WorldWideScience

Sample records for microbial growth response

  1. New microbial growth factor

    Science.gov (United States)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  2. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China.

    Science.gov (United States)

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-04-03

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation.

  3. Growth Mechanism of Microbial Colonies

    Science.gov (United States)

    Zhu, Minhui; Martini, K. Michael; Kim, Neil H.; Sherer, Nicholas; Lee, Jia Gloria; Kuhlman, Thomas; Goldenfeld, Nigel

    Experiments on nutrient-limited E. coli colonies, growing on agar gel from single cells reveal a power-law distribution of sizes, both during the growth process and in the final stage when growth has ceased. We developed a Python simulation to study the growth mechanism of the bacterial population and thus understand the broad details of the experimental findings. The simulation takes into account nutrient uptake, metabolic function, growth and cell division. Bacteria are modeled in two dimensions as hard circle-capped cylinders with steric interactions and elastic stress dependent growth characteristics. Nutrient is able to diffuse within and between the colonies. The mechanism of microbial colony growth involves reproduction of cells within the colonies and the merging of different colonies. We report results on the dynamic scaling laws and final state size distribution, that capture in semi-quantitative detail the trends observed in experiment. Supported by NSF Grant 0822613.

  4. Impact of warm winters on microbial growth

    Science.gov (United States)

    Birgander, Johanna; Rousk, Johannes; Axel Olsson, Pål

    2014-05-01

    Growth of soil bacteria has an asymmetrical response to higher temperature with a gradual increase with increasing temperatures until an optimum after which a steep decline occurs. In laboratory studies it has been shown that by exposing a soil bacterial community to a temperature above the community's optimum temperature for two months, the bacterial community grows warm-adapted, and the optimum temperature of bacterial growth shifts towards higher temperatures. This result suggests a change in the intrinsic temperature dependence of bacterial growth, as temperature influenced the bacterial growth even though all other factors were kept constant. An intrinsic temperature dependence could be explained by either a change in the bacterial community composition, exchanging less tolerant bacteria towards more tolerant ones, or it could be due to adaptation within the bacteria present. No matter what the shift in temperature tolerance is due to, the shift could have ecosystem scale implications, as winters in northern Europe are getting warmer. To address the question of how microbes and plants are affected by warmer winters, a winter-warming experiment was established in a South Swedish grassland. Results suggest a positive response in microbial growth rate in plots where winter soil temperatures were around 6 °C above ambient. Both bacterial and fungal growth (leucine incorporation, and acetate into ergosterol incorporation, respectively) appeared stimulated, and there are two candidate explanations for these results. Either (i) warming directly influence microbial communities by modulating their temperature adaptation, or (ii) warming indirectly affected the microbial communities via temperature induced changes in bacterial growth conditions. The first explanation is in accordance with what has been shown in laboratory conditions (explained above), where the differences in the intrinsic temperature relationships were examined. To test this explanation the

  5. Soil microbial community response to land use and various soil ...

    African Journals Online (AJOL)

    Soil microbial community response to land use and various soil elements in a city landscape of north China. ... African Journal of Biotechnology ... Legumes played an important role in stimulating the growth and reproduction of various soil microbial populations, accordingly promoting the microbial catabolic activity.

  6. Mathematical modeling of microbial growth in milk

    Directory of Open Access Journals (Sweden)

    Jhony Tiago Teleken

    2011-12-01

    Full Text Available A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.

  7. Conditioning biomass for microbial growth

    Science.gov (United States)

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  8. Timescales of Growth Response of Microbial Mats to Environmental Change in an Ice-Covered Antarctic Lake

    Directory of Open Access Journals (Sweden)

    Anne D. Jungblut

    2013-01-01

    Full Text Available Lake Vanda is a perennially ice-covered, closed-basin lake in the McMurdo Dry Valleys, Antarctica. Laminated photosynthetic microbial mats cover the floor of the lake from below the ice cover to >40 m depth. In recent decades, the water level of Lake Vanda has been rising, creating a “natural experiment” on development of mat communities on newly flooded substrates and the response of deeper mats to declining irradiance. Mats in recently flooded depths accumulate one lamina (~0.3 mm per year and accrue ~0.18 µg chlorophyll-a cm−2 y−1. As they increase in thickness, vertical zonation becomes evident, with the upper 2-4 laminae forming an orange-brown zone, rich in myxoxanthophyll and dominated by intertwined Leptolyngbya trichomes. Below this, up to six phycobilin-rich green/pink-pigmented laminae form a subsurface zone, inhabited by Leptolyngbya, Oscillatoria and Phormidium morphotypes. Laminae continued to increase in thickness for several years after burial, and PAM fluorometry indicated photosynthetic potential in all pigmented laminae. At depths that have been submerged for >40 years, mats showed similar internal zonation and formed complex pinnacle structures that were only beginning to appear in shallower mats. Chlorophyll-a did not change over time and these mats appear to represent resource-limited “climax” communities. Acclimation of microbial mats to changing environmental conditions is a slow process, and our data show how legacy effects of past change persist into the modern community structure.

  9. Microbial growth and substrate utilization kinetics | Okpokwasili ...

    African Journals Online (AJOL)

    Microbial growth on and utilization of environmental contaminants as substrates have been studied by many researchers. Most times, substrate utilization results in removal of chemical contaminant, increase in microbial biomass and subsequent biodegradation of the contaminant. These are all aimed at detoxification of the ...

  10. Mechanistic model for microbial growth on hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mallee, F M; Blanch, H W

    1977-12-01

    Based on available information describing the transport and consumption of insoluble alkanes, a mechanistic model is proposed for microbial growth on hydrocarbons. The model describes the atypical growth kinetics observed, and has implications in the design of large scale equipment for single cell protein (SCP) manufacture from hydrocarbons. The model presents a framework for comparison of the previously published experimental kinetic data.

  11. 21 CFR 866.2560 - Microbial growth monitor.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2560 Microbial growth monitor. (a) Identification. A microbial growth monitor is a device intended for medical purposes that...

  12. Hydrocarbon fermentation: kinetics of microbial cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Goma, G [Institut National des Sciences Appliquees, Toulouse; Ribot, D

    1978-11-01

    Modeling of microbial growth using nonmiscible substrate is studied when kinetics of substrate dissolution is rate limiting. When the substrate concentration is low, the growth rate is described by an analytical relation that can be identified as a Contois relationship. If the substrate concentration is greater than a critical value S/sub crit/, the potentially useful hydrocarbon S* concentration is described by S* = S/sub crit//(1 + S/sub crit//S). A relationship was found between S/sub crit/ and the biomass concentration X. When X increased, S/sub crit/ decreased. The cell growth rate is related to a relation ..mu.. = ..mu../sub m/(A(X/S/sub crit/)(1 + S/sub crit//S) + 1)/sup -1/. This model describes the evolution of the growth rate when exponential or linear growth occurs, which is related to physico-chemical properties and hydrodynamic fermentation conditions. Experimental data to support the model are presented.

  13. Microbial growth on C1 compounds: proceedings

    International Nuclear Information System (INIS)

    Crawford, R.L.; Hanson, R.S.

    1984-01-01

    This book contains individual papers prepared for the 4th International Symposium on Microbial Growth on One Carbon Compounds. Individual reports were abstracted and indexed for EDB. Topics presented were in the areas of the physiology and biochemistry of autotraps, physiology and biochemistry of methylotrophs and methanotrops, physiology and biochemistry of methanogens, genetics of microbes that use C 1 compounds, taxonomy and ecology of microbes tht grow on C 1 compounds, applied aspects of microbes that grow on C 1 compounds, and new directions in C 1 metabolism. (DT)

  14. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics.

    Science.gov (United States)

    Sheridan, C; Depuydt, P; De Ro, M; Petit, C; Van Gysegem, E; Delaere, P; Dixon, M; Stasiak, M; Aciksöz, S B; Frossard, E; Paradiso, R; De Pascale, S; Ventorino, V; De Meyer, T; Sas, B; Geelen, D

    2017-02-01

    Plant growth promoting microorganisms (PGPMs) of the plant root zone microbiome have received limited attention in hydroponic cultivation systems. In the framework of a project aimed at the development of a biological life support system for manned missions in space, we investigated the effects of PGPMs on four common food crops (durum and bread wheat, potato and soybean) cultivated in recirculating hydroponic systems for a whole life cycle. Each crop was inoculated with a commercial PGPM mixture and the composition of the microbial communities associated with their root rhizosphere, rhizoplane/endosphere and with the recirculating nutrient solution was characterised through 16S- and ITS-targeted Illumina MiSeq sequencing. PGPM addition was shown to induce changes in the composition of these communities, though these changes varied both between crops and over time. Microbial communities of PGPM-treated plants were shown to be more stable over time. Though additional development is required, this study highlights the potential benefits that PGPMs may confer to plants grown in hydroponic systems, particularly when cultivated in extreme environments such as space.

  15. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    Science.gov (United States)

    Davis, C. A.; Pyrak-Nolte, L. J.; Atekwana, E. A.; Werkema, D. D.; Haugen, M. E.

    2009-12-01

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand columns. A control column (non-biostimulated) and a biostimulated column were studied in a 2D acoustic scanning apparatus, and a second set of columns were constructed with Ag-AgCl electrodes for complex conductivity measurements. At the completion of the 29-day experiment, compressional wave amplitudes and arrival times for the control column were observed to be relatively uniform over the scanned 2D region. However, the biostimulated sample exhibited a high degree of spatial variability within the column for both the amplitude and arrival times. Furthermore, portions of the sample exhibited increased attenuation (~ 80%) concurrent with an increase in the arrival times, while other portions exhibited decreased attenuation (~ 45%) and decreased arrival time. The acoustic amplitude and arrival times changed significantly in the biostimulated column between Days 5 and 7 of the experiment and are consistent with a peak in the imaginary conductivity (σ”) values. The σ” response corresponds to different stages of biofilm development. That is, we interpret the peak σ” with the maximum biofilm thickness and decreasing σ” due to cell death or detachment. Environmental scanning electron microscope (ESEM) imaging confirmed microbial cell attachment to sand surfaces in the biostimulated columns, showed apparent differences in the morphology of attached biomass between regions of increased and decreased attenuation, and indicated no mineral precipitation or biomineralization. The heterogeneity in the elastic properties arises from the differences in the morphology and structure of attached biofilms. These results suggest that combining acoustic imaging and complex conductivity techniques

  16. Spectrum of microbial growth and antimicrobial usage in an ...

    African Journals Online (AJOL)

    white blood cell count, duration of first antibiotic used, length of ICU stay, length of ... the acute disease process, the presence of comorbidities, invasive devices, ... Against this background, this study aimed to look at the microbial growth.

  17. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    Science.gov (United States)

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand...

  18. Effects of feed forms on growth pattern, behavioural responses and ...

    African Journals Online (AJOL)

    Effects of feed forms on growth pattern, behavioural responses and feacal microbial load ... load and behavioural activities (eating, drinking, physical pen interaction and ... Total organism counts varied significantly (p<0.05) with pigs on T1, T2, ...

  19. Responses to microbial challenges by SLAMF receptors

    Directory of Open Access Journals (Sweden)

    Boaz Job Van Driel

    2016-01-01

    Full Text Available The SLAMF Family (SLAMF of cell surface glycoproteins is comprised of nine glycoproteins and whilst SLAMF1, 3, 5, 6, 7, 8, 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development and, T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SAP and EAT-2 regulate innate and adaptive immune responses to microbes.

  20. Susceptibility of green and conventional building materials to microbial growth.

    Science.gov (United States)

    Mensah-Attipoe, J; Reponen, T; Salmela, A; Veijalainen, A-M; Pasanen, P

    2015-06-01

    Green building materials are becoming more popular. However, little is known about their ability to support or limit microbial growth. The growth of fungi was evaluated on five building materials. Two green, two conventional building materials and wood as a positive control were selected. The materials were inoculated with Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum, in the absence and presence of house dust. Microbial growth was assessed at four different time points by cultivation and determining fungal biomass using the N-acetylhexosaminidase (NAHA) enzyme assay. No clear differences were seen between green and conventional building materials in their susceptibility to support microbial growth. The presence of dust, an external source of nutrients, promoted growth of all the fungal species similarly on green and conventional materials. The results also showed a correlation coefficient ranging from 0.81 to 0.88 between NAHA activity and culturable counts. The results suggest that the growth of microbes on a material surface depends on the availability of organic matter rather than the classification of the material as green or conventional. NAHA activity and culturability correlated well indicating that the two methods used in the experiments gave similar trends for the growth of fungi on material surfaces. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Growth and element flux at fine taxonomic resolution in natural microbial communities

    Science.gov (United States)

    Hungate, Bruce; Mau, Rebecca; Schwartz, Egbert; Caporaso, J. Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J.; Liu, Cindy M.; McHugh, Theresa; Marks, Jane C.; Morrissey, Ember; Price, Lance B.

    2015-04-01

    Microorganisms are the engines of global biogeochemical cycles, driving half of all photosynthesis and nearly all decomposition. Yet, quantifying the rates at which uncultured microbial taxa grow and transform elements in intact and highly diverse natural communities in the environment remains among the most pressing challenges in microbial ecology today. Here, we show how shifts in the density of DNA caused by stable isotope incorporation can be used to estimate the growth rates of individual bacterial taxa in intact soil communities. We found that the distribution of growth rates followed the familiar lognormal distribution observed for the abundances, biomasses, and traits of many organisms. Growth rates of most bacterial taxa increased in response to glucose amendment, though the increase in growth observed for many taxa was larger than could be explained by direct utilization of the added glucose for growth, illustrating that glucose addition indirectly stimulated the utilization of other substrates. Variation in growth rates and phylogenetic distances were quantitatively related, connecting evolutionary history and biogeochemical function in intact soil microbial communities. Our approach has the potential to identify biogeochemically significant taxa in the microbial community and quantify their contributions to element transformations and ecosystem processes.

  2. Rumen microbial growth estimation using in vitro radiophosphorous incorporation technique

    International Nuclear Information System (INIS)

    Bueno, Ives Claudio da Silva; Machado, Mariana de Carvalho; Cabral Filho, Sergio Lucio Salomon; Gobbo, Sarita Priscila; Vitti, Dorinha Miriam Silber Schmidt; Abdalla, Adibe Luiz

    2002-01-01

    Rumen microorganisms are able to transform low biological value nitrogen of feed stuff into high quality protein. To determine how much microbial protein that process forms, radiomarkers can be used. Radiophosphorous has been used to mark microbial protein, as element P is present in all rumen microorganisms (as phospholipids) and the P:N ratio of rumen biomass is quite constant. The aim of this work was to estimate microbial synthesis from feedstuff commonly used in ruminant nutrition in Brazil. Tested feeds were fresh alfalfa, raw sugarcane bagasse, rice hulls, rice meal, soybean meal, wheat meal, Tifton hay, leucaena, dehydrated citrus pulp, wet brewers' grains and cottonseed meal. 32 P-labelled phosphate solution was used as marker for microbial protein. Results showed the diversity of feeds by distinct quantities of nitrogen incorporated into microbial mass. Low nutrient availability feeds (sugarcane bagasse and rice hulls) promoted the lowest values of incorporated nitrogen. Nitrogen incorporation showed positive relationship (r=0.56; P=0.06) with the rate of degradation and negative relationship (r=-0.59; P<0.05) with fiber content of feeds. The results highlight that easier fermentable feeds (higher rates of degradation) and/or with lower fiber contents promote a more efficient microbial growth and better performance for the host animal. (author)

  3. Rumen microbial growth estimation using in vitro radiophosphorous incorporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Ives Claudio da Silva; Machado, Mariana de Carvalho; Cabral Filho, Sergio Lucio Salomon; Gobbo, Sarita Priscila; Vitti, Dorinha Miriam Silber Schmidt; Abdalla, Adibe Luiz [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)

    2002-07-01

    Rumen microorganisms are able to transform low biological value nitrogen of feed stuff into high quality protein. To determine how much microbial protein that process forms, radiomarkers can be used. Radiophosphorous has been used to mark microbial protein, as element P is present in all rumen microorganisms (as phospholipids) and the P:N ratio of rumen biomass is quite constant. The aim of this work was to estimate microbial synthesis from feedstuff commonly used in ruminant nutrition in Brazil. Tested feeds were fresh alfalfa, raw sugarcane bagasse, rice hulls, rice meal, soybean meal, wheat meal, Tifton hay, leucaena, dehydrated citrus pulp, wet brewers' grains and cottonseed meal. {sup 32} P-labelled phosphate solution was used as marker for microbial protein. Results showed the diversity of feeds by distinct quantities of nitrogen incorporated into microbial mass. Low nutrient availability feeds (sugarcane bagasse and rice hulls) promoted the lowest values of incorporated nitrogen. Nitrogen incorporation showed positive relationship (r=0.56; P=0.06) with the rate of degradation and negative relationship (r=-0.59; P<0.05) with fiber content of feeds. The results highlight that easier fermentable feeds (higher rates of degradation) and/or with lower fiber contents promote a more efficient microbial growth and better performance for the host animal. (author)

  4. The responses of microbial temperature relationships to seasonal change and winter warming in a temperate grassland.

    Science.gov (United States)

    Birgander, Johanna; Olsson, Pål Axel; Rousk, Johannes

    2018-01-18

    Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm-tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years' winter warming. The warming treatments increased winter soil temperatures by 5-6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q 10 ) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat-spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil-atmosphere C

  5. Acoustic and Electrical Property Changes Due to Microbial Growth and Biofilm Formation in Porous Media

    Science.gov (United States)

    A laboratory study was conducted to investigate the effect of microbial growth and biofilm formation on compressional waves, and complex conductivity during stimulated microbial growth. Over the 29 day duration of the experiment, compressional wave amplitudes and arrival times f...

  6. Conditions for microbial growth in the FILTRA steam absorption tower

    International Nuclear Information System (INIS)

    Nilsson, H.; Roffey, R.

    1983-08-01

    By the appointment of the Southern Sweden Power Supply an experimental study has been carried out in order to evaluate the risk for microbial growth in the planned FILTRA steam absorbtion tower at the nuclear power plant in Barsebaeck. Four modelsystems were supplied with nitrogen atmosphere and a relative humidity of 100, 75, 50 and 25 percent. The fifth system received air and 75 percent relative humidity. Samples were collected and analysed for microbial growth after 1, 2, 4 and 8 months. The amounts of microorganisms and the ATP content was monitored. No measureable growth of any significance could be observed after 8 months in any system. An elementary analyses showed that the level of nitrogen and carbon in the stones was below the limit of detection (<0.3 percent C, <0.2 percent N). (author)

  7. Effects of Spatial Localization on Microbial Consortia Growth.

    Directory of Open Access Journals (Sweden)

    Michael Venters

    Full Text Available Microbial consortia are commonly observed in natural and synthetic systems, and these consortia frequently result in higher biomass production relative to monocultures. The focus here is on the impact of initial spatial localization and substrate diffusivity on the growth of a model microbial consortium consisting of a producer strain that consumes glucose and produces acetate and a scavenger strain that consumes the acetate. The mathematical model is based on an individual cell model where growth is described by Monod kinetics, and substrate transport is described by a continuum-based, non-equilibrium reaction-diffusion model where convective transport is negligible (e.g., in a biofilm. The first set of results focus on a single producer cell at the center of the domain and surrounded by an initial population of scavenger cells. The impact of the initial population density and substrate diffusivity is examined. A transition is observed from the highest initial density resulting in the greatest cell growth to cell growth being independent of initial density. A high initial density minimizes diffusive transport time and is typically expected to result in the highest growth, but this expected behavior is not predicted in environments with lower diffusivity or larger length scales. When the producer cells are placed on the bottom of the domain with the scavenger cells above in a layered biofilm arrangement, a similar critical transition is observed. For the highest diffusivity values examined, a thin, dense initial scavenger layer is optimal for cell growth. However, for smaller diffusivity values, a thicker, less dense initial scavenger layer provides maximal growth. The overall conclusion is that high density clustering of members of a food chain is optimal under most common transport conditions, but under some slow transport conditions, high density clustering may not be optimal for microbial growth.

  8. Microbial endogenous response to acute inhibitory impact of antibiotics.

    Science.gov (United States)

    Pala-Ozkok, I; Kor-Bicakci, G; Çokgör, E U; Jonas, D; Orhon, D

    2017-06-13

    Enhanced endogenous respiration was observed as the significant/main response of the aerobic microbial culture under pulse exposure to antibiotics: sulfamethoxazole, tetracycline and erythromycin. Peptone mixture and acetate were selected as organic substrates to compare the effect of complex and simple substrates. Experiments were conducted with microbial cultures acclimated to different sludge ages of 10 and 2 days, to visualize the effect of culture history. Evaluation relied on modeling of oxygen uptake rate profiles, reflecting the effect of all biochemical reactions associated with substrate utilization. Model calibration exhibited significant increase in values of endogenous respiration rate coefficient with all antibiotic doses. Enhancement of endogenous respiration was different with antibiotic type and initial dose. Results showed that both peptone mixture and acetate cultures harbored resistance genes against the tested antibiotics, which suggests that biomass spends cellular maintenance energy for activating the required antibiotic resistance mechanisms to survive, supporting higher endogenous decay rates. [Formula: see text]: maximum growth rate for X H (day -1 ); K S : half saturation constant for growth of X H (mg COD/L); b H : endogenous decay rate for X H (day -1 ); k h : maximum hydrolysis rate for S H1 (day -1 ); K X : hydrolysis half saturation constant for S H1 (mg COD/L); k hx : maximum hydrolysis rate for X S1 (day -1 ); K XX : hydrolysis half saturation constant for X S1 (mg COD/L); k STO : maximum storage rate of PHA by X H (day -1 ); [Formula: see text]: maximum growth rate on PHA for X H (day -1 ); K STO : half saturation constant for storage of PHA by X H (mg COD/L); X H1 : initial active biomass (mg COD/L).

