WorldWideScience

Sample records for microbial growth response

  1. Soil microbial community response to land use and various soil ...

    African Journals Online (AJOL)

    Soil microbial community response to land use and various soil elements in a city landscape of north China. ... African Journal of Biotechnology ... Legumes played an important role in stimulating the growth and reproduction of various soil microbial populations, accordingly promoting the microbial catabolic activity.

  2. Impact of warm winters on microbial growth

    Science.gov (United States)

    Birgander, Johanna; Rousk, Johannes; Axel Olsson, Pål

    2014-05-01

    Growth of soil bacteria has an asymmetrical response to higher temperature with a gradual increase with increasing temperatures until an optimum after which a steep decline occurs. In laboratory studies it has been shown that by exposing a soil bacterial community to a temperature above the community's optimum temperature for two months, the bacterial community grows warm-adapted, and the optimum temperature of bacterial growth shifts towards higher temperatures. This result suggests a change in the intrinsic temperature dependence of bacterial growth, as temperature influenced the bacterial growth even though all other factors were kept constant. An intrinsic temperature dependence could be explained by either a change in the bacterial community composition, exchanging less tolerant bacteria towards more tolerant ones, or it could be due to adaptation within the bacteria present. No matter what the shift in temperature tolerance is due to, the shift could have ecosystem scale implications, as winters in northern Europe are getting warmer. To address the question of how microbes and plants are affected by warmer winters, a winter-warming experiment was established in a South Swedish grassland. Results suggest a positive response in microbial growth rate in plots where winter soil temperatures were around 6 °C above ambient. Both bacterial and fungal growth (leucine incorporation, and acetate into ergosterol incorporation, respectively) appeared stimulated, and there are two candidate explanations for these results. Either (i) warming directly influence microbial communities by modulating their temperature adaptation, or (ii) warming indirectly affected the microbial communities via temperature induced changes in bacterial growth conditions. The first explanation is in accordance with what has been shown in laboratory conditions (explained above), where the differences in the intrinsic temperature relationships were examined. To test this explanation the

  3. 21 CFR 866.2560 - Microbial growth monitor.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2560 Microbial growth monitor. (a) Identification. A microbial growth monitor is a device intended for medical purposes that...

  4. Growth and element flux at fine taxonomic resolution in natural microbial communities

    Science.gov (United States)

    Hungate, Bruce; Mau, Rebecca; Schwartz, Egbert; Caporaso, J. Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J.; Liu, Cindy M.; McHugh, Theresa; Marks, Jane C.; Morrissey, Ember; Price, Lance B.

    2015-04-01

    Microorganisms are the engines of global biogeochemical cycles, driving half of all photosynthesis and nearly all decomposition. Yet, quantifying the rates at which uncultured microbial taxa grow and transform elements in intact and highly diverse natural communities in the environment remains among the most pressing challenges in microbial ecology today. Here, we show how shifts in the density of DNA caused by stable isotope incorporation can be used to estimate the growth rates of individual bacterial taxa in intact soil communities. We found that the distribution of growth rates followed the familiar lognormal distribution observed for the abundances, biomasses, and traits of many organisms. Growth rates of most bacterial taxa increased in response to glucose amendment, though the increase in growth observed for many taxa was larger than could be explained by direct utilization of the added glucose for growth, illustrating that glucose addition indirectly stimulated the utilization of other substrates. Variation in growth rates and phylogenetic distances were quantitatively related, connecting evolutionary history and biogeochemical function in intact soil microbial communities. Our approach has the potential to identify biogeochemically significant taxa in the microbial community and quantify their contributions to element transformations and ecosystem processes.

  5. Mathematical modeling of microbial growth in milk

    Directory of Open Access Journals (Sweden)

    Jhony Tiago Teleken

    2011-12-01

    Full Text Available A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.

  6. Investigating the legacy effect of drought on microbial responses to drying and rewetting along a Texan precipitation gradient

    Science.gov (United States)

    Hicks, Lettice; Leizeaga, Ainara; Hawkes, Christine; Rousk, Johannes

    2017-04-01

    Hydrological regimes will intensify due to climate change, thus increasing the duration and intensity of drought and rainfall events. Rewetting of dry soil is known to stimulate dramatic CO2 releases. A clear understanding of the mechanisms that determine the dynamics of CO2 loss upon rewetting is therefore required to characterise ecosystem C-budgets and predict responses to climate change. Laboratory studies have identified two distinct responses upon rewetting; bacterial growth either increases linearly immediately, with maximal respiration also occurring immediately and decreasing exponentially with time ("Type 1"), or bacterial growth increases exponentially after a period of near-zero growth, with a sustained period of elevated respiration, sometimes followed by a secondary increase in respiration coinciding with the onset of bacterial growth ("Type 2"). A shift from a Type 1 to a Type 2 response has been observed with increasing duration and intensity of drying prior to rewetting. The size of the surviving microbial community after drying, relative to resources available after rewetting, is suggested to dictate whether a Type 1 or 2 response occurs, with more 'harsh' (i.e. longer or more severe) drying reducing microbial biomass such that carbon available upon rewetting is sufficient to support exponential growth (leading to Type 2 response). However, this is yet to be tested in intact ecosystems. We investigated the legacy of drought on microbial responses to drying and rewetting using grassland soils from a natural precipitation gradient in Texas. Mean annual precipitation spanned a 500 mm range (400-900 mm year-1) across the 400 km gradient, while mean annual temperature was constant. Soil properties (pH, SOM) did not vary systematically across the gradient, with differences reflecting land-use history rather than rainfall. Air dried soils from 18 sites were rewetted to 50 % water holding capacity with bacterial growth, fungal growth and respiration

  7. Are Microbial Nanowires Responsible for Geoelectrical Changes at Hydrocarbon Contaminated Sites?

    Science.gov (United States)

    Hager, C.; Atekwana, E. A.; Gorby, Y. A.; Duris, J. W.; Allen, J. P.; Atekwana, E. A.; Ownby, C.; Rossbach, S.

    2007-05-01

    Significant advances in near-surface geophysics and biogeophysics in particular, have clearly established a link between geoelectrical response and the growth and enzymatic activities of microbes in geologic media. Recent studies from hydrocarbon contaminated sites suggest that the activities of distinct microbial populations, specifically syntrophic, sulfate reducing, and dissimilatory iron reducing microbial populations are a contributing factor to elevated sediment conductivity. However, a fundamental mechanistic understanding of the processes and sources resulting in the measured electrical response remains uncertain. The recent discovery of bacterial nanowires and their electron transport capabilities suggest that if bacterial nanowires permeate the subsurface, they may in part be responsible for the anomalous conductivity response. In this study we investigated the microbial population structure, the presence of nanowires, and microbial-induced alterations of a hydrocarbon contaminated environment and relate them to the sediments' geoelectrical response. Our results show that microbial communities varied substantially along the vertical gradient and at depths where hydrocarbons saturated the sediments, ribosomal intergenic spacer analysis (RISA) revealed signatures of microbial communities adapted to hydrocarbon impact. In contrast, RISA profiles from a background location showed little community variations with depth. While all sites showed evidence of microbial activity, a scanning electron microscope (SEM) study of sediment from the contaminated location showed pervasive development of "nanowire-like structures" with morphologies consistent with nanowires from laboratory experiments. SEM analysis suggests extensive alteration of the sediments by microbial Activity. We conclude that, excess organic carbon (electron donor) but limited electron acceptors in these environments cause microorganisms to produce nanowires to shuttle the electrons as they seek for

  8. Microbial growth and substrate utilization kinetics | Okpokwasili ...

    African Journals Online (AJOL)

    Microbial growth on and utilization of environmental contaminants as substrates have been studied by many researchers. Most times, substrate utilization results in removal of chemical contaminant, increase in microbial biomass and subsequent biodegradation of the contaminant. These are all aimed at detoxification of the ...

  9. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China.

    Science.gov (United States)

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-04-03

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation.

  10. The responses of microbial temperature relationships to seasonal change and winter warming in a temperate grassland.

    Science.gov (United States)

    Birgander, Johanna; Olsson, Pål Axel; Rousk, Johannes

    2018-01-18

    Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm-tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years' winter warming. The warming treatments increased winter soil temperatures by 5-6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q 10 ) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat-spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil-atmosphere C

  11. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumyeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates and enzymes activity) rather than total microbial biomass

  12. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    Science.gov (United States)

    Davis, C. A.; Pyrak-Nolte, L. J.; Atekwana, E. A.; Werkema, D. D.; Haugen, M. E.

    2009-12-01

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand columns. A control column (non-biostimulated) and a biostimulated column were studied in a 2D acoustic scanning apparatus, and a second set of columns were constructed with Ag-AgCl electrodes for complex conductivity measurements. At the completion of the 29-day experiment, compressional wave amplitudes and arrival times for the control column were observed to be relatively uniform over the scanned 2D region. However, the biostimulated sample exhibited a high degree of spatial variability within the column for both the amplitude and arrival times. Furthermore, portions of the sample exhibited increased attenuation (~ 80%) concurrent with an increase in the arrival times, while other portions exhibited decreased attenuation (~ 45%) and decreased arrival time. The acoustic amplitude and arrival times changed significantly in the biostimulated column between Days 5 and 7 of the experiment and are consistent with a peak in the imaginary conductivity (σ”) values. The σ” response corresponds to different stages of biofilm development. That is, we interpret the peak σ” with the maximum biofilm thickness and decreasing σ” due to cell death or detachment. Environmental scanning electron microscope (ESEM) imaging confirmed microbial cell attachment to sand surfaces in the biostimulated columns, showed apparent differences in the morphology of attached biomass between regions of increased and decreased attenuation, and indicated no mineral precipitation or biomineralization. The heterogeneity in the elastic properties arises from the differences in the morphology and structure of attached biofilms. These results suggest that combining acoustic imaging and complex conductivity techniques

  13. New microbial growth factor

    Science.gov (United States)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  14. Growth Mechanism of Microbial Colonies

    Science.gov (United States)

    Zhu, Minhui; Martini, K. Michael; Kim, Neil H.; Sherer, Nicholas; Lee, Jia Gloria; Kuhlman, Thomas; Goldenfeld, Nigel

    Experiments on nutrient-limited E. coli colonies, growing on agar gel from single cells reveal a power-law distribution of sizes, both during the growth process and in the final stage when growth has ceased. We developed a Python simulation to study the growth mechanism of the bacterial population and thus understand the broad details of the experimental findings. The simulation takes into account nutrient uptake, metabolic function, growth and cell division. Bacteria are modeled in two dimensions as hard circle-capped cylinders with steric interactions and elastic stress dependent growth characteristics. Nutrient is able to diffuse within and between the colonies. The mechanism of microbial colony growth involves reproduction of cells within the colonies and the merging of different colonies. We report results on the dynamic scaling laws and final state size distribution, that capture in semi-quantitative detail the trends observed in experiment. Supported by NSF Grant 0822613.

  15. Using growth-based methods to determine direct effects of salinity on soil microbial communities

    Science.gov (United States)

    Rath, Kristin; Rousk, Johannes

    2015-04-01

    Soil salinization is a widespread agricultural problem and increasing salt concentrations in soils have been found to be correlated with decreased microbial activity. A central challenge in microbial ecology is to link environmental factors, such as salinity, to responses in the soil microbial community. That is, it can be difficult to distinguish direct from indirect effects. In order to determine direct salinity effects on the community we employed the ecotoxicological concept of Pollution-Induced Community Tolerance (PICT). This concept is built on the assumption that if salinity had an ecologically relevant effect on the community, it should have selected for more tolerant species and strains, resulting in an overall higher community tolerance to salt in communities from saline soils. Growth-based measures, such as the 3H-leucine incorporation into bacterial protein , provide sensitive tools to estimate community tolerance. They can also provide high temporal resolution in tracking changes in tolerance over time. In our study we used growth-based methods to investigate: i) at what levels of salt exposure and over which time scales salt tolerance can be induced in a non-saline soil, and (ii) if communities from high salinity sites have higher tolerance to salt exposure along natural salinity gradients. In the first part of the study, we exposed a non-saline soil to a range of salinities and monitored the development of community tolerance over time. We found that community tolerance to intermediate salinities up to around 30 mg NaCl per g soil can be induced at relatively short time scales of a few days, providing evidence that microbial communities can adapt rapidly to changes in environmental conditions. In the second part of the study we used soil samples originating from natural salinity gradients encompassing a wide range of salinity levels, with electrical conductivities ranging from 0.1 dS/m to >10 dS/m. We assessed community tolerance to salt by

  16. Effects of Spatial Localization on Microbial Consortia Growth.

    Directory of Open Access Journals (Sweden)

    Michael Venters

    Full Text Available Microbial consortia are commonly observed in natural and synthetic systems, and these consortia frequently result in higher biomass production relative to monocultures. The focus here is on the impact of initial spatial localization and substrate diffusivity on the growth of a model microbial consortium consisting of a producer strain that consumes glucose and produces acetate and a scavenger strain that consumes the acetate. The mathematical model is based on an individual cell model where growth is described by Monod kinetics, and substrate transport is described by a continuum-based, non-equilibrium reaction-diffusion model where convective transport is negligible (e.g., in a biofilm. The first set of results focus on a single producer cell at the center of the domain and surrounded by an initial population of scavenger cells. The impact of the initial population density and substrate diffusivity is examined. A transition is observed from the highest initial density resulting in the greatest cell growth to cell growth being independent of initial density. A high initial density minimizes diffusive transport time and is typically expected to result in the highest growth, but this expected behavior is not predicted in environments with lower diffusivity or larger length scales. When the producer cells are placed on the bottom of the domain with the scavenger cells above in a layered biofilm arrangement, a similar critical transition is observed. For the highest diffusivity values examined, a thin, dense initial scavenger layer is optimal for cell growth. However, for smaller diffusivity values, a thicker, less dense initial scavenger layer provides maximal growth. The overall conclusion is that high density clustering of members of a food chain is optimal under most common transport conditions, but under some slow transport conditions, high density clustering may not be optimal for microbial growth.

  17. Mechanistic model for microbial growth on hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mallee, F M; Blanch, H W

    1977-12-01

    Based on available information describing the transport and consumption of insoluble alkanes, a mechanistic model is proposed for microbial growth on hydrocarbons. The model describes the atypical growth kinetics observed, and has implications in the design of large scale equipment for single cell protein (SCP) manufacture from hydrocarbons. The model presents a framework for comparison of the previously published experimental kinetic data.

  18. Susceptibility of green and conventional building materials to microbial growth.

    Science.gov (United States)

    Mensah-Attipoe, J; Reponen, T; Salmela, A; Veijalainen, A-M; Pasanen, P

    2015-06-01

    Green building materials are becoming more popular. However, little is known about their ability to support or limit microbial growth. The growth of fungi was evaluated on five building materials. Two green, two conventional building materials and wood as a positive control were selected. The materials were inoculated with Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum, in the absence and presence of house dust. Microbial growth was assessed at four different time points by cultivation and determining fungal biomass using the N-acetylhexosaminidase (NAHA) enzyme assay. No clear differences were seen between green and conventional building materials in their susceptibility to support microbial growth. The presence of dust, an external source of nutrients, promoted growth of all the fungal species similarly on green and conventional materials. The results also showed a correlation coefficient ranging from 0.81 to 0.88 between NAHA activity and culturable counts. The results suggest that the growth of microbes on a material surface depends on the availability of organic matter rather than the classification of the material as green or conventional. NAHA activity and culturability correlated well indicating that the two methods used in the experiments gave similar trends for the growth of fungi on material surfaces. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Effects of feed forms on growth pattern, behavioural responses and ...

    African Journals Online (AJOL)

    Effects of feed forms on growth pattern, behavioural responses and feacal microbial load ... load and behavioural activities (eating, drinking, physical pen interaction and ... Total organism counts varied significantly (p<0.05) with pigs on T1, T2, ...

  20. Electrochemical and Chemical Complications Resulting from Yeast Extract Addition to Stimulate Microbial Growth

    Science.gov (United States)

    2016-09-22

    including strains of Saccharomyces cerevisiae grown on molasses-based media, debittered brewers yeasts (strains of Saccharo- myces cerevisiae or...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) Technical Note: Electrochemical and Chemical Complications Resulting from Yeast Extract...Addition to Stimulate Microbial Growth Jason S. Lee‡,* and Brenda J. Little* ABSTRACT Addition of 1 g/L yeast extract (YE) to sterile, aerobic

  1. Growth Response and Tolerance to Heavy Metals of two Swamp Species inoculated with a Plant Growth-Promoting Rhizobacteria

    International Nuclear Information System (INIS)

    Rodriguez-Dorantes, A.; Labra-Cardon, D.; Guerrero-Zuniga, A.; Montes-Villafan, S.

    2009-01-01

    Due to the sensitivity and the sequestration ability of the microbial communities to heavy metals, microbes have been used for bioremediation. Recently the application of plant growth-promoting rhizobacteria (PGPR) for the bioremediation of this kind of contaminants has been done. This study evaluated the growth response and the tolerance to heavy metals of two swamp species. (Author)

  2. Microbial Growth and Carbon Use Efficiency in the Rhizosphere and Root-Free Soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Anderson, Traute-Heidi; Kuzyakov, Yakov

    2014-01-01

    Plant-microbial interactions alter C and N balance in the rhizosphere and affect the microbial carbon use efficiency (CUE)–the fundamental characteristic of microbial metabolism. Estimation of CUE in microbial hotspots with high dynamics of activity and changes of microbial physiological state from dormancy to activity is a challenge in soil microbiology. We analyzed respiratory activity, microbial DNA content and CUE by manipulation the C and nutrients availability in the soil under Beta vulgaris. All measurements were done in root-free and rhizosphere soil under steady-state conditions and during microbial growth induced by addition of glucose. Microorganisms in the rhizosphere and root-free soil differed in their CUE dynamics due to varying time delays between respiration burst and DNA increase. Constant CUE in an exponentially-growing microbial community in rhizosphere demonstrated the balanced growth. In contrast, the CUE in the root-free soil increased more than three times at the end of exponential growth and was 1.5 times higher than in the rhizosphere. Plants alter the dynamics of microbial CUE by balancing the catabolic and anabolic processes, which were decoupled in the root-free soil. The effects of N and C availability on CUE in rhizosphere and root-free soil are discussed. PMID:24722409

  3. Phenotypic responses to interspecies competition and commensalism in a naturally-derived microbial co-culture

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nymul; Maezato, Yukari; McClure, Ryan S.; Brislawn, Colin J.; Mobberley, Jennifer M.; Isern, Nancy; Chrisler, William B.; Markillie, Lye Meng; Barney, Brett M.; Song, Hyun-Seob; Nelson, William C.; Bernstein, Hans C.

    2018-01-10

    The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL-58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesized – and confirmed – that co-cultivation under glucose as the sole carbon source would result in a competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL-48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold.

  4. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    Science.gov (United States)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  5. A meta-analysis of soil microbial biomass responses to forest disturbances

    Directory of Open Access Journals (Sweden)

    Sandra Robin Holden

    2013-06-01

    Full Text Available Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm and biotic (insect, pathogen disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7%, 19.1%, and 41.7% reductions in microbial biomass, respectively. In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics.

  6. Is the mineralisation response to root exudation controlled by the microbial stoichiometric demand in subarctic soils?

    Science.gov (United States)

    Rousk, Johannes; Hicks, Lettice; Leizeaga, Ainara; Michelsen, Anders; Rousk, Kathrin

    2017-04-01

    Climate change will expose arctic and subarctic systems to warming and a shift towards plant communities with more rhizosphere labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed 'priming'. We investigated how warming (+1.1˚ C over ambient using open top chambers) and the addition of plant litter (90 g m-2 y-1) or organic nitrogen (N) (fungal fruit bodies; 90 g m-2 y-1) in the Subarctic influenced the susceptibility of SOM mineralisation to priming, and its microbial underpinnings. Root exudation were simulated with the addition of labile organic matter both in the form of only labile C (13C-glucose) or in the form of labile C and N (13C-alanine). We hypothesized that labile C would induce a higher mineralization of N than C sourced from SOM ("N mining"); a response unrelated to microbial growth responses. We also hypothesized that the N mining effect would be more pronounced in climate change simulation treatments of higher C/N (plant litter) than treatments with lower C/N (fungal fruitbodies and warming), with the control treatments intermediate. We also hypothesized that the addition of labile C and N would not result in selective N mining, but instead coupled responses of C and N mineralisation sourced from SOM; a response that would coincide with stimulated microbial growth responses. Labile C appeared to inhibit the mineralisation of C from SOM by up to 60% within hours. In contrast, the mineralisation of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile-C inhibited C mineralisation is compatible with previously reported findings termed 'preferential substrate utilisation' or 'negative apparent priming', while the stimulated N mineralisation responses echo recent reports of 'real priming' of SOM mineralisation. However, C and N mineralisation responses

  7. Microbial growth associated with granular activated carbon in a pilot water treatment facility.

    Science.gov (United States)

    Wilcox, D P; Chang, E; Dickson, K L; Johansson, K R

    1983-01-01

    The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC. PMID:6625567

  8. Conditions for microbial growth in the FILTRA steam absorption tower

    International Nuclear Information System (INIS)

    Nilsson, H.; Roffey, R.

    1983-08-01

    By the appointment of the Southern Sweden Power Supply an experimental study has been carried out in order to evaluate the risk for microbial growth in the planned FILTRA steam absorbtion tower at the nuclear power plant in Barsebaeck. Four modelsystems were supplied with nitrogen atmosphere and a relative humidity of 100, 75, 50 and 25 percent. The fifth system received air and 75 percent relative humidity. Samples were collected and analysed for microbial growth after 1, 2, 4 and 8 months. The amounts of microorganisms and the ATP content was monitored. No measureable growth of any significance could be observed after 8 months in any system. An elementary analyses showed that the level of nitrogen and carbon in the stones was below the limit of detection (<0.3 percent C, <0.2 percent N). (author)

  9. Hydrocarbon fermentation: kinetics of microbial cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Goma, G [Institut National des Sciences Appliquees, Toulouse; Ribot, D

    1978-11-01

    Modeling of microbial growth using nonmiscible substrate is studied when kinetics of substrate dissolution is rate limiting. When the substrate concentration is low, the growth rate is described by an analytical relation that can be identified as a Contois relationship. If the substrate concentration is greater than a critical value S/sub crit/, the potentially useful hydrocarbon S* concentration is described by S* = S/sub crit//(1 + S/sub crit//S). A relationship was found between S/sub crit/ and the biomass concentration X. When X increased, S/sub crit/ decreased. The cell growth rate is related to a relation ..mu.. = ..mu../sub m/(A(X/S/sub crit/)(1 + S/sub crit//S) + 1)/sup -1/. This model describes the evolution of the growth rate when exponential or linear growth occurs, which is related to physico-chemical properties and hydrodynamic fermentation conditions. Experimental data to support the model are presented.

  10. Acoustic and Electrical Property Changes Due to Microbial Growth and Biofilm Formation in Porous Media

    Science.gov (United States)

    A laboratory study was conducted to investigate the effect of microbial growth and biofilm formation on compressional waves, and complex conductivity during stimulated microbial growth. Over the 29 day duration of the experiment, compressional wave amplitudes and arrival times f...

  11. Critical control points for the management of microbial growth in HVAC systems

    NARCIS (Netherlands)

    Gommers, S; Franchimon, F.; Bronswijk, van J.E.M.H.; Strøm-Tejsen, P; Olesen, BW; Wargocki, P; Zukowska, D; Toftum, J

    2008-01-01

    Office buildings with HVAC systems consistently report Sick Building Symptoms that are derived from microbial growth. We used the HACCP methodology to find the main critical control points (CCPs) for microbial management of HVAC systems in temperate climates. Desk research revealed relative humidity

  12. Spectrum of microbial growth and antimicrobial usage in an ...

    African Journals Online (AJOL)

    white blood cell count, duration of first antibiotic used, length of ICU stay, length of ... the acute disease process, the presence of comorbidities, invasive devices, ... Against this background, this study aimed to look at the microbial growth.

  13. Effect of dietary olive leaves and rosemary on microbial growth and ...

    African Journals Online (AJOL)

    Effect of dietary olive leaves and rosemary on microbial growth and lipid oxidation of turkey breast during refrigerated storage. ... During this period olive leaves were more effective in inhibiting bacterial growth than rosemary. Keywords: Antioxidant additives, α-tocopherol, turkey meat, herbs, spices, meat quality ...

  14. Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest.

    Science.gov (United States)

    Rousk, Johannes; Rousk, Kathrin

    2018-05-07

    Heavy metals are some of the most persistent and potent anthropogenic environmental contaminants. Although heavy metals may compromise microbial communities and soil fertility, it is challenging to causally link microbial responses to heavy metals due to various confounding factors, including correlated soil physicochemistry or nutrient availability. A solution is to investigate whether tolerance to the pollutant has been induced, called Pollution Induced Community Tolerance (PICT). In this study, we investigated soil microbial responses to a century-old gradient of metal ore pollution in an otherwise pristine subarctic birch forest generated by a railway source of iron ore transportation. To do this, we determined microbial biomass, growth, and respiration rates, and bacterial tolerance to Zn and Cu in replicated distance transects (1 m-4 km) perpendicular to the railway. Microbial biomass, growth and respiration rates were stable across the pollution gradient. The microbial community structure could be distinguished between sampled distances, but most of the variation was explained by soil pH differences, and it did not align with distance from the railroad pollution source. Bacterial tolerance to Zn and Cu started from background levels at 4 km distance from the pollution source, and remained at background levels for Cu throughout the gradient. Yet, bacterial tolerance to Zn increased 10-fold 100 m from the railway source. Our results show that the microbial community structure, size and performance remained unaffected by the metal ore exposure, suggesting no impact on ecosystem functioning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Carbon stabilization and microbial growth in acidic mine soils after addition of different amendments for soil reclamation

    Science.gov (United States)

    Zornoza, Raúl; Acosta, Jose; Ángeles Muñoz, María; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2016-04-01

    The extreme soil conditions in metalliferous mine soils have a negative influence on soil biological activity and therefore on soil carbon estabilization. Therefore, amendments are used to increase organic carbon content and activate microbial communities. In order to elucidate some of the factors controlling soil organic carbon stabilization in reclaimed acidic mine soils and its interrelationship with microbial growth and community structure, we performed an incubation experiment with four amendments: pig slurry (PS), pig manure (PM) and biochar (BC), applied with and without marble waste (MW; CaCO3). Results showed that PM and BC (alone or together with MW) contributed to an important increment in recalcitrant organic C, C/N ratio and aggregate stability. Bacterial and fungal growths were highly dependent on pH and labile organic C. PS supported the highest microbial growth; applied alone it stimulated fungal growth, and applied with MW it stimulated bacterial growth. BC promoted the lowest microbial growth, especially for fungi, with no significant increase in fungal biomass. MW+BC increased bacterial growth up to values similar to PM and MW+PM, suggesting that part of the biochar was degraded, at least in short-term mainly by bacteria rather than fungi. PM, MW+PS and MW+PM supported the highest microbial biomass and a similar community structure, related with the presence of high organic C and high pH, with immobilization of metals and increased soil quality. BC contributed to improved soil structure, increased recalcitrant organic C, and decreased metal mobility, with low stimulation of microbial growth.

  16. Comparison of Two Mechanistic Microbial Growth Models to Estimate Shelf Life of Perishable Food Package under Dynamic Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Dong Sun Lee

    2014-01-01

    Full Text Available Two mechanistic microbial growth models (Huang’s model and model of Baranyi and Roberts given in differential and integrated equation forms were compared in predicting the microbial growth and shelf life under dynamic temperature storage and distribution conditions. Literatures consistently reporting the microbial growth data under constant and changing temperature conditions were selected to obtain the primary model parameters, set up the secondary models, and apply them to predict the microbial growth and shelf life under fluctuating temperatures. When evaluated by general estimation behavior, bias factor, accuracy factor, and root-mean-square error, Huang’s model was comparable to Baranyi and Roberts’ model in the capability to estimate microbial growth under dynamic temperature conditions. Its simple form of single differential equation incorporating directly the growth rate and lag time may work as an advantage to be used in online shelf life estimation by using the electronic device.

  17. The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature.

    Science.gov (United States)

    Auffret, Marc D; Karhu, Kristiina; Khachane, Amit; Dungait, Jennifer A J; Fraser, Fiona; Hopkins, David W; Wookey, Philip A; Singh, Brajesh K; Freitag, Thomas E; Hartley, Iain P; Prosser, James I

    2016-01-01

    Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited.

  18. Micro-Food Web Structure Shapes Rhizosphere Microbial Communities and Growth in Oak

    Directory of Open Access Journals (Sweden)

    Hazel R. Maboreke

    2018-03-01

    Full Text Available The multitrophic interactions in the rhizosphere impose significant impacts on microbial community structure and function, affecting nutrient mineralisation and consequently plant performance. However, particularly for long-lived plants such as forest trees, the mechanisms by which trophic structure of the micro-food web governs rhizosphere microorganisms are still poorly understood. This study addresses the role of nematodes, as a major component of the soil micro-food web, in influencing the microbial abundance and community structure as well as tree growth. In a greenhouse experiment with Pedunculate Oak seedlings were grown in soil, where the nematode trophic structure was manipulated by altering the proportion of functional groups (i.e., bacterial, fungal, and plant feeders in a full factorial design. The influence on the rhizosphere microbial community, the ectomycorrhizal symbiont Piloderma croceum, and oak growth, was assessed. Soil phospholipid fatty acids were employed to determine changes in the microbial communities. Increased density of singular nematode functional groups showed minor impact by increasing the biomass of single microbial groups (e.g., plant feeders that of Gram-negative bacteria, except fungal feeders, which resulted in a decline of all microorganisms in the soil. In contrast, inoculation of two or three nematode groups promoted microbial biomass and altered the community structure in favour of bacteria, thereby counteracting negative impact of single groups. These findings highlight that the collective action of trophic groups in the soil micro-food web can result in microbial community changes promoting the fitness of the tree, thereby alleviating the negative effects of individual functional groups.

  19. Trade-offs between microbial growth phases lead to frequency-dependent and non-transitive selection.

    Science.gov (United States)

    Manhart, Michael; Adkar, Bharat V; Shakhnovich, Eugene I

    2018-02-14

    Mutations in a microbial population can increase the frequency of a genotype not only by increasing its exponential growth rate, but also by decreasing its lag time or adjusting the yield (resource efficiency). The contribution of multiple life-history traits to selection is a critical question for evolutionary biology as we seek to predict the evolutionary fates of mutations. Here we use a model of microbial growth to show that there are two distinct components of selection corresponding to the growth and lag phases, while the yield modulates their relative importance. The model predicts rich population dynamics when there are trade-offs between phases: multiple strains can coexist or exhibit bistability due to frequency-dependent selection, and strains can engage in rock-paper-scissors interactions due to non-transitive selection. We characterize the environmental conditions and patterns of traits necessary to realize these phenomena, which we show to be readily accessible to experiments. Our results provide a theoretical framework for analysing high-throughput measurements of microbial growth traits, especially interpreting the pleiotropy and correlations between traits across mutants. This work also highlights the need for more comprehensive measurements of selection in simple microbial systems, where the concept of an ordinary fitness landscape breaks down. © 2018 The Author(s).

  20. Conditioning biomass for microbial growth

    Science.gov (United States)

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  1. Microbial endogenous response to acute inhibitory impact of antibiotics.

    Science.gov (United States)

    Pala-Ozkok, I; Kor-Bicakci, G; Çokgör, E U; Jonas, D; Orhon, D

    2017-06-13

    Enhanced endogenous respiration was observed as the significant/main response of the aerobic microbial culture under pulse exposure to antibiotics: sulfamethoxazole, tetracycline and erythromycin. Peptone mixture and acetate were selected as organic substrates to compare the effect of complex and simple substrates. Experiments were conducted with microbial cultures acclimated to different sludge ages of 10 and 2 days, to visualize the effect of culture history. Evaluation relied on modeling of oxygen uptake rate profiles, reflecting the effect of all biochemical reactions associated with substrate utilization. Model calibration exhibited significant increase in values of endogenous respiration rate coefficient with all antibiotic doses. Enhancement of endogenous respiration was different with antibiotic type and initial dose. Results showed that both peptone mixture and acetate cultures harbored resistance genes against the tested antibiotics, which suggests that biomass spends cellular maintenance energy for activating the required antibiotic resistance mechanisms to survive, supporting higher endogenous decay rates. [Formula: see text]: maximum growth rate for X H (day -1 ); K S : half saturation constant for growth of X H (mg COD/L); b H : endogenous decay rate for X H (day -1 ); k h : maximum hydrolysis rate for S H1 (day -1 ); K X : hydrolysis half saturation constant for S H1 (mg COD/L); k hx : maximum hydrolysis rate for X S1 (day -1 ); K XX : hydrolysis half saturation constant for X S1 (mg COD/L); k STO : maximum storage rate of PHA by X H (day -1 ); [Formula: see text]: maximum growth rate on PHA for X H (day -1 ); K STO : half saturation constant for storage of PHA by X H (mg COD/L); X H1 : initial active biomass (mg COD/L).

  2. Temperature sensitivity of soil respiration rates enhanced by microbial community response.

    Science.gov (United States)

    Karhu, Kristiina; Auffret, Marc D; Dungait, Jennifer A J; Hopkins, David W; Prosser, James I; Singh, Brajesh K; Subke, Jens-Arne; Wookey, Philip A; Agren, Göran I; Sebastià, Maria-Teresa; Gouriveau, Fabrice; Bergkvist, Göran; Meir, Patrick; Nottingham, Andrew T; Salinas, Norma; Hartley, Iain P

    2014-09-04

    Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.

  3. Determination of rumen microbial growth in vitro form 32P-labelled phosphate incorporation

    International Nuclear Information System (INIS)

    Nevel, C.J. Van; Demeyer, D.I.

    1977-01-01

    The extracellular phosphate pool in incubations of rumen fluid or washed cell suspensions of mixed rumen bacteria (WCS) was labelled with 32 P. From the constant extracellular phosphate pool specific activity and the amount of radioactivity incorporated during incubation, the amount of P incorporated in the microbial fraction was calculated. From the value for nitrogen: P determined in microbial matter, the amount of N incorporated was calculated as a measure of microbial growth. Incorporation of soluble non-protein-N in incubations devoid of substrate protein was 50 and 80% of the values obtained using isotope method for rumen fluid and WCS respectively. Incorporation of 32 P in P-containing microbial components (mainly nucleic acids) was compared with net synthesis of these components in incubations of WCS. When N incorporation, calculated from results obtained using isotope method in incubations with rumen fluid, was compared with the amount of carbohydrate substrate fermented and the type of fermentation, values between 18.3 and 44.6 g N incorporated kg of organic matter fermented were obtained. The use of isotopes for determination of rumen microbial growth in vitro is critically discussed. (author)

  4. Rumen microbial growth estimation using in vitro radiophosphorous incorporation technique

    International Nuclear Information System (INIS)

    Bueno, Ives Claudio da Silva; Machado, Mariana de Carvalho; Cabral Filho, Sergio Lucio Salomon; Gobbo, Sarita Priscila; Vitti, Dorinha Miriam Silber Schmidt; Abdalla, Adibe Luiz

    2002-01-01

    Rumen microorganisms are able to transform low biological value nitrogen of feed stuff into high quality protein. To determine how much microbial protein that process forms, radiomarkers can be used. Radiophosphorous has been used to mark microbial protein, as element P is present in all rumen microorganisms (as phospholipids) and the P:N ratio of rumen biomass is quite constant. The aim of this work was to estimate microbial synthesis from feedstuff commonly used in ruminant nutrition in Brazil. Tested feeds were fresh alfalfa, raw sugarcane bagasse, rice hulls, rice meal, soybean meal, wheat meal, Tifton hay, leucaena, dehydrated citrus pulp, wet brewers' grains and cottonseed meal. 32 P-labelled phosphate solution was used as marker for microbial protein. Results showed the diversity of feeds by distinct quantities of nitrogen incorporated into microbial mass. Low nutrient availability feeds (sugarcane bagasse and rice hulls) promoted the lowest values of incorporated nitrogen. Nitrogen incorporation showed positive relationship (r=0.56; P=0.06) with the rate of degradation and negative relationship (r=-0.59; P<0.05) with fiber content of feeds. The results highlight that easier fermentable feeds (higher rates of degradation) and/or with lower fiber contents promote a more efficient microbial growth and better performance for the host animal. (author)

  5. Rumen microbial growth estimation using in vitro radiophosphorous incorporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Ives Claudio da Silva; Machado, Mariana de Carvalho; Cabral Filho, Sergio Lucio Salomon; Gobbo, Sarita Priscila; Vitti, Dorinha Miriam Silber Schmidt; Abdalla, Adibe Luiz [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)

    2002-07-01

    Rumen microorganisms are able to transform low biological value nitrogen of feed stuff into high quality protein. To determine how much microbial protein that process forms, radiomarkers can be used. Radiophosphorous has been used to mark microbial protein, as element P is present in all rumen microorganisms (as phospholipids) and the P:N ratio of rumen biomass is quite constant. The aim of this work was to estimate microbial synthesis from feedstuff commonly used in ruminant nutrition in Brazil. Tested feeds were fresh alfalfa, raw sugarcane bagasse, rice hulls, rice meal, soybean meal, wheat meal, Tifton hay, leucaena, dehydrated citrus pulp, wet brewers' grains and cottonseed meal. {sup 32} P-labelled phosphate solution was used as marker for microbial protein. Results showed the diversity of feeds by distinct quantities of nitrogen incorporated into microbial mass. Low nutrient availability feeds (sugarcane bagasse and rice hulls) promoted the lowest values of incorporated nitrogen. Nitrogen incorporation showed positive relationship (r=0.56; P=0.06) with the rate of degradation and negative relationship (r=-0.59; P<0.05) with fiber content of feeds. The results highlight that easier fermentable feeds (higher rates of degradation) and/or with lower fiber contents promote a more efficient microbial growth and better performance for the host animal. (author)

  6. Linking genes to microbial growth kinetics: an integrated biochemical systems engineering approach

    NARCIS (Netherlands)

    Koutinas, M.; Kiparissides, A.; Silva-Rocha, R.; Lam, M.C.; Martins Dos Santos, V.A.P.; Lorenzo, de V.; Pistikopoulos, E.N.; Mantalaris, A.

    2011-01-01

    The majority of models describing the kinetic properties of a microorganism for a given substrate are unstructured and empirical. They are formulated in this manner so that the complex mechanism of cell growth is simplified. Herein, a novel approach for modelling microbial growth kinetics is

  7. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    Science.gov (United States)

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand...

  8. Plant responses to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Loon, L.C. van

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant.

  9. 2010 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 18-23, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Ades

    2011-07-23

    The 2010 Gordon Research Conference on Microbial Stress Responses provides an open and exciting forum for the exchange of scientific discoveries on the remarkable mechanisms used by microbes to survive in nearly every niche on the planet. Understanding these stress responses is critical for our ability to control microbial survival, whether in the context of biotechnology, ecology, or pathogenesis. From its inception in 1994, this conference has traditionally employed a very broad definition of stress in microbial systems. Sessions will cover the major steps of stress responses from signal sensing to transcriptional regulation to the effectors that mediate responses. A wide range of stresses will be represented. Some examples include (but are not limited to) oxidative stress, protein quality control, antibiotic-induced stress and survival, envelope stress, DNA damage, and nutritional stress. The 2010 meeting will also focus on the role of stress responses in microbial communities, applied and environmental microbiology, and microbial development. This conference brings together researchers from both the biological and physical sciences investigating stress responses in medically- and environmentally relevant microbes, as well as model organisms, using cutting-edge techniques. Computational, systems-level, and biophysical approaches to exploring stress responsive circuits will be integrated throughout the sessions alongside the more traditional molecular, physiological, and genetic approaches. The broad range of excellent speakers and topics, together with the intimate and pleasant setting at Mount Holyoke College, provide a fertile ground for the exchange of new ideas and approaches.

  10. The contribution of microbial biotechnology to economic growth and employment creation.

    Science.gov (United States)

    Timmis, Kenneth; de Lorenzo, Victor; Verstraete, Willy; Ramos, Juan Luis; Danchin, Antoine; Brüssow, Harald; Singh, Brajesh K; Timmis, James Kenneth

    2017-09-01

    Our communication discusses the profound impact of bio-based economies - in particular microbial biotechnologies - on SDG 8: Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all. A bio-based economy provides significant potential for improving labour supply, education and investment, and thereby for substantially increasing the demographic dividend. This, in turn, improves the sustainable development of economies. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Factors limiting microbial growth and activity at a proposed high-level nuclear repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Kieft, T.L.; Kovacik, W.P. Jr.; Ringelberg, D.B.; White, D.C.; Haldeman, D.L.; Amy, P.S.; Hersman, L.E.

    1997-01-01

    As part of the characterization of Yucca Mountain, Nev., as a potential repository for high-level nuclear waste, volcanic tuff was analyzed for microbial abundance and activity. Tuff was collected aseptically from nine sites along a tunnel in Yucca Mountain. Microbial abundance was generally low: direct microscopic cell counts were near detection limits at all sites (3.2 X 10(1) to 2.0 X 10(5) cells g-1 [dry weight]); plate counts of aerobic heterotrophs ranged from 1.0 X 10(1) to 3.2 X 10(3) CFU g-1 (dry weight). Phospholipid fatty acid concentrations (0.1 to 3.7 pmol g-1) also indicated low microbial biomasses: diglyceride fatty acid concentrations, indicative of dead cells, were in a similar range (0.2 to 2.3 pmol g-1). Potential microbial activity was quantified as 14CO2 production in microcosms containing radiolabeled substrates (glucose, acetate, and glutamic acid); amendments with water and nutrient solutions (N and P) were used to test factors potentially limiting this activity. Similarly, the potential for microbial growth and the factors limiting growth were determined by performing plate counts before and after incubating volcanic tuff samples for 24 h under various conditions: ambient moisture, water-amended, and amended with various nutrient solutions (N, P, and organic C). A high potential for microbial activity was demonstrated by high rates of substrate mineralization (as much as 70% of added organic C in 3 weeks). Water was the major limiting factor to growth and microbial activity, while amendments with N and P resulted in little further stimulation. Organic C amendments stimulated growth more than water alone

  12. Cellular responses of Saccharomyces cerevisiae at near-zero growth rates : Transcriptome analysis of anaerobic retentostat cultures

    NARCIS (Netherlands)

    Boender, L.G.M.; Van Maris, A.J.A.; De Hulster, E.A.F.; Almering, M.J.H.; Van der Klei, I.J.; Veenhuis, M.; De Winde, J.H.; Pronk, J.T.; Daran-Lapujade, P.A.S.

    2011-01-01

    Extremely low specific growth rates (below 0.01 h?1) represent a largely unexplored area of microbial physiology. In this study, anaerobic, glucose-limited retentostats were used to analyse physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at

  13. PLANT GROWTH-PROMOTING MICROBIAL INOCULANT FOR Schizolobium parahyba pv. parahyba

    Directory of Open Access Journals (Sweden)

    Priscila Jane Romano de Oliveira Gonçalves

    2015-08-01

    Full Text Available ABSTRACTSchizolobium parahyba pv. amazonicum (Huber ex Ducke Barneby (paricá occurs naturally in the Amazon and is significant commercial importance due to its rapid growth and excellent performance on cropping systems. The aim of this paper was to evaluate a microbial inoculants such as arbuscular mycorrhiza fungi (AMF and Rhizobium sp. that promote plant growth. The inocula was 10 g of root colonized and spores of Glomus clarum and/or 1 mL of cell suspension (107 CFU/mL of Rhizobium sp. and/or 100 g of chemical fertilizer NPK 20-05-20 per planting hole. The experimental design was complete randomized blocks with five replications and eight treatments (n = 800. Plant height, stem diameter and plant survival were measured. The results were tested for normality and homogeneity of variances and analyzed by ANOVA and Tukey test (p < 0.05. Rhizobium sp and AM fungi showed no effect on plant growth. Environmental factors probably influenced the effectiveness of symbiosis of both microorganisms and plant growth. The chemical fertilizer increased S. parahyba growth. During the first 120 days plants suffered with drought and frost, and at 180 days plants inoculated with microorganism plus chemical fertilizer showed higher survival when compared with control. The results showed that the microbial inoculants used showed an important role on plant survival after high stress conditions, but not in plant growth. Also was concluded that the planting time should be between November to December to avoid the presence of young plants during winter time that is dry and cold.

  14. Responses to microbial challenges by SLAMF receptors

    Directory of Open Access Journals (Sweden)

    Boaz Job Van Driel

    2016-01-01

    Full Text Available The SLAMF Family (SLAMF of cell surface glycoproteins is comprised of nine glycoproteins and whilst SLAMF1, 3, 5, 6, 7, 8, 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development and, T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SAP and EAT-2 regulate innate and adaptive immune responses to microbes.

  15. Microbial growth on C1 compounds: proceedings

    International Nuclear Information System (INIS)

    Crawford, R.L.; Hanson, R.S.

    1984-01-01

    This book contains individual papers prepared for the 4th International Symposium on Microbial Growth on One Carbon Compounds. Individual reports were abstracted and indexed for EDB. Topics presented were in the areas of the physiology and biochemistry of autotraps, physiology and biochemistry of methylotrophs and methanotrops, physiology and biochemistry of methanogens, genetics of microbes that use C 1 compounds, taxonomy and ecology of microbes tht grow on C 1 compounds, applied aspects of microbes that grow on C 1 compounds, and new directions in C 1 metabolism. (DT)

  16. Phosphate solubilization as a microbial strategy for promoting plant growth

    Directory of Open Access Journals (Sweden)

    Mayra Eleonora Beltrán Pineda

    2014-01-01

    Full Text Available Because of the constant application of chemical inputs in Agroecosystem, the cost of crop production and environmental quality of soil and water have been affected. Microorganisms carry out most biogeochemical cycles; therefore, their role is essential for agro ecosystem balance. One such functional group is the phosphate solubilizing microorganisms, which are recognized plant growth promoters. These microbial populations perform an important activity, since in many soils there are large reserves of insoluble phosphorus, as a result of fixing much of the phosphorus fertilizer applied, which cannot be assimilated by the plant. The phosphate solubilizing microorganisms use different solubilization mechanisms such as the production of organic acids, which solubilize theses insoluble phosphates in the rhizosphere region. Soluble phosphates are absorbed by the plant, which enhances their growth and productivity. By using these phosphate reserves in soils, application of chemical fertilizers is decreased, on the one hand, can again be fixed by ions Ca, Al or Fe making them insoluble and, by the other hand, increase the costs of crop production. Microbial populations have been widely studied in different types of ecosystems, both natural and Agroecosystem. Thanks to its effectiveness, in laboratory and field studies, the phosphate solubilizing phenotype is of great interest to microbial ecologists who have begun to establish the molecular basis of the traitr.

  17. Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities

    NARCIS (Netherlands)

    Epelde, L.; Becerril, J.M.; Kowalchuk, G.A.; Deng, Y.; Zhou, J.N.; Garbisu, C.

    2010-01-01

    Soil microorganisms drive critical functions in plant-soil systems. As such, various microbial properties have been proposed as indicators of soil functioning, making them potentially useful in evaluating the recovery of polluted soils via phytoremediation strategies. To evaluate microbial responses

  18. Better to light a candle than curse the darkness: illuminating spatial localization and temporal dynamics of rapid microbial growth in the rhizosphere

    Directory of Open Access Journals (Sweden)

    Patrick M Herron

    2013-09-01

    Full Text Available The rhizosphere is a hotbed of microbial activity in ecosystems, fueled by carbon compounds from plant roots. Basic questions about the location and dynamics of plant-spurred microbial growth in the rhizosphere are difficult to answer with standard, destructive soil assays mixing a multitude of microbe-scale microenvironments in a single, often sieved, sample. Soil microbial biosensors designed with the luxCDABE reporter genes fused to a promoter of interest enable continuous imaging of the microbial perception of (and response to environmental conditions in soil. We used the common soil bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constituitive promoter nptII and luxCDABE (coding for light-emitting proteins from Vibrio fischeri. Experiments in liquid media demonstrated that high light production by KT2440/pZKH2 was associated with rapid microbial growth supported by high carbon availability. We applied the biosensors in microcosms filled with non-sterile soil in which corn (Zea mays L., black poplar (Populus nigra L. or tomato (Solanum lycopersicum L. was growing. We detected minimal light production from microbiosensors in the bulk soil, but biosensors reported continuously from around roots for as long as six days. For corn, peaks of luminescence were detected 1-4 and 20-35 mm along the root axis behind growing root tips, with the location of maximum light production moving farther back from the tip as root growth rate increased. For poplar, luminescence around mature roots increased and decreased on a coordinated diel rhythm, but was not bright near root tips. For tomato, luminescence was dynamic, but did not exhibit a diel rhythm, appearing in acropetal waves along roots. KT2440/pZKH2 revealed that root tips are not always the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots.

  19. Modelling microbial interactions and food structure in predictive microbiology

    NARCIS (Netherlands)

    Malakar, P.K.

    2002-01-01

    Keywords: modelling, dynamic models, microbial interactions, diffusion, microgradients, colony growth, predictive microbiology.

    Growth response of microorganisms in foods is a complex process. Innovations in food production and preservation techniques have resulted in adoption of

  20. Response of soil microbial activities and microbial community structure to vanadium stress.

    Science.gov (United States)

    Xiao, Xi-Yuan; Wang, Ming-Wei; Zhu, Hui-Wen; Guo, Zhao-Hui; Han, Xiao-Qing; Zeng, Peng

    2017-08-01

    High levels of vanadium (V) have long-term, hazardous impacts on soil ecosystems and biological processes. In the present study, the effects of V on soil enzymatic activities, basal respiration (BR), microbial biomass carbon (MBC), and the microbial community structure were investigated through 12-week greenhouse incubation experiments. The results showed that V content affected soil dehydrogenase activity (DHA), BR, and MBC, while urease activity (UA) was less sensitive to V stress. The average median effective concentration (EC 50 ) thresholds of V were predicted using a log-logistic dose-response model, and they were 362mgV/kg soil for BR and 417mgV/kg soil for DHA. BR and DHA were more sensitive to V addition and could be used as biological indicators for soil V pollution. According to a polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis, the structural diversity of the microbial community decreased for soil V contents ranged between 254 and 1104mg/kg after 1 week of incubation. As the incubation time increased, the diversity of the soil microbial community structure increased for V contents ranged between 354 and 1104mg/kg, indicating that some new V-tolerant bacterial species might have replicated under these conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Quantum dots conjugated zinc oxide nanosheets: Impeder of microbial growth and biofilm

    Science.gov (United States)

    Patil, Rajendra; Gholap, Haribhau; Warule, Sambhaji; Banpurkar, Arun; Kulkarni, Gauri; Gade, Wasudeo

    2015-01-01

    The grieving problem of the 21st century has been the antimicrobial resistance in pathogenic microorganisms to conventional antibiotics. Therefore, developments of novel antibacterial materials which effectively inhibit or kill such resistant microorganisms have become the need of the hour. In the present study, we communicate the synthesis of quantum dots conjugated zinc oxide nanostructures (ZnO/CdTe) as an impeder of microbial growth and biofilm. The as-synthesized nanostructures were characterized by X-ray diffraction, ultraviolet-visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy. The growth impedance property of ZnO and ZnO/CdTe on Gram positive organism, Bacillus subtilis NCIM 2063 and Gram negative, Escherichia coli NCIM 2931 and biofilm impedance activity in Pseudomonas aeruginosa O1 was found to occur due to photocatalytical action on the cell biofilm surfaces. The impedance in microbial growth and biofilm formation was further supported by ruptured appearances of cells and dettrered biofilm under field emission scanning electron and confocal laser scanning microscope. The ZnO/CdTe nanostructures array synthesized by hydrothermal method has an advantage of low growth temperature, and opportunity to fabricate inexpensive material for nano-biotechnological applications.

  2. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events

    Science.gov (United States)

    Mooshammer, Maria; Hofhansl, Florian; Frank, Alexander H.; Wanek, Wolfgang; Hämmerle, Ieda; Leitner, Sonja; Schnecker, Jörg; Wild, Birgit; Watzka, Margarete; Keiblinger, Katharina M.; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2017-01-01

    Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which was not accompanied by significant changes in community composition. The functional and structural responses to the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was dependent on the nutrient content of the resource through its effect on microbial physiology and community composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of microbial C-N-P interactions into climate extremes research. PMID:28508070

  3. Accelerated microbial turnover but constant growth efficiency with warming in soil

    Science.gov (United States)

    Shannon B. Hagerty; Kees Jan van Groenigen; Steven D. Allison; Bruce A. Hungate; Egbert Schwartz; George W. Koch; Randall K. Kolka; Paul. Dijkstra

    2014-01-01

    Rising temperatures are expected to reduce global soil carbon (C) stocks, driving a positive feedback to climate change1-3. However, the mechanisms underlying this prediction are not well understood, including how temperature affects microbial enzyme kinetics, growth effiency (MGE), and turnover4,5. Here, in a laboratory...

  4. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Li, Feifei; Tang, Junhong

    2016-10-01

    Waste pastry was hydrolyzed by glucoamylase and protease which were obtained from solid state fermentation of Aspergillus awamori and Aspergillus oryzae to produce waste pastry hydrolysate. Then, the effects of hydraulic retention times (HRTs) (4-12h) on hydrogen production rate (HPR) in the suspended microbial growth system (continuous stirred tank reactor, CSTR) and attached microbial growth system (continuous mixed immobilized sludge reactor, CMISR) from waste pastry hydrolysate were investigated. The maximum HPRs of CSTR (201.8mL/(h·L)) and CMISR (255.3mL/(h·L)) were obtained at HRT of 6h and 4h, respectively. The first-order reaction could be used to describe the enzymatic hydrolysis of waste pastry. The carbon content of the waste pastry remained 22.8% in the undigested waste pastry and consumed 77.2% for carbon dioxide and soluble microbial products. To our knowledge, this is the first study which reports biohydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 2012 Gordon Research Conference on Microbial Stress Response, Schedule and Speaker/Poster Program

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Timothy J. [Univ. of Wisconsin, Madison, WI (United States)

    2012-07-20

    The Gordon Research Conference on Microbial Stress Response was held at Mount Holyoke College, South Hadley, Massachusetts, July 15-20, 2012. The Conference was well-attended with 180 participants. The 2012 Microbial Stress Responses Gordon Research Conference will provide a forum for the open reporting of recent discoveries on the diverse mechanisms employed by microbes to respond to stress. Approaches range from analysis at the molecular level (how are signals perceived and transmitted to change gene expression or function) to cellular and microbial community responses. Attached is a copy of the formal schedule and speaker program and the poster program.

  6. Microbial Communities: Tracing Growth Processes from Antarctic Lakes to Early Earth to Other Planets

    Science.gov (United States)

    Sumner, D. Y.

    2014-12-01

    Life in the Universe is dominated by microbes: they are numerically the most abundant cells in our bodies and in Earth's biosphere, and they are the only life that might be present elsewhere in our solar system. Life beyond our solar system could include macroscopic organisms, but everything we understand about the origin of life suggests it must start with microbes. Thus, understanding microbial ecosystems, in the absence of macroscopic organisms, is critical to understanding early life on Earth and life elsewhere in the Universe - if it exists. But what are the general principles of microbial ecology in the absence of predation? What happens when each cell is a chemical factory that can swap among metabolic processes in response to environmental and emergent cues? Geobiologists and astrobiologists are addressing these questions in diverse ways using both Earth's modern biosphere and its fossil record. Modern microbial communities in shallow, ice-covered lakes, Antarctica (Fig.), provide a model for high productivity microbial ecosystems with no to low predation. In these lakes, photosynthetic communities create macroscopic pinnacles and domes, sometime lithified into stromatolites. They provide an ecological, geochemical and morphological model for Precambrian microbial communities in low sedimentation, low current environments. Insights from these communities include new growth processes for ancient mats, especially some that grew prior to the oxidation of Earth's atmosphere. The diversity of biosignatures created in these communities also provides context for models of life under ice elsewhere in our solar system such as paleolakes on Mars and on icy moons. Results from the Mars Science Laboratory (MSL) team document formerly habitable fluvial and lacustrine environments. Lacustrine environments, in particular, are favorable for preserving biosignatures, and continued investigations by MSL will provide a deeper understanding of the duration of habitable

  7. Antibiotics and Manure Effects on Microbial Communities Responsible for Nitrous Oxide Emissions from Grasslands

    Science.gov (United States)

    Semedo, M.; Song, B.; Sparrer, T.; Crozier, C.; Tobias, C. R.; Phillips, R. L.

    2015-12-01

    Agroecosystems are major contributors of nitrous oxide (N2O) emissions. Denitrification and nitrification are the primary pathways of N2O emission in soils. However, there is uncertainty regarding the organisms responsible for N2O production. Bacteria were previously considered the only microbial N2O source, however, current studies indicate that fungi also produce N2O by denitrification. Denitrifying bacteria can be a source or sink of N2O depending on the presence and expression of nitrous oxide reductase genes (nosZ), encoding for the enzyme converting N2O to N2. Fungal denitrification may produce only N2O as an end product due to missing the nosZ gene. Animal manures applied to agricultural fields can transfer antibiotics to soils as a result of antibiotic use in the livestock industry. These antibiotics target mostly bacteria and may promote fungal growth. The growth inhibition of denitrifying bacteria may favor fungal denitrifiers potentially enhancing N2O emissions. Our objective is to examine the effects of antibiotic exposure and manure fertilization on the microbial communities responsible for N2 and N2O production in grasslands. Soil slurry incubations were conducted with tetracycline at different concentrations. A mesocosm experiment was also performed with soil cores exposed to tetracycline and cow manure. Production of N2O and N2 was measured using gas chromatography with electron capture detector (GC-ECD) and isotope ratio mass spectrometry (IRMS), respectively. Antibiotic inhibition of soil N2 production was found to be dose dependent, reaching up to 80% inhibition with 1g Kg-1 of tetracycline treatment, while N2O production was enhanced up to 8 times. These results suggest higher fungal denitrification with a concomitant decrease in bacterial denitrification after antibiotic exposure. We also found higher N2O fluxes in the soil mesocosms treated with manure plus tetracycline. Quantitative PCR (qPCR) will be conducted to examine the changes in

  8. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates.

    Science.gov (United States)

    Chen, Haoming; Ma, Jinyi; Wei, Jiaxing; Gong, Xin; Yu, Xichen; Guo, Hui; Zhao, Yanwen

    2018-09-01

    Green roofs have increasingly been designed and applied to relieve environmental problems, such as water loss, air pollution as well as heat island effect. Substrate and vegetation are important components of green roofs providing ecosystem services and benefiting the urban development. Biochar made from sewage sludge could be potentially used as the substrate amendment for green roofs, however, the effects of biochar on substrate quality and plant performance in green roofs are still unclear. We evaluated the effects of adding sludge biochar (0, 5, 10, 15 and 20%, v/v) to natural soil planted with three types of plant species (ryegrass, Sedum lineare and cucumber) on soil properties, plant growth and microbial communities in both green roof and ground ecosystems. Our results showed that sludge biochar addition significantly increased substrate moisture, adjusted substrate temperature, altered microbial community structure and increased plant growth. The application rate of 10-15% sludge biochar on the green roof exerted the most significant effects on both microbial and plant biomass by 63.9-89.6% and 54.0-54.2% respectively. Path analysis showed that biochar addition had a strong effect on microbial biomass via changing the soil air-filled porosity, soil moisture and temperature, and promoted plant growth through the positive effects on microbial biomass. These results suggest that the applications of biochar at an appropriate rate can significantly alter plant growth and microbial community structure, and increase the ecological benefits of green roofs via exerting effects on the moisture, temperature and nutrients of roof substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The utilization of microbial inoculants based on irradiated compost in dryland remediation to increase the growth of king grass and maize

    International Nuclear Information System (INIS)

    TRD Larasati; N Mulyana; D Sudradjat

    2016-01-01

    This research was conducted to evaluate the capability of functional microbial inoculants to remediate drylands. The microbial inoculants used consist of hydrocarbon-degrading microbial inoculants and plant-growth-promoting microbial inoculants. Compost-based carrier was sterilized by a gamma irradiation dose of 25 kGy to prepare seed inoculants. The irradiated-compost-based hydrocarbon-degrading microbial inoculants and king grass (Pennisetum purpureum Schumach.) were used to remediate oil-sludge-contaminated soil using in-situ composting for 60 days. The results showed that they could reduce THP (total petroleum hydrocarbons) by up to 82.23%. Plant-growth-promoting microbial inoculants were able to increase the dry weight of king grass from 47.39 to 100.66 g/plant, N uptake from 415.53 to 913.67 mg/plant, and P uptake from 76.52 to 178.33 mg/plant. Cow dung and irradiated-compost-based plant-growth-promoting microbial inoculants were able to increase the dry weight of maize (Zea mays L.) from 5.75 to 6.63 ton/ha (12.54%) and dry weight of grain potential from 5.30 to 7.15 ton/ha (35.03%). The results indicate that irradiated-compost-based microbial inoculants are suitable for remediating a dryland and therefore increase potential resources and improve the quality of the environment. (author)

  10. Differential Responses of Soil Microbial Community to Four-Decade Long Grazing and Cultivation in a Semi-Arid Grassland

    Directory of Open Access Journals (Sweden)

    Yating He

    2017-01-01

    Full Text Available Grazing and cultivation are two important management practices worldwide that can cause significant soil organic carbon (SOC losses. However, it remains elusive how soil microbes have responded to soil carbon changes under these two practices. Based on a four-decade long field experiment, this study investigated the effects of grazing and cultivation on SOC stocks and microbial properties in the semi-arid grasslands of China. We hypothesize that grazing and cultivation would deplete SOC and depress microbial activities under both practices. However, our hypotheses were only partially supported. As compared with the adjacent indigenous grasslands, SOC and microbial biomass carbon (MBC were decreased by 20% or more under grazing and cultivation, which is consistent with the reduction of fungi abundance by 40% and 71%, respectively. The abundance of bacteria and actinomycetes was decreased under grazing but increased under cultivation, which likely enhanced microbial diversity in cultivation. Invertase activity decreased under the two treatments, while urease activity increased under grazing. These results suggest that nitrogen fertilizer input during cultivation may preferentially favor bacterial growth, in spite of SOC loss, due to rapid decomposition, while overgrazing may deteriorate the nitrogen supply to belowground microbes, thus stimulating the microbial production of nitrogen acquisition enzymes. This decade-long study demonstrated differential soil microbial responses under grazing and cultivation and has important applications for better management practices in the grassland ecosystem.

