular responses to microbial challenge, including anti-microbial peptides (AMPs), e.g., defensins, lysozymes, microplusins, etc., that directly kill, entrap or inhibit the invaders. Equally important are cellular processes, primarily phagocytosis, that capture, ingest, or encapsulate invading microbes, regulated by a primordial system of thioester-containing proteins

  19. Microbial Invasion vs. Tick Immune Regulation

    Directory of Open Access Journals (Sweden)

    Daniel E. Sonenshine

    2017-09-01

    Full Text Available Ticks transmit a greater variety of pathogenic agents that cause disease in humans and animals than any other haematophagous arthropod, including Lyme disease, Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al., 2016. Although diverse explanations have been proposed to explain their remarkable vectorial capacity, among the most important are their blood feeding habit, their long term off-host survival, the diverse array of bioactive molecules that disrupt the host's natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and minimize inflammation to prevent immune rejection (Hajdušek et al., 2013. Moreover, the tick's unique intracellular digestive processes allow the midgut to provide a relatively permissive microenvironment for survival of invading microbes. Although tick-host-pathogen interactions have evolved over more than 300 million years (Barker and Murrell, 2008, few microbes have been able to overcome the tick's innate immune system, comprising both humoral and cellular processes that reject them. Similar to most eukaryotes, the signaling pathways that regulate the innate immune response, i.e., the Toll, IMD (Immunodeficiency and JAK-STAT (Janus Kinase/ Signal Transducers and Activators of Transcription also occur in ticks (Gulia-Nuss et al., 2016. Recognition of pathogen-associated molecular patterns (PAMPs on the microbial surface triggers one or the other of these pathways. Consequently, ticks are able to mount an impressive array of humoral and cellular responses to microbial challenge, including anti-microbial peptides (AMPs, e.g., defensins, lysozymes, microplusins, etc., that directly kill, entrap or inhibit the invaders. Equally important are cellular processes, primarily phagocytosis, that capture, ingest, or encapsulate invading microbes, regulated by a primordial system of thioester

  20. Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: Its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration.

    Science.gov (United States)

    Alizadeh Sani, Mahmood; Ehsani, Ali; Hashemi, Mohammad

    2017-06-19

    The use of biodegradable nanocomposite films in active packaging is of great importance since they can have a controlled release of antimicrobial compounds. This study was conducted to evaluate the efficacy of whey protein isolate (WPI)/cellulose nanofibre (CNF) nanocomposite films containing 1.0% (w/w) titanium dioxide (TiO 2 ) and 2.0% (w/v) rosemary essential oil (REO) in preserving the microbial and sensory quality of lamb meat during the storage at 4±1°C. Initially, the best concentration of each compound to be added to the film was determined by micro-dilution and disc diffusion methods. The microbial and sensory properties of lamb meat were controlled in two groups (control and treatment) over 15days of storage. Then, the samples were analysed for total viable count (TVC), Pseudomonas spp. count, Enterobacteriaceae count, Lactic acid bacteria (LAB) count, inoculated Staphylococcus aureus count, Listeria monocytogenes count, and Escherichia coli O 157 :H 7 count. Microbial analysis and nine-point hedonic scale was applied for the sensory analysis. Results indicated that the use of nanocomposite films significantly reduced the bacterial counts of treatment group. Higher inhibition effect was observed on Gram-positive bacteria than on Gram-negative bacteria (Psensory evaluations also showed that the use of nanocomposite films significantly increased the shelf life of treated meat (15days) compared to the control meat (6days). Based on the results of this study, the edible nanocomposite films were effective in preserving the microbial and sensory qualities of lamb meat; therefore, this application is recommended in meat especially red meat. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Practical Approaches for Detecting Selection in Microbial Genomes.

    Directory of Open Access Journals (Sweden)

    Jessica Hedge

    2016-02-01

    Full Text Available Microbial genome evolution is shaped by a variety of selective pressures. Understanding how these processes occur can help to address important problems in microbiology by explaining observed differences in phenotypes, including virulence and resistance to antibiotics. Greater access to whole-genome sequencing provides microbiologists with the opportunity to perform large-scale analyses of selection in novel settings, such as within individual hosts. This tutorial aims to guide researchers through the fundamentals underpinning popular methods for measuring selection in pathogens. These methods are transferable to a wide variety of organisms, and the exercises provided are designed for researchers with any level of programming experience.

  2. Practical Approaches for Detecting Selection in Microbial Genomes.

    Science.gov (United States)

    Hedge, Jessica; Wilson, Daniel J

    2016-02-01

    Microbial genome evolution is shaped by a variety of selective pressures. Understanding how these processes occur can help to address important problems in microbiology by explaining observed differences in phenotypes, including virulence and resistance to antibiotics. Greater access to whole-genome sequencing provides microbiologists with the opportunity to perform large-scale analyses of selection in novel settings, such as within individual hosts. This tutorial aims to guide researchers through the fundamentals underpinning popular methods for measuring selection in pathogens. These methods are transferable to a wide variety of organisms, and the exercises provided are designed for researchers with any level of programming experience.

  3. Enteric pathogen modification by anaecic earthworm, Lampito Mauritii

    African Journals Online (AJOL)

    The biosolids from municipal wastewater treatment plant contains several enteric microbial pathogens, predominantly Salmonella and Escherichia species in the range of 15-18 x 104 CFU/g and 11-12 x 104 CFU/g respectively. The present study investigates the influence of earthworm, Lampito mauritii on enteric pathogen ...

  4. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the

  5. Microbial Regulation of Glucose Metabolism and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Silke Crommen

    2017-12-01

    Full Text Available Type 2 diabetes is a combined disease, resulting from a hyperglycemia and peripheral and hepatic insulin resistance. Recent data suggest that the gut microbiota is involved in diabetes development, altering metabolic processes including glucose and fatty acid metabolism. Thus, type 2 diabetes patients show a microbial dysbiosis, with reduced butyrate-producing bacteria and elevated potential pathogens compared to metabolically healthy individuals. Furthermore, probiotics are a known tool to modulate the microbiota, having a therapeutic potential. Current literature will be discussed to elucidate the complex interaction of gut microbiota, intestinal permeability and inflammation leading to peripheral and hepatic insulin resistance. Therefore, this review aims to generate a deeper understanding of the underlying mechanism of potential microbial strains, which can be used as probiotics.

  6. Foodborne pathogens

    Directory of Open Access Journals (Sweden)

    Thomas Bintsis

    2017-06-01

    Full Text Available Foodborne pathogens are causing a great number of diseases with significant effects on human health and economy. The characteristics of the most common pathogenic bacteria (Bacillus cereus, Campylobacter jejuni, Clostridium botulinum, Clostridium perfringens, Cronobacter sakazakii, Esherichia coli, Listeria monocytogenes, Salmonella spp., Shigella spp., Staphylococccus aureus, Vibrio spp. and Yersinia enterocolitica, viruses (Hepatitis A and Noroviruses and parasites (Cyclospora cayetanensis, Toxoplasma gondii and Trichinella spiralis, together with some important outbreaks, are reviewed. Food safety management systems based on to classical hazard-based approach has been proved to be inefficient, and risk-based food safety approach is now suggested from leading researchers and organizations. In this context, a food safety management system should be designed in a way to estimate the risks to human health from food consumption and to identify, select and implement mitigation strategies in order to control and reduce these risks. In addition, the application of suitable food safety education programs for all involved people in the production and consumption of foods is suggested.

  7. ANALYSIS OF AQUATIC MICROBIAL COMMUNITIES IMPACTED BY LARGE POULTRY FORMS

    Science.gov (United States)

    Microbial communities often respond more rapidly and extensively to environmental change than communities of higher organisms. Thus, characterizing shifts in the structure of native bacterial communities as a response to changes in nutrients, antimicrobials, and invading pathogen...

  8. Microbial Threats to Health: Emergence, Detection, and Response

    National Research Council Canada - National Science Library

    Smolinski, Mark S; Hamburg, Margaret A; Lederberg, Joshua

    2003-01-01

    .... The recent SARS outbreak is a prime example. Knowing neither geographic nor political borders, often arriving silently and lethally, microbial pathogens constitute a grave threat to the health of humans...

  9. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  10. Distribution of triclosan-resistant genes in major pathogenic microorganisms revealed by metagenome and genome-wide analysis

    Science.gov (United States)

    Khan, Raees; Roy, Nazish; Choi, Kihyuck

    2018-01-01

    The substantial use of triclosan (TCS) has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231) and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG) database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17), and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79%) and soil-borne plant pathogenic bacteria (98%). These included a variety of enoyl-acyl carrier protein reductase (ENRs) homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously presumed

  11. Distribution of triclosan-resistant genes in major pathogenic microorganisms revealed by metagenome and genome-wide analysis.

    Directory of Open Access Journals (Sweden)

    Raees Khan

    Full Text Available The substantial use of triclosan (TCS has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231 and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17, and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79% and soil-borne plant pathogenic bacteria (98%. These included a variety of enoyl-acyl carrier protein reductase (ENRs homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously

  12. Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae

    Directory of Open Access Journals (Sweden)

    Klein Cátia S

    2009-12-01

    Full Text Available Abstract Background Mycoplasma hyopneumoniae is a highly infectious swine pathogen and is the causative agent of enzootic pneumonia (EP. Following the previous report of a proteomic survey of the pathogenic 7448 strain of swine pathogen, Mycoplasma hyopneumoniae, we performed comparative protein profiling of three M. hyopneumoniae strains, namely the non-pathogenic J strain and the two pathogenic strains 7448 and 7422. Results In 2DE comparisons, we were able to identify differences in expression levels for 67 proteins, including the overexpression of some cytoadherence-related proteins only in the pathogenic strains. 2DE immunoblot analyses allowed the identification of differential proteolytic cleavage patterns of the P97 adhesin in the three strains. For more comprehensive protein profiling, an LC-MS/MS strategy was used. Overall, 35% of the M. hyopneumoniae genome coding capacity was covered. Partially overlapping profiles of identified proteins were observed in the strains with 81 proteins identified only in one strain and 54 proteins identified in two strains. Abundance analysis of proteins detected in more than one strain demonstrates the relative overexpression of 64 proteins, including the P97 adhesin in the pathogenic strains. Conclusions Our results indicate the physiological differences between the non-pathogenic strain, with its non-infective proliferate lifestyle, and the pathogenic strains, with its constitutive expression of adhesins, which would render the bacterium competent for adhesion and infection prior to host contact.

  13. Microbial profiling of dental plaque from mechanically ventilated patients.

    Science.gov (United States)

    Sands, Kirsty M; Twigg, Joshua A; Lewis, Michael A O; Wise, Matt P; Marchesi, Julian R; Smith, Ann; Wilson, Melanie J; Williams, David W

    2016-02-01

    Micro-organisms isolated from the oral cavity may translocate to the lower airways during mechanical ventilation (MV) leading to ventilator-associated pneumonia (VAP). Changes within the dental plaque microbiome during MV have been documented previously, primarily using culture-based techniques. The aim of this study was to use community profiling by high throughput sequencing to comprehensively analyse suggested microbial changes within dental plaque during MV. Bacterial 16S rDNA gene sequences were obtained from 38 samples of dental plaque sampled from 13 mechanically ventilated patients and sequenced using the Illumina platform. Sequences were processed using Mothur, applying a 97% gene similarity cut-off for bacterial species level identifications. A significant 'microbial shift' occurred in the microbial community of dental plaque during MV for nine out of 13 patients. Following extubation, or removal of the endotracheal tube that facilitates ventilation, sampling revealed a decrease in the relative abundance of potential respiratory pathogens and a compositional change towards a more predominantly (in terms of abundance) oral microbiota including Prevotella spp., and streptococci. The results highlight the need to better understand microbial shifts in the oral microbiome in the development of strategies to reduce VAP, and may have implications for the development of other forms of pneumonia such as community-acquired infection.

  14. Pathogenic agents in freshwater resources

    Science.gov (United States)

    Geldreich, Edwin E.

    1996-02-01

    Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.

  15. Fourteenth-Sixteenth Microbial Genomics Conference-2006-2008

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jeffrey H

    2011-04-18

    The concept of an annual meeting on the E. coli genome was formulated at the Banbury Center Conference on the Genome of E. coli in October, 1991. The first meeting was held on September 10-14, 1992 at the University of Wisconsin, and this was followed by a yearly series of meetings, and by an expansion to include The fourteenth meeting took place September 24-28, 2006 at Lake Arrowhead, CA, the fifteenth September 16-20, 2007 at the University of Maryland, College Park, MD, and the sixteenth September 14-18, 2008 at Lake Arrowhead. The full program for the 16th meeting is attached. There have been rapid and exciting advances in microbial genomics that now make possible comparing large data sets of sequences from a wide variety of microbial genomes, and from whole microbial communities. Examining the “microbiomes”, the living microbial communities in different host organisms opens up many possibilities for understanding the landscape presented to pathogenic microorganisms. For quite some time there has been a shifting emphasis from pure sequence data to trying to understand how to use that information to solve biological problems. Towards this end new technologies are being developed and improved. Using genetics, functional genomics, and proteomics has been the recent focus of many different laboratories. A key element is the integration of different aspects of microbiology, sequencing technology, analysis techniques, and bioinformatics. The goal of these conference is to provide a regular forum for these interactions to occur. While there have been a number of genome conferences, what distinguishes the Microbial Genomics Conference is its emphasis on bringing together biology and genetics with sequencing and bioinformatics. Also, this conference is the longest continuing meeting, now established as a major regular annual meeting. In addition to its coverage of microbial genomes and biodiversity, the meetings also highlight microbial communities and the use of

  16. Egypt’s Red Sea Coast: Phylogenetic analysis of cultured microbial consortia in industrialized sites

    Directory of Open Access Journals (Sweden)

    Ghada A. Mustafa

    2014-08-01

    Full Text Available The Red Sea has a unique geography and ecosystem and its shores are very rich in mangrove, macro-algae and coral reefs. Different sources of pollution are affecting the Red Sea shores and waters which impacts biological life including microbial life. We assessed the effects of industrialization, along the Egyptian Red Sea coast in eight coastal sites and two lakes, on microbial life. The bacterial community in sediment samples was analyzed using bacterial 16S rDNApyrosequencing of V6-V4 hypervariable regions. Taxonomical assignment of 131,402 significant reads to major bacterial taxa revealed five main bacterial phyla dominating the sampled Red Sea sites. This includes Proteobacteria (68%, Firmicutes (13%, Fusobacteria (12%, Bacteriodetes (6% and Spirochetes (0.03%. Further analysis revealed distinct bacterial consortium formed mainly of: 1 marine Vibrio’s- suggesting a Marine Vibrio phenomenon 2 potential human pathogens and 3 oil-degrading bacteria. We discuss a distinct microbial consortium in Solar Lake West near Taba/Eilat and Saline Lake in Ras Muhammad; revealing the highest abundance of human pathogens versus no pathogens, respectively. Our results draw attention to the affects of industrialization on the Red Sea, and suggest further analysis to overcome hazardous affects on the impacted sites.

  17. Highly pathogenic avian influenza.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  18. Flow cytometric analysis of microbial contamination in food industry technological lines--initial study.

    Science.gov (United States)

    Józwa, Wojciech; Czaczyk, Katarzyna

    2012-04-02

    Flow cytometry constitutes an alternative for traditional methods of microorganisms identification and analysis, including methods requiring cultivation step. It enables the detection of pathogens and other microorganisms contaminants without the need to culture microbial cells meaning that the sample (water, waste or food e.g. milk, wine, beer) may be analysed directly. This leads to a significant reduction of time required for analysis allowing monitoring of production processes and immediate reaction in case of contamination or any disruption occurs. Apart from the analysis of raw materials or products on different stages of manufacturing process, the flow cytometry seems to constitute an ideal tool for the assessment of microbial contamination on the surface of technological lines. In the present work samples comprising smears from 3 different surfaces of technological lines from fruit and vegetable processing company from Greater Poland were analysed directly with flow cytometer. The measured parameters were forward and side scatter of laser light signals allowing the estimation of microbial cell contents in each sample. Flow cytometric analysis of the surface of food industry production lines enable the preliminary evaluation of microbial contamination within few minutes from the moment of sample arrival without the need of sample pretreatment. The presented method of fl ow cytometric initial evaluation of microbial state of food industry technological lines demonstrated its potential for developing a robust, routine method for the rapid and labor-saving detection of microbial contamination in food industry.

  19. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials.

    Science.gov (United States)

    Somboonna, Naraporn; Wilantho, Alisa; Jankaew, Kruawun; Assawamakin, Anunchai; Sangsrakru, Duangjai; Tangphatsornruang, Sithichoke; Tongsima, Sissades

    2014-01-01

    The effects of tsunamis on microbial ecologies have been ill-defined, especially in Phang Nga province, Thailand. This ecosystem was catastrophically impacted by the 2004 Indian Ocean tsunami as well as the 600 year-old tsunami in Phra Thong island, Phang Nga province. No study has been conducted to elucidate their effects on microbial ecology. This study represents the first to elucidate their effects on microbial ecology. We utilized metagenomics with 16S and 18S rDNA-barcoded pyrosequencing to obtain prokaryotic and eukaryotic profiles for this terrestrial site, tsunami affected (S1), as well as a parallel unaffected terrestrial site, non-tsunami affected (S2). S1 demonstrated unique microbial community patterns than S2. The dendrogram constructed using the prokaryotic profiles supported the unique S1 microbial communities. S1 contained more proportions of archaea and bacteria domains, specifically species belonging to Bacteroidetes became more frequent, in replacing of the other typical floras like Proteobacteria, Acidobacteria and Basidiomycota. Pathogenic microbes, including Acinetobacter haemolyticus, Flavobacterium spp. and Photobacterium spp., were also found frequently in S1. Furthermore, different metabolic potentials highlighted this microbial community change could impact the functional ecology of the site. Moreover, the habitat prediction based on percent of species indicators for marine, brackish, freshwater and terrestrial niches pointed the S1 to largely comprise marine habitat indicating-species.

  20. Microbial glycoproteomics

    DEFF Research Database (Denmark)

    Halim, Adnan; Anonsen, Jan Haug

    2017-01-01

    Mass spectrometry-based "-omics" technologies are important tools for global and detailed mapping of post-translational modifications. Protein glycosylation is an abundant and important post translational modification widespread throughout all domains of life. Characterization of glycoproteins...... and research in this area is rapidly accelerating. Here, we review recent developments in glycoproteomic technologies with a special focus on microbial protein glycosylation....

  1. Intervention strategies for control of foodborne pathogens

    Science.gov (United States)

    Juneja, Vijay K.

    2004-03-01

    The increasing numbers of illnesses associated with foodborne pathogens such as Listeria monocytogenes and Escherichia coli O157:H7, has renewed concerns about food safety because of consumer preferences for minimally processed foods that offer convenience in availability and preparation. Accordingly, the need for better control of foodborne pathogens has been paramount in recent years. Mechanical removal of microorganisms from food can be accomplished by centrifugation, filtration, trimming and washing. Cleaning and sanitation strategies can be used for minimizing the access of microorganisms in foods from various sources. Other strategies for control of foodborne pathogens include established physical microbiocidal treatments such as ionizing radiation and heating. Research has continued to demonstrate that food irradiation is a suitable process to control and possibly eliminate foodborne pathogens, for example Listeria monocytogenes and Escherichia coli O157:H7, from a number of raw and cooked meat and poultry products. Heat treatment is the most common method in use today for the inactivation of microorganisms. Microorganisms can also be destroyed by nonthermal treatments, such as application of high hydrostatic pressure, pulsed electric fields, oscillating magnetic fields or a combination of physical processes such as heat-irradiation, or heat-high hydrostatic pressure, etc. Each of the non-thermal technologies has specific applications in terms of the types of food that can be processed. Both conventional and newly developed physical treatments can be used in combination for controlling foodborne pathogens and enhancing the safety and shelf life of foods. Recent research has focused on combining traditional preservation factors with emerging intervention technologies. However, many key issues still need to be addressed for combination preservation factors or technologies to be useful in the food industry to meet public demands for foods with enhanced safety

  2. Microbial source tracking: a tool for identifying sources of microbial contamination in the food chain.

    Science.gov (United States)

    Fu, Ling-Lin; Li, Jian-Rong

    2014-01-01

    The ability to trace fecal indicators and food-borne pathogens to the point of origin has major ramifications for food industry, food regulatory agencies, and public health. Such information would enable food producers and processors to better understand sources of contamination and thereby take corrective actions to prevent transmission. Microbial source tracking (MST), which currently is largely focused on determining sources of fecal contamination in waterways, is also providing the scientific community tools for tracking both fecal bacteria and food-borne pathogens contamination in the food chain. Approaches to MST are commonly classified as library-dependent methods (LDMs) or library-independent methods (LIMs). These tools will have widespread applications, including the use for regulatory compliance, pollution remediation, and risk assessment. These tools will reduce the incidence of illness associated with food and water. Our aim in this review is to highlight the use of molecular MST methods in application to understanding the source and transmission of food-borne pathogens. Moreover, the future directions of MST research are also discussed.

  3. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    Science.gov (United States)

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  4. Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing.

    Directory of Open Access Journals (Sweden)

    A Mark Ibekwe

    Full Text Available Current microbial source tracking (MST methods for water depend on testing for fecal indicator bacterial counts or specific marker gene sequences to identify fecal contamination where potential human pathogenic bacteria could be present. In this study, we applied 454 high-throughput pyrosequencing to identify bacterial pathogen DNA sequences, including those not traditionally monitored by MST and correlated their abundances to specific sources of contamination such as urban runoff and agricultural runoff from concentrated animal feeding operations (CAFOs, recreation park area, waste-water treatment plants, and natural sites with little or no human activities. Samples for pyrosequencing were surface water, and sediment collected from 19 sites. A total of 12,959 16S rRNA gene sequences with average length of ≤400 bp were obtained, and were assigned to corresponding taxonomic ranks using ribosomal database project (RDP, Classifier and Greengenes databases. The percent of total potential pathogens were highest in urban runoff water (7.94%, agricultural runoff sediment (6.52%, and Prado Park sediment (6.00%, respectively. Although the numbers of DNA sequence tags from pyrosequencing were very high for the natural site, corresponding percent potential pathogens were very low (3.78-4.08%. Most of the potential pathogenic bacterial sequences identified were from three major phyla, namely, Proteobacteria, Bacteroidetes, and Firmicutes. The use of deep sequencing may provide improved and faster methods for the identification of pathogen sources in most watersheds so that better risk assessment methods may be developed to enhance public health.

  5. Post-translational modification of host proteins in pathogen-triggered defence signalling in plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.; Joosten, M.H.A.J.

    2008-01-01

    Microbial plant pathogens impose a continuous threat to global food production. Similar to animals, an innate immune system allows plants to recognize pathogens and swiftly activate defence. To activate a rapid response, receptor-mediated pathogen perception and subsequent downstream signalling

  6. Development and application of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.

    2017-12-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural

  7. Indicator and Pathogen Removal by Low Impact Development Best Management Practices

    Directory of Open Access Journals (Sweden)

    Jian Peng

    2016-12-01

    Full Text Available Microbial contamination in urban stormwater is one of the most widespread and challenging water quality issues in developed countries. Low impact development (LID best management practices (BMPs restore pre-urban hydrology by treating and/or harvesting urban runoff and stormwater, and can be designed to remove many contaminants including pathogens. One particular type of LID BMP, stormwater biofilters (i.e., vegetated media filters, also known as bioinfiltration, bioretention, or rain gardens, is becoming increasingly popular in urban environments due to its multiple co-benefits (e.g., improved hydrology, water quality, local climate and aesthetics. However, increased understanding of the factors influencing microbial removal in biofilters is needed to effectively design and implement biofilters for microbial water quality improvement. This paper aims to provide a holistic view of microbial removal in biofilter systems, and reviews the effects of various design choices such as filter media, vegetation, infauna, submerged zones, and hydraulic retention time on microbial removal. Limitations in current knowledge and recommendations for future research are also discussed.

  8. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Directory of Open Access Journals (Sweden)

    Julianne L Baron

    Full Text Available Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  9. Microbial xanthophylls.

    Science.gov (United States)

    Bhosale, Prakash; Bernstein, Paul S

    2005-09-01

    Xanthophylls are oxygenated carotenoids abundant in the human food supply. Lutein, zeaxanthin, and cryptoxanthin are major xanthophyll carotenoids in human plasma. The consumption of these xanthophylls is directly associated with reduction in the risk of cancers, cardiovascular disease, age-related macular degeneration, and cataract formation. Canthaxanthin and astaxanthin also have considerable importance in aquaculture for salmonid and crustacean pigmentation, and are of commercial interest for the pharmaceutical and food industries. Chemical synthesis is a major source for the heavy demand of xanthophylls in the consumer market; however, microbial producers also have potential as commercial sources. In this review, we discuss the biosynthesis, commercial utility, and major microbial sources of xanthophylls. We also present a critical review of current research and technologies involved in promoting microbes as potential commercial sources for mass production.