  9. Phosphate solubilization as a microbial strategy for promoting plant growth

    Directory of Open Access Journals (Sweden)

    Mayra Eleonora Beltrán Pineda

    2014-01-01

    Full Text Available Because of the constant application of chemical inputs in Agroecosystem, the cost of crop production and environmental quality of soil and water have been affected. Microorganisms carry out most biogeochemical cycles; therefore, their role is essential for agro ecosystem balance. One such functional group is the phosphate solubilizing microorganisms, which are recognized plant growth promoters. These microbial populations perform an important activity, since in many soils there are large reserves of insoluble phosphorus, as a result of fixing much of the phosphorus fertilizer applied, which cannot be assimilated by the plant. The phosphate solubilizing microorganisms use different solubilization mechanisms such as the production of organic acids, which solubilize theses insoluble phosphates in the rhizosphere region. Soluble phosphates are absorbed by the plant, which enhances their growth and productivity. By using these phosphate reserves in soils, application of chemical fertilizers is decreased, on the one hand, can again be fixed by ions Ca, Al or Fe making them insoluble and, by the other hand, increase the costs of crop production. Microbial populations have been widely studied in different types of ecosystems, both natural and Agroecosystem. Thanks to its effectiveness, in laboratory and field studies, the phosphate solubilizing phenotype is of great interest to microbial ecologists who have begun to establish the molecular basis of the traitr.

  10. Electrochemical and Chemical Complications Resulting from Yeast Extract Addition to Stimulate Microbial Growth

    Science.gov (United States)

    2016-09-22

    including strains of Saccharomyces cerevisiae grown on molasses-based media, debittered brewers yeasts (strains of Saccharo- myces cerevisiae or...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) Technical Note: Electrochemical and Chemical Complications Resulting from Yeast Extract...Addition to Stimulate Microbial Growth Jason S. Lee‡,* and Brenda J. Little* ABSTRACT Addition of 1 g/L yeast extract (YE) to sterile, aerobic

  11. Accounting for inherent variability of growth in microbial risk assessment.

    Science.gov (United States)

    Marks, H M; Coleman, M E

    2005-04-15

    Risk assessments of pathogens need to account for the growth of small number of cells under varying conditions. In order to determine the possible risks that occur when there are small numbers of cells, stochastic models of growth are needed that would capture the distribution of the number of cells over replicate trials of the same scenario or environmental conditions. This paper provides a simple stochastic growth model, accounting only for inherent cell-growth variability, assuming constant growth kinetic parameters, for an initial, small, numbers of cells assumed to be transforming from a stationary to an exponential phase. Two, basic, microbial sets of assumptions are considered: serial, where it is assume that cells transform through a lag phase before entering the exponential phase of growth; and parallel, where it is assumed that lag and exponential phases develop in parallel. The model is based on, first determining the distribution of the time when growth commences, and then modelling the conditional distribution of the number of cells. For the latter distribution, it is found that a Weibull distribution provides a simple approximation to the conditional distribution of the relative growth, so that the model developed in this paper can be easily implemented in risk assessments using commercial software packages.

  12. 2010 responsible growth report

    International Nuclear Information System (INIS)

    2010-01-01

    The report addresses several development and growth perspectives for AREVA: its integrated business model, the synergy and complementarities between nuclear and renewable energies, the sustainable development dimension of its industrial development, its sales revenue result, the reduction of its environmental footprint, its development on all continents, its balanced governance, the simplification of its capital structure, and the actions performed by its Foundation. Then, it discusses ten challenges for the company: ensuring safety and performance throughout the reactor life cycle, making the EPR reactor a standard of safety, maintaining relations based on trust with our stake holders, staying in the lead, accelerating the development of renewable energies, being a trusted partner to growing economies, being a model in mine management, promoting sustainable, effective and safe recycling of used fuel, improving performance continuously, offering development prospects to all employees. It briefly presents ten successes achieved in 2010 and indicates ten sustainable development commitments. Document in French and in English

  13. Are Microbial Nanowires Responsible for Geoelectrical Changes at Hydrocarbon Contaminated Sites?

    Science.gov (United States)

    Hager, C.; Atekwana, E. A.; Gorby, Y. A.; Duris, J. W.; Allen, J. P.; Atekwana, E. A.; Ownby, C.; Rossbach, S.

    2007-05-01

    Significant advances in near-surface geophysics and biogeophysics in particular, have clearly established a link between geoelectrical response and the growth and enzymatic activities of microbes in geologic media. Recent studies from hydrocarbon contaminated sites suggest that the activities of distinct microbial populations, specifically syntrophic, sulfate reducing, and dissimilatory iron reducing microbial populations are a contributing factor to elevated sediment conductivity. However, a fundamental mechanistic understanding of the processes and sources resulting in the measured electrical response remains uncertain. The recent discovery of bacterial nanowires and their electron transport capabilities suggest that if bacterial nanowires permeate the subsurface, they may in part be responsible for the anomalous conductivity response. In this study we investigated the microbial population structure, the presence of nanowires, and microbial-induced alterations of a hydrocarbon contaminated environment and relate them to the sediments' geoelectrical response. Our results show that microbial communities varied substantially along the vertical gradient and at depths where hydrocarbons saturated the sediments, ribosomal intergenic spacer analysis (RISA) revealed signatures of microbial communities adapted to hydrocarbon impact. In contrast, RISA profiles from a background location showed little community variations with depth. While all sites showed evidence of microbial activity, a scanning electron microscope (SEM) study of sediment from the contaminated location showed pervasive development of "nanowire-like structures" with morphologies consistent with nanowires from laboratory experiments. SEM analysis suggests extensive alteration of the sediments by microbial Activity. We conclude that, excess organic carbon (electron donor) but limited electron acceptors in these environments cause microorganisms to produce nanowires to shuttle the electrons as they seek for

  14. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumyeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates and enzymes activity) rather than total microbial biomass

  15. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    Science.gov (United States)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  16. Impact of Microbial Growth on Subsurface Perfluoroalkyl Acid Transport

    Science.gov (United States)

    Weathers, T. S.; Higgins, C. P.; Sharp, J.

    2014-12-01

    The fate and transport of poly and perfluoroalkyl substances (PFASs) in the presence of active microbial communities has not been widely investigated. These emerging contaminants are commonly utilized in aqueous film-forming foams (AFFF) and have often been detected in groundwater. This study explores the transport of a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), in microbially active settings. Single point organic carbon normalized sorption coefficients derived by exposing inactive cellular material to PFASs result in more than an order of magnitude increase in sorption compared to soil organic carbon sorption coefficients found in literature. For example, the sorption coefficients for PFOS are 4.05±0.07 L/kg and 2.80±0.08 L/kg for cellular organic carbon and soil organic carbon respectively. This increase in sorption, coupled with enhanced extracellular polymeric substance production observed during growth of a common hydrocarbon degrading soil microbe exposed to source-level concentrations of PFASs (10 mg/L of 11 analytes, 110 mg/L total) may result in PFAS retardation in situ. To address the upscaling of this phenomenon, flow-through columns packed with low-organic carbon sediment and biostimulated with 10 mg/L glucose were exposed to PFAS concentrations from 15 μg/L to 10 mg/L of each 11 analytes. Breakthrough and tailing of each analyte was measured and modeled with Hydrus-1D to explore sorption coefficients over time for microbially active columns.

  17. Microbial Communities: Tracing Growth Processes from Antarctic Lakes to Early Earth to Other Planets

    Science.gov (United States)

    Sumner, D. Y.

    2014-12-01

    Life in the Universe is dominated by microbes: they are numerically the most abundant cells in our bodies and in Earth's biosphere, and they are the only life that might be present elsewhere in our solar system. Life beyond our solar system could include macroscopic organisms, but everything we understand about the origin of life suggests it must start with microbes. Thus, understanding microbial ecosystems, in the absence of macroscopic organisms, is critical to understanding early life on Earth and life elsewhere in the Universe - if it exists. But what are the general principles of microbial ecology in the absence of predation? What happens when each cell is a chemical factory that can swap among metabolic processes in response to environmental and emergent cues? Geobiologists and astrobiologists are addressing these questions in diverse ways using both Earth's modern biosphere and its fossil record. Modern microbial communities in shallow, ice-covered lakes, Antarctica (Fig.), provide a model for high productivity microbial ecosystems with no to low predation. In these lakes, photosynthetic communities create macroscopic pinnacles and domes, sometime lithified into stromatolites. They provide an ecological, geochemical and morphological model for Precambrian microbial communities in low sedimentation, low current environments. Insights from these communities include new growth processes for ancient mats, especially some that grew prior to the oxidation of Earth's atmosphere. The diversity of biosignatures created in these communities also provides context for models of life under ice elsewhere in our solar system such as paleolakes on Mars and on icy moons. Results from the Mars Science Laboratory (MSL) team document formerly habitable fluvial and lacustrine environments. Lacustrine environments, in particular, are favorable for preserving biosignatures, and continued investigations by MSL will provide a deeper understanding of the duration of habitable

  18. Growth Response and Tolerance to Heavy Metals of two Swamp Species inoculated with a Plant Growth-Promoting Rhizobacteria

    International Nuclear Information System (INIS)

    Rodriguez-Dorantes, A.; Labra-Cardon, D.; Guerrero-Zuniga, A.; Montes-Villafan, S.

    2009-01-01

    Due to the sensitivity and the sequestration ability of the microbial communities to heavy metals, microbes have been used for bioremediation. Recently the application of plant growth-promoting rhizobacteria (PGPR) for the bioremediation of this kind of contaminants has been done. This study evaluated the growth response and the tolerance to heavy metals of two swamp species. (Author)

  19. Response of soil microbial activities and microbial community structure to vanadium stress.

    Science.gov (United States)

    Xiao, Xi-Yuan; Wang, Ming-Wei; Zhu, Hui-Wen; Guo, Zhao-Hui; Han, Xiao-Qing; Zeng, Peng

    2017-08-01

    High levels of vanadium (V) have long-term, hazardous impacts on soil ecosystems and biological processes. In the present study, the effects of V on soil enzymatic activities, basal respiration (BR), microbial biomass carbon (MBC), and the microbial community structure were investigated through 12-week greenhouse incubation experiments. The results showed that V content affected soil dehydrogenase activity (DHA), BR, and MBC, while urease activity (UA) was less sensitive to V stress. The average median effective concentration (EC 50 ) thresholds of V were predicted using a log-logistic dose-response model, and they were 362mgV/kg soil for BR and 417mgV/kg soil for DHA. BR and DHA were more sensitive to V addition and could be used as biological indicators for soil V pollution. According to a polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis, the structural diversity of the microbial community decreased for soil V contents ranged between 254 and 1104mg/kg after 1 week of incubation. As the incubation time increased, the diversity of the soil microbial community structure increased for V contents ranged between 354 and 1104mg/kg, indicating that some new V-tolerant bacterial species might have replicated under these conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Determination of Nitrate Reductase Assay Depending on the Microbial Growth

    International Nuclear Information System (INIS)

    El-Kabbany, H.M.

    2012-01-01

    A rapid micro-dilution assay for determination of the antimicrobial susceptibility of different bacterial isolates was developed. This assay is based on the ability of the most of viable organisms to reduce nitrates. The MIC or MBC could be determined by nitrate reductase (NR) only after 30 to 90 min of incubation depending on the behaviour of microbial growth. Bacterial viability is detected by a positive nitrite reduction rather than visible turbidity. The nitrate reduction assay was compared with standard micro-assay using 250 isolates of different taxa against 10 antibiotics belonging to different classes. An excellent agreement of 82.5 % was found between the two methods and only 17.5 % of 1794 trials showed difference in the determined MIC by tow-dilution interval above or below the MIC determined by the turbidimetric method under the same test conditions. However, the nitrate reduction assay was more rapid and sensitive in detecting viable bacteria and so, established an accurate estimate of the minimal inhibitory concentration (MIC) or the minimal bacterial concentration (MBC). The nitrate reduction assay offers the additional advantage that it could be used to determine the MBC without having to subculture the broth. 232 cases of resistance were detected by NR and 4 different media were tested for susceptibility test. The bacterial isolates were exposed to ultra violet (UV) light for different period

  1. Microbial Community Structure of Casing Soil During Mushroom Growth

    Institute of Scientific and Technical Information of China (English)

    CAI Wei-Ming; YAO Huai-Ying; FENG Wei-Lin; JIN Qun-Li; LIU Yue-Yan; LI Nan-Yi; ZHENG Zhong

    2009-01-01

    The culturable bacterial population and phospholipid fatty acid (PLFA)profile of casing soil were investigated at different mushroom (Agaricus bisporusI cropping stages.The change in soil bacterial PLFAs was always accompanied by a change in the soil culturable bacterial population in the first flush.Comparatively higher culturable bacterial population and bacterial PLFAs were found in the casing soil at the primordia formation stage of the first flush.There was a significant increase in the ratio of fungal to bacterial PLFAs during mushroom growth.Multivariate analysis of PLFA data demonstrated that the mushroom cropping stage could considerably affect the microbial community structure of the casing soil.The bacterial population increased significantly from casing soil application to the primordia formation stage of the first flush.Casing soil application resulted in an increase in the ratio of gram-negative bacterial PLFAs to gram-positive bacterial PLFAs,suggesting that some gram-negative bacteria might play an important role in mushroom sporophore initiation.

  2. Growth of microbial mixed cultures under anaerobic, alkaline conditions

    International Nuclear Information System (INIS)

    Wenk, M.

    1993-09-01

    Cement and concrete are the most important engineered barrier materials in a repository for low- and intermediate-level waste and thus represent the most significant component of the total disposal inventory. Based on the chemical composition of the concrete used in the repository and the groundwater fluxes in the modelled host rock, it is to be expected that the pH in the near vicinity of the repository could exceed a value of 10.5 for more than a million years. The groundwater in the repository environment also has a limited carbon concentration. Since microorganisms will be present in a repository and can even find suitable living conditions within the waste itself, investigations were carried out in order to establish the extent to which microbial activity is possible under the extreme conditions of the repository near-field. For the investigations, alkalophilic cultures were enriched from samples from alkaline habitats and from Valanginian Marl. Anaerobic bacteria with fermentative, sulfate-reducing and methanogenic metabolism were selected. The growth and activity of the mixed cultures were studied under alkaline conditions and the dependence on pH and carbon concentration determined. All the mixed cultures investigated are alkalophilic. The optimum growth range for the cultures is between pH 9.0 and pH 10.0. The activity limit for the fermentative mixed culture is at pH 12, for the sulfate-reducers at pH 11 and for the methanogens at pH 10.5. Given the limited supply of carbon, the mixed cultures can only grow under slightly alkaline conditions. Only the fermentative cultures are capable of surviving with limited carbon supply at pH 13. (author) 24 figs., 18 tabs., 101 refs

  3. Microbial Growth and Carbon Use Efficiency in the Rhizosphere and Root-Free Soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Anderson, Traute-Heidi; Kuzyakov, Yakov

    2014-01-01

    Plant-microbial interactions alter C and N balance in the rhizosphere and affect the microbial carbon use efficiency (CUE)–the fundamental characteristic of microbial metabolism. Estimation of CUE in microbial hotspots with high dynamics of activity and changes of microbial physiological state from dormancy to activity is a challenge in soil microbiology. We analyzed respiratory activity, microbial DNA content and CUE by manipulation the C and nutrients availability in the soil under Beta vulgaris. All measurements were done in root-free and rhizosphere soil under steady-state conditions and during microbial growth induced by addition of glucose. Microorganisms in the rhizosphere and root-free soil differed in their CUE dynamics due to varying time delays between respiration burst and DNA increase. Constant CUE in an exponentially-growing microbial community in rhizosphere demonstrated the balanced growth. In contrast, the CUE in the root-free soil increased more than three times at the end of exponential growth and was 1.5 times higher than in the rhizosphere. Plants alter the dynamics of microbial CUE by balancing the catabolic and anabolic processes, which were decoupled in the root-free soil. The effects of N and C availability on CUE in rhizosphere and root-free soil are discussed. PMID:24722409

  4. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination.

    Science.gov (United States)

    Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli

    2017-12-01

    Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Phenotypic responses to interspecies competition and commensalism in a naturally-derived microbial co-culture

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nymul; Maezato, Yukari; McClure, Ryan S.; Brislawn, Colin J.; Mobberley, Jennifer M.; Isern, Nancy; Chrisler, William B.; Markillie, Lye Meng; Barney, Brett M.; Song, Hyun-Seob; Nelson, William C.; Bernstein, Hans C.

    2018-01-10

    The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL-58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesized – and confirmed – that co-cultivation under glucose as the sole carbon source would result in a competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL-48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold.

  6. Critical control points for the management of microbial growth in HVAC systems

    NARCIS (Netherlands)

    Gommers, S; Franchimon, F.; Bronswijk, van J.E.M.H.; Strøm-Tejsen, P; Olesen, BW; Wargocki, P; Zukowska, D; Toftum, J

    2008-01-01

    Office buildings with HVAC systems consistently report Sick Building Symptoms that are derived from microbial growth. We used the HACCP methodology to find the main critical control points (CCPs) for microbial management of HVAC systems in temperate climates. Desk research revealed relative humidity

  7. Using growth-based methods to determine direct effects of salinity on soil microbial communities

    Science.gov (United States)

    Rath, Kristin; Rousk, Johannes

    2015-04-01

    Soil salinization is a widespread agricultural problem and increasing salt concentrations in soils have been found to be correlated with decreased microbial activity. A central challenge in microbial ecology is to link environmental factors, such as salinity, to responses in the soil microbial community. That is, it can be difficult to distinguish direct from indirect effects. In order to determine direct salinity effects on the community we employed the ecotoxicological concept of Pollution-Induced Community Tolerance (PICT). This concept is built on the assumption that if salinity had an ecologically relevant effect on the community, it should have selected for more tolerant species and strains, resulting in an overall higher community tolerance to salt in communities from saline soils. Growth-based measures, such as the 3H-leucine incorporation into bacterial protein , provide sensitive tools to estimate community tolerance. They can also provide high temporal resolution in tracking changes in tolerance over time. In our study we used growth-based methods to investigate: i) at what levels of salt exposure and over which time scales salt tolerance can be induced in a non-saline soil, and (ii) if communities from high salinity sites have higher tolerance to salt exposure along natural salinity gradients. In the first part of the study, we exposed a non-saline soil to a range of salinities and monitored the development of community tolerance over time. We found that community tolerance to intermediate salinities up to around 30 mg NaCl per g soil can be induced at relatively short time scales of a few days, providing evidence that microbial communities can adapt rapidly to changes in environmental conditions. In the second part of the study we used soil samples originating from natural salinity gradients encompassing a wide range of salinity levels, with electrical conductivities ranging from 0.1 dS/m to >10 dS/m. We assessed community tolerance to salt by

  8. [Microbial biomass and growth kinetics of microorganisms in chernozem soils under different farm land use modes].

    Science.gov (United States)

    Blagodatskiĭ, S A; Bogomolova, I N; Blagodatskaia, E V

    2008-01-01

    The carbon content of microbial biomass and the kinetic characteristics of microbial respiration response to substrate introduction have been estimated for chernozem soils of different farm lands: arable lands used for 10, 46, and 76 years, mowed fallow land, non-mowed fallow land, and woodland. Microbial biomass and the content of microbial carbon in humus (Cmic/Corg) decreased in the following order: soils under forest cenoses-mowed fallow land-10-year arable land-46- and 75-year arable land. The amount of microbial carbon in the long-plowed horizon was 40% of its content in the upper horizon of non-mowed fallow land. Arable soils were characterized by a lower metabolic diversity of microbial community and by the highest portion of microorganisms able to grow directly on glucose introduced into soil. The effects of different scenarios of carbon sequestration in soil on the reserves and activity of microbial biomass are discussed.

  9. Investigating the legacy effect of drought on microbial responses to drying and rewetting along a Texan precipitation gradient

    Science.gov (United States)

    Hicks, Lettice; Leizeaga, Ainara; Hawkes, Christine; Rousk, Johannes

    2017-04-01

    Hydrological regimes will intensify due to climate change, thus increasing the duration and intensity of drought and rainfall events. Rewetting of dry soil is known to stimulate dramatic CO2 releases. A clear understanding of the mechanisms that determine the dynamics of CO2 loss upon rewetting is therefore required to characterise ecosystem C-budgets and predict responses to climate change. Laboratory studies have identified two distinct responses upon rewetting; bacterial growth either increases linearly immediately, with maximal respiration also occurring immediately and decreasing exponentially with time ("Type 1"), or bacterial growth increases exponentially after a period of near-zero growth, with a sustained period of elevated respiration, sometimes followed by a secondary increase in respiration coinciding with the onset of bacterial growth ("Type 2"). A shift from a Type 1 to a Type 2 response has been observed with increasing duration and intensity of drying prior to rewetting. The size of the surviving microbial community after drying, relative to resources available after rewetting, is suggested to dictate whether a Type 1 or 2 response occurs, with more 'harsh' (i.e. longer or more severe) drying reducing microbial biomass such that carbon available upon rewetting is sufficient to support exponential growth (leading to Type 2 response). However, this is yet to be tested in intact ecosystems. We investigated the legacy of drought on microbial responses to drying and rewetting using grassland soils from a natural precipitation gradient in Texas. Mean annual precipitation spanned a 500 mm range (400-900 mm year-1) across the 400 km gradient, while mean annual temperature was constant. Soil properties (pH, SOM) did not vary systematically across the gradient, with differences reflecting land-use history rather than rainfall. Air dried soils from 18 sites were rewetted to 50 % water holding capacity with bacterial growth, fungal growth and respiration

  10. Microbial growth associated with granular activated carbon in a pilot water treatment facility.

    Science.gov (United States)

    Wilcox, D P; Chang, E; Dickson, K L; Johansson, K R

    1983-01-01

    The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC. PMID:6625567

  11. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  12. Ready or Not: Microbial Adaptive Responses in Dynamic Symbiosis Environments.