  11. Effect of Chitosan Coating Containing Active Agents on Microbial Growth, Rancidity and Moisture Loss of Meatball During Storage

    OpenAIRE

    Pranoto, Yudi; Rakshit, Sudip Kumar

    2008-01-01

    Edible coatings based on chitosan were applied on meatball product in order to preserve quality during storages atambient and refrigeration temperatures. To improve its efficacy, chitosan coatings were incorporated with garlic oil0.2%, potassium sorbate 0.1 % and nisin 51,000 IU. The qualities of meatball assessed were total microbial growth, TBA value and percentage of moisture loss. All chitosan coatings suppressed microbial growth in meatball and strong- ly revealed when stored at refriger...

  12. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  13. Effect of Microbial inoculation in combating the aluminium toxicity effect on growth of Zea mays.

    Science.gov (United States)

    Arora, P; Singh, G; Tiwari, A

    2017-07-31

    The present study is aimed at improving the aluminium tolerance in maize crop employing the potential of microbial inoculants in conferring resistance to these toxicities via production of certain chelating compounds like siderophores, exopolysachharides and organic acids. Acid soils have now-a-days become one of the key factors for limiting growth of many agriculturally important crops. Aluminium  is one of the major elements present in acid soils and is mainly responsible for toxicity in the soil. This aluminium is rapidly soluble in soil water and hence absorbed by plant roots under conditions where soil pH is below 5. This toxicity leads to severe root growth inhibition, thereby limiting the production of maize crops. It was observed that use of microbial inoculums can be helpful in elimination of these toxic compounds and prevent the inhibition of root growth . It was found that the soils contaminated with aluminium toxicity decreased the root length of maize plant significantly by 65% but Bacillus and Burkholderia inoculation increased this root length significantly by 1.4- folds and 2- folds respectively thereby combating the effect of aluminium toxicity. Aluminium concentration was found maximum in roots of plants which were grown under aluminium stress condition. But this aluminium accumulation decreased ̴ 2-folds when Burkholderia was used as seed inoculants under aluminium stress conditions. Also, at 60mM aluminium accumulation, phosphorus solubilisation in roots was found to be increased upto 30% on Burkholderia inoculation. However, Bacillus inoculation didn't show any significant difference in either of the case. Thus, the inoculation of seeds with Burkholderia isolates could prove to be a boon in sequestering aluminium toxicity in Zea mays.

  14. The Growth Rate and Efficiency of Rumen Microbial Protein Digestion of Red Clover Silage (Trifolium pratense cv. Sabatron)

    International Nuclear Information System (INIS)

    Asih Kurniawati

    2004-01-01

    (Trifolium pratense cv. Sabatron). Red clover silage supplemented with different level of carbohydrates has been examined using the in-vitro gas production technique. Cumulative gas production, hydro.gen sulfite production, and ammonia was followed and used as indicators of microbial growth rate and extent of protein degradation. Microbial nitrogen production, VFA, and efficiency microbial production was used as indicator of nitrogen use efficiency. 15 N was used as a microbial marker to estimate the amount of nitrogen incorporation into microbial protein. Supplementation of Red clover with increasing 5 levels; 0 g; 0.625 g; 0.15 g; 0.225 g and 0.3 g of maize starch led to graded increase in microbial growth and protein degradation. This was reflected in the increasing gas production and the accumulation of hydrogen sulfite. Diurnal change in ammonia production reflected the microbial utilization of ammonia for protein synthesis. Protein microbe (P<0.001) as VFA (P<0.001) increased due to carbohydrate addition as well as utilization of nitrogen (P<0.001). There was also the efficiency of nitrogen utilization which increased significantly. This result suggested that energy supply can increased efficiency of nitrogen use in the rumen and may reduce nitrogen losses into the environment. (author)

  15. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    Science.gov (United States)

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  16. Thermodynamic and kinetic response of microbial reactions to high CO2

    Directory of Open Access Journals (Sweden)

    Qusheng Jin

    2016-11-01

    Full Text Available Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  17. Life-history trait of the Mediterranean keystone species Patella rustica: growth and microbial bioerosion

    Directory of Open Access Journals (Sweden)

    I. PRUSINA

    2015-05-01

    Full Text Available The age and shell growth patterns in populations of Patella rustica of the Adriatic Sea were determined by analyzing the inner growth lines visible in shell sections. Marginal increment analysis showed annual periodicity with annual growth line being deposited in May. The growth analysis of 120 individual shells showed that 90.8 % of collected individuals were less than 4 years of age and only two individuals (1.6 % were older than 6 years. Population structure was described and the generalized von Bertalanffy growth parameters were calculated: asymptotic length (L∞ was 38.22 mm and the growth constant (K was 0.30 year-1. Growth performance index value of P. rustica (Ø’ was 2.64 and is among the lowest ranges reported for limpet species. Patella rustica shells were degraded to different degrees by microbial bioerosion. Microboring organisms identified were pseudofilamentous and filamentous cyanobacteria Hormathonema paulocellulare, Hyella caespitosa, Mastigocoleus testarum and Leptolyngbya sp. The overall intensity of infestation was relatively low, but increased in severity with shell length. The damage was most often restricted to the oldest parts of the shell, i.e. apex of the shell, posing difficulties in determining the exact position of the first growth line. The present study is first to introduce the use of inner growth lines in Patella rustica shell sections as a reliable method for age determination and it provides the first insight into the growth patterns of this keystone species while taking the interference of microbial shell bioerosion in consideration.

  18. Accounting for inherent variability of growth in microbial risk assessment.

    Science.gov (United States)

    Marks, H M; Coleman, M E

    2005-04-15

    Risk assessments of pathogens need to account for the growth of small number of cells under varying conditions. In order to determine the possible risks that occur when there are small numbers of cells, stochastic models of growth are needed that would capture the distribution of the number of cells over replicate trials of the same scenario or environmental conditions. This paper provides a simple stochastic growth model, accounting only for inherent cell-growth variability, assuming constant growth kinetic parameters, for an initial, small, numbers of cells assumed to be transforming from a stationary to an exponential phase. Two, basic, microbial sets of assumptions are considered: serial, where it is assume that cells transform through a lag phase before entering the exponential phase of growth; and parallel, where it is assumed that lag and exponential phases develop in parallel. The model is based on, first determining the distribution of the time when growth commences, and then modelling the conditional distribution of the number of cells. For the latter distribution, it is found that a Weibull distribution provides a simple approximation to the conditional distribution of the relative growth, so that the model developed in this paper can be easily implemented in risk assessments using commercial software packages.

  19. Fire vs. Metal: A Laboratory Study Demonstrating Microbial Responses to Soil Disturbances

    Science.gov (United States)

    Stromberger, Mary E.

    2005-01-01

    Incubation studies are traditionally used in soil microbiology laboratory classes to demonstrate microbial respiration and N mineralization-immobilization processes. Sometimes these exercises are done to calculate a N balance in N fertilizer-amended soils. However, examining microbial responses to environmental perturbations would appeal to soil…

  20. Detrital floc and surface soil microbial biomarker responses to active management of the nutrient impacted Florida everglades.

    Science.gov (United States)

    Bellinger, Brent J; Hagerthey, Scot E; Newman, Susan; Cook, Mark I

    2012-11-01

    Alterations in microbial community composition, biomass, and function in the Florida Everglades impacted by cultural eutrophication reflect a new physicochemical environment associated with monotypic stands of Typha domingensis. Phospholipid fatty acid (PLFA) biomarkers were used to quantify microbial responses in detritus and surface soils in an active management experiment in the eutrophic Everglades. Creation of open plots through removal of Typha altered the physical and chemical characteristics of the region. Mass of PLFA biomarkers increased in open plots, but magnitude of changes differed among microbial groups. Biomarkers indicative of Gram-negative bacteria and fungi were significantly greater in open plots, reflective of the improved oxic environment. Reduction in the proportion of cyclopropyl lipids and the ratio of Gram-positive to Gram-negative bacteria in open plots further suggested an altered oxygen environment and conditions for the rapid growth of Gram-negative bacteria. Changes in the PLFA composition were greater in floc relative to soils, reflective of rapid inputs of new organic matter and direct interaction with the new physicochemical environment. Created open plot microbial mass and composition were significantly different from the oligotrophic Everglades due to differences in phosphorus availability, plant community structure, and a shift to organic peat from marl-peat soils. PLFA analysis also captured the dynamic inter-annual hydrologic variability, notably in PLFA concentrations, but to a lesser degree content. Recently, use of concentration has been advocated over content in studies of soil biogeochemistry, and our results highlight the differential response of these two quantitative measures to similar pressures.

  1. Microbial uptake of radiolabeled substrates: estimates of growth rates from time course measurements

    International Nuclear Information System (INIS)

    Li, W.K.W.

    1984-01-01

    The uptake of [ 3 H]glucose and a mixture of 3 H-labeled amino acids was measured, in time course fashion, in planktonic microbial assemblages of the eastern tropical Pacific Ocean. The average generation times of those portions of the assemblages able to utilize these substrates were estimated from a simple exponential growth model. Other workers have independently used this model in its integrated or differential form. A mathematical verification and an experimental demonstration of the equivalence of the two approaches are presented. A study was made of the size distribution of heterotrophic activity, using time course measurements. It was found that the size distribution and the effect of sample filtration before radiolabeling were dependent on time of incubation. In principle, it was possible to ascribe these time dependences to differences in th specific growth rate and initial standing stock of the microbial assemblages. 33 references

  2. The effect of concentrating of whitewater to the microbial growth in papermachine; Paperikoneen kiertovesien konsentroitumisen vaikutus mikrobien kasvuun - MPKT 03

    Energy Technology Data Exchange (ETDEWEB)

    Yloestalo, T. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1998-12-31

    The closing of the whitewater cycle increases the amount of nutrients available for the micro-organisms living in a papermachine. The microbial flora in papermachines can vary significantly. The type and concentration of nutrients and the operating conditions of the papermachine (for example pH and temperature) affect the type of microbes that may live there. Strong microbial contamination has negative impact to the quality of the products and the operation of the papermachine. In this project microbes isolated from papermachines are cultivated in different concentrations of whitewater and with different pH and temperature values. The cultivations of microbes and modeling of the microbial growth are used for finding out how the closing of the whitewater cycle affects the microbial growth in papermachines. (orig.)

  3. The effect of concentrating of whitewater to the microbial growth in papermachine; Paperikoneen kiertovesien konsentroitumisen vaikutus mikrobien kasvuun - MPKT 03

    Energy Technology Data Exchange (ETDEWEB)

    Yloestalo, T [Helsinki Univ. of Technology, Otaniemi (Finland)

    1999-12-31

    The closing of the whitewater cycle increases the amount of nutrients available for the micro-organisms living in a papermachine. The microbial flora in papermachines can vary significantly. The type and concentration of nutrients and the operating conditions of the papermachine (for example pH and temperature) affect the type of microbes that may live there. Strong microbial contamination has negative impact to the quality of the products and the operation of the papermachine. In this project microbes isolated from papermachines are cultivated in different concentrations of whitewater and with different pH and temperature values. The cultivations of microbes and modeling of the microbial growth are used for finding out how the closing of the whitewater cycle affects the microbial growth in papermachines. (orig.)

  4. Response of broiler chickens to diets containing artificially dried high-moisture maize supplemented with microbial enzymes

    OpenAIRE

    Bhuiyan, M.M; Islam, A.F; Iji, P.A

    2010-01-01

    The effect of feeding high-moisture maize grains dried in the sun or artificially in a forced draught oven at 80, 90 or 100 ºC for 24 hours and supplemented with microbial enzymes (Avizyme 1502 and Phyzyme XP) on growth performance, visceral organs, tissue protein, enzyme activity and gut development was investigated in a broiler growth trial. Feed intake (FI) up to 21 days decreased as a results of oven drying of grains whereas supplementation with microbial enzymes increased FI compared to ...

  5. Effect of gamma irradiation and storage time on microbial growth and physicochemical characteristics of pumpkin (Cucurbita Moschata Duchesne ex Poiret) puree.

    Science.gov (United States)

    Gliemmo, María F; Latorre, María E; Narvaiz, Patricia; Campos, Carmen A; Gerschenson, Lía N

    2014-01-01

    The effect of gamma irradiation (0-2 kGy) and storage time (0-28 days) on microbial growth and physicochemical characteristics of a packed pumpkin puree was studied. For that purpose, a factorial design was applied. The puree contained potassium sorbate, glucose and vanillin was stored at 25°C . Gamma irradiation diminished and storage time increased microbial growth. A synergistic effect between both variables on microbial growth was observed. Storage time decreased pH and color of purees. Sorbate content decreased with storage time and gamma irradiation. Mathematical models of microbial growth generated by the factorial design allowed estimating that a puree absorbing 1.63 kGy would have a shelf-life of 4 days. In order to improve this time, some changes in the applied hurdles were assayed. These included a thermal treatment before irradiation, a reduction of irradiation dose to 0.75 kGy and a decrease in storage temperature at 20°C . As a result, the shelf-life of purees increased to 28 days.

  6. A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling.

    Science.gov (United States)

    Wang, Gangsheng; Post, Wilfred M

    2012-09-01

    We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a theoretical reassessment. We provided a rigorous proof that the true growth yield coefficient (Y(G)) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert (μ(max,H)) is higher than those in the other two models (μ(max,P) and μ(max,C)), and the difference is the physiological maintenance factor (m(q) = a); and (3) the overall maintenance coefficient (m(T)) is more sensitive to m(q) than to the specific growth rate (μ(G)) and Y(G). Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models. © This article is a US government work and is in the public domain in the USA.

  7. Impact of Microbial Growth on Subsurface Perfluoroalkyl Acid Transport

    Science.gov (United States)

    Weathers, T. S.; Higgins, C. P.; Sharp, J.

    2014-12-01

    The fate and transport of poly and perfluoroalkyl substances (PFASs) in the presence of active microbial communities has not been widely investigated. These emerging contaminants are commonly utilized in aqueous film-forming foams (AFFF) and have often been detected in groundwater. This study explores the transport of a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), in microbially active settings. Single point organic carbon normalized sorption coefficients derived by exposing inactive cellular material to PFASs result in more than an order of magnitude increase in sorption compared to soil organic carbon sorption coefficients found in literature. For example, the sorption coefficients for PFOS are 4.05±0.07 L/kg and 2.80±0.08 L/kg for cellular organic carbon and soil organic carbon respectively. This increase in sorption, coupled with enhanced extracellular polymeric substance production observed during growth of a common hydrocarbon degrading soil microbe exposed to source-level concentrations of PFASs (10 mg/L of 11 analytes, 110 mg/L total) may result in PFAS retardation in situ. To address the upscaling of this phenomenon, flow-through columns packed with low-organic carbon sediment and biostimulated with 10 mg/L glucose were exposed to PFAS concentrations from 15 μg/L to 10 mg/L of each 11 analytes. Breakthrough and tailing of each analyte was measured and modeled with Hydrus-1D to explore sorption coefficients over time for microbially active columns.

  8. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    Science.gov (United States)

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-07-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  9. Ecological and soil hydraulic implications of microbial responses to stress - A modeling analysis

    Science.gov (United States)

    Brangarí, Albert C.; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier; Manzoni, Stefano

    2018-06-01

    A better understanding of microbial dynamics in porous media may lead to improvements in the design and management of a number of technological applications, ranging from the degradation of contaminants to the optimization of agricultural systems. To this aim, there is a recognized need for predicting the proliferation of soil microbial biomass (often organized in biofilms) under different environments and stresses. We present a general multi-compartment model to account for physiological responses that have been extensively reported in the literature. The model is used as an explorative tool to elucidate the ecological and soil hydraulic consequences of microbial responses, including the production of extracellular polymeric substances (EPS), the induction of cells into dormancy, and the allocation and reuse of resources between biofilm compartments. The mechanistic model is equipped with indicators allowing the microorganisms to monitor environmental and biological factors and react according to the current stress pressures. The feedbacks of biofilm accumulation on the soil water retention are also described. Model runs simulating different degrees of substrate and water shortage show that adaptive responses to the intensity and type of stress provide a clear benefit to microbial colonies. Results also demonstrate that the model may effectively predict qualitative patterns in microbial dynamics supported by empirical evidence, thereby improving our understanding of the effects of pore-scale physiological mechanisms on the soil macroscale phenomena.

  10. Timescales of Growth Response of Microbial Mats to Environmental Change in an Ice-Covered Antarctic Lake

    Directory of Open Access Journals (Sweden)

    Anne D. Jungblut

    2013-01-01

    Full Text Available Lake Vanda is a perennially ice-covered, closed-basin lake in the McMurdo Dry Valleys, Antarctica. Laminated photosynthetic microbial mats cover the floor of the lake from below the ice cover to >40 m depth. In recent decades, the water level of Lake Vanda has been rising, creating a “natural experiment” on development of mat communities on newly flooded substrates and the response of deeper mats to declining irradiance. Mats in recently flooded depths accumulate one lamina (~0.3 mm per year and accrue ~0.18 µg chlorophyll-a cm−2 y−1. As they increase in thickness, vertical zonation becomes evident, with the upper 2-4 laminae forming an orange-brown zone, rich in myxoxanthophyll and dominated by intertwined Leptolyngbya trichomes. Below this, up to six phycobilin-rich green/pink-pigmented laminae form a subsurface zone, inhabited by Leptolyngbya, Oscillatoria and Phormidium morphotypes. Laminae continued to increase in thickness for several years after burial, and PAM fluorometry indicated photosynthetic potential in all pigmented laminae. At depths that have been submerged for >40 years, mats showed similar internal zonation and formed complex pinnacle structures that were only beginning to appear in shallower mats. Chlorophyll-a did not change over time and these mats appear to represent resource-limited “climax” communities. Acclimation of microbial mats to changing environmental conditions is a slow process, and our data show how legacy effects of past change persist into the modern community structure.

  11. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics.

    Science.gov (United States)

    Sheridan, C; Depuydt, P; De Ro, M; Petit, C; Van Gysegem, E; Delaere, P; Dixon, M; Stasiak, M; Aciksöz, S B; Frossard, E; Paradiso, R; De Pascale, S; Ventorino, V; De Meyer, T; Sas, B; Geelen, D

    2017-02-01

    Plant growth promoting microorganisms (PGPMs) of the plant root zone microbiome have received limited attention in hydroponic cultivation systems. In the framework of a project aimed at the development of a biological life support system for manned missions in space, we investigated the effects of PGPMs on four common food crops (durum and bread wheat, potato and soybean) cultivated in recirculating hydroponic systems for a whole life cycle. Each crop was inoculated with a commercial PGPM mixture and the composition of the microbial communities associated with their root rhizosphere, rhizoplane/endosphere and with the recirculating nutrient solution was characterised through 16S- and ITS-targeted Illumina MiSeq sequencing. PGPM addition was shown to induce changes in the composition of these communities, though these changes varied both between crops and over time. Microbial communities of PGPM-treated plants were shown to be more stable over time. Though additional development is required, this study highlights the potential benefits that PGPMs may confer to plants grown in hydroponic systems, particularly when cultivated in extreme environments such as space.

  12. The effect of dosages of microbial consortia formulation and synthetic fertilizer on the growth and yield of field-grown chili

    Science.gov (United States)

    Istifadah, N.; Sapta, D.; Krestini, H.; Natalie, B.; Suryatmana, P.; Nurbaity, A.; Hidersah, R.

    2018-03-01

    Chili (Capsicum annuum, L) is one of important horticultural crop in Indonesia. Formulation of microbial consortia containing Bacillus subtilis, Pseudomonas sp., Azotobacter chroococcum and Trichoderma harzianum has been developed. This study evaluated the effects of dosage of the microbial formulation combined with NPK fertilizer on growth and yield of chili plants in the field experiment. The experiment was arranged in completely randomized design of factorial, in which the first factor was dosage of formulation (0, 2.5, 5.0, 7.5, 10 g per plant) and the second factor was NPK fertilizer dosage (0, 25, 50 and 75% of the standard dosage). The treatments were replicated three times. For application, the formulation was mixed with chicken manure 1:10 (w/v). The results showed that application of microbial formulation solely improved the chili growth. There was interaction between dosages of the microbial formulation and NPK fertilizer in improving plant height, nitrogen availability and the chili yield, while there was no interaction between those dosages in improving the root length. Combination between microbial formulation at the dosage of 5.0-7.5 g per plant combined with NPK fertilizer with the dosage 50 or 75% of the standard dosage support relatively better growth and the chili yield.

  13. Shifts in microbial populations in Rusitec fermenters as affected by the type of diet and impact of the method for estimating microbial growth (15N v. microbial DNA).

    Science.gov (United States)

    Mateos, I; Ranilla, M J; Saro, C; Carro, M D

    2017-11-01

    offered similar results for diets comparison, but both methods presented contrasting results for microbial growth in SOL and LIQ phases. The study showed that fermentation parameters remained fairly stable over the commonly used sampling period (days 8 to 14), but shifts in microbial populations were detected. Moreover, microbial populations differed markedly from those in the inocula, which indicates the difficulty of directly transposing results on microbial populations developed in Rusitec fermenters to in vivo conditions.

  14. Use of an uncertainty analysis for genome-scale models as a prediction tool for microbial growth processes in subsurface environments.

    Science.gov (United States)

    Klier, Christine

    2012-03-06

    The integration of genome-scale, constraint-based models of microbial cell function into simulations of contaminant transport and fate in complex groundwater systems is a promising approach to help characterize the metabolic activities of microorganisms in natural environments. In constraint-based modeling, the specific uptake flux rates of external metabolites are usually determined by Michaelis-Menten kinetic theory. However, extensive data sets based on experimentally measured values are not always available. In this study, a genome-scale model of Pseudomonas putida was used to study the key issue of uncertainty arising from the parametrization of the influx of two growth-limiting substrates: oxygen and toluene. The results showed that simulated growth rates are highly sensitive to substrate affinity constants and that uncertainties in specific substrate uptake rates have a significant influence on the variability of simulated microbial growth. Michaelis-Menten kinetic theory does not, therefore, seem to be appropriate for descriptions of substrate uptake processes in the genome-scale model of P. putida. Microbial growth rates of P. putida in subsurface environments can only be accurately predicted if the processes of complex substrate transport and microbial uptake regulation are sufficiently understood in natural environments and if data-driven uptake flux constraints can be applied.

  15. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation.

    Science.gov (United States)

    Merchant, Sabeeha S; Helmann, John D

    2012-01-01

    Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes. Copyright © 2012

  16. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures.

    Science.gov (United States)

    Mazzoleni, Stefano; Landi, Carmine; Cartenì, Fabrizio; de Alteriis, Elisabetta; Giannino, Francesco; Paciello, Lucia; Parascandola, Palma

    2015-07-30

    Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.

  17. Understanding the performance of sulfate reducing bacteria based packed bed reactor by growth kinetics study and microbial profiling.

    Science.gov (United States)

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2016-07-15

    A novel marine waste extract (MWE) as alternative nitrogen source was explored for the growth of sulfate reducing bacteria (SRB). Variation of sulfate and nitrogen (MWE) showed that SRB growth follows an uncompetitive inhibition model. The maximum specific growth rates (μmax) of 0.085 and 0.124 h(-1) and inhibition constants (Ki) of 56 and 4.6 g/L were observed under optimized sulfate and MWE concentrations, respectively. The kinetic data shows that MWE improves the microbial growth by 27%. The packed bed bioreactor (PBR) under optimized sulfate and MWE regime showed sulfate removal efficiency of 62-66% and metals removal efficiency of 66-75% on using mine wastewater. The microbial community analysis using DGGE showed dominance of SRB (87-89%). The study indicated the optimum dosing of sulfate and cheap organic nitrogen to promote the growth of SRB over other bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Response of African marigold (Tagetes erecta L. to different concentrations of chlorpyrifos and microbial diversity in root rhizosphere

    Directory of Open Access Journals (Sweden)

    Mani Santhoshkumar

    2017-04-01

    Full Text Available Objective: To assess the response of African marigold (Tagetes erecta L. to exposed different concentration of chlorpyrifos by evaluating morphology (root and shoot length, biomass (fresh weight and dry weight, photosynthetic pigments (chlorophyll a and b, protein and microbial diversity in root rhizosphere. Methods: The study was carried out in pot culture and treated with various concentrations (0.5%, 1.0%, 2.0%, and 2.5% as well as control treatments. The morphological, biomass, photosynthetic pigments, protein, and microbial diversity were analyzed on 30, 60, and 90 days. Results: The obtained results revealed that the tested pesticide reduced the growth, biomass and photosynthetic pigment of African marigold when applied at higher concentration than the optimum dosage. But the lower dose the pesticide had some stimulatory effect of analyzed parameters. A similar effect of pesticide was observed on the microbial population of root rhizosphere that is decreased in microbial population was caused at higher doses. But it was increased at lower doses. Conclusions: It can be concluded that pesticide above the certain dosage level adversely affect all the analyzed parameters at higher doses. The application of recommended doses should be discouraged. Further study is needed for the effect of pesticide use on microbial diversity, since these studies are carried out in a controlled pot experiment, including the current study. Thus, future study directed towards by studying the phyoremediation of theses contaminted site with intraction of microbes.

  19. Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth.

    Science.gov (United States)

    Buch, Franziska; Rott, Matthias; Rottloff, Sandy; Paetz, Christian; Hilke, Ines; Raessler, Michael; Mithöfer, Axel

    2013-03-01

    Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated. Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasma-optical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes. The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes. The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey

  20. Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides

    Science.gov (United States)

    Vega Thurber, Rebecca; Burkepile, Deron E.; Correa, Adrienne M. S.; Thurber, Andrew R.; Shantz, Andrew A.; Welsh, Rory; Pritchard, Catharine; Rosales, Stephanie

    2012-01-01

    With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs. PMID:22957055

  1. Macroalgae decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides.

    Directory of Open Access Journals (Sweden)

    Rebecca Vega Thurber

    Full Text Available With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1 increases or 2 decreases in microbial taxa already present in corals, 3 establishment of new taxa to the coral microbiome, and 4 vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs.

  2. Microbial Communities and Their Predicted Metabolic Functions in Growth Laminae of a Unique Large Conical Mat from Lake Untersee, East Antarctica

    Directory of Open Access Journals (Sweden)

    Hyunmin Koo

    2017-08-01

    Full Text Available In this study, we report the distribution of microbial taxa and their predicted metabolic functions observed in the top (U1, middle (U2, and inner (U3 decadal growth laminae of a unique large conical microbial mat from perennially ice-covered Lake Untersee of East Antarctica, using NextGen sequencing of the 16S rRNA gene and bioinformatics tools. The results showed that the U1 lamina was dominated by cyanobacteria, specifically Phormidium sp., Leptolyngbya sp., and Pseudanabaena sp. The U2 and U3 laminae had high abundances of Actinobacteria, Verrucomicrobia, Proteobacteria, and Bacteroidetes. Closely related taxa within each abundant bacterial taxon found in each lamina were further differentiated at the highest taxonomic resolution using the oligotyping method. PICRUSt analysis, which determines predicted KEGG functional categories from the gene contents and abundances among microbial communities, revealed a high number of sequences belonging to carbon fixation, energy metabolism, cyanophycin, chlorophyll, and photosynthesis proteins in the U1 lamina. The functional predictions of the microbial communities in U2 and U3 represented signal transduction, membrane transport, zinc transport and amino acid-, carbohydrate-, and arsenic- metabolisms. The Nearest Sequenced Taxon Index (NSTI values processed through PICRUSt were 0.10, 0.13, and 0.11 for U1, U2, and U3 laminae, respectively. These values indicated a close correspondence with the reference microbial genome database, implying high confidence in the predicted metabolic functions of the microbial communities in each lamina. The distribution of microbial taxa observed in each lamina and their predicted metabolic functions provides additional insight into the complex microbial ecosystem at Lake Untersee, and lays the foundation for studies that will enhance our understanding of the mechanisms responsible for the formation of these unique mat structures and their evolutionary significance.

  3. Quantum dots conjugated zinc oxide nanosheets: Impeder of microbial growth and biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Rajendra [Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 (India); Gholap, Haribhau, E-mail: haribhau.gholap@fergusson.edu [Department of Physics, Fergusson College, Pune 411004 (India); Warule, Sambhaji [Department of Physics, Nowrosjee Wadia College, Pune 411001 (India); Banpurkar, Arun; Kulkarni, Gauri [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Gade, Wasudeo, E-mail: wngade@unipune.ac.in [Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 (India)

    2015-01-30

    Graphical abstract: The visible light upon incident on ZnO/CdTe initiate the phenomenon of photocatalytical impedance of biofilm. - Highlights: • Synthesis of efficient light photocatalyst ZnO/CdTe nanostructures by hydrothermal method. • ZnO/CdTe nanostructures show a good antibacterial activity by action on cell membrane. • ZnO/CdTe nanostructures show a good antibiofilm activity, and also act on the cells inside the biofilm. - Abstract: The grieving problem of the 21st century has been the antimicrobial resistance in pathogenic microorganisms to conventional antibiotics. Therefore, developments of novel antibacterial materials which effectively inhibit or kill such resistant microorganisms have become the need of the hour. In the present study, we communicate the synthesis of quantum dots conjugated zinc oxide nanostructures (ZnO/CdTe) as an impeder of microbial growth and biofilm. The as-synthesized nanostructures were characterized by X-ray diffraction, ultraviolet–visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy. The growth impedance property of ZnO and ZnO/CdTe on Gram positive organism, Bacillus subtilis NCIM 2063 and Gram negative, Escherichia coli NCIM 2931 and biofilm impedance activity in Pseudomonas aeruginosa O1 was found to occur due to photocatalytical action on the cell biofilm surfaces. The impedance in microbial growth and biofilm formation was further supported by ruptured appearances of cells and dettrered biofilm under field emission scanning electron and confocal laser scanning microscope. The ZnO/CdTe nanostructures array synthesized by hydrothermal method has an advantage of low growth temperature, and opportunity to fabricate inexpensive material for nano-biotechnological applications.

  4. Quantum dots conjugated zinc oxide nanosheets: Impeder of microbial growth and biofilm

    International Nuclear Information System (INIS)

    Patil, Rajendra; Gholap, Haribhau; Warule, Sambhaji; Banpurkar, Arun; Kulkarni, Gauri; Gade, Wasudeo

    2015-01-01

    Graphical abstract: The visible light upon incident on ZnO/CdTe initiate the phenomenon of photocatalytical impedance of biofilm. - Highlights: • Synthesis of efficient light photocatalyst ZnO/CdTe nanostructures by hydrothermal method. • ZnO/CdTe nanostructures show a good antibacterial activity by action on cell membrane. • ZnO/CdTe nanostructures show a good antibiofilm activity, and also act on the cells inside the biofilm. - Abstract: The grieving problem of the 21st century has been the antimicrobial resistance in pathogenic microorganisms to conventional antibiotics. Therefore, developments of novel antibacterial materials which effectively inhibit or kill such resistant microorganisms have become the need of the hour. In the present study, we communicate the synthesis of quantum dots conjugated zinc oxide nanostructures (ZnO/CdTe) as an impeder of microbial growth and biofilm. The as-synthesized nanostructures were characterized by X-ray diffraction, ultraviolet–visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy. The growth impedance property of ZnO and ZnO/CdTe on Gram positive organism, Bacillus subtilis NCIM 2063 and Gram negative, Escherichia coli NCIM 2931 and biofilm impedance activity in Pseudomonas aeruginosa O1 was found to occur due to photocatalytical action on the cell biofilm surfaces. The impedance in microbial growth and biofilm formation was further supported by ruptured appearances of cells and dettrered biofilm under field emission scanning electron and confocal laser scanning microscope. The ZnO/CdTe nanostructures array synthesized by hydrothermal method has an advantage of low growth temperature, and opportunity to fabricate inexpensive material for nano-biotechnological applications

  5. Rapid Response of Eastern Mediterranean Deep Sea Microbial Communities to Oil

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiang; Techtmann, Stephen M.; Woo, Hannah L.; Ning, Daliang; Fortney, Julian L.; Hazen, Terry C.

    2017-07-18

    Deep marine oil spills like the Deepwater Horizon (DWH) in the Gulf of Mexico have the potential to drastically impact marine systems. Crude oil contamination in marine systems remains a concern, especially for countries around the Mediterranean Sea with off shore oil production. The goal of this study was to investigate the response of indigenous microbial communities to crude oil in the deep Eastern Mediterranean Sea (E. Med.) water column and to minimize potential bias associated with storage and shifts in microbial community structure from sample storage. 16S rRNA amplicon sequencing was combined with GeoChip metagenomic analysis to monitor the microbial community changes to the crude oil and dispersant in on-ship microcosms set up immediately after water collection. After 3 days of incubation at 14 °C, the microbial communities from two different water depths: 824 m and 1210 m became dominated by well-known oil degrading bacteria. The archaeal population and the overall microbial community diversity drastically decreased. Similarly, GeoChip metagenomic analysis revealed a tremendous enrichment of genes related to oil biodegradation, which was consistent with the results from the DWH oil spill. These results highlight a rapid microbial adaption to oil contamination in the deep E. Med., and indicate strong oil biodegradation potentia

  6. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination.

    Science.gov (United States)

    Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli

    2017-12-01

    Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Genome-scale biological models for industrial microbial systems.

    Science.gov (United States)

    Xu, Nan; Ye, Chao; Liu, Liming

    2018-04-01

    The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.

  8. Ready or Not: Microbial Adaptive Responses in Dynamic Symbiosis Environments.

    Science.gov (United States)

    Cao, Mengyi; Goodrich-Blair, Heidi

    2017-08-01

    In mutually beneficial and pathogenic symbiotic associations, microbes must adapt to the host environment for optimal fitness. Both within an individual host and during transmission between hosts, microbes are exposed to temporal and spatial variation in environmental conditions. The phenomenon of phenotypic variation, in which different subpopulations of cells express distinctive and potentially adaptive characteristics, can contribute to microbial adaptation to a lifestyle that includes rapidly changing environments. The environments experienced by a symbiotic microbe during its life history can be erratic or predictable, and each can impact the evolution of adaptive responses. In particular, the predictability of a rhythmic or cyclical series of environments may promote the evolution of signal transduction cascades that allow preadaptive responses to environments that are likely to be encountered in the future, a phenomenon known as adaptive prediction. In this review, we summarize environmental variations known to occur in some well-studied models of symbiosis and how these may contribute to the evolution of microbial population heterogeneity and anticipatory behavior. We provide details about the symbiosis between Xenorhabdus bacteria and Steinernema nematodes as a model to investigate the concept of environmental adaptation and adaptive prediction in a microbial symbiosis. Copyright © 2017 American Society for Microbiology.

  9. Microbial growth yield estimates from thermodynamics and its importance for degradation of pesticides and formation of biogenic non-extractable residues

    DEFF Research Database (Denmark)

    Brock, Andreas Libonati; Kästner, M.; Trapp, Stefan

    2017-01-01

    NER. Formation of microbial mass can be estimated from the microbial growth yield, but experimental data is rare. Instead, we suggest using prediction methods for the theoretical yield based on thermodynamics. Recently, we presented the Microbial Turnover to Biomass (MTB) method that needs a minimum...... and using the released CO2 as a measure for microbial activity, we predicted a range for the formation of biogenic NER. For the majority of the pesticides, a considerable fraction of the NER was estimated to be biogenic. This novel approach provides a theoretical foundation applicable to the evaluation...

  10. [Microbial biomass and growth kinetics of microorganisms in chernozem soils under different farm land use modes].

    Science.gov (United States)

    Blagodatskiĭ, S A; Bogomolova, I N; Blagodatskaia, E V

    2008-01-01

    The carbon content of microbial biomass and the kinetic characteristics of microbial respiration response to substrate introduction have been estimated for chernozem soils of different farm lands: arable lands used for 10, 46, and 76 years, mowed fallow land, non-mowed fallow land, and woodland. Microbial biomass and the content of microbial carbon in humus (Cmic/Corg) decreased in the following order: soils under forest cenoses-mowed fallow land-10-year arable land-46- and 75-year arable land. The amount of microbial carbon in the long-plowed horizon was 40% of its content in the upper horizon of non-mowed fallow land. Arable soils were characterized by a lower metabolic diversity of microbial community and by the highest portion of microorganisms able to grow directly on glucose introduced into soil. The effects of different scenarios of carbon sequestration in soil on the reserves and activity of microbial biomass are discussed.

  11. Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities.

    NARCIS (Netherlands)

    Epelde, L.; Becerril, J.M.; Kowalchuk, G.A.; Deng, Y.; Zhou, J.; Garbisu, C.

    2010-01-01

    been proposed as indicators of soil functioning, making them potentially useful in evaluating the recovery of polluted soils via phytoremediation strategies. To evaluate microbial responses to metal phytoextraction using hyperaccumulators, a microcosm experiment was carried out to study the impacts

  12. Contrasting response to nutrient manipulation in Arctic mesocosms are reproduced by a minimum microbial food web model.

    Science.gov (United States)

    Larsen, Aud; Egge, Jorun K; Nejstgaard, Jens C; Di Capua, Iole; Thyrhaug, Runar; Bratbak, Gunnar; Thingstad, T Frede

    2015-03-01

    A minimum mathematical model of the marine pelagic microbial food web has previously shown to be able to reproduce central aspects of observed system response to different bottom-up manipulations in a mesocosm experiment Microbial Ecosystem Dynamics (MEDEA) in Danish waters. In this study, we apply this model to two mesocosm experiments (Polar Aquatic Microbial Ecology (PAME)-I and PAME-II) conducted at the Arctic location Kongsfjorden, Svalbard. The different responses of the microbial community to similar nutrient manipulation in the three mesocosm experiments may be described as diatom-dominated (MEDEA), bacteria-dominated (PAME-I), and flagellated-dominated (PAME-II). When allowing ciliates to be able to feed on small diatoms, the model describing the diatom-dominated MEDEA experiment give a bacteria-dominated response as observed in PAME I in which the diatom community comprised almost exclusively small-sized cells. Introducing a high initial mesozooplankton stock as observed in PAME-II, the model gives a flagellate-dominated response in accordance with the observed response also of this experiment. The ability of the model originally developed for temperate waters to reproduce population dynamics in a 10°C colder Arctic fjord, does not support the existence of important shifts in population balances over this temperature range. Rather, it suggests a quite resilient microbial food web when adapted to in situ temperature. The sensitivity of the model response to its mesozooplankton component suggests, however, that the seasonal vertical migration of Arctic copepods may be a strong forcing factor on Arctic microbial food webs.

  13. Soil microbial responses to nitrogen addition in arid ecosystems

    Directory of Open Access Journals (Sweden)

    Robert L Sinsabaugh

    2015-08-01

    Full Text Available The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts. We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg ha-1 yr-1 from March 2012 to March 2013. In March 2013, biocrust (0-0.5 cm and bulk soils (0-10 cm were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities (EEA and rates of N transformation. By most measures, nutrient availability, microbial biomass and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N.

  14. Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak.

    Science.gov (United States)

    Morales, Sergio E; Holben, William E

    2013-01-01

    Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2) emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface and near-surface soils. Using a simulated subsurface CO2 storage leak scenario, we demonstrate how CO2 flow upward through the soil column altered both the abundance (DNA) and activity (mRNA) of microbial functional groups mediating carbon and nitrogen transformations. These microbial responses were found to be seasonally dependent and correlated to shifts in atmospheric conditions. While both DNA and mRNA levels were affected by elevated CO2, they did not react equally, suggesting two separate mechanisms for soil microbial community response to high CO2 levels. The results did not always agree with previous studies on elevated atmospheric (rather than subsurface) CO2 using FACE (Free-Air CO2 Enrichment) systems, suggesting that microbial community response to CO2 seepage from the subsurface might differ from its response to atmospheric CO2 increases.

  15. Peatland Microbial Carbon Use Under Warming using Isotopic Fractionation

    Science.gov (United States)

    Gutknecht, J.

    2016-12-01

    Peatlands are a critical natural resource, especially in their role as carbon sinks. Most of the world's peatlands are located in Northern ecosystems where the climate is changing at a rapid pace, and there is great interest and concern with how climate change will influence them. Although studies regarding the response of peatlands to climate change have emerged, the microbial mediation of C cycling in these systems is still less well understood. In this study, 13CPLFA analysis was used to characterize the microbial community and it's carbon use at the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) Project. The SPRUCE project is an extensive study of the response of peatlands to climatic manipulation in the Marcell Experimental Forest in northern Minnesota. Heating rods were installed in peatland plots where peat is being warmed at several levels including ambient, +2.5, +4.5, +6.75, and +9 degrees Celsius, at a depth of 3 meters, beginning July of 2014. Samples were taken June 2014, September 2014, and June 2015, throughout the depth profile. We found very high microbial, and especially fungal growth at shallow depths, owing in part to the influence of fungal-like lipids present in Sphagnum stems, and in part to dense mycorrhizal colonization in shrub and tree species. Isotopic data shows that microbial biomass has an enriched δ13C lower in the peat profile, indicating as expected that microbes at depth utilize older carbon or carbon more enriched in 13C. The increase over depth in the δ13C signature may also reflect the increased dominance of pre-industrial carbon that is more enriched in 13C. In this early period of warming we did not see clear effects of warming, either due to the highly heterogeneous microbial growth across the bog, or to the short term deep warming only. We expect that with the initiation of aboveground warming in July 2016, warming will begin to show stronger effects on microbial C cycling.

  16. Effect of temperature on microbial growth rate - thermodynamic analysis, the arrhenius and eyring-polanyi connection

    Science.gov (United States)

    The objective of this work is to develop a new thermodynamic mathematical model for evaluating the effect of temperature on the rate of microbial growth. The new mathematical model is derived by combining the Arrhenius equation and the Eyring-Polanyi transition theory. The new model, suitable for ...

  17. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens

    DEFF Research Database (Denmark)

    Pineda, Lane Manalili; Chwalibog, André; Sawosz, Ewa

    2012-01-01

    and intestinal content were collected to evaluate the effects of AgNano on plasma concentration of immunoglobulins and the intestinal microflora, respectively. The provision of water solutions containing different concentrations of AgNano had no effect on postnatal growth performance and the energy metabolism...... (IgG) in the blood plasma of broilers supplemented with AgNano decreased at day 36 (p = 0.012). The results demonstrated that AgNano affects N utilisation and plasma IgG concentration; however, it does not influence the microbial populations in the digestive tract, the energy metabolism and growth...

  18. Aerobic carbon-cycle related microbial communities in boreal peatlands: responses to water-level drawdown

    Energy Technology Data Exchange (ETDEWEB)

    Peltoniemi, K

    2010-07-01

    Boreal peatlands represent a considerable portion of the global carbon (C) pool. Water-level drawdown (WLD) causes peatland drying and induces a vegetation change, which affects the decomposition of soil organic matter and the release of greenhouse gases (CO{sub 2} and CH{sub 4}). The objective of this thesis was to study the microbial communities related to the C cycle and their response to WLD in two boreal peatlands. Both sampling depth and site type had a strong impact on all microbial communities. In general, bacteria dominated the deeper layers of the nutrient-rich fen and the wettest surfaces of the nutrient-poor bog sites, whereas fungi seemed more abundant in the drier surfaces of the bog. WLD clearly affected the microbial communities but the effect was dependent on site type. The fungal and methane-oxidizing bacteria (MOB) community composition changed at all sites but the actinobacterial community response was apparent only in the fen after WLD. Microbial communities became more similar among sites after long-term WLD. Litter quality had a large impact on community composition, whereas the effects of site type and WLD were relatively minor. The decomposition rate of fresh organic matter was influenced slightly by actinobacteria, but not at all by fungi. Field respiration measurements in the northern fen indicated that WLD accelerates the decomposition of soil organic matter. In addition, a correlation between activity and certain fungal sequences indicated that community composition affects the decomposition of older organic matter in deeper peat layers. WLD had a negative impact on CH{sub 4} oxidation, especially in the oligotrophic fen. Fungal sequences were matched to taxa capable of utilizing a broad range of substrates. Most of the actinobacterial sequences could not be matched to characterized taxa in reference databases. This thesis represents the first investigation of microbial communities and their response to WLD among a variety of boreal

  19. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes.

    Science.gov (United States)

    Wang, Cheng; Dong, Da; Strong, P J; Zhu, Weijing; Ma, Zhuang; Qin, Yong; Wu, Weixiang

    2017-08-16

    Animal manure is a reservoir of antibiotic resistance genes (ARGs) that pose a potential health risk globally, especially for resistance to the antibiotics commonly used in livestock production (such as tetracycline, sulfonamide, and fluoroquinolone). Currently, the effects of biological treatment (composting) on the transcriptional response of manure ARGs and their microbial hosts are not well characterized. Composting is a dynamic process that consists of four distinct phases that are distinguished by the temperature resulting from microbial activity, namely the mesophilic, thermophilic, cooling, and maturing phases. In this study, changes of resistome expression were determined and related to active microbiome profiles during the dynamic composting process. This was achieved by integrating metagenomic and time series metatranscriptomic data for the evolving microbial community during composting. Composting noticeably reduced the aggregated expression level of the manure resistome, which primarily consisted of genes encoding for tetracycline, vancomycin, fluoroquinolone, beta-lactam, and aminoglycoside resistance, as well as efflux pumps. Furthermore, a varied transcriptional response of resistome to composting at the ARG levels was highlighted. The expression of tetracycline resistance genes (tetM-tetW-tetO-tetS) decreased during composting, where distinctive shifts in the four phases of composting were related to variations in antibiotic concentration. Composting had no effect on the expression of sulfonamide and fluoroquinolone resistance genes, which increased slightly during the thermophilic phase and then decreased to initial levels. As indigenous populations switched greatly throughout the dynamic composting, the core resistome persisted and their reservoir hosts' composition was significantly correlated with dynamic active microbial phylogenetic structure. Hosts for sulfonamide and fuoroquinolone resistance genes changed notably in phylognetic structure

  20. Review of microbial responses to abiotic environmental factors in the context of the proposed Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A [Lawrence Livermore National Lab., Livermore, CA (United States); Stroes-Gascoyne, S

    2000-10-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behaviour into performance assessment models. One effort was to expand an existing modelling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories, 1) abiotic factors, 2) community dynamics and in-situ considerations, 3) nutrient considerations and 4) transport of radionuclides. The complete bibliography (included in Appendix A) represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain. The first part of the report (Chapters 1-3) is a review of general microbial states, phases and requirements for growth, conditions for 'normal growth' and other types of growth, survival strategies and cell death. It contains primarily well-established ideas in microbiology. Microbial capabilities for survival and adaptation to environmental changes are examined because a repository placed at Yucca Mountain would have two effects. First, the natural environment would be perturbed by the excavation and construction of the repository and

  1. Review of microbial responses to abiotic environmental factors in the context of the proposed Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A. [Lawrence Livermore National Lab., Livermore, CA (United States); Stroes-Gascoyne, S

    2000-10-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behaviour into performance assessment models. One effort was to expand an existing modelling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories, 1) abiotic factors, 2) community dynamics and in-situ considerations, 3) nutrient considerations and 4) transport of radionuclides. The complete bibliography (included in Appendix A) represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain. The first part of the report (Chapters 1-3) is a review of general microbial states, phases and requirements for growth, conditions for 'normal growth' and other types of growth, survival strategies and cell death. It contains primarily well-established ideas in microbiology. Microbial capabilities for survival and adaptation to environmental changes are examined because a repository placed at Yucca Mountain would have two effects. First, the natural environment would be perturbed by the excavation and construction of the

  2. Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions

    Science.gov (United States)

    Robador, Alberto; LaRowe, Douglas E.; Finkel, Steven E.; Amend, Jan P.; Nealson, Kenneth H.

    2018-01-01

    Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems. PMID:29449836

  3. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    DEFF Research Database (Denmark)

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard Remko

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH...

  4. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    NARCIS (Netherlands)

    Méndez-Garcia, C.; Mesa, V.; Sprenger, R.R.; Richter, M.; Suarez Diez, M.; Solano, J.; Bargiela, R.; Golyshina, O.V.; Manteca, A.; Ramos, J.L.; Gallego, J.R.; Llorente, I.; Martins Dos Santos, V.A.P.; Jensen, O.N.; Paláez, A.I.; Sánchez, J.; Ferrer, M.

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH

  5. Earthworms (Amynthas spp. increase common bean growth, microbial biomass, and soil respiration

    Directory of Open Access Journals (Sweden)

    Julierme Zimmer Barbosa

    2017-10-01

    Full Text Available Few studies have evaluated the effect of earthworms on plants and biological soil attributes, especially among legumes. The objective of this study was to evaluate the influence of earthworms (Amynthas spp. on growth in the common bean (Phaseolus vulgaris L. and on soil biological attributes. The experiment was conducted in a greenhouse using a completely randomized design with five treatments and eight repetitions. The treatments consisted of inoculation with five different quantities of earthworms of the genus Amynthas (0, 2, 4, 6, and 8 worms per pot. Each experimental unit consisted of a plastic pot containing 4 kg of soil and two common bean plants. The experiment was harvested 38 days after seedling emergence. Dry matter and plant height, soil respiration, microbial respiration, microbial biomass, and metabolic quotient were determined. Earthworm recovery in our study was high in number and mass, with all values above 91.6% and 89.1%, respectively. In addition, earthworm fresh biomass decreased only in the treatment that included eight earthworms per pot. The presence of earthworms increased the plant growth and improved soil biological properties, suggesting that agricultural practices that favor the presence of these organisms can be used to increase the production of common bean, and the increased soil CO2 emission caused by the earthworms can be partially offset by the addition of common bean crop residues to the soil.

  6. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions

    NARCIS (Netherlands)

    Cipriano, M.A.P.; Lupatini, M.; Santos, L.; Silva, M. da; Roesch, L.F.W.; Destefano, S.; Freitas, S.; Kuramae, E.E.

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR) are well described and recommended for several crops worldwide. However, one of the most common problems in PGPR research is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial

  7. CATALASE FROM A FUNGAL MICROBIAL PESTICIDE INDUCES A UNIQUE IGE RESPONSE.

    Science.gov (United States)

    BALB/c mice exposed by involuntary aspiration to Metarhizium anisopliae extract (MACA), a microbial pesticide, have shown responses characteristic of human allergic lung disease/asthma. IgE-binding proteins have been identified in MACA by Western blot analysis, 2-dimensio...

  8. Microbial hotspots and hot moments in soil

    Science.gov (United States)

    Kuzyakov, Yakov; Blagodatskaya, Evgenia

    2015-04-01

    increases in C stocks. Consequently, the intensification of fluxes is much stronger than the increase of pools. Maintenance of stoichiometric ratios by accelerated microbial growth in hotspots requires additional nutrients (e.g. N and P), causing their microbial mining from soil organic matter, i.e. priming effects. Consequently, priming effects are localized in microbial hotspots and are consequences of hot moments. Finally, we estimated the contribution of the hotspots to the whole soil profile and suggested that, irrespective of their volume, the hotspots are mainly responsible for the ecologically relevant processes in soil.

  9. Taxonomic and Functional Responses of Soil Microbial Communities to Annual Removal of Aboveground Plant Biomass

    Science.gov (United States)

    Guo, Xue; Zhou, Xishu; Hale, Lauren; Yuan, Mengting; Feng, Jiajie; Ning, Daliang; Shi, Zhou; Qin, Yujia; Liu, Feifei; Wu, Liyou; He, Zhili; Van Nostrand, Joy D.; Liu, Xueduan; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong

    2018-01-01

    Clipping, removal of aboveground plant biomass, is an important issue in grassland ecology. However, few studies have focused on the effect of clipping on belowground microbial communities. Using integrated metagenomic technologies, we examined the taxonomic and functional responses of soil microbial communities to annual clipping (2010–2014) in a grassland ecosystem of the Great Plains of North America. Our results indicated that clipping significantly (P microbial respiration rates. Annual temporal variation within the microbial communities was much greater than the significant changes introduced by clipping, but cumulative effects of clipping were still observed in the long-term scale. The abundances of some bacterial and fungal lineages including Actinobacteria and Bacteroidetes were significantly (P microbial communities were significantly correlated with soil respiration and plant productivity. Intriguingly, clipping effects on microbial function may be highly regulated by precipitation at the interannual scale. Altogether, our results illustrated the potential of soil microbial communities for increased soil organic matter decomposition under clipping land-use practices. PMID:29904372

  10. Microbial Inoculantes Effects on Growth Promotion of Mangrove and Citrullus vulgaris San Andrés Isla, Colombia

    Directory of Open Access Journals (Sweden)

    Tania Galindo

    2006-01-01

    Full Text Available In order to test the effect of two microbial inoculants (obtained from red and black mangrove roots on the growth and stability of mangrove and watermelon plants, four treatments were carried out in San Andres Island, Colombia. The treatments consisted in the application of the inoculants in: A. germinans propagules collected in a mangrove area, and then individually planted in gavels with sun-pasteurized soil (in order to decrease the microbial load, A. germinans and R. mangle plants collected in the proximity of nursery trees, A. germinans and R. mangle planted and maintained in nursery, and in Citrullus vulgaris seeds planted in a traditional cultivar without chemical fertilizers. The growth and vegetative development variables were: number of nodes, number of leaves and steam length. The inoculants (phosphate solubilizing microorganisms -PSM- and nitrogen fixing bacteria -NFB- were applied in the mentioned vegetable material, doing measures during three months. The results show a positive effect on growth measured by steam length in plants treated specifically with the inoculants in C. vulgaris and A. germinans seedlings maintained in nursery.

  11. Microbial Community Response to Simulated Petroleum Seepage in Caspian Sea Sediments

    Directory of Open Access Journals (Sweden)

    Katrin Knittel

    2017-04-01

    Full Text Available Anaerobic microbial hydrocarbon degradation is a major biogeochemical process at marine seeps. Here we studied the response of the microbial community to petroleum seepage simulated for 190 days in a sediment core from the Caspian Sea using a sediment-oil-flow-through (SOFT system. Untreated (without simulated petroleum seepage and SOFT sediment microbial communities shared 43% bacterial genus-level 16S rRNA-based operational taxonomic units (OTU0.945 but shared only 23% archaeal OTU0.945. The community differed significantly between sediment layers. The detection of fourfold higher deltaproteobacterial cell numbers in SOFT than in untreated sediment at depths characterized by highest sulfate reduction rates and strongest decrease of gaseous and mid-chain alkane concentrations indicated a specific response of hydrocarbon-degrading Deltaproteobacteria. Based on an increase in specific CARD-FISH cell numbers, we suggest the following groups of sulfate-reducing bacteria to be likely responsible for the observed decrease in aliphatic and aromatic hydrocarbon concentration in SOFT sediments: clade SCA1 for propane and butane degradation, clade LCA2 for mid- to long-chain alkane degradation, clade Cyhx for cycloalkanes, pentane and hexane degradation, and relatives of Desulfobacula for toluene degradation. Highest numbers of archaea of the genus Methanosarcina were found in the methanogenic zone of the SOFT core where we detected preferential degradation of long-chain hydrocarbons. Sequencing of masD, a marker gene for alkane degradation encoding (1-methylalkylsuccinate synthase, revealed a low diversity in SOFT sediment with two abundant species-level MasD OTU0.96.

  12. The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition

    Science.gov (United States)

    B.M. Cheever; J. R. Webster; E. E. Bilger; S. A. Thomas

    2013-01-01

    Heterotrophic microbes colonizing detritus obtain nitrogen (N) for growth by assimilating N from their substrate or immobilizing exogenous inorganic N. Microbial use of these two pools has different implications for N cycling and organic matter decomposition in the face of the global increase in biologically available N. We used sugar maple leaves labeled with

  13. Increase the Visibility of Microbial Growth in a Winogradsky Column by Substituting Diatomaceous Earth for Sediment

    Directory of Open Access Journals (Sweden)

    Thomas G. Benoit

    2015-02-01

    Full Text Available The difficulty students have seeing the color associated with microbial growth in a traditional Winogradsky column can be overcome by substituting diatomaceous earth (DE for sediment. Microbial growth in a DE column is visible from the early stages of ecological succession and the colors produced appear more vibrant. A flat-sided tissue culture flask can be used as a column container to provide a large surface area for observation. The enhanced visual experience provided by a DE column increases student engagement and learning. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum Recommendations: Introductory Course in Microbiology and the Guidelines for Biosafety in Teaching Laboratories, available at www.asm.org. The Editors of JMBE recommend that adopters of the protocols included in this article follow a minimum of Biosafety Level 1 practices.

  14. Lineage-specific responses of microbial communities to environmental change.

    Science.gov (United States)

    Youngblut, Nicholas D; Shade, Ashley; Read, Jordan S; McMahon, Katherine D; Whitaker, Rachel J

    2013-01-01

    A great challenge facing microbial ecology is how to define ecologically relevant taxonomic units. To address this challenge, we investigated how changing the definition of operational taxonomic units (OTUs) influences the perception of ecological patterns in microbial communities as they respond to a dramatic environmental change. We used pyrosequenced tags of the bacterial V2 16S rRNA region, as well as clone libraries constructed from the cytochrome oxidase C gene ccoN, to provide additional taxonomic resolution for the common freshwater genus Polynucleobacter. At the most highly resolved taxonomic scale, we show that distinct genotypes associated with the abundant Polynucleobacter lineages exhibit divergent spatial patterns and dramatic changes over time, while the also abundant Actinobacteria OTUs are highly coherent. This clearly demonstrates that different bacterial lineages demand different taxonomic definitions to capture ecological patterns. Based on the temporal distribution of highly resolved taxa in the hypolimnion, we demonstrate that change in the population structure of a single genotype can provide additional insight into the mechanisms of community-level responses. These results highlight the importance and feasibility of examining ecological change in microbial communities across taxonomic scales while also providing valuable insight into the ecological characteristics of ecologically coherent groups in this system.

  15. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Kumari, Bollipo Dyana Ranjitha

    2013-08-01

    The effects of pulsed magnetic field (PMF) treatment of soybean (Glycine max L. cv CO3) seeds were investigated on rate of seed germination, seedling growth, physico-chemical properties of seed leachates and soil microbial population under laboratory conditions. Seeds were exposed to PMF of 1500 nT at 0.1, 1.0 10.0 and 100.0 Hz for 5 h per day for 20 days, induced by enclosure coil systems. Non-treated seeds were considered as controls. All PMF treatments significantly increased the rate of seed germination, while 10 and 100 Hz PMFs showed the most effective response. The 1.0 and 10 Hz PMFs remarkably improved the fresh weight of shoots and roots, leaf area and plant height from seedlings from magnetically-exposed seeds compared to the control, while 10 Hz PMF increased the total soluble sugar, total protein and phenol contents. The leaf chlorophyll a, b and total chlorophyll were higher in PMF (10 and 100 Hz) pretreated plants, as compared to other treatments. In addition, activities of alpha-amylase, acid phosphatase, alkaline phosphatase, nitrate reductase, peroxidase and polyphenoloxidase were increased, while beta-amylase and protease activities were declined in PMF (10 Hz)-exposed soybean plants. Similarly, the capacity of absorbance of water by seeds and electrical conductivity of seed leachates were significantly enhanced by 10 Hz PMF exposure, whereas PMF (10 Hz) pretreated plants did not affect the microbial population in rhizosphere soil. The results suggested the potential of 10 Hz PMF treatment to enhance the germination and seedling growth of soybean.

  16. Rhizospheric microbial communities are driven by Panax ginseng at different growth stages and biocontrol bacteria alleviates replanting mortality

    Directory of Open Access Journals (Sweden)

    Linlin Dong

    2018-03-01

    Full Text Available The cultivation of Panax plants is hindered by replanting problems, which may be caused by plant-driven changes in the soil microbial community. Inoculation with microbial antagonists may efficiently alleviate replanting issues. Through high-throughput sequencing, this study revealed that bacterial diversity decreased, whereas fungal diversity increased, in the rhizosphere soils of adult ginseng plants at the root growth stage under different ages. Few microbial community, such as Luteolibacter, Cytophagaceae, Luteibacter, Sphingomonas, Sphingomonadaceae, and Zygomycota, were observed; the relative abundance of microorganisms, namely, Brevundimonas, Enterobacteriaceae, Pandoraea, Cantharellales, Dendryphion, Fusarium, and Chytridiomycota, increased in the soils of adult ginseng plants compared with those in the soils of 2-year-old seedlings. Bacillus subtilis 50-1, a microbial antagonist against the pathogenic Fusarium oxysporum, was isolated through a dual culture technique. These bacteria acted with a biocontrol efficacy of 67.8%. The ginseng death rate and Fusarium abundance decreased by 63.3% and 46.1%, respectively, after inoculation with B. subtilis 50-1. Data revealed that microecological degradation could result from ginseng-driven changes in rhizospheric microbial communities; these changes are associated with the different ages and developmental stages of ginseng plants. Biocontrol using microbial antagonists alleviated the replanting problem. KEY WORDS: Panax ginseng, Microbial communities, Replanting problem, High-throughput sequencing, Different ages, Bioremediation

  17. Microbial Response to UV Exposure and Nitrogen Limitation in Desert Soil Crusts

    Science.gov (United States)

    Fulton, J. M.; Van Mooy, B. A.