  10. Immunity to plant pathogens and iron homeostasis.

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle.

    Science.gov (United States)

    Auffret, Marc D; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; John Wallace, R; Freeman, Tom C; Stewart, Robert; Watson, Mick; Roehe, Rainer

    2017-12-11

    The emergence and spread of antimicrobial resistance is the most urgent current threat to human and animal health. An improved understanding of the abundance of antimicrobial resistance genes and genes associated with microbial colonisation and pathogenicity in the animal gut will have a major role in reducing the contribution of animal production to this problem. Here, the influence of diet on the ruminal resistome and abundance of pathogenicity genes was assessed in ruminal digesta samples taken from 50 antibiotic-free beef cattle, comprising four cattle breeds receiving two diets containing different proportions of concentrate. Two hundred and four genes associated with antimicrobial resistance (AMR), colonisation, communication or pathogenicity functions were identified from 4966 metagenomic genes using KEGG identification. Both the diversity and abundance of these genes were higher in concentrate-fed animals. Chloramphenicol and microcin resistance genes were dominant in samples from forage-fed animals (P resistances were enriched in concentrate-fed animals. The concentrate-based diet also increased the relative abundance of Proteobacteria, which includes many animal and zoonotic pathogens. A high ratio of Proteobacteria to (Firmicutes + Bacteroidetes) was confirmed as a good indicator for rumen dysbiosis, with eight cases all from concentrate-fed animals. Finally, network analysis demonstrated that the resistance/pathogenicity genes are potentially useful as biomarkers for health risk assessment of the ruminal microbiome. Diet has important effects on the complement of AMR genes in the rumen microbial community, with potential implications for human and animal health.

  12. Ecosystem screening approach for pathogen-associated microorganisms affecting host disease.

    Science.gov (United States)

    Galiana, Eric; Marais, Antoine; Mura, Catherine; Industri, Benoît; Arbiol, Gilles; Ponchet, Michel

    2011-09-01

    The microbial community in which a pathogen evolves is fundamental to disease outcome. Species interacting with a pathogen on the host surface shape the distribution, density, and genetic diversity of the inoculum, but the role of these species is rarely determined. The screening method developed here can be used to characterize pathogen-associated species affecting disease. This strategy involves three steps: (i) constitution of the microbial community, using the pathogen as a trap; (ii) community selection, using extracts from the pathogen as the sole nutrient source; and (iii) molecular identification and the screening of isolates focusing on their effects on the growth of the pathogen in vitro and host disease. This approach was applied to a soilborne plant pathogen, Phytophthora parasitica, structured in a biofilm, for screening the microbial community from the rhizosphere of Nicotiana tabacum (the host). Two of the characterized eukaryotes interfered with the oomycete cycle and may affect the host disease. A Vorticella species acted through a mutualistic interaction with P. parasitica, disseminating pathogenic material by leaving the biofilm. A Phoma species established an amensal interaction with P. parasitica, strongly suppressing disease by inhibiting P. parasitica germination. This screening method is appropriate for all nonobligate pathogens. It allows the definition of microbial species as promoters or suppressors of a disease for a given biotope. It should also help to identify important microbial relationships for ecology and evolution of pathogens.

  13. Multi-Probe Investigation of Proteomic Structure of Pathogens

    International Nuclear Information System (INIS)

    Malkin, A J; Plomp, M; Leighton, T J; Vogelstein, B; Wheeler, K E

    2008-01-01

    Complete genome sequences are available for understanding biotransformation, environmental resistance and pathogenesis of microbial, cellular and pathogen systems. The present technological and scientific challenges are to unravel the relationships between the organization and function of protein complexes at cell, microbial and pathogens surfaces, to understand how these complexes evolve during the bacterial, cellular and pathogen life cycles, and how they respond to environmental changes, chemical stimulants and therapeutics. In particular, elucidating the molecular structure and architecture of human pathogen surfaces is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance and development of countermeasures against bioterrorist agents. The objective of this project was to investigate the architecture, proteomic structure, and function of bacterial spores through a combination of high-resolution in vitro atomic force microscopy (AFM) and AFM-based immunolabeling with threat-specific antibodies. Particular attention in this project was focused on spore forming Bacillus species including the Sterne vaccine strain of Bacillus anthracis and the spore forming near-neighbor of Clostridium botulinum, C. novyi-NT. Bacillus species, including B. anthracis, the causative agent of inhalation anthrax are laboratory models for elucidating spore structure/function. Even though the complete genome sequence is available for B. subtilis, cereus, anthracis and other species, the determination and composition of spore structure/function is not understood. Prof. B. Vogelstein and colleagues at the John Hopkins University have recently developed a breakthrough bacteriolytic therapy for cancer treatment (1). They discovered that intravenously injected Clostridium novyi-NT spores germinate exclusively within the avascular regions of tumors in mice and destroy advanced cancerous lesions. The bacteria were also

  14. Phosphorus fractions, microbial biomass and enzyme activities in ...

    African Journals Online (AJOL)

    Potohar, northern Punjab, Pakistan in September, 2008 and analysed for P fractions and microbial parameters including microbial biomass C, microbial biomass N, microbial biomass P, and activities of dehydrogenase and alkaline phosphatase enzymes. The average size of different P fractions (% of total P) in the soils ...

  15. Effectiveness of irradiation in killing pathogens

    International Nuclear Information System (INIS)

    Yeager, J.G.; Ward, R.L.

    1980-01-01

    United States Environmental Protection Agency regulations include gamma ray irradiation of sludge as an approved Process to Further Reduce Pathogens (PFRP) prior to land application. Research at Sandia National Laboratories on pathogen inactivation in sludge by gamma irradiation has demonstrated that the 1 Mrad PFRP dose is capable, by itself, of eliminating bacterial, fungal, and parasitic pathogens from sludge. Gamma irradiation of sludge in conjunction with the required Processes to Significantly Reduce Pathogens (PSRP) should also eliminate the viral hazard from wastewater sludges

  16. Cleanliness in context: reconciling hygiene with a modern microbial perspective.

    Science.gov (United States)

    Vandegrift, Roo; Bateman, Ashley C; Siemens, Kyla N; Nguyen, May; Wilson, Hannah E; Green, Jessica L; Van Den Wymelenberg, Kevin G; Hickey, Roxana J

    2017-07-14

    The concept of hygiene is rooted in the relationship between cleanliness and the maintenance of good health. Since the widespread acceptance of the germ theory of disease, hygiene has become increasingly conflated with sterilization. In reviewing studies across the hygiene literature (most often hand hygiene), we found that nearly all studies of hand hygiene utilize bulk reduction in bacterial load as a proxy for reduced transmission of pathogenic organisms. This treatment of hygiene may be insufficient in light of recent microbial ecology research, which has demonstrated that humans have intimate and evolutionarily significant relationships with a diverse assemblage of microorganisms (our microbiota). The human skin is home to a diverse and specific community of microorganisms, which include members that exist across the ecological spectrum from pathogen through commensal to mutualist. Most evidence suggests that the skin microbiota is likely of direct benefit to the host and only rarely exhibits pathogenicity. This complex ecological context suggests that the conception of hygiene as a unilateral reduction or removal of microbes has outlived its usefulness. As such, we suggest the explicit definition of hygiene as "those actions and practices that reduce the spread or transmission of pathogenic microorganisms, and thus reduce the incidence of disease."

  17. Microbial Ecology of Four Coral Atolls in the Northern Line Islands

    Science.gov (United States)

    Smriga, Steven; Edwards, Robert A.; Angly, Florent; Wegley, Linda; Hatay, Mark; Hall, Dana; Brown, Elysa; Haynes, Matthew; Krause, Lutz; Sala, Enric; Sandin, Stuart A.; Thurber, Rebecca Vega; Willis, Bette L.; Azam, Farooq; Knowlton, Nancy; Rohwer, Forest

    2008-01-01

    Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated (∼5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems

  18. Microbial ecology of four coral atolls in the Northern Line Islands.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Dinsdale

    Full Text Available Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp. and heterotrophs. In contrast, Kiritimati, a large and populated ( approximately 5500 people atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1 oceaonographic and/or hydrographic conditions or 2 human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation

  19. Recognition of microbial glycolipids by Natural Killer T cells

    Directory of Open Access Journals (Sweden)

    Dirk Michael Zajonc

    2015-08-01

    Full Text Available T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the Major Histocompatibility (MHC family (MHC I and II, lipids, glycolipids and lipopeptides can be presented by the non-classical MHC member CD1. The best studied subset of lipid-reactive T cells are Type I Natural killer T (iNKT cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi the causative agents of Lyme disease and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR, leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18 and TCR stimulation. Many microbes carry TLR antigens and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here we will review the molecular basis of iNKT cell

  20. Emerging Pathogens Initiative (EPI)

    Data.gov (United States)

    Department of Veterans Affairs — The Emerging Pathogens Initiative (EPI) database contains emerging pathogens information from the local Veterans Affairs Medical Centers (VAMCs). The EPI software...

  1. Advances and Challenges in Viability Detection of Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Dexin Zeng

    2016-11-01

    Full Text Available Foodborne outbreaks are a serious public health and food safety concern worldwide. There is a great demand for rapid, sensitive, specific, and accurate methods to detect microbial pathogens in foods. Conventional methods based on cultivation of pathogens have been the gold standard protocols; however, they take up to a week to complete. Molecular assays such as polymerase chain reaction (PCR, sequencing, microarray technologies have been widely used in detection of foodborne pathogens. Among molecular assays, PCR technology conventional and real-time PCR (qPCR is most commonly used in the foodborne pathogen detection because of its high sensitivity and specificity. However, a major drawback of PCR is its inability to differentiate the DNA from dead and viable cells, and this is a critical factor for the food industry, regulatory agencies and the consumer. To remedy this shortcoming, researchers have used biological dyes such as ethidium monoazide (EMA and propidium monoazide (PMA to pretreat samples before DNA extraction to intercalate the DNA of dead cells in food samples, and then proceed with regular DNA preparation and qPCR. By combining PMA treatment with qPCR (PMA-qPCR, scientists have applied this technology to detect viable cells of various bacterial pathogens in foods. The incorporation of PMA into PCR-based assays for viability detection of pathogens in foods has increased significantly in the last decade. On the other hand, some downsides with this approach have been noted, particularly to achieve complete suppression of signal of DNA from the dead cells present in some particular food matrix. Nowadays, there is a tendency of more and more researchers adapting this approach for viability detection; and a few commercial kits based on PMA are available in the market. As time goes on, more scientists apply this approach to a broader range of pathogen detections, this viability approach (PMA or other chemicals such as platinum compound

  2. Bacterial food-borne pathogens in Indian food

    International Nuclear Information System (INIS)

    Bandekar, J.R.

    2015-01-01

    Food technology and food processing techniques have made tremendous advances in preservation of food and ensuring safety of food by killing food-borne pathogens. In addition to old techniques such as pasteurization, canning, dehydration, fermentation and salting, a number of new techniques such as radiation processing, high pressure technology and pulsed electric field technology are being applied for preservation of food and to ensure food safety. Total Quality Management (TQM) concepts have been developed to take care of food safety from farm to table. Hazard Analysis at Critical Control Points (HACCP) is being applied for mass scale production of food to make food free from pathogens. Despite these advances, food-borne diseases have become one of the most widespread public health problems in the world. About two thirds of all the outbreaks are traced to microbial contaminated food. According to World Health Organization (WHO) estimates, food-borne and waterborne diarrhoeal diseases kill an estimated 2 million people annually, including many children. Food safety is a major concern not only for developing countries but also for the developed countries. A number of factors such as emergence of new food-borne pathogens, development of drug resistance in pathogens, changing life style, globalization of the food supply etc. are responsible for the continuous persistence of food-borne diseases. The food-borne disease outbreaks due to E. coli O157:H7, Listeria monocytogenes, Salmonella and Campylobacter, are responsible for recall of many foods resulting in heavy losses to food industry. Due to consumer demand, a number of Ready-To-Eat (RTE) minimally processed foods are increasingly marketed; however, there is increased risk of foodborne diseases with these products. Food Technology Division of Bhabha Atomic Research Centre, Mumbai, has been working on food-borne bacterial pathogens particularly Salmonella, Campylobacter, Listeria monocytogenes, Vibrio and Aeromonasf

  3. Pathogen filtration to control plant disease outbreak in greenhouse production

    Science.gov (United States)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei

    2016-04-01

    Previous research has been extensively focused on understanding the fate and transport of human microbial pathogens in soil and water environments. However, little is known about the transport of plant pathogens, although these pathogens are often found in irrigation waters and could cause severe crop damage and economical loss. Water mold pathogens including Phytophthora spp. and Pythium spp. are infective to a wide range of vegetable and floriculture crops, and they are primarily harbored in soils and disseminated through water flow. It is challenging to control these pathogens because they often quickly develop resistance to many fungicides. Therefore, this multi-scale study aimed to investigate physical removal of plant pathogens from water by filtration, thus reducing the pathogen exposure risks to crops. In column-scale experiments, we studied controlling factors on the transport and retention of Phytophthora capsici zoospores in saturated columns packed with iron oxide coated-sand and uncoated-sand under varying solution chemistry. Biflagellate zoospores were less retained than encysted zoospores, and lower solution pH and greater iron oxide content increased the retention of encysted zoospores. These results provided insights on environmental dispersal of Phytophthora zoospores in natural soils as well as on developing cost-effective engineered filtration systems for pathogen removal. Using small-scale greenhouse filtration systems, we further investigated the performance of varying filter media (i.e., granular sand, iron oxide coated ceramic porous media, and activated carbon) in mitigating disease outbreaks of Phytophthora and Pythium for greenhouse-grown squash and poinsettia, respectively, in comparison with fungicide treatment. For squash, filtration by iron oxide coated media was more effective in reducing the Phytophthora infection, comparing to sand filtration and fungicide application. For poinsettia, sand filtration performed better in controlling

  4. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    Science.gov (United States)

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  5. Defining Disturbance for Microbial Ecology.

    Science.gov (United States)

    Plante, Craig J

    2017-08-01

    Disturbance can profoundly modify the structure of natural communities. However, microbial ecologists' concept of "disturbance" has often deviated from conventional practice. Definitions (or implicit usage) have frequently included climate change and other forms of chronic environmental stress, which contradict the macrobiologist's notion of disturbance as a discrete event that removes biomass. Physical constraints and disparate biological characteristics were compared to ask whether disturbances fundamentally differ in microbial and macroorganismal communities. A definition of "disturbance" for microbial ecologists is proposed that distinguishes from "stress" and other competing terms, and that is in accord with definitions accepted by plant and animal ecologists.

  6. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  7. Immunity to intestinal pathogens: lessons learned from Salmonella

    Science.gov (United States)

    McSorley, Stephen J.

    2014-01-01

    Summary Salmonella are a common source of food or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens. PMID:24942689

  8. High Throughput Sequencing for Detection of Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Camilla Sekse

    2017-10-01

    Full Text Available High-throughput sequencing (HTS is becoming the state-of-the-art technology for typing of microbial isolates, especially in clinical samples. Yet, its application is still in its infancy for monitoring and outbreak investigations of foods. Here we review the published literature, covering not only bacterial but also viral and Eukaryote food pathogens, to assess the status and potential of HTS implementation to inform stakeholders, improve food safety and reduce outbreak impacts. The developments in sequencing technology and bioinformatics have outpaced the capacity to analyze and interpret the sequence data. The influence of sample processing, nucleic acid extraction and purification, harmonized protocols for generation and interpretation of data, and properly annotated and curated reference databases including non-pathogenic “natural” strains are other major obstacles to the realization of the full potential of HTS in analytical food surveillance, epidemiological and outbreak investigations, and in complementing preventive approaches for the control and management of foodborne pathogens. Despite significant obstacles, the achieved progress in capacity and broadening of the application range over the last decade is impressive and unprecedented, as illustrated with the chosen examples from the literature. Large consortia, often with broad international participation, are making coordinated efforts to cope with many of the mentioned obstacles. Further rapid progress can therefore be prospected for the next decade.

  9. Microbial effects

    International Nuclear Information System (INIS)

    Sharpe, V.J.

    1985-10-01

    The long term safety and integrity of radioactive waste disposal sites proposed for use by Ontario Hydro may be affected by the release of radioactive gases. Microbes mediate the primary pathways of waste degradation and hence an assessment of their potential to produce gaseous end products from the breakdown of low level waste was performed. Due to a number of unknown variables, assumptions were made regarding environmental and waste conditions that controlled microbial activity; however, it was concluded that 14 C and 3 H would be produced, albeit over a long time scale of about 1500 years for 14 C in the worst case situation

  10. Antibiotic Resistance in Foodborne Pathogens

    OpenAIRE

    Walsh, Ciara; Duffy, Geraldine

    2013-01-01

    Wide-spread antibiotic resistance among bacterial pathogens is now a serious public health issue and multi-antibiotic resistance has been reported in many foodborne pathogens including Salmonella and E. coli. A study to determine antibiotic resistance profiles of a range of Salmonella and Verocytotoxigenic E.coli (VTEC) isolated from Irish foods revealed significant levels of antibiotic resistance in the strains. S. typhimurium DT104 were multiantibiotic resistant with 97% resistant to 7 anti...

  11. Rumen microbial genomics

    International Nuclear Information System (INIS)

    Morrison, M.; Nelson, K.E.

    2005-01-01

    Improving microbial degradation of plant cell wall polysaccharides remains one of the highest priority goals for all livestock enterprises, including the cattle herds and draught animals of developing countries. The North American Consortium for Genomics of Fibrolytic Ruminal Bacteria was created to promote the sequencing and comparative analysis of rumen microbial genomes, offering the potential to fully assess the genetic potential in a functional and comparative fashion. It has been found that the Fibrobacter succinogenes genome encodes many more endoglucanases and cellodextrinases than previously isolated, and several new processive endoglucanases have been identified by genome and proteomic analysis of Ruminococcus albus, in addition to a variety of strategies for its adhesion to fibre. The ramifications of acquiring genome sequence data for rumen microorganisms are profound, including the potential to elucidate and overcome the biochemical, ecological or physiological processes that are rate limiting for ruminal fibre degradation. (author)

  12. Waterborne Pathogens: Detection Methods and Challenges

    Directory of Open Access Journals (Sweden)

    Flor Yazmín Ramírez-Castillo

    2015-05-01

    Full Text Available Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health.

  13. Permissiveness of soil microbial communities towards broad host range plasmids

    DEFF Research Database (Denmark)

    Klümper, Uli

    . Plasmids are implicated in the rapid spread of antibiotic resistance and the emergence of multi-resistant pathogenic bacteria, making it crucial to be able to quantify, understand, and, ideally, control plasmid transfer in mixed microbial communities. The fate of plasmids in microbial communities...... of microbial communities may be directly interconnected through transfer of BHR plasmids at a so far unrecognized level. The developed method furthermore enabled me to explore how agronomic practices may affect gene transfer in soil microbial communities. I compared bacterial communities extracted from plots...

  14. Algae as reservoirs for coral pathogens.

    Directory of Open Access Journals (Sweden)

    Michael J Sweet

    Full Text Available Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS in the Indo-Pacific and Yellow Band Disease (YBD in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively. Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is

  15. Molecular Mechanisms of Bacterial Pathogenicity

    Science.gov (United States)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  16. Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment.

    Science.gov (United States)

    Hsu, Tiffany; Joice, Regina; Vallarino, Jose; Abu-Ali, Galeb; Hartmann, Erica M; Shafquat, Afrah; DuLong, Casey; Baranowski, Catherine; Gevers, Dirk; Green, Jessica L; Morgan, Xochitl C; Spengler, John D; Huttenhower, Curtis

    2016-01-01

    profiled the Boston subway system, which provides 238 million trips per year overseen by the Massachusetts Bay Transportation Authority (MBTA). This yielded the first high-precision microbial survey of a variety of surfaces, ridership environments, and microbiological functions (including tests for potential pathogenicity) in a mass transit environment. Characterizing microbial profiles for multiple transit systems will become increasingly important for biosurveillance of antibiotic resistance genes or pathogens, which can be early indicators for outbreak or sanitation events. Understanding how human contact, materials, and the environment affect microbial profiles may eventually allow us to rationally design public spaces to sustain our health in the presence of microbial reservoirs. Author Video : An author video summary of this article is available.

  17. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review.

    Science.gov (United States)

    Dukare, Ajinath Shridhar; Paul, Sangeeta; Nambi, V Eyarkai; Gupta, Ram Kishore; Singh, Rajbir; Sharma, Kalyani; Vishwakarma, Rajesh Kumar

    2018-01-16

    Fungal diseases result in significant losses of fruits and vegetables during handling, transportation and storage. At present, post-production fungal spoilage is predominantly controlled by using synthetic fungicides. Under the global climate change scenario and with the need for sustainable agriculture, biological control methods of fungal diseases, using antagonistic microorganisms, are emerging as ecofriendly alternatives to the use of fungicides. The potential of microbial antagonists, isolated from a diversity of natural habitats, for postharvest disease suppression has been investigated. Postharvest biocontrol systems involve tripartite interaction between microbial antagonists, the pathogen and the host, affected by environmental conditions. Several modes for fungistatic activities of microbial antagonists have been suggested, including competition for nutrients and space, mycoparasitism, secretion of antifungal antibiotics and volatile metabolites and induction of host resistance. Postharvest application of microbial antagonists is more successful for efficient disease control in comparison to pre-harvest application. Attempts have also been made to improve the overall efficacy of antagonists by combining them with different physical and chemical substances and methods. Globally, many microbe-based biocontrol products have been developed and registered for commercial use. The present review provides a brief overview on the use of microbial antagonists as postharvest biocontrol agents and summarises information on their isolation, mechanisms of action, application methods, efficacy enhancement, product formulation and commercialisation.

  18. High-throughput DNA microarray detection of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley, Nepal.

    Science.gov (United States)

    Inoue, Daisuke; Hinoura, Takuji; Suzuki, Noriko; Pang, Junqin; Malla, Rabin; Shrestha, Sadhana; Chapagain, Saroj Kumar; Matsuzawa, Hiroaki; Nakamura, Takashi; Tanaka, Yasuhiro; Ike, Michihiko; Nishida, Kei; Sei, Kazunari

    2015-01-01

    Because of heavy dependence on groundwater for drinking water and other domestic use, microbial contamination of groundwater is a serious problem in the Kathmandu Valley, Nepal. This study investigated comprehensively the occurrence of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley by applying DNA microarray analysis targeting 941 pathogenic bacterial species/groups. Water quality measurements found significant coliform (fecal) contamination in 10 of the 11 investigated groundwater samples and significant nitrogen contamination in some samples. The results of DNA microarray analysis revealed the presence of 1-37 pathogen species/groups, including 1-27 biosafety level 2 ones, in 9 of the 11 groundwater samples. While the detected pathogens included several feces- and animal-related ones, those belonging to Legionella and Arthrobacter, which were considered not to be directly associated with feces, were detected prevalently. This study could provide a rough picture of overall pathogenic bacterial contamination in the Kathmandu Valley, and demonstrated the usefulness of DNA microarray analysis as a comprehensive screening tool of a wide variety of pathogenic bacteria.

  19. Hiding in Fresh Fruits and Vegetables: Opportunistic Pathogens May Cross Geographical Barriers

    Directory of Open Access Journals (Sweden)

    Zahra S. Al-Kharousi

    2016-01-01

    Full Text Available Different microbial groups of the microbiome of fresh produce can have diverse effects on human health. This study was aimed at identifying some microbial communities of fresh produce by analyzing 105 samples of imported fresh fruits and vegetables originated from different countries in the world including local samples (Oman for aerobic plate count and the counts of Enterobacteriaceae, Enterococcus, and Staphylococcus aureus. The isolated bacteria were identified by molecular (PCR and biochemical methods (VITEK 2. Enterobacteriaceae occurred in 60% of fruits and 91% of vegetables. Enterococcus was isolated from 20% of fruits and 42% of vegetables. E. coli and S. aureus were isolated from 22% and 7% of vegetables, respectively. Ninety-seven bacteria comprising 21 species were similarly identified by VITEK 2 and PCR to species level. E. coli, Klebsiella pneumoniae, Enterococcus casseliflavus, and Enterobacter cloacae were the most abundant species; many are known as opportunistic pathogens which may raise concern to improve the microbial quality of fresh produce. Phylogenetic trees showed no relationship between clustering of the isolates based on the 16S rRNA gene and the original countries of fresh produce. Intercountry passage of opportunistic pathogens in fresh produce cannot be ruled out, which requires better management.

  20. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  1. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-06-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread. 

  2. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-02-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important for the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread.