    Science.gov (United States)

    Cao, Mengyi; Goodrich-Blair, Heidi

    2017-08-01

    In mutually beneficial and pathogenic symbiotic associations, microbes must adapt to the host environment for optimal fitness. Both within an individual host and during transmission between hosts, microbes are exposed to temporal and spatial variation in environmental conditions. The phenomenon of phenotypic variation, in which different subpopulations of cells express distinctive and potentially adaptive characteristics, can contribute to microbial adaptation to a lifestyle that includes rapidly changing environments. The environments experienced by a symbiotic microbe during its life history can be erratic or predictable, and each can impact the evolution of adaptive responses. In particular, the predictability of a rhythmic or cyclical series of environments may promote the evolution of signal transduction cascades that allow preadaptive responses to environments that are likely to be encountered in the future, a phenomenon known as adaptive prediction. In this review, we summarize environmental variations known to occur in some well-studied models of symbiosis and how these may contribute to the evolution of microbial population heterogeneity and anticipatory behavior. We provide details about the symbiosis between Xenorhabdus bacteria and Steinernema nematodes as a model to investigate the concept of environmental adaptation and adaptive prediction in a microbial symbiosis. Copyright © 2017 American Society for Microbiology.

  13. Shifts in microbial populations in Rusitec fermenters as affected by the type of diet and impact of the method for estimating microbial growth (15N v. microbial DNA).

    Science.gov (United States)

    Mateos, I; Ranilla, M J; Saro, C; Carro, M D

    2017-11-01

    offered similar results for diets comparison, but both methods presented contrasting results for microbial growth in SOL and LIQ phases. The study showed that fermentation parameters remained fairly stable over the commonly used sampling period (days 8 to 14), but shifts in microbial populations were detected. Moreover, microbial populations differed markedly from those in the inocula, which indicates the difficulty of directly transposing results on microbial populations developed in Rusitec fermenters to in vivo conditions.

  14. Lineage-specific responses of microbial communities to environmental change.

    Science.gov (United States)

    Youngblut, Nicholas D; Shade, Ashley; Read, Jordan S; McMahon, Katherine D; Whitaker, Rachel J

    2013-01-01

    A great challenge facing microbial ecology is how to define ecologically relevant taxonomic units. To address this challenge, we investigated how changing the definition of operational taxonomic units (OTUs) influences the perception of ecological patterns in microbial communities as they respond to a dramatic environmental change. We used pyrosequenced tags of the bacterial V2 16S rRNA region, as well as clone libraries constructed from the cytochrome oxidase C gene ccoN, to provide additional taxonomic resolution for the common freshwater genus Polynucleobacter. At the most highly resolved taxonomic scale, we show that distinct genotypes associated with the abundant Polynucleobacter lineages exhibit divergent spatial patterns and dramatic changes over time, while the also abundant Actinobacteria OTUs are highly coherent. This clearly demonstrates that different bacterial lineages demand different taxonomic definitions to capture ecological patterns. Based on the temporal distribution of highly resolved taxa in the hypolimnion, we demonstrate that change in the population structure of a single genotype can provide additional insight into the mechanisms of community-level responses. These results highlight the importance and feasibility of examining ecological change in microbial communities across taxonomic scales while also providing valuable insight into the ecological characteristics of ecologically coherent groups in this system.

  15. Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities

    NARCIS (Netherlands)

    Epelde, L.; Becerril, J.M.; Kowalchuk, G.A.; Deng, Y.; Zhou, J.N.; Garbisu, C.

    2010-01-01

    Soil microorganisms drive critical functions in plant-soil systems. As such, various microbial properties have been proposed as indicators of soil functioning, making them potentially useful in evaluating the recovery of polluted soils via phytoremediation strategies. To evaluate microbial responses

  16. Soil microbial community responses to acid exposure and neutralization treatment.

    Science.gov (United States)

    Shin, Doyun; Lee, Yunho; Park, Jeonghyun; Moon, Hee Sun; Hyun, Sung Pil

    2017-12-15

    Changes in microbial community induced by acid shock were studied in the context of potential release of acids to the environment due to chemical accidents. The responses of microbial communities in three different soils to the exposure to sulfuric or hydrofluoric acid and to the subsequent neutralization treatment were investigated as functions of acid concentration and exposure time by using 16S-rRNA gene based pyrosequencing and DGGE (Denaturing Gradient Gel Electrophoresis). Measurements of soil pH and dissolved ion concentrations revealed that the added acids were neutralized to different degrees, depending on the mineral composition and soil texture. Hydrofluoric acid was more effectively neutralized by the soils, compared with sulfuric acid at the same normality. Gram-negative ß-Proteobacteria were shown to be the most acid-sensitive bacterial strains, while spore-forming Gram-positive Bacilli were the most acid-tolerant. The results of this study suggest that the Gram-positive to Gram-negative bacterial ratio may serve as an effective bio-indicator in assessing the impact of the acid shock on the microbial community. Neutralization treatments helped recover the ratio closer to their original values. The findings of this study show that microbial community changes as well as geochemical changes such as pH and dissolved ion concentrations need to be considered in estimating the impact of an acid spill, in selecting an optimal remediation strategy, and in deciding when to end remedial actions at the acid spill impacted site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Soil microbial responses to nitrogen addition in arid ecosystems

    Directory of Open Access Journals (Sweden)

    Robert L Sinsabaugh

    2015-08-01

    Full Text Available The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts. We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg ha-1 yr-1 from March 2012 to March 2013. In March 2013, biocrust (0-0.5 cm and bulk soils (0-10 cm were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities (EEA and rates of N transformation. By most measures, nutrient availability, microbial biomass and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N.

  18. Effect of Microbial inoculation in combating the aluminium toxicity effect on growth of Zea mays.

    Science.gov (United States)

    Arora, P; Singh, G; Tiwari, A

    2017-07-31

    The present study is aimed at improving the aluminium tolerance in maize crop employing the potential of microbial inoculants in conferring resistance to these toxicities via production of certain chelating compounds like siderophores, exopolysachharides and organic acids. Acid soils have now-a-days become one of the key factors for limiting growth of many agriculturally important crops. Aluminium  is one of the major elements present in acid soils and is mainly responsible for toxicity in the soil. This aluminium is rapidly soluble in soil water and hence absorbed by plant roots under conditions where soil pH is below 5. This toxicity leads to severe root growth inhibition, thereby limiting the production of maize crops. It was observed that use of microbial inoculums can be helpful in elimination of these toxic compounds and prevent the inhibition of root growth . It was found that the soils contaminated with aluminium toxicity decreased the root length of maize plant significantly by 65% but Bacillus and Burkholderia inoculation increased this root length significantly by 1.4- folds and 2- folds respectively thereby combating the effect of aluminium toxicity. Aluminium concentration was found maximum in roots of plants which were grown under aluminium stress condition. But this aluminium accumulation decreased ̴ 2-folds when Burkholderia was used as seed inoculants under aluminium stress conditions. Also, at 60mM aluminium accumulation, phosphorus solubilisation in roots was found to be increased upto 30% on Burkholderia inoculation. However, Bacillus inoculation didn't show any significant difference in either of the case. Thus, the inoculation of seeds with Burkholderia isolates could prove to be a boon in sequestering aluminium toxicity in Zea mays.

  19. Effect of dietary olive leaves and rosemary on microbial growth and ...

    African Journals Online (AJOL)

    Effect of dietary olive leaves and rosemary on microbial growth and lipid oxidation of turkey breast during refrigerated storage. ... During this period olive leaves were more effective in inhibiting bacterial growth than rosemary. Keywords: Antioxidant additives, α-tocopherol, turkey meat, herbs, spices, meat quality ...

  20. Linking genes to microbial growth kinetics: an integrated biochemical systems engineering approach

    NARCIS (Netherlands)

    Koutinas, M.; Kiparissides, A.; Silva-Rocha, R.; Lam, M.C.; Martins Dos Santos, V.A.P.; Lorenzo, de V.; Pistikopoulos, E.N.; Mantalaris, A.

    2011-01-01

    The majority of models describing the kinetic properties of a microorganism for a given substrate are unstructured and empirical. They are formulated in this manner so that the complex mechanism of cell growth is simplified. Herein, a novel approach for modelling microbial growth kinetics is

  1. A meta-analysis of soil microbial biomass responses to forest disturbances

    Directory of Open Access Journals (Sweden)

    Sandra Robin Holden

    2013-06-01

    Full Text Available Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm and biotic (insect, pathogen disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7%, 19.1%, and 41.7% reductions in microbial biomass, respectively. In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics.

  2. Microbial biofilm growth on irradiated, spent nuclear fuel cladding

    International Nuclear Information System (INIS)

    Bruhn, D.F.; Frank, S.M.; Roberto, F.F.; Pinhero, P.J.; Johnson, S.G.

    2009-01-01

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 x 10 3 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments

  3. Is the mineralisation response to root exudation controlled by the microbial stoichiometric demand in subarctic soils?

    Science.gov (United States)

    Rousk, Johannes; Hicks, Lettice; Leizeaga, Ainara; Michelsen, Anders; Rousk, Kathrin

    2017-04-01

    Climate change will expose arctic and subarctic systems to warming and a shift towards plant communities with more rhizosphere labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed 'priming'. We investigated how warming (+1.1˚ C over ambient using open top chambers) and the addition of plant litter (90 g m-2 y-1) or organic nitrogen (N) (fungal fruit bodies; 90 g m-2 y-1) in the Subarctic influenced the susceptibility of SOM mineralisation to priming, and its microbial underpinnings. Root exudation were simulated with the addition of labile organic matter both in the form of only labile C (13C-glucose) or in the form of labile C and N (13C-alanine). We hypothesized that labile C would induce a higher mineralization of N than C sourced from SOM ("N mining"); a response unrelated to microbial growth responses. We also hypothesized that the N mining effect would be more pronounced in climate change simulation treatments of higher C/N (plant litter) than treatments with lower C/N (fungal fruitbodies and warming), with the control treatments intermediate. We also hypothesized that the addition of labile C and N would not result in selective N mining, but instead coupled responses of C and N mineralisation sourced from SOM; a response that would coincide with stimulated microbial growth responses. Labile C appeared to inhibit the mineralisation of C from SOM by up to 60% within hours. In contrast, the mineralisation of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile-C inhibited C mineralisation is compatible with previously reported findings termed 'preferential substrate utilisation' or 'negative apparent priming', while the stimulated N mineralisation responses echo recent reports of 'real priming' of SOM mineralisation. However, C and N mineralisation responses

  4. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation.

    Science.gov (United States)

    Merchant, Sabeeha S; Helmann, John D

    2012-01-01

    Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes. Copyright © 2012

  5. The contribution of microbial biotechnology to economic growth and employment creation.

    Science.gov (United States)

    Timmis, Kenneth; de Lorenzo, Victor; Verstraete, Willy; Ramos, Juan Luis; Danchin, Antoine; Brüssow, Harald; Singh, Brajesh K; Timmis, James Kenneth

    2017-09-01

    Our communication discusses the profound impact of bio-based economies - in particular microbial biotechnologies - on SDG 8: Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all. A bio-based economy provides significant potential for improving labour supply, education and investment, and thereby for substantially increasing the demographic dividend. This, in turn, improves the sustainable development of economies. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities.

    NARCIS (Netherlands)

    Epelde, L.; Becerril, J.M.; Kowalchuk, G.A.; Deng, Y.; Zhou, J.; Garbisu, C.

    2010-01-01

    been proposed as indicators of soil functioning, making them potentially useful in evaluating the recovery of polluted soils via phytoremediation strategies. To evaluate microbial responses to metal phytoextraction using hyperaccumulators, a microcosm experiment was carried out to study the impacts

  7. Comparative efficacy of a phytogenic feed additive and an antibiotic growth promoter on production performance, caecal microbial population and humoral immune response of broiler chickens inoculated with enteric pathogens

    Directory of Open Access Journals (Sweden)

    Toshi Wati

    2015-09-01

    Full Text Available The aim of this work was to compare the efficacy of a commercially available phytogenic feed additive (PFA and an antibiotic growth promoter, which was bacitracin methylene disalicylate (BMD, on performance, nutrient retention, caecal colonization of bacteria and humoral immune responses against Newcastle disease in broiler chickens challenged orally with Salmonella enteritidis and Escherichia coli. One-day-old male Cobb 400 broiler chicks (n = 120 were fed with 1 a negative control (NC diet, which is the basal diet without any added growth promoter, 2 a positive control (PC diet, the basal diet supplemented with BMD, 500 mg/kg and 3 a diet supplemented with PFA (150 mg/kg for 39 days and the birds were inoculated with S. enteritidis and E. coli on d 28. Supplementation of PFA improved body weight, feed conversion ratio, retention of N and crude fiber, increased fecal moisture content and decreased digesta transit time as compared with the NC and PC groups (P < 0.01. Both the PC and the PFA was found to be equally effective in controlling the surge in numbers of Salmonella and E. coli following oral inoculation of these bacteria as compared with the NC group (P < 0.05 at 24 h past inoculation. Caecal content analysis on d 39 indicated lower numbers of Salmonella, E. coli and Clostridium in the PC and PFA groups as compared with the NC group (P < 0.05. The number of Lactobacillus in the PFA group was higher than those in the NC and PC groups (P < 0.05. Humoral immune response, measured as hemagglutination inhibition titer against Newcastle disease, was better in the PC and PFA groups compared with the NC group (P < 0.05 at d 21 but the difference did not last till d 39. The heterophil to lymphocyte ratio was narrower (P < 0.001 and alkaline phosphatase activity was higher (P < 0.01 in the PFA group as compared with the NC and PC groups on d 39. It was concluded that the PFA, which is animal, environment and consumer friendly, may be used as an

  8. The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature.

    Science.gov (United States)

    Auffret, Marc D; Karhu, Kristiina; Khachane, Amit; Dungait, Jennifer A J; Fraser, Fiona; Hopkins, David W; Wookey, Philip A; Singh, Brajesh K; Freitag, Thomas E; Hartley, Iain P; Prosser, James I

    2016-01-01

    Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited.

  9. Comparison of Two Mechanistic Microbial Growth Models to Estimate Shelf Life of Perishable Food Package under Dynamic Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Dong Sun Lee

    2014-01-01

    Full Text Available Two mechanistic microbial growth models (Huang’s model and model of Baranyi and Roberts given in differential and integrated equation forms were compared in predicting the microbial growth and shelf life under dynamic temperature storage and distribution conditions. Literatures consistently reporting the microbial growth data under constant and changing temperature conditions were selected to obtain the primary model parameters, set up the secondary models, and apply them to predict the microbial growth and shelf life under fluctuating temperatures. When evaluated by general estimation behavior, bias factor, accuracy factor, and root-mean-square error, Huang’s model was comparable to Baranyi and Roberts’ model in the capability to estimate microbial growth under dynamic temperature conditions. Its simple form of single differential equation incorporating directly the growth rate and lag time may work as an advantage to be used in online shelf life estimation by using the electronic device.

  10. Differential Responses of Soil Microbial Community to Four-Decade Long Grazing and Cultivation in a Semi-Arid Grassland

    Directory of Open Access Journals (Sweden)

    Yating He

    2017-01-01

    Full Text Available Grazing and cultivation are two important management practices worldwide that can cause significant soil organic carbon (SOC losses. However, it remains elusive how soil microbes have responded to soil carbon changes under these two practices. Based on a four-decade long field experiment, this study investigated the effects of grazing and cultivation on SOC stocks and microbial properties in the semi-arid grasslands of China. We hypothesize that grazing and cultivation would deplete SOC and depress microbial activities under both practices. However, our hypotheses were only partially supported. As compared with the adjacent indigenous grasslands, SOC and microbial biomass carbon (MBC were decreased by 20% or more under grazing and cultivation, which is consistent with the reduction of fungi abundance by 40% and 71%, respectively. The abundance of bacteria and actinomycetes was decreased under grazing but increased under cultivation, which likely enhanced microbial diversity in cultivation. Invertase activity decreased under the two treatments, while urease activity increased under grazing. These results suggest that nitrogen fertilizer input during cultivation may preferentially favor bacterial growth, in spite of SOC loss, due to rapid decomposition, while overgrazing may deteriorate the nitrogen supply to belowground microbes, thus stimulating the microbial production of nitrogen acquisition enzymes. This decade-long study demonstrated differential soil microbial responses under grazing and cultivation and has important applications for better management practices in the grassland ecosystem.

  11. Extracellular matrix organization modulates fibroblast growth and growth factor responsiveness.

    Science.gov (United States)

    Nakagawa, S; Pawelek, P; Grinnell, F

    1989-06-01

    To learn more about the relationship between extracellular matrix organization, cell shape, and cell growth control, we studied DNA synthesis by fibroblasts in collagen gels that were either attached to culture dishes or floating in culture medium during gel contraction. After 4 days of contraction, the collagen density (initially 1.5 mg/ml) reached 22 mg/ml in attached gels and 55 mg/ml in floating gels. After contraction, attached collagen gels were well organized; collagen fibrils were aligned in the plane of cell spreading; and fibroblasts had an elongated, bipolar morphology. Floating collagen gels, however, were unorganized; collagen fibrils were arranged randomly; and fibroblasts had a stellate morphology. DNA synthesis by fibroblasts in contracted collagen gels was suppressed if the gels were floating in medium but not if the gels were attached, and inhibition was independent of the extent of gel contraction. Therefore, growth of fibroblasts in contracted collagen gels could be regulated by differences in extracellular matrix organization and cell shape independently of extracellular matrix density. We also compared the responses of fibroblasts in contracted collagen gels and monolayer culture to peptide growth factors including fibroblast growth factor, platelet-derived growth factor, transforming growth factor-beta, and interleukin 1. Cells in floating collagen gels were generally unresponsive to any of the growth factors. Cells in attached collagen gels and monolayer culture were affected similarly by fibroblast growth factor but not by the others. Our results indicate that extracellular matrix organization influenced not only cell growth, but also fibroblast responsiveness to peptide growth factors.

  12. Effect of temperature on microbial growth rate - thermodynamic analysis, the arrhenius and eyring-polanyi connection

    Science.gov (United States)

    The objective of this work is to develop a new thermodynamic mathematical model for evaluating the effect of temperature on the rate of microbial growth. The new mathematical model is derived by combining the Arrhenius equation and the Eyring-Polanyi transition theory. The new model, suitable for ...

  13. The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition

    Science.gov (United States)

    B.M. Cheever; J. R. Webster; E. E. Bilger; S. A. Thomas

    2013-01-01

    Heterotrophic microbes colonizing detritus obtain nitrogen (N) for growth by assimilating N from their substrate or immobilizing exogenous inorganic N. Microbial use of these two pools has different implications for N cycling and organic matter decomposition in the face of the global increase in biologically available N. We used sugar maple leaves labeled with

  14. Accelerated microbial turnover but constant growth efficiency with warming in soil

    Science.gov (United States)

    Shannon B. Hagerty; Kees Jan van Groenigen; Steven D. Allison; Bruce A. Hungate; Egbert Schwartz; George W. Koch; Randall K. Kolka; Paul. Dijkstra

    2014-01-01

    Rising temperatures are expected to reduce global soil carbon (C) stocks, driving a positive feedback to climate change1-3. However, the mechanisms underlying this prediction are not well understood, including how temperature affects microbial enzyme kinetics, growth effiency (MGE), and turnover4,5. Here, in a laboratory...

  15. Determination of rumen microbial growth in vitro form 32P-labelled phosphate incorporation

    International Nuclear Information System (INIS)

    Nevel, C.J. Van; Demeyer, D.I.

    1977-01-01

    The extracellular phosphate pool in incubations of rumen fluid or washed cell suspensions of mixed rumen bacteria (WCS) was labelled with 32 P. From the constant extracellular phosphate pool specific activity and the amount of radioactivity incorporated during incubation, the amount of P incorporated in the microbial fraction was calculated. From the value for nitrogen: P determined in microbial matter, the amount of N incorporated was calculated as a measure of microbial growth. Incorporation of soluble non-protein-N in incubations devoid of substrate protein was 50 and 80% of the values obtained using isotope method for rumen fluid and WCS respectively. Incorporation of 32 P in P-containing microbial components (mainly nucleic acids) was compared with net synthesis of these components in incubations of WCS. When N incorporation, calculated from results obtained using isotope method in incubations with rumen fluid, was compared with the amount of carbohydrate substrate fermented and the type of fermentation, values between 18.3 and 44.6 g N incorporated kg of organic matter fermented were obtained. The use of isotopes for determination of rumen microbial growth in vitro is critically discussed. (author)

  16. The effect of substrate modification on microbial growth on surfaces

    International Nuclear Information System (INIS)

    Brown, Angela Ann

    1998-01-01

    The principle aim of the program was to produce a novel, non-leaching antimicrobial surface for commercial development and future use in the liquid food packaging industry. Antimicrobial surfaces which exist presently have been produced to combat the growth of prokaryotic organisms and usually function as slow release systems. A system which could inhibit eukaryotic growth without contaminating the surrounding 'environment' with the inhibitor was considered of great commercial importance. The remit of this study was concerned with creating a surface which could control the growth of eukaryotic organisms found in fruit juice with particular interest in the yeast, Saccharomyces cerevisiae. Putative antimicrobial surfaces were created by the chemical modification of the test substrate polymers; nylon and ethylvinyl alcohol (EVOH). Surfaces were chemically modified by the covalent coupling of antimicrobial agents known to be active against the yeast Saccharomyces cerevisiae as ascertained by the screening process determining the minimum inhibitory concentration (MIC) values of agents in the desired test medium. During the study it was found that a number of surfaces did appear to inhibit yeast growth in fruit juice, however on further investigation the apparent inhibitory effect was discovered to be the result of un-bound material free in the test medium. On removing the possibility of any un-bound material present on the test surface, by a series of surface washings, the inhibitory effect on yeast growth was eliminated. Of the agents tested only one appeared to have an inhibitory effect which could be attributed to a true antimicrobial surface effect, Amical 48. As there is little known about this agent in the literature, its affect on yeast growth was examined and in particular a proposal for the mode of action on yeast is discussed, providing a plausible explanation for the inhibitory effect observed when this agent is covalently immobilised onto nylon. (author)

  17. Influence of heterotrophic microbial growth on biological oxidation of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, E.A.; Silverstein, J. [University of Nevada, Reno, NV (United States). Dept. of Civil Engineering

    2002-12-15

    Experiments were carried out to examine the possibility that enhanced growth of heterotrophic (non-iron-oxidising) bacteria would inhibit pyrite oxidation by Acidithiobacillus ferroxidans by out-competing the more slowly growing autotrophs for oxygen, nutrients or even attachment sites on the mineral surface. Glucose was added to microcosms containing pyrite, acidic mineral solution and cultures of A-ferrooxidans and Acidiphilium acidophilus under various experimental conditions. Results suggest that encouraging the growth of heterotrophic microorganisms under acid mine drainage conditions may be a feasible strategy for decreasing both the rate and the extent of sulfide mineral oxidation. 43 refs., 8 figs., 3 tabs.