    2016-12-01

    Microbiotic soil crusts have diverse biomarker distributions and C and N stable isotopic compositions that covary with soil type. Sparse plant cover and the relative lack of soil disturbance in arid/semi-arid landscapes allows populations of soil cyanobacteria to develop along with fungi and heterotrophic bacteria. Microbial communities in this extreme environment depend in part on the production of scytonemin, a UV protective pigment, by cyanobacteria near the top of the crust. N limitation of microbial growth also affects soil crust population dynamics, increasing the requirement of N2fixation by diazotrophic cyanobacteria. We collected 56 soil crust samples from 27 locations throughout the Great Salt Lake Desert, including four transects spanning high-elevation, erosion-dominated soils to lower elevation soils dominated by silt-accumulation. Erosion-dominated soil surfaces included rounded gravel and cobbles; in the interstices there were poorly-developed microbiotic crusts on sandy loam with low δ15N values near 0‰ that point toward microbial growth dependent on cyanobacterial N2 fixation. Nutrients regenerated by heterotrophic bacteria may have been eroded from the system, providing a positive feedback for N2 fixation. High scytonemin:chlorophyll a ratios suggest that cyanobacteria required enhanced protection from UV damage in these crusts. A similar increase in scytonemin:chlorophyll a ratio during soil crust rehydration experiments also points toward the importance of UV protection. Glycolipid:phospholipid ratios were lowest where N2 fixation was favored, however, suggesting that the cyanobacterial population was relatively small, possibly because of the metabolic cost of N2fixation. Microbiotic crusts on silt loam soils, on the other hand, had higher δ15N values between 3.5 and 7.8‰, consistent with heterotrophic growth and nutrient recycling. Lower scytonemin:chlorophyll a ratios suggest that relatively high photosynthetic activity was supported in

  18. Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash

    DEFF Research Database (Denmark)

    Cruz Paredes, Carla; Wallander, Håkan; Kjøller, Rasmus

    2017-01-01

    is the current land-use. In forestry, wood ash has been proposed as a liming agent and a fertilizer, but has been questioned due to the risk associated with its Cd content. The aim of this study was to determine the effects of wood ash on the structure and function of decomposer microbial communities in forest......The identification of causal links between microbial community structure and ecosystem functions are required for a mechanistic understanding of ecosystem responses to environmental change. One of the most influential factors affecting plants and microbial communities in soil in managed ecosystems...... soils and to assign them to causal mechanisms. To do this, we assessed the responses to wood ash application of (i) the microbial community size and structure, (ii) microbial community trait-distributions, including bacterial pH relationships and Cd-tolerance, to assign the microbial responses to p...

  19. Insights on the host stress, fear and growth responses to the deoxynivalenol feed contaminant in broiler chickens.

    Science.gov (United States)

    Ghareeb, Khaled; Awad, Wageha A; Sid-Ahmed, Omer E; Böhm, Josef

    2014-01-01

    Mycotoxins pose an important danger to human and animal health. Poultry feeds are frequently contaminated with deoxynivalenol (DON) mycotoxin. It is thus of great importance to evaluate the effects of DON on the welfare related parameters in poultry industry. In the present study, the effects of contamination of broiler diet with 10 mg DON/kg feed on plasma corticosterone and heterophil to lymphocyte (H/L) ratio as indicators of stress, tonic immobility duration as an index for fear response and growth performance of broiler chickens were studied. In addition, the effect of a microbial feed additive either alone or in combination with DON contamination on these different aspects was also evaluated. The results showed that DON feeding significantly affected the welfare related parameters of broiler chickens. The feeding of DON contaminated diet resulted in an elevation of plasma corticosterone, higher H/L ratio and increased the fear levels as indicated by longer duration of tonic immobility reaction. Furthermore, DON reduced the body weight and body weight gain during the starter phase definitely at the second and third week. However, during grower phase, feeding of DON decreased the body weight at the fourth week and reduced the body gain at the fifth week. Addition of the microbial feed additive, a commercial antidote for DON mycotoxin, was able to overcome DON effects on stress index (H/L ratio), fearfulness and growth parameters of broilers. In conclusion, we showed for the first time that the DON feeding increased the underlying fearfulness and physiological stress responses of broilers and resulted in a reduction in the welfare status as indicated by higher plasma corticosterone, higher H/L ratio and higher fearfulness. Additionally, feeding the microbial feed additive was effective in reducing the adverse effects of DON on the bird's welfare and can improve the performance of broiler chickens.

  20. Insights on the host stress, fear and growth responses to the deoxynivalenol feed contaminant in broiler chickens.

    Directory of Open Access Journals (Sweden)

    Khaled Ghareeb

    Full Text Available Mycotoxins pose an important danger to human and animal health. Poultry feeds are frequently contaminated with deoxynivalenol (DON mycotoxin. It is thus of great importance to evaluate the effects of DON on the welfare related parameters in poultry industry. In the present study, the effects of contamination of broiler diet with 10 mg DON/kg feed on plasma corticosterone and heterophil to lymphocyte (H/L ratio as indicators of stress, tonic immobility duration as an index for fear response and growth performance of broiler chickens were studied. In addition, the effect of a microbial feed additive either alone or in combination with DON contamination on these different aspects was also evaluated. The results showed that DON feeding significantly affected the welfare related parameters of broiler chickens. The feeding of DON contaminated diet resulted in an elevation of plasma corticosterone, higher H/L ratio and increased the fear levels as indicated by longer duration of tonic immobility reaction. Furthermore, DON reduced the body weight and body weight gain during the starter phase definitely at the second and third week. However, during grower phase, feeding of DON decreased the body weight at the fourth week and reduced the body gain at the fifth week. Addition of the microbial feed additive, a commercial antidote for DON mycotoxin, was able to overcome DON effects on stress index (H/L ratio, fearfulness and growth parameters of broilers. In conclusion, we showed for the first time that the DON feeding increased the underlying fearfulness and physiological stress responses of broilers and resulted in a reduction in the welfare status as indicated by higher plasma corticosterone, higher H/L ratio and higher fearfulness. Additionally, feeding the microbial feed additive was effective in reducing the adverse effects of DON on the bird's welfare and can improve the performance of broiler chickens.

  1. Final technical report. Can microbial functional traits predict the response and resilience of decomposition to global change?

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Steven D. [Univ. of California, Irvine, CA (United States)

    2015-09-24

    The role of specific micro-organisms in the carbon cycle, and their responses to environmental change, are unknown in most ecosystems. This knowledge gap limits scientists’ ability to predict how important ecosystem processes, like soil carbon storage and loss, will change with climate and other environmental factors. The investigators addressed this knowledge gap by transplanting microbial communities from different environments into new environments and measuring the response of community composition and carbon cycling over time. Using state-of-the-art sequencing techniques, computational tools, and nanotechnology, the investigators showed that microbial communities on decomposing plant material shift dramatically with natural and experimentally-imposed drought. Microbial communities also shifted in response to added nitrogen, but the effects were smaller. These changes had implications for carbon cycling, with lower rates of carbon loss under drought conditions, and changes in the efficiency of decomposition with nitrogen addition. Even when transplanted into the same conditions, microbial communities from different environments remained distinct in composition and functioning for up to one year. Changes in functioning were related to differences in enzyme gene content across different microbial groups. Computational approaches developed for this project allowed the conclusions to be tested more broadly in other ecosystems, and new computer models will facilitate the prediction of microbial traits and functioning across environments. The data and models resulting from this project benefit the public by improving the ability to predict how microbial communities and carbon cycling functions respond to climate change, nutrient enrichment, and other large-scale environmental changes.

  2. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. I. Digestibility, fermentation parameters, and microbial growth.

    Science.gov (United States)

    Martínez, M E; Ranilla, M J; Tejido, M L; Ramos, S; Carro, M D

    2010-08-01

    Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of forage to concentrate (F:C) ratio and type of forage in the diet on ruminal fermentation and microbial protein synthesis. The purpose of the study was to assess how closely fermenters can mimic the dietary differences found in vivo. The 4 experimental diets contained F:C ratios of 70:30 or 30:70 with either alfalfa hay or grass hay as the forage. Microbial growth was determined in both systems using (15)N as a microbial marker. Rusitec fermenters detected differences between diets similar to those observed in sheep by changing F:C ratio on pH; neutral detergent fiber digestibility; total volatile fatty acid concentrations; molar proportions of acetate, propionate, butyrate, isovalerate, and caproate; and amylase activity. In contrast, Rusitec fermenters did not reproduce the dietary differences found in sheep for NH(3)-N and lactate concentrations, dry matter (DM) digestibility, proportions of isobutyrate and valerate, carboxymethylcellulase and xylanase activities, and microbial growth and its efficiency. Regarding the effect of the type of forage in the diet, Rusitec fermenters detected differences between diets similar to those found in sheep for most determined parameters, with the exception of pH, DM digestibility, butyrate proportion, and carboxymethylcellulase activity. Minimum pH and maximal volatile fatty acid concentrations were reached at 2h and at 6 to 8h postfeeding in sheep and fermenters, respectively, indicating that feed fermentation was slower in fermenters compared with that in sheep. There were differences between systems in the magnitude of most determined parameters. In general, fermenters showed lower lactate concentrations, neutral detergent fiber digestibility, acetate:propionate ratios, and enzymatic activities. On the contrary, fermenters showed greater NH(3)-N concentrations, DM digestibility, and proportions of propionate

  3. Cross-reactive microbial peptides can modulate HIV-specific CD8+ T cell responses.

    Directory of Open Access Journals (Sweden)

    Christopher W Pohlmeyer

    Full Text Available Heterologous immunity is an important aspect of the adaptive immune response. We hypothesized that this process could modulate the HIV-1-specific CD8+ T cell response, which has been shown to play an important role in HIV-1 immunity and control. We found that stimulation of peripheral blood mononuclear cells (PBMCs from HIV-1-positive subjects with microbial peptides that were cross-reactive with immunodominant HIV-1 epitopes resulted in dramatic expansion of HIV-1-specific CD8+ T cells. Interestingly, the TCR repertoire of HIV-1-specific CD8+ T cells generated by ex vivo stimulation of PBMCs using HIV-1 peptide was different from that of cells stimulated with cross-reactive microbial peptides in some HIV-1-positive subjects. Despite these differences, CD8+ T cells stimulated with either HIV-1 or cross-reactive peptides effectively suppressed HIV-1 replication in autologous CD4+ T cells. These data suggest that exposure to cross-reactive microbial antigens can modulate HIV-1-specific immunity.

  4. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris

    International Nuclear Information System (INIS)

    Zhou, Chen; Vannela, Raveender; Hayes, Kim F.; Rittmann, Bruce E.

    2014-01-01

    Highlights: • Extended incubation time to 16 days allowed significant FeS crystallization. • A weakly acidic pH greatly enhanced particle growth of mackinawite. • Microbial metabolism of different donors systematically altered the ambient pH. • Greater sulfide accumulation stimulated mackinawite transformation to greigite. - Abstract: Sulfate-reducing bacteria (SRB) can produce iron sulfide (FeS) solids with mineralogical characteristics that may be beneficial for a variety of biogeochemical applications, such as long-term immobilization of uranium. In this study, the growth and metabolism of Desulfovibrio vulgaris, one of the best-studied SRB species, were comprehensively monitored in batch studies, and the biogenic FeS solids were characterized by X-ray diffraction. Controlling the pH by varying the initial pH, the iron-to-sulfate ratio, or the electron donor – affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH (from initial conditions or a decrease caused by less sulfate reduction, FeS precipitation, or using pyruvate as the electron donor) produced larger-sized mackinawite (Fe 1+x S). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and particularly stimulated mackinawite transformation to greigite (Fe 3 S 4 ) when the free sulfide concentration was 29.3 mM. Furthermore, sufficient free Fe 2+ led to the additional formation of vivianite [Fe 3 (PO 4 ) 2 ·8(H 2 O)]. Thus, microbially relevant conditions (initial pH, choice of electron donor, and excess or deficiency of sulfide) are tools to generate biogenic FeS solids of different characteristics

  5. [Influence of Mirabilis jalapa Linn. Growth on the Microbial Community and Petroleum Hydrocarbon Degradation in Petroleum Contaminated Saline-alkali Soil].

    Science.gov (United States)

    Jiao, Hai-hua; Cui, Bing-jian; Wu, Shang-hua; Bai, Zhi-hui; Huang, Zhan-bin

    2015-09-01

    In order to explore the effect of Mirabilis jalapa Linn. growth on the structure characteristics of the microbial community and the degradation of petroleum hydrocarbon (TPH) in the petroleum-contaminated saline-alkali soil, Microbial biomass and species in the rhizosphere soils of Mirabilis jalapa Linn. in the contaminated saline soil were studied with the technology of phospholipid fatty acids (PLFAs) analysis. The results showed that comparing to CK soils without Mirabilis jalapa Linn., the ratio of PLFAs species varied were 71. 4%, 69. 2% and 33. 3% in the spring, summer and autumn season, respectively. In addition, there was distinct difference of the biomasses of the microbial community between the CK and rhizosphere soils and among the difference seasons of growth of Mirabilis jalapa Linn.. Compare to CK soil, the degradation rates of total petroleum hydrocarbon (TPH) was increased by 47. 6%, 28. 3%, and 18. 9% in spring, summer, and autumn rhizosphere soils, respectively. Correlation analysis was used to determine the correlation between TPH degradation and the soil microbial community. 77. 8% of the total soil microbial PLFAs species showed positive correlation to the TPH degradation (the correlation coefficient r > 0), among which, 55. 6% of PLFAs species showed high positive correlation(the correlation coefficient was r≥0. 8). In addition, the relative content of SAT and MONO had high correlation with TPH degradation in the CK sample soils, the corelation coefficient were 0. 92 and 0. 60 respectively; However, the percent of positive correlation was 42. 1% in the rhizosphere soils with 21. 1% of them had high positive correlation. The relative content of TBSAT, MONO and CYCLO had moderate or low correlation in rhizosphere soils, and the correlation coefficient were 0. 56, 0. 50, and 0. 07 respectively. Our study showed that the growth of mirabilis Mirabilis jalapa Linn. had a higher influence on the species and biomass of microbial community in the

  6. Microbial ecology of coal mine refuse

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R. E.; Miller, R. M.

    1977-01-01

    Baseline microbial and ecological studies of samples obtained from two abandoned coal mine refuse sites in the State of Illinois indicate that the unfavorable nature of refuse materials can be a very limiting factor for survival and growth of organisms. Despite the ''foothold'' obtained by some microorganisms, especially acidophilic fungi and some acidotolerant algae, the refuse materials should be amended or ameliorated to raise the pH, provide needed nutrients, especially nitrogen, and provide biodegradable organic matter, both for physical and biological purposes. Finally, the role of microbial populations, responses, and interactions in acid mine wastes must be put into larger perspective. Acid mine drainage amounts to over 4 million tons per year of acidity from active and abandoned mines. Microorganisms appear to be significantly responsible for this problem, but they also can play a beneficial and significant role in the amelioration or alleviation of this detrimental effect as abandoned mines are reclaimed and returned to useful productivity.

  7. Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture.

    Science.gov (United States)

    Averill, Colin; Waring, Bonnie G; Hawkes, Christine V

    2016-05-01

    Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, it is not known if variation in the shape and magnitude of microbial functional responses to soil moisture can be predicted from historical climate at regional scales. To address this problem, we measured soil enzyme activity at 12 sites across a broad climate gradient spanning 442-887 mm mean annual precipitation. Measurements were made eight times over 21 months to maximize sampling during different moisture conditions. We then fit saturating functions of enzyme activity to soil moisture and extracted half saturation and maximum activity parameter values from model fits. We found that 50% of the variation in maximum activity parameters across sites could be predicted by 30-year mean annual precipitation, an indicator of historical climate, and that the effect is independent of variation in temperature, soil texture, or soil carbon concentration. Based on this finding, we suggest that variation in the shape and magnitude of soil microbial response to soil moisture due to historical climate may be remarkably predictable at regional scales, and this approach may extend to other systems. If historical contingencies on microbial activities prove to be persistent in the face of environmental change, this approach also provides a framework for incorporating historical climate effects into biogeochemical models simulating future global change scenarios. © 2016 John Wiley & Sons Ltd.

  8. Effects of triclosan on host response and microbial biomarkers during experimental gingivitis.

    Science.gov (United States)

    Pancer, Brooke A; Kott, Diana; Sugai, James V; Panagakos, Fotinos S; Braun, Thomas M; Teles, Ricardo P; Giannobile, William V; Kinney, Janet S

    2016-05-01

    This exploratory randomized, controlled clinical trial sought to evaluate anti-inflammatory and -microbial effects of triclosan during experimental gingivitis as assessed by host response biomarkers and biofilm microbial pathogens. Thirty participants were randomized to triclosan or control dentifrice groups who ceased homecare for 21 days in an experimental gingivitis (EG) protocol. Plaque and gingival indices and saliva, plaque, and gingival crevicular fluid (GCF) were assessed/collected at days 0, 14, 21 and 35. Levels and proportions of 40 bacterial species from plaque samples were determined using checkerboard DNA-DNA hybridization. Ten biomarkers associated with inflammation, matrix degradation, and host protection were measured from GCF and saliva and analysed using a multiplex array. Participants were stratified as "high" or "low" responders based on gingival index and GCF biomarkers and bacterial biofilm were combined to generate receiver operating characteristic curves and predict gingivitis susceptibility. No differences in mean PI and GI values were observed between groups and non-significant trends of reduction of host response biomarkers with triclosan treatment. Triclosan significantly reduced levels of A. actinomycetemcomitans and P. gingivalis during induction of gingivitis. Triclosan reduced microbial levels during gingivitis development (ClinicalTrials.gov NCT01799226). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.-S. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Vojinovic, V. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Patino, R. [Cinvestav-Merida, Departamento de Fisica Aplicada, Km. 6 carretera antigua a Progreso, AP 73 Cordemex, 97310 Merida, Yucatan (Mexico); Maskow, Th. [UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, D-04318 Leipzig (Germany); Stockar, U. von [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland)]. E-mail: urs.vonStockar@epfl.ch

    2007-06-25

    Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol{sup -1} of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure.

  10. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields

    International Nuclear Information System (INIS)

    Liu, J.-S.; Vojinovic, V.; Patino, R.; Maskow, Th.; Stockar, U. von

    2007-01-01

    Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol -1 of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure

  11. Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate

    Science.gov (United States)

    Ren, Jingli; Yuan, Qigang

    2017-08-01

    A three dimensional microbial continuous culture model with a restrained microbial growth rate is studied in this paper. Two types of dilution rates are considered to investigate the dynamic behaviors of the model. For the unforced system, fold bifurcation and Hopf bifurcation are detected, and numerical simulations reveal that the system undergoes degenerate Hopf bifurcation. When the system is periodically forced, bifurcation diagrams for periodic solutions of period-one and period-two are given by researching the Poincaré map, corresponding to different bifurcation cases in the unforced system. Stable and unstable quasiperiodic solutions are obtained by Neimark-Sacker bifurcation with different parameter values. Periodic solutions of various periods can occur or disappear and even change their stability, when the Poincaré map of the forced system undergoes Neimark-Sacker bifurcation, flip bifurcation, and fold bifurcation. Chaotic attractors generated by a cascade of period doublings and some phase portraits are given at last.

  12. Effect of Nisin's Controlled Release on Microbial Growth as Modeled for Micrococcus luteus.

    Science.gov (United States)

    Balasubramanian, Aishwarya; Lee, Dong Sun; Chikindas, Michael L; Yam, Kit L

    2011-06-01

    The need for safe food products has motivated food scientists and industry to find novel technologies for antimicrobial delivery for improving food safety and quality. Controlled release packaging is a novel technology that uses the package to deliver antimicrobials in a controlled manner and sustain antimicrobial stress on the targeted microorganism over the required shelf life. This work studied the effect of controlled release of nisin to inhibit growth of Micrococcus luteus (a model microorganism) using a computerized syringe pump system to mimic the release of nisin from packaging films which was characterized by an initially fast rate and a slower rate as time progressed. The results show that controlled release of nisin was strikingly more effective than instantly added ("formulated") nisin. While instant addition experiments achieved microbial inhibition only at the beginning, controlled release experiments achieved complete microbial inhibition for a longer time, even when as little as 15% of the amount of nisin was used as compared to instant addition.

  13. Towards the understanding of microbial metabolism in relation to microbial enhanced oil recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Nielsen, Kristian Fog

    2017-01-01

    In this study, Bacillus licheniformis 421 was used as a model organism to understand the effects of microbial cell growth and metabolite production under anaerobic conditions in relation to microbial enhanced oil recovery. The bacterium was able to grow anaerobically on different carbon compounds...

  14. Atmospheric plasma processes for microbial inactivation: food applications and stress response in Listeria monocytogenes

    OpenAIRE

    Gozzi, Giorgia

    2015-01-01

    This PhD thesis is focused on cold atmospheric plasma treatments (GP) for microbial inactivation in food applications. In fact GP represents a promising emerging technology alternative to the traditional methods for the decontamination of foods. The objectives of this work were to evaluate: - the effects of GP treatments on microbial inactivation in model systems and in real foods; - the stress response in L. monocytogenes following exposure to different GP treatments. As far as t...

  15. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    Science.gov (United States)

    Coolen, Marco J. L.; Orsi, William D.

    2015-01-01

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw. PMID:25852660

  16. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    Directory of Open Access Journals (Sweden)

    M J L Coolen

    2015-03-01

    Full Text Available Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gases, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after eleven days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.

  17. Effect of different film packaging on microbial growth in minimally processed cactus pear (Opuntia ficus-indica).

    Science.gov (United States)

    Palma, A; Mangia, N P; Fadda, A; Barberis, A; Schirra, M; D'Aquino, S

    2013-01-01

    Microorganisms are natural contaminants of fresh produce and minimally processed products, and contamination arises from a number of sources, including the environment, postharvest handling and processing. Fresh-cut products are particularly susceptible to microbial contaminations because of the changes occurring in the tissues during processing. In package gas composition of modified atmosphere packaging (MAP) in combination with low storage temperatures besides reducing physiological activity of packaged produce, can also delay pathogen growth. Present study investigated on the effect of MAPs, achieved with different plastic films, on microbial growth of minimally processed cactus pear (Opuntio ficus-indica) fruit. Five different plastic materials were used for packaging the manually peeled fruit. That is: a) polypropylene film (Termoplast MY 40 micron thickness, O2 transmission rate 300 cc/m2/24h); b) polyethylene film (Bolphane BHE, 11 micron thickness, O2 transmission rate 19000 cc/m2/24h); c) polypropylene laser-perforated films (Mach Packaging) with 8, 16 or 32 100-micron holes. Total aerobic psychrophilic, mesophilic microorganisms, Enterobacteriaceae, yeast, mould populations and in-package CO2, O2 and C2H4 were determined at each storage time. Different final gas compositions, ranging from 7.8 KPa to 17.1 KPa O2, and 12.7 KPa to 2.6 KPa CO2, were achieved with MY and micro perforated films, respectively. Differences were detected in the mesophilic, Enterobacteriaceae and yeast loads, while no difference was detected in psychrophilic microorganisms. At the end of storage, microbial load in fruits sealed with MY film was significantly lower than in those sealed with BHE and micro perforated films. Furthermore, fruits packed with micro-perforated films showed the highest microbial load. This occurrence may in part be related to in-package gas composition and in part to a continuous contamination of microorganisms through micro-holes.

  18. Alignment of microbial fitness with engineered product formation: obligatory coupling between acetate production and photoautotrophic growth.

    Science.gov (United States)

    Du, Wei; Jongbloets, Joeri A; van Boxtel, Coco; Pineda Hernández, Hugo; Lips, David; Oliver, Brett G; Hellingwerf, Klaas J; Branco Dos Santos, Filipe

    2018-01-01

    Microbial bioengineering has the potential to become a key contributor to the future development of human society by providing sustainable, novel, and cost-effective production pipelines. However, the sustained productivity of genetically engineered strains is often a challenge, as spontaneous non-producing mutants tend to grow faster and take over the population. Novel strategies to prevent this issue of strain instability are urgently needed. In this study, we propose a novel strategy applicable to all microbial production systems for which a genome-scale metabolic model is available that aligns the production of native metabolites to the formation of biomass. Based on well-established constraint-based analysis techniques such as OptKnock and FVA, we developed an in silico pipeline-FRUITS-that specifically 'Finds Reactions Usable in Tapping Side-products'. It analyses a metabolic network to identify compounds produced in anabolism that are suitable to be coupled to growth by deletion of their re-utilization pathway(s), and computes their respective biomass and product formation rates. When applied to Synechocystis sp. PCC6803, a model cyanobacterium explored for sustainable bioproduction, a total of nine target metabolites were identified. We tested our approach for one of these compounds, acetate, which is used in a wide range of industrial applications. The model-guided engineered strain shows an obligatory coupling between acetate production and photoautotrophic growth as predicted. Furthermore, the stability of acetate productivity in this strain was confirmed by performing prolonged turbidostat cultivations. This work demonstrates a novel approach to stabilize the production of target compounds in cyanobacteria that culminated in the first report of a photoautotrophic growth-coupled cell factory. The method developed is generic and can easily be extended to any other modeled microbial production system.

  19. Parameter estimations in predictive microbiology: Statistically sound modelling of the microbial growth rate.

    Science.gov (United States)

    Akkermans, Simen; Logist, Filip; Van Impe, Jan F

    2018-04-01

    When building models to describe the effect of environmental conditions on the microbial growth rate, parameter estimations can be performed either with a one-step method, i.e., directly on the cell density measurements, or in a two-step method, i.e., via the estimated growth rates. The two-step method is often preferred due to its simplicity. The current research demonstrates that the two-step method is, however, only valid if the correct data transformation is applied and a strict experimental protocol is followed for all experiments. Based on a simulation study and a mathematical derivation, it was demonstrated that the logarithm of the growth rate should be used as a variance stabilizing transformation. Moreover, the one-step method leads to a more accurate estimation of the model parameters and a better approximation of the confidence intervals on the estimated parameters. Therefore, the one-step method is preferred and the two-step method should be avoided. Copyright © 2017. Published by Elsevier Ltd.

  20. Biomechanical ordering and buckling due to microbial growth confined at oil-water interfaces

    Science.gov (United States)

    Juarez, Gabriel; Stocker, Roman

    2015-11-01

    Bacteria are unicellular organisms that often exist as densely populated, surface-associated communities. Bacteria are also environmental colloids and spontaneously attach and self-assemble at liquid-liquid interfaces. Here, we present results on the growth dynamics of individual rod-shaped bacteria confined to finite oil-water interfaces of varying curvature. Through experiments using microfluidic chambers and time-lapse microscopy, we study the formation of macroscopic structures observed as adsorbed bacteria grow, divide, and self-assemble in a nematic phase due to biomechanical interactions. The continued growth at the interface leads to a jammed monolayer of cells, which then causes the interface to buckle and undergo large deformations including wrinkling and tubulation. These observations highlight the interplay between physical environment, such as confinement and interface curvature, and active biological processes, such as growth, at the scale of individual agents and shape our understanding of macroscale processes such as microbial degradation of oil in the ocean.

  1. Preventing microbial growth on pall-rings when upgrading biogas using absorption with water wash

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Anna

    2006-07-15

    For produced biogas to be usable as vehicle fuel it has to be upgraded to a higher energy content. This is accomplished by elevation of the methane concentration through removal of carbon dioxide. Absorption with water wash is the most common upgrading method used in Sweden today. The upgrading technique is based on the fact that carbon dioxide is more soluble in water than methane. Upgrading plants that utilises this method have problems with microbial growth in the system. This growth eventually leads to a stop in operation due to the gradually drop in upgrading capacity. The aim of this thesis were to evaluate the possibility to through some kind of water treatment maintain an acceptable level of growth or altogether prevent it in order to maintain an acceptable process capacity and thereby avoid the need to clean. Through collection of literature the implementation possibilities were evaluated with regard to efficiency, economic sustainability and if there would be a release of any harmful substances. In order to prevent the microbial growth in the columns the treatment should either focus on removing microorganisms or limit the accessible nutrients. For the single pass system it is concluded that the treatment should reduce the biofilm formation and be employed in an intermittent way. Among the evaluated treatments focusing on the reduction of microorganisms the addition of peracetic acid seems to be the most promising one. For the regenerating system the treatment method could focus on either one. As for the single pass system peracetic acid could be added to reduce the amount of microorganism. To reduce the amount of organic matter an advanced oxidation process could be deployed with the advantage that it also could remove the microorganisms.

  2. Response of microbial communities to experimental warming and precipitation decrease in Rzecin peatland (Poland)

    Science.gov (United States)

    Basińska, Anna M.; Gąbka, Maciej; Reczuga, Monika; Łuców, Dominika; Stróżecki, Marcin; Samson, Mateusz; Józefczyk, Damian; Chojnicki, Bogdan; Urbaniak, Marek; Leśny, Jacek; Olejnik, Janusz; Gilbert, Daniel; Silvennoinen, Hanna; Juszczak, Radosław; Lamentowicz, Mariusz

    2017-04-01

    In the last decade researchers are intensively testing the consequences of different climate change scenarios. Due to high biodiversity, huge amount of stored carbon and their sensitivity to environmental changes, peatlands became important for the temperature increase and drought experiments. Analyses showed that mosses, vascular plants and microbial communities were affected by warming or drought, but still not all effects are clear. Studying the response of microbial groups and indicators (e.g. mixotrophic species of testate amoeba) to warming in combination with decrease of precipitation will allow to better understand the future environmental changes. To recognize the inflow of organic matter and the carbon fixing processes in disturbed environment, we need to analyse the structure and biomass of main groups living in peatlands and the response of those groups to disturbances. The Polish - Norway "WETMAN" project was designed to recognize biotic and abiotic components of ecosystem response to active warming and decrease of precipitation. In this study we present the response of microbial communities and chosen testate amoeba species (TA) to different treatments: warming, warming and decreased precipitation and only decreased precipitation, in relation to control plots. The microbial biomass of upper and lower Sphagnum segments were analysed separately. Particular microbial groups were positively correlated with manipulations e. g. microalgae and rotifers, and other were negatively affected by combination of drought and warming e.g. cyanobacteria and testate amoeba. The structure of community was modified by manipulations, and differed in the case of upper and lower segment of Sphagnum. RDA analyses showed that different factors were crucial for the biomass of microbial groups in upper (conductivity, temperature and phosphorus) and lower (nitrates and sodium) segment. Considering higher taxonomic resolution we found that at the beginning of the experiment TA

  3. Microbial interactions: ecology in a molecular perspective.

    Science.gov (United States)

    Braga, Raíssa Mesquita; Dourado, Manuella Nóbrega; Araújo, Welington Luiz

    2016-12-01

    The microorganism-microorganism or microorganism-host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial-host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Predicting growth rates and growth boundary of Listeria monocytogenes - An international validation study with focus on processed and ready-to-eat meat and seafood

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Gunvig, A.; Borggaard, C.

    2010-01-01

    The performance of six predictive models for Listeria monocytogenes was evaluated using 1014 growth responses of the pathogen in meat, seafood, poultry and dairy products. The performance of the growth models was closely related to their complexity i.e. the number of environmental parameters they...... be accurate. The successfully validated models are useful for assessment and management of L monocytogenes in processed and ready-to-eat (RTE) foods....... to accurately predict growth responses of L. monocytogenes in the wide range of food evaluated in the present study. When complexity of L monocytogenes growth models matches the complexity of foods of interest. i.e. the number of hurdles to microbial growth, then predicted growth responses of the pathogen can...

  5. Threshold concentration of glucose for bacterial growth in soil

    NARCIS (Netherlands)

    Reischke, Stephanie; Kumar, Manoj G.K.; Baath, Erland

    The activity of heterotrophic soil microorganisms is usually limited by the availability and quality of carbon (C). Adding organic substances will thus trigger a microbial response. We studied the response in bacterial growth and respiration after the addition of low amounts of glucose. First we

  6. Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil

    DEFF Research Database (Denmark)

    Dennis, P. G.; Sparrow, A. D.; Gregorich, E. G.

    2013-01-01

    The soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon...... and nitrogen in glucose and ammonium chloride, respectively, on the soil microbial community in a field experiment lasting three years in the Garwood Valley. In the control treatment, the total ELFA concentration was small by comparison with temperate soils, but very large when expressed relative to the soil...... organic carbon concentration, indicating efficient conversion of soil organic carbon into microbial biomass and rapid turnover of soil organic carbon. The ELFA concentrations increased significantly in response to carbon additions, indicating that carbon supply was the main constraint to microbial...

  7. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie; Lantz, Anna Eliasson

    2015-06-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.

  8. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    Directory of Open Access Journals (Sweden)

    Kai Xue

    2016-09-01

    Full Text Available Clipping (i.e., harvesting aboveground plant biomass is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened.

  9. Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis

    Science.gov (United States)

    Xu, W.; Yuan, W.

    2017-12-01

    Soil microbes play important roles in regulating terrestrial carbon and nitrogen cycling and strongly influence feedbacks of ecosystem to global warming. However, the inconsistent responses of microbial biomass carbon (MBC) and nitrogen (MBN) to experimental warming have been observed, and the response on ratio between MBC and MBN (MBC:MBN) has not been identified. This meta-analysis synthesized the warming experiments at 58 sites globally to investigate the responses of MBC:MBN to climate warming. Our results showed that warming significantly increased MBC by 3.61 ± 0.80% and MBN by 5.85 ± 0.90% and thus decreased the MBC:MBN by 3.34 ± 0.66%. MBC showed positive responses to warming but MBN exhibited negative responses to warming at low warming magnitude (2°C) the results were inverted. The different effects of warming magnitude on microbial biomass resulted from the warming-induced decline in soil moisture and substrate supply. Moreover, MBC and MBN had strong positive responses to warming at the mid-term (3-4 years) or short-term (1-2 years) duration, but the responses tended to decrease at long-term (≥ 5 years) warming duration. This study fills the knowledge gap on the responses of MBC:MBN to warming and may benefit the development of coupled carbon and nitrogen models.

  10. Soil microbial community responses to acid exposure and neutralization treatment.

    Science.gov (United States)

    Shin, Doyun; Lee, Yunho; Park, Jeonghyun; Moon, Hee Sun; Hyun, Sung Pil

    2017-12-15

    Changes in microbial community induced by acid shock were studied in the context of potential release of acids to the environment due to chemical accidents. The responses of microbial communities in three different soils to the exposure to sulfuric or hydrofluoric acid and to the subsequent neutralization treatment were investigated as functions of acid concentration and exposure time by using 16S-rRNA gene based pyrosequencing and DGGE (Denaturing Gradient Gel Electrophoresis). Measurements of soil pH and dissolved ion concentrations revealed that the added acids were neutralized to different degrees, depending on the mineral composition and soil texture. Hydrofluoric acid was more effectively neutralized by the soils, compared with sulfuric acid at the same normality. Gram-negative ß-Proteobacteria were shown to be the most acid-sensitive bacterial strains, while spore-forming Gram-positive Bacilli were the most acid-tolerant. The results of this study suggest that the Gram-positive to Gram-negative bacterial ratio may serve as an effective bio-indicator in assessing the impact of the acid shock on the microbial community. Neutralization treatments helped recover the ratio closer to their original values. The findings of this study show that microbial community changes as well as geochemical changes such as pH and dissolved ion concentrations need to be considered in estimating the impact of an acid spill, in selecting an optimal remediation strategy, and in deciding when to end remedial actions at the acid spill impacted site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments.

    Science.gov (United States)

    Rousk, Kathrin; Michelsen, Anders; Rousk, Johannes

    2016-12-01

    Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed 'priming'. We investigated how warming (+1.1 °C over ambient using open top chambers) and litter addition (90 g m -2  yr -1 ) treatments in the subarctic influenced the susceptibility of SOM mineralization to priming, and its microbial underpinnings. Labile C appeared to inhibit the mineralization of C from SOM by up to 60% within hours. In contrast, the mineralization of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile C inhibited C mineralization is compatible with previously reported findings termed 'preferential substrate utilization' or 'negative apparent priming', while the stimulated N mineralization responses echo recent reports of 'real priming' of SOM mineralization. However, C and N mineralization responses derived from the same SOM source must be interpreted together: This suggested that the microbial SOM-use decreased in magnitude and shifted to components richer in N. This finding highlights that only considering SOM in terms of C may be simplistic, and will not capture all changes in SOM decomposition. The selective mining for N increased in climate change treatments with higher fungal dominance. In conclusion, labile C appeared to trigger catabolic responses of the resident microbial community that shifted the SOM mining to N-rich components; an effect that increased with higher fungal dominance. Extrapolating from these findings, the predicted shrub expansion in the subarctic could result in an altered microbial use of SOM, selectively mining it for N-rich components, and leading to a reduced total SOM-use. © 2016 John Wiley

  12. Microbial ecology of phototrophic biofilms

    NARCIS (Netherlands)

    Roeselers, G.

    2007-01-01

    Biofilms are layered structures of microbial cells and an extracellular matrix of polymeric substances, associated with surfaces and interfaces. Biofilms trap nutrients for growth of the enclosed microbial community and help prevent detachment of cells from surfaces in flowing systems. Phototrophic

  13. Microbial growth in Acrocomia aculeata pulp oil, Jatropha curcas oil, and their respective biodiesels under simulated storage conditions

    Directory of Open Access Journals (Sweden)

    Juciana Clarice Cazarolli

    2016-12-01

    Full Text Available With increasing demands for biodiesel in Brazil, diverse oil feedstocks have been investigated for their potentials for biodiesel production. Due to the high biodegradability of natural oils and their respective biodiesels, microbial growths and consequent deterioration of final product quality are generally observed during storage. This study was aimed at evaluating the susceptibility of Acrocomia aculeata pulp oil and Jatropha curcas oil as well as their respective biodiesels to biodeterioration during a simulated storage period. The experiment was conducted in microcosms containing oil/biodiesel and an aqueous phase over 30 d. The levels of microbial contamination included biodiesel and oil as received, inoculated with fungi, and sterile. Samples were collected every 7 d to measure pH, surface tension, acidity index, and microbial biomass. The initial and final ester contents of the biodiesels were also determined by gas chromatography. The major microbial biomass was detected in A. aculeata pulp and J. curcas biodiesels. Significant reductions in pH values were observed for treatments with A. aculeata pulp biodiesel as a carbon source (p

  14. Do the ban on use of anti-microbial growth promoter impact on technical change and the efficiency of slaughter-pig production

    DEFF Research Database (Denmark)

    Lawson, Lartey; Otto, Lars; Jensen, Peter Vig

    2005-01-01

    infections, and in effect stimu-lated the utilization of feedstuff and reduced the mortality rate. However, fears for increas-ing bacteria resistance with subsequent health hazards for humans and livestock has lead to societal debates about the pros and cons of its use in livestock production. Antibiotic......This study aims at investigating the effects of the ban on the use of anti-microbial growth promoters in the production of “Finishing Pigs” for slaughter. We investigate if the ban on the use of anti-microbial growth promoters has for specialised pig-producers altered the productivity of inputs......, technical change and the efficiency of production. This paper complements an earlier paper that investigated the impact of the ban on weaned-pig produc-tion. Background: The study is motivated by the fact that antimicrobial growth promoters have been known world wide to protect livestock from bacteria...

  15. Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ming Woei

    2015-12-08

    A method for producing a microbial growth stimulant (MGS) from a plant biomass is described. In one embodiment, an ammonium hydroxide solution is used to extract a solution of proteins and ammonia from the biomass. Some of the proteins and ammonia are separated from the extracted solution to provide the MGS solution. The removed ammonia can be recycled and the proteins are useful as animal feeds. In one embodiment, the method comprises extracting solubles from pretreated lignocellulosic biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence of water and an aqueous extract.

  16. Microbial Community Structure of Casing Soil During Mushroom Growth

    Institute of Scientific and Technical Information of China (English)

    CAI Wei-Ming; YAO Huai-Ying; FENG Wei-Lin; JIN Qun-Li; LIU Yue-Yan; LI Nan-Yi; ZHENG Zhong

    2009-01-01

    The culturable bacterial population and phospholipid fatty acid (PLFA)profile of casing soil were investigated at different mushroom (Agaricus bisporusI cropping stages.The change in soil bacterial PLFAs was always accompanied by a change in the soil culturable bacterial population in the first flush.Comparatively higher culturable bacterial population and bacterial PLFAs were found in the casing soil at the primordia formation stage of the first flush.There was a significant increase in the ratio of fungal to bacterial PLFAs during mushroom growth.Multivariate analysis of PLFA data demonstrated that the mushroom cropping stage could considerably affect the microbial community structure of the casing soil.The bacterial population increased significantly from casing soil application to the primordia formation stage of the first flush.Casing soil application resulted in an increase in the ratio of gram-negative bacterial PLFAs to gram-positive bacterial PLFAs,suggesting that some gram-negative bacteria might play an important role in mushroom sporophore initiation.

  17. Spring thaw ionic pulses boost nutrient availability and microbial growth in entombed Antarctic Dry Valley cryoconite holes.

    Science.gov (United States)

    Telling, Jon; Anesio, Alexandre M; Tranter, Martyn; Fountain, Andrew G; Nylen, Thomas; Hawkings, Jon; Singh, Virendra B; Kaur, Preeti; Musilova, Michaela; Wadham, Jemma L

    2014-01-01

    The seasonal melting of ice entombed cryoconite holes on McMurdo Dry Valley glaciers provides oases for life in the harsh environmental conditions of the polar desert where surface air temperatures only occasionally exceed 0°C during the Austral summer. Here we follow temporal changes in cryoconite hole biogeochemistry on Canada Glacier from fully frozen conditions through the initial stages of spring thaw toward fully melted holes. The cryoconite holes had a mean isolation age from the glacial drainage system of 3.4 years, with an increasing mass of aqueous nutrients (dissolved organic carbon, total nitrogen, total phosphorus) with longer isolation age. During the initial melt there was a mean nine times enrichment in dissolved chloride relative to mean concentrations of the initial frozen holes indicative of an ionic pulse, with similar mean nine times enrichments in nitrite, ammonium, and dissolved organic matter. Nitrate was enriched twelve times and dissolved organic nitrogen six times, suggesting net nitrification, while lower enrichments for dissolved organic phosphorus and phosphate were consistent with net microbial phosphorus uptake. Rates of bacterial production were significantly elevated during the ionic pulse, likely due to the increased nutrient availability. There was no concomitant increase in photosynthesis rates, with a net depletion of dissolved inorganic carbon suggesting inorganic carbon limitation. Potential nitrogen fixation was detected in fully melted holes where it could be an important source of nitrogen to support microbial growth, but not during the ionic pulse where nitrogen availability was higher. This study demonstrates that ionic pulses significantly alter the timing and magnitude of microbial activity within entombed cryoconite holes, and adds credence to hypotheses that ionic enrichments during freeze-thaw can elevate rates of microbial growth and activity in other icy habitats, such as ice veins and subglacial regelation zones.

  18. Spring thaw ionic pulses boost nutrient availability and microbial growth in entombed Antarctic Dry Valley cryoconite holes

    Directory of Open Access Journals (Sweden)

    Jon eTelling

    2014-12-01

    Full Text Available The seasonal melting of ice entombed cryoconite holes on McMurdo Dry Valley glaciers provides oases for life in the harsh environmental conditions of the polar desert where surface air temperatures only occasionally exceed 0°C during the Austral summer. Here we follow temporal changes in cryoconite hole biogeochemistry on Canada Glacier from fully frozen conditions through the initial stages of spring thaw towards fully melted holes. The cryoconite holes had a mean isolation age from the glacial drainage system of 3.4 years, with an increasing mass of aqueous nutrients (dissolved organic carbon, total nitrogen, total phosphorus with longer isolation age. During the initial melt there was a mean nine times enrichment in dissolved chloride relative to mean concentrations of the initial frozen holes indicative of an ionic pulse, with similar mean nine times enrichments in nitrite, ammonium, and dissolved organic matter. Nitrate was enriched twelve times and dissolved organic nitrogen six times, suggesting net nitrification, while lower enrichments for dissolved organic phosphorus and phosphate were consistent with net microbial phosphorus uptake. Rates of bacterial production were significantly elevated during the ionic pulse, likely due to the increased nutrient availability. There was no concomitant increase in photosynthesis rates, with a net depletion of dissolved inorganic carbon suggesting inorganic carbon limitation. Potential nitrogen fixation was detected in fully melted holes where it could be an important source of nitrogen to support microbial growth, but not during the ionic pulse where nitrogen availability was higher. This study demonstrates that ionic pulses significantly alter the timing and magnitude of microbial activity within entombed cryoconite holes, and adds credence to hypotheses that ionic enrichments during freeze-thaw can elevate rates of microbial growth and activity in other icy habitats, such as ice veins and

  19. Microbial changes and growth of Listeria monocytogenes during chilled storage of brined shrimp ( Pandalus borealis )

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Kjeldgaard, J.; Modberg, A.

    2008-01-01

    Thirteen storage trials and ten challenge tests were carried out to examine microbial changes, spoilage and the potential growth of Listeria monocytogenes in brined shrimp (Pandalus borealis). Shrimp in brine as well as brined and drained shrimp in modified atmosphere packaging (MAP) were produced...... and lactic acids were studied. Furthermore, the effect of adding diacetate to brined shrimp was evaluated. A single batch of cooked and peeled shrimp was used to study both industrially and manually processed brined shrimp with respect to the effect of process hygiene on microbial changes and the shelf life...... of products. Concentrations of microorganisms on newly produced brined shrimp from an industrial scale processing line were 1.0-2.3 log (CFU g(-1)) higher than comparable concentrations in manually processed samples. This resulted in a substantially shorter shelf life and a more diverse spoilage microflora...

  20. Effects of degradable protein and non-fibre carbohydrates on microbial growth and fermentation in the rumen simulating fermenter (Rusitec

    Directory of Open Access Journals (Sweden)

    Xiang H. Zhao

    2015-05-01

    Full Text Available A rumen simulation technique (Rusitec apparatus with eight 800 ml fermentation vessels was used to investigate the effects of rumen degradable protein (RDP level and non-fibre carbohydrate (NFC type on ruminal fermentation, microbial growth, and populations of ruminal cellulolytic bacteria. Treatments consisted of two NFC types (starch and pectin supplemented with 0 g/d (low RDP or 1.56 g/d (high RDP sodium caseinate. Apparent disappearance of dry matter and organic matter was greater for pectin than for starch treatment (P<0.01 with low or high RDP. A NFC × RDP interaction was observed for neutral detergent fibre disappearance (P=0.01, which was lower for pectin than for starch only under low RDP conditions. Compared with starch, pectin treatment increased the copy numbers of Ruminococcus albus (P≤0.01 and Ruminococcus flavefaciens (P≤0.09, the molar proportion of acetate (P<0.01, the acetate:propionate ratio (P<0.01, and methane production (P<0.01, but reduced the propionate proportion (P<0.01. Increasing dietary RDP increased the production of total VFA (P=0.01, methane (P<0.01, ammonia N (P<0.01, and microbial N (P<0.01. Significant NFC × RDP interaction and interaction tendency were observed for ammonia N production (P=0.01 and daily N flow of total microorganisms (P=0.07, which did not differ under low RDP conditions, but pectin produced greater microbial N and less ammonia N than starch with increased RDP. Results showed NFC type, RDP level, and their interaction affected ruminal fermentation and microbial growth, and under sufficient ruminal degradable N pectin had greater advantage in microbial N synthesis than starch in vitro.

  1. Microbial Community Structure of a Leachfield Soil: Response to Intermittent Aeration and Tetracycline Addition

    Directory of Open Access Journals (Sweden)

    David A. Potts

    2013-04-01

    Full Text Available Soil-based wastewater treatment systems, or leachfields, rely on microbial processes for improving the quality of wastewater before it reaches the groundwater. These processes are affected by physicochemical system properties, such as O2 availability, and disturbances, such as the presence of antimicrobial compounds in wastewater. We examined the microbial community structure of leachfield mesocosms containing native soil and receiving domestic wastewater under intermittently-aerated (AIR and unaerated (LEACH conditions before and after dosing with tetracycline (TET. Community structure was assessed using phospholipid fatty acid analysis (PLFA, analysis of dominant phylotypes using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR–DGGE, and cloning and sequencing of 16S rRNA genes. Prior to dosing, the same PLFA biomarkers were found in soil from AIR and LEACH treatments, although AIR soil had a larger active microbial population and higher concentrations for nine of 32 PLFA markers found. AIR soil also had a larger number of dominant phylotypes, most of them unique to this treatment. Dosing of mesocosms with TET had a more marked effect on AIR than LEACH soil, reducing the size of the microbial population and the number and concentration of PLFA markers. Dominant phylotypes decreased by ~15% in response to TET in both treatments, although the AIR treatment retained a higher number of phylotypes than the LEACH treatment. Fewer than 10% of clones were common to both OPEN ACCESS Water 2013, 5 506 AIR and LEACH soil, and fewer than 25% of the clones from either treatment were homologous with isolates of known genus and species. These included human pathogens, as well as bacteria involved in biogeochemical transformations of C, N, S and metals, and biodegradation of various organic contaminants. Our results show that intermittent aeration has a marked effect on the size and structure of the microbial community that develops in

  2. Different Mechanisms of Soil Microbial Response to Global Change Result in Different Outcomes in the MIMICS-CN Model

    Science.gov (United States)

    Kyker-Snowman, E.; Wieder, W. R.; Grandy, S.

    2017-12-01

    Microbial-explicit models of soil carbon (C) and nitrogen (N) cycling have improved upon simulations of C and N stocks and flows at site-to-global scales relative to traditional first-order linear models. However, the response of microbial-explicit soil models to global change factors depends upon which parameters and processes in a model are altered by those factors. We used the MIcrobial-MIneral Carbon Stabilization Model with coupled N cycling (MIMICS-CN) to compare modeled responses to changes in temperature and plant inputs at two previously-modeled sites (Harvard Forest and Kellogg Biological Station). We spun the model up to equilibrium, applied each perturbation, and evaluated 15 years of post-perturbation C and N pools and fluxes. To model the effect of increasing temperatures, we independently examined the impact of decreasing microbial C use efficiency (CUE), increasing the rate of microbial turnover, and increasing Michaelis-Menten kinetic rates of litter decomposition, plus several combinations of the three. For plant inputs, we ran simulations with stepwise increases in metabolic litter, structural litter, whole litter (structural and metabolic), or labile soil C. The cumulative change in soil C or N varied in both sign and magnitude across simulations. For example, increasing kinetic rates of litter decomposition resulted in net releases of both C and N from soil pools, while decreasing CUE produced short-term increases in respiration but long-term accumulation of C in litter pools and shifts in soil C:N as microbial demand for C increased and biomass declined. Given that soil N cycling constrains the response of plant productivity to global change and that soils generate a large amount of uncertainty in current earth system models, microbial-explicit models are a critical opportunity to advance the modeled representation of soils. However, microbial-explicit models must be improved by experiments to isolate the physiological and stoichiometric

  3. Effect of dry mycelium of Penicillium chrysogenum fertilizer on soil microbial community composition, enzyme activities and snap bean growth.

    Science.gov (United States)

    Wang, Bing; Liu, Huiling; Cai, Chen; Thabit, Mohamed; Wang, Pu; Li, Guomin; Duan, Ziheng

    2016-10-01

    The dry mycelium fertilizer (DMF) was produced from penicillin fermentation fungi mycelium (PFFM) following an acid-heating pretreatment to degrade the residual penicillin. In this study, it was applied into soil as fertilizer to investigate its effects on soil properties, phytotoxicity, microbial community composition, enzyme activities, and growth of snap bean in greenhouse. As the results show, pH, total nitrogen, total phosphorus, total potassium, and organic matter of soil with DMF treatments were generally higher than CON treatment. In addition, the applied DMF did not cause heavy metal and residual drug pollution of the modified soil. The lowest GI values (<0.3) were recorded at DMF8 (36 kg DMF/plat) on the first days after applying the fertilizer, indicating that severe phytotoxicity appeared in the DMF8-modified soil. Results of microbial population and enzyme activities illustrated that DMF was rapidly decomposed and the decomposition process significantly affected microbial growth and enzyme activities. The DMF-modified soil phytotoxicity decreased at the late fertilization time. DMF1 was considered as the optimum amount of DMF dose based on principal component analysis scores. Plant height and plant yield of snap bean were remarkably enhanced with the optimum DMF dose.

  4. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    Science.gov (United States)

    Jahnke, Linda L.; Embaye, Tsege; Turk, Kendra A.

    2003-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments where microorganisms had virtually no competition apart from the harsh conditions of hypersalinity, desiccation and intense light. Today, the modern counterparts of these microbial ecosystems find appropriate niches in only a few places where extremes eliminate eukaryotic grazers. Answers to many outstanding questions about the evolution of microorganisms and their environments on early Earth are best answered through study of these extant analogs. Lipids associated with various groups of bacteria can be valuable biomarkers for identification of specific groups of microorganisms both in ancient organic-rich sedimentary rocks (geolipids) and contemporary microbial communities (membrane lipids). Use of compound specific isotope analysis adds additional refinement to the identification of biomarker source, so that it is possible to take advantage of the 3C-depletions associated with various functional groups of organisms (i.e. autotrophs, heterotrophs, methanotrophs, methanogens) responsible for the cycling of carbon within a microbial community. Our recent work has focused on a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico which support the abundant growth of Microcoleus-dominated microbial mats. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface.

  5. Proceedings of the 8. International Symposium on Microbial Ecology : microbial biosystems : new frontiers

    International Nuclear Information System (INIS)

    Bell, C.R.; Brylinsky, M.; Johnson-Green, P.

    2000-01-01

    A wide range of disciplines were presented at this conference which reflected the importance of microbial ecology and provided an understanding of the factors that determine the growth and activities of microorganisms. The conference attracted 1444 delegates from 54 countries. The research emerging from the rapidly expanding frontier of microbial ecosystems was presented in 62 oral presentation and 817 poster presentations. The two volumes of these proceedings presented a total of 27 areas in microbial ecology, some of which included terrestrial biosystems, aquatic, estuarine, surface and subsurface microbial ecology. Other topics included bioremediation, microbial ecology in industry and microbial ecology of oil fields. Some of the papers highlighted the research that is underway to determine the feasibility of using microorganisms for enhanced oil recovery (EOR). Research has shown that microbial EOR can increase production at lower costs than conventional oil recovery. The use of bacteria has also proven to be a feasible treatment method in the biodegradation of hydrocarbons associated with oil spills. refs., tabs., figs

  6. Response of the soil microbial community to imazethapyr application in a soybean field.

    Science.gov (United States)

    Xu, Jun; Guo, Liqun; Dong, Fengshou; Liu, Xingang; Wu, Xiaohu; Sheng, Yu; Zhang, Ying; Zheng, Yongquan

    2013-01-01

    The objective of this study was to determine the effects of imazethapyr on soil microbial communities combined with its effect on soybean growth. A short-term field experiment was conducted, and imazethapyr was applied to the soil at three different doses [1-fold, 10-fold, and 50-fold of the recommended field rate (H1, H10, H50)] during the soybean seedling period (with two leaves). Soil sampling was performed after 1, 7, 30, 60, 90, and 120 days of application to determine the imazethapyr concentration and microbial community structure by investigating phospholipid fatty acids (PLFA) and microbial biomass carbon (MBC). The half-lives of the imazethapyr in the field soil varied from 30.1 to 43.3 days. Imazethapyr at H1 was innocuous to soybean plants, but imazethapyr at H10 and H50 led to a significant inhibition in soybean plant height and leaf number. The soil MBC, total PLFA, and bacterial PLFA were decreased by the application of imazethapyr during the initial period and could recover by the end of the experiment. The ratio of Gram-negative/Gram-positive (GN/GP) bacteria during the three treatments went through increases and decreases, and then recovered at the end of the experiment. The fungal PLFA of all three treatments increased during the initial period and then declined, and only the fungal PLFA at H50 recovered by the end of the treatment. A principal component analysis (PCA) of the PLFA clearly separated the treatments and sampling times, and the results demonstrate that imazethapyr alters the microbial community structure. This is the first systemic study reporting the effects of imazethapyr on the soil microbial community structure under soybean field conditions.

  7. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations.

    Science.gov (United States)

    Xie, Sitan; Lipp, Julius S; Wegener, Gunter; Ferdelman, Timothy G; Hinrichs, Kai-Uwe

    2013-04-09

    Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([(14)C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6-73 ky in sediments deeper than 1 m, 50-96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg⋅mL(-1) sediment⋅y(-1) at the surface to 0.2 pg⋅mL(-1)⋅y(-1) at 1 km depth, equivalent to production of 7 × 10(5) to 140 archaeal cells⋅mL(-1) sediment⋅y(-1), respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle.

  8. Taxonomic and functional diversity provides insight into microbial pathways and stress responses in the saline Qinghai Lake, China.

    Directory of Open Access Journals (Sweden)

    Qiuyuan Huang

    Full Text Available Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m saline (1.4% lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E. Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change.

  9. The response of CD1d-restricted invariant NKT cells to microbial pathogens and their products

    Directory of Open Access Journals (Sweden)

    Luc eVan Kaer

    2015-05-01

    Full Text Available Invariant natural killer T (iNKT cells become activated during a wide variety of infections. This includes organisms lacking cognate CD1d-binding glycolipid antigens recognized by the semi-invariant T cell receptor of iNKT cells. Additional studies have shown that iNKT cells also become activated in vivo in response to microbial products such as bacterial lipopolysaccharide, a potent inducer of cytokine production in antigen-presenting cells (APCs. Other studies have shown that iNKT cells are highly responsive to stimulation by cytokines such as interleukin-12. These findings have led to the concept that microbial pathogens can activate iNKT cells either directly via glycolipids, or indirectly by inducing cytokine production in APCs. iNKT cells activated in this manner produce multiple cytokines that can influence the outcome of infection, usually in favor of the host, although potent iNKT cell activation may contribute to an uncontrolled cytokine storm and sepsis. One aspect of the response of iNKT cells to microbial pathogens is that it is short-lived and followed by an extended time period of unresponsiveness to reactivation. This refractory period may represent a means to avoid chronic activation and cytokine production by iNKT cells, thus protecting the host against some of the negative effects of iNKT cell activation, but potentially putting the host at risk for secondary infections. These effects of microbial pathogens and their products on iNKT cells are not only important for understanding the role of these cells in immune responses against infections but also for the development of iNKT cell-based therapies.

  10. Differences in microbial communities and performance between suspended and attached growth anaerobic membrane bioreactors treating synthetic municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2015-08-14

    Two lab-scale anaerobic membrane bioreactors (AnMBRs), one up-flow attached-growth (UA) and another continuously stirred (CSTR), were operated under mesophilic conditions (35 °C) while treating synthetic municipal wastewater (800 mg L−1 COD). Each reactor was attached to both polyvinylidene fluoride (PVDF) and polyethersulfone (PES) microfiltration (MF) membranes in an external cross-flow configuration. Both reactors were started up and run under the same operating conditions for multiple steady-state experiments. Chemical oxygen demand (COD) removal rates were similar for both reactors (90–96%), but captured methane was found to be 11–18% higher for the CSTR than the UA reactor. Ion Torrent sequencing targeting 16S rRNA genes showed that several operational taxonomic units (OTUs) most closely related to fermentative bacteria (e.g., Microbacter margulisiae) were dominant in the suspended biomass of the CSTR, accounting for 30% of the microbial community. Conversely, methanogenic archaea (e.g., Methanosaeta) and syntrophic bacteria (e.g., Smithella propionica) were found in significantly higher relative abundances in the UA AnMBR as compared to the CSTR due to their affinity for surface attachment. Of the methanogens that were present in the CSTR sludge, hydrogenotrophic methanogens dominated (e.g., Methanobacterium). Measured EPS (both proteins and carbohydrates), which has been broadly linked to fouling, was determined to be consistently lower in the UA AnMBR membrane samples than in CSTR AnMBR membrane samples. Principal component analysis (PCA) based on HPLC profiles of soluble microbial products (SMPs) further demonstrated these differences between reactor types in replicate runs. The results of this study showed that reactor configuration can significantly impact the development of the microbial communities of AnMBRs that are responsible for both membrane and reactor performance.

  11. Linking genes to microbial growth kinetics: an integrated biochemical systems engineering approach.

    Science.gov (United States)

    Koutinas, Michalis; Kiparissides, Alexandros; Silva-Rocha, Rafael; Lam, Ming-Chi; Martins Dos Santos, Vitor A P; de Lorenzo, Victor; Pistikopoulos, Efstratios N; Mantalaris, Athanasios

    2011-07-01

    The majority of models describing the kinetic properties of a microorganism for a given substrate are unstructured and empirical. They are formulated in this manner so that the complex mechanism of cell growth is simplified. Herein, a novel approach for modelling microbial growth kinetics is proposed, linking biomass growth and substrate consumption rates to the gene regulatory programmes that control these processes. A dynamic model of the TOL (pWW0) plasmid of Pseudomonas putida mt-2 has been developed, describing the molecular interactions that lead to the transcription of the upper and meta operons, known to produce the enzymes for the oxidative catabolism of m-xylene. The genetic circuit model was combined with a growth kinetic model decoupling biomass growth and substrate consumption rates, which are expressed as independent functions of the rate-limiting enzymes produced by the operons. Estimation of model parameters and validation of the model's predictive capability were successfully performed in batch cultures of mt-2 fed with different concentrations of m-xylene, as confirmed by relative mRNA concentration measurements of the promoters encoded in TOL. The growth formation and substrate utilisation patterns could not be accurately described by traditional Monod-type models for a wide range of conditions, demonstrating the critical importance of gene regulation for the development of advanced models closely predicting complex bioprocesses. In contrast, the proposed strategy, which utilises quantitative information pertaining to upstream molecular events that control the production of rate-limiting enzymes, predicts the catabolism of a substrate and biomass formation and could be of central importance for the design of optimal bioprocesses. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Growth rates of rhizosphere microorganisms depend on competitive abilities of plants for nitrogen

    Science.gov (United States)

    Blagodatskaya, Evgenia; Littschwager, Johanna; Lauerer, Marianna; Kuzyakov, Yakov

    2010-05-01

    did not differ significantly between both plants. This resulted in similar microbial growth rates for intra- and interspecific plant competition. Since high N level smoothed the differences between plant species in root and microbial biomass as well as in microbial growth rates, we conclude that competitive abilities of plant species were responsible for microbial growth in rhizosphere only under N imitation. As it is common that fine root proliferation and root exudation decrease at high N level, N addition smoothed the differences in microbial growth independently on plant competitive abilities.