  3. Beverages obtained from soda fountain machines in the U.S. contain microorganisms, including coliform bacteria.

    Science.gov (United States)

    White, Amy S; Godard, Renee D; Belling, Carolyn; Kasza, Victoria; Beach, Rebecca L

    2010-01-31

    Ninety beverages of three types (sugar sodas, diet sodas and water) were obtained from 20 self-service and 10 personnel-dispensed soda fountains, analyzed for microbial contamination, and evaluated with respect to U.S. drinking water regulations. A follow-up study compared the concentration and composition of microbial populations in 27 beverages collected from 9 soda fountain machines in the morning as well as in the afternoon. Ice dispensed from these machines was also examined for microbial contamination. While none of the ice samples exceeded U.S. drinking water standards, coliform bacteria was detected in 48% of the beverages and 20% had a heterotrophic plate count greater than 500cfu/ml. Statistical analyses revealed no difference in levels of microbial contamination between beverage types or between those dispensed from self-service and personnel-dispensed soda fountains. More than 11% of the beverages analyzed contained Escherichia coli and over 17% contained Chryseobacterium meningosepticum. Other opportunistic pathogenic microorganisms isolated from the beverages included species of Klebsiella, Staphylococcus, Stenotrophomonas, Candida, and Serratia. Most of the identified bacteria showed resistance to one or more of the 11 antibiotics tested. These findings suggest that soda fountain machines may harbor persistent communities of potentially pathogenic microorganisms which may contribute to episodic gastric distress in the general population and could pose a more significant health risk to immunocompromised individuals. These findings have important public health implications and signal the need for regulations enforcing hygienic practices associated with these beverage dispensers. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities.

    Science.gov (United States)

    Tan, BoonFei; Ng, Charmaine; Nshimyimana, Jean Pierre; Loh, Lay Leng; Gin, Karina Y-H; Thompson, Janelle R

    2015-01-01

    Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools.

  5. [Sensitivity of microbial associations of periodontal lesions to antibacterial agents].

    Science.gov (United States)

    Makeeva, I M; Daurova, F Yu; Byakova, S F; Ippolitov, E V; Gostev, M S; Polikushina, A O; Shubin, E V

    2016-01-01

    The aim of the study was the development of approaches to improve the effectiveness of antibiotic therapy in dental practice on the basis of determining the sensitivity of pathogenic microorganisms to antibiotics of different groups. The study included determination of the sensitivity of the microbial complexes from wound exudate of periodontal pocket and apical abscess to macrolides, quinolones, penicillins, lincosamides and 5-nitroimidazole. A survey of dentists and dental clinics patients to identify the cause and frequency of use of antibiotics and to identify possible adverse reactions was also conducted. Dentists prefer macrolide antibiotics, protected penicillins, and fluoroquinolone combined with 5-nitroimidazole. All patients have taken antibiotics themselves at least once a year. Microbial complexes in patients with acute and exacerbated apical periodontitis in 79% of cases are susceptible to amoxicillin/clavulanic acid, to azithromycin - 52%, lincomycin - 36%, 5-nitroimidazole - 68%, ciprofloxacin - 73.7%. In patients with apical abscess high rates of resistance of microbial complexes to all types of antibiotics was revealed (33% for lincomycin 76,1% for ciprofloxacin, 28,6% for 5-nitroimidazole). Patients with moderate to severe periodontitis in 90.5% are sensitive to amoxicillin/clavulanic acid and azithromycin, in 62.4% to lincomycin. Sensitivity to ciprofloxacin was detected in 85.7% of patients, in 14.3% - moderate resistance.

  6. Microbial Pre-exposure and Vectorial Competence of Anopheles Mosquitoes

    Directory of Open Access Journals (Sweden)

    Constentin Dieme

    2017-12-01

    Full Text Available Anopheles female mosquitoes can transmit Plasmodium, the malaria parasite. During their aquatic life, wild Anopheles mosquito larvae are exposed to a huge diversity of microbes present in their breeding sites. Later, adult females often take successive blood meals that might also carry different micro-organisms, including parasites, bacteria, and viruses. Therefore, prior to Plasmodium ingestion, the mosquito biology could be modulated at different life stages by a suite of microbes present in larval breeding sites, as well as in the adult environment. In this article, we highlight several naturally relevant scenarios of Anopheles microbial pre-exposure that we assume might impact mosquito vectorial competence for the malaria parasite: (i larval microbial exposures; (ii protist co-infections; (iii virus co-infections; and (iv pathogenic bacteria co-infections. In addition, significant behavioral changes in African Anopheles vectors have been associated with increasing insecticide resistance. We discuss how these ethological modifications may also increase the repertoire of microbes to which mosquitoes could be exposed, and that might also influence their vectorial competence. Studying Plasmodium–Anopheles interactions in natural microbial environments would efficiently contribute to refining the transmission risks.

  7. Ready or Not: Microbial Adaptive Responses in Dynamic Symbiosis Environments.

    Science.gov (United States)

    Cao, Mengyi; Goodrich-Blair, Heidi

    2017-08-01

    In mutually beneficial and pathogenic symbiotic associations, microbes must adapt to the host environment for optimal fitness. Both within an individual host and during transmission between hosts, microbes are exposed to temporal and spatial variation in environmental conditions. The phenomenon of phenotypic variation, in which different subpopulations of cells express distinctive and potentially adaptive characteristics, can contribute to microbial adaptation to a lifestyle that includes rapidly changing environments. The environments experienced by a symbiotic microbe during its life history can be erratic or predictable, and each can impact the evolution of adaptive responses. In particular, the predictability of a rhythmic or cyclical series of environments may promote the evolution of signal transduction cascades that allow preadaptive responses to environments that are likely to be encountered in the future, a phenomenon known as adaptive prediction. In this review, we summarize environmental variations known to occur in some well-studied models of symbiosis and how these may contribute to the evolution of microbial population heterogeneity and anticipatory behavior. We provide details about the symbiosis between Xenorhabdus bacteria and Steinernema nematodes as a model to investigate the concept of environmental adaptation and adaptive prediction in a microbial symbiosis. Copyright © 2017 American Society for Microbiology.

  8. Predicting the microbial exposure risks in urban floods using GIS, building simulation, and microbial models.

    Science.gov (United States)

    Taylor, Jonathon; Biddulph, Phillip; Davies, Michael; Lai, Ka man

    2013-01-01

    London is expected to experience more frequent periods of intense rainfall and tidal surges, leading to an increase in the risk of flooding. Damp and flooded dwellings can support microbial growth, including mould, bacteria, and protozoa, as well as persistence of flood-borne microorganisms. The amount of time flooded dwellings remain damp will depend on the duration and height of the flood, the contents of the flood water, the drying conditions, and the building construction, leading to particular properties and property types being prone to lingering damp and human pathogen growth or persistence. The impact of flooding on buildings can be simulated using Heat Air and Moisture (HAM) models of varying complexity in order to understand how water can be absorbed and dry out of the building structure. This paper describes the simulation of the drying of building archetypes representative of the English building stock using the EnergyPlus based tool 'UCL-HAMT' in order to determine the drying rates of different abandoned structures flooded to different heights and during different seasons. The results are mapped out using GIS in order to estimate the spatial risk across London in terms of comparative flood vulnerability, as well as for specific flood events. Areas of South and East London were found to be particularly vulnerable to long-term microbial exposure following major flood events. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Effect of environmental parameters on pathogen and faecal indicator organism concentrations within an urban estuary

    Science.gov (United States)

    Henry, Rebekah; Schang, Christelle; Kolotelo, Peter; Coleman, Rhys; Rooney, Graham; Schmidt, Jonathan; Deletic, Ana; McCarthy, David T.

    2016-06-01

    Current World Health Organisation figures estimate that ∼2.5 million deaths per year result from recreational contact with contaminated water sources. Concerns about quantitative risk assessments of waterways using faecal indicator organisms (FIOs) as surrogates to infer pathogenic risk currently exist. In Melbourne, Australia, the Yarra River has come under public scrutiny due to perceived public health risks associated with aquatic recreation; a characteristic shared with urban estuaries worldwide. A 10-month study of the Yarra estuary investigated the processes that affect FIOs and pathogens within this system. A total of 74 samples were collected from three estuarine and two upstream, freshwater, locations under different climatic and hydrological conditions, and the levels of Escherichia coli, enterococci, Clostridium perfringens, fRNA coliphages, Campylobacter spp. Cryptosporidium oocysts, Giardia cysts, adenoviruses, and enteroviruses were monitored. Reference pathogenic bacteria, protozoa, and viruses were detected in 81%, 19%, and 8% of samples, respectively. Variations in FIO concentrations were found to be associated with changes in specific climatic and hydrological variables including: temperature, flow, humidity and rainfall. In contrast, pathogen levels remained unaffected by all variables investigated. Limitations of current national and international culture-based standard methods may have played a significant role in limiting the identification of correlative relationships The data demonstrate the differences between FIOs and microbial pathogens in terms of sources, sinks, and survival processes within an urban estuary and provide further evidence of the inadequacy of FIO inclusion in the development of worldwide regulatory water quality criteria and risk assessment models.

  10. Molecular signatures of nicotinoid-pathogen synergy in the termite gut.

    Directory of Open Access Journals (Sweden)

    Ruchira Sen

    Full Text Available Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae, bacteria (Serratia marcescens or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies.

  11. Immune responses of Helicoverpa armigera to different kinds of pathogens

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fan

    2010-03-01

    Full Text Available Abstract Background Insects react against pathogens through innate immunity. The cotton bollworm Helicoverpa armigera (H. armigera is an important defoliator and an extremely destructive pest insect of many crops. The elucidation of the mechanism of the immune response of H. armigera to various pathogens can provide a theoretical basis for new approaches to biologically control this pest. Results Four kinds of pathogens Bacillus thuringiensis, Klebsiella pneumoniae, Candida albicans, and Autographa californica multiple nucleocapsid nucleopolyhedrovirus harbored green fluorescence protein and polyhedron (AcMNPV-GFP were used to challenge the insect. The cellular and humoral immune responses to the pathogens were analyzed in the challenged H. armigera. The results show that in the five kinds of haemocytes, only granulocytes phagocytized the Gram-negative and Gram-positive bacteria and fungi. All haemocytes can be infected by AcMNPV. Fourteen immune-related genes including pattern recognition receptors (PRRs such as peptidoglycan recognition proteins (HaPGRP and HaPGRP C and Gram-Negative Bacteria-Binding Protein (HaGNBP, and antimicrobial peptides (AMPs such as cecropin-1, 2 and 3 (HaCec-1, 2 and 3, lysozyme (HaLys, attacin (HaAtt, gallerimycin-like (HaGall, gloverin-like (HaGlo, moricin-like (HaMor, cobatoxin-like (HaCob, galiomicin-like (HaGali, and immune inducible protein (HaIip appeared in different expression profiles to different pathogen infections. The transcripts of 13 immune related genes (except HaPGRPC are obviously up-regulated by Gram-positive bacteria. HaCec-1 and 3, HaMor, HaAtt, HaLys, HaIip, HaPGRP and HaGNBP are greatly up-regulated after fungal infection. HaGNBP, HaCec-2, HaGall, HaGlo, HaMor, HaCob, HaGali obviously increased in Gram-negative bacterial infection. Only five genes, HaGNBP, HaCec-1, HaGali, HaGlo, and HaLys, are weakly up-regulated after viral infection. The AMP transcripts had higher expression levels than the

  12. Degradation of microbial polyesters.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  13. Microbial secondary metabolites are an alternative approaches against insect vector to prevent zoonotic diseases

    Directory of Open Access Journals (Sweden)

    Dharumadurai Dhanasekaran

    2014-08-01

    Full Text Available Approximately 1500 naturally occurring microorganisms have been identified as potentially insecticidal agents. Metabolites from 942 microbial isolates were screened for insecticidal and properties. The isolates included 302 streptomycetes, 502 novel actinobacteria including representatives of 18 genera, 28 unidentified aerobic actinobacteria, 70 fungi and 40 bacteria other than actinobacteria showed the insecticidal activity. Most spore-forming bacteria pathogenic to insects belong to the family Bacillaceae. Only four Bacillus species namely Bacillus thuringiensis, Bacillus popilliae, Bacillus lentimorbus, Bacillus sphaericus have been closely examined as insect control agents. Fungi are applied directly in the form of spores, mycelia or blastospores or by their metabolites. Many viruses that belong to the family Baculoviridae are pathogenic in insects. The microbial insecticides are generally pest-specific, readily biodegradable and usually lack toxicity to higher animals. This review paper communicates the insect problem in the transmission of diseases in human, animals, plants and problem of chemical insecticides control of insects using microbial metabolites from actinobacteria, bacteria, fungi and viruses.

  14. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition.

    Science.gov (United States)

    Peng, Mengfei; Biswas, Debabrata

    2017-12-12

    As a major source of microbes and their numerous beneficial effects, the gut microflora/microbiome is intimately linked to human health and disease. The exclusion of enteric pathogens by these commensal microbes partially depends upon the production of bioactive compounds such as short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs). These key intestinal microbial byproducts are crucial to the maintenance of a healthy gut microbial community. Moreover, SCFAs and PUFAs play multiple critical roles in host defense and immunity, including anti-cancer, anti-inflammation, and anti-oxidant activities, as well as out-competition of enteric bacterial pathogens. In this review article, we hereby aim to highlight the importance of SCFAs and PUFAs and the microbes involved in production of these beneficial intestinal components, and their biological functions, specifically as to their immunomodulation and interactions with enteric bacterial pathogens. Finally, we also advance potential applications of these fatty acids with regards to food safety and human gut health.

  15. Elucidation of bacteria found in car interiors and strategies to reduce the presence of potential pathogens

    Science.gov (United States)

    Stephenson, Rachel E.; Gutierrez, Daniel; Peters, Cindy; Nichols, Mark; Boles, Blaise R.

    2014-01-01

    The human microbiome is influenced by a number of factors, including environmental exposure to microbes. Because many humans spend a large amount of time in built environments, it can be expected that the microbial ecology of these environments will influence the human microbiome. In an attempt to further understand the microbial ecology of built environments, the microbiota of car interiors was analyzed using culture dependent and culture independent methods. While it was found that the number and type of bacteria varied widely among the cars and sites tested, Staphylococcus and Propionibacterium were nearly always the dominant genera found at the locations sampled. Because Staphylococcus is of particular concern to human health, the characteristics of this genus found in car interiors were investigated. Staphylococcus epidermidis, S. aureus, and S. warnerii were the most prevalent staphylococcal species found, and 22.6% of S. aureus strains isolated from shared community vehicles were resistant to methicillin. The reduction in the prevalence of pathogenic bacteria in cars by using silver-based antimicrobial surface coatings was also evaluated. Coatings containing 5% silver ion additives were applied to steering wheels, placed in cars for five months and were found to eliminate the presence of culturable pathogenic bacteria recovered from these sites relative to controls. Together, these results provide new insight into the microbiota found in an important built environment, the automobile, and potential strategies for controlling the presence of human pathogens. PMID:24564823

  16. Dual Effects of Lactobacilli as a Cholesterol Assimilator and an Inhibitor ofGastrointestinal Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Amir Emami

    2014-02-01

    Full Text Available Background: Probiotics are live microbial supplements which can improve the healthy intestinal microbial balance. Lactobacilli are a group of lactic acid producing bacteria (LAB that are known as natural probiotics found in the dairy products. Objectives: In this study, we aimed to detect the most potent Lactobacillus isolates of the Fars province local dairy products in cholesterol removal and investigate their antibacterial properties against some gastrointestinal pathogens. Materials and Methods: Fifteen locally produced yogurt samples of the Fars province were collected and characterized with routine microbiology methods. Cholesterol removal ability of the Lactobacilli isolates were determined, and their growth inhibitory effect on some standard pathogenic strains pathogen was evaluated using the well-diffusion method. Results: In this study, five common strains of Lactobacilli including L. acidophilus, L. casei, L. fermentum, L. lactis, and L. bulgaricus were identified in the samples obtained from the locally produced yogurt in the Fars province. L. lactis and L. acidophilus were determined as the two most active strains with the maximum rate of cholesterol assimilation (5.6 and 4.5 mg/mL, respectively in the process of cholesterol removal. In the antibacterial activity assay, the two mentioned strains had significant inhibitory effect on all of the tested bacteria except for B. subtilis. Conclusions: Cholesterol removal ability had a direct relation with bacterial growth, so it is suggested to use the probiotic bacteria in the growth phase to achieve better results.

  17. Antimicrobial profiles of periodontal pathogens isolated from periodontitis patients in the Netherlands and Spain

    NARCIS (Netherlands)

    van Winkelhoff, AJ; Herrera, D; Oteo, A; Sanz, M

    Background and Aim: Antimicrobial resistance of periodontal pathogens towards currently used antibiotics in periodontics has been investigated in a previous study. Microbial resistance in the periodontal microflora was more frequently observed in Spanish patients in comparison with Dutch patients.

  18. Interseasonal precipitation patternsimpact the occurrence of waterborne pathogens in an agricultural watershed

    Science.gov (United States)

    Background/Question/Methods: Runoff from agricultural fields undergoing manure applications or housing livestock operations may carry a variety of chemical and microbial contaminants that compromise water quality and increase the possibility of human exposure to pathogenic microo...

  19. Pathogen disgust and interpersonal personality

    NARCIS (Netherlands)

    Kupfer, Tom R.; Tybur, Joshua M.

    2017-01-01

    The behavioral immune system includes motivational systems for avoiding contact with pathogens, including those transmitted by other people. Motivations to avoid others may depend not only on the perceived risk of infection but also on perceived benefits of social interaction. Based on this idea, we

  20. Adenoid Reservoir for Pathogenic Biofilm Bacteria▿

    Science.gov (United States)

    Nistico, L.; Kreft, R.; Gieseke, A.; Coticchia, J. M.; Burrows, A.; Khampang, P.; Liu, Y.; Kerschner, J. E.; Post, J. C.; Lonergan, S.; Sampath, R.; Hu, F. Z.; Ehrlich, G. D.; Stoodley, P.; Hall-Stoodley, L.

    2011-01-01

    Biofilms of pathogenic bacteria are present on the middle ear mucosa of children with chronic otitis media (COM) and may contribute to the persistence of pathogens and the recalcitrance of COM to antibiotic treatment. Controlled studies indicate that adenoidectomy is effective in the treatment of COM, suggesting that the adenoids may act as a reservoir for COM pathogens. To investigate the bacterial community in the adenoid, samples were obtained from 35 children undergoing adenoidectomy for chronic OM or obstructive sleep apnea. We used a novel, culture-independent molecular diagnostic methodology, followed by confocal microscopy, to investigate the in situ distribution and organization of pathogens in the adenoids to determine whether pathogenic bacteria exhibited criteria characteristic of biofilms. The Ibis T5000 Universal Biosensor System was used to interrogate the extent of the microbial diversity within adenoid biopsy specimens. Using a suite of 16 broad-range bacterial primers, we demonstrated that adenoids from both diagnostic groups were colonized with polymicrobial biofilms. Haemophilus influenzae was present in more adenoids from the COM group (P = 0.005), but there was no significant difference between the two patient groups for Streptococcus pneumoniae or Staphylococcus aureus. Fluorescence in situ hybridization, lectin binding, and the use of antibodies specific for host epithelial cells demonstrated that pathogens were aggregated, surrounded by a carbohydrate matrix, and localized on and within the epithelial cell surface, which is consistent with criteria for bacterial biofilms. PMID:21307211

  1. Egypt's Red Sea coast: phylogenetic analysis of cultured microbial consortia in industrialized sites.

    Science.gov (United States)

    Mustafa, Ghada A; Abd-Elgawad, Amr; Abdel-Haleem, Alyaa M; Siam, Rania

    2014-01-01

    The Red Sea possesses a unique geography, and its shores are rich in mangrove, macro-algal and coral reef ecosystems. Various sources of pollution affect Red Sea biota, including microbial life. We assessed the effects of industrialization on microbes along the Egyptian Red Sea coast at eight coastal sites and two lakes. The bacterial communities of sediment samples were analyzed using bacterial 16S rDNA pyrosequencing of V6-V4 hypervariable regions. The taxonomic assignment of 131,402 significant reads to major bacterial taxa revealed five main bacterial phyla dominating the sampled sites: Proteobacteria (68%), Firmicutes (13%), Fusobacteria (12%), Bacteriodetes (6%), and Spirochetes (0.03%). Further analysis revealed distinct bacterial consortia that primarily included (1) marine Vibrio spp.-suggesting a "marine Vibrio phenomenon"; (2) potential human pathogens; and (3) oil-degrading bacteria. We discuss two divergent microbial consortia that were sampled from Solar Lake West near Taba/Eilat and Saline Lake in Ras Muhammad; these consortia contained the highest abundance of human pathogens and no pathogens, respectively. Our results draw attention to the effects of industrialization on the Red Sea and suggest the need for further analysis to overcome the hazardous effects observed at the impacted sites.

  2. Molecular and Genomic Characterization of Enteric Pathogens Circulating during Hajj

    KAUST Repository

    Alsomali, Mona

    2016-05-01

    Hajj, the annual Muslim pilgrimage to Mecca, Saudi Arabia is a unique mass gathering event that attracts approximately 3 million pilgrims from around the globe. This diverse pilgrim population coupled with the nature of the performed activities raise major public health concerns in the host country with potential global implications. Although gastroenteritis and diarrhea are common among the pilgrims performing Hajj, the microbial etiologies of these infections are still unknown. We used molecular and antigenic approaches to identify the main pathogens associated with Hajj diarrhea. 544 fecal samples from pilgrims suffering from diarrhea whilst performing Hajj during three consecutive seasons (2011-2013) and 99 control samples from 2011 were screened for 16 pathogens that include bacterial, parasitic and viral etiologies that are commonly associated with diarrheal infections. At least one of the screened pathogens could be detected in 42% (n=228) of the samples from the diarrheal cases. Bacteria were the main agents detected in 83% (n=189) of the positive samples, followed by viral and parasitic agents detected in 6% (n=14) and 5% (n=12) respectively. We have also standardized a 16S-based metagenomic approach to identify the gut microbiome in diarrheal cases and non-diarrheal controls in 76 samples. Also, we have standardized a shotgun metagenomics protocol for the direct characterization (diagnosis) of enteric pathogens without cultivation. This approach was used successfully to identify viral (adenovirus) and bacterial causes of Enterotoxigenic E. coli diarrhea from Hajj samples. The findings in this study fill in clear gaps in our knowledge of the etiologies associated with diarrheal infections during Hajj. Foodborne bacteria were the major contributors to Hajj-diarrheal infections. This was coupled with the increased incidences of antimicrobial resistance loci associated with the identified bacteria. These findings would help the public health policy makers to

  3. Rapid Detection and Characterization of Emerging Foreign Animal Disease Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-18

    To best safeguard human and animal health requires early detection and characterization of disease events. This must include effective surveillance for emerging infectious diseases. Both deliberate and natural outbreaks have enormous economic and public health impacts, and can present serious threats to national security. In this project, we developed novel next generation detection technologies to protect the agricultural economy and biosecurity. The first technology is a multiplexed assay to simultaneously detection 10 swine viral and bacterial pathogens. The second one is the Lawrence Livermore Microbial Detection Array (LLMDA) which can detect more than 10,000 microbial species including 4219 viruses, 5367 bacteria, 265 fungi, 117 protozoa and 293 archaea. We analyzed a series of swine clinical samples from past disease events to demonstrate the utility of the assays for faster and cheaper detection of emerging and foreign animal disease pathogens, and their utility as s routine diagnosis and surveillance tool. A second goal of the study is to better understand mechanisms of African swine fever virus (ASFV) infection in pigs to aid the development of countermeasures and diagnostics. There is no vaccine available for ASF. ASF outbreak is on the rise on several European countries. Though ASF is not currently in the U.S., a potential outbreak in the U.S. would be detrimental to the swine industry and the US agricultural economy. We pursued a genome-wide approach to characterize the pig immune responses after ASFV infection. We used RNA sequencing and bioinformatics methods to identify genes and pathways that are affected during ASF infection. We have identified a list of most differentially expressed genes that are in the immune response pathways.

  4. Pathogens\\' Reduction in Vermicompost Process Resulted from the Mixed Sludge Treatments-Household Wastes

    OpenAIRE

    Hossien Karimi; Mohammad Rezvani; Morteza Mohammadzadeh; Yaser Eshaghi; Mehdi Mokhtari

    2016-01-01

    Introduction: The presence of pathogenic microbial agents and pathogens in organic fertilizers causes health problems and disease transmission. The aim of this study was to evaluate the efficiency of vermicomposting process in improve the microbial quality of the compost produced. Materials and Methods: This experimental study was conducted as a pilot-scale one, in the laboratory of school of Health. In order to produce vermicompost, some perishable domestic waste were mixed whit sludge o...