  18. Micro-Food Web Structure Shapes Rhizosphere Microbial Communities and Growth in Oak

    Directory of Open Access Journals (Sweden)

    Hazel R. Maboreke

    2018-03-01

    Full Text Available The multitrophic interactions in the rhizosphere impose significant impacts on microbial community structure and function, affecting nutrient mineralisation and consequently plant performance. However, particularly for long-lived plants such as forest trees, the mechanisms by which trophic structure of the micro-food web governs rhizosphere microorganisms are still poorly understood. This study addresses the role of nematodes, as a major component of the soil micro-food web, in influencing the microbial abundance and community structure as well as tree growth. In a greenhouse experiment with Pedunculate Oak seedlings were grown in soil, where the nematode trophic structure was manipulated by altering the proportion of functional groups (i.e., bacterial, fungal, and plant feeders in a full factorial design. The influence on the rhizosphere microbial community, the ectomycorrhizal symbiont Piloderma croceum, and oak growth, was assessed. Soil phospholipid fatty acids were employed to determine changes in the microbial communities. Increased density of singular nematode functional groups showed minor impact by increasing the biomass of single microbial groups (e.g., plant feeders that of Gram-negative bacteria, except fungal feeders, which resulted in a decline of all microorganisms in the soil. In contrast, inoculation of two or three nematode groups promoted microbial biomass and altered the community structure in favour of bacteria, thereby counteracting negative impact of single groups. These findings highlight that the collective action of trophic groups in the soil micro-food web can result in microbial community changes promoting the fitness of the tree, thereby alleviating the negative effects of individual functional groups.

  19. Instrumentation for Examining Microbial Response to Changes In Environmental Pressures

    Science.gov (United States)

    Blaich, J.; Storrs, A.; Wang, J.; Ouandji, C.; Arismendi, D.; Hernandez, J.; Sardesh, N.; Ibanez, C. R.; Owyang, S.; Gentry, D.

    2016-12-01

    The Automated Adaptive Directed Evolution Chamber (AADEC) is a device that allows operators to generate a micro-scale analog of real world systems that can be used to model the local-scale effects of climate change on microbial ecosystems. The AADEC uses an artificial environment to expose cultures of micro-organisms to environmental pressures, such as UV-C radiation, chemical toxins, and temperature. The AADEC autonomously exposes micro-organisms to slection pressures. This improves upon standard manual laboratory techniques: the process can take place over a longer period of time, involve more stressors, implement real-time adjustments based on the state of the population, and minimize the risk of contamination. We currently use UV-C radiation as the main selection pressure, UV-C is well studied both for its cell and DNA damaging effects as a type of selection pressure and for its related effectiveness as a mutagen; having these functions united makes it a good choice for a proof of concept. The AADEC roadmap includes expansion to different selection pressures, including heavy metal toxicity, temperature, and other forms of radiation. The AADEC uses closed-loop control to feedback the current state of the culture to the AADEC controller that modifies selection pressure intensity during experimentation, in this case culture density and growth rate. Culture density and growth rate are determined by measuring the optical density of the culture using 600 nm light. An array of 600 nm LEDs illuminate the culture and photodiodes are used to measure the shadow on the opposite side of the chamber. Previous experiments showed that we can produce a million fold increase to UV-C radiation over seven iterations. The most recent implements a microfluidic system that can expose cultures to multiple different selection pressures, perform non-survival based selection, and autonomously perform hundreds of exposure cycles. A scalable pump system gives the ability to pump in various

  20. Green tea yogurt: major phenolic compounds and microbial growth.

    Science.gov (United States)

    Amirdivani, Shabboo; Baba, Ahmad Salihin Hj

    2015-07-01

    The purpose of this study was to evaluate fermentation of milk in the presence of green tea (Camellia sinensis) with respect to changes in antioxidant activity, phenolic compounds and the growth of lactic acid bacteria. Pasteurized full fat cow's milk and starter culture were incubated at 41 °C in the presence of two different types of green tea extracts. The yogurts formed were refrigerated (4 °C) for further analysis. The total phenolic content was highest (p yogurt (MGT) followed by steam-treated green tea (JGT) and plain yogurts. Four major compounds in MGTY and JGTY were detected. The highest concentration of major phenolic compounds in both samples was related to quercetin-rhamnosylgalactoside and quercetin-3-O-galactosyl-rhamnosyl-glucoside for MGTY and JGTY respectively during first 7 day of storage. Diphenyl picrylhydrazyl and ferric reducing antioxidant power methods showed highest antioxidant capacity in MGTY, JGTY and PY. Streptococcus thermophillus and Lactobacillus spp. were highest in MGTY followed by JGTY and PY. This paper evaluates the implementation of green tea yogurt as a new product with functional properties and valuable component to promote the growth of beneficial yogurt bacteria and prevention of oxidative stress by enhancing the antioxidant activity of yogurt.

  1. Response of African marigold (Tagetes erecta L. to different concentrations of chlorpyrifos and microbial diversity in root rhizosphere

    Directory of Open Access Journals (Sweden)

    Mani Santhoshkumar

    2017-04-01

    Full Text Available Objective: To assess the response of African marigold (Tagetes erecta L. to exposed different concentration of chlorpyrifos by evaluating morphology (root and shoot length, biomass (fresh weight and dry weight, photosynthetic pigments (chlorophyll a and b, protein and microbial diversity in root rhizosphere. Methods: The study was carried out in pot culture and treated with various concentrations (0.5%, 1.0%, 2.0%, and 2.5% as well as control treatments. The morphological, biomass, photosynthetic pigments, protein, and microbial diversity were analyzed on 30, 60, and 90 days. Results: The obtained results revealed that the tested pesticide reduced the growth, biomass and photosynthetic pigment of African marigold when applied at higher concentration than the optimum dosage. But the lower dose the pesticide had some stimulatory effect of analyzed parameters. A similar effect of pesticide was observed on the microbial population of root rhizosphere that is decreased in microbial population was caused at higher doses. But it was increased at lower doses. Conclusions: It can be concluded that pesticide above the certain dosage level adversely affect all the analyzed parameters at higher doses. The application of recommended doses should be discouraged. Further study is needed for the effect of pesticide use on microbial diversity, since these studies are carried out in a controlled pot experiment, including the current study. Thus, future study directed towards by studying the phyoremediation of theses contaminted site with intraction of microbes.

  2. Fire vs. Metal: A Laboratory Study Demonstrating Microbial Responses to Soil Disturbances

    Science.gov (United States)

    Stromberger, Mary E.

    2005-01-01

    Incubation studies are traditionally used in soil microbiology laboratory classes to demonstrate microbial respiration and N mineralization-immobilization processes. Sometimes these exercises are done to calculate a N balance in N fertilizer-amended soils. However, examining microbial responses to environmental perturbations would appeal to soil…

  3. 2012 Gordon Research Conference on Microbial Stress Response, Schedule and Speaker/Poster Program

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Timothy J. [Univ. of Wisconsin, Madison, WI (United States)

    2012-07-20

    The Gordon Research Conference on Microbial Stress Response was held at Mount Holyoke College, South Hadley, Massachusetts, July 15-20, 2012. The Conference was well-attended with 180 participants. The 2012 Microbial Stress Responses Gordon Research Conference will provide a forum for the open reporting of recent discoveries on the diverse mechanisms employed by microbes to respond to stress. Approaches range from analysis at the molecular level (how are signals perceived and transmitted to change gene expression or function) to cellular and microbial community responses. Attached is a copy of the formal schedule and speaker program and the poster program.

  4. Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides

    Science.gov (United States)

    Vega Thurber, Rebecca; Burkepile, Deron E.; Correa, Adrienne M. S.; Thurber, Andrew R.; Shantz, Andrew A.; Welsh, Rory; Pritchard, Catharine; Rosales, Stephanie

    2012-01-01

    With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs. PMID:22957055

  5. Macroalgae decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides.

    Directory of Open Access Journals (Sweden)

    Rebecca Vega Thurber

    Full Text Available With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1 increases or 2 decreases in microbial taxa already present in corals, 3 establishment of new taxa to the coral microbiome, and 4 vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs.

  6. Soil microbial community response to aboveground vegetation and ...

    African Journals Online (AJOL)

    lenovo

    2011-11-21

    Nov 21, 2011 ... magnitude, activity, structure and function of soil microbial community may .... CaO were quantified by inductively coupled plasmaatomic emission spectroscopy ...... Validation of signature polarlipid fatty acid biomarkers for ...

  7. Microbial Threats to Health: Emergence, Detection, and Response

    National Research Council Canada - National Science Library

    Smolinski, Mark S; Hamburg, Margaret A; Lederberg, Joshua

    2003-01-01

    .... The recent SARS outbreak is a prime example. Knowing neither geographic nor political borders, often arriving silently and lethally, microbial pathogens constitute a grave threat to the health of humans...

  8. Microbial uptake of radiolabeled substrates: estimates of growth rates from time course measurements

    International Nuclear Information System (INIS)

    Li, W.K.W.

    1984-01-01

    The uptake of [ 3 H]glucose and a mixture of 3 H-labeled amino acids was measured, in time course fashion, in planktonic microbial assemblages of the eastern tropical Pacific Ocean. The average generation times of those portions of the assemblages able to utilize these substrates were estimated from a simple exponential growth model. Other workers have independently used this model in its integrated or differential form. A mathematical verification and an experimental demonstration of the equivalence of the two approaches are presented. A study was made of the size distribution of heterotrophic activity, using time course measurements. It was found that the size distribution and the effect of sample filtration before radiolabeling were dependent on time of incubation. In principle, it was possible to ascribe these time dependences to differences in th specific growth rate and initial standing stock of the microbial assemblages. 33 references

  9. Increase the Visibility of Microbial Growth in a Winogradsky Column by Substituting Diatomaceous Earth for Sediment

    Directory of Open Access Journals (Sweden)

    Thomas G. Benoit

    2015-02-01

    Full Text Available The difficulty students have seeing the color associated with microbial growth in a traditional Winogradsky column can be overcome by substituting diatomaceous earth (DE for sediment. Microbial growth in a DE column is visible from the early stages of ecological succession and the colors produced appear more vibrant. A flat-sided tissue culture flask can be used as a column container to provide a large surface area for observation. The enhanced visual experience provided by a DE column increases student engagement and learning. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum Recommendations: Introductory Course in Microbiology and the Guidelines for Biosafety in Teaching Laboratories, available at www.asm.org. The Editors of JMBE recommend that adopters of the protocols included in this article follow a minimum of Biosafety Level 1 practices.

  10. Antibiotics and Manure Effects on Microbial Communities Responsible for Nitrous Oxide Emissions from Grasslands

    Science.gov (United States)

    Semedo, M.; Song, B.; Sparrer, T.; Crozier, C.; Tobias, C. R.; Phillips, R. L.

    2015-12-01

    Agroecosystems are major contributors of nitrous oxide (N2O) emissions. Denitrification and nitrification are the primary pathways of N2O emission in soils. However, there is uncertainty regarding the organisms responsible for N2O production. Bacteria were previously considered the only microbial N2O source, however, current studies indicate that fungi also produce N2O by denitrification. Denitrifying bacteria can be a source or sink of N2O depending on the presence and expression of nitrous oxide reductase genes (nosZ), encoding for the enzyme converting N2O to N2. Fungal denitrification may produce only N2O as an end product due to missing the nosZ gene. Animal manures applied to agricultural fields can transfer antibiotics to soils as a result of antibiotic use in the livestock industry. These antibiotics target mostly bacteria and may promote fungal growth. The growth inhibition of denitrifying bacteria may favor fungal denitrifiers potentially enhancing N2O emissions. Our objective is to examine the effects of antibiotic exposure and manure fertilization on the microbial communities responsible for N2 and N2O production in grasslands. Soil slurry incubations were conducted with tetracycline at different concentrations. A mesocosm experiment was also performed with soil cores exposed to tetracycline and cow manure. Production of N2O and N2 was measured using gas chromatography with electron capture detector (GC-ECD) and isotope ratio mass spectrometry (IRMS), respectively. Antibiotic inhibition of soil N2 production was found to be dose dependent, reaching up to 80% inhibition with 1g Kg-1 of tetracycline treatment, while N2O production was enhanced up to 8 times. These results suggest higher fungal denitrification with a concomitant decrease in bacterial denitrification after antibiotic exposure. We also found higher N2O fluxes in the soil mesocosms treated with manure plus tetracycline. Quantitative PCR (qPCR) will be conducted to examine the changes in

  11. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events

    Science.gov (United States)

    Mooshammer, Maria; Hofhansl, Florian; Frank, Alexander H.; Wanek, Wolfgang; Hämmerle, Ieda; Leitner, Sonja; Schnecker, Jörg; Wild, Birgit; Watzka, Margarete; Keiblinger, Katharina M.; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2017-01-01

    Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which was not accompanied by significant changes in community composition. The functional and structural responses to the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was dependent on the nutrient content of the resource through its effect on microbial physiology and community composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of microbial C-N-P interactions into climate extremes research. PMID:28508070

  12. Germination, growth and physiological responses of Senegalia ...

    African Journals Online (AJOL)

    For plants growth and physiological responses, seedlings were individually cultivated in plastic bags (25×12 cm) containing non-sterile soil and watered with four salt solutions (0, 86, 171 and 257 mM NaCl). Four months after the plants' cultivation, the results showed that for all species, the salinity reduced significantly the ...

  13. Growth performance and immunological responses of broiler ...

    African Journals Online (AJOL)

    This study was conducted to determine the growth performance and immune response of broiler chickens fed synbiotic and diet acidifier to Newcastle disease vaccinations. One hundred and forty four (144) day old broiler chickens were randomly assigned to four dietary treatments replicated thrice with 12 birds per replicate ...

  14. Life-history trait of the Mediterranean keystone species Patella rustica: growth and microbial bioerosion

    Directory of Open Access Journals (Sweden)

    I. PRUSINA

    2015-05-01

    Full Text Available The age and shell growth patterns in populations of Patella rustica of the Adriatic Sea were determined by analyzing the inner growth lines visible in shell sections. Marginal increment analysis showed annual periodicity with annual growth line being deposited in May. The growth analysis of 120 individual shells showed that 90.8 % of collected individuals were less than 4 years of age and only two individuals (1.6 % were older than 6 years. Population structure was described and the generalized von Bertalanffy growth parameters were calculated: asymptotic length (L∞ was 38.22 mm and the growth constant (K was 0.30 year-1. Growth performance index value of P. rustica (Ø’ was 2.64 and is among the lowest ranges reported for limpet species. Patella rustica shells were degraded to different degrees by microbial bioerosion. Microboring organisms identified were pseudofilamentous and filamentous cyanobacteria Hormathonema paulocellulare, Hyella caespitosa, Mastigocoleus testarum and Leptolyngbya sp. The overall intensity of infestation was relatively low, but increased in severity with shell length. The damage was most often restricted to the oldest parts of the shell, i.e. apex of the shell, posing difficulties in determining the exact position of the first growth line. The present study is first to introduce the use of inner growth lines in Patella rustica shell sections as a reliable method for age determination and it provides the first insight into the growth patterns of this keystone species while taking the interference of microbial shell bioerosion in consideration.

  15. Plant responses to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Loon, L.C. van

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant.

  16. Better to light a candle than curse the darkness: illuminating spatial localization and temporal dynamics of rapid microbial growth in the rhizosphere

    Directory of Open Access Journals (Sweden)

    Patrick M Herron

    2013-09-01

    Full Text Available The rhizosphere is a hotbed of microbial activity in ecosystems, fueled by carbon compounds from plant roots. Basic questions about the location and dynamics of plant-spurred microbial growth in the rhizosphere are difficult to answer with standard, destructive soil assays mixing a multitude of microbe-scale microenvironments in a single, often sieved, sample. Soil microbial biosensors designed with the luxCDABE reporter genes fused to a promoter of interest enable continuous imaging of the microbial perception of (and response to environmental conditions in soil. We used the common soil bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constituitive promoter nptII and luxCDABE (coding for light-emitting proteins from Vibrio fischeri. Experiments in liquid media demonstrated that high light production by KT2440/pZKH2 was associated with rapid microbial growth supported by high carbon availability. We applied the biosensors in microcosms filled with non-sterile soil in which corn (Zea mays L., black poplar (Populus nigra L. or tomato (Solanum lycopersicum L. was growing. We detected minimal light production from microbiosensors in the bulk soil, but biosensors reported continuously from around roots for as long as six days. For corn, peaks of luminescence were detected 1-4 and 20-35 mm along the root axis behind growing root tips, with the location of maximum light production moving farther back from the tip as root growth rate increased. For poplar, luminescence around mature roots increased and decreased on a coordinated diel rhythm, but was not bright near root tips. For tomato, luminescence was dynamic, but did not exhibit a diel rhythm, appearing in acropetal waves along roots. KT2440/pZKH2 revealed that root tips are not always the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots.

  17. Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ming Woei

    2015-12-08

    A method for producing a microbial growth stimulant (MGS) from a plant biomass is described. In one embodiment, an ammonium hydroxide solution is used to extract a solution of proteins and ammonia from the biomass. Some of the proteins and ammonia are separated from the extracted solution to provide the MGS solution. The removed ammonia can be recycled and the proteins are useful as animal feeds. In one embodiment, the method comprises extracting solubles from pretreated lignocellulosic biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence of water and an aqueous extract.

  18. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens

    DEFF Research Database (Denmark)

    Pineda, Lane Manalili; Chwalibog, André; Sawosz, Ewa

    2012-01-01

    and intestinal content were collected to evaluate the effects of AgNano on plasma concentration of immunoglobulins and the intestinal microflora, respectively. The provision of water solutions containing different concentrations of AgNano had no effect on postnatal growth performance and the energy metabolism...... (IgG) in the blood plasma of broilers supplemented with AgNano decreased at day 36 (p = 0.012). The results demonstrated that AgNano affects N utilisation and plasma IgG concentration; however, it does not influence the microbial populations in the digestive tract, the energy metabolism and growth...

  19. Temperature sensitivity of soil respiration rates enhanced by microbial community response.

    Science.gov (United States)

    Karhu, Kristiina; Auffret, Marc D; Dungait, Jennifer A J; Hopkins, David W; Prosser, James I; Singh, Brajesh K; Subke, Jens-Arne; Wookey, Philip A; Agren, Göran I; Sebastià, Maria-Teresa; Gouriveau, Fabrice; Bergkvist, Göran; Meir, Patrick; Nottingham, Andrew T; Salinas, Norma; Hartley, Iain P

    2014-09-04

    Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.

  20. Effect of Chitosan Coating Containing Active Agents on Microbial Growth, Rancidity and Moisture Loss of Meatball During Storage

    OpenAIRE

    Pranoto, Yudi; Rakshit, Sudip Kumar

    2008-01-01

    Edible coatings based on chitosan were applied on meatball product in order to preserve quality during storages atambient and refrigeration temperatures. To improve its efficacy, chitosan coatings were incorporated with garlic oil0.2%, potassium sorbate 0.1 % and nisin 51,000 IU. The qualities of meatball assessed were total microbial growth, TBA value and percentage of moisture loss. All chitosan coatings suppressed microbial growth in meatball and strong- ly revealed when stored at refriger...

  1. Effects of probiotic supplement ( and on feed efficiency, growth performance, and microbial population of weaning rabbits

    Directory of Open Access Journals (Sweden)

    Thanh Lam Phuoc

    2017-02-01

    Full Text Available Objective This study aimed to investigate the effects of single or/and double strains of probiotic supplement on feed efficiency, growth performance, and microbial population in distal gastrointestinal tract (GIT of weaning rabbits. Methods Sixty-four weaning (28 days old New Zealand White rabbits were randomly distributed into four groups with treatments including: basal diet without probiotic supplement (control or supplemented as follows: 1×106 cfu/g B. subtilis (BS group, 1×107 cfu/g L. acidophilus (LA group, or 0.5×106 cfu/g B. subtilis plus 0.5×107 cfu/g L. acidophilus (BL group. During the research, the male and female rabbits were fed separately. Body weight of the rabbits was recorded at 28, 42, and 70 d of age. Results There was an increase (p<0.05 in body weight gain for the LA group at 42 d. Rabbits fed BL responsed with a greater growth (p<0.05 and better feed conversion ratio (p<0.05 than those fed with no probiotic. Digestibility coefficients of dry matter, organic matter, crude protein, neutral detergent fiber, and gross energy were higher (p<0.05 in LA and BL groups than those in the control group. Male rabbits had higher (p<0.05 Bacilli spp. and Coliformis spp. in the ileum than female rabbits. Rabbits supplemented with BS had greater (p<0.05 numbers of bacilli in all intestinal segments than those receiving no probiotic, whereas intestinal Lactobacilli populations were greater (p<0.001 in the LA and BL diets compared to control. Average intestinal coliform populations were lowest (p<0.05 in the rabbits supplemented with LA as compared to those fed the control and BS. Conclusion Supplementation of L. acidophilus alone or in combination with B. subtilis at a half of dose could enhance number of gut beneficial bacteria populations, nutrient digestibility, cecal fermentation, feed efficiency, and growth performance, but rabbits receiving only B. subtilis alone were not different from the controls without probiotic.