  13. Direct fed microbial supplementation repartitions host energy to the immune system.

    Science.gov (United States)

    Qiu, R; Croom, J; Ali, R A; Ballou, A L; Smith, C D; Ashwell, C M; Hassan, H M; Chiang, C-C; Koci, M D

    2012-08-01

    Direct fed microbials and probiotics are used to promote health in livestock and poultry; however, their mechanism of action is still poorly understood. We previously reported that direct fed microbial supplementation in young broilers reduced ileal respiration without changing whole-body energy expenditure. The current studies were conducted to further investigate the effects of a direct fed microbial on energy metabolism in different tissues of broilers. One hundred ninety-two 1-d-old broiler chicks (16 chicks/pen) were randomly assigned to 2 dietary groups: standard control starter diet (CSD) and CSD plus direct fed microbial (DFMD; 0.3%) with 6 pens/treatment. Body weight, feed consumption, whole-body energy expenditure, organ mass, tissue respiration rates, and peripheral blood mononuclear cell (PBMC) ATP concentrations were measured to estimate changes in energy metabolism. No differences in whole body energy expenditure or BW gain were observed; however, decreased ileal O(2) respiration (P energy consumption by PBMC corresponded with an altered immune response, broilers were immunized with sheep red blood cells (SRBC) and assayed for differences in their humoral response. The DFMD-fed broilers had a faster rate of antigen specific IgG production (P direct fed microbial used in this study resulted in energy re-partitioning to the immune system and an increase in antibody production independent of changes in whole body metabolism or growth performance.

  14. Microbial biofilm growth on irradiated, spent nuclear fuel cladding

    International Nuclear Information System (INIS)

    Bruhn, D.F.; Frank, S.M.; Roberto, F.F.; Pinhero, P.J.; Johnson, S.G.

    2009-01-01

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 x 10 3 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments

  15. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes

    OpenAIRE

    Wang, Cheng; Dong, Da; Strong, P. J.; Zhu, Weijing; Ma, Zhuang; Qin, Yong; Wu, Weixiang

    2017-01-01

    Background Animal manure is a reservoir of antibiotic resistance genes (ARGs) that pose a potential health risk globally, especially for resistance to the antibiotics commonly used in livestock production (such as tetracycline, sulfonamide, and fluoroquinolone). Currently, the effects of biological treatment (composting) on the transcriptional response of manure ARGs and their microbial hosts are not well characterized. Composting is a dynamic process that consists of four distinct phases tha...

  16. Extracellular matrix organization modulates fibroblast growth and growth factor responsiveness.

    Science.gov (United States)

    Nakagawa, S; Pawelek, P; Grinnell, F

    1989-06-01

    To learn more about the relationship between extracellular matrix organization, cell shape, and cell growth control, we studied DNA synthesis by fibroblasts in collagen gels that were either attached to culture dishes or floating in culture medium during gel contraction. After 4 days of contraction, the collagen density (initially 1.5 mg/ml) reached 22 mg/ml in attached gels and 55 mg/ml in floating gels. After contraction, attached collagen gels were well organized; collagen fibrils were aligned in the plane of cell spreading; and fibroblasts had an elongated, bipolar morphology. Floating collagen gels, however, were unorganized; collagen fibrils were arranged randomly; and fibroblasts had a stellate morphology. DNA synthesis by fibroblasts in contracted collagen gels was suppressed if the gels were floating in medium but not if the gels were attached, and inhibition was independent of the extent of gel contraction. Therefore, growth of fibroblasts in contracted collagen gels could be regulated by differences in extracellular matrix organization and cell shape independently of extracellular matrix density. We also compared the responses of fibroblasts in contracted collagen gels and monolayer culture to peptide growth factors including fibroblast growth factor, platelet-derived growth factor, transforming growth factor-beta, and interleukin 1. Cells in floating collagen gels were generally unresponsive to any of the growth factors. Cells in attached collagen gels and monolayer culture were affected similarly by fibroblast growth factor but not by the others. Our results indicate that extracellular matrix organization influenced not only cell growth, but also fibroblast responsiveness to peptide growth factors.

  17. Metagenomic insights into evolution of heavy metal-contaminated groundwater microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, C.L.; Deng, Y.; Gentry, T.J.; Fields, M.W.; Wu, L.; Barua, S.; Barry, K.; Green-Tringe, S.; Watson, D.B.; He, Z.; Hazen, T.C.; Tiedje, J.M.; Rubin, E.M.; Zhou, J.

    2010-07-01

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents ({approx}50 years) has resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying {gamma}- and {beta}-proteobacterial populations. The resulting community is overabundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could have a key function in rapid response and adaptation to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.

  18. Response of microbial activities and diversity to PAHs contamination at coal tar contaminated land

    Science.gov (United States)

    Zhao, Xiaohui; Sun, Yujiao; Ding, Aizhong; Zhang, Dan; Zhang, Dayi

    2015-04-01

    Coal tar is one of the most hazardous and concerned organic pollutants and the main hazards are polycyclic aromatic hydrocarbons (PAHs). The indigenous microorganisms in soils are capable to degrade PAHs, with essential roles in biochemical process for PAHs natural attenuation. This study investigated 48 soil samples (from 8 depths of 6 boreholes) in Beijing coking and chemistry plant (China) and revealed the correlation between PAHs contamination, soil enzyme activities and microbial community structure, by 16S rRNA denaturing gradient gel electrophoresis (DGGE). At the site, the key contaminants were identified as naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene, and the total PAHs concentration ranged from 0.1 to 923.9 mg/kg dry soil. The total PAHs contamination level was positively correlated (pcatalase activities (0.554-6.230 mL 0.02 M KMnO4/g•h) and dehydrogenase activities (1.9-30.4 TF μg/g•h soil), showing the significant response of microbial population and degrading functions to the organic contamination in soils. The PAHs contamination stimulated the PAHs degrading microbes and promoted their biochemical roles in situ. The positive relationship between bacteria count and dehydrogenase activities (p<0.05) suggested the dominancy of PAHs degrading bacteria in the microbial community. More interestingly, the microbial community deterioration was uncovered via the decline of microbial biodiversity (richness from 16S rRNA DGGE) against total PAHs concentration (p<0.05). Our research described the spatial profiles of PAHs contamination and soil microbial functions at the PAHs heavily contaminated sites, offering deeper understanding on the roles of indigenous microbial community in natural attenuation process.

  19. Divergent taxonomic and functional responses of microbial communities to field simulation of aeolian soil erosion and deposition.

    Science.gov (United States)

    Ma, Xingyu; Zhao, Cancan; Gao, Ying; Liu, Bin; Wang, Tengxu; Yuan, Tong; Hale, Lauren; Nostrand, Joy D Van; Wan, Shiqiang; Zhou, Jizhong; Yang, Yunfeng

    2017-08-01

    Aeolian soil erosion and deposition have worldwide impacts on agriculture, air quality and public health. However, ecosystem responses to soil erosion and deposition remain largely unclear in regard to microorganisms, which are the crucial drivers of biogeochemical cycles. Using integrated metagenomics technologies, we analysed microbial communities subjected to simulated soil erosion and deposition in a semiarid grassland of Inner Mongolia, China. As expected, soil total organic carbon and plant coverage were decreased by soil erosion, and soil dissolved organic carbon (DOC) was increased by soil deposition, demonstrating that field simulation was reliable. Soil microbial communities were altered (p soil erosion and deposition, with dramatic increase in Cyanobacteria related to increased stability in soil aggregates. amyA genes encoding α-amylases were specifically increased (p = .01) by soil deposition and positively correlated (p = .02) to DOC, which likely explained changes in DOC. Surprisingly, most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or unaltered by both erosion and deposition, probably arising from acceleration of organic matter mineralization. These divergent responses support the necessity to include microbial components in evaluating ecological consequences. Furthermore, Mantel tests showed strong, significant correlations between soil nutrients and functional structure but not taxonomic structure, demonstrating close relevance of microbial function traits to nutrient cycling. © 2017 John Wiley & Sons Ltd.

  20. Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: results of a 5-year continuous enrichment

    Science.gov (United States)

    Keller Suberkropp; Vladislav Gulis; Amy D. Rosemond; Jonathan Benstead

    2010-01-01

    Our study examined the response of leaf detritus–associated microorganisms (both bacteria and fungi) to a 5-yr continuous nutrient enrichment of a forested headwater stream. Leaf litter dominates detritus inputs to such streams and, on a system wide scale, serves as the key substrate for microbial colonization. We determined physiological responses as microbial biomass...

  1. Influence of mechanical disintegration on the microbial growth of aerobic sludge biomass: A comparative study of ultrasonic and shear gap homogenizers by oxygen uptake measurements.

    Science.gov (United States)

    Divyalakshmi, P; Murugan, D; Sivarajan, M; Saravanan, P; Lajapathi Rai, C

    2015-11-01

    Wastewater treatment plant incorporates physical, chemical and biological processes to treat and remove the contaminants. The main drawback of conventional activated sludge process is the huge production of excess sludge, which is an unavoidable byproduct. The treatment and disposal of excess sludge costs about 60% of the total operating cost. The ideal way to reduce excess sludge production during wastewater treatment is by preventing biomass formation within the aerobic treatment train rather than post treatment of the generated sludge. In the present investigation two different mechanical devices namely, Ultrasonic and Shear Gap homogenizers have been employed to disintegrate the aerobic biomass. This study is intended to restrict the multiplication of microbial biomass and at the same time degrade the organics present in wastewater by increasing the oxidative capacity of microorganisms. The disintegrability on biomass was determined by biochemical methods. Degree of inactivation provides the information on inability of microorganisms to consume oxygen upon disruption. The soluble COD quantifies the extent of release of intra cellular compounds. The participation of disintegrated microorganism in wastewater treatment process was carried out in two identical respirometeric reactors. The results show that Ultrasonic homogenizer is very effective in the disruption of microorganisms leading to a maximum microbial growth reduction of 27%. On the other hand, Shear gap homogenizer does not favor the sludge growth reduction rather it facilitates the growth. This study also shows that for better microbial growth reduction, floc size reduction alone is not sufficient but also microbial disruption is essential. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination

    International Nuclear Information System (INIS)

    Tang, Shirong; Liao, Shangqiang; Guo, Junkang; Song, Zhengguo; Wang, Ruigang; Zhou, Xiaomin

    2011-01-01

    Highlights: ► Elevated CO 2 and microbial inoculation, alone or in combination, significantly promoted growth of P. americana, and A. cruentus. ► Total tissue Cs in plants was significantly increased. ► A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana. ► The two plants had slightly different contents of antioxidant enzymes. ► Combined effects of elevated CO 2 and microbial inoculation can be explored for CO 2 - and microbe-assisted phytoextraction technology. - Abstract: Growth and cesium uptake responses of plants to elevated CO 2 and microbial inoculation, alone or in combination, can be explored for clean-up of contaminated soils, and this induced phytoextraction may be better than the natural process. The present study used open-top chambers to investigate combined effects of Burkholderia sp. D54 inoculation and elevated CO 2 (860 μL L −1 ) on growth and Cs uptake by Phytolacca americana and Amaranthus cruentus grown on soil spiked with various levels of Cs (0–1000 mg kg −1 ). Elevated CO 2 and bacterial inoculation, alone or in combination, significantly increased biomass production with increased magnitude, ranging from 22% to 139% for P. americana, and 14% to 254% for A. cruentus. Total tissue Cs in both plants was significantly greater for bacterial inoculation treatment singly, and combined treatments of bacterial inoculation and elevated CO 2 than for the control treatment in most cases. Regardless of CO 2 concentrations and bacterial inoculation, A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana, but they had slightly different contents of antioxidant enzymes. It is concluded that combined effects of elevated CO 2 and microbial inoculation with regard to plant ability to grow and remove radionuclides from soil can be explored for CO 2 - and microbe-assisted phytoextraction technology.

  3. Divergent Responses of Forest Soil Microbial Communities under Elevated CO2 in Different Depths of Upper Soil Layers.

    Science.gov (United States)

    Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye

    2018-01-01

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial

  4. Grassland to woodland transitions: Dynamic response of microbial community structure and carbon use patterns

    Science.gov (United States)

    Creamer, Courtney A.; Filley, Timothy R.; Boutton, Thomas W.; Rowe, Helen I.

    2016-06-01

    Woodland encroachment into grasslands is a globally pervasive phenomenon attributed to land use change, fire suppression, and climate change. This vegetation shift impacts ecosystem services such as ground water allocation, carbon (C) and nutrient status of soils, aboveground and belowground biodiversity, and soil structure. We hypothesized that woodland encroachment would alter microbial community structure and function and would be related to patterns in soil C accumulation. To address this hypothesis, we measured the composition and δ13C values of soil microbial phospholipids (PLFAs) along successional chronosequences from C4-dominated grasslands to C3-dominated woodlands (small discrete clusters and larger groves) spanning up to 134 years. Woodland development increased microbial biomass, soil C and nitrogen (N) concentrations, and altered microbial community composition. The relative abundance of gram-negative bacteria (cy19:0) increased linearly with stand age, consistent with decreases in soil pH and/or greater rhizosphere development and corresponding increases in C inputs. δ13C values of all PLFAs decreased with time following woody encroachment, indicating assimilation of woodland C sources. Among the microbial groups, fungi and actinobacteria in woodland soils selectively assimilated grassland C to a greater extent than its contribution to bulk soil. Between the two woodland types, microbes in the groves incorporated relatively more of the relict C4-C than those in the clusters, potentially due to differences in below ground plant C allocation and organo-mineral association. Changes in plant productivity and C accessibility (rather than C chemistry) dictated microbial C utilization in this system in response to shrub encroachment.

  5. Resilience of Soil Microbial Communities to Metals and Additional Stressors: DNA-Based Approaches for Assessing “Stress-on-Stress” Responses

    Directory of Open Access Journals (Sweden)

    Hamed Azarbad

    2016-06-01

    Full Text Available Many microbial ecology studies have demonstrated profound changes in community composition caused by environmental pollution, as well as adaptation processes allowing survival of microbes in polluted ecosystems. Soil microbial communities in polluted areas with a long-term history of contamination have been shown to maintain their function by developing metal-tolerance mechanisms. In the present work, we review recent experiments, with specific emphasis on studies that have been conducted in polluted areas with a long-term history of contamination that also applied DNA-based approaches. We evaluate how the “costs” of adaptation to metals affect the responses of metal-tolerant communities to other stress factors (“stress-on-stress”. We discuss recent studies on the stability of microbial communities, in terms of resistance and resilience to additional stressors, focusing on metal pollution as the initial stress, and discuss possible factors influencing the functional and structural stability of microbial communities towards secondary stressors. There is increasing evidence that the history of environmental conditions and disturbance regimes play central roles in responses of microbial communities towards secondary stressors.

  6. Soil Microbial Activity Responses to Fire in a Semi-arid Savannah Ecosystem Pre- and Post-Monsoon Season

    Science.gov (United States)

    Jimenez, J. R.; Raub, H. D.; Jong, E. L.; Muscarella, C. R.; Smith, W. K.; Gallery, R. E.

    2017-12-01

    Extracellular enzyme activities (EEA) of soil microorganisms can act as important proxies for nutrient limitation and turnover in soil and provide insight into the biochemical requirements of microbes in terrestrial ecosystems. In semi-arid ecosystems, microbial activity is influenced by topography, disturbances such as fire, and seasonality from monsoon rains. Previous studies from forest ecosystems show that microbial communities shift to similar compositions after severe fires despite different initial conditions. In semi-arid ecosystems with high spatial heterogeniety, we ask does fire lead to patch intensification or patch homogenization and how do monsoon rains influence the successional trajectories of microbial responses? We analyzed microbial activity and soil biogeochemistry throughout the monsoon season in paired burned and unburned sites in the Santa Rita Experimental Range, AZ. Surface soil (5cm) from bare-ground patches, bole, canopy drip line, and nearby grass patches for 5 mesquite trees per site allowed tests of spatiotemporal responses to fire and monsoon rain. Microbial activity was low during the pre-monsoon season and did not differ between the burned and unburned sites. We found greater activity near mesquite trees that reflects soil water and nutrient availability. Fire increased soil alkalinity, though soils near mesquite trees were less affected. Soil water content was significantly higher in the burned sites post-monsoon, potentially reflecting greater hydrophobicity of burned soils. Considering the effects of fire in these semi-arid ecosystems is especially important in the context of the projected changing climate regime in this region. Assessing microbial community recovery pre-, during, and post-monsoon is important for testing predictions about whether successional pathways post-fire lead to recovery or novel trajectories of communities and ecosystem function.

  7. Microbial biofilm formation and its consequences for the CELSS program

    Science.gov (United States)

    Mitchell, R.

    1994-01-01

    A major goal of the Controlled Ecology Life Support System (CELSS) program is to provide reliable and efficient life support systems for long-duration space flights. A principal focus of the program is on the growth of higher plants in growth chambers. These crops should be grown without the risk of damage from microbial contamination. While it is unlikely that plant pathogens will pose a risk, there are serious hazards associated with microorganisms carried in the nutrient delivery systems and in the atmosphere of the growth chamber. Our experience in surface microbiology showed that colonization of surfaces with microorganisms is extremely rapid even when the inoculum is small. After initial colonization extensive biofilms accumulate on moist surfaces. These microbial films metabolize actively and slough off continuously to the air and water. During plant growth in the CELSS program, microbial biofilms have the potential to foul sensors and to plug nutrient delivery systems. In addition both metabolic products of microbial growth and degradation products of materials being considered for use as nutrient reservoirs and for delivery are likely sources of chemicals known to adversly affect plant growth.

  8. Microbial metabolomics in open microscale platforms

    Science.gov (United States)

    Barkal, Layla J.; Theberge, Ashleigh B.; Guo, Chun-Jun; Spraker, Joe; Rappert, Lucas; Berthier, Jean; Brakke, Kenneth A.; Wang, Clay C. C.; Beebe, David J.; Keller, Nancy P.; Berthier, Erwin

    2016-01-01

    The microbial secondary metabolome encompasses great synthetic diversity, empowering microbes to tune their chemical responses to changing microenvironments. Traditional metabolomics methods are ill-equipped to probe a wide variety of environments or environmental dynamics. Here we introduce a class of microscale culture platforms to analyse chemical diversity of fungal and bacterial secondary metabolomes. By leveraging stable biphasic interfaces to integrate microculture with small molecule isolation via liquid–liquid extraction, we enable metabolomics-scale analysis using mass spectrometry. This platform facilitates exploration of culture microenvironments (including rare media typically inaccessible using established methods), unusual organic solvents for metabolite isolation and microbial mutants. Utilizing Aspergillus, a fungal genus known for its rich secondary metabolism, we characterize the effects of culture geometry and growth matrix on secondary metabolism, highlighting the potential use of microscale systems to unlock unknown or cryptic secondary metabolites for natural products discovery. Finally, we demonstrate the potential for this class of microfluidic systems to study interkingdom communication between fungi and bacteria. PMID:26842393

  9. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    Science.gov (United States)

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.

  10. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  11. Cultivation of high-biomass crops on coal mine spoil banks: Can microbial inoculation compensate for high doses of organic matter?

    Energy Technology Data Exchange (ETDEWEB)

    Gryndler, M.; Sudova, R.; Puschel, D.; Rydlova, J.; Janouskova, M.; Vosatka, M. [Academy of Science Czech Republic, Pruhonice (Czech Republic)

    2008-09-15

    Two greenhouse experiments were focused on the application of arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) in planting of high-biomass crops on reclaimed spoil banks. In the first experiment, we tested the effects of different organic amendments on growth of alfalfa and on the introduced microorganisms. While growth of plants was supported in substrate with compost amendment, mycorrhizal colonization was suppressed. Lignocellulose papermill waste had no negative effects on AMF, but did not positively affect growth of plants. The mixture of these two amendments was found to be optimal in both respects, plant growth and mycorrhizal development. Decreasing doses of this mixture amendment were used in the second experiment, where the effects of microbial inoculation (assumed to compensate for reduced doses of organic matter) on growth of two high-biomass crops, hemp and reed canarygrass, were studied. Plant growth response to microbial inoculation was either positive or negative, depending on the dose of the applied amendment and plant species.

  12. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils.

    Science.gov (United States)

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  13. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Science.gov (United States)

    Larsen, Peter; Gilbert, Jack

    2013-01-01

    In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm.) from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  14. Role of microbial inoculation and industrial by-product phosphogypsum in growth and nutrient uptake of maize (Zea mays L.) grown in calcareous soil.

    Science.gov (United States)

    Al-Enazy, Abdul-Aziz R; Al-Oud, Saud S; Al-Barakah, Fahad N; Usman, Adel Ra

    2017-08-01

    Alkaline soils with high calcium carbonate and low organic matter are deficient in plant nutrient availability. Use of organic and bio-fertilizers has been suggested to improve their properties. Therefore, a greenhouse experiment was conducted to evaluate the integrative role of phosphogypsum (PG; added at 0.0, 10, 30, and 50 g PG kg -1 ), cow manure (CM; added at 50 g kg -1 ) and mixed microbial inoculation (Incl.; Azotobacter chroococcum, and phosphate-solubilizing bacteria Bacillus megaterium var. phosphaticum and Pseudomonas fluorescens) on growth and nutrients (N, P, K, Fe, Mn, Zn and Cu) uptake of maize (Zea mays L.) in calcareous soil. Treatment effects on soil chemical and biological properties and the Cd and Pb availability to maize plants were also investigated. Applying PG decreased soil pH. The soil available P increased when soil was inoculated and/or treated with CM, especially with PG. The total microbial count and dehydrogenase activity were enhanced with PG+CM+Incl. Inoculated soils treated with PG showed significant increases in NPK uptake and maize plant growth. However, the most investigated treatments showed significant decreases in shoot micronutrients. Cd and Pb were not detected in maize shoots. Applying PG with microbial inoculation improved macronutrient uptake and plant growth. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. The effect of microbial inocula on the growth of black locust, Siberian elm and silver maple seedlings

    Directory of Open Access Journals (Sweden)

    Hajnal-Jafari Timea

    2014-01-01

    Full Text Available Growth and development of forest plants depend mostly on the soil microbial activity since no mineral or organic fertilizers are applied. Microbial processes can be activated and conditions for plants development improved with the introduction of selected microorganisms in the soil. With the aim of obtaining quality planting material in a shorter period of time, the effects of Azotobacter chroococcum and Streptomyces sp. on the early growth of black locust (Robinia pseudoacacia, Siberian elm (Ulmus pumila and silver-leaf maple (Acer dasycarpum were investigated in this study. Microorganisms were applied individually and in a mixture (1:1. Plant height was measured on the 90th, 120th and 180th day after planting. Plant diameter, as well as the number of actinomycetes and azotobacters was measured at the end of the vegetation period (180 days after planting. Applied microorganisms had a positive effect on the seedling height in all three plant species, with the best effect found in the black locust. Effectiveness of applied microorganisms on seedling diameter was the highest in the silver-leaf maple. The largest number of azotobacters was found in the rhizosphere of black locust. Number of microorganisms from both groups was increased in the inoculated variants. [Projekat Ministarstva nauke Republike Srbije, br. III 43002

  16. Differences in stability of seed-associated microbial assemblages in response to invasion by phytopathogenic microorganisms

    Directory of Open Access Journals (Sweden)

    Samir Rezki

    2016-04-01

    Full Text Available Seeds are involved in the vertical transmission of microorganisms from one plant generation to another and consequently act as reservoirs for the plant microbiota. However, little is known about the structure of seed-associated microbial assemblages and the regulators of assemblage structure. In this work, we have assessed the response of seed-associated microbial assemblages of Raphanus sativus to invading phytopathogenic agents, the bacterial strain Xanthomonas campestris pv. campestris (Xcc 8004 and the fungal strain Alternaria brassicicola Abra43. According to the indicators of bacterial (16S rRNA gene and gyrB sequences and fungal (ITS1 diversity employed in this study, seed transmission of the bacterial strain Xcc 8004 did not change the overall composition of resident microbial assemblages. In contrast seed transmission of Abra43 strongly modified the richness and structure of fungal assemblages without affecting bacterial assemblages. The sensitivity of seed-associated fungal assemblage to Abra43 is mostly related to changes in relative abundance of closely related fungal species that belong to the Alternaria genus. Variation in stability of the seed microbiota in response to Xcc and Abra43 invasions could be explained by differences in seed transmission pathways employed by these micro-organisms, which ultimately results in divergence in spatio-temporal colonization of the seed habitat.

  17. Life in Ice: Microbial Growth Dynamics and Greenhouse Gas Production During Winter in a Thermokarst Bog Revealed by Stable Isotope Probing Targeted Metagenomics

    Science.gov (United States)

    Blazewicz, S.; White, R. A., III; Tas, N.; Euskirchen, E. S.; Mcfarland, J. W.; Jansson, J.; Waldrop, M. P.

    2016-12-01

    Permafrost contains a reservoir of frozen C estimated to be twice the size of the current atmospheric C pool. In response to changing climate, permafrost is rapidly warming which could result in widespread seasonal thawing. When permafrost thaws, soils that are rich in ice and C often transform into thermokarst wetlands with anaerobic conditions and significant production of atmospheric CH4. While most C flux research in recently thawed permafrost concentrates on the few summer months when seasonal thaw has occurred, there is mounting evidence that sizeable portions of annual CO2 and CH4 efflux occurs over winter or during a rapid burst of emissions associated with seasonal thaw. A potential mechanism for such efflux patterns is microbial activity in frozen soils over winter where gasses produced are partially trapped within ice until spring thaw. In order to better understand microbial transformation of soil C to greenhouse gas over winter, we applied stable isotope probing (SIP) targeted metagenomics combined with process measurements and field flux data to reveal activities of microbial communities in `frozen' soil from an Alaskan thermokarst bog. Field studies revealed build-up of CO2 and CH4 in frozen soils suggesting that microbial activity persisted throughout the winter in soils poised just below the freezing point. Laboratory incubations designed to simulate in-situ winter conditions (-1.5 °C and anaerobic) revealed continuous CH4 and CO2 production. Strikingly, the quantity of CH4 produced in 6 months in frozen soil was equivalent to approximately 80% of CH4 emitted during the 3 month summer `active' season. Heavy water SIP targeted iTag sequencing revealed growing bacteria and archaea in the frozen anaerobic soil. Growth was primarily observed in two bacterial phyla, Firmicutes and Bacteroidetes, suggesting that fermentation was likely the major C mineralization pathway. SIP targeted metagenomics facilitated characterization of the primary metabolic

  18. Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands

    International Nuclear Information System (INIS)

    Tietz, Alexandra; Kirschner, Alexander; Langergraber, Guenter; Sleytr, Kirsten; Haberl, Raimund

    2007-01-01

    In this study a quantitative description of the microbial biocoenosis in subsurface vertical flow constructed wetlands fed with municipal wastewater was carried out. Three different methods (substrate induced respiration, ATP measurement and fumigation-extraction) were applied to measure the microbial biomass at different depths of planted and unplanted systems. Additionally, bacterial biomass was determined by epifluorescence microscopy and productivity was measured via 14 C leucine incorporation into bacterial biomass. All methods showed that > 50% of microbial biomass and bacterial activity could be found in the first cm and about 95% in the first 10 cm of the filter layer. Bacterial biomass in the first 10 cm of the filter body accounted only for 16-19% of the total microbial biomass. Whether fungi or methodical uncertainties are mainly responsible for the difference between microbial and bacterial biomass remains to be examined. A comparison between the purification performance of planted and unplanted pilot-scale subsurface vertical flow constructed wetlands (PSCWs) showed no significant difference with the exception of the reduction of enterococci. The microbial biomass in all depths of the filter body was also not different in planted and unplanted systems. Compared with data from soils the microbial biomass in the PSCWs was high, although the specific surface area of the used sandy filter material available for biofilm growth was lower, especially in the beginning of the set-up of the PSCWs, due to missing clay and silt fraction

  19. Soil microbial respiration and PICT responses to an industrial and historic lead pollution: a field study.

    Science.gov (United States)

    Bérard, Annette; Capowiez, Line; Mombo, Stéphane; Schreck, Eva; Dumat, Camille; Deola, Frédéric; Capowiez, Yvan

    2016-03-01

    We performed a field investigation to study the long-term impacts of Pb soil contamination on soil microbial communities and their catabolic structure in the context of an industrial site consisting of a plot of land surrounding a secondary lead smelter. Microbial biomass, catabolic profiles, and ecotoxicological responses (PICT) were monitored on soils sampled at selected locations along 110-m transects established on the site. We confirmed the high toxicity of Pb on respirations and microbial and fungal biomasses by measuring positive correlations with distance from the wall factory and negative correlation with total Pb concentrations. Pb contamination also induced changes in microbial and fungal catabolic structure (from carbohydrates to amino acids through carboxylic malic acid). Moreover, PICT measurement allowed to establish causal linkages between lead and its effect on biological communities taking into account the contamination history of the ecosystem at community level. The positive correlation between qCO2 (based on respiration and substrate use) and PICT suggested that the Pb stress-induced acquisition of tolerance came at a greater energy cost for microbial communities in order to cope with the toxicity of the metal. In this industrial context of long-term polymetallic contamination dominated by Pb in a field experiment, we confirmed impacts of this metal on soil functioning through microbial communities, as previously observed for earthworm communities.

  20. Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review

    Directory of Open Access Journals (Sweden)

    Darine Trabelsi

    2013-01-01

    Full Text Available The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research.

  1. Dietary microbial phytase exerts mixed effects on the gut health of tilapia: a possible reason for the null effect on growth promotion.

    Science.gov (United States)

    Hu, Jun; Ran, Chao; He, Suxu; Cao, Yanan; Yao, Bin; Ye, Yuantu; Zhang, Xuezhen; Zhou, Zhigang

    2016-06-01

    The present study evaluated the effects of dietary microbial phytase on the growth and gut health of hybrid tilapia (Oreochromis niloticus ♀×Oreochromis aureus ♂), focusing on the effect on intestinal histology, adhesive microbiota and expression of immune-related cytokine genes. Tilapia were fed either control diet or diet supplemented with microbial phytase (1000 U/kg). Each diet was randomly assigned to four groups of fish reared in cages (3×3×2 m). After 12 weeks of feeding, weight gain and feed conversion ratio of tilapia were not significantly improved by dietary microbial phytase supplementation. However, significantly higher level of P content in the scales, tighter and more regular intestinal mucosa folds were observed in the microbial phytase group and the microvilli density was significantly increased. The adhesive gut bacterial communities were strikingly altered by microbial phytase supplementation (0·41phytase, as indicated by the up-regulated intestinal expressions of the cytokine genes (tnf-α and tgf-β) and hsp70. In addition, the gut microvilli height was significantly decreased in the phytase group. These results indicate that dietary microbial phytase may exert mixed effects on hybrid tilapia, and can guide our future selection of phytases as aquafeed additives - that is, eliminating those that can stimulate intestinal inflammation.

  2. Optimal design of multistage chemostats in series using different microbial growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Muhammad [Petroleum Engineering Technology, Abu Dhabi Polytechnic (United Arab Emirates)

    2013-07-01

    In this paper, the optimum design of multistage chemostats (CSTRs) was investigated. The optimal design was based on the minimum overall reactor volume using different volume for each chemostat. The paper investigates three different microbial growth kinetics; Monod kinetics, Contois kinetics and the Logistic equation. The total dimensionless residence time (theta Total) was set as the optimization objective function that was minimized by varying the intermediate dimensionless substrate concentration (alfa i). The effect of inlet substrate concentration (S0) to the first reactor on the optimized total dimensionless residence time was investigated at a constant conversion of 0.90. In addition, the effect of conversion on the optimized total dimensionless residence time was also investigated at constant inlet substrate concentration (S0). For each case, optimization was done using up to five chemostats in series.

  3. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Nissen, Silke [ORNL; Vishnivetskaya, T. [University of Tennessee, Knoxville (UTK); Shah, Manesh B [ORNL; Pffifner, Susan [University of Tennessee, Knoxville (UTK); Hettich, Robert {Bob} L [ORNL; Loeffler, Frank E [ORNL

    2013-01-01

    High performance mass spectrometry instrumentation coupled with improved protein extraction techniques enable metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e., 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e., Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences in protein expression between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected up-gradient of the EVO injection points. In particular, proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate (PHB) granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of a Dechloromonas sp. was highly expressed suggesting active nitrous oxide (N2O) respiration. c-type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that metal reduction has not commenced 4 days post EVO delivery. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique for complementing nucleic acid-based approaches.

  4. RESPONSE OF SOIL MICROBIAL BIOMASS AND COMMUNITY COMPOSITION TO CHRONIC NITROGEN ADDITIONS AT HARVARD FOREST

    Science.gov (United States)

    Soil microbial communities may respond to anthropogenic increases in ecosystem nitrogen (N) availability, and their response may ultimately feedback on ecosystem carbon and N dynamics. We examined the long-term effects of chronic N additions on soil microbes by measuring soil mi...

  5. Microbial biosensors for environmental monitoring

    Directory of Open Access Journals (Sweden)

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  6. A fermented meat model system for studies of microbial aroma formation

    DEFF Research Database (Denmark)

    Tjener, Karsten; Stahnke, Louise Heller; Andersen, L.

    2003-01-01

    A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starte......H, microbial growth and volatile profiles was similar to sausage production. Based on these findings, the model system was considered valid for studies of aroma formation of meat cultures for fermented sausage.......A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starter...... cultures Pediococcus pentosaceus and Staphylococcus xylosus. Volatiles were collected and analysed by dynamic headspace sampling and GC MS. The analysis was primarily focused on volatiles arising from amino acid degradation and a total of 24 compounds, of which 19 were quantified, were used...

  7. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input.

    Science.gov (United States)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P; Jansson, Janet K; Hopkins, David W; Aspray, Thomas J; Seely, Mary; Trindade, Marla I; Cowan, Don A

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO 2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  8. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  9. Elucidating Microbial Adaptation Dynamics via Autonomous Exposure and Sampling

    Science.gov (United States)

    Grace, Joseph M.; Verseux, Cyprien; Gentry, Diana; Moffet, Amy; Thayabaran, Ramanen; Wong, Nathan; Rothschild, Lynn

    2013-01-01

    The adaptation of micro-organisms to their environments is a complex process of interaction between the pressures of the environment and of competition. Reducing this multifactorial process to environmental exposure in the laboratory is a common tool for elucidating individual mechanisms of evolution, such as mutation rates. Although such studies inform fundamental questions about the way adaptation and even speciation occur, they are often limited by labor-intensive manual techniques. Current methods for controlled study of microbial adaptation limit the length of time, the depth of collected data, and the breadth of applied environmental conditions. Small idiosyncrasies in manual techniques can have large effects on outcomes; for example, there are significant variations in induced radiation resistances following similar repeated exposure protocols. We describe here a project under development to allow rapid cycling of multiple types of microbial environmental exposure. The system allows continuous autonomous monitoring and data collection of both single species and sampled communities, independently and concurrently providing multiple types of controlled environmental pressure (temperature, radiation, chemical presence or absence, and so on) to a microbial community in dynamic response to the ecosystem's current status. When combined with DNA sequencing and extraction, such a controlled environment can cast light on microbial functional development, population dynamics, inter- and intra-species competition, and microbe-environment interaction. The project's goal is to allow rapid, repeatable iteration of studies of both natural and artificial microbial adaptation. As an example, the same system can be used both to increase the pH of a wet soil aliquot over time while periodically sampling it for genetic activity analysis, or to repeatedly expose a culture of bacteria to the presence of a toxic metal, automatically adjusting the level of toxicity based on the

  10. Response of soil microbial communities to roxarsone pollution along a concentration gradient.

    Science.gov (United States)

    Liu, Yaci; Zhang, Zhaoji; Li, Yasong; Wen, Yi; Fei, Yuhong

    2017-07-29

    The extensive use of roxarsone (3-nitro-4-hydroxyphenylarsonic acid) as a feed additive in the broiler poultry industry can lead to environmental arsenic contamination. This study was conducted to reveal the response of soil microbial communities to roxarsone pollution along a concentration gradient. To explore the degradation process and degradation kinetics of roxarsone concentration gradients in soil, the concentration shift of roxarsone at initial concentrations of 0, 50, 100, and 200 mg/kg, as well as that of the arsenic derivatives, was detected. The soil microbial community composition and structure accompanying roxarsone degradation were investigated by high-throughput sequencing. The results showed that roxarsone degradation was inhibited by a biological inhibitor, confirming that soil microbes were absolutely essential to its degradation. Moreover, soil microbes had considerable potential to degrade roxarsone, as a high initial concentration of roxarsone resulted in a substantially increased degradation rate. The concentrations of the degradation products HAPA (3-amino-4-hydroxyphenylarsonic acid), AS(III), and AS(V) in soils were significantly positively correlated. The soil microbial community composition and structure changed significantly across the roxarsone contamination gradient, and the addition of roxarsone decreased the microbial diversity. Some bacteria tended to be inhibited by roxarsone, while Bacillus, Paenibacillus, Arthrobacter, Lysobacter, and Alkaliphilus played important roles in roxarsone degradation. Moreover, HAPA, AS(III), and AS(V) were significantly positively correlated with Symbiobacterium, which dominated soils containing roxarsone, and their abundance increased with increasing initial roxarsone concentration. Accordingly, Symbiobacterium could serve as indicator of arsenic derivatives released by roxarsone as well as the initial roxarsone concentration. This is the first investigation of microbes closely related to roxarsone

  11. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Directory of Open Access Journals (Sweden)

    Peter Larsen

    Full Text Available In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm. from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  12. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution.

    Science.gov (United States)

    Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M

    2016-09-01

    There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events. © 2016 John Wiley & Sons Ltd.

  13. Microbial Shifts in the Intestinal Microbiota of Salmonella Infected Chickens in Response to Enrofloxacin.

    Science.gov (United States)

    Li, Jun; Hao, Haihong; Cheng, Guyue; Liu, Chunbei; Ahmed, Saeed; Shabbir, Muhammad A B; Hussain, Hafiz I; Dai, Menghong; Yuan, Zonghui

    2017-01-01

    Fluoroquinolones (FQs) are important antibiotics used for treatment of Salmonella infection in poultry in many countries. However, oral administration of fluoroquinolones may affect the composition and abundance of a number of bacterial taxa in the chicken intestine. Using 16S rRNA gene sequencing, the microbial shifts in the gut of Salmonella infected chickens in response to enrofloxacin treatments at different dosages (0, 0.1, 4, and 100 mg/kg b.w.) were quantitatively evaluated. The results showed that the shedding levels of Salmonella were significantly reduced in the high dosage group as demonstrated by both the culturing method and 16S rRNA sequencing method. The average values of diversity indices were higher in the control group than in the three medicated groups. Non-metric multidimensional scaling (NMDS) analysis results showed that the microbial community of high dosage group was clearly separated from the other three groups. In total, 25 genera were significantly enriched (including 6 abundant genera: Lactococcus , Bacillus , Burkholderia , Pseudomonas , Rhizobium , and Acinetobacter ) and 23 genera were significantly reduced in the medicated groups than in the control group for the treatment period, but these bacterial taxa recovered to normal levels after therapy withdrawal. Additionally, 5 genera were significantly reduced in both treatment and withdrawal periods (e.g., Blautia and Anaerotruncus ) and 23 genera (e.g., Enterobacter and Clostridium ) were significantly decreased only in the withdrawal period, indicating that these genera might be the potential targets for the fluoroquinolones antimicrobial effects. Specially, Enterococcus was significantly reduced under high dosage of enrofloxacin treatment, while significantly enriched in the withdrawal period, which was presumably due to the resistance selection. Predicted microbial functions associated with genetic information processing were significantly decreased in the high dosage group. Overall

  14. Microbial Shifts in the Intestinal Microbiota of Salmonella Infected Chickens in Response to Enrofloxacin

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-09-01

    Full Text Available Fluoroquinolones (FQs are important antibiotics used for treatment of Salmonella infection in poultry in many countries. However, oral administration of fluoroquinolones may affect the composition and abundance of a number of bacterial taxa in the chicken intestine. Using 16S rRNA gene sequencing, the microbial shifts in the gut of Salmonella infected chickens in response to enrofloxacin treatments at different dosages (0, 0.1, 4, and 100 mg/kg b.w. were quantitatively evaluated. The results showed that the shedding levels of Salmonella were significantly reduced in the high dosage group as demonstrated by both the culturing method and 16S rRNA sequencing method. The average values of diversity indices were higher in the control group than in the three medicated groups. Non-metric multidimensional scaling (NMDS analysis results showed that the microbial community of high dosage group was clearly separated from the other three groups. In total, 25 genera were significantly enriched (including 6 abundant genera: Lactococcus, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Acinetobacter and 23 genera were significantly reduced in the medicated groups than in the control group for the treatment period, but these bacterial taxa recovered to normal levels after therapy withdrawal. Additionally, 5 genera were significantly reduced in both treatment and withdrawal periods (e.g., Blautia and Anaerotruncus and 23 genera (e.g., Enterobacter and Clostridium were significantly decreased only in the withdrawal period, indicating that these genera might be the potential targets for the fluoroquinolones antimicrobial effects. Specially, Enterococcus was significantly reduced under high dosage of enrofloxacin treatment, while significantly enriched in the withdrawal period, which was presumably due to the resistance selection. Predicted microbial functions associated with genetic information processing were significantly decreased in the high dosage group

  15. Early growth and postprandial appetite regulatory hormone responses

    DEFF Research Database (Denmark)

    Perälä, Mia-Maria; Kajantie, Eero; Valsta, Liisa M

    2013-01-01

    Strong epidemiological evidence suggests that slow prenatal or postnatal growth is associated with an increased risk of CVD and other metabolic diseases. However, little is known whether early growth affects postprandial metabolism and, especially, the appetite regulatory hormone system. Therefore......, we investigated the impact of early growth on postprandial appetite regulatory hormone responses to two high-protein and two high-fat content meals. Healthy, 65-75-year-old volunteers from the Helsinki Birth Cohort Study were recruited; twelve with a slow increase in BMI during the first year of life......, early growth may have a role in programming appetite regulatory hormone secretion in later life. Slow early growth is also associated with higher postprandial insulin and TAG responses but not with incretin levels....

  16. Dynamics of culturable soil microbial communities during ...

    African Journals Online (AJOL)

    Ecological zones impacted significantly (P < 0.05) on bacterial proliferation, but not on fungal growth. Sampling period significantly (P < 0.05) affected microbial density and the semi-arid agroecozone was more supportive of microbial proliferation than the arid zone. A total of nine predominant fungal species belonging to ...

  17. Inhibitors degradation and microbial response during continuous anaerobic conversion of hydrothermal liquefaction wastewater.

    Science.gov (United States)

    Si, Buchun; Li, Jiaming; Zhu, Zhangbing; Shen, Mengmeng; Lu, Jianwen; Duan, Na; Zhang, Yuanhui; Liao, Qiang; Huang, Yun; Liu, Zhidan

    2018-07-15

    One critical challenge of hydrothermal liquefaction (HTL) is its complex aqueous product, which has a high concentration of organic pollutants (up to 100gCOD/L) and diverse fermentation inhibitors, such as furfural, phenolics and N-heterocyclic compounds. Here we report continuous anaerobic digestion of HTL wastewater via an up-flow anaerobic sludge bed reactor (UASB) and packed bed reactor (PBR). Specifically, we investigated the transformation of fermentation inhibitors and microbial response. GC-MS identified the complete degradation of furfural and 5-hydroxymethylfurfural (5-HMF), and partial degradation (54.0-74.6%) of organic nitrogen and phenolic compounds, including 3-hydroxypyridine, phenol and 4-ethyl-phenol. Illumina MiSeq sequencing revealed that the bacteria families related to detoxification increased in response to the HTL aqueous phase. In addition, the increase of acetate-oxidizing bacteria in UASB and acetogens in PBR showed a strengthened acetogenesis. As for the archaeal communities, an increase in hydrogenotrophic methanogens was observed. Based on GC-MS/HPLC and microbial analysis, we speculate that dominant fermentation inhibitors were transformed into intermediates (Acetyl-CoA and acetate), further contributing to biomethane formation. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Regular Exercise Enhances the Immune Response Against Microbial Antigens Through Up-Regulation of Toll-like Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Qishi Zheng

    2015-09-01

    Full Text Available Background/Aims: Regular physical exercise can enhance resistance to many microbial infections. However, little is known about the mechanism underlying the changes in the immune system induced by regular exercise. Methods: We recruited members of a university badminton club as the regular exercise (RE group and healthy sedentary students as the sedentary control (SC group. We investigated the distribution of peripheral blood mononuclear cell (PBMC subsets and functions in the two groups. Results: There were no significant differences in plasma cytokine levels between the RE and SC groups in the true resting state. However, enhanced levels of IFN-γ, TNF-α, IL-6, IFN-α and IL-12 were secreted by PBMCs in the RE group following microbial antigen stimulation, when compared to the SC group. In contrast, the levels of TNF-α and IL-6 secreted by PBMC in the RE group were suppressed compared with those in SC group following non-microbial antigen stimulation (concanavalin A or α-galactosylceramide. Furthermore, PBMC expression of TLR2, TLR7 and MyD88 was significantly increased in the RE group in response to microbial antigen stimulation. Conclusion: Regular exercise enhances immune cell activation in response to pathogenic stimulation leading to enhanced cytokine production mediated via the TLR signaling pathways.

  19. Biofilm growth on polyvinylchloride surface incubated in suboptimal microbial warm water and effect of sanitizers on biofilm removal post biofilm formation

    Science.gov (United States)

    An in vitro experiment was conducted to understand the nature of biofilm growth on polyvinyl chloride (PVC) surface when exposed to sub optimal quality microbial water (> 4 log10 cfu/ml) obtained from poultry drinking water source mimicking water in waterlines during the first week of poultry broodi...

  20. Interactions between plant and rhizosphere microbial communities in a metalliferous soil

    International Nuclear Information System (INIS)

    Epelde, Lur; Becerril, Jose M.; Barrutia, Oihana; Gonzalez-Oreja, Jose A.; Garbisu, Carlos

    2010-01-01

    In the present work, the relationships between plant consortia, consisting of 1-4 metallicolous pseudometallophytes with different metal-tolerance strategies (Thlaspi caerulescens: hyperaccumulator; Jasione montana: accumulator; Rumex acetosa: indicator; Festuca rubra: excluder), and their rhizosphere microbial communities were studied in a mine soil polluted with high levels of Cd, Pb and Zn. Physiological response and phytoremediation potential of the studied pseudometallophytes were also investigated. The studied metallicolous populations are tolerant to metal pollution and offer potential for the development of phytoextraction and phytostabilization technologies. T. caerulescens appears very tolerant to metal stress and most suitable for metal phytoextraction; the other three species enhance soil functionality. Soil microbial properties had a stronger effect on plant biomass rather than the other way around (35.2% versus 14.9%). An ecological understanding of how contaminants, ecosystem functions and biological communities interact in the long-term is needed for proper management of these fragile metalliferous ecosystems. - Rhizosphere microbial communities in highly polluted mine soils are determinant for the growth of pseudometallophytes.

  1. Interactions between plant and rhizosphere microbial communities in a metalliferous soil

    Energy Technology Data Exchange (ETDEWEB)

    Epelde, Lur [NEIKER-Tecnalia, Department of Ecosystems, c/Berreaga 1, E-48160 Derio (Spain); Becerril, Jose M.; Barrutia, Oihana [Department of Plant Biology and Ecology, University of the Basque Country, UPV/EHU, P.O. Box 644, E-48080 Bilbao (Spain); Gonzalez-Oreja, Jose A. [NEIKER-Tecnalia, Department of Ecosystems, c/Berreaga 1, E-48160 Derio (Spain); Garbisu, Carlos, E-mail: cgarbisu@neiker.ne [NEIKER-Tecnalia, Department of Ecosystems, c/Berreaga 1, E-48160 Derio (Spain)

    2010-05-15

    In the present work, the relationships between plant consortia, consisting of 1-4 metallicolous pseudometallophytes with different metal-tolerance strategies (Thlaspi caerulescens: hyperaccumulator; Jasione montana: accumulator; Rumex acetosa: indicator; Festuca rubra: excluder), and their rhizosphere microbial communities were studied in a mine soil polluted with high levels of Cd, Pb and Zn. Physiological response and phytoremediation potential of the studied pseudometallophytes were also investigated. The studied metallicolous populations are tolerant to metal pollution and offer potential for the development of phytoextraction and phytostabilization technologies. T. caerulescens appears very tolerant to metal stress and most suitable for metal phytoextraction; the other three species enhance soil functionality. Soil microbial properties had a stronger effect on plant biomass rather than the other way around (35.2% versus 14.9%). An ecological understanding of how contaminants, ecosystem functions and biological communities interact in the long-term is needed for proper management of these fragile metalliferous ecosystems. - Rhizosphere microbial communities in highly polluted mine soils are determinant for the growth of pseudometallophytes.

  2. Microbial carbon pump and its significance for carbon sequestration in soils

    Science.gov (United States)

    Liang, Chao

    2017-04-01

    Studies of the decomposition, transformation and stabilization of soil organic carbon have dramatically increased in recent years due to growing interest in studying the global carbon cycle as it pertains to climate change. While it is readily accepted that the magnitude of the organic carbon reservoir in soils depends upon microbial involvement because soil carbon dynamics are ultimately the consequence of microbial growth and activity, it remains largely unknown how these microbe-mediated processes lead to soil carbon stabilization. Here, two pathways, ex vivo modification and in vivo turnover, were defined to jointly explain soil carbon dynamics driven by microbial catabolism and/or anabolism. Accordingly, a conceptual framework consisting of the raised concept of the soil "microbial carbon pump" (MCP) was demonstrated to describe how microbes act as an active player in soil carbon storage. The hypothesis is that the long-term microbial assimilation process may facilitate the formation of a set of organic compounds that are stabilized (whether via protection by physical interactions or a reduction in activation energy due to chemical composition), ultimately leading to the sequestration of microbial-derived carbon in soils. The need for increased efforts was proposed to seek to inspire new studies that utilize the soil MCP as a conceptual guideline for improving mechanistic understandings of the contributions of soil carbon dynamics to the responses of the terrestrial carbon cycle under global change.

  3. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    Science.gov (United States)

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  4. The importance of anabolism in microbial control over soil carbon storage

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chao; Schimel, Joshua P.; Jastrow, Julie D.

    2017-07-25

    Studies of the decomposition, transformation and stabilization of soil organic matter (SOM) have dramatically increased in recent years owing to growing interest in studying the global carbon (C) cycle as it pertains to climate change. While it is readily accepted that the magnitude of the organic C reservoir in soils depends upon microbial involvement, as soil C dynamics are ultimately the consequence of microbial growth and activity, it remains largely unknown how these microorganism-mediated processes lead to soil C stabilization. Here, we define two pathways—ex vivo modification and in vivo turnover—which jointly explain soil C dynamics driven by microbial catabolism and/or anabolism. Accordingly, we use the conceptual framework of the soil ‘microbial carbon pump’ (MCP) to demonstrate how microorganisms are an active player in soil C storage. The MCP couples microbial production of a set of organic compounds to their further stabilization, which we define as the entombing effect. This integration captures the cumulative long-term legacy of microbial assimilation on SOM formation, with mechanisms (whether via physical protection or a lack of activation energy due to chemical composition) that ultimately enable the entombment of microbial-derived C in soils. We propose a need for increased efforts and seek to inspire new studies that utilize the soil MCP as a conceptual guideline for improving mechanistic understandings of the contributions of soil C dynamics to the responses of the terrestrial C cycle under global change.

  5. Microbial Flocculant for Nature Soda

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Peiyong; Zhang, Tong; Chen, Cuixian

    2004-03-31

    Microbial flocculant for nature soda has been studied. Lactobacillus TRJ21, which was able to produce an excellent biopolymer flocculant for nature soda, was obtained in our lab. The microbial flocculant was mainly produced when the bacteria laid in stationary growth phase. Fructose or glucose, as carbon sources, were more favorable for the bacterial growth and flocculant production. The bacteria was able to use ammonium sulfate or Urea as nitrogen to produce flocculant, but was not able to use peptone effectively. High C/N ratio was more favorable to Lactobacillus TRJ21 growth and flocculant production than low C/N ratio. The biopolymer flocculant was mainly composed of polysaccharide and protein with a molecular weight 1.38x106 by gel permeation chromatography. It was able to be easily purified from the culture medium by acetone. Protein in the flocculant was tested for the flocculating activity ingredient by heating the flocculant.

  6. Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Fred Brokman; John Selker; Mark Rockhold

    2004-01-26

    While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination.

  7. Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Brockman, Fred J.; Selker, John S.; Rockhold, Mark L.

    2004-10-31

    Executive Summary - While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination...

  8. Response of Functional Structure of Soil Microbial Community to Multi-level Nitrogen Additions on the Central Tibetan Plateau

    Science.gov (United States)

    Zhang, G.; Yuan, Y.

    2015-12-01

    The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. Tibet is the one of the most threatened regions by nitrogen deposition, thus understanding how its microbial communities function maybe of high importance to predicting microbial responses to nitrogen deposition. Here we describe a short-time nitrogen addition conducted in an alpine steppe ecosystem to investigate the response of functional structure of soil microbial community to multi-level nitrogen addition. Using a GeoChip 4.0, we showed that functional diversities and richness of functional genes were unchanged at low level of nitrogen fertilizer inputs (=40 kg N ha-1 yr-1). Detrended correspondence analysis indicated that the functional structure of microbial communities was markedly different across the nitrogen gradients. Most C degradation genes whose abundances significantly increased under elevated N fertilizer were those involved in the degradation of relatively labile C (starch, hemicellulose, cellulose), whereas the abundance of certain genes involved in the degradation of recalcitrant C (i.e. lignin) was largely decreased (such as manganese peroxidase, mnp). The results suggest that the elevated N fertilization rates might significantly accelerate the labile C degradation, but might not spur recalcitrant C degradation. The combined effect of gdh and ureC genes involved in N cycling appeared to shift the balance between ammonia and organic N toward organic N ammonification and hence increased the N mineralization potential. Moreover, Urease directly involved in urea mineralization significantly increased. Lastly, Canonical correspondence analysis showed that soil (TOC+NH4++NO3-+NO2-+pH) and plant (Aboveground plant productivity + Shannon Diversity) variables could explain 38.9% of the variation of soil microbial community composition. On the basis of above observations, we predict that increasing of nitrogen

  9. Growth of microbial mixed cultures under anaerobic, alkaline conditions

    International Nuclear Information System (INIS)

    Wenk, M.

    1993-09-01

    Cement and concrete are the most important engineered barrier materials in a repository for low- and intermediate-level waste and thus represent the most significant component of the total disposal inventory. Based on the chemical composition of the concrete used in the repository and the groundwater fluxes in the modelled host rock, it is to be expected that the pH in the near vicinity of the repository could exceed a value of 10.5 for more than a million years. The groundwater in the repository environment also has a limited carbon concentration. Since microorganisms will be present in a repository and can even find suitable living conditions within the waste itself, investigations were carried out in order to establish the extent to which microbial activity is possible under the extreme conditions of the repository near-field. For the investigations, alkalophilic cultures were enriched from samples from alkaline habitats and from Valanginian Marl. Anaerobic bacteria with fermentative, sulfate-reducing and methanogenic metabolism were selected. The growth and activity of the mixed cultures were studied under alkaline conditions and the dependence on pH and carbon concentration determined. All the mixed cultures investigated are alkalophilic. The optimum growth range for the cultures is between pH 9.0 and pH 10.0. The activity limit for the fermentative mixed culture is at pH 12, for the sulfate-reducers at pH 11 and for the methanogens at pH 10.5. Given the limited supply of carbon, the mixed cultures can only grow under slightly alkaline conditions. Only the fermentative cultures are capable of surviving with limited carbon supply at pH 13. (author) 24 figs., 18 tabs., 101 refs

  10. Effect of microbial cell-free meat extract on the growth of spoilage bacteria.

    Science.gov (United States)

    Nychas, G-J E; Dourou, D; Skandamis, P; Koutsoumanis, K; Baranyi, J; Sofos, J

    2009-12-01

    This study examined the effect of microbial cell-free meat extract (CFME) derived from spoiled meat, in which quorum sensing (QS) compounds were present, on the growth kinetics (lag phase, and growth rate) of two spoilage bacteria, Pseudomonas fluorescens and Serratia marcescens. Aliquots of CFME from spoiled meat were transferred to Brain Heart Infusion broth inoculated with 10(3) CFU ml(-1) of 18 h cultures of Ps. fluorescens or Ser. marcescens, both fresh meat isolates; CFME derived from unspoiled fresh meat ('clean' meat) served as a control. Changes in impedance measurements were monitored for 48 h, and the detection time (Tdet) was recorded. It was found that in the absence of CFME containing QS compounds the Tdet was shorter (P meat. The rate of growth of Ps. fluorescens, recorded as the maximum slope rate of conductance changes (MSrCC), after Tdet, was higher (P meat. Similar results in MSrCC of impedance changes were obtained for Ser. marcescens. The study indicated that the growth rate (expressed in MSrCC units) of meat spoilage bacteria in vitro was enhanced in samples supplemented with CFME containing QS compounds compared to control samples (i.e., without CFME or with CFME from 'clean' meat). This behaviour may explain the dominant role of these two bacteria in the spoilage of meat. These results illustrate the potential effect of signalling compounds released during storage of meat on the behaviour of meat spoilage bacteria. Understanding such interactions may assist in the control of fresh meat quality and the extension of its shelf life.

  11. Investigating the impact of microbial interactions with geologic media on geophysical properties

    Science.gov (United States)

    Davis, Caroline Ann

    The goals of this study were to investigate the effect of: (1) microbial metabolic byproducts, microbial growth, and biofilm formation on the low frequency electrical properties of porous media, (2) biofilm formation on acoustic wave properties, and (3) the natural electrical (self-potential) signatures associated with an in-situ biological permeable reactive barrier (PRB). The results suggest: (1) increases in electrolytic conductivity are consistent with increased concentrations of organic acids and biosurfactants; (2) mineral weathering promoted by organic acids causes increases in electrolytic conductivity, concomitant with increases in major cation concentrations; (3) interfacial conductivity generally parallels microbial cell concentrations and biofilm formation; (4) variations in microbial growth and biofilms causes spatiotemporal heterogeneity in the elastic properties of porous media; (5) SP signatures associated with the injection of groundwater into an in-situ biological PRB are dominated by diffusion potentials induced by the injections. The results suggest that electrolytic conductivity may be useful as an indicator of metabolism, while interfacial conductivity may be used as proxy indicator for microbial growth and biofilm formation in porous media. In addition, acoustic measurements may provide diagnostic spatiotemporal data for the validation of bioclogging models/simulations. Collectively, this study provides further evidence that geophysical measurements are sensitive to microbial-induced changes to geologic media, and may be useful for the detection and monitoring of subsurface microbial growth, activity, and distribution such as in microbial enhanced oil recovery, assessing biofilm barriers used for contaminant remediation, or as sealants for reservoirs in CO2 sequestration studies.

  12. Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments.

    Directory of Open Access Journals (Sweden)

    Robert J Martinez

    Full Text Available BACKGROUND: Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. METHODOLOGY/PRINCIPAL FINDINGS: Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P or glycerol-3-phosphate (G3P] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P and 20 day (G3P amended treatments, maximum phosphate (PO4(3- concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5 treatments and greatest with G3P (pH 6.8 treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%-50% and 3%-17% of total detected Archaea and Bacteria, respectively. CONCLUSIONS/SIGNIFICANCE: This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium

  13. Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO{sub 2} or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shirong, E-mail: tangshir@hotmail.com [Centre for Research in Ecotoxicology and Environmental Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191 (China); Key Laboratory of Production Environment and Agro-product Safety of Ministry of Agriculture, Tianjin (China); Liao, Shangqiang; Guo, Junkang; Song, Zhengguo; Wang, Ruigang [Centre for Research in Ecotoxicology and Environmental Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191 (China); Key Laboratory of Production Environment and Agro-product Safety of Ministry of Agriculture, Tianjin (China); Zhou, Xiaomin [Plant Science Department, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9 (Canada)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Elevated CO{sub 2} and microbial inoculation, alone or in combination, significantly promoted growth of P. americana, and A. cruentus. Black-Right-Pointing-Pointer Total tissue Cs in plants was significantly increased. Black-Right-Pointing-Pointer A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana. Black-Right-Pointing-Pointer The two plants had slightly different contents of antioxidant enzymes. Black-Right-Pointing-Pointer Combined effects of elevated CO{sub 2} and microbial inoculation can be explored for CO{sub 2}- and microbe-assisted phytoextraction technology. - Abstract: Growth and cesium uptake responses of plants to elevated CO{sub 2} and microbial inoculation, alone or in combination, can be explored for clean-up of contaminated soils, and this induced phytoextraction may be better than the natural process. The present study used open-top chambers to investigate combined effects of Burkholderia sp. D54 inoculation and elevated CO{sub 2} (860 {mu}L L{sup -1}) on growth and Cs uptake by Phytolacca americana and Amaranthus cruentus grown on soil spiked with various levels of Cs (0-1000 mg kg{sup -1}). Elevated CO{sub 2} and bacterial inoculation, alone or in combination, significantly increased biomass production with increased magnitude, ranging from 22% to 139% for P. americana, and 14% to 254% for A. cruentus. Total tissue Cs in both plants was significantly greater for bacterial inoculation treatment singly, and combined treatments of bacterial inoculation and elevated CO{sub 2} than for the control treatment in most cases. Regardless of CO{sub 2} concentrations and bacterial inoculation, A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana, but they had slightly different contents of antioxidant enzymes. It is concluded that combined effects of elevated CO{sub 2} and microbial inoculation with

  14. Growth response and nutrient uptake of blue pine (Pinus wallichiana seedlings inoculated with rhizosphere microorganisms under temperate nursery conditions

    Directory of Open Access Journals (Sweden)

    M.A. Ahangar

    2012-11-01

    Full Text Available Microbial inoculants (Trichoderma harzianum, Pseudomonas fluorescens,Laccaria laccata inoculated either individually or in combinationsignificantly improved the growth and biomass of blue pine seedlings. The ECM fungus Laccaria laccata, when inoculated individually, showed significantly higher plant growth, followed by Pseudomonas fluorescens and Trichoderma harzianum. The combined inoculation of rhizosphere microorganisms showed synergistic growth promoting action and proved superior in enhancing the growth of blue pine than individual inoculation. Co-inoculation of L. laccata with P. fluorescens resulted in higher ectomycorrhizal root colonization. Uptake of nutrients (N, P, K was significantly improved by microbial inoculants, tested individually or in combination. Combined inoculation of L. laccata with T. harzianum and P. fluorescens significantly increased in N, P and K contents in blue pine seedlings as compared to control. Acid phosphatase activity in the rhizosphere of blue pine seedlings was also enhanced by these microorganisms. L. laccata exhibited higher acid phosphatase activity followed by P. fluorescens.