  5. Rapid and high-throughput detection of highly pathogenic bacteria by Ibis PLEX-ID technology.

    Directory of Open Access Journals (Sweden)

    Daniela Jacob

    Full Text Available In this manuscript, we describe the identification of highly pathogenic bacteria using an assay coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS run on an Ibis PLEX-ID high-throughput platform. The biothreat cluster assay identifies most of the potential bioterrorism-relevant microorganisms including Bacillus anthracis, Francisella tularensis, Yersinia pestis, Burkholderia mallei and pseudomallei, Brucella species, and Coxiella burnetii. DNA from 45 different reference materials with different formulations and different concentrations were chosen and sent to a service screening laboratory that uses the PCR/ESI-MS platform to provide a microbial identification service. The standard reference materials were produced out of a repository built up in the framework of the EU funded project "Establishment of Quality Assurances for Detection of Highly Pathogenic Bacteria of Potential Bioterrorism Risk" (EQADeBa. All samples were correctly identified at least to the genus level.

  6. Comparison of keypads and touch-screen mobile phones/devices as potential risk for microbial contamination.

    Science.gov (United States)

    Koroglu, Mehmet; Gunal, Selami; Yildiz, Fatma; Savas, Mehtap; Ozer, Ali; Altindis, Mustafa

    2015-12-30

    Touch-screen mobile phones/devices (TMPs/Ds) are increasingly used in hospitals. They may act as a mobile reservoir for microbial pathogens. The rates of microbial contamination of TMPs/Ds and keypad mobile phones (KMPs) with respect to different variables including use by healthcare workers (HCWs)/non-HCWs and the demographic characteristics of users were investigated. A total of 205 mobile phones/devices were screened for microbial contamination: 76 devices belonged to HCWs and 129 devices belonged to the non-HCW group. By rubbing swabs to front screen, back, keypad, and metallic surfaces of devices, 444 samples were collected. Of 205 mobile phones/devices, 143 (97.9%) of the TMPs/Ds and 58 (98.3%) of the KMPs were positive for microbial contamination, and there were no significant differences in contamination rates between these groups, although TMPs/Ds had significantly higher microbial load than KMPs (p mobile phones ≥ 5". Microbial contamination rates increased significantly as phone size increased (p <0.05). Higher numbers of coagulase-negative Staphylococci (CNS) were isolated from KMPs than TMPs/Ds (p = 0.049). The incidence of Enterococcus spp. was higher on the KMPs of HCWs, and methicillin resistant CNS was higher from the TMPs/Ds of non-HCWs (p <0.05). Isolation of CNS, Streptococcus spp. and Escherichia coli was higher from the TMPs/Ds of HCWs (p <0.05). We found no significant difference between TMP/Ds and KMPs in terms of microbial contamination, but TMP/Ds harboured more colonies and total microbial counts increased with screen size.

  7. AMPK in Pathogens

    OpenAIRE

    Mesquita, Inês Morais; Moreira, Diana; Marques, Belém Sampaio; Laforge, Mireille; Cordeiro-da-Silva, Anabela; Ludovico, Paula; Estaquier, Jérôme; Silvestre, Ricardo Jorge Leal

    2016-01-01

    During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recogn...

  8. Biosensors for plant pathogen detection.

    Science.gov (United States)

    Khater, Mohga; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2017-07-15

    Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms.

    Science.gov (United States)

    Weil, Tobias; De Filippo, Carlotta; Albanese, Davide; Donati, Claudio; Pindo, Massimo; Pavarini, Lorenzo; Carotenuto, Federico; Pasqui, Massimiliano; Poto, Luisa; Gabrieli, Jacopo; Barbante, Carlo; Sattler, Birgit; Cavalieri, Duccio; Miglietta, Franco

    2017-03-10

    A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.

  10. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans.

    Science.gov (United States)

    Zadoks, Ruth N; Middleton, John R; McDougall, Scott; Katholm, Jorgen; Schukken, Ynte H

    2011-12-01

    Mastitis, inflammation of the mammary gland, can be caused by a wide range of organisms, including gram-negative and gram-positive bacteria, mycoplasmas and algae. Many microbial species that are common causes of bovine mastitis, such as Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae and Staphylococcus aureus also occur as commensals or pathogens of humans whereas other causative species, such as Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae or Staphylococcus chromogenes, are almost exclusively found in animals. A wide range of molecular typing methods have been used in the past two decades to investigate the epidemiology of bovine mastitis at the subspecies level. These include comparative typing methods that are based on electrophoretic banding patterns, library typing methods that are based on the sequence of selected genes, virulence gene arrays and whole genome sequencing projects. The strain distribution of mastitis pathogens has been investigated within individual animals and across animals, herds, countries and host species, with consideration of the mammary gland, other animal or human body sites, and environmental sources. Molecular epidemiological studies have contributed considerably to our understanding of sources, transmission routes, and prognosis for many bovine mastitis pathogens and to our understanding of mechanisms of host-adaptation and disease causation. In this review, we summarize knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discuss aspects of comparative relevance to human medicine.

  11. Time is of essence; rapid identification of veterinary pathogens using MALDI TOF

    DEFF Research Database (Denmark)

    Nonnemann, Bettina; Dalsgaard, Inger; Pedersen, Karl

    Rapid and accurate identification of microbial pathogens is a cornerstone for timely and correct treatment of diseases of livestock and fish. The utility of the MALDI-TOF technique in the diagnostic laboratory is directly related to the quality of mass spectra and quantity of different microbial...

  12. Review of pathogen treatment reductions for onsite non-potable reuse of alternative source waters

    Science.gov (United States)

    Communities face a challenge when implementing onsite reuse of collected waters for non-potable purposes given the lack of national microbial standards. Quantitative Microbial Risk Assessment (QMRA) can be used to predict the pathogen risks associated with the non-potable reuse o...

  13. Microbial terroir for wine grapes

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, J. A.; van der Lelie, D.; Zarraonaindia, I.

    2013-12-05

    The viticulture industry has been selectively growing vine cultivars with different traits (grape size, shape, color, flavor, yield of fruit, and so forth) for millennia, and small variations in soil composition, water management, climate, and the aspect of vineyards have long been associated with shifts in these traits. As such, many different clonal varieties of vines exist, even within given grape varieties, such as merlot, pinot noir, and chardonnay. The commensal microbial flora that coexists with the plant may be one of the key factors that influence these traits. To date, the role of microbes has been largely ignored, outside of microbial pathogens, mainly because the technologies did not exist to allow us to look in any real depth or breadth at the community structure of the multitudes of bacterial and fungal species associated with each plant. In PNAS, Bokulich et al. (1) used next-generation sequencing of 16S rRNA and internal transcribed spacer ribosomal sequence to determine the relative abundances of bacteria and fungi, respectively, from grape must (freshly pressed grape juice, containing the skins and seeds) from plants in eight vineyards representing four of the major wine growing regions in California. The authors show that the microbiomes (bacterial and fungal taxonomic structure) associated with this early fermentation stage show defined biogeography, illustrating that different wine-growing regions maintain different microbial communities, with some influences from the grape variety and the year of production.

  14. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  15. Engineering chemical interactions in microbial communities.

    Science.gov (United States)

    Kenny, Douglas J; Balskus, Emily P

    2018-03-05

    Microbes living within host-associated microbial communities (microbiotas) rely on chemical communication to interact with surrounding organisms. These interactions serve many purposes, from supplying the multicellular host with nutrients to antagonizing invading pathogens, and breakdown of chemical signaling has potentially negative consequences for both the host and microbiota. Efforts to engineer microbes to take part in chemical interactions represent a promising strategy for modulating chemical signaling within these complex communities. In this review, we discuss prominent examples of chemical interactions found within host-associated microbial communities, with an emphasis on the plant-root microbiota and the intestinal microbiota of animals. We then highlight how an understanding of such interactions has guided efforts to engineer microbes to participate in chemical signaling in these habitats. We discuss engineering efforts in the context of chemical interactions that enable host colonization, promote host health, and exclude pathogens. Finally, we describe prominent challenges facing this field and propose new directions for future engineering efforts.

  16. Design and construction of synthetic microbial consortia in China

    Directory of Open Access Journals (Sweden)

    Ming-Zhu Ding

    2016-12-01

    Full Text Available The rapid development of synthetic biology enables the design, construction and optimization of synthetic microbial consortia to achieve specific functions. In China, the “973” project-“Design and Construction of Microbial Consortia” was funded by the National Basic Research Program of China in January 2014. It was proposed to address the fundamental challenges in engineering natural microbial consortia and reconstructing microbial consortia to meet industrial demands. In this review, we will introduce this “973” project, including the significance of microbial consortia, the fundamental scientific issues, the recent research progresses, and some case studies about synthetic microbial consortia in the past two and a half years.

  17. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes

    Science.gov (United States)

    van Overbeek, Leonard S.; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela

    2015-01-01

    SUMMARY All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions. PMID:26136581

  18. Human enteric pathogen internalization by root uptake into food crops

    Science.gov (United States)

    With an increasing number of outbreaks and illnesses associated with pre-harvest contaminated produce, understanding the potential and mechanisms of produce contamination by enteric pathogens can aid in the development of preventative measures and post-harvest processing to reduce microbial populati...

  19. Modes of Action of Microbially-Produced Phytotoxins

    Science.gov (United States)

    Duke, Stephen O.; Dayan, Franck E.

    2011-01-01

    Some of the most potent phytotoxins are synthesized by microbes. A few of these share molecular target sites with some synthetic herbicides, but many microbial toxins have unique target sites with potential for exploitation by the herbicide industry. Compounds from both non-pathogenic and pathogenic microbes are discussed. Microbial phytotoxins with modes of action the same as those of commercial herbicides and those with novel modes of action of action are covered. Examples of the compounds discussed are tentoxin, AAL-toxin, auscaulitoxin aglycone, hydantocidin, thaxtomin, and tabtoxin. PMID:22069756

  20. 78 FR 66010 - Draft Risk Profile on Pathogens and Filth in Spices; Availability

    Science.gov (United States)

    2013-11-04

    ...] Draft Risk Profile on Pathogens and Filth in Spices; Availability AGENCY: Food and Drug Administration... availability of a draft risk profile entitled ``FDA Draft Risk Profile: Pathogens and Filth in Spices'' (draft... posed by consumption of spices in the United States by identifying the most commonly occurring microbial...

  1. Flood management: prediction of microbial contamination in large-scale floods in urban environments.

    Science.gov (United States)

    Taylor, Jonathon; Lai, Ka Man; Davies, Mike; Clifton, David; Ridley, Ian; Biddulph, Phillip

    2011-07-01

    With a changing climate and increased urbanisation, the occurrence and the impact of flooding is expected to increase significantly. Floods can bring pathogens into homes and cause lingering damp and microbial growth in buildings, with the level of growth and persistence dependent on the volume and chemical and biological content of the flood water, the properties of the contaminating microbes, and the surrounding environmental conditions, including the restoration time and methods, the heat and moisture transport properties of the envelope design, and the ability of the construction material to sustain the microbial growth. The public health risk will depend on the interaction of these complex processes and the vulnerability and susceptibility of occupants in the affected areas. After the 2007 floods in the UK, the Pitt review noted that there is lack of relevant scientific evidence and consistency with regard to the management and treatment of flooded homes, which not only put the local population at risk but also caused unnecessary delays in the restoration effort. Understanding the drying behaviour of flooded buildings in the UK building stock under different scenarios, and the ability of microbial contaminants to grow, persist, and produce toxins within these buildings can help inform recovery efforts. To contribute to future flood management, this paper proposes the use of building simulations and biological models to predict the risk of microbial contamination in typical UK buildings. We review the state of the art with regard to biological contamination following flooding, relevant building simulation, simulation-linked microbial modelling, and current practical considerations in flood remediation. Using the city of London as an example, a methodology is proposed that uses GIS as a platform to integrate drying models and microbial risk models with the local building stock and flood models. The integrated tool will help local governments, health authorities

  2. Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review

    Directory of Open Access Journals (Sweden)

    Seoh Wei Teh

    2018-02-01

    Full Text Available Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections.

  3. Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review.

    Science.gov (United States)

    Teh, Seoh Wei; Mok, Pooi Ling; Abd Rashid, Munirah; Bastion, Mae-Lynn Catherine; Ibrahim, Normala; Higuchi, Akon; Murugan, Kadarkarai; Mariappan, Rajan; Subbiah, Suresh Kumar

    2018-02-13

    Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections.

  4. Bacterial community structure in experimental methanogenic bioreactors and search for pathogenic clostridia as community members.

    Science.gov (United States)

    Dohrmann, Anja B; Baumert, Susann; Klingebiel, Lars; Weiland, Peter; Tebbe, Christoph C

    2011-03-01

    Microbial conversion of organic waste or harvested plant material into biogas has become an attractive technology for energy production. Biogas is produced in reactors under anaerobic conditions by a consortium of microorganisms which commonly include bacteria of the genus Clostridium. Since the genus Clostridium also harbors some highly pathogenic members in its phylogenetic cluster I, there has been some concern that an unintended growth of such pathogens might occur during the fermentation process. Therefore this study aimed to follow how process parameters affect the diversity of Bacteria in general, and the diversity of Clostridium cluster I members in particular. The development of both communities was followed in model biogas reactors from start-up during stable methanogenic conditions. The biogas reactors were run with either cattle or pig manures as substrates, and both were operated at mesophilic and thermophilic conditions. The structural diversity was analyzed independent of cultivation using a PCR-based detection of 16S rRNA genes and genetic profiling by single-strand conformation polymorphism (SSCP). Genetic profiles indicated that both bacterial and clostridial communities evolved in parallel, and the community structures were highly influenced by both substrate and temperature. Sequence analysis of 16S rRNA genes recovered from prominent bands from SSCP profiles representing Clostridia detected no pathogenic species. Thus, this study gave no indication that pathogenic clostridia would be enriched as dominant community members in biogas reactors fed with manure.

  5. Pathogen-induced maternal effects result in enhanced immune responsiveness across generations.

    Science.gov (United States)

    Rosengaus, Rebeca B; Hays, Nicole; Biro, Colette; Kemos, James; Zaman, Muizz; Murray, Joseph; Gezahegn, Bruck; Smith, Wendy

    2017-05-01

    Parental investment theory postulates that adults can accurately perceive cues from their surroundings, anticipate the needs of future offspring based on those cues, and selectively allocate nongenetic resources to their progeny. Such context-dependent parental contributions can result in phenotypically variable offspring. Consistent with these predictions, we show that bacterially exposed Manduca sexta mothers oviposited significantly more variable embryos (as measured by mass, volume, hatching time, and hatching success) relative to naïve and control mothers. By using an in vivo "clearance of infection" assay, we also show that challenged larvae born to heat-killed- or live- Serratia -injected mothers, supported lower microbial loads and cleared the infection faster than progeny of control mothers. Our data support the notion that mothers can anticipate the future pathogenic risks and immunological needs of their unborn offspring, providing progeny with enhanced immune protection likely through transgenerational immune priming. Although the inclusion of live Serratia into oocytes does not appear to be the mechanism by which mothers confer protection to their young, other mechanisms, including epigenetic modifications in the progeny due to maternal pathogenic stress, may be at play. The adaptive nature of maternal effects in the face of pathogenic stress provides insights into parental investment, resource allocation, and life-history theories and highlights the significant role that pathogen-induced maternal effects play as generators and modulators of evolutionary change.

  6. Modify the Histone to Win the Battle: Chromatin Dynamics in Plant–Pathogen Interactions

    KAUST Repository

    Ramirez Prado, Juan Sebastian

    2018-03-19

    Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant-pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence.

  7. Modify the Histone to Win the Battle: Chromatin Dynamics in Plant–Pathogen Interactions

    KAUST Repository

    Ramirez Prado, Juan Sebastian; Piquerez, Sophie J. M.; Bendahmane, Abdelhafid; Hirt, Heribert; Raynaud, Cé cile; Benhamed, Moussa

    2018-01-01

    Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant-pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence.

  8. The genus Shewanella: from the briny depths below to human pathogen.

    Science.gov (United States)

    Janda, J Michael; Abbott, Sharon L

    2014-11-01

    The genus Shewanella is currently composed of more than 50 species that inhabit a range of marine environs and ecosystems. Several members of this genus, including S. oneidensis, have been identified that could potentially play key roles in environmental processes such as bioremediation of toxic elements and heavy metals and serving as microbial fuel cells. In contrast to this beneficial role, shewanellae are increasingly being implicated as human pathogens in persons exposed through occupational or recreational activities to marine niches containing shewanellae. Documented illnesses linked to Shewanella include skin and soft tissue infections, bacteremia, and otitis media. At present, it is unclear exactly how many Shewanella species are truly bona fide human pathogens. Recent advances in the taxonomy and phylogenetic relatedness of members of this genus, however, support the concept that most human infections are caused by a single species, S. algae. Some phylogenetic data further suggest that some current members of the genus are not true Shewanella species sensu stricto. The current review summarizes our present knowledge of the distribution, epidemiology, disease spectrum, and identification of microbial species focusing on a clinical perspective.

  9. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission

    Directory of Open Access Journals (Sweden)

    Sarah I. Bonnet

    2017-06-01

    Full Text Available Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP, with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella, and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most Coxiella, Francisella, and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies.

  10. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater

    Directory of Open Access Journals (Sweden)

    Chhabilal Regmi

    2018-02-01

    Full Text Available Several photocatalytic nanoparticles are synthesized and studied for potential application for the degradation of organic and biological wastes. Although these materials degrade organic compounds by advance oxidation process, the exact mechanisms of microbial decontamination remains partially known. Understanding the real mechanisms of these materials for microbial cell death and growth inhibition helps to fabricate more efficient semiconductor photocatalyst for large-scale decontamination of environmental wastewater or industries and hospitals/biomedical labs generating highly pathogenic bacteria and toxic molecules containing liquid waste by designing a reactor. Recent studies on microbial decontamination by photocatalytic nanoparticles and their possible mechanisms of action is highlighted with examples in this mini review.

  11. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  12. Microbial utilisation of natural organic wastes

    Science.gov (United States)

    Ilyin, V. K.; Smirnov, I. A.; Soldatov, P. E.; Korniushenkova, I. N.; Grinin, A. S.; Lykov, I. N.; Safronova, S. A.

    2004-03-01

    . The microbial studies of biodegradation process revealed following peculiarities: gradual quantitative increasing of Lactobacillus sp. (from 10 3 to 10 5 colony forming units (CFU) per ml), activation of Clostridia sp. (from 10 2 to 10 4 CFU/ml) and elimination of aerobic conventional pathogens ( Enterobacteriaceae sp., Protea sp., staphylococci). The obtained results allow to evaluate effectiveness of proposed technology and to determine the leading role of lactobacilli and clostridia in process of natural wastes biodegradation. Our further investigations shall further be concentrated on creation of artificial inoculi for launching of food wastes biodegradation. These inoculi will include active and adapted strains of clostridia and lactobacilli.

  13. Enteral High Fat-Polyunsaturated Fatty Acid Blend Alters the Pathogen Composition of the Intestinal Microbiome in Premature Infants with an Enterostomy.

    Science.gov (United States)

    Younge, Noelle; Yang, Qing; Seed, Patrick C

    2017-02-01

    To determine the effect of enteral fish oil and safflower oil supplementation on the intestinal microbiome in infants with an enterostomy born premature. Infants with an enterostomy born premature were randomized to receive early enteral supplementation with a high-fat polyunsaturated fatty acid (HF-PUFA) blend of fish oil and safflower oil vs standard nutritional therapy. We used 16S rRNA gene sequencing for longitudinal profiling of the microbiome from the time of study entry until bowel reanastomosis. We used weighted gene coexpression network analysis to identify microbial community modules that differed between study groups over time. We performed imputed metagenomic analysis to determine metabolic pathways associated with the microbial genes. Sixteen infants were randomized to receive enteral HF-PUFA supplementation, and 16 infants received standard care. The intestinal microbiota of infants in the treatment group differed from those in the control group, with greater bacterial diversity and lower abundance of Streptococcus, Clostridium, and many pathogenic genera within the Enterobacteriaceae family. We identified 4 microbial community modules with significant differences between groups over time. Imputed metagenomic analysis of the microbial genes revealed metabolic pathways that differed between groups, including metabolism of amino acids, carbohydrates, fatty acids, and secondary bile acid synthesis. Enteral HF-PUFA supplementation was associated with decreased abundance of pathogenic bacteria, greater bacterial diversity, and shifts in the potential metabolic functions of intestinal microbiota. ClinicalTrials.gov:NCT01306838. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. 11 Soil Microbial Biomass

    African Journals Online (AJOL)

    186–198. Insam H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil. Biol. Biochem. 22: 525–532. Insam H. D. and Domsch K. H. (1989). Influence of microclimate on soil microbial biomass. Soil Biol. Biochem. 21: 211–21. Jenkinson D. S. (1988). Determination of microbial.

  15. Molecular microbial ecology manual

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Bruijn, de F.J.; Head, I.M.; Akkermans, A.D.L.

    2004-01-01

    The field of microbial ecology has been revolutionized in the past two decades by the introduction of molecular methods into the toolbox of the microbial ecologist. This molecular arsenal has helped to unveil the enormity of microbial diversity across the breadth of the earth's ecosystems, and has

  16. Microbial Rechargeable Battery

    NARCIS (Netherlands)

    Molenaar, Sam D.; Mol, Annemerel R.; Sleutels, Tom H.J.A.; Heijne, Ter Annemiek; Buisman, Cees J.N.

    2016-01-01

    Bioelectrochemical systems hold potential for both conversion of electricity into chemicals through microbial electrosynthesis (MES) and the provision of electrical power by oxidation of organics using microbial fuel cells (MFCs). This study provides a proof of concept for a microbial

  17. Childhood microbial keratitis

    Directory of Open Access Journals (Sweden)

    Abdullah G Al Otaibi

    2012-01-01

    Conclusion: Children with suspected microbial keratitis require comprehensive evaluation and management. Early recognition, identifying the predisposing factors and etiological microbial organisms, and instituting appropriate treatment measures have a crucial role in outcome. Ocular trauma was the leading cause of childhood microbial keratitis in our study.

  18. What is microbial community ecology?

    Science.gov (United States)

    Konopka, Allan

    2009-11-01

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property.

  19. Characterization of microbial communities and fungal metabolites on field grown strawberries from organic and conventional production

    DEFF Research Database (Denmark)

    Jensen, Birgit; Knudsen, Inge M. B.; Andersen, Birgitte

    2013-01-01

    The background levels of culturable indigenous microbial communities (microbiotas) on strawberries were examined in a field survey with four conventional and four organic growers with different production practise and geographic distribution. The microbiota on apparently healthy strawberries...... was complex including potential plant pathogens, opportunistic human pathogens, plant disease biocontrol agents and mycotoxin producers. The latter group was dominated by Penicillium spp. and Aspergillus niger was also isolated. As expected, bacteria were the most abundant and diverse group of the strawberry...... microbiota followed by yeasts and filamentous fungi. No obvious correlation between grower practice and the strawberry microbiota was observed. Differences between microbiotas on strawberries from conventional systems with up to 10 fungicide spray treatments and organic production systems were insignificant...

  20. Characterization of non-host resistance in broad bean to the wheat stripe rust pathogen

    Directory of Open Access Journals (Sweden)

    Cheng Yulin

    2012-06-01

    Full Text Available Abstract Background Non-host resistance (NHR confers plant species immunity against the majority of microbial pathogens and represents the most robust and durable form of plant resistance in nature. As one of the main genera of rust fungi with economic and biological importance, Puccinia infects almost all cereals but is unable to cause diseases on legumes. Little is known about the mechanism of this kind of effective defense in legumes to these non-host pathogens. Results In this study, the basis of NHR in broad bean (Vicia faba L. against the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst, was characterized. No visible symptoms were observed on broad bean leaves inoculated with Pst. Microscopic observations showed that successful location of stomata and haustoria formation were significantly reduced in Pst infection of broad bean. Attempted infection induced the formation of papillae, cell wall thickening, production of reactive oxygen species, callose deposition and accumulation of phenolic compounds in plant cell walls. The few Pst haustoria that did form in broad bean cells were encased in reactive oxygen and callose materials and those cells elicited cell death. Furthermore, a total of seven defense-related genes were identified and found to be up-regulated during the Pst infection. Conclusions The results indicate that NHR in broad bean against Pst results from a continuum of layered defenses, including basic incompatibility, structural and chemical strengthening of cell wall, posthaustorial hypersensitive response and induction of several defense-related genes, demonstrating the multi-layered feature of NHR. This work also provides useful information for further determination of resistance mechanisms in broad bean to rust fungi, especially the adapted important broad bean rust pathogen, Uromyces viciae-fabae, because of strong similarity and association between NHR of plants to unadapted pathogens and basal

  1. Microbial Safari.

    Science.gov (United States)

    Wagner, Stephen C.; Stewart, Robert S., Jr.

    2000-01-01

    Introduces an investigative microbiology laboratory activity emphasizing critical thinking and experimental design in which students isolate and characterize a bacterium from a specific habitat. Explains the procedures of the laboratory including safety, sample collection, and isolation. (YDS)

  2. Microbiële genetica: nieuwe mogelijkheden voor preventie en behandeling van (orale) infecties

    NARCIS (Netherlands)

    Deng, D.M.; Crielaard, W.