  2. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Li, Feifei; Tang, Junhong

    2016-10-01

    Waste pastry was hydrolyzed by glucoamylase and protease which were obtained from solid state fermentation of Aspergillus awamori and Aspergillus oryzae to produce waste pastry hydrolysate. Then, the effects of hydraulic retention times (HRTs) (4-12h) on hydrogen production rate (HPR) in the suspended microbial growth system (continuous stirred tank reactor, CSTR) and attached microbial growth system (continuous mixed immobilized sludge reactor, CMISR) from waste pastry hydrolysate were investigated. The maximum HPRs of CSTR (201.8mL/(h·L)) and CMISR (255.3mL/(h·L)) were obtained at HRT of 6h and 4h, respectively. The first-order reaction could be used to describe the enzymatic hydrolysis of waste pastry. The carbon content of the waste pastry remained 22.8% in the undigested waste pastry and consumed 77.2% for carbon dioxide and soluble microbial products. To our knowledge, this is the first study which reports biohydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Quantum dots conjugated zinc oxide nanosheets: Impeder of microbial growth and biofilm

    Science.gov (United States)

    Patil, Rajendra; Gholap, Haribhau; Warule, Sambhaji; Banpurkar, Arun; Kulkarni, Gauri; Gade, Wasudeo

    2015-01-01

    The grieving problem of the 21st century has been the antimicrobial resistance in pathogenic microorganisms to conventional antibiotics. Therefore, developments of novel antibacterial materials which effectively inhibit or kill such resistant microorganisms have become the need of the hour. In the present study, we communicate the synthesis of quantum dots conjugated zinc oxide nanostructures (ZnO/CdTe) as an impeder of microbial growth and biofilm. The as-synthesized nanostructures were characterized by X-ray diffraction, ultraviolet-visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy. The growth impedance property of ZnO and ZnO/CdTe on Gram positive organism, Bacillus subtilis NCIM 2063 and Gram negative, Escherichia coli NCIM 2931 and biofilm impedance activity in Pseudomonas aeruginosa O1 was found to occur due to photocatalytical action on the cell biofilm surfaces. The impedance in microbial growth and biofilm formation was further supported by ruptured appearances of cells and dettrered biofilm under field emission scanning electron and confocal laser scanning microscope. The ZnO/CdTe nanostructures array synthesized by hydrothermal method has an advantage of low growth temperature, and opportunity to fabricate inexpensive material for nano-biotechnological applications.

  4. Microbial Communities and Their Predicted Metabolic Functions in Growth Laminae of a Unique Large Conical Mat from Lake Untersee, East Antarctica

    Directory of Open Access Journals (Sweden)

    Hyunmin Koo

    2017-08-01

    Full Text Available In this study, we report the distribution of microbial taxa and their predicted metabolic functions observed in the top (U1, middle (U2, and inner (U3 decadal growth laminae of a unique large conical microbial mat from perennially ice-covered Lake Untersee of East Antarctica, using NextGen sequencing of the 16S rRNA gene and bioinformatics tools. The results showed that the U1 lamina was dominated by cyanobacteria, specifically Phormidium sp., Leptolyngbya sp., and Pseudanabaena sp. The U2 and U3 laminae had high abundances of Actinobacteria, Verrucomicrobia, Proteobacteria, and Bacteroidetes. Closely related taxa within each abundant bacterial taxon found in each lamina were further differentiated at the highest taxonomic resolution using the oligotyping method. PICRUSt analysis, which determines predicted KEGG functional categories from the gene contents and abundances among microbial communities, revealed a high number of sequences belonging to carbon fixation, energy metabolism, cyanophycin, chlorophyll, and photosynthesis proteins in the U1 lamina. The functional predictions of the microbial communities in U2 and U3 represented signal transduction, membrane transport, zinc transport and amino acid-, carbohydrate-, and arsenic- metabolisms. The Nearest Sequenced Taxon Index (NSTI values processed through PICRUSt were 0.10, 0.13, and 0.11 for U1, U2, and U3 laminae, respectively. These values indicated a close correspondence with the reference microbial genome database, implying high confidence in the predicted metabolic functions of the microbial communities in each lamina. The distribution of microbial taxa observed in each lamina and their predicted metabolic functions provides additional insight into the complex microbial ecosystem at Lake Untersee, and lays the foundation for studies that will enhance our understanding of the mechanisms responsible for the formation of these unique mat structures and their evolutionary significance.

  5. Microbial changes and growth of Listeria monocytogenes during chilled storage of brined shrimp ( Pandalus borealis )

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Kjeldgaard, J.; Modberg, A.

    2008-01-01

    Thirteen storage trials and ten challenge tests were carried out to examine microbial changes, spoilage and the potential growth of Listeria monocytogenes in brined shrimp (Pandalus borealis). Shrimp in brine as well as brined and drained shrimp in modified atmosphere packaging (MAP) were produced...... and lactic acids were studied. Furthermore, the effect of adding diacetate to brined shrimp was evaluated. A single batch of cooked and peeled shrimp was used to study both industrially and manually processed brined shrimp with respect to the effect of process hygiene on microbial changes and the shelf life...... of products. Concentrations of microorganisms on newly produced brined shrimp from an industrial scale processing line were 1.0-2.3 log (CFU g(-1)) higher than comparable concentrations in manually processed samples. This resulted in a substantially shorter shelf life and a more diverse spoilage microflora...

  6. Effect of Nisin's Controlled Release on Microbial Growth as Modeled for Micrococcus luteus.

    Science.gov (United States)

    Balasubramanian, Aishwarya; Lee, Dong Sun; Chikindas, Michael L; Yam, Kit L

    2011-06-01

    The need for safe food products has motivated food scientists and industry to find novel technologies for antimicrobial delivery for improving food safety and quality. Controlled release packaging is a novel technology that uses the package to deliver antimicrobials in a controlled manner and sustain antimicrobial stress on the targeted microorganism over the required shelf life. This work studied the effect of controlled release of nisin to inhibit growth of Micrococcus luteus (a model microorganism) using a computerized syringe pump system to mimic the release of nisin from packaging films which was characterized by an initially fast rate and a slower rate as time progressed. The results show that controlled release of nisin was strikingly more effective than instantly added ("formulated") nisin. While instant addition experiments achieved microbial inhibition only at the beginning, controlled release experiments achieved complete microbial inhibition for a longer time, even when as little as 15% of the amount of nisin was used as compared to instant addition.

  7. Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate

    Science.gov (United States)

    Ren, Jingli; Yuan, Qigang

    2017-08-01

    A three dimensional microbial continuous culture model with a restrained microbial growth rate is studied in this paper. Two types of dilution rates are considered to investigate the dynamic behaviors of the model. For the unforced system, fold bifurcation and Hopf bifurcation are detected, and numerical simulations reveal that the system undergoes degenerate Hopf bifurcation. When the system is periodically forced, bifurcation diagrams for periodic solutions of period-one and period-two are given by researching the Poincaré map, corresponding to different bifurcation cases in the unforced system. Stable and unstable quasiperiodic solutions are obtained by Neimark-Sacker bifurcation with different parameter values. Periodic solutions of various periods can occur or disappear and even change their stability, when the Poincaré map of the forced system undergoes Neimark-Sacker bifurcation, flip bifurcation, and fold bifurcation. Chaotic attractors generated by a cascade of period doublings and some phase portraits are given at last.

  8. 2010 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 18-23, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Ades

    2011-07-23

    The 2010 Gordon Research Conference on Microbial Stress Responses provides an open and exciting forum for the exchange of scientific discoveries on the remarkable mechanisms used by microbes to survive in nearly every niche on the planet. Understanding these stress responses is critical for our ability to control microbial survival, whether in the context of biotechnology, ecology, or pathogenesis. From its inception in 1994, this conference has traditionally employed a very broad definition of stress in microbial systems. Sessions will cover the major steps of stress responses from signal sensing to transcriptional regulation to the effectors that mediate responses. A wide range of stresses will be represented. Some examples include (but are not limited to) oxidative stress, protein quality control, antibiotic-induced stress and survival, envelope stress, DNA damage, and nutritional stress. The 2010 meeting will also focus on the role of stress responses in microbial communities, applied and environmental microbiology, and microbial development. This conference brings together researchers from both the biological and physical sciences investigating stress responses in medically- and environmentally relevant microbes, as well as model organisms, using cutting-edge techniques. Computational, systems-level, and biophysical approaches to exploring stress responsive circuits will be integrated throughout the sessions alongside the more traditional molecular, physiological, and genetic approaches. The broad range of excellent speakers and topics, together with the intimate and pleasant setting at Mount Holyoke College, provide a fertile ground for the exchange of new ideas and approaches.

  9. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production.

    Science.gov (United States)

    Sinsabaugh, Robert L; Moorhead, Daryl L; Xu, Xiaofeng; Litvak, Marcy E

    2017-06-01

    The carbon use efficiency of plants (CUE a ) and microorganisms (CUE h ) determines rates of biomass turnover and soil carbon sequestration. We evaluated the hypothesis that CUE a and CUE h counterbalance at a large scale, stabilizing microbial growth (μ) as a fraction of gross primary production (GPP). Collating data from published studies, we correlated annual CUE a , estimated from satellite imagery, with locally determined soil CUE h for 100 globally distributed sites. Ecosystem CUE e , the ratio of net ecosystem production (NEP) to GPP, was estimated for each site using published models. At the ecosystem scale, CUE a and CUE h were inversely related. At the global scale, the apparent temperature sensitivity of CUE h with respect to mean annual temperature (MAT) was similar for organic and mineral soils (0.029°C -1 ). CUE a and CUE e were inversely related to MAT, with apparent sensitivities of -0.009 and -0.032°C -1 , respectively. These trends constrain the ratio μ : GPP (= (CUE a  × CUE h )/(1 - CUE e )) with respect to MAT by counterbalancing the apparent temperature sensitivities of the component processes. At the ecosystem scale, the counterbalance is effected by modulating soil organic matter stocks. The results suggest that a μ : GPP value of c. 0.13 is a homeostatic steady state for ecosystem carbon fluxes at a large scale. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    Science.gov (United States)

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-07-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  11. Biomechanical ordering and buckling due to microbial growth confined at oil-water interfaces

    Science.gov (United States)

    Juarez, Gabriel; Stocker, Roman

    2015-11-01

    Bacteria are unicellular organisms that often exist as densely populated, surface-associated communities. Bacteria are also environmental colloids and spontaneously attach and self-assemble at liquid-liquid interfaces. Here, we present results on the growth dynamics of individual rod-shaped bacteria confined to finite oil-water interfaces of varying curvature. Through experiments using microfluidic chambers and time-lapse microscopy, we study the formation of macroscopic structures observed as adsorbed bacteria grow, divide, and self-assemble in a nematic phase due to biomechanical interactions. The continued growth at the interface leads to a jammed monolayer of cells, which then causes the interface to buckle and undergo large deformations including wrinkling and tubulation. These observations highlight the interplay between physical environment, such as confinement and interface curvature, and active biological processes, such as growth, at the scale of individual agents and shape our understanding of macroscale processes such as microbial degradation of oil in the ocean.

  12. PLANT GROWTH-PROMOTING MICROBIAL INOCULANT FOR Schizolobium parahyba pv. parahyba

    Directory of Open Access Journals (Sweden)

    Priscila Jane Romano de Oliveira Gonçalves

    2015-08-01

    Full Text Available ABSTRACTSchizolobium parahyba pv. amazonicum (Huber ex Ducke Barneby (paricá occurs naturally in the Amazon and is significant commercial importance due to its rapid growth and excellent performance on cropping systems. The aim of this paper was to evaluate a microbial inoculants such as arbuscular mycorrhiza fungi (AMF and Rhizobium sp. that promote plant growth. The inocula was 10 g of root colonized and spores of Glomus clarum and/or 1 mL of cell suspension (107 CFU/mL of Rhizobium sp. and/or 100 g of chemical fertilizer NPK 20-05-20 per planting hole. The experimental design was complete randomized blocks with five replications and eight treatments (n = 800. Plant height, stem diameter and plant survival were measured. The results were tested for normality and homogeneity of variances and analyzed by ANOVA and Tukey test (p < 0.05. Rhizobium sp and AM fungi showed no effect on plant growth. Environmental factors probably influenced the effectiveness of symbiosis of both microorganisms and plant growth. The chemical fertilizer increased S. parahyba growth. During the first 120 days plants suffered with drought and frost, and at 180 days plants inoculated with microorganism plus chemical fertilizer showed higher survival when compared with control. The results showed that the microbial inoculants used showed an important role on plant survival after high stress conditions, but not in plant growth. Also was concluded that the planting time should be between November to December to avoid the presence of young plants during winter time that is dry and cold.

  13. Atmospheric plasma processes for microbial inactivation: food applications and stress response in Listeria monocytogenes

    OpenAIRE

    Gozzi, Giorgia

    2015-01-01

    This PhD thesis is focused on cold atmospheric plasma treatments (GP) for microbial inactivation in food applications. In fact GP represents a promising emerging technology alternative to the traditional methods for the decontamination of foods. The objectives of this work were to evaluate: - the effects of GP treatments on microbial inactivation in model systems and in real foods; - the stress response in L. monocytogenes following exposure to different GP treatments. As far as t...

  14. Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth.

    Science.gov (United States)

    Buch, Franziska; Rott, Matthias; Rottloff, Sandy; Paetz, Christian; Hilke, Ines; Raessler, Michael; Mithöfer, Axel

    2013-03-01

    Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated. Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasma-optical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes. The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes. The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey

  15. Alignment of microbial fitness with engineered product formation: obligatory coupling between acetate production and photoautotrophic growth.

    Science.gov (United States)

    Du, Wei; Jongbloets, Joeri A; van Boxtel, Coco; Pineda Hernández, Hugo; Lips, David; Oliver, Brett G; Hellingwerf, Klaas J; Branco Dos Santos, Filipe

    2018-01-01

    Microbial bioengineering has the potential to become a key contributor to the future development of human society by providing sustainable, novel, and cost-effective production pipelines. However, the sustained productivity of genetically engineered strains is often a challenge, as spontaneous non-producing mutants tend to grow faster and take over the population. Novel strategies to prevent this issue of strain instability are urgently needed. In this study, we propose a novel strategy applicable to all microbial production systems for which a genome-scale metabolic model is available that aligns the production of native metabolites to the formation of biomass. Based on well-established constraint-based analysis techniques such as OptKnock and FVA, we developed an in silico pipeline-FRUITS-that specifically 'Finds Reactions Usable in Tapping Side-products'. It analyses a metabolic network to identify compounds produced in anabolism that are suitable to be coupled to growth by deletion of their re-utilization pathway(s), and computes their respective biomass and product formation rates. When applied to Synechocystis sp. PCC6803, a model cyanobacterium explored for sustainable bioproduction, a total of nine target metabolites were identified. We tested our approach for one of these compounds, acetate, which is used in a wide range of industrial applications. The model-guided engineered strain shows an obligatory coupling between acetate production and photoautotrophic growth as predicted. Furthermore, the stability of acetate productivity in this strain was confirmed by performing prolonged turbidostat cultivations. This work demonstrates a novel approach to stabilize the production of target compounds in cyanobacteria that culminated in the first report of a photoautotrophic growth-coupled cell factory. The method developed is generic and can easily be extended to any other modeled microbial production system.

  16. Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions

    Science.gov (United States)

    Robador, Alberto; LaRowe, Douglas E.; Finkel, Steven E.; Amend, Jan P.; Nealson, Kenneth H.

    2018-01-01

    Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems. PMID:29449836

  17. Report on responsible growth. AREVA in 2008

    International Nuclear Information System (INIS)

    2009-01-01

    All over the world, AREVA supplies its customers with solutions for carbon-free power generation and electricity transmission and distribution. With its knowledge and expertise in these fields, the group has a leading role to play in meeting the world's energy needs. Ranked first in the global nuclear power industry, AREVA's unique integrated offering covers every stage of the fuel cycle, reactor design and construction, and related services. In addition, the group is expanding its operations in renewable energies. AREVA is also a world leader in electricity transmission and distribution and offers its customers a complete range of solutions for greater grid stability and energy efficiency. Sustainable development is a core component of the group's industrial strategy. Its 75,000 employees work every day to make AREVA a responsible industrial player that is helping to supply ever cleaner, safer and more economical energy to the greatest number of people. Sustainable development is a keystone of AREVA's industrial strategy for achieving growth that is profitable, socially responsible and respectful of the environment. To translate this choice into reality, AREVA integrates sustainable development into its management practices via a continuous improvement initiative revolving around ten commitments: customer satisfaction, financial performance, governance, community involvement, environmental protection, innovation, continuous improvement, commitment to employees, risk management and prevention, dialogue and consensus building. This document is Areva's 2008 report on responsible growth. After the Messages from the Chairman of the Supervisory Board and from the Chief Executive Officer, the report presents the Key data and Highlights of the period, the Corporate governance, the Organization of the group, the Share information and shareholder relations, the uranium reserves, the growing energy demand and the World's population demographic growth, Areva's actions to

  18. Taxonomic and Functional Responses of Soil Microbial Communities to Annual Removal of Aboveground Plant Biomass

    Science.gov (United States)

    Guo, Xue; Zhou, Xishu; Hale, Lauren; Yuan, Mengting; Feng, Jiajie; Ning, Daliang; Shi, Zhou; Qin, Yujia; Liu, Feifei; Wu, Liyou; He, Zhili; Van Nostrand, Joy D.; Liu, Xueduan; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong

    2018-01-01

    Clipping, removal of aboveground plant biomass, is an important issue in grassland ecology. However, few studies have focused on the effect of clipping on belowground microbial communities. Using integrated metagenomic technologies, we examined the taxonomic and functional responses of soil microbial communities to annual clipping (2010–2014) in a grassland ecosystem of the Great Plains of North America. Our results indicated that clipping significantly (P microbial respiration rates. Annual temporal variation within the microbial communities was much greater than the significant changes introduced by clipping, but cumulative effects of clipping were still observed in the long-term scale. The abundances of some bacterial and fungal lineages including Actinobacteria and Bacteroidetes were significantly (P microbial communities were significantly correlated with soil respiration and plant productivity. Intriguingly, clipping effects on microbial function may be highly regulated by precipitation at the interannual scale. Altogether, our results illustrated the potential of soil microbial communities for increased soil organic matter decomposition under clipping land-use practices. PMID:29904372

  19. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations.

    Science.gov (United States)

    Xie, Sitan; Lipp, Julius S; Wegener, Gunter; Ferdelman, Timothy G; Hinrichs, Kai-Uwe

    2013-04-09

    Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([(14)C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6-73 ky in sediments deeper than 1 m, 50-96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg⋅mL(-1) sediment⋅y(-1) at the surface to 0.2 pg⋅mL(-1)⋅y(-1) at 1 km depth, equivalent to production of 7 × 10(5) to 140 archaeal cells⋅mL(-1) sediment⋅y(-1), respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle.

  20. The effect of concentrating of whitewater to the microbial growth in papermachine; Paperikoneen kiertovesien konsentroitumisen vaikutus mikrobien kasvuun - MPKT 03

    Energy Technology Data Exchange (ETDEWEB)

    Yloestalo, T [Helsinki Univ. of Technology, Otaniemi (Finland)

    1999-12-31

    The closing of the whitewater cycle increases the amount of nutrients available for the micro-organisms living in a papermachine. The microbial flora in papermachines can vary significantly. The type and concentration of nutrients and the operating conditions of the papermachine (for example pH and temperature) affect the type of microbes that may live there. Strong microbial contamination has negative impact to the quality of the products and the operation of the papermachine. In this project microbes isolated from papermachines are cultivated in different concentrations of whitewater and with different pH and temperature values. The cultivations of microbes and modeling of the microbial growth are used for finding out how the closing of the whitewater cycle affects the microbial growth in papermachines. (orig.)

  1. The effect of concentrating of whitewater to the microbial growth in papermachine; Paperikoneen kiertovesien konsentroitumisen vaikutus mikrobien kasvuun - MPKT 03

    Energy Technology Data Exchange (ETDEWEB)

    Yloestalo, T. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1998-12-31

    The closing of the whitewater cycle increases the amount of nutrients available for the micro-organisms living in a papermachine. The microbial flora in papermachines can vary significantly. The type and concentration of nutrients and the operating conditions of the papermachine (for example pH and temperature) affect the type of microbes that may live there. Strong microbial contamination has negative impact to the quality of the products and the operation of the papermachine. In this project microbes isolated from papermachines are cultivated in different concentrations of whitewater and with different pH and temperature values. The cultivations of microbes and modeling of the microbial growth are used for finding out how the closing of the whitewater cycle affects the microbial growth in papermachines. (orig.)