  15. Modelling coupled microbial processes in the subsurface: Model development, verification, evaluation and application

    Science.gov (United States)

    Masum, Shakil A.; Thomas, Hywel R.

    2018-06-01

    To study subsurface microbial processes, a coupled model which has been developed within a Thermal-Hydraulic-Chemical-Mechanical (THCM) framework is presented. The work presented here, focuses on microbial transport, growth and decay mechanisms under the influence of multiphase flow and bio-geochemical reactions. In this paper, theoretical formulations and numerical implementations of the microbial model are presented. The model has been verified and also evaluated against relevant experimental results. Simulated results show that the microbial processes have been accurately implemented and their impacts on porous media properties can be predicted either qualitatively or quantitatively or both. The model has been applied to investigate biofilm growth in a sandstone core that is subjected to a two-phase flow and variable pH conditions. The results indicate that biofilm growth (if not limited by substrates) in a multiphase system largely depends on the hydraulic properties of the medium. When the change in porewater pH which occurred due to dissolution of carbon dioxide gas is considered, growth processes are affected. For the given parameter regime, it has been shown that the net biofilm growth is favoured by higher pH; whilst the processes are considerably retarded at lower pH values. The capabilities of the model to predict microbial respiration in a fully coupled multiphase flow condition and microbial fermentation leading to production of a gas phase are also demonstrated.

  16. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    Science.gov (United States)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  17. Carbon use efficiency (CUE) and biomass turnover of soil microbial communities as affected by bedrock, land management and soil temperature and moisture

    Science.gov (United States)

    Zheng, Qing; Hu, Yuntao; Richter, Andreas; Wanek, Wolfgang

    2017-04-01

    Soil microbial carbon use efficiency (CUE), defined as the proportion of organic C taken up that is allocated to microbial growth, represents an important synthetic representation of microbial community C metabolism that describes the flux partitioning between microbial respiration and growth. Therefore, studying microbial CUE is critical for the understanding of soil C cycling. Microbial CUE is thought to vary with environmental conditions (e.g. temperature and soil moisture). Microbial CUE is thought to decrease with increasing temperature and declining soil moisture, as the latter may trigger stress responses (e.g. the synthesis of stress metabolites), which may consequently lower microbial community CUE. However, these effects on microbial CUE have not been adequately measured so far due to methodological restrictions. The most widely used methods for microbial CUE estimation are based on tracing 13C-labeled substrates into microbial biomass and respiratory CO2, approaches that are known to overestimate microbial CUE of native organic matter in soil. Recently, a novel substrate-independent approach based on the measurement of (i) respiration rates and (ii) the incorporation rates of 18O from labelled water into newly formed microbial DNA has been developed in our laboratory for measuring microbial CUE. This approach overcomes the shortcomings of previously used methods and has already been shown to yield realistic estimations of soil microbial CUE. This approach can also be applied to concurrently measure microbial biomass turnover rates, which also influence the sequestration of soil organic C. Microbial turnover rates are also thought to be impacted by environmental factors, but rarely have been directly measured so far. Here, we aimed at determining the short-term effects of environmental factors (soil temperature and soil moisture) on microbial CUE and microbial biomass turnover rates based on the novel 18O approach. Soils from three land-use types (arable

  18. Effects of Elevated Carbon Dioxide and Salinity on the Microbial Diversity in Lithifying Microbial Mats

    Directory of Open Access Journals (Sweden)

    Steven R. Ahrendt

    2014-03-01

    Full Text Available Atmospheric levels of carbon dioxide (CO2 are rising at an accelerated rate resulting in changes in the pH and carbonate chemistry of the world’s oceans. However, there is uncertainty regarding the impact these changing environmental conditions have on carbonate-depositing microbial communities. Here, we examine the effects of elevated CO2, three times that of current atmospheric levels, on the microbial diversity associated with lithifying microbial mats. Lithifying microbial mats are complex ecosystems that facilitate the trapping and binding of sediments, and/or the precipitation of calcium carbonate into organosedimentary structures known as microbialites. To examine the impact of rising CO2 and resulting shifts in pH on lithifying microbial mats, we constructed growth chambers that could continually manipulate and monitor the mat environment. The microbial diversity of the various treatments was compared using 16S rRNA gene pyrosequencing. The results indicated that elevated CO2 levels during the six month exposure did not profoundly alter the microbial diversity, community structure, or carbonate precipitation in the microbial mats; however some key taxa, such as the sulfate-reducing bacteria Deltasulfobacterales, were enriched. These results suggest that some carbonate depositing ecosystems, such as the microbialites, may be more resilient to anthropogenic-induced environmental change than previously thought.

  19. C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth

    DEFF Research Database (Denmark)

    Chua, Song Lin; Sivakumar, Krishnakumar; Rybtke, Morten Levin

    2015-01-01

    tellurite (TeO3(2-)) exposure induced the intracellular content of the secondary messenger cyclic di-GMP (c-di-GMP) of Pseudomonas aeruginosa. Two diguanylate cyclases (DGCs), SadC and SiaD, were responsible for the increased intracellular content of c-di-GMP. Enhanced c-di-GMP levels by TeO3(2-) further...... increased P. aeruginosa biofilm formation and resistance to TeO3(2-). P. aeruginosa ΔsadCΔsiaD and PAO1/p(lac)-yhjH mutants with low intracellular c-di-GMP content were more sensitive to TeO3(2-) exposure and had low relative fitness compared to the wild-type PAO1 planktonic and biofilm cultures exposed...... to TeO3(2-). Our study provided evidence that c-di-GMP level can play an important role in mediating stress response in microbial communities during both planktonic and biofilm modes of growth....

  20. Microbial degradation and impact of Bracken toxin ptaquiloside on microbial communities in soil

    DEFF Research Database (Denmark)

    Engel, Pernille; Brandt, Kristian Koefoed; Rasmussen, Lars Holm

    2007-01-01

    ), but not in the NZ soil (weak acid loamy Entisol). In the DK soil PTA turnover was predominantly due to microbial degradation (biodegradation); chemical hydrolysis was occurring mainly in the uppermost A horizon where pH was very low (3.4). Microbial activity (basal respiration) and growth ([3H]leucine incorporation...... assay) increased after PTA exposure, indicating that the Bracken toxin served as a C substrate for the organotrophic microorganisms. On the other hand, there was no apparent impact of PTA on community size as measured by substrate-induced respiration or composition as indicated by community......-level physiological profiles. Our results demonstrate that PTA stimulates microbial activity and that microorganisms play a predominant role for rapid PTA degradation in Bracken-impacted soils....

  1. Microbial interactions in drinking water biofilms

    OpenAIRE

    Simões, Lúcia C.; Simões, M.; Vieira, M. J.

    2007-01-01

    Drinking water distribution networks may be viewed as a large reactor where a number of chemical and microbiological processes are taking place. Control of microbial growth in drinking water distribution systems (DWDS) often achieved through the addition of disinfectants, is essential to limit the spread of waterborne pathogens. However, microorganisms can resist disinfection through protection within biofilms and resistant host cells. Recent studies into the microbial ecology ...

  2. The effect of starch, inulin, and degradable protein on ruminal fermentation and microbial growth in rumen simulation technique

    Directory of Open Access Journals (Sweden)

    Xiang H. Zhao

    2014-03-01

    Full Text Available A rumen simulation technique apparatus with eight 800 mL fermentation vessels was used to investigate the effects of rumen degradable protein (RDP level and non-fibre carbohydrate (NFC type on ruminal fermentation, microbial growth, and populations of ruminal cellulolytic bacteria. Treatments consisted of two NFC types (starch and inulin supplemented with 0 g/d (low RDP or 1.56 g/d (high RDP sodium caseinate. No significant differences existed among dietary treatments in the apparent disappearance of dietary nutrients except for dietary N, which increased with increased dietary RDP (P<0.001. Compared with starch, inulin treatments reduced the molar proportion of acetate (P<0.001, the acetate:propionate ratio (P<0.001, and methane production (P=0.006, but increased the butyrate proportion (P<0.001. Increased dietary RDP led to increases in production of total volatile fatty acid (P=0.014 and methane (P=0.050, various measures of N (P≤0.046, and 16s rDNA copy numbers of Ruminococcus flavefaciens (P≤0.010. Non-fibre carbohydrate source did not affect daily microbial N flow regardless of dietary RDP, but ammonia N production was lower for inulin than for starch treatments under high RDP conditions (P<0.001. Compared with starch treatments, inulin depressed the copy numbers of Fibrobacter succinogenes in solid fraction (P=0.023 and R. flavefaciens in liquid (P=0.017 and solid fractions (P=0.007, but it increased the carboxymethylcellulase activity in solid fraction (P=0.045. Current results suggest that starch and inulin differ in ruminal volatile fatty acid fermentation but have similar effects on ruminal digestion and microbial synthesis in vitro, although inulin suppressed the growth of partial ruminal cellulolytic bacteria.

  3. Microbial community dynamics in the forefield of glaciers.

    Science.gov (United States)

    Bradley, James A; Singarayer, Joy S; Anesio, Alexandre M

    2014-11-22

    Retreating ice fronts (as a result of a warming climate) expose large expanses of deglaciated forefield, which become colonized by microbes and plants. There has been increasing interest in characterizing the biogeochemical development of these ecosystems using a chronosequence approach. Prior to the establishment of plants, microbes use autochthonously produced and allochthonously delivered nutrients for growth. The microbial community composition is largely made up of heterotrophic microbes (both bacteria and fungi), autotrophic microbes and nitrogen-fixing diazotrophs. Microbial activity is thought to be responsible for the initial build-up of labile nutrient pools, facilitating the growth of higher order plant life in developed soils. However, it is unclear to what extent these ecosystems rely on external sources of nutrients such as ancient carbon pools and periodic nitrogen deposition. Furthermore, the seasonal variation of chronosequence dynamics and the effect of winter are largely unexplored. Modelling this ecosystem will provide a quantitative evaluation of the key processes and could guide the focus of future research. Year-round datasets combined with novel metagenomic techniques will help answer some of the pressing questions in this relatively new but rapidly expanding field, which is of growing interest in the context of future large-scale ice retreat.

  4. Mycobacterial r32-kDa antigen-specific T-cell responses correlate with successful treatment and a heightened anti-microbial response in human leprosy patients.

    Science.gov (United States)

    Neela, Venkata Sanjeev Kumar; Devalraju, Kamakshi Prudhula; Pydi, Satya Sudheer; Sunder, Sharada Ramaseri; Adiraju, Kameswara Rao; Singh, Surya Satyanarayana; Anandaraj, M P J S; Valluri, Vijaya Lakshmi

    2016-09-01

    Immunological characterization of mycobacterial peptides may help not only in the preparation of a vaccine for leprosy but also in developing in vitro T-cell assays that could perhaps be used as an in vitro correlate for treatment outcome. The main goal of this study was to evaluate the use of Mycobacterium bovis recombinant 32-kDa protein (r32-kDa) antigen-stimulated T-cell assay as a surrogate marker for treatment outcome and monitor vitamin D receptor (VDR)-mediated anti-microbial responses during multidrug therapy (MDT) in leprosy. Newly diagnosed tuberculoid and lepromatous leprosy patients were enrolled and followed up during their course of MDT at 6 and 12 months. IFN-γ, IL-10, IL-17 and IL-23 levels in culture supernatants and expression of VDR, TLR2, LL37 and DEFB in r32-kDa-stimulated PBMCs were measured. Controls comprised household contacts (HHCs) and healthy endemic subjects (HCs). Significant differences were observed in the levels of IFN-γ, IL-17, IL-23, VDR and anti-microbial peptides LL37 and DEFB after treatment and when compared with that of HHCs and HCs, respectively. These findings suggest that responses to r32-kDa antigen reflect an improved immunological and anti-microbial response in leprosy patients during therapy, thereby indicating its potential use as an immune correlate in the treatment of leprosy patients. © The Japanese Society for Immunology. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Improved growth response to GH treatment in irradiated children

    International Nuclear Information System (INIS)

    Lannering, B.; Albertsson-Wikland, K.

    1989-01-01

    The growth response to two years of GH treatment was studied in fifteen children after radiotherapy for a cranial tumour. The growth response was compared to that of short children (-2 SD) and that of children with idiopathic growth hormone deficiency (GHD) of similar ages. All children were treated with hGH 0.1 IU/kg/day s.c.; which is a higher dose and frequency than previously reported for irradiated children. On this protocol the growth rate increased 5.0 +- 0.5 cm/y (mean +- SEM) the first year and 3.8 +- 0.7 cm/y the second year compared to the growth rate the year before GH-treatment. Although the net gain in growth was higher than previously reported, the first year growth response was significantly reduced (p less than 0.05) compared to that of GHD-children (7.6 +- 0.5 cm/y) but exceeded (p less than 0.05) that of short children (3.4 +- 0.3 cm/y). The median spontaneous 24 h-GH secretion was 209 mU/l in the short children, 52 mU/l in the irradiated children and 16 mU/l in the idiopathic GHD children. Thus the growth increment varied inversely to the spontaneous GH secretion observed in the three groups

  6. Studies about behavior of microbial degradation of organic compounds

    International Nuclear Information System (INIS)

    Ohtsuka, Makiko

    2003-02-01

    Some of TRU waste include organic compounds, thus these organic compounds might be nutrients for microbial growth at disposal site. This disposal system might be exposed to high alkali condition by cement compounds as engineering barrier material. In the former experimental studies, it has been supposed that microbial exist under pH = 12 and the microbial activity acclimated to high alkali condition are able to degrade asphalt under anaerobic condition. Microbes are called extremophile that exist in cruel habitat as high alkali or reductive condition. We know less information about the activity of extremophile, though any recent studies reveal them. In this study, the first investigation is metabolic pathway as microbial activity, the second is microbial degradation of aromatic compounds in anaerobic condition, and the third is microbial activity under high alkali. Microbial metabolic pathway consist of two systems that fulfill their function each other. One system is to generate energy for microbial activities and the other is to convert substances for syntheses of organisms' structure materials. As these systems are based on redox reaction between substances, it is made chart of the microbial activity region using pH, Eh, and depth as parameter, There is much report that microbe is able to degrade aromatic compounds under aerobic or molecular O 2 utilizing condition. For degradation of aromatic compounds in anaerobic condition, supplying electron acceptor is required. Co-metabolism and microbial consortia has important role, too. Alcalophile has individual transporting system depending Na + and acidic compounds contained in cell wall. Generating energy is key for survival and growth under high alkali condition. Co-metabolism and microbial consortia are effective for microbial degradation of aromatic compounds under high alkali and reductive condition, and utilizable electron acceptor and degradable organic compounds are required for keeping microbial activity and

  7. New insights into microbial responses to oil spills from the Deepwater Horizon incident

    Energy Technology Data Exchange (ETDEWEB)

    Mason, O.U.; Hazen, T.C.

    2011-06-15

    On April 20, 2010, a catastrophic eruption of methane caused the Deepwater Horizon exploratory drill rig drilling the Macondo Well in Mississippi Canyon Block 252 (MC252) to explode. The Deepwater Horizon oil spill was unprecendeted for several reasons: the volume of oil released; the spill duration; the well depth; the distance from the shore-line (77 km or about 50 miles); the type of oil (light crude); and the injection of dispersant directly at the wellhead. This study clearly demonstrated that there was a profound and significant response by certain members of the in situ microbial community in the deep-sea in the Gulf of Mexico. In particular putative hydrocarbon degrading Bacteria appeared to bloom in response to the Deepwater Horizon oil spill, even though the temperature at these depths is never >5 C. As the plume aged the shifts in the microbial community on a temporal scale suggested that different, yet metabolically important members of the community were able to respond to a myriad of plume constituents, e.g. shifting from propane/ethane to alkanes and finally to methane. Thus, the biodegradation of hydrocarbons in the plume by Bacteria was a highly significant process in the natural attenuation of many compounds released during the Deepwater Horizon oil spill.

  8. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities

    International Nuclear Information System (INIS)

    Liu Feng; Ying Guangguo; Tao Ran; Zhao Jianliang; Yang Jifeng; Zhao Lanfeng

    2009-01-01

    The potential impact of six antibiotics (chlortetracycline, tetracycline and tylosin; sulfamethoxazole, sulfamethazine and trimethoprim) on plant growth and soil quality was studied by using seed germination test on filter paper and plant growth test in soil, soil respiration and phosphatase activity tests. The phytotoxic effects varied between the antibiotics and between plant species (sweet oat, rice and cucumber). Rice was most sensitive to sulfamethoxazole with the EC10 value of 0.1 mg/L. The antibiotics tested inhibited soil phosphatase activity during the 22 days' incubation. Significant effects on soil respiration were found for the two sulfonamides (sulfamethoxazole and sulfamethazine) and trimethoprim, whereas little effects were observed for the two tetracyclines and tylosin. The effective concentrations (EC10 values) for soil respiration in the first 2 days were 7 mg/kg for sulfamethoxazole, 13 mg/kg for sulfamethazine and 20 mg/kg for trimethoprim. Antibiotic residues in manure and soils may affect soil microbial and enzyme activities. - Terrestrial ecotoxicological effects of antibiotics are related to their sorption and degradation behavior in soil.

  9. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities

    Energy Technology Data Exchange (ETDEWEB)

    Liu Feng [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.co [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Tao Ran; Zhao Jianliang; Yang Jifeng [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Zhao Lanfeng [College of Resource and Environmental Science, South China Agricultural University, Guangzhou 510642 (China)

    2009-05-15

    The potential impact of six antibiotics (chlortetracycline, tetracycline and tylosin; sulfamethoxazole, sulfamethazine and trimethoprim) on plant growth and soil quality was studied by using seed germination test on filter paper and plant growth test in soil, soil respiration and phosphatase activity tests. The phytotoxic effects varied between the antibiotics and between plant species (sweet oat, rice and cucumber). Rice was most sensitive to sulfamethoxazole with the EC10 value of 0.1 mg/L. The antibiotics tested inhibited soil phosphatase activity during the 22 days' incubation. Significant effects on soil respiration were found for the two sulfonamides (sulfamethoxazole and sulfamethazine) and trimethoprim, whereas little effects were observed for the two tetracyclines and tylosin. The effective concentrations (EC10 values) for soil respiration in the first 2 days were 7 mg/kg for sulfamethoxazole, 13 mg/kg for sulfamethazine and 20 mg/kg for trimethoprim. Antibiotic residues in manure and soils may affect soil microbial and enzyme activities. - Terrestrial ecotoxicological effects of antibiotics are related to their sorption and degradation behavior in soil.

  10. Chemical diversity of microbial volatiles and their potential for plant growth and productivity

    Directory of Open Access Journals (Sweden)

    CHIDANANDA NAGAMANGALA KANCHISWAMY

    2015-03-01

    Full Text Available Microbial volatile organic compounds (MVOCs are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs and their potential physiological effects on crops and analyze potential and actual limitations for MVOC use as a sustainable strategy for improving productivity and reducing pesticide use.

  11. Species-specific effects of epigeic earthworms on microbial community structure during first stages of decomposition of organic matter.

    Science.gov (United States)

    Gómez-Brandón, María; Lores, Marta; Domínguez, Jorge

    2012-01-01

    Epigeic earthworms are key organisms in organic matter decomposition because of the interactions they establish with microorganisms. The earthworm species and the quality and/or substrate availability are expected to be major factors influencing the outcome of these interactions. Here we tested whether and to what extent the epigeic earthworms Eisenia andrei, Eisenia fetida and Perionyx excavatus, widely used in vermicomposting, are capable of altering the microbiological properties of fresh organic matter in the short-term. We also questioned if the earthworm-induced modifications to the microbial communities are dependent on the type of substrate ingested. To address these questions we determined the microbial community structure (phospholipid fatty acid profiles) and microbial activity (basal respiration and microbial growth rates) of three types of animal manure (cow, horse and rabbit) that differed in microbial composition, after being processed by each species of earthworm for one month. No differences were found between earthworm-worked samples with regards to microbial community structure, irrespective of type of manure, which suggests the existence of a bottleneck effect of worm digestion on microbial populations of the original material consumed. Moreover, in mesocosms containing cow manure the presence of E. andrei resulted not only in a decrease in bacterial and fungal biomass, but also in a reduced bacterial growth rate and total microbial activity, while no such reduction was found with E. fetida and P. excavatus. Our results point to the species of earthworm with its associated gut microbiota as a strong determinant of the process shaping the structure of microbial communities in the short-term. This must nonetheless be weighed against the fact that further knowledge is necessary to evaluate whether the changes in the composition of microbiota in response to the earthworm species is accompanied by a change in the microbial community diversity and

  12. Species-specific effects of epigeic earthworms on microbial community structure during first stages of decomposition of organic matter.

    Directory of Open Access Journals (Sweden)

    María Gómez-Brandón

    Full Text Available Epigeic earthworms are key organisms in organic matter decomposition because of the interactions they establish with microorganisms. The earthworm species and the quality and/or substrate availability are expected to be major factors influencing the outcome of these interactions. Here we tested whether and to what extent the epigeic earthworms Eisenia andrei, Eisenia fetida and Perionyx excavatus, widely used in vermicomposting, are capable of altering the microbiological properties of fresh organic matter in the short-term. We also questioned if the earthworm-induced modifications to the microbial communities are dependent on the type of substrate ingested.To address these questions we determined the microbial community structure (phospholipid fatty acid profiles and microbial activity (basal respiration and microbial growth rates of three types of animal manure (cow, horse and rabbit that differed in microbial composition, after being processed by each species of earthworm for one month. No differences were found between earthworm-worked samples with regards to microbial community structure, irrespective of type of manure, which suggests the existence of a bottleneck effect of worm digestion on microbial populations of the original material consumed. Moreover, in mesocosms containing cow manure the presence of E. andrei resulted not only in a decrease in bacterial and fungal biomass, but also in a reduced bacterial growth rate and total microbial activity, while no such reduction was found with E. fetida and P. excavatus.Our results point to the species of earthworm with its associated gut microbiota as a strong determinant of the process shaping the structure of microbial communities in the short-term. This must nonetheless be weighed against the fact that further knowledge is necessary to evaluate whether the changes in the composition of microbiota in response to the earthworm species is accompanied by a change in the microbial community

  13. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments

    Directory of Open Access Journals (Sweden)

    Ashleigh R. Currie

    2017-08-01

    Full Text Available Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2 and elevated temperature (ambient +4°C on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA and bacterial nitrite reductase (nirS were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

  14. B-Vitamin Competition: Intracellular and Dissolved B-Vitamins Provide Insight into Marine Microbial Community Dynamics

    Science.gov (United States)

    Suffridge, C.; Gomez-Consarnau, L.; Qu, P.; Tenenbaum, N.; Fu, F.; Hutchins, D. A.; Sanudo-Wilhelmy, S. A.

    2016-02-01

    The availability of B-vitamins has the ability to directly affect the dynamics of the marine microbial community. Here we show, for the first time, the connection between dissolved and intracellular B-vitamins in a marine environmental community. Two incubation experiments were conducted at a long-term study site (SPOT) in the San Pedro Basin off the coast of Los Angeles, CA. Experiments were conducted in oligotrophic, preupwelling conditions. Due to the 2015 El Niño event, the seasonal upwelling at SPOT did not occur, creating unusually nutrient depleted conditions. Vitamins B1, B7, and B12 were added in addition to macronutrients at concentrations similar to typical SPOT upwelling conditions. Intracellular and dissolved B-vitamin analyses were conducted to determine shifts in cellular B-vitamin requirements as a function of growth rate. We observed a significant bacterioplankton and phytoplankton growth responses with the addition of B-vitamins in a manner that appears to match the enzymatic requirements for these compounds (e.g. B1>B7>B12). Intracellular B-vitamin analysis of T0 samples support this observation, as all four forms of B12 were not detectable within cells, yet multiple forms of B1 and B7 were detected at or near levels previously reported. Treatments with B12 and macronutrients were observed to have the greatest growth rates. This finding, in addition to the apparent lack of intracellular B12 in the initial community, appears to indicate that the initial microbial community was limited by B12. The addition of each vitamin caused a distinct shift in the blooming microbial community. Our results demonstrate that B-vitamins strongly influence not only the growth rate, but also the species composition and species succession of the microbial community as a whole. Large-scale changes to upwelling regimes are predicted in the future ocean; our results indicate that B-vitamins will have a substantial role in controlling microbial community dynamics under

  15. Microbial Community Dynamics from Permafrost Across the Pleistocene-Holocene Boundary and Response to Abrupt Climate Change

    Science.gov (United States)

    Hammad, A.; Mahony, M.; Froese, D. G.; Lanoil, B. D.

    2014-12-01

    Earth is currently undergoing rapid warming similar to that observed about 10,000 years ago at the end of the Pleistocene. We know a considerable amount about the adaptations and extinctions of mammals and plants at the Pleistocene/Holocene (P/H) boundary, but relatively little about changes at the microbial level. Due to permafrost soils' freezing anoxic conditions, they act as microbial diversity archives allowing us to determine how microbial communities adapted to the abrupt warming at the end of P. Since microbial community composition only helps differentiate viable and extant microorganisms in frozen permafrost, microbial activity in thawing permafrost must be investigated to provide a clear understanding of microbial response to climate change. Current increased temperatures will result in warming and potential thaw of permafrost and release of stored organic carbon, freeing it for microbial utilization; turning permafrost into a carbon source. Studying permafrost viable microbial communities' diversity and activity will provide a better understanding of how these microorganisms respond to soil edaphic variability due to climate change across the P/H boundary, providing insight into the changes that the soil community is currently undergoing in this modern era of rapid climate change. Modern soil, H and P permafrost cores were collected from Lucky Lady II site outside Dawson City, Yukon. 16S rRNA high throughput sequencing of permafrost DNA showed the same trends for total and viable community richness and diversity with both decreasing with permafrost depth and only the richness increasing in mid and early P. The modern, H and P soils had 50.9, 33.9, and 27.3% unique viable species and only 14% of the total number of viable species were shared by all soils. Gas flux measurements of thawed permafrost showed metabolic activity in modern and permafrost soils, aerobic CH­­4 consumption in modern, some H and P soils, and anaerobic CH­­4 production in one H

  16. Microbial Activity Response to Solar Radiation across Contrasting Environmental Conditions in Salar de Huasco, Northern Chilean Altiplano.

    Science.gov (United States)

    Hernández, Klaudia L; Yannicelli, Beatriz; Olsen, Lasse M; Dorador, Cristina; Menschel, Eduardo J; Molina, Verónica; Remonsellez, Francisco; Hengst, Martha B; Jeffrey, Wade H

    2016-01-01

    In high altitude environments, extreme levels of solar radiation and important differences of ionic concentrations over narrow spatial scales may modulate microbial activity. In Salar de Huasco, a high-altitude wetland in the Andean mountains, the high diversity of microbial communities has been characterized and associated with strong environmental variability. Communities that differed in light history and environmental conditions, such as nutrient concentrations and salinity from different spatial locations, were assessed for bacterial secondary production (BSP, 3 H-leucine incorporation) response from short-term exposures to solar radiation. We sampled during austral spring seven stations categorized as: (a) source stations, with recently emerged groundwater (no-previous solar exposure); (b) stream running water stations; (c) stations connected to source waters but far downstream from source points; and (d) isolated ponds disconnected from ground sources or streams with a longer isolation and solar exposure history. Very high values of 0.25 μE m -2 s -1 , 72 W m -2 and 12 W m -2 were measured for PAR, UVA, and UVB incident solar radiation, respectively. The environmental factors measured formed two groups of stations reflected by principal component analyses (near to groundwater sources and isolated systems) where isolated ponds had the highest BSP and microbial abundance (35 microalgae taxa, picoeukaryotes, nanoflagellates, and bacteria) plus higher salinities and PO 4 3- concentrations. BSP short-term response (4 h) to solar radiation was measured by 3 H-leucine incorporation under four different solar conditions: full sun, no UVB, PAR, and dark. Microbial communities established in waters with the longest surface exposure (e.g., isolated ponds) had the lowest BSP response to solar radiation treatments, and thus were likely best adapted to solar radiation exposure contrary to ground source waters. These results support our light history (solar exposure

  17. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  18. A fermented meat model system for studies of microbial aroma formation

    DEFF Research Database (Denmark)

    Tjener, Karsten; Stahnke, Louise Heller; Andersen, L.

    2003-01-01

    A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starter......H, microbial growth and volatile profiles was similar to sausage production. Based on these findings, the model system was considered valid for studies of aroma formation of meat cultures for fermented sausage....... for multivariate data analysis. Growth of lactic acid bacteria was comparable for model and sausages, whereas survival of S. xylosus was better in the model. Multivariate analysis of volatiles showed that differences between fast and slowly acidified samples were identical for model and sausage. For both sausage...

  19. Microbial biofilms: biosurfactants as antibiofilm agents.

    Science.gov (United States)

    Banat, Ibrahim M; De Rienzo, Mayri A Díaz; Quinn, Gerry A

    2014-12-01

    Current microbial inhibition strategies based on planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilm communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. All aspects of biofilm measurement, monitoring, dispersal, control, and inhibition are becoming issues of increasing importance. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms in addition to many other advantages. The dispersal properties of biosurfactants have been shown to rival those of conventional inhibitory agents against bacterial and yeast biofilms. This makes them suitable candidates for use in new generations of microbial dispersal agents and for use as adjuvants for existing microbial suppression or eradication strategies. In this review, we explore aspects of biofilm characteristics and examine the contribution of biologically derived surface-active agents (biosurfactants) to the disruption or inhibition of microbial biofilms.

  20. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie

    2015-01-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses, with or with...... of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.......Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses....... The microbial growth caused changes in the crude oil–brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil–brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition...

  1. Reduced neonatal regulatory T cell response to microbial stimuli associates with subsequent eczema in high-risk infants.

    Science.gov (United States)

    Ismail, Intan H; Boyle, Robert J; Mah, Li-Jeen; Licciardi, Paul V; Tang, Mimi L K

    2014-11-01

    Regulatory T cells (Treg) play an essential role in early immune programming and shaping the immune response towards a pro-allergic or tolerant state. We evaluated cord blood Treg and cytokine responses to microbial and non-microbial stimuli in infants at high risk of allergic disease and their associations with development of allergic disease in the first year. Cord blood mononuclear cells from 72 neonates were cultured with toll-like receptors (TLR2) ligands: lipoteichoic acid (LTA) and heat-killed Lactobacillus rhamnosus GG (HKL); TLR4 ligand: lipopolysaccharide (LPS); ovalbumin (OVA); anti-CD3; or media for 48 h. Treg numbers and Treg cytokines were assessed in relation to allergic disease outcomes during the first year of life (eczema and atopic sensitization). Infants with eczema (n = 24) had reduced percentages of FoxP3(hi)CD25(hi) Treg in LTA (p = 0.01, adj p = 0.005) and HKL (p = 0.04, adj p = 0.02) stimulated cultures as well as reduced IL-10 (p = 0.01) production following HKL stimulation compared to those without eczema (n = 48). No differences in Treg or cytokine responses to LPS, OVA or anti-CD3 were seen. Infants who developed sensitization had lower percentages of Treg following TLR2 stimulation (but not other stimuli) compared to non-sensitized infants. High-risk children who develop allergic disease in the first year of life have deficient Treg responses to microbial stimuli but not allergen from the time of birth, which may contribute to failure of immune tolerance development in infancy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Growth and physiological responses to water and nutrient stress in ...

    African Journals Online (AJOL)

    Growth and physiological responses to water and nutrient stress in oil palm. ... changes in growth, physiology and nutrient concentration in response to two watering regimes (well-watered and water-stress conditions) and ... from 32 Countries:.

  3. Physiological blockage in plants in response to postharvest stress

    African Journals Online (AJOL)

    Marcos

    2013-03-13

    Mar 13, 2013 ... response of the plant to cut stem (Ichimura et al., 1999). When the vessel is ... blockage due to microbial growth and blockage caused by formation of .... HQS) and chlorine, are used to assess its actions in the microorganisms ...

  4. Distinct respiratory responses of soils to complex organic substrate are governed predominantly by soil architecture and its microbial community.

    Science.gov (United States)

    Fraser, F C; Todman, L C; Corstanje, R; Deeks, L K; Harris, J A; Pawlett, M; Whitmore, A P; Ritz, K

    2016-12-01

    Factors governing the turnover of organic matter (OM) added to soils, including substrate quality, climate, environment and biology, are well known, but their relative importance has been difficult to ascertain due to the interconnected nature of the soil system. This has made their inclusion in mechanistic models of OM turnover or nutrient cycling difficult despite the potential power of these models to unravel complex interactions. Using high temporal-resolution respirometery (6 min measurement intervals), we monitored the respiratory response of 67 soils sampled from across England and Wales over a 5 day period following the addition of a complex organic substrate (green barley powder). Four respiratory response archetypes were observed, characterised by different rates of respiration as well as different time-dependent patterns. We also found that it was possible to predict, with 95% accuracy, which type of respiratory behaviour a soil would exhibit based on certain physical and chemical soil properties combined with the size and phenotypic structure of the microbial community. Bulk density, microbial biomass carbon, water holding capacity and microbial community phenotype were identified as the four most important factors in predicting the soils' respiratory responses using a Bayesian belief network. These results show that the size and constitution of the microbial community are as important as physico-chemical properties of a soil in governing the respiratory response to OM addition. Such a combination suggests that the 'architecture' of the soil, i.e. the integration of the spatial organisation of the environment and the interactions between the communities living and functioning within the pore networks, is fundamentally important in regulating such processes.

  5. Effects of probiotic supplement ( and on feed efficiency, growth performance, and microbial population of weaning rabbits

    Directory of Open Access Journals (Sweden)

    Thanh Lam Phuoc

    2017-02-01

    Full Text Available Objective This study aimed to investigate the effects of single or/and double strains of probiotic supplement on feed efficiency, growth performance, and microbial population in distal gastrointestinal tract (GIT of weaning rabbits. Methods Sixty-four weaning (28 days old New Zealand White rabbits were randomly distributed into four groups with treatments including: basal diet without probiotic supplement (control or supplemented as follows: 1×106 cfu/g B. subtilis (BS group, 1×107 cfu/g L. acidophilus (LA group, or 0.5×106 cfu/g B. subtilis plus 0.5×107 cfu/g L. acidophilus (BL group. During the research, the male and female rabbits were fed separately. Body weight of the rabbits was recorded at 28, 42, and 70 d of age. Results There was an increase (p<0.05 in body weight gain for the LA group at 42 d. Rabbits fed BL responsed with a greater growth (p<0.05 and better feed conversion ratio (p<0.05 than those fed with no probiotic. Digestibility coefficients of dry matter, organic matter, crude protein, neutral detergent fiber, and gross energy were higher (p<0.05 in LA and BL groups than those in the control group. Male rabbits had higher (p<0.05 Bacilli spp. and Coliformis spp. in the ileum than female rabbits. Rabbits supplemented with BS had greater (p<0.05 numbers of bacilli in all intestinal segments than those receiving no probiotic, whereas intestinal Lactobacilli populations were greater (p<0.001 in the LA and BL diets compared to control. Average intestinal coliform populations were lowest (p<0.05 in the rabbits supplemented with LA as compared to those fed the control and BS. Conclusion Supplementation of L. acidophilus alone or in combination with B. subtilis at a half of dose could enhance number of gut beneficial bacteria populations, nutrient digestibility, cecal fermentation, feed efficiency, and growth performance, but rabbits receiving only B. subtilis alone were not different from the controls without probiotic.

  6. Quantifying the Importance of the Rare Biosphere for Microbial Community Response to Organic Pollutants in a Freshwater Ecosystem.

    Science.gov (United States)

    Wang, Yuanqi; Hatt, Janet K; Tsementzi, Despina; Rodriguez-R, Luis M; Ruiz-Pérez, Carlos A; Weigand, Michael R; Kizer, Heidi; Maresca, Gina; Krishnan, Raj; Poretsky, Rachel; Spain, Jim C; Konstantinidis, Konstantinos T

    2017-04-15

    A single liter of water contains hundreds, if not thousands, of bacterial and archaeal species, each of which typically makes up a very small fraction of the total microbial community (biosphere." How often, and via what mechanisms, e.g., clonal amplification versus horizontal gene transfer, the rare taxa and genes contribute to microbial community response to environmental perturbations represent important unanswered questions toward better understanding the value and modeling of microbial diversity. We tested whether rare species frequently responded to changing environmental conditions by establishing 20-liter planktonic mesocosms with water from Lake Lanier (Georgia, USA) and perturbing them with organic compounds that are rarely detected in the lake, including 2,4-dichlorophenoxyacetic acid (2,4-D), 4-nitrophenol (4-NP), and caffeine. The populations of the degraders of these compounds were initially below the detection limit of quantitative PCR (qPCR) or metagenomic sequencing methods, but they increased substantially in abundance after perturbation. Sequencing of several degraders (isolates) and time-series metagenomic data sets revealed distinct cooccurring alleles of degradation genes, frequently carried on transmissible plasmids, especially for the 2,4-D mesocosms, and distinct species dominating the post-enrichment microbial communities from each replicated mesocosm. This diversity of species and genes also underlies distinct degradation profiles among replicated mesocosms. Collectively, these results supported the hypothesis that the rare biosphere can serve as a genetic reservoir, which can be frequently missed by metagenomics but enables community response to changing environmental conditions caused by organic pollutants, and they provided insights into the size of the pool of rare genes and species. IMPORTANCE A single liter of water or gram of soil contains hundreds of low-abundance bacterial and archaeal species, the so called rare biosphere. The

  7. Effects of hydraulic frac fluids and formation waters on groundwater microbial communities

    Science.gov (United States)

    Krueger, Martin; Jimenez, Nuria

    2017-04-01

    Shale gas is being considered as a complementary energy resource to other fossil fuels. Its exploitation requires using advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemicals) are injected at high pressures into the formations, to create fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluid partly remains in the formation, while up to 40% flows back to the surface, together with reservoir waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The aim of our study was to investigate the potential impacts of frac or geogenic chemicals, frac fluid, formation water or flowback on groudnwater microbial communities. Laboratory experiments under in situ conditions (i.e. at in situ temperature, high pressure) were conducted using groundwater samples from three different locations. Series of microcosms containing R2 broth medium or groundwater spiked with either single frac chemicals (including biocides), frac fluids, artificial reservoir water, NaCl, or different mixtures of reservoir water and frac fluid (to simulate flowback) were incubated in the dark. Controls included non-amended and non-inoculated microcosms. Classical microbiological methods and molecular analyses were used to assess changes in the microbial abundance, community structure and function in response to the different treatments. Microbial communities were quite halotolerant and their growth benefited from low concentrations of reservoir waters or salt, but they were negatively affected by higher concentrations of formation waters, salt, biocides or frac fluids. Changes on the microbial community structure could be detected by T-RFLP. Single frac components like guar gum or choline chloride were used as substrates, while others like triethanolamine or light oil distillate hydrogenated prevented microbial growth in

  8. Environmental controls on microbial communities in continental serpentinite fluids

    Directory of Open Access Journals (Sweden)

    Melitza eCrespo-Medina

    2014-11-01

    Full Text Available Geochemical reactions associated with serpentinization alter the composition of dissolved organic compounds in circulating fluids and potentially liberate mantle-derived carbon and reducing power to support subsurface microbial communities. Previous studies have identified Betaproteobacteria from the order Burkholderiales and bacteria from the order Clostridiales as key components of the serpentinite–hosted microbiome, however there is limited knowledge of their metabolic capabilities or growth characteristics. In an effort to better characterize microbial communities, their metabolism, and factors limiting their activities, microcosm experiments were designed with fluids collected from several monitoring wells at the Coast Range Ophiolite Microbial Observatory (CROMO in northern California during expeditions in March and August 2013. The incubations were initiated with a hydrogen atmosphere and a variety of carbon sources (carbon dioxide, methane, acetate and formate, with and without the addition of nutrients and electron acceptors. Growth was monitored by direct microscopic counts; DNA yield and community composition was assessed at the end of the three month incubation. For the most part, results indicate that bacterial growth was favored by the addition of acetate and methane, and that the addition of nutrients and electron acceptors had no significant effect on microbial growth, suggesting no nutrient- or oxidant-limitation. However the addition of sulfur amendments led to different community compositions. The dominant organisms at the end of the incubations were closely related to Dethiobacter sp. and to the family Comamonadaceae, which are also prominent in culture-independent gene sequencing surveys. These experiments provide one of first insights into the biogeochemical dynamics of the serpentinite subsurface environment and will facilitate experiments to trace microbial activities in serpentinizing ecosystems.

  9. Mechanistic Understanding of Microbial Plugging for Improved Sweep Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Steven Bryant; Larry Britton

    2008-09-30

    Microbial plugging has been proposed as an effective low cost method of permeability reduction. Yet there is a dearth of information on the fundamental processes of microbial growth in porous media, and there are no suitable data to model the process of microbial plugging as it relates to sweep efficiency. To optimize the field implementation, better mechanistic and volumetric understanding of biofilm growth within a porous medium is needed. In particular, the engineering design hinges upon a quantitative relationship between amount of nutrient consumption, amount of growth, and degree of permeability reduction. In this project experiments were conducted to obtain new data to elucidate this relationship. Experiments in heterogeneous (layered) beadpacks showed that microbes could grow preferentially in the high permeability layer. Ultimately this caused flow to be equally divided between high and low permeability layers, precisely the behavior needed for MEOR. Remarkably, classical models of microbial nutrient uptake in batch experiments do not explain the nutrient consumption by the same microbes in flow experiments. We propose a simple extension of classical kinetics to account for the self-limiting consumption of nutrient observed in our experiments, and we outline a modeling approach based on architecture and behavior of biofilms. Such a model would account for the changing trend of nutrient consumption by bacteria with the increasing biomass and the onset of biofilm formation. However no existing model can explain the microbial preference for growth in high permeability regions, nor is there any obvious extension of the model for this observation. An attractive conjecture is that quorum sensing is involved in the heterogeneous bead packs.

  10. Final Report: Stability of U (VII) and Tc (VII) Reducing Microbial Communities To Environmental Perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Istok, Jonathan D

    2008-07-07

    'Bioimmobilization' of redox-sensitive metals and radionuclides is being investigated as a way to remediate contaminated groundwater and sediments. In this approach, growth-limiting substrates are added to stimulate the activity of targeted groups of indigenous microorganisms and create conditions favorable for the microbially-mediated precipitation ('bioimmobilization') of targeted contaminants. This project investigated a fundamentally new approach for modeling this process that couples thermodynamic descriptions for microbial growth with associated geochemical reactions. In this approach, a synthetic microbial community is defined as a collection of defined microbial groups; each with a growth equation derived from bioenergetic principles. The growth equations and standard-state free energy yields are appended to a thermodynamic database for geochemical reactions and the combined equations are solved simultaneously to predict the effect of added substrates on microbial biomass, community composition, and system geochemistry. This approach, with a single set of thermodynamic parameters (one for each growth equation), was used to predict the results of laboratory and field bioimmobilization experiments at two geochemically diverse research sites. Predicted effects of ethanol or acetate addition on uranium and technetium solubility, major ion geochemistry, mineralogy, microbial biomass and community composition were in general agreement with experimental observations although the available experimental data precluded rigorous model testing. Model simulations provide insight into the long-standing difficulty in transferring experimental results from the laboratory to the field and from one field site to the next, especially if the form, concentration, or delivery of growth substrate is varied from one experiment to the next. Although originally developed for use in better understanding bioimmobilization of uranium and technetium via reductive

  11. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem.

    Science.gov (United States)

    He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2014-03-01

    The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems.

  12. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities.

    Science.gov (United States)

    Strickland, Michael S; McCulley, Rebecca L; Nelson, Jim A; Bradford, Mark A

    2015-01-01

    Inputs of low molecular weight carbon (LMW-C) to soil - primarily via root exudates- are expected to be a major driver of microbial activity and source of stable soil organic carbon. It is expected that variation in the type and composition of LMW-C entering soil will influence microbial community composition and function. If this is the case then short-term changes in LMW-C inputs may alter processes regulated by these communities. To determine if change in the composition of LMW-C inputs influences microbial community function and composition, we conducted a 90 day microcosm experiment whereby soils sourced from three different land covers (meadows, deciduous forests, and white pine stands) were amended, at low concentrations, with one of eight simulated root exudate treatments. Treatments included no addition of LMW-C, and the full factorial combination of glucose, glycine, and oxalic acid. After 90 days, we conducted a functional response assay and determined microbial composition via phospholipid fatty acid analysis. Whereas we noted a statistically significant effect of exudate treatments, this only accounted for ∼3% of the variation observed in function. In comparison, land cover and site explained ∼46 and ∼41% of the variation, respectively. This suggests that exudate composition has little influence on function compared to site/land cover specific factors. Supporting the finding that exudate effects were minor, we found that an absence of LMW-C elicited the greatest difference in function compared to those treatments receiving any LMW-C. Additionally, exudate treatments did not alter microbial community composition and observable differences were instead due to land cover. These results confirm the strong effects of land cover/site legacies on soil microbial communities. In contrast, short-term changes in exudate composition, at meaningful concentrations, may have little impact on microbial function and composition.

  13. Manipulatiaon of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  14. Manipulation of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  15. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  16. Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology.

    Science.gov (United States)

    Xue, Yingying; Qian, Chen; Wang, Zhilong; Xu, Jian-He; Yang, Rude; Qi, Hanshi

    2010-01-01

    Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box-Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.

  17. Microbial-Induced Heterogeneity in the Acoustic Properties of Porous Media

    Science.gov (United States)

    Acoustic wave data were acquired over a two-dimensional region of a microbial-stimulated sand column and an unstimulated sand column to assess the spatiotemporal changes in a porous medium caused by microbial growth and biofilm formation. The acoustic signals from the unstimulate...

  18. Developing and using artificial soils to analyze soil microbial processes

    Science.gov (United States)

    Gao, X.; Cheng, H. Y.; Boynton, L.; Masiello, C. A.; Silberg, J. J.

    2017-12-01

    Microbial diversity and function in soils are governed by soil characteristics such as mineral composition, particles size and aggregations, soil organic matter (SOM), and availability of nutrients and H2O. The spatial and temporal heterogeneity of soils creates a range of niches (hotspots) differing in the availability of O2, H2O, and nutrients, which shapes microbial activities at scales ranging from nanometer to landscape. Synthetic biologists often examine microbial response trigged by their environment conditions in nutrient-rich aqueous media using single strain microbes. While these studies provided useful insight in the role of soil microbes in important soil biogeochemical processes (e.g., C cycling, N cycling, etc.), the results obtained from the over-simplified model systems are often not applicable natural soil systems. On the contrary, soil microbiologists examine microbial processes in natural soils using longer incubation time. However, due to its physical, chemical and biological complexity of natural soils, it is often difficult to examine soil characteristics independently and understand how each characteristic influences soil microbial activities and their corresponding soil functioning. Therefore, it is necessary to bridge the gap and develop a model matrix to exclude unpredictable influences from the environment while still reliably mimicking real environmental conditions. The objective of this study is to design a range of ecologically-relevant artificial soils with varying texture (particle size distribution), structure, mineralogy, SOM content, and nutrient heterogeneity. We thoroughly characterize the artificial soils for pH, active surface area and surface morphology, cation exchange capacity (CEC), and water retention curve. We demonstrate the effectiveness of the artificial soils as useful matrix for microbial processes, such as microbial growth and horizontal gene transfer (HGT), using the gas-reporting biosensors recently developed in

  19. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea

    KAUST Repository

    Ziegler, Maren; Roik, Anna Krystyna; Porter, Adam; Zubier, Khalid; Mudarris, Mohammed S.; Ormond, Rupert; Voolstra, Christian R.

    2016-01-01

    Coral-associated bacteria play an increasingly recognized part in coral health. We investigated the effect of local anthropogenic impacts on coral microbial communities on reefs near Jeddah, the largest city on the Saudi Arabian coast of the central Red Sea. We analyzed the bacterial community structure of water and corals (Pocillopora verrucosa and Acropora hemprichii) at sites that were relatively unimpacted, exposed to sedimentation & local sewage, or in the discharge area of municipal wastewaters. Coral microbial communities were significantly different at impacted sites: in both corals the main symbiotic taxon decreased in abundance. In contrast, opportunistic bacterial families, such as e.g. Vibrionaceae and Rhodobacteraceae, were more abundant in corals at impacted sites. In conclusion, microbial community response revealed a measurable footprint of anthropogenic impacts to coral ecosystems close to Jeddah, even though the corals appeared visually healthy.

  20. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea

    KAUST Repository

    Ziegler, Maren

    2016-01-04

    Coral-associated bacteria play an increasingly recognized part in coral health. We investigated the effect of local anthropogenic impacts on coral microbial communities on reefs near Jeddah, the largest city on the Saudi Arabian coast of the central Red Sea. We analyzed the bacterial community structure of water and corals (Pocillopora verrucosa and Acropora hemprichii) at sites that were relatively unimpacted, exposed to sedimentation & local sewage, or in the discharge area of municipal wastewaters. Coral microbial communities were significantly different at impacted sites: in both corals the main symbiotic taxon decreased in abundance. In contrast, opportunistic bacterial families, such as e.g. Vibrionaceae and Rhodobacteraceae, were more abundant in corals at impacted sites. In conclusion, microbial community response revealed a measurable footprint of anthropogenic impacts to coral ecosystems close to Jeddah, even though the corals appeared visually healthy.

  1. Growth Response of Silver Fir and Bosnian Pine from Kosovo

    Directory of Open Access Journals (Sweden)

    Elvin Toromani

    2010-06-01

    Full Text Available Background and Purpose: This paper explore the growth-climate relationships in total ring width chronologies of silver fir (Abies alba Mill. and Bosnian pine (Pinus heldreichii Christ. The objective of this study is to quantify the climate influence on radial growth of both species. The relationships between climate and ring widths were analyzed using extreme growing years (called pointer years, simple correlations and response functions analysis (bootstrapped coefficients. The objectives of this study were: (1 to define the pattern of climatic response of each species, (2 to highlight the influence of local ecological conditions on tree's growth, and (3 to compare the response of silver fir and Bosnian pine to climate. Responses of total ring width to climate were estimated by establishing the mean relationship between growth and climate through simple correlations analysis and bootstrapped response functions. The response to climatic variability was also assessed by analyzing pointer years which correspond to abrupt changes in growth pattern and revealing the tree-growth response to extreme climatic events. For the period 1908-2008 the mean sensitivity (MS of total ring width chronology for Bosnian pine (0.209 was higher than silver fir (0.169 suggesting that Bosnian pine is more sensitive to climate (pointer years were more frequent in ring width chronology of Bosnian pine than in silver fir ring width chronology. The high values of first-order autocorrelations for Bosnian pine (0.674 indicated a strong dependence of current growth on the previous year’s growth. Pointer years analysis underlined the high sensitivity to spring temperatures and precipitation for both species. Radial growth for both species depends strongly on spring climate variables (temperatures and precipitation which play a significant role particularly for earlywood production. Material and Methods: We selected 12 silver fir trees and 15 Bosnian pine trees and took two 5

  2. Responses of Soil Microbial Community Structure and Diversity to Agricultural Deintensification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jian; S.HU; RUI Wen-Yi; C.TU; H.G.DIAB; F.J.LOUWS; J.P.MUELLER; N.CREAMER; M.BELL; M.G.WAGGER

    2005-01-01

    Using a scheme of agricultural fields with progressively less intensive management (deintensification), different management practices in six agroecosystems located near Goldsboro, NC, USA were tested in a large-scale experiment, including two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT), an organic farming system (OR), an integrated cropping system with animals (IN), a successional field (SU), and a plantation woodlot (WO). Microbial phospholipid fatty acid (PLFA) profiles and substrate utilization patterns (BIOLOG ECO plates) were measured to examine the effects of deintensification on the structure and diversity of soil microbial communities. Principle component analyses of PLFA and BIOLOG data showed that the microbial community structure diverged among the soils of the six systems.Lower microbial diversity was found in lowly managed ecosystem than that in intensive and moderately managed agroecosystems, and both fungal contribution to the total identified PLFAs and the ratio of microbial biomass C/N increased along with agricultural deintensification. Significantly higher ratios of C/N (P < 0.05) were found in the WO and SU systems, and for fungal/bacterial PLFAs in the WO system (P < 0.05). There were also significant decreases (P < 0.05)along with agricultural deintensification for contributions of total bacterial and gram positive (G+) bacterial PLFAs.Agricultural deintensification could facilitate the development of microbial communities that favor soil fungi over bacteria.

  3. The microbial temperature sensitivity to warming is controlled by thermal adaptation and is independent of C-quality across a pan-continental survey

    Science.gov (United States)

    Berglund, Eva; Rousk, Johannes

    2017-04-01

    Climate models predict that warming will result in an increased loss of soil organic matter (SOM). However, field experiments suggest that although warming results in an immediate increase in SOM turnover, the effect diminishes over time. Although the use and subsequent turnover of SOM is dominated by the soil microbial community, the underlying physiology underpinning warming responses are not considered in current climate models. It has been suggested that a reduction in the perceived quality of SOM to the microbial community, and changes in the microbial thermal adaptation, could be important feed-backs to soil warming. Thus, studies distinguishing between temperature relationships and how substrate quality influences microbial decomposition are a priority. We examined microbial communities and temperature sensitivities along a natural climate gradient including 56 independent samples from across Europe. The gradient included mean annual temperatures (MAT) from ca -4 to 18 ˚ C, along with wide spans of environmental factors known to influence microbial communities, such as pH (4.0 to 8.8), nutrients (C/N from 7 to 50), SOM (from 4 to 94%), and plant communities, etc. The extensive ranges of environmental conditions resulted in wide ranges of substrate quality, indexed as microbial respiration per unit SOM, from 5-150 μg CO2g-1 SOM g-1 h-1. We hypothesised microbial communities to (1) be adapted to the temperature of their climate, leading to warm adapted bacterial communities that were more temperature sensitive (higher Q10s) at higher MAT; (2) have temperature sensitivities affected by the quality of SOM, with higher Q10s for lower quality SOM. To determine the microbial use of SOM and its dependence on temperature, we characterized microbial temperature dependences of bacterial growth (leu inc), fungal growth (ac-in-erg) and soil respiration in all 56 sites. Temperature dependences were determined using brief (ca. 1-2 h at 25˚ C) laboratory incubation

  4. Mechanisms of microbial destabilization of soil C shifts over decades of warming

    Science.gov (United States)

    DeAngelis, K.; Pold, G.; Chowdhury, P. R.; Schnabel, J.; Grandy, S.; Melillo, J. M.

    2017-12-01

    Microbes are major actors in regulating the earth's biogeochemical cycles, with temperature-sensitive microbial tradeoffs improving ecosystem biogeochemical models. Meanwhile, the Earth's climate is changing, with decades of warming undercutting the ability of soil to store carbon. Our work explores trends of 26 years of experimental warming in temperate deciduous forest soils, which is associated with cycles of soil carbon degradation punctuated by periods of changes in soil microbial dynamics. Using a combination of biogeochemistry and molecular analytical methods, we explore the hypotheses that substrate availability, community structure, altered temperature sensitivity of microbial turnover-growth efficiency tradeoff, and microbial evolution are responsible for observations of accelerated degradation of soil carbon over time. Amplicon sequencing of microbial communities suggests a small role of changing microbial community composition over decades of warming, but a sustained suppression of fungal biomass is accompanied by increased biomass of Actinobacteria, Actinobacteria, Alphaproteobacteria, Verrucomicrobia and Planctomycetes. Substrate availability plays an important role in microbial dynamics, with depleted labile carbon in the first decade and depleted lignin in the second decade. Increased lignin-degrading enzyme activity supports the suggestion that lignin-like organic matter is an important substrate in chronically warmed soils. Metatranscriptomics data support the suggestion that increased turnover is associated with long-term warming, with metagenomic signals of increased carbohydrate-degrading enzymes in the organic horizon but decreased in the mineral soils. Finally, traits analysis of over 200 cultivated isolates of bacterial species from heated and control soils suggests an expanded ability for degradation of cellulose and hemicellulose but not chitin, supporting the hypothesis that long-term warming is exerting evolutionary pressure on microbial

  5. Corporate Social Responsibility and Environmentally Sound Technology in Endogenous Firm Growth

    Directory of Open Access Journals (Sweden)

    Angela C. Chao

    2017-02-01

    Full Text Available We have entered the “New Normal” economy, with more emphasis on economic growth driven by innovation than resource. This paper investigates the impacts of firms considering corporate social responsibility and environmentally sound technology by building a three-stage Cournot competition model with asymmetric cost. The sustainable development of economic and endogenous firm growth achieves the win–win result in the theoretical model. Using data from 31 firms in China, this paper empirically researches on the relationships among corporate social responsibility, environmentally sound technology and firm endogenous growth. The results show that: (1 Marginal cost decreased with the increase of innovation, as well as getting government research and development subsidy, which has a positive effect on firm growth. (2 Consumers respond positively to corporate social responsibility initiative, the reputation of the firm can be improved. At the same time, environmentally sound technology objectively reduces the marginal cost of competitors because of the technology spillover. (3 Profit of a firm undertaking corporate social responsibility partly decreases, which has a negative effect on firm growth. The contradiction between corporate social responsibility and profit of firm could be adjusted, such as socially responsible investment fund hosed by institutional investors.

  6. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.

    Directory of Open Access Journals (Sweden)

    Andreas F Haas

    Full Text Available Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata--Ochrophyta; Amansia rhodantha--Rhodophyta; Halimeda opuntia--Chlorophyta, a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii and a dominant hermatypic coral (Porites lobata. Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h⁻¹ dm⁻², stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h⁻¹ and concomitant oxygen drawdown (0.16±0.05 µmol L⁻¹ h⁻¹ dm⁻². Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence

  7. Interactions Between Stress and Sex in Microbial Responses Within the Microbiota-Gut-Brain Axis in a Mouse Model.

    Science.gov (United States)

    Tsilimigras, Matthew C B; Gharaibeh, Raad Z; Sioda, Michael; Gray, Laura; Fodor, Anthony A; Lyte, Mark

    2018-05-01

    Animal models are frequently used to examine stress response, but experiments seldom include females. The connection between the microbiota-gut-brain axis and behavioral stress response is investigated here using a mixed-sex mouse cohort. CF-1 mice underwent alternating days of restraint and forced swim for 19 days (male n = 8, female n = 8) with matching numbers of control animals at which point the 16S rRNA genes of gut microbiota were sequenced. Mixed linear models accounting for stress status and sex with individuals nested in cage to control for cage effects evaluated these data. Murine behaviors in elevated plus-maze, open-field, and light/dark box were investigated. Community-level associations with sex, stress, and their interaction were significant. Males had higher microbial diversity than females (p = .025). Of the 638 operational taxonomic units detected in at least 25% of samples, 94 operational taxonomic units were significant: 31 (stress), 61 (sex), and 34 (sex-stress interaction). Twenty of the 39 behavioral measures were significant for stress, 3 for sex, and 6 for sex-stress. However, no significant associations between behavioral measures and specific microbes were detected. These data suggest sex influences stress response and the microbiota-gut-brain axis and that studies of behavior and the microbiome therefore benefit from consideration of how sex differences drive behavior and microbial community structure. Host stress resilience and absence of associations between stress-induced behaviors with specific microbes suggests that hypothalamic-pituitary-adrenal axis activation represents a threshold for microbial influence on host behavior. Future studies are needed in examining the intersection of sex, stress response, and the microbiota-gut-brain axis.

  8. Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk.

    Science.gov (United States)

    LeBouder, Emmanuel; Rey-Nores, Julia E; Raby, Anne-Catherine; Affolter, Michael; Vidal, Karine; Thornton, Catherine A; Labéta, Mario O

    2006-03-15

    The mechanisms controlling innate microbial recognition in the neonatal gut are still to be fully understood. We have sought specific regulatory mechanisms operating in human breast milk relating to TLR-mediated microbial recognition. In this study, we report a specific and differential modulatory effect of early samples (days 1-5) of breast milk on ligand-induced cell stimulation via TLRs. Although a negative modulation was exerted on TLR2 and TLR3-mediated responses, those via TLR4 and TLR5 were enhanced. This effect was observed in human adult and fetal intestinal epithelial cell lines, monocytes, dendritic cells, and PBMC as well as neonatal blood. In the latter case, milk compensated for the low capacity of neonatal plasma to support responses to LPS. Cell stimulation via the IL-1R or TNFR was not modulated by milk. This, together with the differential effect on TLR activation, suggested that the primary effect of milk is exerted upstream of signaling proximal to TLR ligand recognition. The analysis of TLR4-mediated gene expression, used as a model system, showed that milk modulated TLR-related genes differently, including those coding for signal intermediates and regulators. A proteinaceous milk component of > or =80 kDa was found to be responsible for the effect on TLR4. Notably, infant milk formulations did not reproduce the modulatory activity of breast milk. Together, these findings reveal an unrecognized function of human milk, namely, its capacity to influence neonatal microbial recognition by modulating TLR-mediated responses specifically and differentially. This in turn suggests the existence of novel mechanisms regulating TLR activation.

  9. Effect of Probiotic Bacteria on Microbial Host Defense, Growth, and Immune Function in Human Immunodeficiency Virus Type-1 Infection

    Directory of Open Access Journals (Sweden)

    Stig Bengmark

    2011-12-01

    Full Text Available The hypothesis that probiotic administration protects the gut surface and could delay progression of Human Immunodeficiency Virus type1 (HIV-1 infection to the Acquired Immunodeficiency Syndrome (AIDS was proposed in 1995. Over the last five years, new studies have clarified the significance of HIV-1 infection of the gut associated lymphoid tissue (GALT for subsequent alterations in the microflora and breakdown of the gut mucosal barrier leading to pathogenesis and development of AIDS. Current studies show that loss of gut CD4+ Th17 cells, which differentiate in response to normal microflora, occurs early in HIV-1 disease. Microbial translocation and suppression of the T regulatory (Treg cell response is associated with chronic immune activation and inflammation. Combinations of probiotic bacteria which upregulate Treg activation have shown promise in suppressing pro inflammatory immune response in models of autoimmunity including inflammatory bowel disease and provide a rationale for use of probiotics in HIV-1/AIDS. Disturbance of the microbiota early in HIV-1 infection leads to greater dominance of potential pathogens, reducing levels of bifidobacteria and lactobacillus species and increasing mucosal inflammation. The interaction of chronic or recurrent infections, and immune activation contributes to nutritional deficiencies that have lasting consequences especially in the HIV-1 infected child. While effective anti-retroviral therapy (ART has enhanced survival, wasting is still an independent predictor of survival and a major presenting symptom. Congenital exposure to HIV-1 is a risk factor for growth delay in both infected and non-infected infants. Nutritional intervention after 6 months of age appears to be largely ineffective. A meta analysis of randomized, controlled clinical trials of infant formulae supplemented with Bifidobacterium lactis showed that weight gain was significantly greater in infants who received B. lactis compared to

  10. Maximum in the Middle: Nonlinear Response of Microbial Plankton to Ultraviolet Radiation and Phosphorus

    OpenAIRE

    Medina-S?nchez, Juan Manuel; Delgado-Molina, Jos? Antonio; Bratbak, Gunnar; Bullejos, Francisco Jos?; Villar-Argaiz, Manuel; Carrillo, Presentaci?n

    2013-01-01

    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2??5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the ...