    2008-01-01

    Meer inzicht in de microbiële genetica van pathogene orale micro-organismen en een nieuw scala van moleculair genetische technieken hebben samen geleid tot andere strategieën in de ontwikkeling van antimicrobiële geneesmiddelen. In dit artikel wordt de belangrijke rol van de kennis van de microbiële

  3. Wastewater treatment plants as a source of microbial pathogens in ...

    African Journals Online (AJOL)

    Wastewater treatment facilities have become sin quo non in ensuring the discharges of high quality wastewater effluents into receiving water bodies and consequence, a healthier environment. Due to massive worldwide increases in human population, water has been predicted to become one of the scarcest resources in ...

  4. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    NARCIS (Netherlands)

    Vos, de M.; Zaanen, van W.; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, van L.C.; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the spectrum of effectiveness of P. rapae-induced

  5. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    NARCIS (Netherlands)

    Vos, M. de; Zaanen, W. van; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, L.C. van; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the sspectrum of effectiveness of P. rapae-induced

  6. Microbial contamination of contact lenses, lens care solutions, and their accessories: a literature review.

    Science.gov (United States)

    Szczotka-Flynn, Loretta B; Pearlman, Eric; Ghannoum, Mahmoud

    2010-03-01

    A contact lens (CL) can act as a vector for microorganisms to adhere to and transfer to the ocular surface. Commensal microorganisms that uneventfully cohabitate on lid margins and conjunctivae and potential pathogens that are found transiently on the ocular surface can inoculate CLs in vivo. In the presence of reduced tissue resistance, these resident microorganisms or transient pathogens can invade and colonize the cornea or conjunctiva to produce inflammation or infection. The literature was reviewed and used to summarize the findings over the last 30 years on the identification, enumeration, and classification of microorganisms adherent to CLs and their accessories during the course of normal wear and to hypothesize the role that these microorganisms play in CL infection and inflammation. Lens handling greatly increases the incidence of lens contamination, and the ocular surface has a tremendous ability to destroy organisms. However, even when removed aseptically from the eye, more than half of lenses are found to harbor microorganisms, almost exclusively bacteria. Coagulase-negative Staphylococci are most commonly cultured from worn lenses; however, approximately 10% of lenses harbor Gram-negative and highly pathogenic species, even in asymptomatic subjects. In storage cases, the incidence of positive microbial bioburden is also typically greater than 50%. All types of care solutions can become contaminated, including up to 30% of preserved products. The process of CL-related microbial keratitis and inflammation is thought to be preceded by the presence or transfer or both of microorganisms from the lens to the ocular surface. Thus, this detailed understanding of lens-related bioburden is important in the understanding of factors associated with infectious and inflammatory complications. Promising mechanisms to prevent bacterial colonization on lenses and lens cases are forthcoming, which may decrease the incidence of microbially driven CL complications.

  7. How microbial community composition regulates coral disease development.

    Directory of Open Access Journals (Sweden)

    Justin Mao-Jones

    2010-03-01

    Full Text Available Reef coral cover is in rapid decline worldwide, in part due to bleaching (expulsion of photosynthetic symbionts and outbreaks of infectious disease. One important factor associated with bleaching and in disease transmission is a shift in the composition of the microbial community in the mucus layer surrounding the coral: the resident microbial community-which is critical to the healthy functioning of the coral holobiont-is replaced by pathogenic microbes, often species of Vibrio. In this paper we develop computational models for microbial community dynamics in the mucus layer in order to understand how the surface microbial community responds to changes in environmental conditions, and under what circumstances it becomes vulnerable to overgrowth by pathogens. Some of our model's assumptions and parameter values are based on Vibrio spp. as a model system for other established and emerging coral pathogens. We find that the pattern of interactions in the surface microbial community facilitates the existence of alternate stable states, one dominated by antibiotic-producing beneficial microbes and the other pathogen-dominated. A shift to pathogen dominance under transient stressful conditions, such as a brief warming spell, may persist long after environmental conditions have returned to normal. This prediction is consistent with experimental findings that antibiotic properties of Acropora palmata mucus did not return to normal long after temperatures had fallen. Long-term loss of antibiotic activity eliminates a critical component in coral defense against disease, giving pathogens an extended opportunity to infect and spread within the host, elevating the risk of coral bleaching, disease, and mortality.

  8. How microbial community composition regulates coral disease development.

    Science.gov (United States)

    Mao-Jones, Justin; Ritchie, Kim B; Jones, Laura E; Ellner, Stephen P

    2010-03-30

    Reef coral cover is in rapid decline worldwide, in part due to bleaching (expulsion of photosynthetic symbionts) and outbreaks of infectious disease. One important factor associated with bleaching and in disease transmission is a shift in the composition of the microbial community in the mucus layer surrounding the coral: the resident microbial community-which is critical to the healthy functioning of the coral holobiont-is replaced by pathogenic microbes, often species of Vibrio. In this paper we develop computational models for microbial community dynamics in the mucus layer in order to understand how the surface microbial community responds to changes in environmental conditions, and under what circumstances it becomes vulnerable to overgrowth by pathogens. Some of our model's assumptions and parameter values are based on Vibrio spp. as a model system for other established and emerging coral pathogens. We find that the pattern of interactions in the surface microbial community facilitates the existence of alternate stable states, one dominated by antibiotic-producing beneficial microbes and the other pathogen-dominated. A shift to pathogen dominance under transient stressful conditions, such as a brief warming spell, may persist long after environmental conditions have returned to normal. This prediction is consistent with experimental findings that antibiotic properties of Acropora palmata mucus did not return to normal long after temperatures had fallen. Long-term loss of antibiotic activity eliminates a critical component in coral defense against disease, giving pathogens an extended opportunity to infect and spread within the host, elevating the risk of coral bleaching, disease, and mortality.

  9. Antivirulence Properties of Probiotics in Combating Microbial Pathogenesis.

    Science.gov (United States)

    Surendran Nair, M; Amalaradjou, M A; Venkitanarayanan, K

    2017-01-01

    Probiotics are nonpathogenic microorganisms that confer a health benefit on the host when administered in adequate amounts. Ample evidence is documented to support the potential application of probiotics for the prevention and treatment of infections. Health benefits of probiotics include prevention of diarrhea, including antibiotic-associated diarrhea and traveler's diarrhea, atopic eczema, dental carries, colorectal cancers, and treatment of inflammatory bowel disease. The cumulative body of scientific evidence that demonstrates the beneficial effects of probiotics on health and disease prevention has made probiotics increasingly important as a part of human nutrition and led to a surge in the demand for probiotics in clinical applications and as functional foods. The ability of probiotics to promote health is attributed to the various beneficial effects exerted by these microorganisms on the host. These include lactose metabolism and food digestion, production of antimicrobial peptides and control of enteric infections, anticarcinogenic properties, immunologic enhancement, enhancement of short-chain fatty acid production, antiatherogenic and cholesterol-lowering attributes, regulatory role in allergy, protection against vaginal or urinary tract infections, increased nutritional value, maintenance of epithelial integrity and barrier, stimulation of repair mechanism in cells, and maintenance and reestablishment of well-balanced indigenous intestinal and respiratory microbial communities. Most of these attributes primarily focus on the effect of probiotic supplementation on the host. Hence, in most cases, it can be concluded that the ability of a probiotic to protect the host from infection is an indirect result of promoting overall health and well-being. However, probiotics also exert a direct effect on invading microorganisms. The direct modes of action resulting in the elimination of pathogens include inhibition of pathogen replication by producing

  10. Indicators for waterborne pathogens

    National Research Council Canada - National Science Library

    Committee on Indicators for Waterborne Pathogens, National Research Council

    2004-01-01

    ... This comprehensive report recommends the development and use of a “tool box†approach by the U.S Environmental Protection Agency and others for assessing microbial water quality in which available...

  11. New trends in emerging pathogens.

    Science.gov (United States)

    Skovgaard, Niels

    2007-12-15

    The emergence of pathogens is the result of a number of impact in all parts of the food chain. The emerging technologies in food production explain how new pathogens can establish themselves in the food chain and compromise food safety. The impact of the food technology is analysed for several bacteria, such as Yersinia, Campylobacter, Arcobacter, Helicobacter pullorum, Enterobacter sakazakii, Mycobacterium avium spp. paratuberculosis, prions related to vCJD and others. The importance of the ability of many microbes to form VBNC forms is elaborated on. Research on culture independent methods may address this outstanding issue to the better understanding of emerging pathogens. The "demerging" of pathogens also occur, and examples of this are explained. The reaction of bacteria to stresses and sublethal treatments, and how exposure to one stress factor can confer resistance to other stresses, literally speaking causing contagious resistance, are explained. The implication of this e.g. in modern approaches of food preservation, such as Minimally processed Foods, is considerable. Intestinal colonization of EHEC may be regulated by Quorum sensing, and this ability of microbes plays an important role in the colonization of microbes in food and on food processing equipment, an important factor in the emergence of pathogens. The emergence of Saccharomyces cerevisiae, as an opportunistic human pathogen, used for centuries for food and production of alcoholic beverages, calls for research in molecular tools to distinguish between probiotic and clinical strains. Cyclospora cayetanensis and Norovirus outbreaks can no longer be designated as emerging pathogens, they share however one characteristic in the epidemiology of emerging nature, the importance of the hygiene in the primary production stage, including supply of potable water, and the application of GMP and the HACCP principles in the beginning of the food chain. Hepatitis E virus is a potential emerging food borne

  12. Arthropods vector grapevine trunk disease pathogens.

    Science.gov (United States)

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  13. Microbial contamination associated with the processing of ...

    African Journals Online (AJOL)

    Anihouvi Gildas

    2013-05-01

    May 1, 2013 ... tchachanga investigated, but different processing methods had significant changes in the microbial ... placed on wooden skewers and cooked on the embers of charcoal .... processing place, including the use of dirty jute bags,.

  14. Potatoes, pathogens and pests

    NARCIS (Netherlands)

    Lazebnik, Jenny

    2017-01-01

    Currently, fungicides are necessary to protect potato crops against late blight, Phytophthora infestans, one of the world’s most damaging crop pathogens. The introgression of plant resistance genes from wild potato species targeted specifically to the late blight pathogen into

  15. Food-borne pathogens

    International Nuclear Information System (INIS)

    Niemand, J.G.

    1985-01-01

    The Salmonella scare reinforced the importance of never taking chances when it comes to controlling pathogens. The issue has been resolved by radurisation. The article deals with the various pathogens that can effect food and argues the case for radurisation in dealing with them. It also looks at some of the other food products that can be treated using this process

  16. Can QMRA be used to Discount Pathogen Risk to Swimmers from Animal Fecal Contamination? Doheny Beach, CA Case Study

    Science.gov (United States)

    Estimated health risks to swimmers from seagull and bather sources of fecal contamination at Doheny Beach, California were compared using quantitative microbial risk assessment (QMRA) with a view to aiding beach closure decisions. Surfzone pathogens from seagulls were thought to...

  17. The microbial changes in subgingival plaques of orthodontic patients: a systematic review and meta-analysis of clinical trials.

    Science.gov (United States)

    Guo, Runzhi; Lin, Yifan; Zheng, Yunfei; Li, Weiran

    2017-06-02

    Orthodontic treatment was found to have an impact on the quantity and constitution of subgingival microbiota. However, contradictory findings regarding the effects of fixed appliances on microbial changes were reported. The aim of this systematic review was to investigate the microbial changes in subgingival plaques of orthodontic patients. The PubMed, Cochrane Library, and EMBASE databases were searched up to November 20, 2016. Longitudinal studies observing microbial changes in subgingival plaques at different time points of orthodontic treatment are included. The methodological quality of the included studies was assessed by Methodological index for non-randomized studies (MINORS). The studies that reported the frequency of subgingival periodontopathogens were used for quantitative analysis. Other studies were analysed qualitatively to describe the microbial changes during orthodontic treatment. Thirteen studies were selected, including two controlled clinical trials, three cohort studies and eight self-controlled studies. Four periodontopathogens, including Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi) and Tannerella forsythia (Tf), were analysed. Following orthodontic appliance placement, the frequencies of Pg and Aa showed no significant change (P = 0.97 and P = 0.77), whereas the frequency of Tf significantly increased (P  = 6 months), two studies reported that the levels of subgingival periodontopathogens exhibited a transient increase but decreased to the pretreatment levels afterwards. After removal of the orthodontic appliance, the four periodontopathogens showed no significant difference compared with before removal. The levels of subgingival pathogens presented temporary increases after orthodontic appliance placement, and appeared to return to pretreatment levels several months later. This indicates that orthodontic treatment might not permanently induce periodontal disease by

  18. Management of microbial water quality: New perspectives for developing areas

    CSIR Research Space (South Africa)

    Steynberg, MC

    1995-01-01

    Full Text Available A case study indicated that the high number of pathogenic micro-organisms in the Rietspruit South Africa, can impact water uses. Factors contributing to high microbial numbers are high density population with limited services provided per site...

  19. Anthropogenic Pollution Impact on Microbial Contamination of Lake ...

    African Journals Online (AJOL)

    Indicator bacteria were enumerated by membrane filtration while pathogenic bacteria were recovered by broth enrichment of water samples. Microbial load did not differ significantly with season and locations but fecal coliform (FC) had positive significant correlation (r = 0.36*; P < 0.05) with season. Mean total coliform (TC) ...

  20. Effect of probiotics on microbial level in Azerbaijan native duck ...

    African Journals Online (AJOL)

    Probiotics are products of microbial cells that have useful effect on health and tranquility of human. According to several studies, valuable properties such as anti-carcinogenic, anti-mutagenic, increasing body immunity and resistance against entero-pathogens have been related to probiotics. Hence, the aim of this study ...

  1. Microbial Evaluation of Some Non-sterile Pharmaceutical ...

    African Journals Online (AJOL)

    Purpose: To determine the type and incidence of predominant microorganisms in certain non-sterile pharmaceuticals immediately after collection and one year later. Methods: All pharmaceutical samples were subjected to the following examinations: total bacterial count and presence of microbial pathogens, using ...

  2. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Pachepsky, Yakov

    2017-04-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. The total number of removed bacteria was set to the concentrations of bacteria in soil-manure mixing layer and eroded manure amount. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. The stream network of the watershed ran through grazing lands with the daily bovine waste deposition. Based on calibration and testing results, the APEX with the microbe module

  3. Alternative microbial methods: An overview and selection criteria.

    Science.gov (United States)

    Jasson, Vicky; Jacxsens, Liesbeth; Luning, Pieternel; Rajkovic, Andreja; Uyttendaele, Mieke

    2010-09-01

    This study provides an overview and criteria for the selection of a method, other than the reference method, for microbial analysis of foods. In a first part an overview of the general characteristics of rapid methods available, both for enumeration and detection, is given with reference to relevant bibliography. Perspectives on future development and the potential of the rapid method for routine application in food diagnostics are discussed. As various alternative "rapid" methods in different formats are available on the market, it can be very difficult for a food business operator or for a control authority to select the most appropriate method which fits its purpose. Validation of a method by a third party, according to international accepted protocol based upon ISO 16140, may increase the confidence in the performance of a method. A list of at the moment validated methods for enumeration of both utility indicators (aerobic plate count) and hygiene indicators (Enterobacteriaceae, Escherichia coli, coagulase positive Staphylococcus) as well as for detection of the four major pathogens (Salmonella spp., Listeria monocytogenes, E. coli O157 and Campylobacter spp.) is included with reference to relevant websites to check for updates. In a second part of this study, selection criteria are introduced to underpin the choice of the appropriate method(s) for a defined application. The selection criteria link the definition of the context in which the user of the method functions - and thus the prospective use of the microbial test results - with the technical information on the method and its operational requirements and sustainability. The selection criteria can help the end user of the method to obtain a systematic insight into all relevant factors to be taken into account for selection of a method for microbial analysis. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Rapid detection, characterization, and enumeration of foodborne pathogens.

    Science.gov (United States)

    Hoorfar, J

    2011-11-01

    As food safety management further develops, microbiological testing will continue to play an important role in assessing whether Food Safety Objectives are achieved. However, traditional microbiological culture-based methods are limited, particularly in their ability to provide timely data. The present review discusses the reasons for the increasing interest in rapid methods, current developments in the field, the research needs, and the future trends. The advent of biotechnology has introduced new technologies that led to the emergence of rapid diagnostic methods and altered food testing practices. Rapid methods are comprised of many different detection technologies, including specialized enzyme substrates, antibodies and DNA, ranging from simple differential plating media to the use of sophisticated instruments. The use of non-invasive sampling techniques for live animals especially came into focus with the 1990s outbreak of bovine spongiform encephalopathy that was linked to the human outbreak of Creutzfeldt Jakob's Disease. Serology is still an important tool in preventing foodborne pathogens to enter the human food supply through meat and milk from animals. One of the primary uses of rapid methods is for fast screening of large number of samples, where most of them are expected to be test-negative, leading to faster product release for sale. This has been the main strength of rapid methods such as real-time Polymerase Chain Reaction (PCR). Enrichment PCR, where a primary culture broth is tested in PCR, is the most common approach in rapid testing. Recent reports show that it is possible both to enrich a sample and enumerate by pathogen-specific real-time PCR, if the enrichment time is short. This can be especially useful in situations where food producers ask for the level of pathogen in a contaminated product. Another key issue is automation, where the key drivers are miniaturization and multiple testing, which mean that not only one instrument is flexible

  5. Microbial electrosynthetic cells

    Energy Technology Data Exchange (ETDEWEB)

    May, Harold D.; Marshall, Christopher W.; Labelle, Edward V.

    2018-01-30

    Methods are provided for microbial electrosynthesis of H.sub.2 and organic compounds such as methane and acetate. Method of producing mature electrosynthetic microbial populations by continuous culture is also provided. Microbial populations produced in accordance with the embodiments as shown to efficiently synthesize H.sub.2, methane and acetate in the presence of CO.sub.2 and a voltage potential. The production of biodegradable and renewable plastics from electricity and carbon dioxide is also disclosed.

  6. Role of Waterborne Pathogens in the Food Supply Chain: Implications to Risk Management with Local and Global Perspectives

    Science.gov (United States)

    Microbial risk assessment (MRA) in the food industry is used to support HACCP – which largely focuses on bacterial pathogen control in processing foodstuffs Potential role of microbially-contaminated water used in food production is not as well understood Emergence...

  7. The worm has turned--microbial virulence modeled in Caenorhabditis elegans.

    Science.gov (United States)

    Sifri, Costi D; Begun, Jakob; Ausubel, Frederick M

    2005-03-01

    The nematode Caenorhabditis elegans is emerging as a facile and economical model host for the study of evolutionarily conserved mechanisms of microbial pathogenesis and innate immunity. A rapidly growing number of human and animal microbial pathogens have been shown to injure and kill nematodes. In many cases, microbial genes known to be important for full virulence in mammalian models have been shown to be similarly required for maximum pathogenicity in nematodes. C. elegans has been used in mutation-based screening systems to identify novel virulence-related microbial genes and immune-related host genes, many of which have been validated in mammalian models of disease. C. elegans-based pathogenesis systems hold the potential to simultaneously explore the molecular genetic determinants of both pathogen virulence and host defense.

  8. Microbial water quality in the upper Olifants River catchment: implications for health

    CSIR Research Space (South Africa)

    Le Rouw, Wouter J

    2012-10-01

    Full Text Available indicator counts (E. coli) several pathogens were also monitored for (Table 1). Table 1: Microbial pathogens monitored and the detection method used Determinant Method E. coli Colilert TM Salmonella sp. Real-Time polymerase chain reaction Shigella sp...-Time polymerase chain reaction ? Year 1: E. coli levels were monitored bi-monthly at 11 sampling sites (Figure 1). Pathogens were tested for bimonthly at the sites that exhibited high faecal indicator counts (FIO) counts. Twelve additional sites were monitored...

  9. Oral and dental infections with anaerobic bacteria: clinical features, predominant pathogens, and treatment.

    Science.gov (United States)

    Tanner, A; Stillman, N

    1993-06-01

    Microbial populations colonizing the teeth are a major source of pathogens responsible for oral and dental infections, including periodontal diseases, gingivitis, pericoronitis, endodontitis, peri-implantitis, and postextraction infections. Each entity has distinct clinical and microbial features. Bacterial species associated with oral infections include Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Bacteroides forsythus, Campylobacter rectus, Eubacterium species, Fusobacterium nucleatum, Eikenella corrodens, and Peptostreptococcus micros. Treponema pallidum-related spirochetes have been associated with acute necrotizing ulcerative gingivitis. Porphyromonas endodontalis appears to be specifically related to endodontic infections. Oral infections in medically compromised patients, including those with AIDS, are associated with similar species and are usually complicated by superinfection with enteric and Candida species. Isolation of species causing oral infections requires the collection of appropriate samples and the use of strictly anaerobic techniques. Rapid selective culture, immunofluorescence, and DNA probe methods have been developed for the identification of these oral species. The varied measures required in the management of oral and dental infections may include antimicrobial therapy. Accurate microbiological diagnosis, including antibiotic susceptibility testing, is indicated for cases that do not respond to therapy.

  10. Microbial and Organic Fine Particle Transport Dynamics in Streams - a Combined Experimental and Stochastic Modeling Approach

    Science.gov (United States)

    Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron

    2014-05-01

    Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling

  11. Methods for detecting pathogens in the beef food chain: detecting particular pathogens

    Science.gov (United States)

    The main food-borne pathogens of concern in the beef food chain are Shiga toxin-producing Escherichia coli (STEC) and Salmonella spp.; however, the presence of other pathogens, including Listeria monocytogenes, Campylobacter spp., Clostridium spp., Bacillus cereus, and Mycobacterium avium subsp. par...

  12. Host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes

    Science.gov (United States)

    The adaptation of two distantly related microsporidia to their mosquito hosts was investigated. Edhazardia aedis is a specialist pathogen that infects Aedes aegypti, the main vector of dengue and yellow fever arboviruses. Vavraia culicis is a generalist pathogen of several insects including Anophele...

  13. Microbial electrolytic disinfection process for highly efficient Escherichia coli inactivation

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Xiaohu

    2018-01-01

    extensively studied for recalcitrant organics removal, its application potential towards water disinfection (e.g., inactivation of pathogens) is still unknown. This study investigated the inactivation of Escherichia coli in a microbial electrolysis cell based bio-electro-Fenton system (renamed as microbial......Water quality deterioration caused by a wide variety of recalcitrant organics and pathogenic microorganisms has become a serious concern worldwide. Bio-electro-Fenton systems have been considered as cost-effective and highly efficient water treatment platform technology. While it has been......]OH was identified as one potential mechanism for disinfection. This study successfully demonstrated the feasibility of bio-electro-Fenton process for pathogens inactivation, which offers insight for the future development of sustainable, efficient, and cost-effective biological water treatment technology....

  14. Microbial genome-enabled insights into plant-microorganism interactions.

    Science.gov (United States)

    Guttman, David S; McHardy, Alice C; Schulze-Lefert, Paul

    2014-12-01

    Advances in genome-based studies on plant-associated microorganisms have transformed our understanding of many plant pathogens and are beginning to greatly widen our knowledge of plant interactions with mutualistic and commensal microorganisms. Pathogenomics has revealed how pathogenic microorganisms adapt to particular hosts, subvert innate immune responses and change host range, as well as how new pathogen species emerge. Similarly, culture-independent community profiling methods, coupled with metagenomic and metatranscriptomic studies, have provided the first insights into the emerging field of research on plant-associated microbial communities. Together, these approaches have the potential to bridge the gap between plant microbial ecology and plant pathology, which have traditionally been two distinct research fields.

  15. Extracts against Various Pathogens

    Directory of Open Access Journals (Sweden)

    Ritika Chauhan

    2013-07-01

    The present study shows that tested lichen Parmotrema sp. extracts demonstrated a strong antimicrobial effect. That suggests the active components from methanol extracts of the investigated lichen Parmotrema sp. can be used as natural antimicrobial agent against pathogens.

  16. Indicators for waterborne pathogens

    National Research Council Canada - National Science Library

    Committee on Indicators for Waterborne Pathogens, National Research Council

    2004-01-01

    ... not practical or feasible to monitor for the complete spectrum of microorganisms that may occur in water, and many known pathogens are difficult to detect directly and reliably in water samples.Â...

  17. Host–Pathogen Interactions

    NARCIS (Netherlands)

    Smits, M.A.; Schokker, D.J.