  2. Carbon stabilization and microbial growth in acidic mine soils after addition of different amendments for soil reclamation

    Science.gov (United States)

    Zornoza, Raúl; Acosta, Jose; Ángeles Muñoz, María; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2016-04-01

    The extreme soil conditions in metalliferous mine soils have a negative influence on soil biological activity and therefore on soil carbon estabilization. Therefore, amendments are used to increase organic carbon content and activate microbial communities. In order to elucidate some of the factors controlling soil organic carbon stabilization in reclaimed acidic mine soils and its interrelationship with microbial growth and community structure, we performed an incubation experiment with four amendments: pig slurry (PS), pig manure (PM) and biochar (BC), applied with and without marble waste (MW; CaCO3). Results showed that PM and BC (alone or together with MW) contributed to an important increment in recalcitrant organic C, C/N ratio and aggregate stability. Bacterial and fungal growths were highly dependent on pH and labile organic C. PS supported the highest microbial growth; applied alone it stimulated fungal growth, and applied with MW it stimulated bacterial growth. BC promoted the lowest microbial growth, especially for fungi, with no significant increase in fungal biomass. MW+BC increased bacterial growth up to values similar to PM and MW+PM, suggesting that part of the biochar was degraded, at least in short-term mainly by bacteria rather than fungi. PM, MW+PS and MW+PM supported the highest microbial biomass and a similar community structure, related with the presence of high organic C and high pH, with immobilization of metals and increased soil quality. BC contributed to improved soil structure, increased recalcitrant organic C, and decreased metal mobility, with low stimulation of microbial growth.

  3. Growth and physiological responses to water and nutrient stress in ...

    African Journals Online (AJOL)

    Growth and physiological responses to water and nutrient stress in oil palm. ... changes in growth, physiology and nutrient concentration in response to two watering regimes (well-watered and water-stress conditions) and ... from 32 Countries:.

  4. Differences in microbial communities and performance between suspended and attached growth anaerobic membrane bioreactors treating synthetic municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2015-08-14

    Two lab-scale anaerobic membrane bioreactors (AnMBRs), one up-flow attached-growth (UA) and another continuously stirred (CSTR), were operated under mesophilic conditions (35 °C) while treating synthetic municipal wastewater (800 mg L−1 COD). Each reactor was attached to both polyvinylidene fluoride (PVDF) and polyethersulfone (PES) microfiltration (MF) membranes in an external cross-flow configuration. Both reactors were started up and run under the same operating conditions for multiple steady-state experiments. Chemical oxygen demand (COD) removal rates were similar for both reactors (90–96%), but captured methane was found to be 11–18% higher for the CSTR than the UA reactor. Ion Torrent sequencing targeting 16S rRNA genes showed that several operational taxonomic units (OTUs) most closely related to fermentative bacteria (e.g., Microbacter margulisiae) were dominant in the suspended biomass of the CSTR, accounting for 30% of the microbial community. Conversely, methanogenic archaea (e.g., Methanosaeta) and syntrophic bacteria (e.g., Smithella propionica) were found in significantly higher relative abundances in the UA AnMBR as compared to the CSTR due to their affinity for surface attachment. Of the methanogens that were present in the CSTR sludge, hydrogenotrophic methanogens dominated (e.g., Methanobacterium). Measured EPS (both proteins and carbohydrates), which has been broadly linked to fouling, was determined to be consistently lower in the UA AnMBR membrane samples than in CSTR AnMBR membrane samples. Principal component analysis (PCA) based on HPLC profiles of soluble microbial products (SMPs) further demonstrated these differences between reactor types in replicate runs. The results of this study showed that reactor configuration can significantly impact the development of the microbial communities of AnMBRs that are responsible for both membrane and reactor performance.

  5. Metagenomic analysis of permafrost microbial community response to thaw

    Energy Technology Data Exchange (ETDEWEB)

    Mackelprang, R.; Waldrop, M.P.; DeAngelis, K.M.; David, M.M.; Chavarria, K.L.; Blazewicz, S.J.; Rubin, E.M.; Jansson, J.K.

    2011-07-01

    We employed deep metagenomic sequencing to determine the impact of thaw on microbial phylogenetic and functional genes and related this data to measurements of methane emissions. Metagenomics, the direct sequencing of DNA from the environment, allows for the examination of whole biochemical pathways and associated processes, as opposed to individual pieces of the metabolic puzzle. Our metagenome analyses revealed that during transition from a frozen to a thawed state there were rapid shifts in many microbial, phylogenetic and functional gene abundances and pathways. After one week of incubation at 5°C, permafrost metagenomes converged to be more similar to each other than while they were frozen. We found that multiple genes involved in cycling of C and nitrogen shifted rapidly during thaw. We also constructed the first draft genome from a complex soil metagenome, which corresponded to a novel methanogen. Methane previously accumulated in permafrost was released during thaw and subsequently consumed by methanotrophic bacteria. Together these data point towards the importance of rapid cycling of methane and nitrogen in thawing permafrost.

  6. The Growth Rate and Efficiency of Rumen Microbial Protein Digestion of Red Clover Silage (Trifolium pratense cv. Sabatron)

    International Nuclear Information System (INIS)

    Asih Kurniawati

    2004-01-01

    (Trifolium pratense cv. Sabatron). Red clover silage supplemented with different level of carbohydrates has been examined using the in-vitro gas production technique. Cumulative gas production, hydro.gen sulfite production, and ammonia was followed and used as indicators of microbial growth rate and extent of protein degradation. Microbial nitrogen production, VFA, and efficiency microbial production was used as indicator of nitrogen use efficiency. 15 N was used as a microbial marker to estimate the amount of nitrogen incorporation into microbial protein. Supplementation of Red clover with increasing 5 levels; 0 g; 0.625 g; 0.15 g; 0.225 g and 0.3 g of maize starch led to graded increase in microbial growth and protein degradation. This was reflected in the increasing gas production and the accumulation of hydrogen sulfite. Diurnal change in ammonia production reflected the microbial utilization of ammonia for protein synthesis. Protein microbe (P<0.001) as VFA (P<0.001) increased due to carbohydrate addition as well as utilization of nitrogen (P<0.001). There was also the efficiency of nitrogen utilization which increased significantly. This result suggested that energy supply can increased efficiency of nitrogen use in the rumen and may reduce nitrogen losses into the environment. (author)

  7. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.-S. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Vojinovic, V. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Patino, R. [Cinvestav-Merida, Departamento de Fisica Aplicada, Km. 6 carretera antigua a Progreso, AP 73 Cordemex, 97310 Merida, Yucatan (Mexico); Maskow, Th. [UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, D-04318 Leipzig (Germany); Stockar, U. von [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland)]. E-mail: urs.vonStockar@epfl.ch

    2007-06-25

    Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol{sup -1} of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure.

  8. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields

    International Nuclear Information System (INIS)

    Liu, J.-S.; Vojinovic, V.; Patino, R.; Maskow, Th.; Stockar, U. von

    2007-01-01

    Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol -1 of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure

  9. Earthworms (Amynthas spp. increase common bean growth, microbial biomass, and soil respiration

    Directory of Open Access Journals (Sweden)

    Julierme Zimmer Barbosa

    2017-10-01

    Full Text Available Few studies have evaluated the effect of earthworms on plants and biological soil attributes, especially among legumes. The objective of this study was to evaluate the influence of earthworms (Amynthas spp. on growth in the common bean (Phaseolus vulgaris L. and on soil biological attributes. The experiment was conducted in a greenhouse using a completely randomized design with five treatments and eight repetitions. The treatments consisted of inoculation with five different quantities of earthworms of the genus Amynthas (0, 2, 4, 6, and 8 worms per pot. Each experimental unit consisted of a plastic pot containing 4 kg of soil and two common bean plants. The experiment was harvested 38 days after seedling emergence. Dry matter and plant height, soil respiration, microbial respiration, microbial biomass, and metabolic quotient were determined. Earthworm recovery in our study was high in number and mass, with all values above 91.6% and 89.1%, respectively. In addition, earthworm fresh biomass decreased only in the treatment that included eight earthworms per pot. The presence of earthworms increased the plant growth and improved soil biological properties, suggesting that agricultural practices that favor the presence of these organisms can be used to increase the production of common bean, and the increased soil CO2 emission caused by the earthworms can be partially offset by the addition of common bean crop residues to the soil.

  10. Quantum dots conjugated zinc oxide nanosheets: Impeder of microbial growth and biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Rajendra [Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 (India); Gholap, Haribhau, E-mail: haribhau.gholap@fergusson.edu [Department of Physics, Fergusson College, Pune 411004 (India); Warule, Sambhaji [Department of Physics, Nowrosjee Wadia College, Pune 411001 (India); Banpurkar, Arun; Kulkarni, Gauri [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Gade, Wasudeo, E-mail: wngade@unipune.ac.in [Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 (India)

    2015-01-30

    Graphical abstract: The visible light upon incident on ZnO/CdTe initiate the phenomenon of photocatalytical impedance of biofilm. - Highlights: • Synthesis of efficient light photocatalyst ZnO/CdTe nanostructures by hydrothermal method. • ZnO/CdTe nanostructures show a good antibacterial activity by action on cell membrane. • ZnO/CdTe nanostructures show a good antibiofilm activity, and also act on the cells inside the biofilm. - Abstract: The grieving problem of the 21st century has been the antimicrobial resistance in pathogenic microorganisms to conventional antibiotics. Therefore, developments of novel antibacterial materials which effectively inhibit or kill such resistant microorganisms have become the need of the hour. In the present study, we communicate the synthesis of quantum dots conjugated zinc oxide nanostructures (ZnO/CdTe) as an impeder of microbial growth and biofilm. The as-synthesized nanostructures were characterized by X-ray diffraction, ultraviolet–visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy. The growth impedance property of ZnO and ZnO/CdTe on Gram positive organism, Bacillus subtilis NCIM 2063 and Gram negative, Escherichia coli NCIM 2931 and biofilm impedance activity in Pseudomonas aeruginosa O1 was found to occur due to photocatalytical action on the cell biofilm surfaces. The impedance in microbial growth and biofilm formation was further supported by ruptured appearances of cells and dettrered biofilm under field emission scanning electron and confocal laser scanning microscope. The ZnO/CdTe nanostructures array synthesized by hydrothermal method has an advantage of low growth temperature, and opportunity to fabricate inexpensive material for nano-biotechnological applications.

  11. Quantum dots conjugated zinc oxide nanosheets: Impeder of microbial growth and biofilm

    International Nuclear Information System (INIS)

    Patil, Rajendra; Gholap, Haribhau; Warule, Sambhaji; Banpurkar, Arun; Kulkarni, Gauri; Gade, Wasudeo

    2015-01-01

    Graphical abstract: The visible light upon incident on ZnO/CdTe initiate the phenomenon of photocatalytical impedance of biofilm. - Highlights: • Synthesis of efficient light photocatalyst ZnO/CdTe nanostructures by hydrothermal method. • ZnO/CdTe nanostructures show a good antibacterial activity by action on cell membrane. • ZnO/CdTe nanostructures show a good antibiofilm activity, and also act on the cells inside the biofilm. - Abstract: The grieving problem of the 21st century has been the antimicrobial resistance in pathogenic microorganisms to conventional antibiotics. Therefore, developments of novel antibacterial materials which effectively inhibit or kill such resistant microorganisms have become the need of the hour. In the present study, we communicate the synthesis of quantum dots conjugated zinc oxide nanostructures (ZnO/CdTe) as an impeder of microbial growth and biofilm. The as-synthesized nanostructures were characterized by X-ray diffraction, ultraviolet–visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy. The growth impedance property of ZnO and ZnO/CdTe on Gram positive organism, Bacillus subtilis NCIM 2063 and Gram negative, Escherichia coli NCIM 2931 and biofilm impedance activity in Pseudomonas aeruginosa O1 was found to occur due to photocatalytical action on the cell biofilm surfaces. The impedance in microbial growth and biofilm formation was further supported by ruptured appearances of cells and dettrered biofilm under field emission scanning electron and confocal laser scanning microscope. The ZnO/CdTe nanostructures array synthesized by hydrothermal method has an advantage of low growth temperature, and opportunity to fabricate inexpensive material for nano-biotechnological applications

  12. Preventing microbial growth on pall-rings when upgrading biogas using absorption with water wash

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Anna

    2006-07-15

    For produced biogas to be usable as vehicle fuel it has to be upgraded to a higher energy content. This is accomplished by elevation of the methane concentration through removal of carbon dioxide. Absorption with water wash is the most common upgrading method used in Sweden today. The upgrading technique is based on the fact that carbon dioxide is more soluble in water than methane. Upgrading plants that utilises this method have problems with microbial growth in the system. This growth eventually leads to a stop in operation due to the gradually drop in upgrading capacity. The aim of this thesis were to evaluate the possibility to through some kind of water treatment maintain an acceptable level of growth or altogether prevent it in order to maintain an acceptable process capacity and thereby avoid the need to clean. Through collection of literature the implementation possibilities were evaluated with regard to efficiency, economic sustainability and if there would be a release of any harmful substances. In order to prevent the microbial growth in the columns the treatment should either focus on removing microorganisms or limit the accessible nutrients. For the single pass system it is concluded that the treatment should reduce the biofilm formation and be employed in an intermittent way. Among the evaluated treatments focusing on the reduction of microorganisms the addition of peracetic acid seems to be the most promising one. For the regenerating system the treatment method could focus on either one. As for the single pass system peracetic acid could be added to reduce the amount of microorganism. To reduce the amount of organic matter an advanced oxidation process could be deployed with the advantage that it also could remove the microorganisms.

  13. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris

    International Nuclear Information System (INIS)

    Zhou, Chen; Vannela, Raveender; Hayes, Kim F.; Rittmann, Bruce E.

    2014-01-01

    Highlights: • Extended incubation time to 16 days allowed significant FeS crystallization. • A weakly acidic pH greatly enhanced particle growth of mackinawite. • Microbial metabolism of different donors systematically altered the ambient pH. • Greater sulfide accumulation stimulated mackinawite transformation to greigite. - Abstract: Sulfate-reducing bacteria (SRB) can produce iron sulfide (FeS) solids with mineralogical characteristics that may be beneficial for a variety of biogeochemical applications, such as long-term immobilization of uranium. In this study, the growth and metabolism of Desulfovibrio vulgaris, one of the best-studied SRB species, were comprehensively monitored in batch studies, and the biogenic FeS solids were characterized by X-ray diffraction. Controlling the pH by varying the initial pH, the iron-to-sulfate ratio, or the electron donor – affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH (from initial conditions or a decrease caused by less sulfate reduction, FeS precipitation, or using pyruvate as the electron donor) produced larger-sized mackinawite (Fe 1+x S). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and particularly stimulated mackinawite transformation to greigite (Fe 3 S 4 ) when the free sulfide concentration was 29.3 mM. Furthermore, sufficient free Fe 2+ led to the additional formation of vivianite [Fe 3 (PO 4 ) 2 ·8(H 2 O)]. Thus, microbially relevant conditions (initial pH, choice of electron donor, and excess or deficiency of sulfide) are tools to generate biogenic FeS solids of different characteristics

  14. Microbial nitrogen cycling response to forest-based bioenergy production.

    Science.gov (United States)

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  15. Cellular responses of Saccharomyces cerevisiae at near-zero growth rates : Transcriptome analysis of anaerobic retentostat cultures

    NARCIS (Netherlands)

    Boender, L.G.M.; Van Maris, A.J.A.; De Hulster, E.A.F.; Almering, M.J.H.; Van der Klei, I.J.; Veenhuis, M.; De Winde, J.H.; Pronk, J.T.; Daran-Lapujade, P.A.S.

    2011-01-01

    Extremely low specific growth rates (below 0.01 h?1) represent a largely unexplored area of microbial physiology. In this study, anaerobic, glucose-limited retentostats were used to analyse physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at

  16. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    Science.gov (United States)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  17. Ecological and soil hydraulic implications of microbial responses to stress - A modeling analysis

    Science.gov (United States)

    Brangarí, Albert C.; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier; Manzoni, Stefano

    2018-06-01

    A better understanding of microbial dynamics in porous media may lead to improvements in the design and management of a number of technological applications, ranging from the degradation of contaminants to the optimization of agricultural systems. To this aim, there is a recognized need for predicting the proliferation of soil microbial biomass (often organized in biofilms) under different environments and stresses. We present a general multi-compartment model to account for physiological responses that have been extensively reported in the literature. The model is used as an explorative tool to elucidate the ecological and soil hydraulic consequences of microbial responses, including the production of extracellular polymeric substances (EPS), the induction of cells into dormancy, and the allocation and reuse of resources between biofilm compartments. The mechanistic model is equipped with indicators allowing the microorganisms to monitor environmental and biological factors and react according to the current stress pressures. The feedbacks of biofilm accumulation on the soil water retention are also described. Model runs simulating different degrees of substrate and water shortage show that adaptive responses to the intensity and type of stress provide a clear benefit to microbial colonies. Results also demonstrate that the model may effectively predict qualitative patterns in microbial dynamics supported by empirical evidence, thereby improving our understanding of the effects of pore-scale physiological mechanisms on the soil macroscale phenomena.

  18. Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest.

    Science.gov (United States)

    Rousk, Johannes; Rousk, Kathrin

    2018-05-07

    Heavy metals are some of the most persistent and potent anthropogenic environmental contaminants. Although heavy metals may compromise microbial communities and soil fertility, it is challenging to causally link microbial responses to heavy metals due to various confounding factors, including correlated soil physicochemistry or nutrient availability. A solution is to investigate whether tolerance to the pollutant has been induced, called Pollution Induced Community Tolerance (PICT). In this study, we investigated soil microbial responses to a century-old gradient of metal ore pollution in an otherwise pristine subarctic birch forest generated by a railway source of iron ore transportation. To do this, we determined microbial biomass, growth, and respiration rates, and bacterial tolerance to Zn and Cu in replicated distance transects (1 m-4 km) perpendicular to the railway. Microbial biomass, growth and respiration rates were stable across the pollution gradient. The microbial community structure could be distinguished between sampled distances, but most of the variation was explained by soil pH differences, and it did not align with distance from the railroad pollution source. Bacterial tolerance to Zn and Cu started from background levels at 4 km distance from the pollution source, and remained at background levels for Cu throughout the gradient. Yet, bacterial tolerance to Zn increased 10-fold 100 m from the railway source. Our results show that the microbial community structure, size and performance remained unaffected by the metal ore exposure, suggesting no impact on ecosystem functioning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Detrital floc and surface soil microbial biomarker responses to active management of the nutrient impacted Florida everglades.

    Science.gov (United States)

    Bellinger, Brent J; Hagerthey, Scot E; Newman, Susan; Cook, Mark I

    2012-11-01

    Alterations in microbial community composition, biomass, and function in the Florida Everglades impacted by cultural eutrophication reflect a new physicochemical environment associated with monotypic stands of Typha domingensis. Phospholipid fatty acid (PLFA) biomarkers were used to quantify microbial responses in detritus and surface soils in an active management experiment in the eutrophic Everglades. Creation of open plots through removal of Typha altered the physical and chemical characteristics of the region. Mass of PLFA biomarkers increased in open plots, but magnitude of changes differed among microbial groups. Biomarkers indicative of Gram-negative bacteria and fungi were significantly greater in open plots, reflective of the improved oxic environment. Reduction in the proportion of cyclopropyl lipids and the ratio of Gram-positive to Gram-negative bacteria in open plots further suggested an altered oxygen environment and conditions for the rapid growth of Gram-negative bacteria. Changes in the PLFA composition were greater in floc relative to soils, reflective of rapid inputs of new organic matter and direct interaction with the new physicochemical environment. Created open plot microbial mass and composition were significantly different from the oligotrophic Everglades due to differences in phosphorus availability, plant community structure, and a shift to organic peat from marl-peat soils. PLFA analysis also captured the dynamic inter-annual hydrologic variability, notably in PLFA concentrations, but to a lesser degree content. Recently, use of concentration has been advocated over content in studies of soil biogeochemistry, and our results highlight the differential response of these two quantitative measures to similar pressures.

  20. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Kumari, Bollipo Dyana Ranjitha

    2013-08-01

    The effects of pulsed magnetic field (PMF) treatment of soybean (Glycine max L. cv CO3) seeds were investigated on rate of seed germination, seedling growth, physico-chemical properties of seed leachates and soil microbial population under laboratory conditions. Seeds were exposed to PMF of 1500 nT at 0.1, 1.0 10.0 and 100.0 Hz for 5 h per day for 20 days, induced by enclosure coil systems. Non-treated seeds were considered as controls. All PMF treatments significantly increased the rate of seed germination, while 10 and 100 Hz PMFs showed the most effective response. The 1.0 and 10 Hz PMFs remarkably improved the fresh weight of shoots and roots, leaf area and plant height from seedlings from magnetically-exposed seeds compared to the control, while 10 Hz PMF increased the total soluble sugar, total protein and phenol contents. The leaf chlorophyll a, b and total chlorophyll were higher in PMF (10 and 100 Hz) pretreated plants, as compared to other treatments. In addition, activities of alpha-amylase, acid phosphatase, alkaline phosphatase, nitrate reductase, peroxidase and polyphenoloxidase were increased, while beta-amylase and protease activities were declined in PMF (10 Hz)-exposed soybean plants. Similarly, the capacity of absorbance of water by seeds and electrical conductivity of seed leachates were significantly enhanced by 10 Hz PMF exposure, whereas PMF (10 Hz) pretreated plants did not affect the microbial population in rhizosphere soil. The results suggested the potential of 10 Hz PMF treatment to enhance the germination and seedling growth of soybean.