  11. Bacterial growth and substrate degradation by BTX-oxidizing culture in response to salt stress.

    Science.gov (United States)

    Lee, Chi-Yuan; Lin, Ching-Hsing

    2006-01-01

    Interactions between microbial growth and substrate degradation are important in determining the performance of trickle-bed bioreactors (TBB), especially when salt is added to reduce biomass formation in order to alleviate media clogging. This study was aimed at quantifying salinity effects on bacterial growth and substrate degradation, and at acquiring kinetic information in order to improve the design and operation of TBB. Experiment works began by cultivating a mixed culture in a chemostat reactor receiving artificial influent containing a mixture of benzene, toluene, and xylene (BTX), followed by using the enrichment culture to degrade the individual BTX substrates under a particular salinity, which ranged 0-50 g l(-1) in batch mode. Then, the measured concentrations of biomass and residual substrate versus time were analyzed with the microbial kinetics; moreover, the obtained microbial kinetic constants under various salinities were modeled using noncompetitive inhibition kinetics. For the three substrates the observed bacterial yields appeared to be decreased from 0.51-0.74 to 0.20-0.22 mg mg(-1) and the maximum specific rate of substrate utilization, q, declined from 0.25-0.42 to 0.07-0.11 h(-1), as the salinity increased from 0 to 50 NaCl g l(-1). The NaCl acted as noncompetitive inhibitor, where the modeling inhibitions of the coefficients, K ( T(S)), were 22.7-29.7 g l(-1) for substrate degradation and K ( T(mu)), 13.0-19.0 g l(-1), for biomass formation. The calculated ratios for the bacterial maintenance rate, m (S), to q, further indicated that the percentage energy spent on maintenance increased from 19-24 to 86-91% as salinity level increased from 0 to 50 g l(-1). These results revealed that the bacterial growth was more inhibited than substrate degradation by the BTX oxidizers under the tested salinity levels. The findings from this study demonstrate the potential of applying NaCl salt to control excessive biomass formation in biotrickling filters.

  12. Community-level physiological profiling in microbial communities of broiler cecae

    Science.gov (United States)

    Poultry production constitutes one of important agricultural output worldwide. It is known that the gut health of broilers is essential for their growth and for providing wholesome products for human consumption. Previously, the microbial diversity of broiler cecae was studied at the microbial gen...

  13. Coastal microbial mats: the physiology of a small-scale ecosystem

    NARCIS (Netherlands)

    Stal, L.J.

    2001-01-01

    Coastal inter-tidal sandy sediments, salt marshes and mangrove forests often support the development of microbial mats. Microbial mats are complex associations of one or several functional groups of microorganisms and their formation usually starts with the growth of a cyanobacterial population on a

  14. Response of soil organic carbon fractions, microbial community composition and carbon mineralization to high-input fertilizer practices under an intensive agricultural system

    Science.gov (United States)

    Wu, Xueping; Gebremikael, Mesfin Tsegaye; Wu, Huijun; Cai, Dianxiong; Wang, Bisheng; Li, Baoguo; Zhang, Jiancheng; Li, Yongshan; Xi, Jilong

    2018-01-01

    Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile carbon (C) pools, microbial community structure and C mineralization rate under an intensive wheat-maize double cropping system in Northern China. Soil samples in 0–10 cm layer were collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools (including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C, MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil microbial communities and SOC mineralization rate from those observed in the CK treatment. Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related microbial communities, and resulted in 53% higher cumulative mineralization of C compared to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial community structure. Further addition of manure on the top of straw in the NPSM treatment did not significantly increase microbial community abundances, but it did alter microbial community structure by increasing G+/G- ratio compared to that of NPS. The cumulative mineralization of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully taken into account when setting realistic and effective goals

  15. Metagenomic Insights into Evolution of a Heavy Metal-Contaminated Groundwater Microbial Community

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, Christopher L.; Deng, Ye; Gentry, Terry J.; Fields, Matthew W.; Wu, Liyou; Barua, Soumitra; Barry, Kerrie; Tringe, Susannah G.; Watson, David B.; He, Zhili; Hazen, Terry C.; Tiedje, James M.; Rubin, Edward M.; Zhou, Jizhong

    2010-02-15

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents (~;;50 years) have resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying ?- and ?-proteobacterial populations. The resulting community is over-abundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could be a key mechanism in rapidly responding and adapting to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.

  16. TLR-dependent human mucosal epithelial cell responses to microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Paola eMassari

    2014-08-01

    Full Text Available AbstractToll-Like Receptor (TLR signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in humans as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites, specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners, their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.

  17. Effects of dietary chitosan on growth, lipid metabolism, immune response and antioxidant-related gene expression in Misgurnus anguillicaudatus.

    Science.gov (United States)

    Yan, J; Guo, C; Dawood, M A O; Gao, J

    2017-05-30

    This study was performed to evaluate the effects of dietary chitosan supplementation on growth performance, lipid metabolism, gut microbial, antioxidant status and immune responses of juvenile loach (Misgurnus anguillicaudatus). Five experimental diets were formulated to contain graded levels of chitosan (0 (control), 0.5, 1, 2 and 5% CHI) for 50 days. Results of the present study showed that body weight gain was significantly higher in fish fed chitosan supplemented diets in dose dependent manner than control group. Increasing dietary chitosan levels reduced gut lipid content. Meanwhile the mRNA expression levels of intestine lipoprotein lipase and fatty acid binding protein 2 were significantly reduced with incremental dietary chitosan level. The percentages of total monounsaturated fatty acid decreased, while polyunsaturated fatty acid increased with dietary chitosan. The fish fed 0.5% CHI had higher mucus lysozyme activity (LZM) than those fed 0% CHI, but the LZM activity was significantly decreased with advancing chitosan supplement. The expression levels of superoxide dismutase, catalase and glutathione peroxidase revealed a similar trend, where the highest expressions were found in fish fed 5% CHI diet. In the term of intestine microbiota between 0 and 1% CHI groups, the proportion of bacteria in the phylum Bacteroidetes increased, whereas the proportion of bacteria in the phylum Firmicutes decreased as the fish supplemented chitosan. In conclusion, supplementation of chitosan improved growth performance, antioxidant status and immunological responses in loach.

  18. Quantification of antibiotic drug potency by a two-compartment radioassay of bacterial growth

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1990-01-01

    The two-compartment radioassay for microbial kinetics based on continuous measurement of the 14 CO 2 released by bacterial metabolism of 14C-labeled substrate offers a valuable approach to testing the potency of antimicrobial drugs. By using a previously validated radioassay with gram-positive and gram-negative bacteria, a group of protein synthesis inhibitors was evaluated for their effect on microbial growth kinetics. All tested drugs induced changes in both the slopes and intercepts of the growth curves. An exponential growth model was applied to quantify the drug effect on the processes of bacterial 14 CO 2 liberation and cell generation. The response was measured in terms of a generation rate constant. A linear dependence of the generation rate constant on the dose of spectinomycin was observed with Escherichia coli. Sigmoidal-shaped curves were found in the assays of chloramphenicol and tetracycline. The implications of dose-response curves are discussed on the basis of the receptor site concept for drug action. The assay sensitivities for chloramphenicol and tetracycline were similar to those obtained by the cell counting method, but the sensitivity of the radioassay was at least 10 times greater for spectinomycin

  19. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities

    Directory of Open Access Journals (Sweden)

    Michael S Strickland

    2015-08-01

    Full Text Available Inputs of low molecular weight carbon (LMW-C to soil −primarily via root exudates− are expected to be a major driver of microbial activity and source of stable soil organic carbon. It is expected that variation in the type and composition of LMW-C entering soil will influence microbial community composition and function. If this is the case then short-term changes in LMW-C inputs may alter processes regulated by these communities. To determine if change in the composition of LMW-C inputs influences microbial community function and composition, we conducted a 90 day microcosm experiment whereby soils sourced from three different land covers (meadows, deciduous forests, and white pine stands were amended, at low concentrations, with one of eight simulated root exudate treatments. Treatments included no addition of LMW-C, and the full factorial combination of glucose, glycine, and oxalic acid. After 90 days, we conducted a functional response assay and determined microbial composition via phospholipid fatty acid analysis. Whereas we noted a statistically significant effect of exudate treatments, this only accounted for ~3% of the variation observed in function. In comparison, land cover and site explained ~46 and ~41% of the variation, respectively. This suggests that exudate composition has little influence on function

  20. Exploring the Association between Alzheimer's Disease, Oral Health, Microbial Endocrinology and Nutrition.

    Science.gov (United States)

    Harding, Alice; Gonder, Ulrike; Robinson, Sarita J; Crean, StJohn; Singhrao, Sim K

    2017-01-01

    Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer's disease (AD). However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis , a keystone periodontal pathogen, with its companion species, orchestrates immune subversion in the host. Brushing and chewing on teeth supported by already injured soft tissues leads to bacteremias. As a result, a persistent systemic inflammatory response develops to periodontal pathogens. The pathogens, and the host's inflammatory response, subsequently lead to the initiation and progression of multiple metabolic and inflammatory co-morbidities, including AD. Insufficient levels of essential micronutrients can lead to microbial dysbiosis through the growth of periodontal pathogens such as demonstrated for P. gingivalis under low hemin bioavailability. An individual's diet also defines the consortium of microbial communities that take up residency in the oral and gastrointestinal (GI) tract microbiomes. Their imbalance can lead to behavioral changes. For example, probiotics enriched in Lactobacillus genus of bacteria, when ingested, exert some anti-inflammatory influence through common host/bacterial neurochemicals, both locally, and through sensory signaling back to the brain. Early life dietary behaviors may cause an imbalance in the host/microbial endocrinology through a dietary intake incompatible with a healthy GI tract microbiome later in life. This imbalance in host/microbial endocrinology may have a lasting impact on mental health. This observation opens up an opportunity to explore the mechanisms, which may underlie the previously detected relationship between diet, oral/GI microbial communities, to anxiety, cognition and sleep patterns

  1. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system.

    Science.gov (United States)

    Bowker, Colleen; Sain, Amanda; Shatalov, Max; Ducoste, Joel

    2011-02-01

    A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Microbial diversity arising from thermodynamic constraints

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  3. Microbial diversity arising from thermodynamic constraints.

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-11-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments.

  4. Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Zihe; Hou, Jin; Martinez Ruiz, José Luis

    2013-01-01

    .g., metabolic and cellular stresses have a strong impact on recombinant protein production. In this work, we investigated the effect of the specific growth rate on the production of two different recombinant proteins. Our results show that human insulin precursor is produced in a growth-associated manner...... turnover, cell cycle, and global stress response. We also found that there is a shift at a specific growth rate of 0.1 h−1 that influences protein production. Thus, for lower specific growth rates, the α-amylase and insulin precursor-producing strains present similar cell responses and phenotypes, whereas......With the increasing demand for biopharmaceutical proteins and industrial enzymes, it is necessary to optimize the production by microbial fermentation or cell cultures. Yeasts are well established for the production of a wide range of recombinant proteins, but there are also some limitations; e...

  5. Microbial Threats to Health: Emergence, Detection, and Response

    National Research Council Canada - National Science Library

    Smolinski, Mark S; Hamburg, Margaret A; Lederberg, Joshua

    2003-01-01

    .... The recent SARS outbreak is a prime example. Knowing neither geographic nor political borders, often arriving silently and lethally, microbial pathogens constitute a grave threat to the health of humans...

  6. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions.

    Science.gov (United States)

    Cipriano, Matheus A P; Lupatini, Manoeli; Lopes-Santos, Lucilene; da Silva, Márcio J; Roesch, Luiz F W; Destéfano, Suzete A L; Freitas, Sueli S; Kuramae, Eiko E

    2016-12-01

    Plant growth promoting rhizobacteria are well described and recommended for several crops worldwide. However, one of the most common problems in research into them is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial community composition resulting from bacterial inoculation under field conditions. Here we evaluated the effect of 54 Pseudomonas strains on lettuce (Lactuca sativa) growth. The 12 most promising strains were phylogenetically and physiologically characterized for plant growth-promoting traits, including phosphate solubilization, hormone production and antagonism to pathogen compounds, and their effect on plant growth under farm field conditions. Additionally, the impact of beneficial strains on the rhizospheric bacterial community was evaluated for inoculated plants. The strains IAC-RBcr4 and IAC-RBru1, with different plant growth promoting traits, improved lettuce plant biomass yields up to 30%. These two strains also impacted rhizosphere bacterial groups including Isosphaera and Pirellula (phylum Planctomycetes) and Acidothermus, Pseudolabrys and Singusphaera (phylum Actinobacteria). This is the first study to demonstrate consistent results for the effects of Pseudomonas strains on lettuce growth promotion for seedlings and plants grown under tropical field conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities

    DEFF Research Database (Denmark)

    Griffiths, B.S.; Ritz, Karl; Wheatley, R.

    2001-01-01

    , nitrate accumulation, respiratory growth response, community level physiological profile and decomposition). Neither was there a direct effect of biodiversity on the variability of the processes, nor on the stability of decomposition when the soils were perturbed by heat or copper. The biodiversity of......Microbial communities differing in biodiversity were established by inoculating sterile agricultural soil with serially diluted soil suspensions prepared from the parent soil. Three replicate communities of each dilution were allowed to establish an equivalent microbial biomass by incubation for 9...... months at 15°C, after which the biodiversity-ecosystem function relationship was examined for a range of soil processes. Biodiversity was determined by monitoring cultivable bacterial and fungal morphotypes, directly extracted eubacterial DNA and protozoan taxa. In the context of this study biodiversity...

  8. Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance.

    Science.gov (United States)

    Du, Huamao; Lo, Tat-Ming; Sitompul, Johnner; Chang, Matthew Wook

    2012-08-10

    Despite extensive use of silver nanoparticles for antimicrobial applications, cellular mechanisms underlying microbial response to silver nanoparticles remain to be further elucidated at the systems level. Here, we report systems-level response of Escherichia coli to silver nanoparticles using transcriptome-based biochemical and phenotype assays. Notably, we provided the evidence that anaerobic respiration is induced upon exposure to silver nanoparticles. Further we showed that anaerobic respiration-related regulators and enzymes play an important role in E. coli resistance to silver nanoparticles. In particular, our results suggest that arcA is essential for resistance against silver NPs and the deletion of fnr, fdnH and narH significantly increases the resistance. We envision that this study offers novel insights into modes of antimicrobial action of silver nanoparticles, and cellular mechanisms contributing to the development of microbial resistance to silver nanoparticles. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats.

    Science.gov (United States)

    Cantalapiedra-Hijar, G; Yáñez-Ruiz, D R; Martín-García, A I; Molina-Alcaide, E

    2009-02-01

    The effects of forage type and forage:concentrate ratio (F:C) on apparent nutrient digestibility, ruminal fermentation, and microbial growth were investigated in goats. A comparison between liquid (LAB) and solid (SAB)-associated bacteria to estimate microbial N flow (MNF) from urinary purine derivative excretion was also examined. Treatments were a 2 x 2 factorial arrangement of forage type (grass hay vs. alfalfa hay) and high vs. low F:C (70:30 and 30:70, respectively). Four ruminally cannulated goats were fed, at maintenance intake, 4 experimental diets according to a 4 x 4 Latin square design. High-concentrate diets resulted in greater (P 0.05) when diets included alfalfa hay. Total protozoa numbers and holotricha proportion were greater and less (P forage used. The MNF measured in goats fed different diets was influenced by the bacterial pellet (LAB or SAB). In addition, the purine bases:N ratio values found were different from those reported in the literature, which underlines the need for these variables to be analyzed directly in pellets isolated from specific animals and experimental conditions.

  10. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1.

    Science.gov (United States)

    Li, Xiaojie; Han, Bing; Xu, Manyu; Han, Liping; Zhao, Yanying; Liu, Zhilan; Dong, Hansong; Zhang, Chunling

    2014-04-01

    The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice. And growth-promoting responses were determined mainly as an increase of chlorophyll a/b ratio, which indicates a potential elevation of photosynthesis rates, and enhancements of photosynthesis and EXP expression in the three plant species. In Arabidopsis, Hpa1-induced growth-promoting responses were partially compromised by a defect in ethylene perception or gibberellin biosynthesis. In tomato and rice, compromises of Hpa1-induced growth-promoting responses were caused by a pharmacological treatment with an ethylene perception inhibitor or a gibberellin biosynthesis inhibitor. In the three plant species, moreover, Hpa1-induced growth-promoting responses were significantly impaired, but not totally eliminated, by abolishing ethylene perception or gibberellin synthesis. However, simultaneous nullifications in both ethylene perception and gibberellin biosynthesis almost canceled the full effects of Hpa1 on plant growth, photosynthesis, and EXP2 expression. Theses results suggest that ethylene and gibberellin coregulate Hpa1-induced plant growth enhancement and associated physiological and molecular responses.

  11. Assessment of N and P in organic fertilizer using the missing element technique and a microbial bioassay

    International Nuclear Information System (INIS)

    Salas, E.; Ramirez, C.

    2002-01-01

    Assessment of N and P in organic fertilizers using the missing element technique and a microbial bioassay.Through a greenhouse bioassay, using sorghum (Sorghum vulgare) as a test plant, and a microbial assay the availability of N and P in 6 substrates was determined, namely: soil alone and in combination with several organic amendments 10% W/W of chicken manure (CM), compost (C), bocashi (B), vermicompost (V) and coffe hulls (Br). In the microbial assay a complete randomized design with 6 replicates was used; the microbial biomass (BM) was determined 2 days after the glucose amendment of each treatment. In both bioassays a 2 X 2 factorial (N and P fertilization) was establish and the following combinations resulted: +N, +P, +P+N and -P-N (control). For the greenhouse experiment, a complete randomized design with 4 replicates was used. Above-ground plant material of sorghum was harvested 34 days after showing to determine plant dry weight (PS) and content of N and P. Both assays showed a response to the soil amendment with N and P. Soil treatments with CM, C and B showed the highest values of PS and BM. Soil treatment with CM amended with N, P or both did not showed a response in PS or BM, in C and B there was a response to N addition but not to P. In treatments with V and Br, the lowest values for PS and BM were obtained, and there was a growth response to N and P. Both bioassays were able to pinpoint N and P defficiencies in the soil as well in some of the mixtures of soil with organic amendments. A high correlation was encountered between the greenhouse assay and the microbial bioassay (r= 0.86, P=0.0001). Therefore, the microbial bioassay can be a cheaper alternative to the plant bioassay not only to evaluate the nutritional quality of compost but also to identify nutrient deficiencies in soils as well as in substrates amended with organic fertilizers. (Author) [es

  12. Soil microbial community response to aboveground vegetation and ...

    African Journals Online (AJOL)

    lenovo

    2011-11-21

    Nov 21, 2011 ... magnitude, activity, structure and function of soil microbial community may .... CaO were quantified by inductively coupled plasmaatomic emission spectroscopy ...... Validation of signature polarlipid fatty acid biomarkers for ...

  13. Shifts in the Physiology and Stoichiometric Needs of Soil Microbial Communities from Subarctic Soils in Response to Warming: Icelandic Geothermal Gradients as a Model.

    Science.gov (United States)

    Marañón-Jiménez, S.; Soong, J.; Leblans, N. I. W.; Sigurdsson, B. D.; Peñuelas, J.; Richter, A.; Asensio, D.; Fransen, E.; Janssens, I. A.

    2017-12-01

    Large amounts of CO2 can be released to the atmosphere from a faster mineralization of soil organic matter at warmer temperatures, thus inducing climate change feedbacks. Specifically, soils at high northern latitudes store more than half of the global surface soil carbon and are particularly vulnerable to temperature-driven C losses, since they warm more rapidly. Alterations to the temperature sensitivity, physiological functioning and stoichiometric constrains of soil microorganisms in response to rising temperatures can play a key role in these soil carbon (C) losses. We present results of several incubation experiments using soils from geothermal soil temperature gradients in Iceland that have undergone a range of warming intensities for seven years, encompassing the full range of IPCC warming scenarios for the northern region. Soil microbes from warmed soils did not show changes in their temperature sensitivity at the physiological level. On the contrary, seven years of chronic soil warming provoked a permanent increase of microbial metabolic quotients (i.e., respiration per unit of biomass), and a subsequent reduction in the C retained in biomass as substrate became limiting. After the initial depletion of labile soil C, increasing energy demands for metabolic maintenance and resource acquisition at higher temperatures may have triggered permanent functional changes or community shifts towards increasing respiratory costs of soil decomposers. Pointing to this, microbial communities showed a strong C limitation even at ambient soil temperatures, obscuring any metabolic response to nitrogen and phosphorous additions. The tight C:N stoichiometric constrains of soil microbial communities and the strong C limitation for microbial biomass may lead to a reduced capacity of microbial N retention, explaining the equivalent soil C and N losses found in response to soil warming. These results highlight the need to incorporate potential changes in microbial physiological

  14. Stability of U(VI) and Tc(VII) Reducing Microbial Communities to Environmental Perturbation: Development and Testing of a Thermodynamic Network Model

    International Nuclear Information System (INIS)

    McKinley, James P.; Istok, Jonathan

    2005-01-01

    Previously published research from in situ field experiments at the NABIR Field Research Center have shown that cooperative metabolism of denitrifiers and Fe(III)/sulfate reducers is essential for creating subsurface conditions favorable for U(VI) and Tc(VII) bioreduction (Istok et al., 2004). The overall goal of this project is to develop and test a thermodynamic network model for predicting the effects of substrate additions and environmental perturbations on the composition and functional stability of subsurface microbial communities. The overall scientific hypothesis is that a thermodynamic analysis of the energy-yielding reactions performed by broadly defined groups of microorganisms can be used to make quantitative and testable predictions of the change in microbial community composition that will occur when a substrate is added to the subsurface or when environmental conditions change. An interactive computer program was developed to calculate the overall growth equation and free energy yield for microorganisms that grow by coupling selected combinations of electron acceptor and electron donor half-reactions. Each group performs a specific function (e.g. oxidation of acetate coupled to reduction of nitrate); collectively the groups provide a theoretical description of the entire natural microbial community. The microbial growth data are combined with an existing thermodynamic data base for associated geochemical reactions and used to simulate the coupled microbial-geochemical response of a complex natural system to substrate addition or any other environmental perturbations

  15. Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination.

    Science.gov (United States)

    Tang, Shirong; Liao, Shangqiang; Guo, Junkang; Song, Zhengguo; Wang, Ruigang; Zhou, Xiaomin

    2011-12-30

    Growth and cesium uptake responses of plants to elevated CO(2) and microbial inoculation, alone or in combination, can be explored for clean-up of contaminated soils, and this induced phytoextraction may be better than the natural process. The present study used open-top chambers to investigate combined effects of Burkholderia sp. D54 inoculation and elevated CO(2) (860 μL L(-1)) on growth and Cs uptake by Phytolacca americana and Amaranthus cruentus grown on soil spiked with various levels of Cs (0-1000 mg kg(-1)). Elevated CO(2) and bacterial inoculation, alone or in combination, significantly increased biomass production with increased magnitude, ranging from 22% to 139% for P. americana, and 14% to 254% for A. cruentus. Total tissue Cs in both plants was significantly greater for bacterial inoculation treatment singly, and combined treatments of bacterial inoculation and elevated CO(2) than for the control treatment in most cases. Regardless of CO(2) concentrations and bacterial inoculation, A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana, but they had slightly different contents of antioxidant enzymes. It is concluded that combined effects of elevated CO(2) and microbial inoculation with regard to plant ability to grow and remove radionuclides from soil can be explored for CO(2)- and microbe-assisted phytoextraction technology. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Microbial characteristics of soils on a latitudinal transect in Siberia

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Bird, M. I.; Kalaschnikov, Y. N.; Grund, M.; Elhottová, Dana; Šimek, Miloslav; Grigoryev, S.; Gleixner, G.; Arneth, A.; Schulze, E.D.; Lloyd, J.

    2003-01-01

    Roč. 9, - (2003), s. 1106-1117 ISSN 1354-1013 R&D Projects: GA ČR GA526/99/P033 Institutional research plan: CEZ:AV0Z6066911 Keywords : latitudial transect * microbial net growth rate * soil microbial activity Subject RIV: EH - Ecology, Behaviour Impact factor: 4.152, year: 2003

  17. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    Directory of Open Access Journals (Sweden)

    Aaron M. Prescott

    2016-08-01

    Full Text Available Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. However, the dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB. In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB. Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms

  18. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics.

    Science.gov (United States)

    Prescott, Aaron M; McCollough, Forest W; Eldreth, Bryan L; Binder, Brad M; Abel, Steven M

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  19. Growth and development rates have different thermal responses.

    Science.gov (United States)

    Forster, Jack; Hirst, Andrew G; Woodward, Guy

    2011-11-01

    Growth and development rates are fundamental to all living organisms. In a warming world, it is important to determine how these rates will respond to increasing temperatures. It is often assumed that the thermal responses of physiological rates are coupled to metabolic rate and thus have the same temperature dependence. However, the existence of the temperature-size rule suggests that intraspecific growth and development are decoupled. Decoupling of these rates would have important consequences for individual species and ecosystems, yet this has not been tested systematically across a range of species. We conducted an analysis on growth and development rate data compiled from the literature for a well-studied group, marine pelagic copepods, and use an information-theoretic approach to test which equations best describe these rates. Growth and development rates were best characterized by models with significantly different parameters: development has stronger temperature dependence than does growth across all life stages. As such, it is incorrect to assume that these rates have the same temperature dependence. We used the best-fit models for these rates to predict changes in organism mass in response to temperature. These predictions follow a concave relationship, which complicates attempts to model the impacts of increasing global temperatures on species body size.

  20. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    Science.gov (United States)

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  1. Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python.

    Science.gov (United States)

    Andrew, Audra L; Perry, Blair W; Card, Daren C; Schield, Drew R; Ruggiero, Robert P; McGaugh, Suzanne E; Choudhary, Amit; Secor, Stephen M; Castoe, Todd A

    2017-05-02

    Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems. Identified enriched canonical pathways and upstream regulators indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues. These results suggest that largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during such extreme regenerative growth.

  2. Linking Tree Growth Response to Measured Microclimate - A Field Based Approach

    Science.gov (United States)

    Martin, J. T.; Hoylman, Z. H.; Looker, N. T.; Jencso, K. G.; Hu, J.

    2015-12-01

    The general relationship between climate and tree growth is a well established and important tenet shaping both paleo and future perspectives of forest ecosystem growth dynamics. Across much of the American west, water limits growth via physiological mechanisms that tie regional and local climatic conditions to forest productivity in a relatively predictable way, and these growth responses are clearly evident in tree ring records. However, within the annual cycle of a forest landscape, water availability varies across both time and space, and interacts with other potentially growth limiting factors such as temperature, light, and nutrients. In addition, tree growth responses may lag climate drivers and may vary in terms of where in a tree carbon is allocated. As such, determining when and where water actually limits forest growth in real time can be a significant challenge. Despite these challenges, we present data suggestive of real-time growth limitation driven by soil moisture supply and atmospheric water demand reflected in high frequency field measurements of stem radii and cell structure across ecological gradients. The experiment was conducted at the Lubrecht Experimental Forest in western Montana where, over two years, we observed intra-annual growth rates of four dominant conifer species: Douglas fir, Ponderosa Pine, Engelmann Spruce and Western Larch using point dendrometers and microcores. In all four species studied, compensatory use of stored water (inferred from stem water deficit) appears to exhibit a threshold relationship with a critical balance point between water supply and demand. The occurrence of this point in time coincided with a decrease in stem growth rates, and the while the timing varied up to one month across topographic and elevational gradients, the onset date of growth limitation was a reliable predictor of overall annual growth. Our findings support previous model-based observations of nonlinearity in the relationship between

  3. Determination of Nitrate Reductase Assay Depending on the Microbial Growth

    International Nuclear Information System (INIS)

    El-Kabbany, H.M.

    2012-01-01

    A rapid micro-dilution assay for determination of the antimicrobial susceptibility of different bacterial isolates was developed. This assay is based on the ability of the most of viable organisms to reduce nitrates. The MIC or MBC could be determined by nitrate reductase (NR) only after 30 to 90 min of incubation depending on the behaviour of microbial growth. Bacterial viability is detected by a positive nitrite reduction rather than visible turbidity. The nitrate reduction assay was compared with standard micro-assay using 250 isolates of different taxa against 10 antibiotics belonging to different classes. An excellent agreement of 82.5 % was found between the two methods and only 17.5 % of 1794 trials showed difference in the determined MIC by tow-dilution interval above or below the MIC determined by the turbidimetric method under the same test conditions. However, the nitrate reduction assay was more rapid and sensitive in detecting viable bacteria and so, established an accurate estimate of the minimal inhibitory concentration (MIC) or the minimal bacterial concentration (MBC). The nitrate reduction assay offers the additional advantage that it could be used to determine the MBC without having to subculture the broth. 232 cases of resistance were detected by NR and 4 different media were tested for susceptibility test. The bacterial isolates were exposed to ultra violet (UV) light for different period

  4. Microfluidics expanding the frontiers of microbial ecology.

    Science.gov (United States)

    Rusconi, Roberto; Garren, Melissa; Stocker, Roman

    2014-01-01

    Microfluidics has significantly contributed to the expansion of the frontiers of microbial ecology over the past decade by allowing researchers to observe the behaviors of microbes in highly controlled microenvironments, across scales from a single cell to mixed communities. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. In this article, we review applications of microfluidics that have resulted in insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control microbial processes such as biofilm formation and antibiotic resistance.

  5. Biochar and microbial signaling: production conditions determine effects on microbial communication

    Science.gov (United States)

    Masiello, Caroline A.; Chen, Ye; Gao, Xiaodong; Liu, Shirley; Cheng, Hsiao-Ying; Bennett, Matthew R.; Rudgers, Jennifer A.; Wagner, Daniel S.; Zygourakis, Kyriacos; Silberg, Jonathan J.

    2013-01-01

    Charcoal has a long soil residence time, which has resulted in its production and use as a carbon sequestration technique (biochar). A range of biological effects can be triggered by soil biochar that can positively and negatively influence carbon storage, such as changing the decomposition rate of organic matter and altering plant biomass production. Sorption of cellular signals has been hypothesized to underlie some of these effects, but it remains unknown whether the binding of biochemical signals occurs, and if so, on time scales relevant to microbial growth and communication. We examined biochar sorption of N-3-oxo-dodecanoyl-L-homoserine lactone, an acyl-homoserine lactone (AHL) intercellular signaling molecule used by many gram-negative soil microbes to regulate gene expression. We show that wood biochars disrupt communication within a growing multicellular system that is made up of sender cells that synthesize AHL and receiver cells that express green fluorescent protein in response to an AHL signal. However, biochar inhibition of AHL-mediated cell-cell communication varied, with the biochar prepared at 700°C (surface area of 301 m2/g) inhibiting cellular communication 10-fold more than an equivalent mass of biochar prepared at 300°C (surface area of 3 m2/g). These findings provide the first direct evidence that biochars elicit a range of effects on gene expression dependent on intercellular signaling, implicating the method of biochar preparation as a parameter that could be tuned to regulate microbial-dependent soil processes, like nitrogen fixation and pest attack of root crops. PMID:24066613

  6. Biochar and microbial signaling: production conditions determine effects on microbial communication.

    Science.gov (United States)

    Masiello, Caroline A; Chen, Ye; Gao, Xiaodong; Liu, Shirley; Cheng, Hsiao-Ying; Bennett, Matthew R; Rudgers, Jennifer A; Wagner, Daniel S; Zygourakis, Kyriacos; Silberg, Jonathan J

    2013-10-15

    Charcoal has a long soil residence time, which has resulted in its production and use as a carbon sequestration technique (biochar). A range of biological effects can be triggered by soil biochar that can positively and negatively influence carbon storage, such as changing the decomposition rate of organic matter and altering plant biomass production. Sorption of cellular signals has been hypothesized to underlie some of these effects, but it remains unknown whether the binding of biochemical signals occurs, and if so, on time scales relevant to microbial growth and communication. We examined biochar sorption of N-3-oxo-dodecanoyl-L-homoserine lactone, an acyl-homoserine lactone (AHL) intercellular signaling molecule used by many gram-negative soil microbes to regulate gene expression. We show that wood biochars disrupt communication within a growing multicellular system that is made up of sender cells that synthesize AHL and receiver cells that express green fluorescent protein in response to an AHL signal. However, biochar inhibition of AHL-mediated cell-cell communication varied, with the biochar prepared at 700 °C (surface area of 301 m(2)/g) inhibiting cellular communication 10-fold more than an equivalent mass of biochar prepared at 300 °C (surface area of 3 m(2)/g). These findings provide the first direct evidence that biochars elicit a range of effects on gene expression dependent on intercellular signaling, implicating the method of biochar preparation as a parameter that could be tuned to regulate microbial-dependent soil processes, like nitrogen fixation and pest attack of root crops.

  7. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses

    Directory of Open Access Journals (Sweden)

    Redon Emma

    2008-07-01

    Full Text Available Abstract Background The development of transcriptomic tools has allowed exhaustive description of stress responses. These responses always superimpose a general response associated to growth rate decrease and a specific one corresponding to the stress. The exclusive growth rate response can be achieved through chemostat cultivation, enabling all parameters to remain constant except the growth rate. Results We analysed metabolic and transcriptomic responses of Lactococcus lactis in continuous cultures at different growth rates ranging from 0.09 to 0.47 h-1. Growth rate was conditioned by isoleucine supply. Although carbon metabolism was constant and homolactic, a widespread transcriptomic response involving 30% of the genome was observed. The expression of genes encoding physiological functions associated with biogenesis increased with growth rate (transcription, translation, fatty acid and phospholipids metabolism. Many phages, prophages and transposon related genes were down regulated as growth rate increased. The growth rate response was compared to carbon and amino-acid starvation transcriptomic responses, revealing constant and significant involvement of growth rate regulations in these two stressful conditions (overlap 27%. Two regulators potentially involved in the growth rate regulations, llrE and yabB, have been identified. Moreover it was established that genes positively regulated by growth rate are preferentially located in the vicinity of replication origin while those negatively regulated are mainly encountered at the opposite, thus indicating the relationship between genes expression and their location on chromosome. Although stringent response mechanism is considered as the one governing growth deceleration in bacteria, the rigorous comparison of the two transcriptomic responses clearly indicated the mechanisms are distinct. Conclusion This work of integrative biology was performed at the global level using transcriptomic analysis

  8. Douglas-fir displays a range of growth responses to ...

    Science.gov (United States)

    Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) growth in the Pacific Northwest is affected by climatic, edaphic factors and Swiss needle cast (SNC) disease. We examine Douglas-fir growth responses to temperature, dewpoint deficit (DPD), soil moisture, and SNC using time series intervention analysis of intra-annual tree-ring width data collected at nine forest stands in western Oregon, USA. The effects of temperature and SNC were similar in importance on tree growth at all sites. Previous-year DPD during the annual drought period was a key factor limiting growth regionally. Winter temperature was more important at high elevation cool sites, whereas summer temperature was more important at warm and dry sites. Growth rate increased with summer temperature to an optimum (Topt) then decreased at higher temperatures. At drier sites, temperature and water affected growth interactively such that Topt decreased with decreasing summer soil moisture. With climate change, growth rates increased at high elevation sites and declined at mid-elevation inland sites since ~1990. Growth response to climate is masked by SNC regionally. We conclude that as temperature rises and precipitation patterns shift towards wetter winters and drier summers, Douglas-fir will experience greater temperature and water stress and an increase in severity of SNC. By the end of the 21st century, climate models predict hotter, drier summers and warmer, wetter winters in the Pac

  9. Aerobic microbial dolomite at the nanometer scale : Implications for the geologic record

    NARCIS (Netherlands)

    Sánchez-Román, Mónica; Vasconcelos, Crisógono; Schmid, Thomas; Dittrich, Maria; McKenzie, Judith A.; Zenobi, Renato; Rivadeneyra, Maria A.

    2008-01-01

    Microbial experiments are the only proven approach to produce experimental dolomite under Earth's surface conditions. Although microbial metabolisms are known to induce dolomite precipitation by favoring dolomite growth kinetics, the involvement of microbes in the dolomite nucleation process is

  10. Halotolerant PGPRs Prevent Major Shifts in Indigenous Microbial Community Structure Under Salinity Stress.

    Science.gov (United States)

    Bharti, Nidhi; Barnawal, Deepti; Maji, Deepamala; Kalra, Alok

    2015-07-01

    The resilience of soil microbial populations and processes to environmental perturbation is of increasing interest as alteration in rhizosphere microbial community dynamics impacts the combined functions of plant-microbe interactions. The present study was conducted to investigate the effect of inoculation with halotolerant rhizobacteria Bacillus pumilus (STR2), Halomonas desiderata (STR8), and Exiguobacterium oxidotolerans (STR36) on the indigenous root-associated microbial (bacterial and fungal) communities in maize under non-saline and salinity stress. Plants inoculated with halotolerant rhizobacteria recorded improved growth as illustrated by significantly higher shoot and root dry weight and elongation in comparison to un-inoculated control plants under both non-saline and saline conditions. Additive main effect and multiplicative interaction ordination analysis revealed that plant growth promoting rhizobacteria (PGPR) inoculations as well as salinity are major drivers of microbial community shift in maize rhizosphere. Salinity negatively impacts microbial community as analysed through diversity indices; among the PGPR-inoculated plants, STR2-inoculated plants recorded higher values of diversity indices. As observed in the terminal-restriction fragment length polymorphism analysis, the inoculation of halotolerant rhizobacteria prevents major shift of the microbial community structure, thus enhancing the resilience capacity of the microbial communities.

  11. Unfolding Role of a Danger Molecule Adenosine Signaling in Modulation of Microbial Infection and Host Cell Response

    Directory of Open Access Journals (Sweden)

    Jaden S. Lee

    2018-01-01

    Full Text Available Ectonucleotidases CD39 and CD73, specific nucleotide metabolizing enzymes located on the surface of the host, can convert a pro-inflammatory environment driven by a danger molecule extracellular-ATP to an adenosine-mediated anti-inflammatory milieu. Accordingly, CD39/CD73 signaling has been strongly implicated in modulating the intensity, duration, and composition of purinergic danger signals delivered to host. Recent studies have eluted potential roles for CD39 and CD73 in selective triggering of a variety of host immune cells and molecules in the presence of pathogenic microorganisms or microbial virulence molecules. Growing evidence also suggests that CD39 and CD73 present complimentary, but likely differential, actions against pathogens to shape the course and severity of microbial infection as well as the associated immune response. Similarly, adenosine receptors A2A and A2B have been proposed to be major immunomodulators of adenosine signaling during chronic inflammatory conditions induced by opportunistic pathogens, such as oral colonizer Porphyromonas gingivalis. Therefore, we here review the recent studies that demonstrate how complex network of molecules in the extracellular adenosine signaling machinery and their interactions can reshape immune responses and may also be targeted by opportunistic pathogens to establish successful colonization in human mucosal tissues and modulate the host immune response.

  12. Exploring the Association between Alzheimer’s Disease, Oral Health, Microbial Endocrinology and Nutrition

    Science.gov (United States)

    Harding, Alice; Gonder, Ulrike; Robinson, Sarita J.; Crean, StJohn; Singhrao, Sim K.

    2017-01-01

    Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer’s disease (AD). However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis, a keystone periodontal pathogen, with its companion species, orchestrates immune subversion in the host. Brushing and chewing on teeth supported by already injured soft tissues leads to bacteremias. As a result, a persistent systemic inflammatory response develops to periodontal pathogens. The pathogens, and the host’s inflammatory response, subsequently lead to the initiation and progression of multiple metabolic and inflammatory co-morbidities, including AD. Insufficient levels of essential micronutrients can lead to microbial dysbiosis through the growth of periodontal pathogens such as demonstrated for P. gingivalis under low hemin bioavailability. An individual’s diet also defines the consortium of microbial communities that take up residency in the oral and gastrointestinal (GI) tract microbiomes. Their imbalance can lead to behavioral changes. For example, probiotics enriched in Lactobacillus genus of bacteria, when ingested, exert some anti-inflammatory influence through common host/bacterial neurochemicals, both locally, and through sensory signaling back to the brain. Early life dietary behaviors may cause an imbalance in the host/microbial endocrinology through a dietary intake incompatible with a healthy GI tract microbiome later in life. This imbalance in host/microbial endocrinology may have a lasting impact on mental health. This observation opens up an opportunity to explore the mechanisms, which may underlie the previously detected relationship between diet, oral/GI microbial communities, to anxiety, cognition and sleep

  13. Exploring the Association between Alzheimer’s Disease, Oral Health, Microbial Endocrinology and Nutrition

    Directory of Open Access Journals (Sweden)

    Alice Harding

    2017-12-01

    Full Text Available Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer’s disease (AD. However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis, a keystone periodontal pathogen, with its companion species, orchestrates immune subversion in the host. Brushing and chewing on teeth supported by already injured soft tissues leads to bacteremias. As a result, a persistent systemic inflammatory response develops to periodontal pathogens. The pathogens, and the host’s inflammatory response, subsequently lead to the initiation and progression of multiple metabolic and inflammatory co-morbidities, including AD. Insufficient levels of essential micronutrients can lead to microbial dysbiosis through the growth of periodontal pathogens such as demonstrated for P. gingivalis under low hemin bioavailability. An individual’s diet also defines the consortium of microbial communities that take up residency in the oral and gastrointestinal (GI tract microbiomes. Their imbalance can lead to behavioral changes. For example, probiotics enriched in Lactobacillus genus of bacteria, when ingested, exert some anti-inflammatory influence through common host/bacterial neurochemicals, both locally, and through sensory signaling back to the brain. Early life dietary behaviors may cause an imbalance in the host/microbial endocrinology through a dietary intake incompatible with a healthy GI tract microbiome later in life. This imbalance in host/microbial endocrinology may have a lasting impact on mental health. This observation opens up an opportunity to explore the mechanisms, which may underlie the previously detected relationship between diet, oral/GI microbial communities, to anxiety, cognition

  14. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    International Nuclear Information System (INIS)

    Wang, Yifeng; Papenguth, Hans W.

    2000-01-01

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation

  15. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    WANG,YIFENG; PAPENGUTH,HANS W.

    2000-05-04

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.

  16. Behavioral Responses of Concholepas concholepas (Bruguière, 1789) Larvae to Natural and Artificial Settlement Cues and Microbial Films.

    Science.gov (United States)

    Rodriguez, S R; Riquelme, C; Campos, E O; Chavez, P; Brandan, E; Inestrosa, N C

    1995-12-01

    The behavioral responses of veliger larvae of the gastropod Concholepas concholepas were studied in the presence of different natural and artificial settlement cues and microbial films. Early pre-competent larvae stopped swimming, sank (due to ciliary arrests, retraction of the velum into the shell, or both), and remained inactive on the substratum when exposed to conspecific mucus and hemolymph. In both cases the effect was time-dependent and the number of larvae showing these behaviors decreased over time. Larvae exposed to NH4Cl (ammonium ion) showed a similar time- and dose-dependent response. A positive and time-dependent response was also observed when larvae were exposed to different extracellular matrix (ECM) components (i.e., collagen, gelatin, and fibronectin) and sulfated polysaccharides (i.e., carrageenan, heparin, and chondroitin sulfate). In this case the larvae remained attached to the substratum. However, the effect of sulfated polysaccharides on C. concholepas larval behavior was faster than that observed with other ECM molecules. We also studied the responses of premetamorphic C. concholepas larvae exposed to different microbial films. In chemotaxis experiments with different films, with glass as the substratum, larvae showed a significant preference for multispecific and diatoms films. When shells of C. concholepas were used as the substratum, the preference for multispecific films was clear and significant. Likewise, larvae showed velar contractions in the presence of all the films tested. Larvae exposed to multispecific films and to the microalga Prasinocladus marinus showed an increased ciliar movement. The finding that mucus and hemolymph of conspecific adults and ECM molecules (mainly sulfated polysaccharides) induce the cessation of swimming of C. concholepas larvae suggests a possible role for cell-surface receptors in mediating the larval response of marine organisms. Likewise, the positive chemotaxis responses of C. concholepas larvae to

  17. Modelling of tomato stem diameter growth rate based on physiological responses

    International Nuclear Information System (INIS)

    Li, L.; Tan, J.; Lv, T.

    2017-01-01

    The stem diameter is an important parameter describing the growth of tomato plant during vegetative growth stage. A stem diameter growth model was developed to predict the response of plant growth under different conditions. By analyzing the diurnal variations of stem diameter in tomato (Solanum lycopersicum L.), it was found that the stem diameter measured at 3:00 am was the representative value as the daily basis of tomato stem diameter. Based on the responses of growth rate in stem diameter to light and temperature, a linear regression relationship was applied to establish the stem diameter growth rate prediction model for the vegetative growth stage in tomato and which was further validated by experiment. The root mean square error (RMSE) and relative error (RE) were used to test the correlation between measured and modeled stem diameter variations. Results showed that the model can be used in prediction for stem diameter growth rate at vegetative growth stage in tomato. (author)

  18. Differential growth response of Ulva lactuca to ammonium and nitrate assimilation

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor; Mikkelsen, Jørn Dalgaard; Meyer, Anne S

    2011-01-01

    and fluctuating levels of nitrogen sources. Our understanding of the influences of this varying condition on the uptake and growth responses of U. lactuca is limited. In this present work, we examined the growth response of U. lactuca exposed to different sources of nitrogen (NH4+; NO3−; and the combination NH4NO...... as the nitrogen source. The NH4Cl and NaNO3 rich media (50 μM of N) accelerated U. lactuca growth to a maximum specific growth rate of 16.4 ± 0.18% day−1 and 9.4 ± 0.72% day−1, respectively. The highest biomass production rate obtained was 22.5 ± 0.24 mg DW m−2·day−1. The presence of ammonium apparently...... discriminated the nitrate uptake by U. lactuca when exposed to NH4NO3. Apart from showing the significant differential growth response of U. lactuca to different nitrogen sources, the work exhibits the applicability of a photo-scanning approach for acquiring precise quantitative growth data for U. lactuca...

  19. Soil microbial communities buffer physiological responses to drought stress in three hardwood species.

    Science.gov (United States)

    Kannenberg, Steven A; Phillips, Richard P

    2017-03-01

    Trees possess myriad adaptations for coping with drought stress, but the extent to which their drought responses are influenced by interactions with soil microbes is poorly understood. To explore the role of microbes in mediating tree responses to drought stress, we exposed saplings of three species (Acer saccharum, Liriodendron tulipifera, and Quercus alba) to a four week experimental drought in mesocosms. Half of the pots were inoculated with a live soil slurry (i.e., a microbial inoculum derived from soils beneath the canopies of mature A. saccharum, L. tulipifera or Q. alba stands), while the other half of the pots received a sterile soil slurry. Soil microbes ameliorated drought stress in L. tulipifera by minimizing reductions in leaf water potential and by reducing photosynthetic declines. In A. saccharum, soil microbes reduced drought stress by lessening declines in leaf water potential, though these changes did not buffer the trees from declining photosynthetic rates. In Q. alba, soil microbes had no effects on leaf physiological parameters during drought stress. In all species, microbes had no significant effects on dynamic C allocation during drought stress, suggesting that microbial effects on plant physiology were unrelated to source-sink dynamics. Collectively, our results suggest that soil microbes have the potential to alter key parameters that are used to diagnose drought sensitivity (i.e., isohydry or anisohydry). To the extent that our results reflect dynamics occurring in forests, a revised perspective on plant hydraulic strategies that considers root-microbe interactions may lead to improved predictions of forest vulnerability to drought.

  20. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    International Nuclear Information System (INIS)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-01-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species, multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  1. Invasion in microbial communities: Role of community composition and assembly processes

    DEFF Research Database (Denmark)

    Kinnunen, Marta

    of microbial community assembly. Biotic factors include interactions between different microbial groups as well as the community response to alien species – invaders. Microbial invasions can have significant effects on the composition and functioning of resident communities. There is, however, lack......Microbes contribute to all biogeochemical cycles on earth and are responsible for key biological processes that support the survival of plants and animals. There is increased interest in controlling and managing microbial communities in different ecosystems in order to make targeted microbiological...... processes more effective. In order to manage microbial communities, it is essential to understand the factors that shape and influence microbial community composition. In addition to abiotic factors, such as environmental conditions and resource availability, biotic factors also shape the dynamics...

  2. Xylem traits, leaf longevity and growth phenology predict growth and mortality response to defoliation in northern temperate forests.

    Science.gov (United States)

    Foster, Jane R

    2017-09-01

    Defoliation outbreaks are biological disturbances that alter tree growth and mortality in temperate forests. Trees respond to defoliation in many ways; some recover rapidly, while others decline gradually or die. Functional traits such as xylem anatomy, growth phenology or non-structural carbohydrate (NSC) storage could explain these responses, but idiosyncratic measures used by defoliation studies have frustrated efforts to generalize among species. Here, I test for functional differences with published growth and mortality data from 37 studies, including 24 tree species and 11 defoliators from North America and Eurasia. I synthesized data into standardized variables suitable for numerical models and used linear mixed-effects models to test the hypotheses that responses to defoliation vary among species and functional groups. Standardized data show that defoliation responses vary in shape and degree. Growth decreased linearly or curvilinearly, least in ring-porous Quercus and deciduous conifers (by 10-40% per 100% defoliation), whereas growth of diffuse-porous hardwoods and evergreen conifers declined by 40-100%. Mortality increased exponentially with defoliation, most rapidly for evergreen conifers, then diffuse-porous, then ring-porous species and deciduous conifers (Larix). Goodness-of-fit for functional-group models was strong (R2c = 0.61-0.88), if lower than species-specific mixed-models (R2c = 0.77-0.93), providing useful alternatives when species data are lacking. These responses are consistent with functional differences in leaf longevity, wood growth phenology and NSC storage. When defoliator activity lags behind wood-growth, either because xylem-growth precedes budburst (Quercus) or defoliator activity peaks later (sawflies on Larix), impacts on annual wood-growth will always be lower. Wood-growth phenology of diffuse-porous species and evergreen conifers coincides with defoliation and responds more drastically, and lower axial NSC storage makes them

  3. Response of aerobic granular sludge to the long-term presence to nanosilver in sequencing batch reactors: Reactor performance, sludge property, microbial activity and community

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Xiangchun, E-mail: xchquan@bnu.edu.cn; Cen, Yan; Lu, Fang; Gu, Lingyun; Ma, Jingyun

    2015-02-15

    The increasing use of silver nanoparticles (Ag NPs) raises concerns about their potential toxic effects on the environment. Granular shape sludge is a special type of microbial aggregate. The response of aerobic granular sludge (AGS) to the long-term presence of Ag NPs has not been well studied. In this study, AGS was exposed to 5 and 50 mg/L Ag NPs in sequence batch reactors (SBRs) for 69 days, and its response was evaluated based on the sludge properties, microbial activity and community, and reactor performance. The results showed that Ag NPs caused inhibition to microbial activities of AGS from Day 35. At the end of 69 days of Ag NPs exposure, the microbial activity of AGS was significantly inhibited in terms of inhibitions of the ammonia oxidizing rate (33.0%), respiration rate (17.7% and 45.6%) and denitrification rate (6.8%), as well as decreases in the ammonia mono-oxygenase and nitrate reductase activities. During the long-term exposure, the AGS maintained its granular shape and large granule size (approximately 900 μm); the microbial community of AGS slightly changed, but the dominant microbial population remained. Overall, the AGS tolerated the toxicity of Ag NPs well, but a long-term exposure may produce chronic toxicity to the AGS, which is concerning. - Highlights: • AGS demonstrated a good tolerance to the long-term presence of Ag NPs. • Ag NPs did not produce acute toxicity but cause chronic toxicity to AGS. • AGS maintained granular shape, granule size and good settling ability. • The microbial community of AGS slightly changed after long-term Ag NPs exposure.

  4. Response of aerobic granular sludge to the long-term presence to nanosilver in sequencing batch reactors: Reactor performance, sludge property, microbial activity and community

    International Nuclear Information System (INIS)

    Quan, Xiangchun; Cen, Yan; Lu, Fang; Gu, Lingyun; Ma, Jingyun

    2015-01-01

    The increasing use of silver nanoparticles (Ag NPs) raises concerns about their potential toxic effects on the environment. Granular shape sludge is a special type of microbial aggregate. The response of aerobic granular sludge (AGS) to the long-term presence of Ag NPs has not been well studied. In this study, AGS was exposed to 5 and 50 mg/L Ag NPs in sequence batch reactors (SBRs) for 69 days, and its response was evaluated based on the sludge properties, microbial activity and community, and reactor performance. The results showed that Ag NPs caused inhibition to microbial activities of AGS from Day 35. At the end of 69 days of Ag NPs exposure, the microbial activity of AGS was significantly inhibited in terms of inhibitions of the ammonia oxidizing rate (33.0%), respiration rate (17.7% and 45.6%) and denitrification rate (6.8%), as well as decreases in the ammonia mono-oxygenase and nitrate reductase activities. During the long-term exposure, the AGS maintained its granular shape and large granule size (approximately 900 μm); the microbial community of AGS slightly changed, but the dominant microbial population remained. Overall, the AGS tolerated the toxicity of Ag NPs well, but a long-term exposure may produce chronic toxicity to the AGS, which is concerning. - Highlights: • AGS demonstrated a good tolerance to the long-term presence of Ag NPs. • Ag NPs did not produce acute toxicity but cause chronic toxicity to AGS. • AGS maintained granular shape, granule size and good settling ability. • The microbial community of AGS slightly changed after long-term Ag NPs exposure

  5. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    Science.gov (United States)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  6. Microbial response of an acid forest soil to experimental soil warming

    Science.gov (United States)

    S.S. Arnold; I.J. Fernandez; L.E. Rustad; L.M. Zibilske

    1999-01-01

    Effects of increased soil temperature on soil microbial biomass and dehydrogenase activity were examined on organic (O) horizon material in a low-elevation spruce-fir ecosystem. Soil temperature was maintained at 5 °C above ambient during the growing season in the experimental plots, and soil temperature, moisture, microbial biomass, and dehydrogenase activity were...

  7. A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery.

    Science.gov (United States)

    Kim, Joonyup; Wilson, Rebecca L; Case, J Brett; Binder, Brad M

    2012-11-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa 'Nipponbare') seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics.

  8. Seasonal microbial and nutrient responses during a 5-year reduction in the daily temperature range of soil in a Chihuahuan Desert ecosystem.

    Science.gov (United States)

    van Gestel, Natasja C; Dhungana, Nirmala; Tissue, David T; Zak, John C

    2016-01-01

    High daily temperature range of soil (DTRsoil) negatively affects soil microbial biomass and activity, but its interaction with seasonal soil moisture in regulating ecosystem function remains unclear. For our 5-year field study in the Chihuahuan Desert, we suspended shade cloth 15 cm above the soil surface to reduce daytime temperature and increase nighttime soil temperature compared to unshaded plots, thereby reducing DTRsoil (by 5 ºC at 0.2 cm depth) without altering mean temperatures. Microbial biomass production was primarily regulated by seasonal precipitation with the magnitude of the response dependent on DTRsoil. Reduced DTRsoil more consistently increased microbial biomass nitrogen (MBN; +38%) than microbial biomass carbon (MBC) with treatment responses being similar in spring and summer. Soil respiration depended primarily on soil moisture with responses to reduced DTRsoil evident only in wetter summer soils (+53%) and not in dry spring soils. Reduced DTRsoil had no effect on concentrations of dissolved organic C, soil organic matter (SOM), nor soil inorganic N (extractable NO3 (-)-N + NH4 (+)-N). Higher MBN without changes in soil inorganic N suggests faster N cycling rates or alternate sources of N. If N cycling rates increased without a change to external N inputs (atmospheric N deposition or N fixation), then productivity in this desert system, which is N-poor and low in SOM, could be negatively impacted with continued decreases in daily temperature range. Thus, the future N balance in arid ecosystems, under conditions of lower DTR, seems linked to future precipitation regimes through N deposition and regulation of soil heat load dynamics.

  9. Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth

    Science.gov (United States)

    Mark A. Bradford; Ashley D. Keiser; Christian A. Davies; Calley A. Mersmann; Michael S. Strickland

    2012-01-01

    Plant-carbon inputs to soils in the form of dissolved sugars, organic acids and amino acids fuel much of heterotrophic microbial activity belowground. Initial residence times of these compounds in the soil solution are on the order of hours, with microbial uptake a primary removal mechanism. Through microbial biosynthesis, the dissolved compounds become dominant...

  10. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  11. Microbial growth and quorum sensing antagonist activities of herbal plants extracts.

    Science.gov (United States)

    Al-Hussaini, Reema; Mahasneh, Adel M

    2009-09-03

    Antimicrobial and antiquorum sensing (AQS) activities of fourteen ethanolic extracts of different parts of eight plants were screened against four Gram-positive, five Gram-negative bacteria and four fungi. Depending on the plant part extract used and the test microorganism, variable activities were recorded at 3 mg per disc. Among the Grampositive bacteria tested, for example, activities of Laurus nobilis bark extract ranged between a 9.5 mm inhibition zone against Bacillus subtilis up to a 25 mm one against methicillin resistant Staphylococcus aureus. Staphylococcus aureus and Aspergillus fumigatus were the most susceptible among bacteria and fungi tested towards other plant parts. Of interest is the tangible antifungal activity of a Tecoma capensis flower extract, which is reported for the first time. However, minimum inhibitory concentrations (MIC's) for both bacteria and fungi were relatively high (0.5-3.0 mg). As for antiquorum sensing activity against Chromobacterium violaceum, superior activity (>17 mm QS inhibition) was associated with Sonchus oleraceus and Laurus nobilis extracts and weak to good activity (8-17 mm) was recorded for other plants. In conclusion, results indicate the potential of these plant extracts in treating microbial infections through cell growth inhibition or quorum sensing antagonism, which is reported for the first time, thus validating their medicinal use.

  12. Microbial Growth and Quorum Sensing Antagonist Activities of Herbal Plants Extracts

    Directory of Open Access Journals (Sweden)

    Reema Al-Hussaini

    2009-09-01

    Full Text Available Antimicrobial and antiquorum sensing (AQS activities of fourteen ethanolic extracts of different parts of eight plants were screened against four Gram-positive, five Gram-negative bacteria and four fungi. Depending on the plant part extract used and the test microorganism, variable activities were recorded at 3 mg per disc. Among the Grampositive bacteria tested, for example, activities of Laurus nobilis bark extract ranged between a 9.5 mm inhibition zone against Bacillus subtilis up to a 25 mm one against methicillin resistant Staphylococcus aureus. Staphylococcus aureus and Aspergillus fumigatus were the most susceptible among bacteria and fungi tested towards other plant parts. Of interest is the tangible antifungal activity of a Tecoma capensis flower extract, which is reported for the first time. However, minimum inhibitory concentrations (MIC's for both bacteria and fungi were relatively high (0.5-3.0 mg. As for antiquorum sensing activity against Chromobacterium violaceum, superior activity (>17 mm QS inhibition was associated with Sonchus oleraceus and Laurus nobilis extracts and weak to good activity (8-17 mm was recorded for other plants. In conclusion, results indicate the potential of these plant extracts in treating microbial infections through cell growth inhibition or quorum sensing antagonism, which is reported for the first time, thus validating their medicinal use.

  13. Effects of Biofertilizer Containing Microbial of N-fixer, P Solubilizer and Plant Growth Factor Producer on Cabbage (Brassica oleraceae var. Capitata Growth And Soil Enzymatic Activities: A Greenhouse Trial

    Directory of Open Access Journals (Sweden)

    Sarjiya Antonius

    2012-05-01

    Full Text Available The objective of this greenhouse study was to evaluate the effects of four different concentrations of biofertilizers containing Pseudomonas sp., Bacillus sp. and Streptomyces sp. on soil properties and to evaluate the growth of Brassica oleraceae var. capitata. The application treatments included control (no fertilizer and four concentration of diluted biofertilizer per pot (20 ml, 40 ml, 60 mland 80 ml. The application of biofertilizer containing benefi cial bacteria signifi cantly increased the growth of B. oleraceae. The useof biofertilizer resulted higher biomass weight and length as well as root length. This greenhouse study also indicated that differentamount of biofertilizer application had almost similar effects. Microbial inoculum not only increased plant harvest, but also improvedsoil properties, such as number of microorganisms, respiration and urease activities.

  14. Microbial respiration, but not biomass, responded linearly to increasing light fraction organic matter input: Consequences for carbon sequestration.

    Science.gov (United States)

    Rui, Yichao; Murphy, Daniel V; Wang, Xiaoli; Hoyle, Frances C

    2016-10-18

    Rebuilding 'lost' soil carbon (C) is a priority in mitigating climate change and underpinning key soil functions that support ecosystem services. Microorganisms determine if fresh C input is converted into stable soil organic matter (SOM) or lost as CO 2 . Here we quantified if microbial biomass and respiration responded positively to addition of light fraction organic matter (LFOM, representing recent inputs of plant residue) in an infertile semi-arid agricultural soil. Field trial soil with different historical plant residue inputs [soil C content: control (tilled) = 9.6 t C ha -1 versus tilled + plant residue treatment (tilled + OM) = 18.0 t C ha -1 ] were incubated in the laboratory with a gradient of LFOM equivalent to 0 to 3.8 t C ha -1 (0 to 500% LFOM). Microbial biomass C significantly declined under increased rates of LFOM addition while microbial respiration increased linearly, leading to a decrease in the microbial C use efficiency. We hypothesise this was due to insufficient nutrients to form new microbial biomass as LFOM input increased the ratio of C to nitrogen, phosphorus and sulphur of soil. Increased CO 2 efflux but constrained microbial growth in response to LFOM input demonstrated the difficulty for C storage in this environment.