    2011-01-01

    The outcome of an infection is determined by numerous interactions between hosts and pathogens occurring at many different biological levels, ranging from molecule to population. To develop new control strategies for infectious diseases in livestock species, appropriate methodologies are needed

  18. Induced Systemic Tolerance to Multiple Stresses Including Biotic and Abiotic Factors by Rhizobacteria

    Directory of Open Access Journals (Sweden)

    Sung-Je Yoo

    2017-06-01

    Full Text Available Recently, global warming and drastic climate change are the greatest threat to the world. The climate change can affect plant productivity by reducing plant adaptation to diverse environments including frequent high temperature; worsen drought condition and increased pathogen transmission and infection. Plants have to survive in this condition with a variety of biotic (pathogen/pest attack and abiotic stress (salt, high/low temperature, drought. Plants can interact with beneficial microbes including plant growth-promoting rhizobacteria, which help plant mitigate biotic and abiotic stress. This overview presents that rhizobacteria plays an important role in induced systemic resistance (ISR to biotic stress or induced systemic tolerance (IST to abiotic stress condition; bacterial determinants related to ISR and/or IST. In addition, we describe effects of rhizobacteria on defense/tolerance related signal pathway in plants. We also review recent information including plant resistance or tolerance against multiple stresses (bioticabiotic. We desire that this review contribute to expand understanding and knowledge on the microbial application in a constantly varying agroecosystem, and suggest beneficial microbes as one of alternative environment-friendly application to alleviate multiple stresses.

  19. Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance.

    Science.gov (United States)

    Vieira Colombo, Ana Paula; Magalhães, Clarissa Bichara; Hartenbach, Fátima Aparecida Rocha Resende; Martins do Souto, Renata; Maciel da Silva-Boghossian, Carina

    2016-05-01

    The ecological diversity of the periodontal microenvironment may provide suitable conditions for the colonization of species not usually considered members of the oral microbiota. In this investigation, we aimed to determine the prevalence and levels of pathogenic species of medical relevance in the microbiota of individuals with distinct periodontal clinical status. Subgingival biofilm was obtained from patients with periodontal health (H, n = 81), gingivitis (G, n = 55), generalized aggressive (AgP, n = 36) or chronic periodontitis (CP, n = 98), and analyzed for 39 microbial taxa using a checkerboard DNA-DNA hybridization technique. Microbial differences among groups, as well as associations between clinical and microbiological parameters were sought by non-parametric and univariate correlation tests. Neisseria spp., Peptostreptococus anaerobius, Candida albicans, enterobacteria, Pseudomonas aeruginosa, Eubacterium saphenum, Clostridium difficile and Olsenella uli were detected in high mean prevalence and counts in the subgingival microbiota of the study population. Species that were more related to periodontal inflammation and tissue destruction at the patient and site levels included enterobacteria, C. albicans, Neisseria spp., P. aeruginosa, O. uli, Hafnia alvei, Serratia marcescens and Filifactor alocis (p < 0.05). In contrast, Fusobacterium necrophorum, Lactobacillus acidophilus, Staphylococcus aureus and Streptococcus pneumoniae were associated with periodontal health (p < 0.05). Pathogenic species of medical importance may be detected in high prevalence and levels in the periodontal microbiota. Regardless of their role in periodontal health or disease, the periodontal biofilm may be a source for dissemination and development of systemic infections by these pathogenic microorganisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Insect pathogens as biological control agents: Back to the future.

    Science.gov (United States)

    Lacey, L A; Grzywacz, D; Shapiro-Ilan, D I; Frutos, R; Brownbridge, M; Goettel, M S

    2015-11-01

    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 1years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for control of medically important pests including dipteran vectors. These pathogens

  1. A novel approach for differentiating pathogenic and non-pathogenic Leptospira based on molecular fingerprinting.

    Science.gov (United States)

    Xiao, Di; Zhang, Cuicai; Zhang, Huifang; Li, Xiuwen; Jiang, Xiugao; Zhang, Jianzhong

    2015-04-24

    Leptospirosis is a worldwide, deadly zoonotic disease. Pathogenic Leptospira causes leptospirosis. The rapid and accurate identification of pathogenic and non-pathogenic Leptospira strains is essential for appropriate therapeutic management and timely intervention for infection control. The molecular fingerprint is a simple and rapid alternative tool for microorganisms identification, which is based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In this study, molecular fingerprint was performed to identify pathogenic strains of Leptospira. Phylogenetic analysis based on 16S rRNA gene sequences was used as the reference method. In addition, a label-free technique was used to reveal the different proteins of pathogenic or non-pathogenic Leptospira. A reference database was constructed using 30 Leptospira strains, including 16 pathogenic strains and 14 non-pathogenic strains. Two super reference spectra that were associated with pathogenicity were established. Overall, 33 Leptospira strains were used for validation, and 32 of 33 Leptospira strains could be identified on the species level and all the 33 could be classified as pathogenic or non-pathogenic. The super reference spectra and the major spectra projection (MSP) dendrogram correctly categorized the Leptospira strains into pathogenic and non-pathogenic groups, which was consistent with the 16S rRNA reference methods. Between the pathogenic and non-pathogenic strains, 108 proteins were differentially expressed. molecular fingerprint is an alternative to conventional molecular identification and can rapidly distinguish between pathogenic and non-pathogenic Leptospira strains. Therefore, molecular fingerprint may play an important role in the clinical diagnosis, treatment, surveillance, and tracking of epidemic outbreaks of leptospirosis. Leptospirosis is a worldwide zoonosis that is caused by spirochetes of the genus Leptospira. Leptospirosis is a serious zoonotic

  2. Effect of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty.

    Science.gov (United States)

    Sagdic, Osman; Ozturk, Ismet; Yilmaz, Mustafa Tahsin; Yetim, Hasan

    2011-09-01

    Grape pomace extracts were obtained from 5 different grape varieties grown in Turkey. The extracts were concentrated to obtain crude extracts; and incorporated into beef patties at 0% (Control), 1%, 2%, 5%, and 10% concentrations to test their antimicrobial effects in different storage periods (first, 12, 24, and 48 h). The numbers of microorganism were generally decreased by the extract concentration during the storage period. All the microorganisms tested were inhibited by the extract concentration of 10% in all the storage periods. Furthermore, the foodborne pathogens including Enterobacteriaceae and coliform bacteria, and the spoilage microorganisms including yeasts and moulds and lipolytic bacteria were also inhibited by 5% of Emir, Gamay, and Kalecik Karasi varieties in beef patties. Considering the results, the extracts of grape pomaces might be a good choice in the microbial shelf life extension of the food products as well as inhibiting the food pathogens as the case of beef patties. Grape pomace consists of seeds, skins, and stems, and an important by-product that is well known to be the rich source of phenolic compounds, both flavonoids and non-flavonoids. These substances have considerable beneficial effects on human health. The use of natural antimicrobial compounds, like plant extracts of herbs and spices for the preservation of foods has been very popular issue because of their antimicrobial activity. Therefore, grape pomace should be added into some food formulations to benefit from their protective effects. In this respect, this study reports the effect of addition of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. The results obtained in this study may be useful for food industry, which has recently tended to use natural antimicrobial sources in place of synthetic preservatives to prevent microbial spoilage. © 2011 Institute of Food Technologists®

  3. Next-generation sequencing (NGS for assessment of microbial water quality: current progress, challenges, and future opportunities

    Directory of Open Access Journals (Sweden)

    BoonFei eTan

    2015-09-01

    Full Text Available Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools.

  4. Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: a review.

    Science.gov (United States)

    Franke-Whittle, Ingrid H; Insam, Heribert

    2013-05-01

    Slaughterhouse wastes are a potential reservoir of bacterial, viral, prion and parasitic pathogens, capable of infecting both animals and humans. A quick, cost effective and safe disposal method is thus essential in order to reduce the risk of disease following animal slaughter. Different methods for the disposal of such wastes exist, including composting, anaerobic digestion (AD), alkaline hydrolysis (AH), rendering, incineration and burning. Composting is a disposal method that allows a recycling of the slaughterhouse waste nutrients back into the earth. The high fat and protein content of slaughterhouse wastes mean however, that such wastes are an excellent substrate for AD processes, resulting in both the disposal of wastes, a recycling of nutrients (soil amendment with sludge), and in methane production. Concerns exist as to whether AD and composting processes can inactivate pathogens. In contrast, AH is capable of the inactivation of almost all known microorganisms. This review was conducted in order to compare three different methods of slaughterhouse waste disposal, as regards to their ability to inactivate various microbial pathogens. The intention was to investigate whether AD could be used for waste disposal (either alone, or in combination with another process) such that both energy can be obtained and potentially hazardous materials be disposed of.

  5. Detection of pathogenic micro-organisms on children's hands and toys during play.

    Science.gov (United States)

    Martínez-Bastidas, T; Castro-del Campo, N; Mena, K D; Castro-del Campo, N; León-Félix, J; Gerba, C P; Chaidez, C

    2014-06-01

    This study aimed to determine if the children's leisure activities impact the presence of pathogens on their hands and toys. To assess the microbiological hazard in playground areas, a pilot study that included 12 children was conducted. We then conducted an intervention study; children's hands and toys were washed before playing. Faecal coliforms, pathogenic bacteria and Giardia lamblia were quantified by membrane filtration, selective media and flotation techniques, respectively; rotavirus, hepatitis A and rhinovirus by RT-PCR. Pilot study results revealed faecal contamination on children's hands and toys after playing on sidewalks and in public parks. Pathogenic bacteria, hepatitis A and G. lamblia on children's hands were also found. In the intervention study, Staphylococcus aureus and Klebsiella pneumoniae were found on children's hands at concentrations up to 2·5 × 10(4) and 1 × 10(4) CFU hands(-1), respectively. E. coli and Kl. pneumoniae were detected on toys (2·4 × 10(3) and 2·7 × 10(4) CFU toy(-1), respectively). Salmonella spp, Serratia spp and G. lamblia cysts were also present on toys. Children's play activities influence microbial presence on hands and toys; the transfer seems to occur in both ways. Control strategy needs to be implemented to protect children from infectious diseases. © 2014 The Society for Applied Microbiology.

  6. Screening of Viral Pathogens from Pediatric Ileal Tissue Samples after Vaccination

    Directory of Open Access Journals (Sweden)

    Laura Hewitson

    2014-01-01

    Full Text Available In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV. Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA, was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR was conducted. The LLMDA technology was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae, Bacteroidaceae, and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.

  7. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  8. Tuber indicum shapes the microbial communities of ectomycorhizosphere soil and ectomycorrhizae of an indigenous tree (Pinus armandii)

    Science.gov (United States)

    Li, Qiang; Zhao, Jian; Xiong, Chuan; Li, Xiaolin; Chen, Zuqin; Li, Ping; Huang, Wenli

    2017-01-01

    The aim of this study was to investigate the effect of an ectomycorrhizal fungus (Tuber indicum) on the diversity of microbial communities associated with an indigenous tree, Pinus armandii, and the microbial communities in the surrounding ectomycorhizosphere soil. High-throughput sequencing was used to analyze the richness of microbial communities in the roots or rhizosphere of treatments with or without ectomycorrhizae. The results indicated that the bacterial diversity of ectomycorhizosphere soil was significantly lower compared with the control soil. Presumably, the dominance of truffle mycelia in ectomycorhizosphere soil (80.91%) and ectomycorrhizae (97.64%) was the main factor that resulted in lower diversity and abundance of endophytic pathogenic fungi, including Fusarium, Monographella, Ustilago and Rhizopus and other competitive mycorrhizal fungi, such as Amanita, Lactarius and Boletus. Bacterial genera Reyranena, Rhizomicrobium, Nordella, Pseudomonas and fungal genera, Cuphophyllus, Leucangium, Histoplasma were significantly more abundant in ectomycorrhizosphere soil and ectomycorrhizae. Hierarchical cluster analysis of the similarities between rhizosphere and ectomycorrhizosphere soil based on the soil properties differed significantly, indicating the mycorrhizal synthesis may have a feedback effect on soil properties. Meanwhile, some soil properties were significantly correlated with bacterial and fungal diversity in the rhizosphere or root tips. Overall, this work illustrates the interactive network that exists among ectomycorrhizal fungi, soil properties and microbial communities associated with the host plant and furthers our understanding of the ecology and cultivation of T. indicum. PMID:28410376

  9. Tuber indicum shapes the microbial communities of ectomycorhizosphere soil and ectomycorrhizae of an indigenous tree (Pinus armandii.

    Directory of Open Access Journals (Sweden)

    Qiang Li

    Full Text Available The aim of this study was to investigate the effect of an ectomycorrhizal fungus (Tuber indicum on the diversity of microbial communities associated with an indigenous tree, Pinus armandii, and the microbial communities in the surrounding ectomycorhizosphere soil. High-throughput sequencing was used to analyze the richness of microbial communities in the roots or rhizosphere of treatments with or without ectomycorrhizae. The results indicated that the bacterial diversity of ectomycorhizosphere soil was significantly lower compared with the control soil. Presumably, the dominance of truffle mycelia in ectomycorhizosphere soil (80.91% and ectomycorrhizae (97.64% was the main factor that resulted in lower diversity and abundance of endophytic pathogenic fungi, including Fusarium, Monographella, Ustilago and Rhizopus and other competitive mycorrhizal fungi, such as Amanita, Lactarius and Boletus. Bacterial genera Reyranena, Rhizomicrobium, Nordella, Pseudomonas and fungal genera, Cuphophyllus, Leucangium, Histoplasma were significantly more abundant in ectomycorrhizosphere soil and ectomycorrhizae. Hierarchical cluster analysis of the similarities between rhizosphere and ectomycorrhizosphere soil based on the soil properties differed significantly, indicating the mycorrhizal synthesis may have a feedback effect on soil properties. Meanwhile, some soil properties were significantly correlated with bacterial and fungal diversity in the rhizosphere or root tips. Overall, this work illustrates the interactive network that exists among ectomycorrhizal fungi, soil properties and microbial communities associated with the host plant and furthers our understanding of the ecology and cultivation of T. indicum.

  10. Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato

    Science.gov (United States)

    Antoniou, Anastasis; Tsolakidou, Maria-Dimitra; Stringlis, Ioannis A.; Pantelides, Iakovos S.

    2017-01-01

    Suppressive composts represent a sustainable approach to combat soilborne plant pathogens and an alternative to the ineffective chemical fungicides used against those. Nevertheless, suppressiveness to plant pathogens and reliability of composts are often inconsistent with unpredictable effects. While suppressiveness is usually attributed to the compost’s microorganisms, the mechanisms governing microbial recruitment by the roots and the composition of selected microbial communities are not fully elucidated. Herein, the purpose of the study was to evaluate the impact of a compost on tomato plant growth and its suppressiveness against Fusarium oxysporum f. sp. lycopersici (Foxl) and Verticillium dahliae (Vd). First, growth parameters of tomato plants grown in sterile peat-based substrates including 20 and 30% sterile compost (80P/20C-ST and 70P/30C-ST) or non-sterile compost (80P/20C and 70P/30C) were evaluated in a growth room experiment. Plant height, total leaf surface, and fresh and dry weight of plants grown in the non-sterile compost mixes were increased compared to the plants grown in the sterile compost substrates, indicating the plant growth promoting activity of the compost’s microorganisms. Subsequently, compost’s suppressiveness against Foxl and Vd was evaluated with pathogenicity experiments on tomato plants grown in 70P/30C-ST and 70P/30C substrates. Disease intensity was significantly less in plants grown in the non-sterile compost than in those grown in the sterile compost substrate; AUDPC was 2.3- and 1.4-fold less for Foxl and Vd, respectively. Moreover, fungal quantification in planta demonstrated reduced colonization in plants grown in the non-sterile mixture. To further investigate these findings, we characterized the culturable microbiome attracted by the roots compared to the unplanted compost. Bacteria and fungi isolated from unplanted compost and the rhizosphere of plants were sequence-identified. Community-level analysis revealed

  11. Human pathogenic bacteria, fungi, and viruses in Drosophila

    Science.gov (United States)

    Panayidou, Stavria; Ioannidou, Eleni; Apidianakis, Yiorgos

    2014-01-01

    Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila–microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection. PMID:24398387

  12. Microbial quality of equine frozen semen.

    Science.gov (United States)

    Corona, A; Cherchi, R

    2009-10-01

    Bacteriological surveillance is little applied in management of equine frozen semen but it is quite important to verify the microbial contamination in order to find out the chance of transmission of pathology to the mare in AI. Authors describe a qualitative and quantitative analysis for bacterial contamination on long time (3-17 years) equine frozen semen stored in liquid nitrogen. The semen checked, produced in Italy and in another Europe country, was cryopreserved in liquid nitrogen inside sealed plastic straws. One hundred and ten straws were checked out for pathogenic and no pathogenic bacteria, aerobes and anaerobes and fungi (moulds and yeasts). The Total Microbial Charge was quite variable with an average of about 1.4 x 10(5)CFU/ml. Mostly the microbial agents identified were fungi (17.5%), Enterobacter-coccus spp. (15%), Pseudomonas spp. (6.25%), Stenothophomonas maltophila (6.25%) and anaerobic bacteria like Propionibacterium granulosum (7.5%) and Clostridium spp. (3.75%). 3.75% were unidentified Gram-negative rod and cocci. Streptococcus spp., Staph. aureus, E. coli, Th. equigenitalis and Mycoplasma spp. were not detected. The most represented species were Enterobacter-coccus spp. (1.1 x 10(5)CFU/ml), St. maltophila (8 x 10(4)CFU/ml) and Pr. granulosum (7 x 10(4)CFU/ml) while yeast and even more moulds were little abundant (4.7 x 10(4) and 3.4 x 10(4)CFU/ml respectively). The knowledge of equine frozen semen microbial quality is essential to check out transmission of venereal disease and improve the quality of cryopreserved germplasm.

  13. Faecal Pathogen Flows and Their Public Health Risks in Urban Environments: A Proposed Approach to Inform Sanitation Planning

    Science.gov (United States)

    Mills, Freya; Petterson, Susan; Norman, Guy

    2018-01-01

    Public health benefits are often a key political driver of urban sanitation investment in developing countries, however, pathogen flows are rarely taken systematically into account in sanitation investment choices. While several tools and approaches on sanitation and health risks have recently been developed, this research identified gaps in their ability to predict faecal pathogen flows, to relate exposure risks to the existing sanitation services, and to compare expected impacts of improvements. This paper outlines a conceptual approach that links faecal waste discharge patterns with potential pathogen exposure pathways to quantitatively compare urban sanitation improvement options. An illustrative application of the approach is presented, using a spreadsheet-based model to compare the relative effect on disability-adjusted life years of six sanitation improvement options for a hypothetical urban situation. The approach includes consideration of the persistence or removal of different pathogen classes in different environments; recognition of multiple interconnected sludge and effluent pathways, and of multiple potential sites for exposure; and use of quantitative microbial risk assessment to support prediction of relative health risks for each option. This research provides a step forward in applying current knowledge to better consider public health, alongside environmental and other objectives, in urban sanitation decision making. Further empirical research in specific locations is now required to refine the approach and address data gaps. PMID:29360775

  14. Molecular-based detection of potentially pathogenic bacteria in membrane bioreactor (MBR) systems treating municipal wastewater: a case study.

    Science.gov (United States)

    Harb, Moustapha; Hong, Pei-Ying

    2017-02-01

    Although membrane bioreactor (MBR) systems provide better removal of pathogens compared to conventional activated sludge processes, they do not achieve total log removal. The present study examines two MBR systems treating municipal wastewater, one a full-scale MBR plant and the other a lab-scale anaerobic MBR. Both of these systems were operated using microfiltration (MF) polymeric membranes. High-throughput sequencing and digital PCR quantification were utilized to monitor the log removal values (LRVs) of associated pathogenic species and their abundance in the MBR effluents. Results showed that specific removal rates vary widely regardless of the system employed. Each of the two MBR effluents' microbial communities contained genera associated with opportunistic pathogens (e.g., Pseudomonas, Acinetobacter) with a wide range of log reduction values (5.5). Digital PCR further confirmed that these bacterial groups included pathogenic species, in several instances at LRVs different than those for their respective genera. These results were used to evaluate the potential risks associated both with the reuse of the MBR effluents for irrigation purposes and with land application of the activated sludge from the full-scale MBR system.

  15. Molecular-based detection of potentially pathogenic bacteria in membrane bioreactor (MBR) systems treating municipal wastewater: a case study

    KAUST Repository

    Harb, Moustapha

    2016-12-24

    Although membrane bioreactor (MBR) systems provide better removal of pathogens compared to conventional activated sludge processes, they do not achieve total log removal. The present study examines two MBR systems treating municipal wastewater, one a full-scale MBR plant and the other a lab-scale anaerobic MBR. Both of these systems were operated using microfiltration (MF) polymeric membranes. High-throughput sequencing and digital PCR quantification were utilized to monitor the log removal values (LRVs) of associated pathogenic species and their abundance in the MBR effluents. Results showed that specific removal rates vary widely regardless of the system employed. Each of the two MBR effluents’ microbial communities contained genera associated with opportunistic pathogens (e.g., Pseudomonas, Acinetobacter) with a wide range of log reduction values (< 2 to >5.5). Digital PCR further confirmed that these bacterial groups included pathogenic species, in several instances at LRVs different than those for their respective genera. These results were used to evaluate the potential risks associated both with the reuse of the MBR effluents for irrigation purposes and with land application of the activated sludge from the full-scale MBR system.

  16. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Directory of Open Access Journals (Sweden)

    Martin Meyer

    2016-08-01

    Full Text Available We here compared pathogenic (p and non-pathogenic (np isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12 derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12 derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  17. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Science.gov (United States)

    Meyer, Martin; Fehling, Helena; Matthiesen, Jenny; Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ernst, Thomas; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-08-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12) derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica.

  18. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers.

    Science.gov (United States)

    Bae, Young-Min; Baek, Seung-Youb; Lee, Sun-Young

    2012-02-15

    Various bacteria including food spoilage bacteria and pathogens can form biofilms on different food processing surfaces, leading to potential food contamination or spoilage. Therefore, the survival of foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, Cronobacter sakazakii) in different forms (adhered cells, biofilm producing in TSB, biofilm producing at RH 100%) on the surface of stainless steel and stored at various relative humidities (RH 23%, 43%, 68%, 85%, and 100%) at room temperature for 5 days was investigated in this study. Additionally, the efficacy of chemical sanitizers (chlorine-based and alcohol-based commercial sanitizers) on inhibiting various types of biofilms of E. coli O157:H7 and S. aureus on the surface of stainless steel was investigated. The number of pathogens on the surface of stainless steel in TSB stored at 25°C for 7 days or RH 100% at 25°C for 7 days was significantly increased and resulted in the increase of 3 log(10) CFU/coupon after 1 day, and these levels were maintained for 7 days. When stainless steel coupons were stored at 25°C for 5 days, the number of pathogens on the surface of stainless steel was significantly reduced after storage at RH 23%, 43%, 68%, and 85%, but not at 100%. When the bacteria formed biofilms on the surface of stainless steel in TSB after 6 days, the results were similar to those of the attached form. However, levels of S. aureus and C. sakazakii biofilms were more slowly reduced after storage at RH 23%, 43%, 68%, and 85% for 5 days than were those of the other pathogens. Formation of biofilms stored at RH 100% for 5 days displayed the highest levels of resistance to inactivation. Treatment with the alcohol sanitizer was very effective at inactivating attached pathogens or biofilms on the surface of stainless steel. Reduction levels of alcohol sanitizer treatment ranged from 1.91 to 4.77 log and from 4.35 to 5.35 log CFU/coupon in E. coli

  19. Microbial associates of the vine mealybug Planococcus ficus (Hemiptera: Pseudococcidae) under different rearing conditions.

    Science.gov (United States)

    Iasur-Kruh, Lilach; Taha-Salaime, Leena; Robinson, Wyatt E; Sharon, Rakefet; Droby, Samir; Perlman, Steve J; Zchori-Fein, Einat

    2015-01-01

    Sap-feeding insects harbor diverse microbial endosymbionts that play important roles in host ecology and evolution, including contributing to host pest status. The vine mealybug, Planococcus ficus, is a serious pest of grapevines, vectoring a number of pathogenic grape viruses. Previous studies have shown that virus transmission is abolished when mealybugs are raised in the laboratory on potato. To examine the possible role of microbial symbionts in virus transmission, the archaeal, bacterial, and fungal microbiota of field and laboratory P. ficus were characterized using molecular and classical microbiological methods. Lab and field colonies of P. ficus harbored different microbiota. While both were dominated by the bacterial obligate nutritional symbionts Moranella and Tremblaya, field samples also harbored a third bacterium that was allied with cluster L, a lineage of bacterial symbionts previously identified in aphids. Archaea were not found in any of the samples. Fungal communities in field-collected mealybugs were dominated by Metschnikowia and Cladosporium species, while those from laboratory-reared mealybugs were dominated by Alternaria and Cladosporium species. In conclusion, this study has identified a diverse set of microbes, most of which appear to be facultatively associated with P. ficus, depending on environmental conditions. The role of various members of the mealybug microbiome, as well as how the host plant affects microbial community structure, remains to be determined.