  1. Soil microbial respiration and PICT responses to an industrial and historic lead pollution: a field study.

    Science.gov (United States)

    Bérard, Annette; Capowiez, Line; Mombo, Stéphane; Schreck, Eva; Dumat, Camille; Deola, Frédéric; Capowiez, Yvan

    2016-03-01

    We performed a field investigation to study the long-term impacts of Pb soil contamination on soil microbial communities and their catabolic structure in the context of an industrial site consisting of a plot of land surrounding a secondary lead smelter. Microbial biomass, catabolic profiles, and ecotoxicological responses (PICT) were monitored on soils sampled at selected locations along 110-m transects established on the site. We confirmed the high toxicity of Pb on respirations and microbial and fungal biomasses by measuring positive correlations with distance from the wall factory and negative correlation with total Pb concentrations. Pb contamination also induced changes in microbial and fungal catabolic structure (from carbohydrates to amino acids through carboxylic malic acid). Moreover, PICT measurement allowed to establish causal linkages between lead and its effect on biological communities taking into account the contamination history of the ecosystem at community level. The positive correlation between qCO2 (based on respiration and substrate use) and PICT suggested that the Pb stress-induced acquisition of tolerance came at a greater energy cost for microbial communities in order to cope with the toxicity of the metal. In this industrial context of long-term polymetallic contamination dominated by Pb in a field experiment, we confirmed impacts of this metal on soil functioning through microbial communities, as previously observed for earthworm communities.

  2. Rapid Response of Eastern Mediterranean Deep Sea Microbial Communities to Oil

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiang; Techtmann, Stephen M.; Woo, Hannah L.; Ning, Daliang; Fortney, Julian L.; Hazen, Terry C.

    2017-07-18

    Deep marine oil spills like the Deepwater Horizon (DWH) in the Gulf of Mexico have the potential to drastically impact marine systems. Crude oil contamination in marine systems remains a concern, especially for countries around the Mediterranean Sea with off shore oil production. The goal of this study was to investigate the response of indigenous microbial communities to crude oil in the deep Eastern Mediterranean Sea (E. Med.) water column and to minimize potential bias associated with storage and shifts in microbial community structure from sample storage. 16S rRNA amplicon sequencing was combined with GeoChip metagenomic analysis to monitor the microbial community changes to the crude oil and dispersant in on-ship microcosms set up immediately after water collection. After 3 days of incubation at 14 °C, the microbial communities from two different water depths: 824 m and 1210 m became dominated by well-known oil degrading bacteria. The archaeal population and the overall microbial community diversity drastically decreased. Similarly, GeoChip metagenomic analysis revealed a tremendous enrichment of genes related to oil biodegradation, which was consistent with the results from the DWH oil spill. These results highlight a rapid microbial adaption to oil contamination in the deep E. Med., and indicate strong oil biodegradation potentia

  3. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    Science.gov (United States)

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  4. Factors limiting microbial growth and activity at a proposed high-level nuclear repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Kieft, T.L.; Kovacik, W.P. Jr.; Ringelberg, D.B.; White, D.C.; Haldeman, D.L.; Amy, P.S.; Hersman, L.E.

    1997-01-01

    As part of the characterization of Yucca Mountain, Nev., as a potential repository for high-level nuclear waste, volcanic tuff was analyzed for microbial abundance and activity. Tuff was collected aseptically from nine sites along a tunnel in Yucca Mountain. Microbial abundance was generally low: direct microscopic cell counts were near detection limits at all sites (3.2 X 10(1) to 2.0 X 10(5) cells g-1 [dry weight]); plate counts of aerobic heterotrophs ranged from 1.0 X 10(1) to 3.2 X 10(3) CFU g-1 (dry weight). Phospholipid fatty acid concentrations (0.1 to 3.7 pmol g-1) also indicated low microbial biomasses: diglyceride fatty acid concentrations, indicative of dead cells, were in a similar range (0.2 to 2.3 pmol g-1). Potential microbial activity was quantified as 14CO2 production in microcosms containing radiolabeled substrates (glucose, acetate, and glutamic acid); amendments with water and nutrient solutions (N and P) were used to test factors potentially limiting this activity. Similarly, the potential for microbial growth and the factors limiting growth were determined by performing plate counts before and after incubating volcanic tuff samples for 24 h under various conditions: ambient moisture, water-amended, and amended with various nutrient solutions (N, P, and organic C). A high potential for microbial activity was demonstrated by high rates of substrate mineralization (as much as 70% of added organic C in 3 weeks). Water was the major limiting factor to growth and microbial activity, while amendments with N and P resulted in little further stimulation. Organic C amendments stimulated growth more than water alone

  5. Understanding the performance of sulfate reducing bacteria based packed bed reactor by growth kinetics study and microbial profiling.

    Science.gov (United States)

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2016-07-15

    A novel marine waste extract (MWE) as alternative nitrogen source was explored for the growth of sulfate reducing bacteria (SRB). Variation of sulfate and nitrogen (MWE) showed that SRB growth follows an uncompetitive inhibition model. The maximum specific growth rates (μmax) of 0.085 and 0.124 h(-1) and inhibition constants (Ki) of 56 and 4.6 g/L were observed under optimized sulfate and MWE concentrations, respectively. The kinetic data shows that MWE improves the microbial growth by 27%. The packed bed bioreactor (PBR) under optimized sulfate and MWE regime showed sulfate removal efficiency of 62-66% and metals removal efficiency of 66-75% on using mine wastewater. The microbial community analysis using DGGE showed dominance of SRB (87-89%). The study indicated the optimum dosing of sulfate and cheap organic nitrogen to promote the growth of SRB over other bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    Science.gov (United States)

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  7. Thermodynamic and kinetic response of microbial reactions to high CO2

    Directory of Open Access Journals (Sweden)

    Qusheng Jin

    2016-11-01

    Full Text Available Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  8. Linking genes to microbial growth kinetics: an integrated biochemical systems engineering approach.

    Science.gov (United States)

    Koutinas, Michalis; Kiparissides, Alexandros; Silva-Rocha, Rafael; Lam, Ming-Chi; Martins Dos Santos, Vitor A P; de Lorenzo, Victor; Pistikopoulos, Efstratios N; Mantalaris, Athanasios

    2011-07-01

    The majority of models describing the kinetic properties of a microorganism for a given substrate are unstructured and empirical. They are formulated in this manner so that the complex mechanism of cell growth is simplified. Herein, a novel approach for modelling microbial growth kinetics is proposed, linking biomass growth and substrate consumption rates to the gene regulatory programmes that control these processes. A dynamic model of the TOL (pWW0) plasmid of Pseudomonas putida mt-2 has been developed, describing the molecular interactions that lead to the transcription of the upper and meta operons, known to produce the enzymes for the oxidative catabolism of m-xylene. The genetic circuit model was combined with a growth kinetic model decoupling biomass growth and substrate consumption rates, which are expressed as independent functions of the rate-limiting enzymes produced by the operons. Estimation of model parameters and validation of the model's predictive capability were successfully performed in batch cultures of mt-2 fed with different concentrations of m-xylene, as confirmed by relative mRNA concentration measurements of the promoters encoded in TOL. The growth formation and substrate utilisation patterns could not be accurately described by traditional Monod-type models for a wide range of conditions, demonstrating the critical importance of gene regulation for the development of advanced models closely predicting complex bioprocesses. In contrast, the proposed strategy, which utilises quantitative information pertaining to upstream molecular events that control the production of rate-limiting enzymes, predicts the catabolism of a substrate and biomass formation and could be of central importance for the design of optimal bioprocesses. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Rhizospheric microbial communities are driven by Panax ginseng at different growth stages and biocontrol bacteria alleviates replanting mortality

    Directory of Open Access Journals (Sweden)

    Linlin Dong

    2018-03-01

    Full Text Available The cultivation of Panax plants is hindered by replanting problems, which may be caused by plant-driven changes in the soil microbial community. Inoculation with microbial antagonists may efficiently alleviate replanting issues. Through high-throughput sequencing, this study revealed that bacterial diversity decreased, whereas fungal diversity increased, in the rhizosphere soils of adult ginseng plants at the root growth stage under different ages. Few microbial community, such as Luteolibacter, Cytophagaceae, Luteibacter, Sphingomonas, Sphingomonadaceae, and Zygomycota, were observed; the relative abundance of microorganisms, namely, Brevundimonas, Enterobacteriaceae, Pandoraea, Cantharellales, Dendryphion, Fusarium, and Chytridiomycota, increased in the soils of adult ginseng plants compared with those in the soils of 2-year-old seedlings. Bacillus subtilis 50-1, a microbial antagonist against the pathogenic Fusarium oxysporum, was isolated through a dual culture technique. These bacteria acted with a biocontrol efficacy of 67.8%. The ginseng death rate and Fusarium abundance decreased by 63.3% and 46.1%, respectively, after inoculation with B. subtilis 50-1. Data revealed that microecological degradation could result from ginseng-driven changes in rhizospheric microbial communities; these changes are associated with the different ages and developmental stages of ginseng plants. Biocontrol using microbial antagonists alleviated the replanting problem. KEY WORDS: Panax ginseng, Microbial communities, Replanting problem, High-throughput sequencing, Different ages, Bioremediation

  10. CATALASE FROM A FUNGAL MICROBIAL PESTICIDE INDUCES A UNIQUE IGE RESPONSE.

    Science.gov (United States)

    BALB/c mice exposed by involuntary aspiration to Metarhizium anisopliae extract (MACA), a microbial pesticide, have shown responses characteristic of human allergic lung disease/asthma. IgE-binding proteins have been identified in MACA by Western blot analysis, 2-dimensio...

  11. RESPONSE OF SOIL MICROBIAL BIOMASS AND COMMUNITY COMPOSITION TO CHRONIC NITROGEN ADDITIONS AT HARVARD FOREST

    Science.gov (United States)

    Soil microbial communities may respond to anthropogenic increases in ecosystem nitrogen (N) availability, and their response may ultimately feedback on ecosystem carbon and N dynamics. We examined the long-term effects of chronic N additions on soil microbes by measuring soil mi...

  12. Chemical diversity of microbial volatiles and their potential for plant growth and productivity

    Directory of Open Access Journals (Sweden)

    CHIDANANDA NAGAMANGALA KANCHISWAMY

    2015-03-01

    Full Text Available Microbial volatile organic compounds (MVOCs are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs and their potential physiological effects on crops and analyze potential and actual limitations for MVOC use as a sustainable strategy for improving productivity and reducing pesticide use.

  13. Optimal design of multistage chemostats in series using different microbial growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Muhammad [Petroleum Engineering Technology, Abu Dhabi Polytechnic (United Arab Emirates)

    2013-07-01

    In this paper, the optimum design of multistage chemostats (CSTRs) was investigated. The optimal design was based on the minimum overall reactor volume using different volume for each chemostat. The paper investigates three different microbial growth kinetics; Monod kinetics, Contois kinetics and the Logistic equation. The total dimensionless residence time (theta Total) was set as the optimization objective function that was minimized by varying the intermediate dimensionless substrate concentration (alfa i). The effect of inlet substrate concentration (S0) to the first reactor on the optimized total dimensionless residence time was investigated at a constant conversion of 0.90. In addition, the effect of conversion on the optimized total dimensionless residence time was also investigated at constant inlet substrate concentration (S0). For each case, optimization was done using up to five chemostats in series.

  14. Parameter estimations in predictive microbiology: Statistically sound modelling of the microbial growth rate.

    Science.gov (United States)

    Akkermans, Simen; Logist, Filip; Van Impe, Jan F

    2018-04-01

    When building models to describe the effect of environmental conditions on the microbial growth rate, parameter estimations can be performed either with a one-step method, i.e., directly on the cell density measurements, or in a two-step method, i.e., via the estimated growth rates. The two-step method is often preferred due to its simplicity. The current research demonstrates that the two-step method is, however, only valid if the correct data transformation is applied and a strict experimental protocol is followed for all experiments. Based on a simulation study and a mathematical derivation, it was demonstrated that the logarithm of the growth rate should be used as a variance stabilizing transformation. Moreover, the one-step method leads to a more accurate estimation of the model parameters and a better approximation of the confidence intervals on the estimated parameters. Therefore, the one-step method is preferred and the two-step method should be avoided. Copyright © 2017. Published by Elsevier Ltd.

  15. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments.

    Science.gov (United States)

    Rousk, Kathrin; Michelsen, Anders; Rousk, Johannes

    2016-12-01

    Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed 'priming'. We investigated how warming (+1.1 °C over ambient using open top chambers) and litter addition (90 g m -2  yr -1 ) treatments in the subarctic influenced the susceptibility of SOM mineralization to priming, and its microbial underpinnings. Labile C appeared to inhibit the mineralization of C from SOM by up to 60% within hours. In contrast, the mineralization of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile C inhibited C mineralization is compatible with previously reported findings termed 'preferential substrate utilization' or 'negative apparent priming', while the stimulated N mineralization responses echo recent reports of 'real priming' of SOM mineralization. However, C and N mineralization responses derived from the same SOM source must be interpreted together: This suggested that the microbial SOM-use decreased in magnitude and shifted to components richer in N. This finding highlights that only considering SOM in terms of C may be simplistic, and will not capture all changes in SOM decomposition. The selective mining for N increased in climate change treatments with higher fungal dominance. In conclusion, labile C appeared to trigger catabolic responses of the resident microbial community that shifted the SOM mining to N-rich components; an effect that increased with higher fungal dominance. Extrapolating from these findings, the predicted shrub expansion in the subarctic could result in an altered microbial use of SOM, selectively mining it for N-rich components, and leading to a reduced total SOM-use. © 2016 John Wiley

  16. Response of microbial activities and diversity to PAHs contamination at coal tar contaminated land

    Science.gov (United States)

    Zhao, Xiaohui; Sun, Yujiao; Ding, Aizhong; Zhang, Dan; Zhang, Dayi

    2015-04-01

    Coal tar is one of the most hazardous and concerned organic pollutants and the main hazards are polycyclic aromatic hydrocarbons (PAHs). The indigenous microorganisms in soils are capable to degrade PAHs, with essential roles in biochemical process for PAHs natural attenuation. This study investigated 48 soil samples (from 8 depths of 6 boreholes) in Beijing coking and chemistry plant (China) and revealed the correlation between PAHs contamination, soil enzyme activities and microbial community structure, by 16S rRNA denaturing gradient gel electrophoresis (DGGE). At the site, the key contaminants were identified as naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene, and the total PAHs concentration ranged from 0.1 to 923.9 mg/kg dry soil. The total PAHs contamination level was positively correlated (pcatalase activities (0.554-6.230 mL 0.02 M KMnO4/g•h) and dehydrogenase activities (1.9-30.4 TF μg/g•h soil), showing the significant response of microbial population and degrading functions to the organic contamination in soils. The PAHs contamination stimulated the PAHs degrading microbes and promoted their biochemical roles in situ. The positive relationship between bacteria count and dehydrogenase activities (p<0.05) suggested the dominancy of PAHs degrading bacteria in the microbial community. More interestingly, the microbial community deterioration was uncovered via the decline of microbial biodiversity (richness from 16S rRNA DGGE) against total PAHs concentration (p<0.05). Our research described the spatial profiles of PAHs contamination and soil microbial functions at the PAHs heavily contaminated sites, offering deeper understanding on the roles of indigenous microbial community in natural attenuation process.

  17. Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil

    DEFF Research Database (Denmark)

    Dennis, P. G.; Sparrow, A. D.; Gregorich, E. G.

    2013-01-01

    The soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon...... and nitrogen in glucose and ammonium chloride, respectively, on the soil microbial community in a field experiment lasting three years in the Garwood Valley. In the control treatment, the total ELFA concentration was small by comparison with temperate soils, but very large when expressed relative to the soil...... organic carbon concentration, indicating efficient conversion of soil organic carbon into microbial biomass and rapid turnover of soil organic carbon. The ELFA concentrations increased significantly in response to carbon additions, indicating that carbon supply was the main constraint to microbial...

  18. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates.

    Science.gov (United States)

    Chen, Haoming; Ma, Jinyi; Wei, Jiaxing; Gong, Xin; Yu, Xichen; Guo, Hui; Zhao, Yanwen

    2018-09-01

    Green roofs have increasingly been designed and applied to relieve environmental problems, such as water loss, air pollution as well as heat island effect. Substrate and vegetation are important components of green roofs providing ecosystem services and benefiting the urban development. Biochar made from sewage sludge could be potentially used as the substrate amendment for green roofs, however, the effects of biochar on substrate quality and plant performance in green roofs are still unclear. We evaluated the effects of adding sludge biochar (0, 5, 10, 15 and 20%, v/v) to natural soil planted with three types of plant species (ryegrass, Sedum lineare and cucumber) on soil properties, plant growth and microbial communities in both green roof and ground ecosystems. Our results showed that sludge biochar addition significantly increased substrate moisture, adjusted substrate temperature, altered microbial community structure and increased plant growth. The application rate of 10-15% sludge biochar on the green roof exerted the most significant effects on both microbial and plant biomass by 63.9-89.6% and 54.0-54.2% respectively. Path analysis showed that biochar addition had a strong effect on microbial biomass via changing the soil air-filled porosity, soil moisture and temperature, and promoted plant growth through the positive effects on microbial biomass. These results suggest that the applications of biochar at an appropriate rate can significantly alter plant growth and microbial community structure, and increase the ecological benefits of green roofs via exerting effects on the moisture, temperature and nutrients of roof substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    DEFF Research Database (Denmark)

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard Remko

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH...

  20. Trade-offs between microbial growth phases lead to frequency-dependent and non-transitive selection.

    Science.gov (United States)

    Manhart, Michael; Adkar, Bharat V; Shakhnovich, Eugene I

    2018-02-14

    Mutations in a microbial population can increase the frequency of a genotype not only by increasing its exponential growth rate, but also by decreasing its lag time or adjusting the yield (resource efficiency). The contribution of multiple life-history traits to selection is a critical question for evolutionary biology as we seek to predict the evolutionary fates of mutations. Here we use a model of microbial growth to show that there are two distinct components of selection corresponding to the growth and lag phases, while the yield modulates their relative importance. The model predicts rich population dynamics when there are trade-offs between phases: multiple strains can coexist or exhibit bistability due to frequency-dependent selection, and strains can engage in rock-paper-scissors interactions due to non-transitive selection. We characterize the environmental conditions and patterns of traits necessary to realize these phenomena, which we show to be readily accessible to experiments. Our results provide a theoretical framework for analysing high-throughput measurements of microbial growth traits, especially interpreting the pleiotropy and correlations between traits across mutants. This work also highlights the need for more comprehensive measurements of selection in simple microbial systems, where the concept of an ordinary fitness landscape breaks down. © 2018 The Author(s).

  1. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    NARCIS (Netherlands)

    Méndez-Garcia, C.; Mesa, V.; Sprenger, R.R.; Richter, M.; Suarez Diez, M.; Solano, J.; Bargiela, R.; Golyshina, O.V.; Manteca, A.; Ramos, J.L.; Gallego, J.R.; Llorente, I.; Martins Dos Santos, V.A.P.; Jensen, O.N.; Paláez, A.I.; Sánchez, J.; Ferrer, M.

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH

  2. Effect of microbial cell-free meat extract on the growth of spoilage bacteria.

    Science.gov (United States)

    Nychas, G-J E; Dourou, D; Skandamis, P; Koutsoumanis, K; Baranyi, J; Sofos, J

    2009-12-01

    This study examined the effect of microbial cell-free meat extract (CFME) derived from spoiled meat, in which quorum sensing (QS) compounds were present, on the growth kinetics (lag phase, and growth rate) of two spoilage bacteria, Pseudomonas fluorescens and Serratia marcescens. Aliquots of CFME from spoiled meat were transferred to Brain Heart Infusion broth inoculated with 10(3) CFU ml(-1) of 18 h cultures of Ps. fluorescens or Ser. marcescens, both fresh meat isolates; CFME derived from unspoiled fresh meat ('clean' meat) served as a control. Changes in impedance measurements were monitored for 48 h, and the detection time (Tdet) was recorded. It was found that in the absence of CFME containing QS compounds the Tdet was shorter (P meat. The rate of growth of Ps. fluorescens, recorded as the maximum slope rate of conductance changes (MSrCC), after Tdet, was higher (P meat. Similar results in MSrCC of impedance changes were obtained for Ser. marcescens. The study indicated that the growth rate (expressed in MSrCC units) of meat spoilage bacteria in vitro was enhanced in samples supplemented with CFME containing QS compounds compared to control samples (i.e., without CFME or with CFME from 'clean' meat). This behaviour may explain the dominant role of these two bacteria in the spoilage of meat. These results illustrate the potential effect of signalling compounds released during storage of meat on the behaviour of meat spoilage bacteria. Understanding such interactions may assist in the control of fresh meat quality and the extension of its shelf life.

  3. Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth

    Science.gov (United States)

    Mark A. Bradford; Ashley D. Keiser; Christian A. Davies; Calley A. Mersmann; Michael S. Strickland

    2012-01-01

    Plant-carbon inputs to soils in the form of dissolved sugars, organic acids and amino acids fuel much of heterotrophic microbial activity belowground. Initial residence times of these compounds in the soil solution are on the order of hours, with microbial uptake a primary removal mechanism. Through microbial biosynthesis, the dissolved compounds become dominant...

  4. Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture.

    Science.gov (United States)

    Averill, Colin; Waring, Bonnie G; Hawkes, Christine V

    2016-05-01

    Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, it is not known if variation in the shape and magnitude of microbial functional responses to soil moisture can be predicted from historical climate at regional scales. To address this problem, we measured soil enzyme activity at 12 sites across a broad climate gradient spanning 442-887 mm mean annual precipitation. Measurements were made eight times over 21 months to maximize sampling during different moisture conditions. We then fit saturating functions of enzyme activity to soil moisture and extracted half saturation and maximum activity parameter values from model fits. We found that 50% of the variation in maximum activity parameters across sites could be predicted by 30-year mean annual precipitation, an indicator of historical climate, and that the effect is independent of variation in temperature, soil texture, or soil carbon concentration. Based on this finding, we suggest that variation in the shape and magnitude of soil microbial response to soil moisture due to historical climate may be remarkably predictable at regional scales, and this approach may extend to other systems. If historical contingencies on microbial activities prove to be persistent in the face of environmental change, this approach also provides a framework for incorporating historical climate effects into biogeochemical models simulating future global change scenarios. © 2016 John Wiley & Sons Ltd.