  15. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  16. Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene.

    Science.gov (United States)

    Babin, Doreen; Ding, Guo-Chun; Pronk, Geertje Johanna; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2013-10-01

    Microbial communities in soil reside in a highly heterogeneous habitat where diverse mineral surfaces, complex organic matter and microorganisms interact with each other. This study aimed to elucidate the long-term effect of the soil mineral composition and charcoal on the microbial community composition established in matured artificial soils and their response to phenanthrene. One year after adding sterile manure to different artificial soils and inoculating microorganisms from a Cambisol, the matured soils were spiked with phenanthrene or not and incubated for another 70 days. 16S rRNA gene and internal transcribed spacer fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis. Metal oxides and clay minerals and to a lesser extent charcoal influenced the microbial community composition. Changes in the bacterial community composition in response to phenanthrene differed depending on the mineral composition and presence of charcoal, while no shifts in the fungal community composition were observed. The abundance of ring-hydroxylating dioxygenase genes was increased in phenanthrene-spiked soils except for charcoal-containing soils. Here we show that the formation of biogeochemical interfaces in soil is an ongoing process and that different properties present in artificial soils influenced the bacterial response to the phenanthrene spike. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Uniform shrub growth response to June temperature across the North Slope of Alaska

    Science.gov (United States)

    Ackerman, Daniel E.; Griffin, Daniel; Hobbie, Sarah E.; Popham, Kelly; Jones, Erin; Finlay, Jacques C.

    2018-04-01

    The expansion of woody shrubs in arctic tundra alters many aspects of high-latitude ecosystems, including carbon cycling and wildlife habitat. Dendroecology, the study of annual growth increments in woody plants, has shown promise in revealing how climate and environmental conditions interact with shrub growth to affect these key ecosystem properties. However, a predictive understanding of how shrub growth response to climate varies across the heterogeneous landscape remains elusive. Here we use individual-based mixed effects modeling to analyze 19 624 annual growth ring measurements in the stems of Salix pulchra (Cham.), a rapidly expanding deciduous shrub. Stem samples were collected at six sites throughout the North Slope of Alaska. Sites spanned four landscapes that varied in time since glaciation and hence in soil properties, such as nutrient availability, that we expected would modulate shrub growth response to climate. Ring growth was remarkably coherent among sites and responded positively to mean June temperature. The strength of this climate response varied slightly among glacial landscapes, but in contrast to expectations, this variability was not systematically correlated with landscape age. Additionally, shrubs at all sites exhibited diminishing marginal growth gains in response to increasing temperatures, indicative of alternative growth limiting mechanisms in particularly warm years, such as temperature-induced moisture limitation. Our results reveal a regionally-coherent and robust shrub growth response to early season growing temperature, with local soil properties contributing only a minor influence on shrub growth. Our conclusions strengthen predictions of changes to wildlife habitat and improve the representation of tundra vegetation dynamics in earth systems models in response to future arctic warming.

  18. Microbial functional diversity responses to 2 years since biochar application in silt-loam soils on the Loess Plateau.

    Science.gov (United States)

    Zhu, Li-Xia; Xiao, Qian; Shen, Yu-Fang; Li, Shi-Qing

    2017-10-01

    microbial functional diversity affected by biochar were not effective indicators of soil quality in earlier maize growth periods in this region. Copyright © 2017. Published by Elsevier Inc.

  19. Effect of glyphosate on the microbial activity of two Romanian soils.

    Science.gov (United States)

    Sumalan, R M; Alexa, E; Negrea, M; Sumalan, R L; Doncean, A; Pop, G

    2010-01-01

    Glyphosate applied to soils potentially affect microbial activity. A series of field and laboratory experiments assessed the effect of this herbicide on soil microorganisms. The aim of experiments was to evaluate the effect of glyphosate application on the soil microbial community structure, function and their activity. We studied "in vitro", changes in the microbial activity of typical Chernozem and Gleysol soils, with and without applied glyphosate. The herbicide was applied at a rate of 2, respectively 4 mg kg(-1) of soil and microbial activity were measured by fluorescein diacetate (FDA) hydrolysis. We found an increase of 9 to 13% in FDA hydrolyses in the presence of glyphosate in rate of 2 mg kg (-1) compared with the same type of soil which had never received herbicide. The double quantity of glyphosate decrease soil microbial activity; the amount of hydrolyzed fluorescein is lower than the addition of 2 ppm. The greater decrease was observed in the Gleysol type where the fluorescein hydrolyzed is with 4, 85% lower than version control without glyphosate. Chemical characters of soil, influence soil biological activity when herbicide is added. In Chemozem case, rich in humus, whose predominant micro flora is represented by actinomycetes through glyphosate treatment these organisms growths of as major producers of antibiotics actinomycetes determine an inhibitory effect on eubacteria and micromycetes growth, which is highlighted by estimating a relatively small number of them. After 10 days, once with decreasing of glyphosate content in soil, decreases the number of active actinomycetes, therefore we are witnessing to a numerical growth of bacterial population. In Gleysol type the indigenous micro flora is represented by eubacteria, so when the glyphosate is added it was registered a high growth of these organisms fraction.

  20. Response of soil microbial communities to red mud-based stabilizer remediation of cadmium-contaminated farmland.

    Science.gov (United States)

    Li, Hui; Liu, Lemian; Luo, Lin; Liu, Yan; Wei, Jianhong; Zhang, Jiachao; Yang, Yuan; Chen, Anwei; Mao, Qiming; Zhou, Yaoyu

    2018-04-01

    In this work, a field test was conducted to investigate the effects of heavy metal stabilizer addition on brown rice and microbial variables in a cadmium (Cd)-contaminated farmland from April to October in 2016. Compared with the control, red mud-based stabilizer (RMDL) effectively reduced the concentration of Cd in brown rice (with the removal rate of 48.14% in early rice, 20.24 and 47.62% in late rice). The results showed that adding 0.3 kg m -2 RDML in early rice soil or soil for both early and late rice increased the microbial biomass carbon (MBC), the number of culturable heterotrophic bacteria and fungi, and the catalase activity in soil at different stages of paddy rice growth. Furthermore, there was no notable difference in the diversity of the bacterial species, community composition, and relative abundance at phylum (or class) or operational taxonomic unit (OTU) levels between the control and treatment (RMDL addition) groups. In a word, RMDL could be highly recommended as an effective remediation stabilizer for Cd-contaminated farmland, since its continuous application in paddy soil cultivating two seasons rice soil could effectively decrease the Cd content in brown rice and had no negative impact on soil microorganisms.

  1. Effects of Resveratrol and Essential Oils on Growth Performance, Immunity, Digestibility and Fecal Microbial Shedding in Challenged Piglets

    Directory of Open Access Journals (Sweden)

    S. T. Ahmed

    2013-05-01

    Full Text Available A study was conducted to evaluate the effects of resveratrol and essential oils from medicinal plants on the growth performance, immunity, digestibility, and fecal microbial shedding of weaned piglets. A total of 48 weaned piglets (8 kg initial weight, 28-d-old were randomly allotted to four dietary treatments with 3 replications of 4 piglets each. The dietary treatments were NC (negative control; basal diet, PC (positive control; basal diet+0.002% apramycin, T1 (basal diet+0.2% resveratrol, and T2 (basal diet+0.0125% essential oil blend. All piglets were orally challenged with 5 ml culture fluid containing 2.3×108 cfu/ml of Escherichia coli KCTC 2571 and 5.9×108 cfu/ml Salmonella enterica serover Typhimurium. The PC group (p0.05. Serum IgG level was increased in the T1 group, whereas TNF-α levels was reduced in the supplemented groups compared to control (p<0.05. The PC diet improved the dry matter (DM digestibility, whereas PC and T2 diets improved nitrogen (N digestibility compared to NC and T1 diets (p<0.05. Fecal Salmonella and E. coli counts were reduced in all treatment groups compared to control (p<0.05. Fecal Lactobacillus spp. count was increased in the T2 group compared to others (p<0.05. Dietary treatments had no significant effect on fecal Bacillus spp. count throughout the entire experimental period. Based on these results, resveratrol showed strong potential as antibiotic alternatives for reversing the adverse effects of weaning stress on growth performance, immunity and microbial environment in E. coli and Salmonella-challenged piglets.

  2. Seasonality in ocean microbial communities.

    Science.gov (United States)

    Giovannoni, Stephen J; Vergin, Kevin L

    2012-02-10

    Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.

  3. Copper removal and microbial community analysis in single-chamber microbial fuel cell.

    Science.gov (United States)

    Wu, Yining; Zhao, Xin; Jin, Min; Li, Yan; Li, Shuai; Kong, Fanying; Nan, Jun; Wang, Aijie

    2018-04-01

    In this study, copper removal and electricity generation were investigated in a single-chamber microbial fuel cell (MFC). Result showed that copper was efficiently removed in the membrane-less MFC with removal efficiency of 98.3% at the tolerable Cu 2+ concentration of 12.5 mg L -1 , the corresponding open circuit voltage and maximum power density were 0.78 V and 10.2 W m -3 , respectively. The mechanism analysis demonstrated that microbial electrochemical reduction contributed to the copper removal with the products of Cu and Cu 2 O deposited at biocathode. Moreover, the microbial community analysis indicated that microbial communities changed with different copper concentrations. The dominant phyla were Proteobacteria and Bacteroidetes which could play key roles in electricity generation, while Actinobacteria and Acidobacteria were also observed which were responsible for Cu-resistant and copper removal. It will be of important guiding significance for the recovery of copper from low concentration wastewater through single-chamber MFC with simultaneous energy recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Combined Effects of Nutrient and Pesticide Management on Soil Microbial Activity in Hybrid Rice Double Annual Cropping System

    Institute of Scientific and Technical Information of China (English)

    XIE Xiao-mei; LIAO Min; LIU Wei-ping; Susanne KLOSE

    2004-01-01

    Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbial biomass phospholipid contents,abundance of heterotrophic bacteria and proteolytic bacteria, electron transport system (ETS)/dehydrogenase activity, soil protein contents under different management practices and at various growth stages. Marked depletions in the soil microbial biomass phospholipid contents were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also induced slight changes, and the lowest microbial biomass phospholipid content was found with pesticides application alone. A decline in the bacterial abundance of heterotrophic bacteria and proteolytic bacteria was observed during the continuance of crop growth, while the lowest abundance of heterotrophic bacteria and proteolytic bacteria was found with pesticides application alone, which coincided with the decline of soil microbial biomass. A consistent increase in the electron transport system activity was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or combined with pesticides increased it, while a decline was noticed with pesticides application alone as compared with the control.The soil protein content was found to be relatively stable with fertilizers and/or pesticides application at various growth stages in both crops undertaken, but notable changes were detected at different growth stages.

  5. Microbial growth and sensory quality of dried potato slices irradiated by electrons

    International Nuclear Information System (INIS)

    Kim, Hyun-Jin; Song, Hyeon-Jeong; Song, Kyung-Bin

    2011-01-01

    Electron beam irradiation was applied to secure the microbial safety of dried purple sweet potato. After purple sweet potato slices had been dehydrated with 20% (w/w) maltodextrin solution, the samples were irradiated at doses 2, 4, 6, 8, and 10 kGy and then stored at 20 o C for 60 days. Microbiological data indicated that the populations of total aerobic bacteria and of yeast and molds significantly decreased with increase in irradiation dosage. Specifically, microbial load was reduced by about three log cycles at 6 kGy compared to those of the control. Based on the color measurement of the potato slices, electron beam irradiation treatment did not affect the color quality. Sensory evaluation results also showed that electron beam irradiation did not affect overall sensory scores during storage. These results suggest that electron beam irradiation could be useful for improving microbial safety without impairing the quality of the potato slices during storage.

  6. PCR-DGGE fingerprints of microbial successional changes during ...

    African Journals Online (AJOL)

    PCR-DGGE fingerprints of microbial successional changes during fermentation of cereal-legume weaning foods. ... African Journal of Biotechnology ... Phenotypic identification and monitoring of the dynamics of naturally occurring microbial community responsible for the spontaneous fermentation of different cereal-legume ...

  7. Growth hormone, prolactin and cortisol response to exercise in patients with depression

    DEFF Research Database (Denmark)

    Krogh, Jesper; Nordentoft, Merete; Mohammad-Nezhad, Mahdi

    2010-01-01

    BACKGROUND: A blunted growth hormone and prolactin response to pharmacological stress test have previously been found in depressed patients, as well as an increased cortisol response to psychosocial stress. This study investigated these hormones in response to acute exercise using an incremental...... bicycle test. METHOD: A cross-sectional comparison of cortisol, growth hormone, and prolactin in depressed (n=137) and healthy (n=44) subjects during rest and in response to an incremental bicycle test. Secondly, we tested the depressed patients again after a 4-month randomized naturalistic exercise...... intervention. RESULTS: Resting plasma levels of growth hormone (GH), cortisol, or prolactin (PRL) did not differ between depressed and healthy subjects (all p-values>.12). In response to an incremental bicycle test the GH (p=.02) and cortisol (p=.05) response in depressed was different compared to healthy...

  8. microbial spectrum of pelvic inflamatory diseases in nguru, nigeria

    African Journals Online (AJOL)

    Polymicrobial growth was found in 90 (10.7%), fungal growth in 110 (13.0%) ... In conclusion, the reported microbial-associated infection in PID with a prevalence of 62.8% ... clinical and laboratory test in definite as gold ..... sulphamethoxazole, clearly revealed the abuse of ... susceptibility pattern that could serve as drugs of.

  9. Performance evaluation of nanoclay enriched anti-microbial hydrogels for biomedical applications

    Directory of Open Access Journals (Sweden)

    Sonali Karnik

    2016-02-01

    Full Text Available A major factor contributing to the failure of orthopedic and orthodontic implants is post-surgical infection. Coating metallic implant surfaces with anti-microbial agents has shown promise but does not always prevent the formation of bacterial biofilms. Furthermore, breakdown of these coatings within the human body can cause release of the anti-microbial drugs in an uncontrolled or unpredictable fashion. In this study, we used a calcium alginate and calcium phosphate cement (CPC hydrogel composite as the base material and enriched these hydrogels with the anti-microbial drug, gentamicin sulfate, loaded within a halloysite nanotubes (HNTs. Our results demonstrate a sustained and extended release of gentamicin from hydrogels enriched with the gentamicin-loaded HNTs. When tested against the gram-negative bacteria, the hydrogel/nanoclay composites showed a pronounced zone of inhibition suggesting that anti-microbial doped nanoclay enriched hydrogels can prevent the growth of bacteria. The release of gentamicin sulfate for a period of five days from the nanoclay-enriched hydrogels would supply anti-microbial agents in a sustained and controlled manner and assist in preventing microbial growth and biofilm formation on the titanium implant surface. A pilot study, using mouse osteoblasts, confirmed that the nanoclay enriched surfaces are also cell supportive as osteoblasts readily, proliferated and produced a type I collagen and proteoglycan matrix.

  10. Media ion composition controls regulatory and virulence response of Salmonella in spaceflight.

    Directory of Open Access Journals (Sweden)

    James W Wilson

    Full Text Available The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth.

  11. Microbial ecosystem constructed in water for successful organic hydroponics

    OpenAIRE

    Makoto Shinohara; Hiromi Ohmori; Yoichi Uehara

    2008-01-01

    Conventional hydroponics systems generally use only chemical fertilisers, not organic ones, since there are no microbial ecosystems present in such systems to mineralise organic compounds to inorganic nutrients. Addition of organic compounds to the hydroponic solution generally has phytotoxic effects and causes poor plant growth. We developed a novel hydroponic culture method using organic fertiliser. A microbial ecosystem was constructed in hydroponic solution by regulating the amounts of or...

  12. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories

    Science.gov (United States)

    Chen, Ruirui; Senbayram, Mehmet; Blagodatsky, Sergey; Dittert, Klaus; Lin, Xiangui; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural 13C labelling adding C4-sucrose or C4-maize straw to C3-soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM

  13. The effects of genetic polymorphism on treatment response of recombinant human growth hormone.

    Science.gov (United States)

    Chen, Shi; You, Hanxiao; Pan, Hui; Zhu, Huijuan; Yang, Hongbo; Gong, Fengying; Wang, Linjie; Jiang, Yu; Yan, Chengsheng

    2017-12-06

    Recombinant human growth hormone (rhGH) has been widely used in clinical treatment of growth hormone deficiency (GHD) or non GHD since 1985 and technology have achieved a great development in different long-acting formulations. Although the mathematical models for predicting the growth hormone response could help clinicians get to an individual personalized growth dose, many patients just can't reach the target height and the growth hormone responses differed.Genetic polymorphisms may play a role in the varies of individual responses in this treatment process.This article gives an overview of the genetic polymorphisms research of growth hormone in recent years, in order to give some potential suggestion and guide for the dose titration during treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Genetic dysbiosis: the role of microbial insults in chronic inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Luigi Nibali

    2014-02-01

    Full Text Available Thousands of bacterial phylotypes colonise the human body and the host response to this bacterial challenge greatly influences our state of health or disease. The concept of infectogenomics highlights the importance of host genetic factors in determining the composition of human microbial biofilms and the response to this microbial challenge. We hereby introduce the term ‘genetic dysbiosis’ to highlight the role of human genetic variants affecting microbial recognition and host response in creating an environment conducive to changes in the normal microbiota. Such changes can, in turn, predispose to, and influence, diseases such as: cancer, inflammatory bowel disease, rheumatoid arthritis, psoriasis, bacterial vaginosis and periodontitis. This review presents the state of the evidence on host genetic factors affecting dysbiosis and microbial misrecognition (i.e. an aberrant response to the normal microbiota and highlights the need for further research in this area.

  15. Phosphorus status and microbial community of paddy soil with the growth of annual ryegrass (Lolium multiflorum Lam.) under different phosphorus fertilizer treatments*

    Science.gov (United States)

    Guo, Hai-chao; Wang, Guang-huo

    2009-01-01

    Annual ryegrass (Lolium multiflorum Lam.) was grown in paddy soil in pots under different phosphorus (P) fertilizer treatments to investigate changes of P fractions and microbial community of the soil. The treatments included Kunyang phosphate rock (KPR) applications at 50 mg P/kg (KPR50) and 250 mg P/kg (KPR250), mono-calcium phosphate (MCP) application at 50 mg P/kg (MCP50), and the control without P application. The results showed that KPR50, KPR250, and MCP50 applications significantly increased the dry weight of the ryegrass by 13%, 38%, and 55%, and increased P uptake by 19%, 135%, and 324%, respectively. Compared with MCP50, the relative effectiveness of KPR50 and KPR250 treatments in ryegrass production was about 23% and 68%, respectively. After one season of ryegrass growth, the KPR50, KPR250, and MCP50 applications increased soil-available P by 13.4%, 26.8%, and 55.2%, respectively. More than 80% of the applied KPR-P remained as HCl-P fraction in the soil. Phospholipid fatty acid (PLFA) analysis showed that the total and bacterial PLFAs were significantly higher in the soils with KPR250 and MCP50 treatments compared with KPR50 and control. The latter had no significant difference in the total or bacterial PLFAs. The KPR50, KPR250, and MCP50 treatments increased fungal PLFA by 69%, 103%, and 69%, respectively. Both the principal component analysis and the cluster analysis of the PLFA data suggest that P treatments altered the microbial community composition of the soils, and that P availability might be an important contributor to the changes in the microbial community structure during the ryegrass growth in the paddy soils. PMID:19817001

  16. Growing Rocks: Implications of Lithification for Microbial Communities and Nutrient Cycling

    Science.gov (United States)

    Corman, J. R.; Poret-Peterson, A. T.; Elser, J. J.

    2014-12-01

    Lithifying microbial communities ("microbialites") have left their signature on Earth's rock record for over 3.4 billion years and are regarded as important players in paleo-biogeochemical cycles. In this project, we study extant microbialites to understand the interactions between lithification and resource availability. All microbes need nutrients and energy for growth; indeed, nutrients are often a factor limiting microbial growth. We hypothesize that calcium carbonate deposition can sequester bioavailable phosphorus (P) and expect the growth of microbialites to be P-limited. To test our hypothesis, we first compared nutrient limitation in lithifying and non-lithifying microbial communities in Río Mesquites, Cuatro Ciénegas. Then, we experimentally manipulated calcification rates in the Río Mesquites microbialites. Our results suggest that lithifying microbialites are indeed P-limited, while non-lithifying, benthic microbial communities tend towards co-limitation by nitrogen (N) and P. Indeed, in microbialites, photosynthesis and aerobic respiration responded positively to P additions (Pbacterial community composition based on analysis of 16S rRNA genes. Unexpectedly, calcification rates increased with OC additions (P<0.05), but not with P additions, suggesting that sulfate reduction may be an important pathway for calcification. Experimental reductions in calcification rates caused changes to microbial biomass OC and P concentrations (P<0.01 and P<0.001, respectively), although shifts depended on whether calcification was decreased abiotically or biotically. These results show that resource availability does influence microbialite formation and that lithification may promote phosphorus limitation; however, further investigation is required to understand the mechanism by which the later occurs.

  17. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

    Science.gov (United States)

    Saleem, Muhammad; Moe, Luke A

    2014-10-01

    Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Selective progressive response of soil microbial community to wild oat roots

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Brodie, E.L.; DeSantis, T.Z.; Andersen, G.L.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Roots moving through soil enact physical and chemical changes that differentiate rhizosphere from bulk soil, and the effects of these changes on soil microorganisms have long been a topic of interest. Use of a high-density 16S rRNA microarray (PhyloChip) for bacterial and archaeal community analysis has allowed definition of the populations that respond to the root within the complex grassland soil community; this research accompanies previously reported compositional changes, including increases in chitinase and protease specific activity, cell numbers and quorum sensing signal. PhyloChip results showed a significant change in 7% of the total rhizosphere microbial community (147 of 1917 taxa); the 7% response value was confirmed by16S rRNA T-RFLP analysis. This PhyloChip-defined dynamic subset was comprised of taxa in 17 of the 44 phyla detected in all soil samples. Expected rhizosphere-competent phyla, such as Proteobacteria and Firmicutes, were well represented, as were less-well-documented rhizosphere colonizers including Actinobacteria, Verrucomicrobia and Nitrospira. Richness of Bacteroidetes and Actinobacteria decreased in soil near the root tip compared to bulk soil, but then increased in older root zones. Quantitative PCR revealed {beta}-Proteobacteria and Actinobacteria present at about 10{sup 8} copies of 16S rRNA genes g{sup -1} soil, with Nitrospira having about 10{sup 5} copies g{sup -1} soil. This report demonstrates that changes in a relatively small subset of the soil microbial community are sufficient to produce substantial changes in function in progressively more mature rhizosphere zones.

  19. Functional and compositional responses in soil microbial communities along two metal pollution gradients: does the level of historical pollution affect resistance against secondary stress?

    NARCIS (Netherlands)

    Azarbad, H.; Niklinska, M.; Nikiel, K.; van Straalen, N.M.; Röling, W.F.M.

    2015-01-01

    We examined how the exposure to secondary stressors affected the functional and compositional responses of microbial communities along two metal pollution gradients in Polish forests and whether responses were influenced by the level of metal pollution. Basal respiration rate and community

  20. Bean leaf growth response to moderate ozone levels

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L S

    1973-01-01

    The middle leaflet from the first trifoliate leaf of pinto bean plants (Phaseolus vulgaris) was subjected to various ozone levels for both 12 and 24 h to show moderate oxidant injury. Rates of leaf expansion were used as criteria to measure the effects of ozone at three leaflet positions. Growth analysis included Y-intercepts indicating growth after day 1, growth after day 3, and regression line slopes between days 1 and 7 after the beginning of the experiments. Slopes of growth rate regression lines differentiated untreated leaflets from leaflets exposed to a 0.60 ppm-h (0.05 ppm for 12 h) dose. Growth rates of plants exposed to 1.20 ppm-h (either 0.05 ppm for 24 h, or 0.10 ppm for 12 h) were distinguishable from untreated plants within three days. Basal leaf portions showed the most differential ozone response compared with lateral and tip positions.

  1. Microbial Impacts to the Near-Field Environment Geochemistry (MING): A Model for Estimating Microbial Communities in Repository Drifts at Yucca Mountain

    International Nuclear Information System (INIS)

    Jolley, D.M.; Ehrhorn, T.F.; Horn, J.

    2002-01-01

    Geochemical and microbiological modeling was performed to evaluate the potential quantities and impact of microorganisms on the geochemistry of the area adjacent to and within nuclear waste packages in the proposed repository drifts at Yucca Mountain, Nevada. The microbial growth results from the introduction of water, ground support, and waste package materials into the deep unsaturated rock. The simulations, which spanned one million years, were accomplished using a newly developed computer code, Microbial Impacts to the Near-Field Environment Geochemistry (MING). MING uses environmental thresholds for limiting microbial growth to temperatures below 120 C and above relative humidities of 90 percent in repository drifts. Once these thresholds are met, MING expands upon a mass balance and thermodynamic approach proposed by McKinley and others (1997), by using kinetic rates to supply constituents from design materials and constituent fluxes including solubilized rock components into the drift, to perform two separate mass-balance calculations as a function of time. The first (nutrient limit) assesses the available nutrients (C, N, P and S) and calculates how many microorganisms can be produced based on a microorganism stoichiometry of C 160 (H 280 O 80 )N 30 P 2 S. The second (energy limit) calculates the energy available from optimally combined redox couples for the temperature, and pH at that time. This optimization maximizes those reactions that produce > 15kJ/mol (limit on useable energy) using an iterative linear optimization technique. The final available energy value is converted to microbial mass at a rate of 1 kg of biomass (dry weight) for every 64 MJ of energy. These two values (nutrient limit and energy limit) are then compared and the smaller value represents the number of microorganisms that can be produced over a specified time. MING can also be adapted to investigate other problems of interest as the model can be used in saturated and unsaturated

  2. Soil mineral assemblage influences on microbial communities and carbon cycling under fresh organic matter input

    Science.gov (United States)

    Finley, B. K.; Schwartz, E.; Koch, B.; Dijkstra, P.; Hungate, B. A.

    2017-12-01

    The interactions between soil mineral assemblages and microbial communities are important drivers of soil organic carbon (SOC) cycling and storage, although the mechanisms driving these interactions remain unclear. There is increasing evidence supporting the importance of associations with poorly crystalline, short-range order (SRO) minerals in protection of SOC from microbial utilization. However, how the microbial processing of SRO-associated SOC may be influenced by fresh organic matter inputs (priming) remains poorly understood. The influence on SRO minerals on soil microbial community dynamics is uncertain as well. Therefore, we conducted a priming incubation by adding either a simulated root exudate mixture or conifer needle litter to three soils from a mixed-conifer ecosystem. The parent material of the soils were andesite, basalt, and granite and decreased in SRO mineral content, respectively. We also conducted a parallel quantitative stable isotope probing incubation by adding 18O-labelled water to the soils to isotopically label microbial DNA in situ. This allowed us to characterize and identify the active bacterial and archaeal community and taxon-specific growth under fresh organic matter input. While the granite soil (lowest SRO content), had the largest total mineralization, the least priming occurred. The andesite and basalt soils (greater SRO content) had lower total respiration, but greater priming. Across all treatments, the granite soil, while having the lowest species richness of the entire community (249 taxa, both active and inactive), had a larger active community (90%) in response to new SOC input. The andesite and basalt soils, while having greater total species richness of the entire community at 333 and 325 taxa, respectively, had fewer active taxa in response to new C compared to the granite soil (30% and 49% taxa, respectively). These findings suggest that the soil mineral assemblage is an important driver on SOC cycling under fresh

  3. Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils

    Energy Technology Data Exchange (ETDEWEB)

    Renella, Giancarlo [Department of Soil Science and Plant Nutrition, University of Florence, Piazzale delle Cascine 28, I-50144 Florence (Italy)], E-mail: giancarlo.renella@unifi.it; Landi, Loretta; Ascher, Judith; Ceccherini, Maria Teresa; Pietramellara, Giacomo; Mench, Michel; Nannipieri, Paolo [Department of Soil Science and Plant Nutrition, University of Florence, Piazzale delle Cascine 28, I-50144 Florence (Italy)

    2008-04-15

    We studied the effectiveness of remediation on microbial endpoints, namely microbial biomass and activity, microbial and plant species richness, of an As-contaminated mine spoil, amended with compost (C) alone and in combination with beringite (B) or zerovalent iron grit (Z), to increase organic matter content and reduce trace elements mobility, and to allow Holcus lanatus and Pinus pinaster growth. Untreated spoil showed the lowest microbial biomass and activity and hydrolase activities, and H. lanatus as sole plant species, whereas the presented aided phytostabilisation option, especially CBZ treatment, significantly increased microbial biomass and activity and allowed colonisation by several plant species, comparable to those of an uncontaminated sandy soil. Microbial species richness was only increased in spoils amended with C alone. No clear correlation occurred between trace element mobility and microbial parameters and plant species richness. Our results indicate that the choice of indicators of soil remediation practices is a bottleneck. - Organo-mineral amendment and revegetation of a gold mine spoil increased microbial activity but did not increase microbial species richness.

  4. Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils

    International Nuclear Information System (INIS)

    Renella, Giancarlo; Landi, Loretta; Ascher, Judith; Ceccherini, Maria Teresa; Pietramellara, Giacomo; Mench, Michel; Nannipieri, Paolo

    2008-01-01

    We studied the effectiveness of remediation on microbial endpoints, namely microbial biomass and activity, microbial and plant species richness, of an As-contaminated mine spoil, amended with compost (C) alone and in combination with beringite (B) or zerovalent iron grit (Z), to increase organic matter content and reduce trace elements mobility, and to allow Holcus lanatus and Pinus pinaster growth. Untreated spoil showed the lowest microbial biomass and activity and hydrolase activities, and H. lanatus as sole plant species, whereas the presented aided phytostabilisation option, especially CBZ treatment, significantly increased microbial biomass and activity and allowed colonisation by several plant species, comparable to those of an uncontaminated sandy soil. Microbial species richness was only increased in spoils amended with C alone. No clear correlation occurred between trace element mobility and microbial parameters and plant species richness. Our results indicate that the choice of indicators of soil remediation practices is a bottleneck. - Organo-mineral amendment and revegetation of a gold mine spoil increased microbial activity but did not increase microbial species richness

  5. Growth performance and immunological responses of broiler ...

    African Journals Online (AJOL)

    This study was conducted to determine the growth performance and immune response of broiler chickens fed synbiotic and diet acidifier to Newcastle disease vaccinations. One hundred and forty four (144) day old broiler chickens were randomly assigned to four dietary treatments replicated thrice with 12 birds per replicate ...

  6. Effects of post-processing handling and packaging on microbial populations

    International Nuclear Information System (INIS)

    Zagory, D.

    1999-01-01

    The type of produce, process conditions, and prior temperature management will all affect the mix of microorganisms found on fresh produce. Normally, fresh produce will be covered by a complex mix of bacteria, fungi and yeasts that are characteristic of that fruit or vegetable. For example, carrots typically have large numbers of Lactobacillus and other lactic acid bacteria while apples may have relatively large numbers of yeasts. Which of these microorganisms will come to dominate the population will be a function of the make-up of the original population on the product in the field, distribution time, distribution temperature and the atmosphere within the package. Another chief determinant of microbial populations will be the physiological condition of the product. Factors that injure or weaken the plant tissues may be expected to encourage microbial growth while conditions that maintain the physiological integrity of the tissues may be expected to discourage microbial growth. Each of these factors can be expected to affect the make-up of the microbial population in characteristic ways but always constrained by the initial condition of original population makeup. This paper describes which microorganisms are favored by given conditions in order to develop a concept of microbial management designed to favor desirable microbes at the expense of undesirable ones. Particular emphasis will be placed on the effects of modified atmospheres on microorganisms, especially human pathogens

  7. Declining Radial Growth Response of Coastal Forests to Hurricanes and Nor'easters

    Science.gov (United States)

    Fernandes, Arnold; Rollinson, Christine R.; Kearney, William S.; Dietze, Michael C.; Fagherazzi, Sergio

    2018-03-01

    The Mid-Atlantic coastal forests in Virginia are stressed by episodic disturbance from hurricanes and nor'easters. Using annual tree ring data, we adopt a dendroclimatic and statistical modeling approach to understand the response and resilience of a coastal pine forest to extreme storm events, over the past few decades. Results indicate that radial growth of trees in the study area is influenced by age, regional climate trends, and individual tree effects but dominated periodically by growth disturbance due to storms. We evaluated seven local extreme storm events to understand the effect of nor'easters and hurricanes on radial growth. A general decline in radial growth was observed in the year of the extreme storm and 3 years following it, after which the radial growth started recovering. The decline in radial growth showed a statistically significant correlation with the magnitude of the extreme storm (storm surge height and wind speed). This study contributes to understanding declining tree growth response and resilience of coastal forests to past disturbances. Given the potential increase in hurricanes and storm surge severity in the region, this can help predict vegetation response patterns to similar disturbances in the future.

  8. Microbial biocatalytic preparation of 2-furoic acid by oxidation of 2 ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... Growth experiments and biotransformation with N. corallina were performed in a ... The reaction mixture was acidified to pH 1 with 0.5 M HCl, then saturated with ... (aeration rate), can be correlated with the microbial growth.

  9. Response of old-growth conifers to reduction in stand density in western Oregon forests

    Science.gov (United States)

    Latham, P.; Tappeiner, J. C.

    2002-01-01

    The positive growth response of healthy young trees to density reduction is well known. In contrast, large old trees are usually thought to be intrinsically limited in their ability to respond to increased growing space; therefore, density reduction is seldom used in stands of old-growth trees. We tested the null hypothesis that old-growth trees are incapable of responding with increased growth following density reduction. The diameter growth response of 271 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), ponderosa pine (Pinus ponderosa Dougl. ex Laws) and sugar pine (Pinus lambertiana Dougl.) trees ranging in age from 158 to 650 years was examined 20 to 50 years after density reduction. Density reduction involved either light thinning with removal of less vigorous trees, or shelterwood treatments in which overstory trees were not removed. Ratios of basal area growth after treatment to basal area growth before treatment, and several other measures of growth, all indicated that the old trees sometimes benefited and were not harmed by density reduction. Growth increased by 10% or more for 68% of the trees in treated stands, and nearly 30% of trees increased growth by over 50%. This growth response persisted for at least 20 years. During this 20-year period, only three trees in treated stands (1.5%) exhibited a rapid decrease in growth, whereas growth decreased in 64% of trees in untreated stands. The length of time before a growth response to density reduction occurred varied from 5 to 25 years, with the greatest growth response often occurring 20 to 25 years after treatment. These results have important implications both for the basic biology of aging in woody plants as well as for silvicultural practices in forests with old-growth trees.

  10. Microbial biogeography: putting microorganisms on the map.

    Science.gov (United States)

    Martiny, Jennifer B Hughes; Bohannan, Brendan J M; Brown, James H; Colwell, Robert K; Fuhrman, Jed A; Green, Jessica L; Horner-Devine, M Claire; Kane, Matthew; Krumins, Jennifer Adams; Kuske, Cheryl R; Morin, Peter J; Naeem, Shahid; Ovreås, Lise; Reysenbach, Anna-Louise; Smith, Val H; Staley, James T

    2006-02-01

    We review the biogeography of microorganisms in light of the biogeography of macroorganisms. A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns. Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity. However, recent studies also dispute the idea that 'everything is everywhere'. We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world.

  11. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    Science.gov (United States)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  12. Plastic potential: how the phenotypes and adaptations of pathogens are influenced by microbial interactions within plants.

    Science.gov (United States)

    O'Keeffe, Kayleigh R; Carbone, Ignazio; Jones, Corbin D; Mitchell, Charles E

    2017-08-01

    Predicting the effects of plant-associated microbes on emergence, spread, and evolution of plant pathogens demands an understanding of how pathogens respond to these microbes at two levels of biological organization: that of an individual pathogen and that of a pathogen population across multiple individual plants. We first examine the plastic responses of individual plant pathogens to microbes within a shared host, as seen through changes in pathogen growth and multiplication. We then explore the limited understanding of how within-plant microbial interactions affect pathogen populations and discuss the need to incorporate population-level observations with population genomic techniques. Finally, we suggest that integrating across levels will further our understanding of the ecological and evolutionary impacts of within-plant microbial interactions on pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters

    KAUST Repository

    Kiely, Patrick D.; Cusick, Roland; Call, Douglas F.; Selembo, Priscilla A.; Regan, John M.; Logan, Bruce E.

    2011-01-01

    Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current. © 2010 Elsevier Ltd.

  14. Instrumentation for Examining Microbial Response to Changes In Environmental Pressures

    Science.gov (United States)

    Blaich, J.; Storrs, A.; Wang, J.; Ouandji, C.; Arismendi, D.; Hernandez, J.; Sardesh, N.; Ibanez, C. R.; Owyang, S.; Gentry, D.

    2016-12-01

    The Automated Adaptive Directed Evolution Chamber (AADEC) is a device that allows operators to generate a micro-scale analog of real world systems that can be used to model the local-scale effects of climate change on microbial ecosystems. The AADEC uses an artificial environment to expose cultures of micro-organisms to environmental pressures, such as UV-C radiation, chemical toxins, and temperature. The AADEC autonomously exposes micro-organisms to slection pressures. This improves upon standard manual laboratory techniques: the process can take place over a longer period of time, involve more stressors, implement real-time adjustments based on the state of the population, and minimize the risk of contamination. We currently use UV-C radiation as the main selection pressure, UV-C is well studied both for its cell and DNA damaging effects as a type of selection pressure and for its related effectiveness as a mutagen; having these functions united makes it a good choice for a proof of concept. The AADEC roadmap includes expansion to different selection pressures, including heavy metal toxicity, temperature, and other forms of radiation. The AADEC uses closed-loop control to feedback the current state of the culture to the AADEC controller that modifies selection pressure intensity during experimentation, in this case culture density and growth rate. Culture density and growth rate are determined by measuring the optical density of the culture using 600 nm light. An array of 600 nm LEDs illuminate the culture and photodiodes are used to measure the shadow on the opposite side of the chamber. Previous experiments showed that we can produce a million fold increase to UV-C radiation over seven iterations. The most recent implements a microfluidic system that can expose cultures to multiple different selection pressures, perform non-survival based selection, and autonomously perform hundreds of exposure cycles. A scalable pump system gives the ability to pump in various

  15. Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming

    DEFF Research Database (Denmark)

    Nazaries, Loïc; Tottey, William; Robinson, Lucinda

    2015-01-01

    Soil stores more carbon (C) than plants and atmosphere combined and it is vulnerable to increased microbial respiration under projected global changes including land-use change and future climate scenarios (mainly elevated temperature). Land-use change is known to have a direct impact on soil...... of this feedback response of Rs to global change. To identify the mechanisms of Rs response to land-use change and climate warming, we first investigated Rs from different land use types. Soil respiration was estimated seasonally from four different Scottish land uses: moorland, birch woodland, grassland and pine......, estimated by Multiplex Terminal-Restriction Fragment Length Polymorphism (MT-RFLP) and 454 pyrosequencing, was significantly different under each land use type. A strong correlation of Rs with soil properties (pH, inorganic N, C:N ratio and moisture) and with microbial community structure was identified...

  16. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater

    Directory of Open Access Journals (Sweden)

    Chhabilal Regmi

    2018-02-01

    Full Text Available Several photocatalytic nanoparticles are synthesized and studied for potential application for the degradation of organic and biological wastes. Although these materials degrade organic compounds by advance oxidation process, the exact mechanisms of microbial decontamination remains partially known. Understanding the real mechanisms of these materials for microbial cell death and growth inhibition helps to fabricate more efficient semiconductor photocatalyst for large-scale decontamination of environmental wastewater or industries and hospitals/biomedical labs generating highly pathogenic bacteria and toxic molecules containing liquid waste by designing a reactor. Recent studies on microbial decontamination by photocatalytic nanoparticles and their possible mechanisms of action is highlighted with examples in this mini review.

  17. Provenance-specific growth responses to drought and air warming in three European oak species

    Energy Technology Data Exchange (ETDEWEB)

    Arend, Matthias; Kuster, Thomas; Gunthardt-Goerg, Madeleine S.; Dobbertin, Matthias

    2011-03-15

    This study evaluated oak growth responses to air warming through research conducted with species coming from climatically different sites submitted to differing climates including periodic drought and air warming. Results showed different responses to drought and air warming as an adaptation to the conditions, and differences in growth response from one provenance to another were found but local climate factors were not responsible. This study highlighted that provenance was important to growth responses and it will have to be taken into account for regeneration of oaks in a changed climate if these results are confirmed.

  18. The microbial diversity of a storm cloud as assessed by hailstones.

    Science.gov (United States)

    Temkiv, Tina Šantl; Finster, Kai; Hansen, Bjarne Munk; Nielsen, Niels Woetmann; Karlson, Ulrich Gosewinkel

    2012-09-01

    Being an extreme environment, the atmosphere may act as a selective barrier for bacterial dispersal, where only most robust organisms survive. By remaining viable during atmospheric transport, these cells affect the patterns of microbial distribution and modify the chemical composition of the atmosphere. The species evenness and richness, and the community composition of a storm cloud were studied applying cultivation-dependent and cultivation-independent techniques to a collection of hailstones. In toto 231 OTUs were identified, and the total species richness was estimated to be about 1800 OTUs. The diversity indices - species richness and evenness - suggest a functionally stable community, capable of resisting environmental stress. A broad substrate spectrum of the isolates with epiphytic origin (genus Methylobacterium) implied opportunistic ecologic strategy with high growth rates and fast growth responses. These may grow in situ despite their short residence times in cloud droplets. In addition, epiphytic isolates utilized many atmospheric organic compounds, including a variety of carboxylic acids. In summary, the highly diverse bacterial community, within which the opportunistic bacteria may be particularly important in terms of atmospheric chemistry, is likely to remain functional under stressful conditions. Overall our study adds important details to the growing evidence of active microbial life in clouds. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Exogenous Nitrogen Addition Reduced the Temperature Sensitivity of Microbial Respiration without Altering the Microbial Community Composition

    Directory of Open Access Journals (Sweden)

    Hui Wei

    2017-12-01

    Full Text Available Atmospheric nitrogen (N deposition is changing in both load quantity and chemical composition. The load effects have been studied extensively, whereas the composition effects remain poorly understood. We conducted a microcosm experiment to study how N chemistry affected the soil microbial community composition characterized by phospholipid fatty acids (PLFAs and activity indicated by microbial CO2 release. Surface and subsurface soils collected from an old-growth subtropical forest were supplemented with three N-containing materials (ammonium, nitrate, and urea at the current regional deposition load (50 kg ha-1 yr-1 and incubated at three temperatures (10, 20, and 30°C to detect the interactive effects of N deposition and temperature. The results showed that the additions of N, regardless of form, did not alter the microbial PLFAs at any of the three temperatures. However, the addition of urea significantly stimulated soil CO2 release in the early incubation stage. Compared with the control, N addition consistently reduced the temperature dependency of microbial respiration, implying that N deposition could potentially weaken the positive feedback of the warming-stimulated soil CO2 release to the atmosphere. The consistent N effects for the surface and subsurface soils suggest that the effects of N on soil microbial communities may be independent of soil chemical contents and stoichiometry.

  20. Elevated temperature alters carbon cycling in a model microbial community

    Science.gov (United States)

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other

  1. Acid-deposition research program. Volume 2. Effects of acid-forming emissions on soil microorganisms and microbially-mediated processes

    Energy Technology Data Exchange (ETDEWEB)

    Visser, S.; Danielson, R.M.; Parr, J.F.

    1987-02-01

    The interactions of soil physical, chemical, and biological processes are ultimately expressed in a soil's fertility and its capacity for plant production. Consequently, much of the research conducted to date regarding the impact of acid-forming pollutants on soil properties has been geared towards possible effects on plant productivity. This trend continues in this paper where the effects of acidic deposition on microbial communities are reviewed in relation to potential impact on plant growth. The objectives of the review are to discuss: (1) The effects of acid-forming emissions (primarily S-containing pollutants) on microbial community structure with emphasis on qualitative and quantitative aspects; (2) The effects of acidic deposition on microbially mediated processes (i.e., community functions); (3) Acidification effects of pollutants on symbiotic and disease-causing microorganisms. The symbionts discussed include ectomycorrhizal fungi, vesicular-arbuscular mycorrhizal fungi, and N/sub 2/-fixing bacteria, particularly Rhizobium, while the disease-causing microorganisms will include those responsible for foliage, stem, and root diseases.

  2. Modeling of microbial quality of food

    NARCIS (Netherlands)

    Zwietering, M.

    1993-01-01

    In this thesis it is shown that predictive modeling is a promising tool in food research, to be used to optimize food chains. Various models are developed and validated to be used to describe microbial growth in foods.

    A tool is developed to discriminate between different models and

  3. Analysis of Microbial Activity Under a Supercritical CO{sub 2} Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Janelle

    2012-11-30

    Because the extent and impact of microbial activity in deep saline aquifers during geologic sequestration is unknown, the objectives of this proposal were to: (1) characterize the growth requirements and optima of a biofilm-producing supercritical CO{sub 2}-tolerant microbial consortium (labeled MIT0212) isolated from hydrocarbons recovered from the Frio Ridge, TX carbon sequestration site; (2) evaluate the ability of this consortium to grow under simulated reservoir conditions associated with supercritical CO{sub 2} injection; (3) isolate and characterize individual microbial strains from this consortium; and (4) investigate the mechanisms of supercritical CO{sub 2} tolerance in isolated strains and the consortium through genome-enabled studies. Molecular analysis of genetic diversity in the consortium MIT0212 revealed a predominance of sequences closely related to species of the spore-forming genus Bacillus. Strain MIT0214 was isolated from this consortium and characterized by physiological profiling and genomic analysis. We have shown that the strain MIT0214 is an aerobic spore-former and capable of facultative anaerobic growth under both reducing N{sub 2} and CO{sub 2} atmospheres by fermentation and possibly anaerobic respiration. Strain MIT0214 is best adapted to anaerobic growth at pressures of 1 atm but is able to growth at elevated pressures After 1 week growth was observed at pressures as high as 27 atm (N{sub 2}) or 9 atm (CO{sub 2}) and after 26-30 days growth can be observed under supercritical CO{sub 2}. In addition, we have determined that spores of strain B. cereus MIT0214 are tolerant of both direct and indirect exposure to supercritical CO{sub 2}. Additional physiological characterization under aerobic conditions have revealed MIT0214 is able to grow from temperature of 21 to 45 °C and salinities 0.01 to 40 g/L NaCl with optimal growth occurring at 30°C and from 1 - 5 g NaCl/L. The genome sequence of B. cereus MIT0214 shared 89 to 91% of genes

  4. Interconnection of Key Microbial Functional Genes for Enhanced Benzo[a]pyrene Biodegradation in Sediments by Microbial Electrochemistry.

    Science.gov (United States)

    Yan, Zaisheng; He, Yuhong; Cai, Haiyuan; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Krumholz, Lee R; Jiang, He-Long

    2017-08-01

    Sediment microbial fuel cells (SMFCs) can stimulate the degradation of polycyclic aromatic hydrocarbons in sediments, but the mechanism of this process is poorly understood at the microbial functional gene level. Here, the use of SMFC resulted in 92% benzo[a]pyrene (BaP) removal over 970 days relative to 54% in the controls. Sediment functions, microbial community structure, and network interactions were dramatically altered by the SMFC employment. Functional gene analysis showed that c-type cytochrome genes for electron transfer, aromatic degradation genes, and extracellular ligninolytic enzymes involved in lignin degradation were significantly enriched in bulk sediments during SMFC operation. Correspondingly, chemical analysis of the system showed that these genetic changes resulted in increases in the levels of easily oxidizable organic carbon and humic acids which may have resulted in increased BaP bioavailability and increased degradation rates. Tracking microbial functional genes and corresponding organic matter responses should aid mechanistic understanding of BaP enhanced biodegradation by microbial electrochemistry and development of sustainable bioremediation strategies.

  5. Combined Effects of Nutrient and Pesticide Management on Soil Microbial Activity in Hybrid Rice Double Annual Cropping System

    Institute of Scientific and Technical Information of China (English)

    XIEXiao-mei; LIAOMin; LIUWei-ping; SusanneKLOSE

    2004-01-01

    Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbial biomass phospholipid contents,abundance of heterotrophic bacteria and proteolytic bacteria, electron transport system (ETS)/dehydrogenase activity, soil protein contents under different management practices and at various growth stages. Marked depletions in the soil microbial biomass phospholipid contents were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also induced slight changes, and the lowest microbial biomass phospholipid content was found with pesticides application alone. A decline in the bacterial abundance of heterotrophic bacteria and proteolytic bacteria was observed during the continuance of crop growth, while the lowest abundance of heterotrophic bacteria and proteolyrJc bacteria was found with pesticides application alone, which coincided with the decline of soil microbial biomass. A consistent increase in the electron transport svstem activit), was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or combined with pesticides increased it, while a decline was noticed with pesticides application alone as compared with the control.The soil protein content was found to be relatively stable with fertilizers and/or pesticides application at various growth stages in both crops undertaken, but notable changes were detected at different growrh stages

  6. Measurement methods and strategies for non-infectious microbial components in bioaerosols at the workplace.

    Science.gov (United States)

    Eduard, W

    1996-09-01

    Exposure to micro-organisms can be measured by different methods. Traditionally, viable methods and light microscopy have been used for detection of micro-organisms. Most viable methods measure micro-organisms that are able to grow in culture, and these methods are also common for the identification of micro-organisms. More recently, non-viable methods have been developed for the measurement of bioaerosol components originating from micro-organisms that are based on microscopic techniques, bioassays, immunoassays and chemical methods. These methods are important for the assessment of exposure to bioaerosols in work environments as non-infectious micro-organisms and microbial components may cause allergic and toxic reactions independent of viability. It is not clear to what extent micro-organisms should be identified because exposure-response data are limited and many different micro-organisms and microbial components may cause similar health effects. Viable methods have also been used in indoor environments for the detection of specific organisms as markers of indoor growth of micro-organisms. At present, the validity of measurement methods can only be assessed by comparative laboratory and field studies because standard materials of microbial bioaerosol components are not available. Systematic errors may occur especially when results obtained by different methods are compared. Differences between laboratories that use the same methods may also occur as quality assurance schemes of analytical methods for bioaerosol components do not exist. Measurement methods may also have poor precision, especially the viable methods. It therefore seems difficult to meet the criteria for accuracy of measurement methods of workplace exposure that have recently been adopted by the CEN. Risk assessment is limited by the lack of generally accepted reference values or guidelines for microbial bioaerosol components. The cost of measurements of exposure to microbial bioaerosol components

  7. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    H.S. El-Sheshtawy

    2015-06-01

    Full Text Available In this study, the bacterium Bacillus licheniformis has been isolated from oil reservoir; the ability of this bacterium to produce a biosurfactant was detected. Surface properties of the produced biosurfactant were confirmed by determining the emulsification power as well as surface and interfacial tension. The crude biosurfactant has been extracted from supernatant culture growth, and the yield of crude biosurfactant was about 1 g/l. Also, chemical structure of the produced biosurfactant was confirmed using FTIR analysis. Results revealed that, the emulsification power has been increased up to 96% and the surface tension decreased from 72 of distilled water to 36 mN/m after 72 h of incubation. The potential application of this bacterial species in microbial-enhanced oil recovery (MEOR was investigated. The percent of oil recovery was 16.6% upon application in a sand pack column designed to stimulate an oil recovery. It also showed antimicrobial activity against the growth of different strains of SRB (sulfate reducing bacteria. Results revealed that a complete inhibition of SRB growth using 1.0% crude biosurfactant is achieved after 3 h.

  8. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model.

    Science.gov (United States)

    Fang, Yilin; Scheibe, Timothy D; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E; Lovley, Derek R

    2011-03-25

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  9. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    Science.gov (United States)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-03-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  10. Selection of methanogenic microbial by gamma irradiation on improvement of unaerobic digestion efficiency on biogas formation

    International Nuclear Information System (INIS)

    M Yazid; Aris Bastianudin

    2011-01-01

    Selection of methanogenic microbial by gamma irradiation as an effort on improvement of efficiency process on biogas formation has been done. The objectives of this research is to obtain the methanogenic microbial isolate with high specific growth constant (μ), there for will be applicable for increasing the efficiency of biogas formation process. The microbial content sludge sample was taken from the digester tank conventional biogas installation located in Marangan village, Bokoharjo, Prambanan, Sleman and the sludge was irradiated using Co-60 gamma irradiator with varied dosage dose of 0-25 KGy. Microbial culture formation is conducted in growing media with 30% liquid rumen content in un-aerobe condition by addition of 80% H2 and 20% CO_2 gas mixture. Analysis of colony growth was performed by observation using long-wave ultraviolet rays (UV rays), while the microbial growth was by spectro-photometric analysis. Determination of gas methane product was done using gas chromatographic method. The result shown that 4 isolated methanogenic microbial (RB10, RB15, RB20 and RB25) that grown on 10-25 kGy gamma irradiation. The identification result shows that isolate RB10 and RB25 are belong to Methanobacterium genus, while isolate RB15 and RB20 are belong to Methanosarcina and Methanospirillum genus respectively. The specific growth constant (μ) values of the 4 bacterial isolates are in the range between 0.022 - 0.031. On the other hand, the efficiency of methane gas production for each isolates is in the range of 53.4%. - 67.6%. It can be concluded that isolate RB25 was the isolate with the highest specific growth constant (μ) value 0.031 and its efficiency of methane gas production was 67.6%. (author)

  11. Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens.

    Science.gov (United States)

    Peltoniemi, Krista; Laiho, Raija; Juottonen, Heli; Kiikkilä, Oili; Mäkiranta, Päivi; Minkkinen, Kari; Pennanen, Taina; Penttilä, Timo; Sarjala, Tytti; Tuittila, Eeva-Stiina; Tuomivirta, Tero; Fritze, Hannu

    2015-07-01

    Impacts of warming with open-top chambers on microbial communities in wet conditions and in conditions resulting from moderate water-level drawdown (WLD) were studied across 0-50 cm depth in northern and southern boreal sedge fens. Warming alone decreased microbial biomass especially in the northern fen. Impact of warming on microbial PLFA and fungal ITS composition was more obvious in the northern fen and linked to moisture regime and sample depth. Fungal-specific PLFA increased in the surface peat in the drier regime and decreased in layers below 10 cm in the wet regime after warming. OTUs representing Tomentella and Lactarius were observed in drier regime and Mortierella in wet regime after warming in the northern fen. The ectomycorrhizal fungi responded only to WLD. Interestingly, warming together with WLD decreased archaeal 16S rRNA copy numbers in general, and fungal ITS copy numbers in the northern fen. Expectedly, many results indicated that microbial response on warming may be linked to the moisture regime. Results indicated that microbial community in the northern fen representing Arctic soils would be more sensitive to environmental changes. The response to future climate change clearly may vary even within a habitat type, exemplified here by boreal sedge fen. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Effects of concentrate replacement by feed blocks on ruminal fermentation and microbial growth in goats and single-flow continuous-culture fermenters.

    Science.gov (United States)

    Molina-Alcaide, E; Pascual, M R; Cantalapiedra-Hijar, G; Morales-García, E Y; Martín-García, A I

    2009-04-01

    The effect of replacing concentrate with 2 different feed blocks (FB) on ruminal fermentation and microbial growth was evaluated in goats and in single-flow continuous-culture fermenters. Diets consisted of alfalfa hay plus concentrate and alfalfa hay plus concentrate with 1 of the 2 studied FB. Three trials were carried out with 6 rumen-fistulated Granadina goats and 3 incubation runs in 6 single-flow continuous-culture fermenters. Experimental treatments were assigned randomly within each run, with 2 repetitions for each diet. At the end of each in vivo trial, the rumen contents were obtained for inoculating the fermenters. For each incubation run, the fermenters were inoculated with ruminal fluid from goats fed the same diet supplied to the corresponding fermenter flask. The average pH values, total and individual VFA, and NH(3)-N concentrations, and acetate:propionate ratios in the rumen of goats were not affected (P >or= 0.10) by diet, whereas the microbial N flow (MNF) and efficiency were affected (P fermenters, the diet affected pH (Por= 0.05), and total (P=0.02), NH(3) (P=0.005), and non-NH(3) (P=0.02) N flows, whereas the efficiency of VFA production was not affected (P=0.75). The effect of diet on MNF and efficiency depended on the bacterial pellet used as a reference. An effect (Pfermenter contents and effluent were similar (P=0.05). Differences (Pfermentation variables and bacterial pellet compositions were found. Partial replacement of the concentrate with FB did not greatly compromise carbohydrate fermentation in unproductive goats. However, this was not the case for MNF and efficiency. Differences between the results obtained in vivo and in vitro indicate a need to identify conditions in fermenters that allow better simulation of fermentation, microbial growth, and bacterial pellet composition in vivo. Reduced feeding cost could be achieved with the inclusion of FB in the diets of unproductive goats without altering rumen fermentation.

  13. Gut microbiota induce IGF-1 and promote bone formation and growth

    Science.gov (United States)

    Yan, Jing; Herzog, Jeremy W.; Tsang, Kelly; Brennan, Caitlin A.; Bower, Maureen A.; Garrett, Wendy S.; Sartor, Balfour R.; Charles, Julia F.

    2016-01-01

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth. PMID:27821775

  14. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.

    Science.gov (United States)

    Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

    2014-01-01

    Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.

  15. Germination, growth and physiological responses of Senegalia ...

    African Journals Online (AJOL)

    For plants growth and physiological responses, seedlings were individually cultivated in plastic bags (25×12 cm) containing non-sterile soil and watered with four salt solutions (0, 86, 171 and 257 mM NaCl). Four months after the plants' cultivation, the results showed that for all species, the salinity reduced significantly the ...

  16. Effect of pesticides on soil microbial community.

    Science.gov (United States)

    Lo, Chi-Chu

    2010-07-01

    According to guidelines for the approval of pesticides, information about effects of pesticides on soil microorganisms and soil fertility are required, but the relationships of different structures of pesticides on the growth of various groups of soil microorganisms are not easily predicted. Some pesticides stimulate the growth of microorganisms, but other pesticides have depressive effects or no effects on microorganisms. For examples, carbofuran stimulated the population of Azospirillum and other anaerobic nitrogen fixers in flooded and non-flooded soil, but butachlor reduced the population of Azospirillum and aerobic nitrogen fixers in non-flooded soil. Diuron and chlorotoluron showed no difference between treated and nontreated soil, and linuron showed a strong difference. Phosphorus(P)-contains herbicides glyphosate and insecticide methamidophos stimulated soil microbial growth, but other P-containing insecticide fenamiphos was detrimental to nitrification bacteria. Therefore, the following review presents some data of research carried out during the last 20 years. The effects of twenty-one pesticides on the soil microorganisms associated with nutrient and cycling processes are presented in section 1, and the applications of denaturing gradient gel electrophoresis (DGGE) for studying microbial diversity are discussed in section 2.

  17. The effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon.

    Science.gov (United States)

    Xu, Weihui; Wang, Zhigang; Wu, Fengzhi

    2015-01-01

    The growth of watermelon is often threatened by Fusarium oxysporum f. sp. niveum (Fon) in successively monocultured soil, which results in economic loss. The objective of this study was to investigate the effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon and to explore the relationship between the effect and the incidence of wilt caused by Fon. The results showed that the activities of soil polyphenol oxidase, urease and invertase were increased, the microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) were significantly increased, and the ratio of MBC/MBN was decreased (P Fusarium wilt was also decreased in the watermelon/wheat companion system. In conclusion, this study indicated that D123 wheat as a companion crop increased soil enzyme activities and microbial biomass, decreased the Fon population, and changed the relative abundance of microbial communities in the rhizosphere of watermelon, which may be related to the reduction of Fusarium wilt in the watermelon/wheat companion system.

  18. Pseudomonas putida as a microbial cell factory

    DEFF Research Database (Denmark)

    Wigneswaran, Vinoth

    for sustainable production of chemicals, which can be achieved by microbial cell factories. The work presented in this PhD thesis elucidates the application of Pseudomonas putida as a microbial cell factory for production of the biosurfactant rhamnolipid. The rhamnolipid production was achieved by heterologous...... phase. The genomic alterations were identified by genome sequencing and revealed parallel evolution. Glycerol was also shown to be able to support biofilm growth and as a result of this it can be used as an alternative substrate for producing biochemicals in conventional and biofilm reactors. The use...... of biofilm as a production platform and the usage of glycerol as a feedstock show the potential of using microbial cell factories in the transition toward sustainable production of chemicals. Particularly, the applicability of biofilm as a production platform can emerge as a promising alternative...

  19. Microbial ecology of a crude oil contaminated aquifer

    Science.gov (United States)

    Bekins, B.A.; Cozzarelli, I.M.; Warren, E.; Godsy, E.M.

    2002-01-01

    Detailed microbial analyses of a glacial outwash aquifer contaminated by crude oil provide insights into the pattern of microbial succession from iron reducing to methanogenic in the anaerobic portion of the contaminant plume. We analysed sediments from this area for populations of aerobes, iron reducers, fermenters and methanogens, using the most probable number method. On the basis of the microbial data the anaerobic area can be divided into distinct physiological zones dominated by either iron-reducers or a consortium of fermenters and methanogens. Chemistry and permeability data show that methanogenic conditions develop first in areas of high hydrocarbon flux. Thus, we find methanogens both in high permeability horizons and also where separate-phase crude oil is present in either the saturated or unsaturated zone. Microbial numbers peak at the top of the separate-phase oil suggesting that growth is most rapid in locations with access to both hydrocarbons and nutrients infiltrating from the surface.