  20. Role of Genomic Typing in Taxonomy, Evolutionary Genetics, and Microbial Epidemiology

    Science.gov (United States)

    van Belkum, Alex; Struelens, Marc; de Visser, Arjan; Verbrugh, Henri; Tibayrenc, Michel

    2001-01-01

    Currently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and microbial epidemiology all rely on genetic typing data for discrimination between genotypes. Apart from being an essential component of these fundamental sciences, microbial typing clearly affects several areas of applied microbiogical research. The epidemiological investigation of outbreaks of infectious diseases and the measurement of genetic diversity in relation to relevant biological properties such as pathogenicity, drug resistance, and biodegradation capacities are obvious examples. The diversity among nucleic acid molecules provides the basic information for all fields described above. However, researchers in various disciplines tend to use different vocabularies, a wide variety of different experimental methods to monitor genetic variation, and sometimes widely differing modes of data processing and interpretation. The aim of the present review is to summarize the technological and fundamental concepts used in microbial taxonomy, evolutionary genetics, and epidemiology. Information on the nomenclature used in the different fields of research is provided, descriptions of the diverse genetic typing procedures are presented, and examples of both conceptual and technological research developments for Escherichia coli are included. Recommendations for unification of the different fields through standardization of laboratory techniques are made. PMID:11432813

  1. Immune Evasion Strategies of Pathogens in Macrophages: the Potential for Limiting Pathogen Transmission.

    Science.gov (United States)

    Ren, Yuwei; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Zhang, Shujun

    2017-01-01

    Preventing pathogen transmission to a new host is of major interest to the immunologist and could benefit from a detailed investigation of pathogen immune evasion strategies. The first line of defense against pathogen invasion is provided by macrophages. When they sense pathogens, macrophages initiate signals to inflammatory and pro-inflammatory cytokines through pattern recognition receptors (PRRs) subsequently mediating phagocytosis and inflammation. The macrophage immune machinery classically includes two subsets: the activated M1 and the activated M2 that respond accordingly in diverse immune challenges. The lipid and glycogen metabolic pathways work together with the lysosome to help the mature phagosome to degrade and eliminate intracellular pathogens in macrophages. The viral evasion strategies are even more complex due to the interplay between autophagy and apoptosis. However, pathogens evolve several strategies to camouflage themselves against immune responses in order to ensure their survival, replication and transmission. These strategies include the muting of PRRs initiated inflammatory responses, attenuation of M1 and/or induction of M2 macrophages, suppression of autophago-lysosomal formation, interference with lipid and glycogen metabolism, and viral mediation of autophagy and apoptosis cross-talk to enhance viral replication. This review focuses on pathogen immune evasion methods and on the strategies used by the host against camouflaged pathogens.

  2. Key Concepts in Microbial Oceanography

    Science.gov (United States)

    Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence

  3. Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi.

    Science.gov (United States)

    Spraker, Joseph E; Wiemann, Philipp; Baccile, Joshua A; Venkatesh, Nandhitha; Schumacher, Julia; Schroeder, Frank C; Sanchez, Laura M; Keller, Nancy P

    2018-05-22

    Small-molecule signaling is one major mode of communication within the polymicrobial consortium of soil and rhizosphere. While microbial secondary metabolite (SM) production and responses of individual species have been studied extensively, little is known about potentially conserved roles of SM signals in multilayered symbiotic or antagonistic relationships. Here, we characterize the SM-mediated interaction between the plant-pathogenic bacterium Ralstonia solanacearum and the two plant-pathogenic fungi Fusarium fujikuroi and Botrytis cinerea We show that cellular differentiation and SM biosynthesis in F. fujikuroi are induced by the bacterially produced lipopeptide ralsolamycin (synonym ralstonin A). In particular, fungal bikaverin production is induced and preferentially accumulates in fungal survival spores (chlamydospores) only when exposed to supernatants of ralsolamycin-producing strains of R. solanacearum Although inactivation of bikaverin biosynthesis moderately increases chlamydospore invasion by R. solanacearum , we show that other metabolites such as beauvericin are also induced by ralsolamycin and contribute to suppression of R. solanacearum growth in vitro Based on our findings that bikaverin antagonizes R. solanacearum and that ralsolamycin induces bikaverin biosynthesis in F. fujikuroi , we asked whether other bikaverin-producing fungi show similar responses to ralsolamycin. Examining a strain of B. cinerea that horizontally acquired the bikaverin gene cluster from Fusarium , we found that ralsolamycin induced bikaverin biosynthesis in this fungus. Our results suggest that conservation of microbial SM responses across distantly related fungi may arise from horizontal transfer of protective gene clusters that are activated by conserved regulatory cues, e.g., a bacterial lipopeptide, providing consistent fitness advantages in dynamic polymicrobial networks. IMPORTANCE Bacteria and fungi are ubiquitous neighbors in many environments, including

  4. Genome engineering for microbial natural product discovery.

    Science.gov (United States)

    Choi, Si-Sun; Katsuyama, Yohei; Bai, Linquan; Deng, Zixin; Ohnishi, Yasuo; Kim, Eung-Soo

    2018-03-03

    The discovery and development of microbial natural products (MNPs) have played pivotal roles in the fields of human medicine and its related biotechnology sectors over the past several decades. The post-genomic era has witnessed the development of microbial genome mining approaches to isolate previously unsuspected MNP biosynthetic gene clusters (BGCs) hidden in the genome, followed by various BGC awakening techniques to visualize compound production. Additional microbial genome engineering techniques have allowed higher MNP production titers, which could complement a traditional culture-based MNP chasing approach. Here, we describe recent developments in the MNP research paradigm, including microbial genome mining, NP BGC activation, and NP overproducing cell factory design. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Microbial changes during pregnancy, birth and infancy

    Directory of Open Access Journals (Sweden)

    Meital Nuriel-Ohayon

    2016-07-01

    Full Text Available Several healthy developmental processes such as pregnancy, fetal development and infant development include a multitude of physiological changes: weight gain, hormonal and metabolic changes, as well as immune changes. In this review we present an additional important factor which both influences and is affected by these physiological processes- the microbiome. We summarize the known changes in microbiota composition at a variety of body sites including gut, vagina, oral cavity and placenta, throughout pregnancy, fetal development and early childhood. There is still a lot to be discovered; yet several pieces of research point to the healthy desired microbial changes. Future research is likely to unravel precise roles and mechanisms of the microbiota in gestation; perhaps linking the metabolic, hormonal and immune changes together. Although some research has started to link microbial dysbiosis and specific microbial populations with unhealthy pregnancy complications, it is important to first understand the context of the natural healthy microbial changes occurring. Until recently the placenta and developing fetus were considered to be germ free, containing no apparent microbiome. We present multiple study results showing distinct microbiota compositions in the placenta and meconium, alluding to early microbial colonization. These results may change dogmas and our overall understanding of the importance and roles of microbiota from the beginning of life. We further review the main factors shaping the infant microbiome- modes of delivery, feeding, weaning, and exposure to antibiotics. Taken together, we are starting to build a broader understanding of healthy vs. abnormal microbial alterations throughout major developmental time-points.

  6. ANTIMICROBIAL AND SYNERGISTIC ACTIVITY OF INGREDIENTS OF BETEL QUID ON ORAL AND ENTERIC PATHOGENS

    OpenAIRE

    Niraj A Ghanwate; Prashant Thakare

    2012-01-01

    In this study, antimicrobial and synergistic activity of ingredients of betel quid i.e. kattha, lime, betel leaf, betel nut, cardamom, clove and fennel seeds was tested against microbial population of oral cavity and four enteric pathogens namely Staphylococcus aureus, Salmonella typhi, Escherichia coli and Shigell flexneri. For this purpose two methods were used. Pour plate method was used for calculating the reduction in microbial population in oral cavity and disk diffusion method was u...

  7. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities

    OpenAIRE

    BoonFei eTan; Charmaine Marie Ng; Jean Pierre Nshimyimana; Jean Pierre Nshimyimana; Lay-Leng eLoh; Lay-Leng eLoh; Karina Yew-Hoong Gin; Janelle Renee Thompson; Janelle Renee Thompson

    2015-01-01

    Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable reg...

  8. 40 CFR 158.2110 - Microbial pesticides data requirements.

    Science.gov (United States)

    2010-07-01

    ... of the product. (b) Additional data requirements for genetically modified microbial pesticides. Additional requirements for genetically modified microbial pesticides may include but are not limited to... patterns” under which the individual data are required, with variations including all use patterns, food...

  9. A Stochastic Multi-Media Model of Microbial Transport in Watersheds

    Science.gov (United States)

    Yeghiazarian, L.; Safwat, A.; Whiteaker, T.; Teklitz, A.; Nietch, C.; Maidment, D. R.; Best, E. P.

    2012-12-01

    Fecal contamination is the leading cause of surface-water impairment in the US, and fecal pathogens are capable of triggering massive outbreaks of gastrointestinal disease. The difficulty in prediction of water contamination has its roots in the stochastic variability of fecal pathogens in the environment, and in the complexity of microbial dynamics and interactions on the soil surface and in water. To address these challenges, we have developed a stochastic model whereby the transport of microorganisms in watersheds is considered in two broad categories: microorganisms that are attached to mineral or organic substrates in suspended sediment; and unattached microorganisms suspended in overland flow. The interactions of microorganisms with soil particles on the soil surface and in the overland flow lead to transitions of microorganisms between solid and aqueous media. The strength of attachment of microorganisms to soil particles is determined by the chemical characteristics of soils which are highly correlated with the particle size. The particle size class distribution in the suspended sediment is predicted by the Water Erosion Prediction Project (WEPP). The model is integrated with ArcGIS, resulting in a general transport-modeling framework applicable to a variety of biological and chemical surface water contaminants. Simulations are carried out for a case study of contaminant transport in the East Fork Little Miami River Watershed in Ohio. Model results include the spatial probability distribution of microbes in the watershed and can be used for assessment of (1) mechanisms dominating microbial transport, and (2) time and location of highest likelihood of microbial occurrence, thus yielding information on best water sampling strategies.

  10. The effect of interactions between a bacterial strain isolated from drinking water and a pathogen surrogate on biofilms formation diverged under static vs flow conditions.

    Science.gov (United States)

    Dai, D; Raskin, L; Xi, C

    2017-12-01

    Interactions with water bacteria affect the incorporation of pathogens into biofilms and thus pathogen control in drinking water systems. This study was to examine the impact of static vs flow conditions on interactions between a pathogen and a water bacterium on pathogen biofilm formation under laboratory settings. A pathogen surrogate Escherichia coli and a drinking water isolate Stenotrophomonas maltophilia was selected for this study. Biofilm growth was examined under two distinct conditions, in flow cells with continuous medium supply vs in static microtitre plates with batch culture. E. coli biofilm was greatly stimulated (c. 2-1000 times faster) with the presence of S. maltophilia in flow cells, but surprisingly inhibited (c. 65-95% less biomass) in microtitre plates. These divergent effects were explained through various aspects including surface attachment, cellular growth, extracellular signals and autoaggregation. Interactions with the same water bacterium resulted in different effects on E. coli biofilm formation when culture conditions changed from static to flow. This study highlights the complexity of species interactions on biofilm formation and suggests that environmental conditions such as the flow regime can be taken into consideration for the management of microbial contamination in drinking water systems. © 2017 The Society for Applied Microbiology.

  11. Antimicrobial resistance of mastitis pathogens.

    Science.gov (United States)

    Oliver, Stephen P; Murinda, Shelton E

    2012-07-01

    if contaminated unpasteurized milk is consumed, which is another important reason why people should not consume raw milk. Likewise, resistant bacteria contaminating meat from dairy cows should not be a significant human health concern if the meat is cooked properly. Prudent use of antibiotics in the dairy industry is important, worthwhile, and necessary. Use of antibiotics at times when animals are susceptible to new infection such as the dry period is a sound management decision and a prudent use of antibiotics on the farm. Strategies involving prudent use of antibiotics for treatment encompass identification of the pathogen causing the infection, determining the susceptibility/resistance of the pathogen to assess the most appropriate antibiotic to use for treatment, and a sufficient treatment duration to ensure effective concentrations of the antibiotic to eliminate the pathogen. As the debate on the use of antibiotics in animal agriculture continues, we need to consider the consequences of, “What would happen if antibiotics are banned for use in the dairy industry and in other food-producing animals?” The implications of this question are far reaching and include such aspects as animal welfare, health, and well-being and impacts on food quantity, quality, and food costs. This question should be an important aspect in this ongoing and controversial debate!

  12. Microbial Metabolism in Serpentinite Fluids

    Science.gov (United States)

    Crespo-Medina, M.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Hoehler, T. M.; Schrenk, M. O.

    2013-12-01

    Serpentinization is the process in which ultramafic rocks, characteristic of the upper mantle, react with water liberating mantle carbon and reducing power to potenially support chemosynthetic microbial communities. These communities may be important mediators of carbon and energy exchange between the deep Earth and the surface biosphere. Our work focuses on the Coast Range Ophiolite Microbial Observatory (CROMO) in Northern California where subsurface fluids are accessible through a series of wells. Preliminary analyses indicate that the highly basic fluids (pH 9-12) have low microbial diversity, but there is limited knowledge about the metabolic capabilities of these communties. Metagenomic data from similar serpentine environments [1] have identified Betaproteobacteria belonging to the order Burkholderiales and Gram-positive bacteria from the order Clostridiales as key components of the serpentine microbiome. In an effort to better characterize the microbial community, metabolism, and geochemistry at CROMO, fluids from two representative wells (N08B and CSWold) were sampled during recent field campaigns. Geochemical characterization of the fluids includes measurements of dissolved gases (H2, CO, CH4), dissolved inorganic and organic carbon, volatile fatty acids, and nutrients. The wells selected can be differentiated in that N08B had higher pH (10-11), lower dissolved oxygen, and cell counts ranging from 105-106 cells mL-1 of fluid, with an abundance of the betaproteobacterium Hydrogenophaga. In contrast, fluids from CSWold have slightly lower pH (9-9.5), DO, and conductivity, as well as higher TDN and TDP. CSWold fluid is also characterized for having lower cell counts (~103 cells mL-1) and an abundance of Dethiobacter, a taxon within the phylum Clostridiales. Microcosm experiments were conducted with the purpose of monitoring carbon fixation, methanotrophy and metabolism of small organic compounds, such as acetate and formate, while tracing changes in fluid

  13. Proceedings of the 8. International Symposium on Microbial Ecology : microbial biosystems : new frontiers

    International Nuclear Information System (INIS)

    Bell, C.R.; Brylinsky, M.; Johnson-Green, P.

    2000-01-01

    A wide range of disciplines were presented at this conference which reflected the importance of microbial ecology and provided an understanding of the factors that determine the growth and activities of microorganisms. The conference attracted 1444 delegates from 54 countries. The research emerging from the rapidly expanding frontier of microbial ecosystems was presented in 62 oral presentation and 817 poster presentations. The two volumes of these proceedings presented a total of 27 areas in microbial ecology, some of which included terrestrial biosystems, aquatic, estuarine, surface and subsurface microbial ecology. Other topics included bioremediation, microbial ecology in industry and microbial ecology of oil fields. Some of the papers highlighted the research that is underway to determine the feasibility of using microorganisms for enhanced oil recovery (EOR). Research has shown that microbial EOR can increase production at lower costs than conventional oil recovery. The use of bacteria has also proven to be a feasible treatment method in the biodegradation of hydrocarbons associated with oil spills. refs., tabs., figs

  14. Physicochemical Factors Influence the Abundance and Culturability of Human Enteric Pathogens and Fecal Indicator Organisms in Estuarine Water and Sediment

    Directory of Open Access Journals (Sweden)

    Francis Hassard

    2017-10-01

    Full Text Available To assess fecal pollution in coastal waters, current monitoring is reliant on culture-based enumeration of bacterial indicators, which does not account for the presence of viable but non-culturable or sediment-associated micro-organisms, preventing effective quantitative microbial risk assessment (QMRA. Seasonal variability in viable but non-culturable or sediment-associated bacteria challenge the use of fecal indicator organisms (FIOs for water monitoring. We evaluated seasonal changes in FIOs and human enteric pathogen abundance in water and sediments from the Ribble and Conwy estuaries in the UK. Sediments possessed greater bacterial abundance than the overlying water column, however, key pathogenic species (Shigella spp., Campylobacter jejuni, Salmonella spp., hepatitis A virus, hepatitis E virus and norovirus GI and GII were not detected in sediments. Salmonella was detected in low levels in the Conwy water in spring/summer and norovirus GII was detected in the Ribble water in winter. The abundance of E. coli and Enterococcus spp. quantified by culture-based methods, rarely matched the abundance of these species when measured by qPCR. The discrepancy between these methods was greatest in winter at both estuaries, due to low CFU's, coupled with higher gene copies (GC. Temperature accounted for 60% the variability in bacterial abundance in water in autumn, whilst in winter salinity explained 15% of the variance. Relationships between bacterial indicators/pathogens and physicochemical variables were inconsistent in sediments, no single indicator adequately described occurrence of all bacterial indicators/pathogens. However, important variables included grain size, porosity, clay content and concentrations of Zn, K, and Al. Sediments with greater organic matter content and lower porosity harbored a greater proportion of non-culturable bacteria (including dead cells and extracellular DNA in winter. Here, we show the link between physicochemical

  15. Microbial ecology and adaptation in cystic fibrosis airways

    DEFF Research Database (Denmark)

    Yang, Lei; Jelsbak, Lars; Molin, Søren

    2011-01-01

    Chronic infections in the respiratory tracts of cystic fibrosis (CF) patients are important to investigate, both from medical and from fundamental ecological points of view. Cystic fibrosis respiratory tracts can be described as natural environments harbouring persisting microbial communities...... constitute the selective forces that drive the evolution of the microbes after they migrate from the outer environment to human airways. Pseudomonas aeruginosa adapts to the new environment through genetic changes and exhibits a special lifestyle in chronic CF airways. Understanding the persistent...... colonization of microbial pathogens in CF patients in the context of ecology and evolution will expand our knowledge of the pathogenesis of chronic infections and improve therapeutic strategies....

  16. Gastrointestinal microbial ecology and its health benefits in Dogs

    Directory of Open Access Journals (Sweden)

    K.B. Kore

    2010-06-01

    Full Text Available Gastrointestinal microbial balance is the most important prerequisite for normal functions of digestive system, physiological and immunological homeostasis in dogs as well as in other animals. It helps in prevention of pathogenic colonization, provides energy through SCFA by nutrient breakdown, and improves mineral-vitamin supply to host, augment host immune status. Hence, it is imperative to explore the potential means to improve the gastrointestinal microbial diversity which in turns boost up dog health. [Vet. World 2010; 3(3.000: 140-141

  17. Persistence of low-pathogenic H5N7 and H7N1 avian influenza subtypes in filtered natural waters

    DEFF Research Database (Denmark)

    Nielsen, Anne Ahlmann; Jensen, Trine Hammer; Stockmarr, Anders

    2013-01-01

    knowledge on the influence of environmental factors on the persistence of AIV in natural habitats would be valuable for risk assessments. The presented work investigated the persistence of two low-pathogenic AIV subtypes in natural water samples. The study included two AIVs formerly isolated from wild ducks......, the persistence of infectivity was negatively affected by increased temperature, salinity as well as presence of natural microbial flora. The study provides insight on impact of essential physical, chemical and biological parameters on persistence of AIV in aquatic environments. Studies determining the importance...

  18. Microbial siderophores and their potential applications: a review.

    Science.gov (United States)

    Saha, Maumita; Sarkar, Subhasis; Sarkar, Biplab; Sharma, Bipin Kumar; Bhattacharjee, Surajit; Tribedi, Prosun

    2016-03-01

    Siderophores are small organic molecules produced by microorganisms under iron-limiting conditions which enhance the uptake of iron to the microorganisms. In environment, the ferric form of iron is insoluble and inaccessible at physiological pH (7.35-7.40). Under this condition, microorganisms synthesize siderophores which have high affinity for ferric iron. These ferric iron-siderophore complexes are then transported to cytosol. In cytosol, the ferric iron gets reduced into ferrous iron and becomes accessible to microorganism. In recent times, siderophores have drawn much attention due to its potential roles in different fields. Siderophores have application in microbial ecology to enhance the growth of several unculturable microorganisms and can alter the microbial communities. In the field of agriculture, different types of siderophores promote the growth of several plant species and increase their yield by enhancing the Fe uptake to plants. Siderophores acts as a potential biocontrol agent against harmful phyto-pathogens and holds the ability to substitute hazardous pesticides. Heavy-metal-contaminated samples can be detoxified by applying siderophores, which explicate its role in bioremediation. Siderophores can detect the iron content in different environments, exhibiting its role as a biosensor. In the medical field, siderophore uses the "Trojan horse strategy" to form complexes with antibiotics and helps in the selective delivery of antibiotics to the antibiotic-resistant bacteria. Certain iron overload diseases for example sickle cell anemia can be treated with the help of siderophores. Other medical applications of siderophores include antimalarial activity, removal of transuranic elements from the body, and anticancer activity. The aim of this review is to discuss the important roles and applications of siderophores in different sectors including ecology, agriculture, bioremediation, biosensor, and medicine.

  19. Modeling Fate and Transport of Rotavirus in Surface Flow by Integrating WEPP and a Pathogen Transport Model

    Science.gov (United States)

    Bhattarai, R.; Kalita, P. K.; Davidson, P. C.; Kuhlenschmidt, M. S.

    2012-12-01

    More than 3.5 million people die each year from a water related diseases in this world. Every 20 seconds, a child dies from a water-related illness. Even in a developed country like the United States, there have been at least 1870 outbreaks associated with drinking water during the period of 1920 to 2002, causing 883,806 illnesses. Most of these outbreaks are resulted due to the presence of microbial pathogens in drinking water. Rotavirus infection has been recognized as the most common cause of diarrhea in young children throughout the world. Laboratory experiments conducted at the University of Illinois have demonstrated that recovery of rotavirus has been significantly affected by climatic and soil-surface conditions like slope, soil types, and ground cover. The objective of this study is to simulate the fate and transport of Rotavirus in overland and near-surface flow using a process-based model. In order to capture the dynamics of sediment-bound pathogens, the Water Erosion Prediction Project (WEPP) is coupled with the pathogen transport model. Transport of pathogens in overland flow can be simulated mathematically by including terms for the concentration of the pathogens in the liquid phase (in suspension or free-floating) and the solid phase (adsorbed to the fine solid particles like clay and silt). Advection, adsorption, and decay processes are considered. The mass balance equations are solved using numerical technique to predict spatial and temporal changes in pathogen concentrations in two phases. Outputs from WEPP simulations (flow velocity, depth, saturated conductivity and the soil particle fraction exiting in flow) are transferred as input for the pathogen transport model. Three soil types and three different surface cover conditions have been used in the experimental investigations. Results from these conditions have been used in calibrating and validating the simulation results. Bare surface conditions have produced very good agreement between

  20. Synthetic Electric Microbial Biosensors

    Science.gov (United States)

    2017-06-10

    domains and DNA-binding domains into a single protein for deregulation of down stream genes of have been favored [10]. Initially experiments with... Germany DISTRIBUTION A. Approved for public release: distribution unlimited.   Talk title: “Synthetic biology based microbial biosensors for the...toolbox” in Heidelberg, Germany Poster title: “Anaerobic whole cell microbial biosensors” Link: http://phdsymposium.embl.org/#home   September, 2014

  1. A method to quantify infectious airborne pathogens at concentrations below the threshold of quantification by culture

    Science.gov (United States)

    Cutler, Timothy D.; Wang, Chong; Hoff, Steven J.; Zimmerman, Jeffrey J.

    2013-01-01

    In aerobiology, dose-response studies are used to estimate the risk of infection to a susceptible host presented by exposure to a specific dose of an airborne pathogen. In the research setting, host- and pathogen-specific factors that affect the dose-response continuum can be accounted for by experimental design, but the requirement to precisely determine the dose of infectious pathogen to which the host was exposed is often challenging. By definition, quantification of viable airborne pathogens is based on the culture of micro-organisms, but some airborne pathogens are transmissible at concentrations below the threshold of quantification by culture. In this paper we present an approach to the calculation of exposure dose at microbiologically unquantifiable levels using an application of the “continuous-stirred tank reactor (CSTR) model” and the validation of this approach using rhodamine B dye as a surrogate for aerosolized microbial pathogens in a dynamic aerosol toroid (DAT). PMID:24082399

  2. Pathogenic Vibrio parahaemolyticus isolated from biofouling on commercial vessels and harbor structures.

    Science.gov (United States)

    Revilla-Castellanos, Valeria J; Guerrero, Abraham; Gomez-Gil, Bruno; Navarro-Barrón, Erick; Lizárraga-Partida, Marcial L

    2015-01-01

    Ballast water is a significant vector of microbial dissemination; however, biofouling on commercial vessel hulls has been poorly studied with regard to pathogenic bacteria transport. Biofouling on three commercial vessels and seven port structures in Ensenada, Baja California, Mexico, was examined by qPCR to identify and quantify Vibrio parahaemolyticus, a worldwide recognized food-borne human pathogen. Pathogenic variants (trh+, tdh+) of V. parahaemolyticus were detected in biofouling homogenates samples from several docks in Ensenada and on the hulls of ships with Japanese and South Korean homeports, but not in reference sampling stations. A total of 26 tdh+ V. parahaemolyticus colonies and 1 ORF8+/O3:K6 strain were also isolated from enriched biofouling homogenate samples confirming the qPCR analysis. Our results suggest that biofouling is an important reservoir of pathogenic vibrios. Thus, ship biofouling might be an overlooked vector with regard to the dissemination of pathogens, primarily pathogenic V. parahaemolyticus.