  20. Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    Science.gov (United States)

    Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin

    2011-01-01

    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722

  1. Microcosm studies on iron and arsenic mobilization from aquifer sediments under different conditions of microbial activity and carbon source

    Science.gov (United States)

    Duan, Mengyu; Xie, Zuoming; Wang, Yanxin; Xie, Xianjun

    2009-05-01

    Microcosm experiments were conducted to understand the mechanism of microbially mediated mobilization of Fe and As from high arsenic aquifer sediments. Arsenic-resistant strains isolated from aquifer sediments of a borehole specifically drilled for this study at Datong basin were used as inoculated strains, and glucose and sodium acetate as carbon sources for the experiments. In abiotic control experiments, the maximum concentrations of Fe and As were only 0.47 mg/L and 0.9 μg/L, respectively. By contrast, the maximum contents of Fe and As in anaerobic microcosm experiments were much higher (up to 1.82 mg/L and 12.91 μg/L, respectively), indicating the crucial roles of microbial activities in Fe and As mobilization. The observed difference in Fe and As release with different carbon sources may be related to the difference in growth pattern and composition of microbial communities that develop in response to the type of carbon sources.

  2. Microbial deterioration of Mayan stone buildings at Uxmal, Yucatan, Mexico

    International Nuclear Information System (INIS)

    Ortega-Morales, O.; Guezennec, J.; Hernandez D, G.; Jozsa, P.; Sand, W.; Crassous, P.

    1998-01-01

    The microbial communities associated to Uxmal Mayan monuments (Yucatan, Mexico) and their role in stone deterioration were preliminary characterized by chemical, biochemical, microbiological, microscopical and surface analysis methods under two climatic seasons (1997). The organic matter and organic carbon and nitrogen were in the range of those reported for other stone buildings, indicating that oligo trophic conditions prevail at Uxmal. Quantitative differences in microbial biomass was higher at indoor section were the organic matter content was the highest and micro-environmental conditions (availability of water and protection to direct sunlight) are more suitable for microbial growth. The microbiological analysis underestimated the microbial biomass, as revealed by biochemical approaches. Nitrate and nitrite-oxidizing, metilotrophic and heterotrophic bacteria and fungi were detected in most surfaces. The heterotrophic bacteria were the most abundant microbial group (microbiological data). However, the chlorophyll profiles and Scanning Electron Microscopy showed that the microalgae are the most abundant colonizers in Uxmal stone buildings. EDAX analysis showed that the most surfaces were covered by an organic layer (cells and exo polymers). Gypsum was found in few samples. The large photo trophic biomass seems to play a role in stone bio deterioration by supporting growth of heterotrophic microorganisms (bacteria and fungi) which are known to produce organic acids leading to calcite dissolution and cations chelation. Further studies are being carried out in order to determine the role of exo polysaccharides which are thought to play a role in chemical degradation of limestone substrates in Uxmal. (Author)

  3. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure.

    Science.gov (United States)

    Wu, Wencheng; Wu, Jiahui; Liu, Xiaowen; Chen, Xianbin; Wu, Yingxin; Yu, Shixiao

    2017-09-01

    Recently, several studies have showed that both organic and inorganic fertilizers are effective in immobilizing heavy metals at low cost, in comparison to other remediation strategies for heavy metal-contaminated farmlands. A pot trial was conducted in this study to examine the effects of inorganic P fertilizer and organic fertilizer, in single application or in combination, on growth of maize, heavy metal availabilities, enzyme activities, and microbial community structure in metal-contaminated soils from an electronic waste recycling region. Results showed that biomass of maize shoot and root from the inorganic P fertilizer treatments were respectively 17.8 and 10.0 folds higher than the un-amended treatments (CK), while the biomass in the organic fertilizer treatments was only comparable to the CK. In addition, there were decreases of 85.0% in Cd, 74.3% in Pb, 66.3% in Cu, and 91.9% in Zn concentrations in the roots of maize grown in inorganic P fertilizer amended soil. Consistently, urease and catalase activities in the inorganic P fertilizer amended soil were 3.3 and 2.0 times higher than the CK, whereas no enhancement was observed in the organic fertilizer amended soil. Moreover, microbial community structure was improved by the application of inorganic P fertilizer, but not by organic fertilizer; the beneficial microbial groups such as Kaistobacter and Koribacter were most frequently detected in the inorganic P fertilizer amended soil. The negligible effect from the organic fertilizer might be ascribed to the decreased pH value in soils. The results suggest that the application of inorganic P fertilizer (or in combination with organic fertilizer) might be a promising strategy for the remediation of heavy metals contaminated soils in electronic waste recycling region. Copyright © 2017. Published by Elsevier Inc.

  4. Mineral solubility and free energy controls on microbial reaction kinetics: Application to contaminant transport in the subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Inst. of Technology, Atlanta, GA (United States); Van Cappellen, Philippe [Univ. of Waterloo, ON (Canada)

    2016-11-14

    Recent developments in the theoretical treatment of geomicrobial reaction processes have resulted in the formulation of kinetic models that directly link the rates of microbial respiration and growth to the corresponding thermodynamic driving forces. The overall objective of this project was to verify and calibrate these kinetic models for the microbial reduction of uranium(VI) in geochemical conditions that mimic as much as possible field conditions. The approach combined modeling of bacterial processes using new bioenergetic rate laws, laboratory experiments to determine the bioavailability of uranium during uranium bioreduction, evaluation of microbial growth yield under energy-limited conditions using bioreactor experiments, competition experiments between metabolic processes in environmentally relevant conditions, and model applications at the field scale. The new kinetic descriptions of microbial U(VI) and Fe(III) reduction should replace those currently used in reactive transport models that couple catabolic energy generation and growth of microbial populations to the rates of biogeochemical redox processes. The above work was carried out in collaboration between the groups of Taillefert (batch reactor experiments and reaction modeling) at Georgia Tech and Van Cappellen (retentostat experiments and reactive transport modeling) at University of Waterloo (Canada).

  5. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, M.; Wu, W.-M.; Wu, L.; He, Z.; Van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; Gu, B.; Watson, D.; Jardine, P.M.; Marsh, T.L.; Tiedje, J.M.; Hazen, T.C.; Criddle, C.S.; Zhou, J.

    2010-02-15

    A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 {micro}gl{sup -1}) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.

  6. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone.

    Science.gov (United States)

    Dos Santos, Christine; Essioux, Laurent; Teinturier, Cécile; Tauber, Maïté; Goffin, Vincent; Bougnères, Pierre

    2004-07-01

    Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo- or heterodimers was approximately 30% higher than through full-length GHR homodimers (P < 0.0001). One-half of Europeans are hetero- or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.

  7. Dietary marker effects on fecal microbial ecology, fecal VFA, nutrient digestibility coefficients, and growth performance in finishing pigs.

    Science.gov (United States)

    Kerr, B J; Weber, T E; Ziemer, C J

    2015-05-01

    control diet. In Exp. 2, no effect of dietary marker on pig performance was noted. Overall, the data indicate that the inclusion of Cr2O3, Fe2O3, or TiO2 as digestibility markers have little to no impact on microbial ecology, fecal ammonia or VFA concentrations, nutrient digestibility, or pig growth performance indicating they are suitable for use in digestion studies.

  8. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  9. A Comparative Study of Ethylene Growth Response Kinetics in Eudicots and Monocots Reveals a Role for Gibberellin in Growth Inhibition and Recovery1[W][OA

    Science.gov (United States)

    Kim, Joonyup; Wilson, Rebecca L.; Case, J. Brett; Binder, Brad M.

    2012-01-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa ‘Nipponbare’) seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics. PMID:22977279

  10. Strength and stability of microbial plugs in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Sharma, M.M.; Georgiou, G. [Univ. of Texas, Austin, TX (United States)

    1995-12-31

    Mobility reduction induced by the growth and metabolism of bacteria in high-permeability layers of heterogeneous reservoirs is an economically attractive technique to improve sweep efficiency. This paper describes an experimental study conducted in sandpacks using an injected bacterium to investigate the strength and stability of microbial plugs in porous media. Successful convective transport of bacteria is important for achieving sufficient initial bacteria distribution. The chemotactic and diffusive fluxes are probably not significant even under static conditions. Mobility reduction depends upon the initial cell concentrations and increase in cell mass. For single or multiple static or dynamic growth techniques, permeability reduction was approximately 70% of the original permeability. The stability of these microbial plugs to increases in pressure gradient and changes in cell physiology in a nutrient-depleted environment needs to be improved.

  11. Growth Response of Explants of Irvingia Gabonensis (O'rorke, Baill ...

    African Journals Online (AJOL)

    Growth response of explants of Irvingia gabonensis to in vitro treatment was investigated using full, half and one quarter strength mineral components based on Murashige and Skoog medium. Plant growth regulator (kinetin-Kin) with concentration levels of 0, 1, 2, 3, 4 and 5mg/l were used for shoots initiation, while axillary ...

  12. Thermodynamics of Growth, Non-Equilibrium Thermodynamics of Bacterial Growth : The Phenomenological and the Mosaic Approach

    NARCIS (Netherlands)

    Westerhoff, Hans V.; Lolkema, Juke S.; Otto, Roel; Hellingwerf, K

    1982-01-01

    Microbial growth is analyzed in terms of mosaic and phenomenological non-equilibrium thermodynamics. It turns out that already existing parameters devised to measure bacterial growth, such as YATP, µ, and Qsubstrate, have as thermodynamic equivalents flow ratio, output flow and input flow. With this

  13. Regression analysis of growth responses to water depth in three wetland plant species

    DEFF Research Database (Denmark)

    Sorrell, Brian K; Tanner, Chris C; Brix, Hans

    2012-01-01

    depths from 0 – 0.5 m. Morphological and growth responses to depth were followed for 54 days before harvest, and then analysed by repeated measures analysis of covariance, and non-linear and quantile regression analysis (QRA), to compare flooding tolerances. Principal results Growth responses to depth...

  14. Chenodeoxycholic acid stimulated fibroblast growth factor 19 response

    DEFF Research Database (Denmark)

    Borup, C; Wildt, S; Rumessen, J J

    2017-01-01

    BACKGROUND: Bile acid diarrhoea is underdiagnosed and better diagnostic tests are needed. Fasting serum fibroblast growth factor-19 (FGF19) has insufficient diagnostic value, but this may be improved by stimulation. AIM: To explore if an impaired FGF19 response identifies primary bile acid...

  15. Microbial Impacts to the Near-Field Environment Geochemistry (MING): A Model for Estimating Microbial Communities in Repository Drifts at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley; T.F. Ehrhorn; J. Horn

    2002-03-19

    Geochemical and microbiological modeling was performed to evaluate the potential quantities and impact of microorganisms on the geochemistry of the area adjacent to and within nuclear waste packages in the proposed repository drifts at Yucca Mountain, Nevada. The microbial growth results from the introduction of water, ground support, and waste package materials into the deep unsaturated rock. The simulations, which spanned one million years, were accomplished using a newly developed computer code, Microbial Impacts to the Near-Field Environment Geochemistry (MING). MING uses environmental thresholds for limiting microbial growth to temperatures below 120 C and above relative humidities of 90 percent in repository drifts. Once these thresholds are met, MING expands upon a mass balance and thermodynamic approach proposed by McKinley and others (1997), by using kinetic rates to supply constituents from design materials and constituent fluxes including solubilized rock components into the drift, to perform two separate mass-balance calculations as a function of time. The first (nutrient limit) assesses the available nutrients (C, N, P and S) and calculates how many microorganisms can be produced based on a microorganism stoichiometry of C{sub 160}(H{sub 280}O{sub 80})N{sub 30}P{sub 2}S. The second (energy limit) calculates the energy available from optimally combined redox couples for the temperature, and pH at that time. This optimization maximizes those reactions that produce > 15kJ/mol (limit on useable energy) using an iterative linear optimization technique. The final available energy value is converted to microbial mass at a rate of 1 kg of biomass (dry weight) for every 64 MJ of energy. These two values (nutrient limit and energy limit) are then compared and the smaller value represents the number of microorganisms that can be produced over a specified time. MING can also be adapted to investigate other problems of interest as the model can be used in saturated

  16. Manufacturing of recombinant therapeutic proteins in microbial systems.

    Science.gov (United States)

    Graumann, Klaus; Premstaller, Andreas

    2006-02-01

    Recombinant therapeutic proteins have gained enormous importance for clinical applications. The first recombinant products have been produced in E. coli more than 20 years ago. Although with the advent of antibody-based therapeutics mammalian expression systems have experienced a major boost, microbial expression systems continue to be widely used in industry. Their intrinsic advantages, such as rapid growth, high yields and ease of manipulation, make them the premier choice for expression of non-glycosylated peptides and proteins. Innovative product classes such as antibody fragments or alternative binding molecules will further expand the use of microbial systems. Even more, novel, engineered production hosts and integrated technology platforms hold enormous potential for future applications. This review summarizes current applications and trends for development, production and analytical characterization of recombinant therapeutic proteins in microbial systems.

  17. Microbial mineral illization of montmorillonite in low-permeability oil reservoirs for microbial enhanced oil recovery.

    Science.gov (United States)

    Cui, Kai; Sun, Shanshan; Xiao, Meng; Liu, Tongjing; Xu, Quanshu; Dong, Honghong; Wang, Di; Gong, Yejing; Sha, Te; Hou, Jirui; Zhang, Zhongzhi; Fu, Pengcheng

    2018-05-11

    Microbial mineral illization has been investigated for its role in the extraction and recovery of metals from ores. Here we report our application of mineral bioillization for the microbial enhanced oil recovery in low-permeability oil reservoirs. It aimed to reveal the etching mechanism of the four Fe (III)-reducing microbial strains under anaerobic growth conditions on the Ca-montmorillonite. The mineralogical characterization of the Ca-montmorillonite was performed by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and energy dispersive spectrometer. Results showed that the microbial strains could efficiently reduce Fe (III) at an optimal rate of 71 %, and alter the crystal lattice structure of the lamella to promote the interlayer cation exchange, and to efficiently inhibit the Ca-montmorillonite swelling at an inhibitory rate of 48.9 %. Importance Microbial mineral illization is ubiquitous in the natural environment. Microbes in low-permeability reservoirs are able to enable the alteration of the structure and phase of the Fe-poor minerals by reducing Fe (III) and inhibiting clay swelling which is still poorly studied. This study aimed to reveal the interaction mechanism between Fe (III)-reducing bacterial strains and Ca-montmorillonite under anaerobic atmosphere, and to investigate the extent and rates of Fe (III) reduction and phase changes with their activities. Application of Fe (III)-reducing bacteria will provide a new way to inhibit clay swelling, to elevate reservoir permeability, and to reduce pore throat resistance after water flooding for enhanced oil recovery in low-permeability reservoirs. Copyright © 2018 American Society for Microbiology.

  18. Marked Response in Microbial Community and Metabolism in the Ileum and Cecum of Suckling Piglets After Early Antibiotics Exposure

    Directory of Open Access Journals (Sweden)

    Miao Yu

    2018-05-01

    Full Text Available In modern swine husbandry systems, antibiotics have been used as growth promoters for piglets during suckling or weaning period. However, while early colonization of intestinal microbiota has been regarded crucial for the host’s later life performance and well-being, little is known about the impact of antibiotics on intestinal microbiota in suckling piglets. The present study aimed to investigate the effects of early antibiotics exposure on gut microbiota and microbial metabolism of suckling piglets. Sixteen litters of suckling piglets were fed a creep feed diet with (Antibiotic or without (Control antibiotics from postnatal days 7–23 (n = 8. The ileal and cecal digesta were obtained for microbial composition and microbial metabolites analysis. The results showed that the antibiotics significantly altered the bacterial community composition by decreasing (P < 0.05 the diversity and richness in the ileum. The antibiotics significantly reduced the abundance of Lactobacillus in both the ileum and cecum, increased the abundance of Streptococcus, unclassified Enterococcaceae, unclassified Fusobacteriales, and Corynebacterium in the ileum, and the abundance of unclassified Ruminococcaceae and unclassified Erysipelotrichaceae in the cecum. The antibiotics decreased (P < 0.05 ileal lactate concentration and cecal concentration of total short-chain fatty acids (SCFAs. But the antibiotics enhanced protein fermentation (P < 0.05 in the ileum and cecum, as ileal concentrations of putrescine and cadaverine, and cecal concentrations of isobutyrate, isovalerate, putrescine, cadaverine, spermine, and spermidine were significantly increased (P < 0.05. These results indicated that early antibiotics exposure significantly altered the microbial composition of suckling piglets toward a vulnerable and unhealthy gut environment. The findings provide a new insight on the antibiotics impact on neonates and may provide new framework for designing alternatives to the

  19. Revisiting life strategy concepts in environmental microbial ecology.

    Science.gov (United States)

    Ho, Adrian; Di Lonardo, D Paolo; Bodelier, Paul L E

    2017-03-01

    Microorganisms are physiologically diverse, possessing disparate genomic features and mechanisms for adaptation (functional traits), which reflect on their associated life strategies and determine at least to some extent their prevalence and distribution in the environment. Unlike animals and plants, there is an unprecedented diversity and intractable metabolic versatility among bacteria, making classification or grouping these microorganisms based on their functional traits as has been done in animal and plant ecology challenging. Nevertheless, based on representative pure cultures, microbial traits distinguishing different life strategies had been proposed, and had been the focus of previous reviews. In the environment, however, the vast majority of naturally occurring microorganisms have yet to be isolated, restricting the association of life strategies to broad phylogenetic groups and/or physiological characteristics. Here, we reviewed the literature to determine how microbial life strategy concepts (i.e. copio- and oligotrophic strategists, and competitor-stress tolerator-ruderals framework) are applied in complex microbial communities. Because of the scarcity of direct empirical evidence elucidating the associated life strategies in complex communities, we rely heavily on observational studies determining the response of microorganisms to (a)biotic cues (e.g. resource availability) to infer microbial life strategies. Although our focus is on the life strategies of bacteria, parallels were drawn from the fungal community. Our literature search showed inconsistency in the community response of proposed copiotrophic- and oligotrophic-associated microorganisms (phyla level) to changing environmental conditions. This suggests that tracking microorganisms at finer phylogenetic and taxonomic resolution (e.g. family level or lower) may be more effective to capture changes in community response and/or that edaphic factors exert a stronger effect in community response

  20. An overview of aquatic photochemistry as it relates to microbial production

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.L. [Dalhousie Univ., Halifax, NS (Canada). Inst. of Oceanography

    2000-07-01

    A review of fundamental photochemistry and its potential impact on microbial processes in natural waters was presented. It is a known fact that solar radiation alters chromophoric dissolved organic matter (CDOM) and results in the production of a complex mixture of reactive oxygen species, inorganic nutrients, and carbon photoproducts. In addition, it results in reduced average molecular weight and changes in water optical properties. The largest carbon product results from the direct photo-mineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC), thereby bypassing the microbial web. Other studies demonstrated that growth was enhanced for heterotrophic bacteria in natural samples exposed to sunlight, that bacterial growth was absent when stimulated by photochemistry and that there was a marked reduction in the ability of DOC to support bacterial growth after exposure to ultraviolet radiation B (UV-B). 20 refs., 1 fig.

  1. Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes.

    Science.gov (United States)

    Zhang, Cui-Jing; Delgado-Baquerizo, Manuel; Drake, John E; Reich, Peter B; Tjoelker, Mark G; Tissue, David T; Wang, Jun-Tao; He, Ji-Zheng; Singh, Brajesh K

    2018-04-01

    Plant characteristics in different provenances within a single species may vary in response to climate change, which might alter soil microbial communities and ecosystem functions. We conducted a glasshouse experiment and grew seedlings of three provenances (temperate, subtropical and tropical origins) of a tree species (i.e., Eucalyptus tereticornis) at different growth temperatures (18, 21.5, 25, 28.5, 32 and 35.5°C) for 54 days. At the end of the experiment, bacterial and fungal community composition, diversity and abundance were characterized. Measured soil functions included surrogates of microbial respiration, enzyme activities and nutrient cycling. Using Permutation multivariate analysis of variance (PerMANOVA) and network analysis, we found that the identity of tree provenances regulated both structure and function of soil microbiomes. In some cases, tree provenances substantially affected the response of microbial communities to the temperature treatments. For example, we found significant interactions of temperature and tree provenance on bacterial community and relative abundances of Chloroflexi and Zygomycota, and inorganic nitrogen. Microbial abundance was altered in response to increasing temperature, but was not affected by tree provenances. Our study provides novel evidence that even a small variation in biotic components (i.e., intraspecies tree variation) can significantly influence the response of soil microbial community composition and specific soil functions to global warming. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Location of Microbial Ecology Evaluation Device in Apollo Command Module

    Science.gov (United States)

    1971-01-01

    The location of the Microbial Ecology Evaluation Device (MEED) installed on the open hatch of the Apollo Command Module is illustrated in this photograph. The MEED, equipment of the Microbial Response in Space Environment experiment, will house a selection of microbial systems. The MEED will be deployed during the extravehicular activity on the transearth coast phase of the Aopllo 16 lunar landing mission. The purpose of the experiment will be to measure the effects of certain space environmental parameters on the microbial test systems.

  3. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1

    OpenAIRE

    Li, Xiaojie; Han, Bing; Xu, Manyu; Han, Liping; Zhao, Yanying; Liu, Zhilan; Dong, Hansong; Zhang, Chunling

    2014-01-01

    The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice...

  4. Microbial Species and Functional Diversity in Rice Rhizosphere of High-yield Special Ecological Areas

    Directory of Open Access Journals (Sweden)

    PAN Li-yuan

    2016-11-01

    Full Text Available Taoyuan, Yunnan Province is a special eco-site which keeps the highest yield records of rice cultivation in small planting areas. Soil microbial species and functional diversity were evaluated using cultivation method and BIOLOG ecoplates. The results showed that the microbial community of the high yield region was more abundant, and the total microbial population was 2 times of the control, furthermore, the areas belonged to the healthy "bacteria" soil, which was showed as bacteria > actinomycetes > fungi. Bacteria were the dominant populations in the rhizosphere of high yielding rice field, and the yield formation of rice was not correlated with the depth of soil layers. In order to obtain more species diversity information, Shannon diversity index H, Shannon evenness index E and Simpson index D were analyzed, and the results showed that microbial community diversity and evenness were not the main differences between the high and general yield areas. Then, the functional diversity of soil microbial community was investigated through the average well color development(AWCD and diversity index analyses. The results of AWCD analysis indicated that the metabolic activity of soil microbial community in high yield paddy soils were stronger than the control. Moreover, the difference range from large to small showed as tillering stage > harvest period > seedling period > rotation period, the stronger the rice growth, the greater the difference between the high yield region and the control. At tillering stage and harvest stage, due to the vigorous plant growth, the root exudates were rich, and the microbial communities of high yield paddy soils showed a strong metabolic activity and strong ability to use carbon sources. The results of Shannon, Simpson and McIntosh indices analysis indicated that common microbial species was not a key factor affecting the yield of rice. Tillering stage was a key period for the growth of high yield rice, and many

  5. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    Directory of Open Access Journals (Sweden)

    Astrid eWingler

    2015-01-01

    Full Text Available Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g. via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellins (GA and jasmonate (JA play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor (CBF dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants.

  6. Stability of U(VI) and Tc(VII) Reducing Microbial Communities to EnvironmentalPerturbation: Development and Testing of a Thermodynamic Network Model. Technical Report

    International Nuclear Information System (INIS)

    Jonathan D. Istok

    2008-01-01

    'Bioimmobilization' of redox-sensitive metals and radionuclides is being investigated as a way to remediate contaminated groundwater and sediments. In this approach, growth-limiting substrates are added to stimulate the activity of targeted groups of indigenous microorganisms and create conditions favorable for the microbially-mediated precipitation ('bioimmobilization') of targeted contaminants. This project investigated a fundamentally new approach for modeling this process that couples thermodynamic descriptions for microbial growth with associated geochemical reactions. In this approach, a synthetic microbial community is defined as a collection of defined microbial groups; each with a growth equation derived from bioenergetic principles. The growth equations and standard-state free energy yields are appended to a thermodynamic database for geochemical reactions and the combined equations are solved simultaneously to predict the effect of added substrates on microbial biomass, community composition, and system geochemistry. This approach, with a single set of thermodynamic parameters (one for each growth equation), was used to predict the results of laboratory and field bioimmobilization experiments at two geochemically diverse research sites. Predicted effects of ethanol or acetate addition on uranium and technetium solubility, major ion geochemistry, mineralogy, microbial biomass and community composition were in general agreement with experimental observations although the available experimental data precluded rigorous model testing. Model simulations provide insight into the long-standing difficulty in transferring experimental results from the laboratory to the field and from one field site to the next, especially if the form, concentration, or delivery of growth substrate is varied from one experiment to the next. Although originally developed for use in better understanding bioimmobilization of uranium and technetium via reductive precipitation, the

  7. Molecular imprinted hydrogel polymer (MIHP) as microbial immobilization media in artificial produced water treatment

    Science.gov (United States)

    Kardena, E.; Ridhati, S. L.; Helmy, Q.

    2018-01-01

    Produced water generated during oil and gas exploration and drilling, consists of many chemicals which used in drilling process. The production of produced water is over three fold of the oil production. The water-cut has increased over time and continues to do so because the fraction of oil in the reservoir decreases and it is more difficult to get the oil out from an old oil-field. It therefore requires more sea water to be injected in order to force the oil out; hence more produced water is generated. Produced water can pollute the environment if it is not treated properly. In this research, produced water will be treated biologically using bacterial consortium which is isolated from petroleum processing facility with Molecular Imprinted Hydrogel Polymer (MIHP) for microbial immobilization media. Microbial growth rate is determined by measuring the MLVSS and hydrogel mass, also by SEM-EDS analysis. SEM-EDS analysis is an analysis to evidence the presence of microbe trapped in hydrogel, and also to determine the types and weight of the molecules of hydrogel. From this research, suspended microbial growth rate was found at 0.1532/days and attached microbial growth rate was 0.3322/days. Furthermore, based on SEM analysis, microbe is entrapped inside the hydrogel. Effectiveness of microbial degradation activity was determined by measuring organic materials as COD. Based on COD measurement, degradation rate of organic materials in wastewater is 0.3089/days, with maximum COD removal efficiency of 76.67%.

  8. On Growth and Form of the Zebrafish Gut Microbiome

    Science.gov (United States)

    Jemielita, Matthew; Taormina, Michael; Rolig, Annah; Burns, Adam; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2014-03-01

    The vertebrate gut is home to a diverse microbial community whose composition has a strong influence on the development and health of the host organism. Researchers can identify the members of the microbiota, yet little is known about the spatial and temporal dynamics of these microbial communities, including the mechanisms guiding their nucleation, growth, and interactions. We address these issues using the larval zebrafish (Danio rerio) as a model organism, which are raised microbe-free and then inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging using light sheet fluorescence microscopy enables visualization of the gut's entire microbial population over the first 24 hours of colonization. Image analysis allows us to quantify microbial populations that range from a few individuals to tens of thousands of microbes, and analyze the structure and growth kinetics of gut bacterial communities. We find that genetically-identical microbes can show surprisingly different growth rates and colonization abilities depending on their order of arrival. This demonstrates that knowing only the constituents of the gut community is insufficient to determine their dynamics; rather, the history of colonization matters.

  9. Growth response of Pterocarpus soyauxii and Lophira alata ...

    African Journals Online (AJOL)

    Growth response of Pterocarpus soyauxii and Lophira alata seedlings to host soil mycorrhizal inocula in relation to land use types. ... and that could be critical for successful rejuvenation of tropical trees. Key words. Arbuscular mycorrhiza-host soil inoculum-Iand use types-Pterocarpus soyauxii-Lophira alata-Cameroon ...

  10. Modeling lodgepole pine radial growth relative to climate and genetics using universal growth-trend response functions.

    Science.gov (United States)

    McLane, Sierra C; LeMay, Valerie M; Aitken, Sally N

    2011-04-01

    Forests strongly affect Earth's carbon cycles, making our ability to forecast forest-productivity changes associated with rising temperatures and changes in precipitation increasingly critical. In this study, we model the influence of climate on annual radial growth using lodgepole pine (Pinus contorta) trees grown for 34 years in a large provenance experiment in western Canada. We use a random-coefficient modeling approach to build universal growth-trend response functions that simultaneously incorporate the impacts of different provenance and site climates on radial growth trends under present and future annual (growth-year), summer, and winter climate regimes. This approach provides new depth to traditional quantitative genetics population response functions by illustrating potential changes in population dominance over time, as well as indicating the age and size at which annual growth begins declining for any population growing in any location under any present or future climate scenario within reason, given the ages and climatic conditions sampled. Our models indicate that lodgepole pine radial-growth levels maximize between 3.9 degrees and 5.1 degrees C mean growth-year temperature. This translates to productivity declining by the mid-21st century in southern and central British Columbia (BC), while increasing beyond the 2080s in northern BC and Yukon, as temperatures rise. Relative to summer climate indices, productivity is predicted to decline continuously through the 2080s in all locations, while relative to winter climate variables, the opposite trend occurs, with the growth increases caused by warmer winters potentially offsetting the summer losses. Trees from warmer provenances, i.e., from the center of the species range, perform best in nearly all of our present and future climate-scenario models. We recommend that similar models be used to analyze population growth trends relative to annual and intra-annual climate in other large-scale provenance

  11. Role of EPS, Dispersant and Nutrients on the Microbial Response and MOS Formation in the Subarctic Northeast Atlantic

    Directory of Open Access Journals (Sweden)

    Tony Gutierrez

    2017-04-01

    Full Text Available In this study we report the formation of marine oil snow (MOS, its associated microbial community, the factors influencing its formation, and the microbial response to crude oil in surface waters of the Faroe-Shetland Channel (FSC. The FSC is a subarctic region that is hydrodynamically complex located in the northeast Atlantic where oil extraction is currently occurring and where exploration is likely to expand into its deeper waters (>500 m. A major oil spill in this region may mirror the aftermath that ensued following the Deepwater Horizon (DWH blowout in the Gulf of Mexico, where the massive influx of Macondo crude oil triggered the formation of copious quantities of rapidly sinking MOS and successional blooms of opportunistic oil-degrading bacteria. In laboratory experiments, we simulated environmental conditions in sea surface waters of the FSC using water collected from this site during the winter of 2015. We demonstrated that the presence of dispersant triggers the formation of MOS, and that nutrient amendments magnify this. Illumina MiSeq sequencing revealed the enrichment on MOS of associated oil-degrading (Cycloclasticus, Thalassolituus, Marinobacter and EPS-producing (Halomonas, Pseudoalteromonas, Alteromonas bacteria, and included major representation by Psychrobacter and Cobetia with putative oil-degrading/EPS-producing qualities. The formation of marine snow, in the absence of crude oil and dispersant, in seawater amended with nutrients alone indicated that the de novo synthesis of bacterial EPS is a key factor in MOS formation, and the glycoprotein composition of the MOS aggregates confirmed that its amorphous biopolymeric matrix was of microbial (likely bacterial origin. The presence of dispersants and crude oil with/without nutrients resulted in distinct microbial responses marked by intermittent, and in some cases short-lived, blooms of opportunistic heterotrophs, principally obligate hydrocarbonoclastic (Alcanivorax

  12. 143 GROWTH RESPONSE OF EXPLANTS OF Irvingia gabonensis ...

    African Journals Online (AJOL)

    1&5 Department of Plant Science and Biotechnology, University of Port Harcourt. 2&3Department of Botany, University of Calabar. 4Department of Biological Sciences, Cross River State University of Technology. ABSTRACT. Growth response of explants of Irvingia gabonensis to in vitro treatment was investigated using full ...

  13. Microbial analyses of cement and grouting additives

    International Nuclear Information System (INIS)

    Hallbeck, L.; Jaegevall, S.; Paeaejaervi, A.; Rabe, L.; Edlund, J.; Eriksson, S.

    2012-01-01

    During sampling in the ONKALO tunnel in 2006, heavy growth of a slimy material was observed in connection with grouting. It was suggested to be microbial growth on organic additives leaching from the grout. Two sampling campaigns resulted in the isolation of several aerobic bacterial strains. Some of these strains were used in biodegradation studies of three solid cement powders, eight liquid grout additives, and six plastic drainage materials. Degradation was also studied using ONKALO groundwaters as inoculums. The isolated strains were most closely related to hydrocarbon-degrading microorganisms. The biodegradation of seven of the products was tested using microorganisms isolated from the ONKALO slime in 2006; none of these strains could degrade the tested products. When ONKALO drillhole groundwaters were used as inoculums in the degradation studies, it was demonstrated that Structuro 111X, Mighty 150, and Super-Parmix supported growth of the groundwater microorganisms. Structuro 111X is a polycarboxylate condensate while Mighty 150 and Super-Parmix are condensates with formaldehyde and naphthalene. Some of the isolated microorganisms belonged to the genus Pseudomonas, many strains of which can degrade organic molecules. None of the plastic drainage materials supported growth during the degradation studies. Microorganisms were present in two of the liquid products when delivered, GroutAid and Super-Parmix. The potential of the organic compounds in grout additives to be degraded by microorganisms, increasing the risk of biofilm formation and complexing compound production, must be considered. Microbial growth will also increase the possibility of hydrogen sulphide formation. (orig.)

  14. Representing Microbial Dormancy in Soil Decomposition Models Improves Model Performance and Reveals Key Ecosystem Controls on Microbial Activity

    Science.gov (United States)

    He, Y.; Yang, J.; Zhuang, Q.; Wang, G.; Liu, Y.

    2014-12-01

    Climate feedbacks from soils can result from environmental change and subsequent responses of plant and microbial communities and nutrient cycling. Explicit consideration of microbial life history traits and strategy may be necessary to predict climate feedbacks due to microbial physiology and community changes and their associated effect on carbon cycling. In this study, we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of dormancy at six temperate forest sites with observed soil efflux ranged from 4 to 10 years across different forest types. We then extrapolated the model to all temperate forests in the Northern Hemisphere (25-50°N) to investigate spatial controls on microbial and soil C dynamics. Both models captured the observed soil heterotrophic respiration (RH), yet no-dormancy model consistently exhibited large seasonal amplitude and overestimation in microbial biomass. Spatially, the total RH from temperate forests based on dormancy model amounts to 6.88PgC/yr, and 7.99PgC/yr based on no-dormancy model. However, no-dormancy model notably overestimated the ratio of microbial biomass to SOC. Spatial correlation analysis revealed key controls of soil C:N ratio on the active proportion of microbial biomass, whereas local dormancy is primarily controlled by soil moisture and temperature, indicating scale-dependent environmental and biotic controls on microbial and SOC dynamics. These developments should provide essential support to modeling future soil carbon dynamics and enhance the avenue for collaboration between empirical soil experiment and modeling in the sense that more microbial physiological measurements are needed to better constrain and evaluate the models.

  15. Report on responsible growth. AREVA in 2008

    International Nuclear Information System (INIS)

    2009-01-01

    All over the world, AREVA supplies its customers with solutions for carbon-free power generation and electricity transmission and distribution. With its knowledge and expertise in these fields, the group has a leading role to play in meeting the world's energy needs. Ranked first in the global nuclear power industry, AREVA's unique integrated offering covers every stage of the fuel cycle, reactor design and construction, and related services. In addition, the group is expanding its operations in renewable energies. AREVA is also a world leader in electricity transmission and distribution and offers its customers a complete range of solutions for greater grid stability and energy efficiency. Sustainable development is a core component of the group's industrial strategy. Its 75,000 employees work every day to make AREVA a responsible industrial player that is helping to supply ever cleaner, safer and more economical energy to the greatest number of people. Sustainable development is a keystone of AREVA's industrial strategy for achieving growth that is profitable, socially responsible and respectful of the environment. To translate this choice into reality, AREVA integrates sustainable development into its management practices via a continuous improvement initiative revolving around ten commitments: customer satisfaction, financial performance, governance, community involvement, environmental protection, innovation, continuous improvement, commitment to employees, risk management and prevention, dialogue and consensus building. This document is Areva's 2008 report on responsible growth. After the Messages from the Chairman of the Supervisory Board and from the Chief Executive Officer, the report presents the Key data and Highlights of the period, the Corporate governance, the Organization of the group, the Share information and shareholder relations, the uranium reserves, the growing energy demand and the World's population demographic growth, Areva's actions to

  16. Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates.

    Science.gov (United States)

    Patel, Vrutika; Sharma, Anukriti; Lal, Rup; Al-Dhabi, Naif Abdullah; Madamwar, Datta

    2016-03-22

    Gauging the microbial community structures and functions become imperative to understand the ecological processes. To understand the impact of long-term oil contamination on microbial community structure soil samples were taken from oil fields located in different industrial regions across Kadi, near Ahmedabad, India. Soil collected was hence used for metagenomic DNA extraction to study the capabilities of intrinsic microbial community in tolerating the oil perturbation. Taxonomic profiling was carried out by two different complementary approaches i.e. 16S rDNA and lowest common ancestor. The community profiling revealed the enrichment of phylum "Proteobacteria" and genus "Chromobacterium," respectively for polluted soil sample. Our results indicated that soil microbial diversity (Shannon diversity index) decreased significantly with contamination. Further, assignment of obtained metagenome reads to Clusters of Orthologous Groups (COG) of protein and Kyoto Encyclopedia of Genes and Genomes (KEGG) hits revealed metabolic potential of indigenous microbial community. Enzymes were mapped on fatty acid biosynthesis pathway to elucidate their roles in possible catalytic reactions. To the best of our knowledge this is first study for influence of edible oil on soil microbial communities via shotgun sequencing. The results indicated that long-term oil contamination significantly affects soil microbial community structure by acting as an environmental filter to decrease the regional differences distinguishing soil microbial communities.

  17. Cellular responses to Mycobacterium avium, subsp. paratuberculosis in colostrum-deprived and colostrum-replete holstein calves supplemented with fat-soluble vitamins

    Science.gov (United States)

    Immune benefits of colostrum are attributed to passively transferred IgG but also to growth factors, cytokines, antimicrobial peptides, and leukocytes. Non-nutritive compounds in colostrum promote Th2-biased immune responses to early microbial encounters and prevent harmful, inappropriate inflammat...

  18. Molecular characterization of microbial population dynamics during sildenafil citrate degradation.

    Science.gov (United States)

    De Felice, Bruna; Argenziano, Carolina; Guida, Marco; Trifuoggi, Marco; Russo, Francesca; Condorelli, Valerio; Inglese, Mafalda

    2009-02-01

    Little is known about pharmaceutical and personal care products pollutants (PPCPs), but there is a growing interest in how they might impact the environment and microbial communities. The widespread use of Viagra (sildenafil citrate) has attracted great attention because of the high usage rate, the unpredictable disposal and the unknown potential effects on wildlife and the environment. Until now information regarding the impact of Viagra on microbial community in water environment has not been reported. In this research, for the first time, the genetic profile of the microbial community, developing in a Viagra polluted water environment, was evaluated by means of the 16S and 18S rRNA genes, for bacteria and fungi, respectively, amplified by polymerase chain reaction (PCR) and separated using the denaturing gradient gel electrophoresis (DGGE) technique. The DGGE results revealed a complex microbial community structure with most of the population persisting throughout the experimental period. DNA sequences from bands observed in the different denaturing gradient gel electrophoresis profiles exhibited the highest degree of identity to uncultured bacteria and fungi found previously mainly in polluted environmental and treating bioreactors. Biotransformation ability of sildenafil citrate by the microbial pool was studied and the capability of these microorganisms to detoxify a polluted water ecosystem was assessed. The bacterial and fungal population was able to degrade sildenafil citrate entirely. Additionally, assays conducted on Daphnia magna, algal growth inhibition assay and cell viability determination on HepG2 human cells showed that biotransformation products obtained from the bacterial growth was not toxic. The higher removal efficiency for sildenafil citrate and the lack of toxicity by the biotransformation products obtained showed that the microbial community identified here represented a composite population that might have biotechnological relevance to

  19. Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems.

    Science.gov (United States)

    Zhang, Yu; Xie, Jianping; Liu, Miaomiao; Tian, Zhe; He, Zhili; van Nostrand, Joy D; Ren, Liren; Zhou, Jizhong; Yang, Min

    2013-10-15

    It is widely demonstrated that antibiotics in the environment affect microbial community structure. However, direct evidence regarding the impacts of antibiotics on microbial functional structures in wastewater treatment systems is limited. Herein, a high-throughput functional gene array (GeoChip 3.0) in combination with quantitative PCR and clone libraries were used to evaluate the microbial functional structures in two biological wastewater treatment systems, which treat antibiotic production wastewater mainly containing oxytetracycline. Despite the bacteriostatic effects of antibiotics, the GeoChip detected almost all key functional gene categories, including carbon cycling, nitrogen cycling, etc., suggesting that these microbial communities were functionally diverse. Totally 749 carbon-degrading genes belonging to 40 groups (24 from bacteria and 16 from fungi) were detected. The abundance of several fungal carbon-degrading genes (e.g., glyoxal oxidase (glx), lignin peroxidase or ligninase (lip), manganese peroxidase (mnp), endochitinase, exoglucanase_genes) was significantly correlated with antibiotic concentrations (Mantel test; P functional genes have been enhanced by the presence of antibiotics. However, from the fact that the majority of carbon-degrading genes were derived from bacteria and diverse antibiotic resistance genes were detected in bacteria, it was assumed that many bacteria could survive in the environment by acquiring antibiotic resistance and may have maintained the position as a main player in nutrient removal. Variance partitioning analysis showed that antibiotics could explain 24.4% of variations in microbial functional structure of the treatment systems. This study provides insights into the impacts of antibiotics on microbial functional structure of a unique system receiving antibiotic production wastewater, and reveals the potential importance of the cooperation between fungi and bacteria with antibiotic resistance in maintaining the

  20. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production.

    Science.gov (United States)

    Sinsabaugh, Robert L; Moorhead, Daryl L; Xu, Xiaofeng; Litvak, Marcy E

    2017-06-01

    The carbon use efficiency of plants (CUE a ) and microorganisms (CUE h ) determines rates of biomass turnover and soil carbon sequestration. We evaluated the hypothesis that CUE a and CUE h counterbalance at a large scale, stabilizing microbial growth (μ) as a fraction of gross primary production (GPP). Collating data from published studies, we correlated annual CUE a , estimated from satellite imagery, with locally determined soil CUE h for 100 globally distributed sites. Ecosystem CUE e , the ratio of net ecosystem production (NEP) to GPP, was estimated for each site using published models. At the ecosystem scale, CUE a and CUE h were inversely related. At the global scale, the apparent temperature sensitivity of CUE h with respect to mean annual temperature (MAT) was similar for organic and mineral soils (0.029°C -1 ). CUE a and CUE e were inversely related to MAT, with apparent sensitivities of -0.009 and -0.032°C -1 , respectively. These trends constrain the ratio μ : GPP (= (CUE a  × CUE h )/(1 - CUE e )) with respect to MAT by counterbalancing the apparent temperature sensitivities of the component processes. At the ecosystem scale, the counterbalance is effected by modulating soil organic matter stocks. The results suggest that a μ : GPP value of c. 0.13 is a homeostatic steady state for ecosystem carbon fluxes at a large scale. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health

    Science.gov (United States)

    Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J

    2014-01-01

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  2. Response of microbial communities to pesticide residues in soil restored with Azolla imbricata.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2018-01-01

    Under conditions of Azolla imbricata restoration, the high-throughput sequencing technology was employed to determine change trends of microbial community structures in the soil that had undergone long-term application of pesticides. The relationship between the content of pesticide residues in the soil and the microbial community structure was analyzed. The results indicated that the microbial diversity was strongly negatively correlated with the contents of pesticide residues in the soil. At a suitable dosage of 5 kg fresh A. imbricata per square meter of soil area, the soil microbial diversity increased by 12.0%, and the contents of pesticide residues decreased by 26.8-72.1%. Sphingobacterium, Sphingopyxis, Thermincola, Sphingobium, Acaryochloris, Megasphaera, Ralstonia, Pseudobutyrivibrio, Desulfitobacterium, Nostoc, Oscillochloris, and Aciditerrimonas may play major roles in the degradation of pesticide residues. Thauera, Levilinea, Geothrix, Thiobacillus, Thioalkalispira, Desulfobulbus, Polycyclovorans, Fluviicola, Deferrisoma, Erysipelothrix, Desulfovibrio, Cytophaga, Vogesella, Zoogloea, Azovibrio, Halomonas, Paludibacter, Crocinitomix, Haliscomenobacter, Hirschia, Silanimonas, Alkalibacter, Woodsholea, Peredibacter, Leptolinea, Chitinivorax, Candidatus_Lumbricincola, Anaerovorax, Propionivibrio, Parasegetibacter, Byssovorax, Runella, Leptospira, and Nitrosomonas may be indicators to evaluate the contents of pesticide residues.

  3. 'TIME': A Web Application for Obtaining Insights into Microbial Ecology Using Longitudinal Microbiome Data.

    Science.gov (United States)

    Baksi, Krishanu D; Kuntal, Bhusan K; Mande, Sharmila S

    2018-01-01

    Realization of the importance of microbiome studies, coupled with the decreasing sequencing cost, has led to the exponential growth of microbiome data. A number of these microbiome studies have focused on understanding changes in the microbial community over time. Such longitudinal microbiome studies have the potential to offer unique insights pertaining to the microbial social networks as well as their responses to perturbations. In this communication, we introduce a web based framework called 'TIME' (Temporal Insights into Microbial Ecology'), developed specifically to obtain meaningful insights from microbiome time series data. The TIME web-server is designed to accept a wide range of popular formats as input with options to preprocess and filter the data. Multiple samples, defined by a series of longitudinal time points along with their metadata information, can be compared in order to interactively visualize the temporal variations. In addition to standard microbiome data analytics, the web server implements popular time series analysis methods like Dynamic time warping, Granger causality and Dickey Fuller test to generate interactive layouts for facilitating easy biological inferences. Apart from this, a new metric for comparing metagenomic time series data has been introduced to effectively visualize the similarities/differences in the trends of the resident microbial groups. Augmenting the visualizations with the stationarity information pertaining to the microbial groups is utilized to predict the microbial competition as well as community structure. Additionally, the 'causality graph analysis' module incorporated in TIME allows predicting taxa that might have a higher influence on community structure in different conditions. TIME also allows users to easily identify potential taxonomic markers from a longitudinal microbiome analysis. We illustrate the utility of the web-server features on a few published time series microbiome data and demonstrate the

  4. Gammarus-Microbial Interactions: A Review

    Directory of Open Access Journals (Sweden)

    Daniel Nelson

    2011-01-01

    Full Text Available Gammarus spp. are typically classified as shredders under the functional feeding group classification. In the wild and in the laboratory, Gammarus spp. will often shred leaves, breaking them down into finer organic matter fractions. However, leaf litter is a poor quality food source (i.e., high C : N and C : P ratios and very little leaf material is assimilated by shredders. In freshwater habitats leaf litter is colonized rapidly (within ∼1-2 weeks by aquatic fungi and bacteria, making the leaves more palatable and nutritious to consumers. Several studies have shown that Gammarus spp. show preference for conditioned leaves over nonconditioned leaves and certain fungal species to others. Furthermore, Gammarus spp. show increased survival and growth rates when fed conditioned leaves compared to non-conditioned leaves. Thus, Gammarus spp. appear to rely on the microbial biofilm associated with leaf detritus as a source of carbon and/or essential nutrients. Also, Gammarus spp. can have both positive and negative effects on the microbial communities on which they fed, making them an important component of the microbial loop in aquatic ecosystems.

  5. Effects of various weaning times on growth performance, rumen fermentation and microbial population of yellow cattle calves

    Directory of Open Access Journals (Sweden)

    Huiling Mao

    2017-11-01

    Full Text Available Objective This study was conducted to investigate the effects of weaning times on the growth performance, rumen fermentation and microbial communities of yellow cattle calves. Methods Eighteen calves were assigned to a conventional management group that was normally weaned (NW, n = 3 or to early weaned (EW group where calves were weaned when the feed intake of solid feed (starter reached 500 g (EW500, n = 5, 750 g (EW750, n = 5, or 1,000 g (EW1,000, n = 5. Results Compared with NW, the EW treatments increased average daily gain (p0.05, but changes in bacterial composition were found. Conclusion From the present study, it is inferred that EW is beneficial for rumen fermentation, and weaning when the feed intake of the starter reached 750 g showed much better results.

  6. Large-scale environmental controls on microbial biofilms in high-alpine streams

    Directory of Open Access Journals (Sweden)

    T. J. Battin

    2004-01-01

    Full Text Available Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater geochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal, groundwater-fed (krenal and snow-fed (rhithral streams - all of them representative for alpine stream networks - and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportionately high microbial growth. Tributaries are relatively more constant and favorable environments than kryal streams, and serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g., snowmelt of elevated hydrologic linkage among streams. Ice and snow dynamics - and their impact on the amount and composition of dissolved organic matter - have a crucial impact on stream biofilms, and we thus need to consider microbes and critical hydrological episodes in future models of alpine stream communities.

  7. Profile Changes in the Soil Microbial Community When Desert Becomes Oasis.

    Directory of Open Access Journals (Sweden)

    Chen-hua Li

    Full Text Available The conversion of virgin desert into oasis farmland creates two contrasting types of land-cover. During oasis formation with irrigation and fertilizer application, however, the changes in the soil microbial population, which play critical roles in the ecosystem, remain poorly understood. We applied high-throughput pyrosequencing to investigate bacterial and archaeal communities throughout the profile (0-3 m in an experimental field, where irrigation and fertilization began in 1990 and cropped with winter wheat since then. To assess the effects of cultivation, the following treatments were compared with the virgin desert: CK (no fertilizer, PK, NK, NP, NPK, NPKR, and NPKM (R: straw residue; M: manure fertilizer. Irrigation had a greater impact on the overall microbial community than fertilizer application. The greatest impact occurred in topsoil (0-0.2 m, e.g., Cyanobacteria (25% total abundance were most abundant in desert soil, while Actinobacteria (26% were most abundant in oasis soil. The proportions of extremophilic and photosynthetic groups (e.g., Deinococcus-Thermus and Cyanobacteria decreased, while the proportions of R-strategy (e.g., Gammaproteobacteria including Xanthomonadales, nitrifying (e.g., Nitrospirae, and anaerobic bacteria (e.g., Anaerolineae increased throughout the oasis profile. Archaea occurred only in oasis soil. The impact of fertilizer application was mainly reflected in the non-dominant communities or finer taxonomic divisions. Oasis formation led to a dramatic shift in microbial community and enhanced soil enzyme activities. The rapidly increased soil moisture and decreased salt caused by irrigation were responsible for this shift. Furthermore, difference in fertilization and crop growth altered the organic carbon contents in the soil, which resulted in differences of microbial communities within oasis.

  8. Microbial biomass dynamics dominate N cycle responses to warming in a sub-arctic peatland

    Science.gov (United States)

    Weedon, J. T.; Aerts, R.; Kowalchuk, G. K.; van Bodegom, P. M.

    2012-04-01

    The balance of primary production and decomposition in sub-arctic peatlands may shift with climate change. Nitrogen availability will modulate this shift, but little is known about the drivers of soil nitrogen dynamics in these environments, and how they are influenced by rising soil temperatures. We used a long-term open top chamber warming experiment in Abisko, Sweden, to test for the interactive effects of spring warming, summer warming and winter snow addition on soil organic and inorganic nitrogen fluxes, potential activities of carbon and nitrogen cycle enzymes, and the structure of the soil-borne microbial communities. Summer warming increased the flux of soil organic nitrogen over the growing season, while simultaneously causing a seasonal decrease in microbial biomass, suggesting that N flux is driven by large late-season dieback of microbes. This change in N cycle dynamics was not reflected in any of the measured potential enzyme activities. Moreover, the soil microbial community structure was stable across treatments, suggesting non-specific microbial dieback. To further test whether the observed patterns were driven by direct temperature effects or indirect effects (via microbial biomass dynamics), we conducted follow-up controlled experiments in soil mesocosms. Experimental additions of dead microbial cells had stronger effects on N pool sizes and enzyme activities than either plant litter addition or a 5 °C alteration in incubation temperatures. Peat respiration was positively affected by both substrate addition and higher incubation temperatures, but the temperature-only effect was not sufficient to account for the increases in respiration observed in previous field experiments. We conclude that warming effects on peatland N cycling (and to some extent C cycling) are dominated by indirect effects, acting through alterations to the seasonal flux of microbe-derived organic matter. We propose that climate change models of soil carbon and nitrogen

  9. Soil bacterial community responses to global changes

    DEFF Research Database (Denmark)

    Bergmark, Lasse

    competing and very contrasting plant types (Calluna and Deschampsia) dominated the vegetation. This led to Manuscript 3 where the impact and responses of the climate change manipulations on the microbial community composition was investigated under the contrasting vegetation types. Our results show a high......Soil bacteria and archaea are essential for ecosystem functioning and plant growth through their degradation of organic matter and turnover of nutrients. But since the majority of soil bacteria and archaea are unclassified and “nonculturable” the functionality of the microbial community and its...... overall importance for ecosystem function in soil is poorly understood. Global change factors may affect the diversity and functioning of soil prokaryotes and thereby ecosystem functioning. To gain a better understanding of the effects of global changes it is of fundamental importance to classify...

  10. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    Directory of Open Access Journals (Sweden)

    Cong Wang

    Full Text Available Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta. Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina regardless of DIP condition. Group V (Amphidinium carterae exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine

  11. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    Science.gov (United States)

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  12. Optimization of supercritical carbon dioxide treatment for the inactivation of the natural microbial flora in cubed cooked ham.

    Science.gov (United States)

    Ferrentino, Giovanna; Balzan, Sara; Spilimbergo, Sara

    2013-02-15

    This study aims to investigate the effects of supercritical carbon dioxide (SC-CO₂) treatment on the inactivation of the natural microbial flora in cubed cooked ham. Response surface methodology with a central composite design was applied to determine the optimal process conditions and investigate the effect of three independent variables (pressure, temperature and treatment time). Additionally, analyses of texture, pH and color together with a storage study of the product were performed to determine its microbial and qualitative stability. Response surface analysis revealed that 12 MPa, 50 °C, 5 min were the optimal conditions to obtain about 3.0, 1.6, and 2.5 Log(CFU/g) reductions of mesophilic aerobic bacteria, psychrophilic bacteria and lactic acid bacteria respectively. Inactivation to undetectable levels of yeasts and molds and coliforms was also obtained. A storage study of 30 days at 4 °C was carried out on the treated product (12 MPa, 50 °C, 5 min) monitoring microbial growth, pH, texture, and color parameters (L*, a*, b* and ΔE). Microbial loads slightly increased and after 30 days of storage reached the same levels detected in the fresh product. Color parameters (L*, a*, b*) showed slight variations while pH and texture did not change significantly. On the basis of the results obtained, SC-CO₂ can be considered a promising technique to microbiologically stabilize cubed cooked ham and, in general, cut/sliced meat products without affecting its quality attributes. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Growth hormone, prolactin and cortisol response to exercise in patients with depression

    DEFF Research Database (Denmark)

    Krogh, Jesper; Nordentoft, Merete; Mohammad-Nezhad, Mahdi

    2010-01-01

    BACKGROUND: A blunted growth hormone and prolactin response to pharmacological stress test have previously been found in depressed patients, as well as an increased cortisol response to psychosocial stress. This study investigated these hormones in response to acute exercise using an incremental...... bicycle test. METHOD: A cross-sectional comparison of cortisol, growth hormone, and prolactin in depressed (n=137) and healthy (n=44) subjects during rest and in response to an incremental bicycle test. Secondly, we tested the depressed patients again after a 4-month randomized naturalistic exercise...... controls. The effect of acute exercise stress on PRL (p=.56) did not differ between depressed and healthy subjects. Apart from a decrease in GH response in the strength-training group (p=.03) the pragmatic exercise intervention did not affect resting hormonal levels, or the response to acute exercise...

  14. Microbial characteristics of purple paddy soil in response to Pb pollution.

    Science.gov (United States)

    Jiang, Qiu-Ju; Zhang, Yue-Qiang; Zhang, La-Mei; Zhou, Xin-Bin; Shi, Xiao-Jun

    2014-05-01

    The study focused on the change of microbial characteristics affected by Plumbum pollution with purple paddy soil in an incubation experiment. The results showed that low concentration of Plumbum had little effect on most of microbial amounts, biological activity and enzymatic activity. However, denitrifying activity was inhibited severely, and inhibition rate was up to 98%. Medium and high concentration of Plumbum significantly reduced the amounts and activity of all microorganisms and enzymatic activity, which increased with incubation time. Negative correlations were found between Plumbum concentrations and microbial amounts, biological activity and enzymatic activities except fungi and actinomyces. Thus they can be used to indicate the Plumbum pollution levels to some extent. LD(50) of denitrifying bacteria (DB) and ED50 of denitrifying activity were 852mg/kg and 33.5mg/kg. Across all test soil microbes, denitrifying bacteria was most sensitive to Plumbum pollution in purple paddy soil. Value of early warning showed that anaerobic cellulose-decomposing bacteria (ACDB) and actinomyces were also sensitive to Plumbum pollution. We concluded that denitrifying activity, actinomyces, ACDB or DB can be chosen as predictor of Plumbum contamination in purple paddy soil.

  15. Response of pine hypocotyl sections to growth regulators and related substances

    Directory of Open Access Journals (Sweden)

    J. Zakrzewski

    2015-01-01

    Full Text Available Growth response of Pinus silvestris hypocotyl sections to some synthetic growth regulators and related substances was studied. Elongation of hypocotyl sections was stimulated by naphtaleneacetic acid, indole-3-acetic acid, in-dole-3-propionic acid, indole-3-butyric acid, 2,4-dichlorophenoxyacetic acid, indoleaoetic amide, indoleacetic nitrile and coumarin. Indole-3-acetic acid and naphtaleneacetic acid extended period of growth up to 16 and 24 hours, respectively. Growth was inhibited by kinetin, trans-cinnamic acid and 2,3,5-tri-iodobenzoic acid. No effect of gibberellic acid, tryptophan and biotin was observed.

  16. Effect of Fermented Supplementation on Growth Performance, Nutrient Digestibility, Blood Characteristics, Fecal Microbial and Fecal Noxious Gas Content in Growing Pigs

    Directory of Open Access Journals (Sweden)

    L. Yan

    2012-12-01

    Full Text Available A total of 96 growing pigs ((Landrace×Yorkshire×Duroc; BW = 26.58±1.41 kg were used in a 6-wk feeding trail to evaluate the effects of fermented chlorella (FC supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Pigs were randomly allotted into 1 of 4 dietary treatments with 6 replicate pens (2 barrows and 2 gilts per treatment. Dietary treatments were: i negative control (NC, basal diet (without antibiotics; ii positive control (PC, NC+0.05% tylosin; iii (fermented chlorella 01 FC01, NC+0.1% FC, and iv fermented chlorella 02 (FC02, NC+0.2% FC. In this study, feeding pigs PC or FC01 diets led to a higher average daily gain (ADG and dry matter (DM digestibility than those fed NC diet (p0.05 was observed on the body weight, average daily feed intake (ADFI, gain:feed (G:F ratio, the apparent total tract digestibility of N and energy throughout the experiment. The inclusion of PC or FC did not affect the blood characteristics (p>0.05. Moreover, dietary FC treatment led to a higher (p<0.05 lactobacillus concentration and lower E. coli concentration than the NC treatment, whereas the antibiotic supplementation only decreased the E. coli concentration. Pigs fed FC or PC diet had reduced (p<0.05 fecal NH3 and H2S content compared with those fed NC diet. In conclusion, our results indicated that the inclusion of FC01 treatment could improve the growth performance, nutrient digestibility, fecal microbial shedding (lower E. coli and higher lactobacillus, and decrease the fecal noxious gas emission in growing pigs when compared with the group fed the basal diet. In conclusion, dietary FC could be considered as a good source of supplementation in growing pigs because of its growth promoting effect.

  17. Modelling forest growth and carbon storage in response to increasing CO2 and temperature

    Science.gov (United States)

    Kirschbaum, Miko U. F.

    1999-11-01

    The response of plant growth to increasing climate change remains one of the unresolved issues in understanding the future of the terrestrial biosphere. It was investigated here by using the comprehensive forest growth model CenW 1.0.5 which integrates routines for the fluxes of carbon and water, interception of radiation and the cycling of nutrients. It was run with water and/or nutrient limitations on a background of naturally observed climate at Canberra, Australia. It was parameterised for Pinus radiata, the commercially most important plantation species in Australia. The simulations showed that under water-limited conditions, forest growth was highly sensitive to doubling CO2,with growth increases of over 50% on average and even greater increases in dry years. In contrast, when water supply was adequate, but nutrients were limiting, growth increases were smaller, with an initial increase of about 15% during the first year after CO2 was doubled. This growth increase diminished further over subsequent years so that after 20years, there was virtually no remaining effect. This diminishing response was due to developing nutrient limitations caused by extra carbon input which immobilised nutrients in the soil. When both water and nutrients were adequate, growth was increased by about 15 20% with no decrease over time. Increasing ambient temperature had a positive effect on growth under nutrient limited conditions by stimulating nitrogen mineralisation rates, but had very little effect when nutrients were non-limiting. Responses were qualitatively similar when conditions were changed gradually. In response to increasing CO2 by 2µmol mol1year1 over 50years, growth was increased by only 1% under nutrient-limited condition but by 16% under water-limited conditions. When temperature and CO2 were both changed to emulate conditions between 1950 and 2030, growth was enhanced between 5 and 15% over the 80-year period due to the effect of CO2 on photosynthesis and water

  18. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.; Wang, Zheming

    2007-01-01

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH · 1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reduction of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity

  19. growth and yield response of carrot (daucus carota l.)

    African Journals Online (AJOL)

    User

    Mampong Campus to investigate the growth and yield responses of carrot to different rates of soil amendments ... quires a deep and well-drained loamy soil with high amount of ... The factors considered in the ..... processing carrot root yields.

  20. North American International Society for Microbial Electrochemical Technologies Meeting (Abstracts)

    Science.gov (United States)

    2016-04-18

    electrode interface in Shewanella oneidensis MR-1 Catarina Paquete1, Bruno Fonseca1, Ricardo O. Louro1 1 Instituto de Tecnologia Química e Biológica...response to anodic pH variation in a dual chamber microbial fuel cell Valentina Margaria, Instituto Italiano di Tecnologia , Italy 2-15 Microbial...SnO2 nanostructured composite for cathode oxygen reduction reaction in microbial fuel cells Adriano Sacco, Instituto Italiano di Tecnologia , Italy 2