  3. Exosome function: from tumor immunology to pathogen biology.

    Science.gov (United States)

    Schorey, Jeffrey S; Bhatnagar, Sanchita

    2008-06-01

    Exosomes are the newest family member of 'bioactive vesicles' that function to promote intercellular communication. Exosomes are derived from the fusion of multivesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non-hematopoietic origin, yet their function remains enigmatic. Much of the prior work has focused on exosomes as a source of tumor antigens and in presentation of tumor antigens to T cells. However, new studies have shown that exosomes might also promote cell-to-cell spread of infectious agents. Moreover, exosomes isolated from cells infected with various intracellular pathogens, including Mycobacterium tuberculosis and Toxoplasma gondii, have been shown to contain microbial components and can promote antigen presentation and macrophage activation, suggesting that exosomes may function in immune surveillance. In this review, we summarize our understanding of exosome biogenesis but focus primarily on new insights into exosome function. We also discuss their possible use as disease biomarkers and vaccine candidates.

  4. Listeria monocytogenes, a down-to-earth pathogen.

    Science.gov (United States)

    Vivant, Anne-Laure; Garmyn, Dominique; Piveteau, Pascal

    2013-01-01

    Listeria monocytogenes is the causative agent of the food-borne life threatening disease listeriosis. This pathogenic bacterium received much attention in the endeavor of deciphering the cellular mechanisms that underlie the onset of infection and its ability to adapt to the food processing environment. Although information is available on the presence of L. monocytogenes in many environmental niches including soil, water, plants, foodstuff and animals, understanding the ecology of L. monocytogenes in outdoor environments has received less attention. Soil is an environmental niche of pivotal importance in the transmission of this bacterium to plants and animals. Soil composition, microbial communities and macrofauna are extrinsic edaphic factors that direct the fate of L. monocytogenes in the soil environment. Moreover, farming practices may further affect its incidence. The genome of L. monocytogenes presents an extensive repertoire of genes encoding transport proteins and regulators, a characteristic of the genome of ubiquitous bacteria. Postgenomic analyses bring new insights in the process of soil adaptation. In the present paper focussing on soil, we review these extrinsic and intrinsic factors that drive environmental adaptation of L. monocytogenes.

  5. Human viral pathogens are pervasive in wastewater treatment center aerosols.

    Science.gov (United States)

    Brisebois, Evelyne; Veillette, Marc; Dion-Dupont, Vanessa; Lavoie, Jacques; Corbeil, Jacques; Culley, Alexander; Duchaine, Caroline

    2018-05-01

    Wastewater treatment center (WTC) workers may be vulnerable to diseases caused by viruses, such as the common cold, influenza and gastro-intestinal infections. Although there is a substantial body of literature characterizing the microbial community found in wastewater, only a few studies have characterized the viral component of WTC aerosols, despite the fact that most diseases affecting WTC workers are of viral origin and that some of these viruses are transmitted through the air. In this study, we evaluated in four WTCs the presence of 11 viral pathogens of particular concern in this milieu and used a metagenomic approach to characterize the total viral community in the air of one of those WTCs. The presence of viruses in aerosols in different locations of individual WTCs was evaluated and the results obtained with four commonly used air samplers were compared. We detected four of the eleven viruses tested, including human adenovirus (hAdV), rotavirus, hepatitis A virus (HAV) and Herpes Simplex virus type 1 (HSV1). The results of the metagenomic assay uncovered very few viral RNA sequences in WTC aerosols, however sequences from human DNA viruses were in much greater relative abundance. Copyright © 2017. Published by Elsevier B.V.

  6. Microbial Community Patterns Associated with Automated Teller Machine Keypads in New York City.

    Science.gov (United States)

    Bik, Holly M; Maritz, Julia M; Luong, Albert; Shin, Hakdong; Dominguez-Bello, Maria Gloria; Carlton, Jane M

    2016-01-01

    In densely populated urban environments, the distribution of microbes and the drivers of microbial community assemblages are not well understood. In sprawling metropolitan habitats, the "urban microbiome" may represent a mix of human-associated and environmental taxa. Here we carried out a baseline study of automated teller machine (ATM) keypads in New York City (NYC). Our goal was to describe the biodiversity and biogeography of both prokaryotic and eukaryotic microbes in an urban setting while assessing the potential source of microbial assemblages on ATM keypads. Microbial swab samples were collected from three boroughs (Manhattan, Queens, and Brooklyn) during June and July 2014, followed by generation of Illumina MiSeq datasets for bacterial (16S rRNA) and eukaryotic (18S rRNA) marker genes. Downstream analysis was carried out in the QIIME pipeline, in conjunction with neighborhood metadata (ethnicity, population, age groups) from the NYC Open Data portal. Neither the 16S nor 18S rRNA datasets showed any clustering patterns related to geography or neighborhood demographics. Bacterial assemblages on ATM keypads were dominated by taxonomic groups known to be associated with human skin communities ( Actinobacteria , Bacteroides , Firmicutes , and Proteobacteria ), although SourceTracker analysis was unable to identify the source habitat for the majority of taxa. Eukaryotic assemblages were dominated by fungal taxa as well as by a low-diversity protist community containing both free-living and potentially pathogenic taxa ( Toxoplasma , Trichomonas ). Our results suggest that ATM keypads amalgamate microbial assemblages from different sources, including the human microbiome, eukaryotic food species, and potentially novel extremophilic taxa adapted to air or surfaces in the built environment. DNA obtained from ATM keypads may thus provide a record of both human behavior and environmental sources of microbes. IMPORTANCE Automated teller machine (ATM) keypads represent

  7. The Microbial Fecal Indicator Paradigm: Tools in the Toolbox Applications in Recreational Waters

    Science.gov (United States)

    Summary of ORD’s recent research to develop tools for assessing microbial water quality in recreational waters. Methods discussed include the development of health associations between microbial fecal indicators and the development of culture, and molecular methods for fec...

  8. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Microbial Cell Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL; Sullivan, Claretta [Eastern Virginia Medical School; Mortensen, Ninell P [ORNL; Allison, David P [ORNL

    2011-01-01

    Atomic force microscopy (AFM) is finding increasing application in a variety of fields including microbiology. Until the emergence of AFM, techniques for ivnestigating processes in single microbes were limited. From a biologist's perspective, the fact that AFM can be used to generate high-resolution images in buffers or media is its most appealing feature as live-cell imaging can be pursued. Imaging living cells by AFM allows dynamic biological events to be studied, at the nanoscale, in real time. Few areas of biological research have as much to gain as microbiology from the application of AFM. Whereas the scale of microbes places them near the limit of resolution for light microscopy. AFM is well suited for the study of structures on the order of a micron or less. Although electron microscopy techniques have been the standard for high-resolution imaging of microbes, AFM is quickly gaining favor for several reasons. First, fixatives that impair biological activity are not required. Second, AFM is capable of detecting forces in the pN range, and precise control of the force applied to the cantilever can be maintained. This combination facilitates the evaluation of physical characteristics of microbes. Third, rather than yielding the composite, statistical average of cell populations, as is the case with many biochemical assays, the behavior of single cells can be monitored. Despite the potential of AFM in microbiology, there are several limitations that must be considered. For example, the time required to record an image allows for the study of gross events such as cell division or membrane degradation from an antibiotic but precludes the evaluation of biological reactions and events that happen in just fractions of a second. Additionally, the AFM is a topographical tool and is restricted to imaging surfaces. Therefore, it cannot be used to look inside cells as with opticla and transmission electron microscopes. other practical considerations are the

  10. High microbial loads found in minimally-processed sliced mushrooms from Italian market

    Directory of Open Access Journals (Sweden)

    Haiyang Jiang

    2018-04-01

    Full Text Available There is an increased consumer interest in minimally processed vegetables that has led to the development of products, such as pre-cut sliced mushrooms. Few data are available on the hygienic condition and the presence of foodborne pathogens in such products. Therefore, the current study aimed to evaluate the safety and hygienic characteristics of both ready-to-eat and ready-to-cook, pre-cut sliced mushrooms obtained from a local Italian market. For the evaluation of the hygienic condition, the aerobic mesophilic bacteria, aerobic psychrotrophic bacteria and Escherichia coli enumerations were performed. Salmonella spp., Listeria monocytogenes and Campylobacter spp. were considered in the assessment of the foodborne pathogens. High microbial loads were detected, including counts higher than 5 log CFU/g for E. coli and 6 log CFU/g for the other bacteria counts considered, but no pathogens were found. Ready-to-eat and ready-to-cook products differed only for aerobic mesophilic counts (7.87 and 8.26 log CFU/g, respectively, P=0.003. Strategies to enhance the hygienic level of the mushrooms, particularly the ready-to-eat products, are needed.

  11. High microbial loads found in minimally-processed sliced mushrooms from Italian market.

    Science.gov (United States)

    Jiang, Haiyang; Miraglia, Dino; Ranucci, David; Donnini, Domizia; Roila, Rossana; Branciari, Raffaella; Li, Cheng

    2018-03-31

    There is an increased consumer interest in minimally processed vegetables that has led to the development of products, such as pre-cut sliced mushrooms. Few data are available on the hygienic condition and the presence of foodborne pathogens in such products. Therefore, the current study aimed to evaluate the safety and hygienic characteristics of both ready-to-eat and ready-to-cook, pre-cut sliced mushrooms obtained from a local Italian market. For the evaluation of the hygienic condition, the aerobic mesophilic bacteria, aerobic psychrotrophic bacteria and Escherichia coli enumerations were performed. Salmonella spp., Listeria monocytogenes and Campylobacter spp. were considered in the assessment of the foodborne pathogens. High microbial loads were detected, including counts higher than 5 log CFU/g for E. coli and 6 log CFU/g for the other bacteria counts considered, but no pathogens were found. Ready-to-eat and ready-to-cook products differed only for aerobic mesophilic counts (7.87 and 8.26 log CFU/g, respectively, P=0.003). Strategies to enhance the hygienic level of the mushrooms, particularly the ready-to-eat products, are needed.

  12. Sexual Reproduction of Human Fungal Pathogens

    Science.gov (United States)

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  13. Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances.

    Science.gov (United States)

    Anjum, Reshma; Grohmann, Elisabeth; Krakat, Niclas

    2017-02-01

    Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pre- and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables.

    Science.gov (United States)

    Gil, Maria I; Selma, Maria V; Suslow, Trevor; Jacxsens, Liesbeth; Uyttendaele, Mieke; Allende, Ana

    2015-01-01

    This review includes an overview of the most important preventive measures along the farm to fork chain to prevent microbial contamination of leafy greens. It also includes the technological and managerial interventions related to primary production, postharvest handling, processing practices, distribution, and consumer handling to eliminate pathogens in leafy greens. When the microbiological risk is already present, preventive measures to limit actual contamination events or pathogen survival are considered intervention strategies. In codes of practice the focus is mainly put on explaining preventive measures. However, it is also important to establish more focused intervention strategies. This review is centered mainly on leafy vegetables as the commodity identified as the highest priority in terms of fresh produce microbial safety from a global perspective. There is no unique preventive measure or intervention strategy that could be applied at one point of the food chain. We should encourage growers of leafy greens to establish procedures based on the HACCP principles at the level of primary production. The traceability of leafy vegetables along the chain is an essential element in ensuring food safety. Thus, in dealing with the food safety issues associated with fresh produce it is clear that a multidisciplinary farm to fork strategy is required.

  15. Studies about behavior of microbial degradation of organic compounds

    International Nuclear Information System (INIS)

    Ohtsuka, Makiko

    2003-02-01

    Some of TRU waste include organic compounds, thus these organic compounds might be nutrients for microbial growth at disposal site. This disposal system might be exposed to high alkali condition by cement compounds as engineering barrier material. In the former experimental studies, it has been supposed that microbial exist under pH = 12 and the microbial activity acclimated to high alkali condition are able to degrade asphalt under anaerobic condition. Microbes are called extremophile that exist in cruel habitat as high alkali or reductive condition. We know less information about the activity of extremophile, though any recent studies reveal them. In this study, the first investigation is metabolic pathway as microbial activity, the second is microbial degradation of aromatic compounds in anaerobic condition, and the third is microbial activity under high alkali. Microbial metabolic pathway consist of two systems that fulfill their function each other. One system is to generate energy for microbial activities and the other is to convert substances for syntheses of organisms' structure materials. As these systems are based on redox reaction between substances, it is made chart of the microbial activity region using pH, Eh, and depth as parameter, There is much report that microbe is able to degrade aromatic compounds under aerobic or molecular O 2 utilizing condition. For degradation of aromatic compounds in anaerobic condition, supplying electron acceptor is required. Co-metabolism and microbial consortia has important role, too. Alcalophile has individual transporting system depending Na + and acidic compounds contained in cell wall. Generating energy is key for survival and growth under high alkali condition. Co-metabolism and microbial consortia are effective for microbial degradation of aromatic compounds under high alkali and reductive condition, and utilizable electron acceptor and degradable organic compounds are required for keeping microbial activity and

  16. Factors influencing the microbial safety of fresh produce: a review.

    Science.gov (United States)

    Olaimat, Amin N; Holley, Richard A

    2012-10-01

    Increased consumption, larger scale production and more efficient distribution of fresh produce over the past two decades have contributed to an increase in the number of illness outbreaks caused by this commodity. Pathogen contamination of fresh produce may originate before or after harvest, but once contaminated produce is difficult to sanitize. The prospect that some pathogens invade the vascular system of plants and establish "sub-clinical" infection needs to be better understood to enable estimation of its influence upon risk of human illness. Conventional surface sanitation methods can reduce the microbial load, but cannot eliminate pathogens if present. Chlorine dioxide, electrolyzed water, UV light, cold atmospheric plasma, hydrogen peroxide, organic acids and acidified sodium chlorite show promise, but irradiation at 1 kGy in high oxygen atmospheres may prove to be the most effective means to assure elimination of both surface and internal contamination of produce by pathogens. Pathogens of greatest current concern are Salmonella (tomatoes, seed sprouts and spices) and Escherichia coli O157:H7 on leafy greens (spinach and lettuce). This review considers new information on illness outbreaks caused by produce, identifies factors which influence their frequency and size and examines intervention effectiveness. Research needed to increase our understanding of the factors influencing microbial safety of fresh produce is addressed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Mechanisms of Surface Antigenic Variation in the Human Pathogenic Fungus Pneumocystis jirovecii.

    Science.gov (United States)

    Schmid-Siegert, Emanuel; Richard, Sophie; Luraschi, Amanda; Mühlethaler, Konrad; Pagni, Marco; Hauser, Philippe M

    2017-11-07

    Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different. IMPORTANCE Pneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms

  18. Bacterial toxins as pathogen weapons against phagocytes

    Directory of Open Access Journals (Sweden)

    Ana edo Vale

    2016-02-01

    Full Text Available Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favour microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signalling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.

  19. Genome-scale biological models for industrial microbial systems.

    Science.gov (United States)

    Xu, Nan; Ye, Chao; Liu, Liming

    2018-04-01

    The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.

  20. Microbial communities related to volatile organic compound emission in automobile air conditioning units.

    Science.gov (United States)

    Diekmann, Nina; Burghartz, Melanie; Remus, Lars; Kaufholz, Anna-Lena; Nawrath, Thorben; Rohde, Manfred; Schulz, Stefan; Roselius, Louisa; Schaper, Jörg; Mamber, Oliver; Jahn, Dieter; Jahn, Martina

    2013-10-01

    During operation of mobile air conditioning (MAC) systems in automobiles, malodours can occur. We studied the microbial communities found on contaminated heat exchanger fins of 45 evaporators from car MAC systems which were operated in seven different regions of the world and identified corresponding volatile organic compounds. Collected biofilms were examined by scanning electron microscopy and fluorescent in situ hybridization. The detected bacteria were loosely attached to the metal surface. Further analyses of the bacteria using PCR-based single-strand conformation polymorphism and sequencing of isolated 16S rRNA gene fragments identified highly divergent microbial communities with multiple members of the Alphaproteobacteriales, Methylobacteria were the prevalent bacteria. In addition, Sphingomonadales, Burkholderiales, Bacillales, Alcanivorax spp. and Stenotrophomonas spp. were found among many others depending on the location the evaporators were operated. Interestingly, typical pathogenic bacteria related to air conditioning systems including Legionella spp. were not found. In order to determine the nature of the chemical compounds produced by the bacteria, the volatile organic compounds were examined by closed loop stripping analysis and identified by combined gas chromatography/mass spectrometry. Sulphur compounds, i.e. di-, tri- and multiple sulphides, acetylthiazole, aromatic compounds and diverse substituted pyrazines were detected. Mathematical clustering of the determined microbial community structures against their origin identified a European/American/Arabic cluster versus two mainly tropical Asian clusters. Interestingly, clustering of the determined volatiles against the origin of the corresponding MAC revealed a highly similar pattern. A close relationship of microbial community structure and resulting malodours to the climate and air quality at the location of MAC operation was concluded.

  1. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    Science.gov (United States)

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier

  2. Microbial diversity and structure are drivers of the biological barrier effect against Listeria monocytogenes in soil.

    Science.gov (United States)

    Vivant, Anne-Laure; Garmyn, Dominique; Maron, Pierre-Alain; Nowak, Virginie; Piveteau, Pascal

    2013-01-01

    Understanding the ecology of pathogenic organisms is important in order to monitor their transmission in the environment and the related health hazards. We investigated the relationship between soil microbial diversity and the barrier effect against Listeria monocytogenes invasion. By using a dilution-to-extinction approach, we analysed the consequence of eroding microbial diversity on L. monocytogenes population dynamics under standardised conditions of abiotic parameters and microbial abundance in soil microcosms. We demonstrated that highly diverse soil microbial communities act as a biological barrier against L. monocytogenes invasion and that phylogenetic composition of the community also has to be considered. This suggests that erosion of diversity may have damaging effects regarding circulation of pathogenic microorganisms in the environment.

  3. Uncharted Microbial World: Microbes and Their Activities in the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, Caroline; Buckley, Merry

    2007-12-31

    Microbes are the foundation for all of life. From the air we breathe to the soil we rely on for farming to the water we drink, everything humans need to survive is intimately coupled with the activities of microbes. Major advances have been made in the understanding of disease and the use of microorganisms in the industrial production of drugs, food products and wastewater treatment. However, our understanding of many complicated microbial environments (the gut and teeth), soil fertility, and biogeochemical cycles of the elements is lagging behind due to their enormous complexity. Inadequate technology and limited resources have stymied many lines of investigation. Today, most environmental microorganisms have yet to be isolated and identified, let alone rigorously studied. The American Academy of Microbiology convened a colloquium in Seattle, Washington, in February 2007, to deliberate the way forward in the study of microorganisms and microbial activities in the environment. Researchers in microbiology, marine science, pathobiology, evolutionary biology, medicine, engineering, and other fields discussed ways to build on and extend recent successes in microbiology. The participants made specific recommendations for targeting future research, improving methodologies and techniques, and enhancing training and collaboration in the field. Microbiology has made a great deal of progress in the past 100 years, and the useful applications for these new discoveries are numerous. Microorganisms and microbial products are now used in industrial capacities ranging from bioremediation of toxic chemicals to probiotic therapies for humans and livestock. On the medical front, studies of microbial communities have revealed, among other things, new ways for controlling human pathogens. The immediate future for research in this field is extremely promising. In order to optimize the effectiveness of community research efforts in the future, scientists should include manageable

  4. Microbial bioenergetics of coral-algal interactions

    Directory of Open Access Journals (Sweden)

    Ty N.F. Roach

    2017-06-01

    Full Text Available Human impacts are causing ecosystem phase shifts from coral- to algal-dominated reef systems on a global scale. As these ecosystems undergo transition, there is an increased incidence of coral-macroalgal interactions. Mounting evidence indicates that the outcome of these interaction events is, in part, governed by microbially mediated dynamics. The allocation of available energy through different trophic levels, including the microbial food web, determines the outcome of these interactions and ultimately shapes the benthic community structure. However, little is known about the underlying thermodynamic mechanisms involved in these trophic energy transfers. This study utilizes a novel combination of methods including calorimetry, flow cytometry, and optical oxygen measurements, to provide a bioenergetic analysis of coral-macroalgal interactions in a controlled aquarium setting. We demonstrate that the energetic demands of microbial communities at the coral-algal interaction interface are higher than in the communities associated with either of the macroorganisms alone. This was evident through higher microbial power output (energy use per unit time and lower oxygen concentrations at interaction zones compared to areas distal from the interface. Increases in microbial power output and lower oxygen concentrations were significantly correlated with the ratio of heterotrophic to autotrophic microbes but not the total microbial abundance. These results suggest that coral-algal interfaces harbor higher proportions of heterotrophic microbes that are optimizing maximal power output, as opposed to yield. This yield to power shift offers a possible thermodynamic mechanism underlying the transition from coral- to algal-dominated reef ecosystems currently being observed worldwide. As changes in the power output of an ecosystem are a significant indicator of the current state of the system, this analysis provides a novel and insightful means to quantify

  5. Metagenomic analysis of planktonic microbial consortia from a non-tidal urban-impacted segment of James River.

    Science.gov (United States)

    Brown, Bonnie L; LePrell, Rebecca V; Franklin, Rima B; Rivera, Maria C; Cabral, Francine M; Eaves, Hugh L; Gardiakos, Vicki; Keegan, Kevin P; King, Timothy L

    2015-01-01

    Knowledge of the diversity and ecological function of the microbial consortia of James River in Virginia, USA, is essential to developing a more complete understanding of the ecology of this model river system. Metagenomic analysis of James River's planktonic microbial community was performed for the first time using an unamplified genomic library and a 16S rDNA amplicon library prepared and sequenced by Ion PGM and MiSeq, respectively. From the 0.46-Gb WGS library (GenBank:SRR1146621; MG-RAST:4532156.3), 4 × 10(6) reads revealed >3 × 10(6) genes, 240 families of prokaryotes, and 155 families of eukaryotes. From the 0.68-Gb 16S library (GenBank:SRR2124995; MG-RAST:4631271.3; EMB:2184), 4 × 10(6) reads revealed 259 families of eubacteria. Results of the WGS and 16S analyses were highly consistent and indicated that more than half of the bacterial sequences were Proteobacteria, predominantly Comamonadaceae. The most numerous genera in this group were Acidovorax (including iron oxidizers, nitrotolulene degraders, and plant pathogens), which accounted for 10 % of assigned bacterial reads. Polaromonas were another 6 % of all bacterial reads, with many assignments to groups capable of degrading polycyclic aromatic hydrocarbons. Albidiferax (iron reducers) and Variovorax (biodegraders of a variety of natural biogenic compounds as well as anthropogenic contaminants such as polycyclic aromatic hydrocarbons and endocrine disruptors) each accounted for an additional 3 % of bacterial reads. Comparison of these data to other publically-available aquatic metagenomes revealed that this stretch of James River is highly similar to the upper Mississippi River, and that these river systems are more similar to aquaculture and sludge ecosystems than they are to lakes or to a pristine section of the upper Amazon River. Taken together, these analyses exposed previously unknown aspects of microbial biodiversity, documented the ecological responses of microbes to urban

  6. Resistance and Resilience of Soil Microbial Communities Exposed to Petroleum-Derived Compounds

    DEFF Research Database (Denmark)

    Modrzynski, Jakub Jan

    Functioning of soil microbial communities is generally considered resilient to disturbance, including chemical stress. Activities of soil microbial communities are often sustained in polluted environments due to exceptional plasticity of microbial communities and functional redundancy. Pollution......-induced community tolerance (PICT) often develops following chemical stress. Nonetheless, environmental pollution may severely disturb functioning of soil microbial communities, thereby threatening provision of important ecosystem services provided by microorganisms. Pollution with petroleum and petroleum......-derived compounds (PDCs) is a significant environmental problem on a global scale. Research addressing interactions between microorganisms and PDC pollution is dominated by studies of biodegradation, with less emphasis on microbial ecotoxicology. Soil microbial communities are generally considered highly resilient...

  7. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Larissa D Cunha

    2013-11-01

    Full Text Available Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.

  8. The plant cell nucleus: a true arena for the fight between plants and pathogens.

    Science.gov (United States)

    Deslandes, Laurent; Rivas, Susana

    2011-01-01

    Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.

  9. Complement Evasion by Pathogenic Leptospira.

    Science.gov (United States)

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira . Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira , have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activi