  5. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities

    Energy Technology Data Exchange (ETDEWEB)

    Liu Feng [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.co [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Tao Ran; Zhao Jianliang; Yang Jifeng [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Zhao Lanfeng [College of Resource and Environmental Science, South China Agricultural University, Guangzhou 510642 (China)

    2009-05-15

    The potential impact of six antibiotics (chlortetracycline, tetracycline and tylosin; sulfamethoxazole, sulfamethazine and trimethoprim) on plant growth and soil quality was studied by using seed germination test on filter paper and plant growth test in soil, soil respiration and phosphatase activity tests. The phytotoxic effects varied between the antibiotics and between plant species (sweet oat, rice and cucumber). Rice was most sensitive to sulfamethoxazole with the EC10 value of 0.1 mg/L. The antibiotics tested inhibited soil phosphatase activity during the 22 days' incubation. Significant effects on soil respiration were found for the two sulfonamides (sulfamethoxazole and sulfamethazine) and trimethoprim, whereas little effects were observed for the two tetracyclines and tylosin. The effective concentrations (EC10 values) for soil respiration in the first 2 days were 7 mg/kg for sulfamethoxazole, 13 mg/kg for sulfamethazine and 20 mg/kg for trimethoprim. Antibiotic residues in manure and soils may affect soil microbial and enzyme activities. - Terrestrial ecotoxicological effects of antibiotics are related to their sorption and degradation behavior in soil.

  6. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities

    International Nuclear Information System (INIS)

    Liu Feng; Ying Guangguo; Tao Ran; Zhao Jianliang; Yang Jifeng; Zhao Lanfeng

    2009-01-01

    The potential impact of six antibiotics (chlortetracycline, tetracycline and tylosin; sulfamethoxazole, sulfamethazine and trimethoprim) on plant growth and soil quality was studied by using seed germination test on filter paper and plant growth test in soil, soil respiration and phosphatase activity tests. The phytotoxic effects varied between the antibiotics and between plant species (sweet oat, rice and cucumber). Rice was most sensitive to sulfamethoxazole with the EC10 value of 0.1 mg/L. The antibiotics tested inhibited soil phosphatase activity during the 22 days' incubation. Significant effects on soil respiration were found for the two sulfonamides (sulfamethoxazole and sulfamethazine) and trimethoprim, whereas little effects were observed for the two tetracyclines and tylosin. The effective concentrations (EC10 values) for soil respiration in the first 2 days were 7 mg/kg for sulfamethoxazole, 13 mg/kg for sulfamethazine and 20 mg/kg for trimethoprim. Antibiotic residues in manure and soils may affect soil microbial and enzyme activities. - Terrestrial ecotoxicological effects of antibiotics are related to their sorption and degradation behavior in soil.

  7. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. I. Digestibility, fermentation parameters, and microbial growth.

    Science.gov (United States)

    Martínez, M E; Ranilla, M J; Tejido, M L; Ramos, S; Carro, M D

    2010-08-01

    Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of forage to concentrate (F:C) ratio and type of forage in the diet on ruminal fermentation and microbial protein synthesis. The purpose of the study was to assess how closely fermenters can mimic the dietary differences found in vivo. The 4 experimental diets contained F:C ratios of 70:30 or 30:70 with either alfalfa hay or grass hay as the forage. Microbial growth was determined in both systems using (15)N as a microbial marker. Rusitec fermenters detected differences between diets similar to those observed in sheep by changing F:C ratio on pH; neutral detergent fiber digestibility; total volatile fatty acid concentrations; molar proportions of acetate, propionate, butyrate, isovalerate, and caproate; and amylase activity. In contrast, Rusitec fermenters did not reproduce the dietary differences found in sheep for NH(3)-N and lactate concentrations, dry matter (DM) digestibility, proportions of isobutyrate and valerate, carboxymethylcellulase and xylanase activities, and microbial growth and its efficiency. Regarding the effect of the type of forage in the diet, Rusitec fermenters detected differences between diets similar to those found in sheep for most determined parameters, with the exception of pH, DM digestibility, butyrate proportion, and carboxymethylcellulase activity. Minimum pH and maximal volatile fatty acid concentrations were reached at 2h and at 6 to 8h postfeeding in sheep and fermenters, respectively, indicating that feed fermentation was slower in fermenters compared with that in sheep. There were differences between systems in the magnitude of most determined parameters. In general, fermenters showed lower lactate concentrations, neutral detergent fiber digestibility, acetate:propionate ratios, and enzymatic activities. On the contrary, fermenters showed greater NH(3)-N concentrations, DM digestibility, and proportions of propionate

  8. Grassland to woodland transitions: Dynamic response of microbial community structure and carbon use patterns

    Science.gov (United States)

    Creamer, Courtney A.; Filley, Timothy R.; Boutton, Thomas W.; Rowe, Helen I.

    2016-06-01

    Woodland encroachment into grasslands is a globally pervasive phenomenon attributed to land use change, fire suppression, and climate change. This vegetation shift impacts ecosystem services such as ground water allocation, carbon (C) and nutrient status of soils, aboveground and belowground biodiversity, and soil structure. We hypothesized that woodland encroachment would alter microbial community structure and function and would be related to patterns in soil C accumulation. To address this hypothesis, we measured the composition and δ13C values of soil microbial phospholipids (PLFAs) along successional chronosequences from C4-dominated grasslands to C3-dominated woodlands (small discrete clusters and larger groves) spanning up to 134 years. Woodland development increased microbial biomass, soil C and nitrogen (N) concentrations, and altered microbial community composition. The relative abundance of gram-negative bacteria (cy19:0) increased linearly with stand age, consistent with decreases in soil pH and/or greater rhizosphere development and corresponding increases in C inputs. δ13C values of all PLFAs decreased with time following woody encroachment, indicating assimilation of woodland C sources. Among the microbial groups, fungi and actinobacteria in woodland soils selectively assimilated grassland C to a greater extent than its contribution to bulk soil. Between the two woodland types, microbes in the groves incorporated relatively more of the relict C4-C than those in the clusters, potentially due to differences in below ground plant C allocation and organo-mineral association. Changes in plant productivity and C accessibility (rather than C chemistry) dictated microbial C utilization in this system in response to shrub encroachment.

  9. Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens.

    Directory of Open Access Journals (Sweden)

    Damian Józefiak

    Full Text Available Due to antimicrobial properties, nisin is one of the most commonly used and investigated bacteriocins for food preservation. Surprisingly, nisin has had limited use in animal feed as well as there are only few reports on its influence on microbial ecology of the gastrointestinal tract (GIT. The present study therefore aimed at investigating effects of dietary nisin on broiler chicken GIT microbial ecology and performance in comparison to salinomycin, the widely used ionophore coccidiostat. In total, 720 one-day-old male Ross 308 chicks were randomly distributed to six experimental groups. The positive control (PC diet was supplemented with salinomycin (60 mg/kg. The nisin (NI diets were supplemented with increasing levels (100, 300, 900 and 2700 IU nisin/g, respectively of the bacteriocin. The negative control (NC diet contained no additives. At slaughter (35 days of age, activity of specific bacterial enzymes (α- and β-glucosidases, α-galactosidases and β-glucuronidase in crop, ileum and caeca were significantly higher (P<0.05 in the NC group, and nisin supplementation decreased the enzyme activities to levels observed for the PC group. A similar inhibitory influence on bacterial activity was reflected in the levels of short-chain fatty acids (SCFA and putrefactive SCFA (PSCFA in digesta from crop and ileum; no effect was observed in caeca. Counts of Bacteroides and Enterobacteriacae in ileum digesta were significantly (P<0.001 decreased by nisin and salinomycin, but no effects were observed on the counts of Clostridium perfringens, Lactobacillus/Enterococcus and total bacteria. Like salinomycin, nisin supplementation improved broiler growth performance in a dose-dependent manner; compared to the NC group, the body weight gain of the NI₉₀₀ and NI₂₇₀₀ groups was improved by 4.7 and 8.7%, respectively. Our findings suggest that dietary nisin exerts a mode of action similar to salinomycin and could be considered as a dietary

  10. Effect of Probiotic Bacteria on Microbial Host Defense, Growth, and Immune Function in Human Immunodeficiency Virus Type-1 Infection

    Directory of Open Access Journals (Sweden)

    Stig Bengmark

    2011-12-01

    Full Text Available The hypothesis that probiotic administration protects the gut surface and could delay progression of Human Immunodeficiency Virus type1 (HIV-1 infection to the Acquired Immunodeficiency Syndrome (AIDS was proposed in 1995. Over the last five years, new studies have clarified the significance of HIV-1 infection of the gut associated lymphoid tissue (GALT for subsequent alterations in the microflora and breakdown of the gut mucosal barrier leading to pathogenesis and development of AIDS. Current studies show that loss of gut CD4+ Th17 cells, which differentiate in response to normal microflora, occurs early in HIV-1 disease. Microbial translocation and suppression of the T regulatory (Treg cell response is associated with chronic immune activation and inflammation. Combinations of probiotic bacteria which upregulate Treg activation have shown promise in suppressing pro inflammatory immune response in models of autoimmunity including inflammatory bowel disease and provide a rationale for use of probiotics in HIV-1/AIDS. Disturbance of the microbiota early in HIV-1 infection leads to greater dominance of potential pathogens, reducing levels of bifidobacteria and lactobacillus species and increasing mucosal inflammation. The interaction of chronic or recurrent infections, and immune activation contributes to nutritional deficiencies that have lasting consequences especially in the HIV-1 infected child. While effective anti-retroviral therapy (ART has enhanced survival, wasting is still an independent predictor of survival and a major presenting symptom. Congenital exposure to HIV-1 is a risk factor for growth delay in both infected and non-infected infants. Nutritional intervention after 6 months of age appears to be largely ineffective. A meta analysis of randomized, controlled clinical trials of infant formulae supplemented with Bifidobacterium lactis showed that weight gain was significantly greater in infants who received B. lactis compared to

  11. Modelling microbial interactions and food structure in predictive microbiology

    NARCIS (Netherlands)

    Malakar, P.K.

    2002-01-01

    Keywords: modelling, dynamic models, microbial interactions, diffusion, microgradients, colony growth, predictive microbiology.

    Growth response of microorganisms in foods is a complex process. Innovations in food production and preservation techniques have resulted in adoption of

  12. Response of the soil microbial community to imazethapyr application in a soybean field.

    Science.gov (United States)

    Xu, Jun; Guo, Liqun; Dong, Fengshou; Liu, Xingang; Wu, Xiaohu; Sheng, Yu; Zhang, Ying; Zheng, Yongquan

    2013-01-01

    The objective of this study was to determine the effects of imazethapyr on soil microbial communities combined with its effect on soybean growth. A short-term field experiment was conducted, and imazethapyr was applied to the soil at three different doses [1-fold, 10-fold, and 50-fold of the recommended field rate (H1, H10, H50)] during the soybean seedling period (with two leaves). Soil sampling was performed after 1, 7, 30, 60, 90, and 120 days of application to determine the imazethapyr concentration and microbial community structure by investigating phospholipid fatty acids (PLFA) and microbial biomass carbon (MBC). The half-lives of the imazethapyr in the field soil varied from 30.1 to 43.3 days. Imazethapyr at H1 was innocuous to soybean plants, but imazethapyr at H10 and H50 led to a significant inhibition in soybean plant height and leaf number. The soil MBC, total PLFA, and bacterial PLFA were decreased by the application of imazethapyr during the initial period and could recover by the end of the experiment. The ratio of Gram-negative/Gram-positive (GN/GP) bacteria during the three treatments went through increases and decreases, and then recovered at the end of the experiment. The fungal PLFA of all three treatments increased during the initial period and then declined, and only the fungal PLFA at H50 recovered by the end of the treatment. A principal component analysis (PCA) of the PLFA clearly separated the treatments and sampling times, and the results demonstrate that imazethapyr alters the microbial community structure. This is the first systemic study reporting the effects of imazethapyr on the soil microbial community structure under soybean field conditions.

  13. Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis

    Science.gov (United States)

    Xu, W.; Yuan, W.

    2017-12-01

    Soil microbes play important roles in regulating terrestrial carbon and nitrogen cycling and strongly influence feedbacks of ecosystem to global warming. However, the inconsistent responses of microbial biomass carbon (MBC) and nitrogen (MBN) to experimental warming have been observed, and the response on ratio between MBC and MBN (MBC:MBN) has not been identified. This meta-analysis synthesized the warming experiments at 58 sites globally to investigate the responses of MBC:MBN to climate warming. Our results showed that warming significantly increased MBC by 3.61 ± 0.80% and MBN by 5.85 ± 0.90% and thus decreased the MBC:MBN by 3.34 ± 0.66%. MBC showed positive responses to warming but MBN exhibited negative responses to warming at low warming magnitude (2°C) the results were inverted. The different effects of warming magnitude on microbial biomass resulted from the warming-induced decline in soil moisture and substrate supply. Moreover, MBC and MBN had strong positive responses to warming at the mid-term (3-4 years) or short-term (1-2 years) duration, but the responses tended to decrease at long-term (≥ 5 years) warming duration. This study fills the knowledge gap on the responses of MBC:MBN to warming and may benefit the development of coupled carbon and nitrogen models.

  14. Aerobic carbon-cycle related microbial communities in boreal peatlands: responses to water-level drawdown

    Energy Technology Data Exchange (ETDEWEB)

    Peltoniemi, K

    2010-07-01

    Boreal peatlands represent a considerable portion of the global carbon (C) pool. Water-level drawdown (WLD) causes peatland drying and induces a vegetation change, which affects the decomposition of soil organic matter and the release of greenhouse gases (CO{sub 2} and CH{sub 4}). The objective of this thesis was to study the microbial communities related to the C cycle and their response to WLD in two boreal peatlands. Both sampling depth and site type had a strong impact on all microbial communities. In general, bacteria dominated the deeper layers of the nutrient-rich fen and the wettest surfaces of the nutrient-poor bog sites, whereas fungi seemed more abundant in the drier surfaces of the bog. WLD clearly affected the microbial communities but the effect was dependent on site type. The fungal and methane-oxidizing bacteria (MOB) community composition changed at all sites but the actinobacterial community response was apparent only in the fen after WLD. Microbial communities became more similar among sites after long-term WLD. Litter quality had a large impact on community composition, whereas the effects of site type and WLD were relatively minor. The decomposition rate of fresh organic matter was influenced slightly by actinobacteria, but not at all by fungi. Field respiration measurements in the northern fen indicated that WLD accelerates the decomposition of soil organic matter. In addition, a correlation between activity and certain fungal sequences indicated that community composition affects the decomposition of older organic matter in deeper peat layers. WLD had a negative impact on CH{sub 4} oxidation, especially in the oligotrophic fen. Fungal sequences were matched to taxa capable of utilizing a broad range of substrates. Most of the actinobacterial sequences could not be matched to characterized taxa in reference databases. This thesis represents the first investigation of microbial communities and their response to WLD among a variety of boreal

  15. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes

    OpenAIRE

    Wang, Cheng; Dong, Da; Strong, P. J.; Zhu, Weijing; Ma, Zhuang; Qin, Yong; Wu, Weixiang

    2017-01-01

    Background Animal manure is a reservoir of antibiotic resistance genes (ARGs) that pose a potential health risk globally, especially for resistance to the antibiotics commonly used in livestock production (such as tetracycline, sulfonamide, and fluoroquinolone). Currently, the effects of biological treatment (composting) on the transcriptional response of manure ARGs and their microbial hosts are not well characterized. Composting is a dynamic process that consists of four distinct phases tha...

  16. Maximum in the Middle: Nonlinear Response of Microbial Plankton to Ultraviolet Radiation and Phosphorus

    OpenAIRE

    Medina-S?nchez, Juan Manuel; Delgado-Molina, Jos? Antonio; Bratbak, Gunnar; Bullejos, Francisco Jos?; Villar-Argaiz, Manuel; Carrillo, Presentaci?n

    2013-01-01

    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2??5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the ...

  17. Growth response and survival of Heterobranchus longifilis ...

    African Journals Online (AJOL)

    GRACE

    2006-05-02

    May 2, 2006 ... Different species of fish have been shown to have different optimum .... comparative study on the morphology, growth rate and reproduction of Clarias ... with artificial diets in aquaria, Aquaculture 37: 39-50. Ugwumba AAA ...

  18. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input.

    Science.gov (United States)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P; Jansson, Janet K; Hopkins, David W; Aspray, Thomas J; Seely, Mary; Trindade, Marla I; Cowan, Don A

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO 2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  19. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  20. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  1. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    Science.gov (United States)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  2. Effect of Portulaca oleracea extracts on growth performance and microbial populations in ceca of broilers.

    Science.gov (United States)

    Zhao, X H; He, X; Yang, X F; Zhong, X H

    2013-05-01

    The aim of this study was to investigate the effects of Portulaca oleracea extracts on growth performance and microbial populations in the ceca of broilers. A total of 120 one-day-old broilers were randomly divided into 3 groups. Portulaca oleracea extracts were added to diets at 0.2 and 0.4% (wt/wt; POL-0.2, POL-0.4), respectively. The control (CON) group was administered with no P. oleracea extract supplementation. Body weight gain and feed conversion ratio were recorded every 2 wk. On d 28 and 42, the cecal contents were collected and assayed for Escherichia coli, Lactobacillus, and Bifidobacterium populations. Additionally, the pH of the ileum and cecum was measured. The results showed that both on d 28 and 42 BW gain of P. oleracea extract supplementation groups was significantly higher, whereas the feed conversion ratio was lower (P < 0.05) compared with CON. On d 28 and 42, significantly (P < 0.05) fewer E. coli were recovered from ceca of broilers provided with the POL-0.2 diet than from broilers provided with the control diet. The quantities of Lactobacillus and Bifidobacterium of POL-0.2 were significantly (P < 0.05) higher than CON. Results showed P. oleracea extracts have no distinct influence on intestinal pH. These data suggest that P. oleracea extract supplementation significantly altered the cecal bacterial community without affecting the intestinal pH.

  3. By passing microbial resistance: xylitol controls microorganisms growth by means of its anti-adherence property.

    Science.gov (United States)

    Ferreira, Aline S; Silva-Paes-Leme, Annelisa F; Raposo, Nádia R B; da Silva, Sílvio S

    2015-01-01

    Xylitol is an important polyalcohol suitable for use in odontological, medical and pharmaceutical products and as an additive in food. The first studies on the efficacy of xylitol in the control and treatment of infections started in the late 1970s and it is still applied for this purpose, with safety and very little contribution to resistance. Xylitol seems to act against microorganisms exerting an anti-adherence effect. Some research studies have demonstrated its action against Gram-positive and Gram-negative bacteria and yeasts. However, a clear explanation of how xylitol is effective has not been completely established yet. Some evidence shows that xylitol acts on gene expression, down-regulating the ones which are involved in the microorganisms' virulence, such as capsule formation. Another possible clarification is that xylitol blocks lectin-like receptors. The most important aspect is that, over time, xylitol bypasses microbial resistance and succeeds in controlling infection, either alone or combined with another compound. In this review, the effect of xylitol in inhibiting the growth of a different microorganism is described, focusing on studies in which such an anti-adherent property was highlighted. This is the first mini-review to describe xylitol as an anti-adherent compound and take into consideration how it exerts such action.

  4. Microbial growth and quorum sensing antagonist activities of herbal plants extracts.

    Science.gov (United States)

    Al-Hussaini, Reema; Mahasneh, Adel M

    2009-09-03

    Antimicrobial and antiquorum sensing (AQS) activities of fourteen ethanolic extracts of different parts of eight plants were screened against four Gram-positive, five Gram-negative bacteria and four fungi. Depending on the plant part extract used and the test microorganism, variable activities were recorded at 3 mg per disc. Among the Grampositive bacteria tested, for example, activities of Laurus nobilis bark extract ranged between a 9.5 mm inhibition zone against Bacillus subtilis up to a 25 mm one against methicillin resistant Staphylococcus aureus. Staphylococcus aureus and Aspergillus fumigatus were the most susceptible among bacteria and fungi tested towards other plant parts. Of interest is the tangible antifungal activity of a Tecoma capensis flower extract, which is reported for the first time. However, minimum inhibitory concentrations (MIC's) for both bacteria and fungi were relatively high (0.5-3.0 mg). As for antiquorum sensing activity against Chromobacterium violaceum, superior activity (>17 mm QS inhibition) was associated with Sonchus oleraceus and Laurus nobilis extracts and weak to good activity (8-17 mm) was recorded for other plants. In conclusion, results indicate the potential of these plant extracts in treating microbial infections through cell growth inhibition or quorum sensing antagonism, which is reported for the first time, thus validating their medicinal use.

  5. Microbial Growth and Quorum Sensing Antagonist Activities of Herbal Plants Extracts

    Directory of Open Access Journals (Sweden)

    Reema Al-Hussaini

    2009-09-01

    Full Text Available Antimicrobial and antiquorum sensing (AQS activities of fourteen ethanolic extracts of different parts of eight plants were screened against four Gram-positive, five Gram-negative bacteria and four fungi. Depending on the plant part extract used and the test microorganism, variable activities were recorded at 3 mg per disc. Among the Grampositive bacteria tested, for example, activities of Laurus nobilis bark extract ranged between a 9.5 mm inhibition zone against Bacillus subtilis up to a 25 mm one against methicillin resistant Staphylococcus aureus. Staphylococcus aureus and Aspergillus fumigatus were the most susceptible among bacteria and fungi tested towards other plant parts. Of interest is the tangible antifungal activity of a Tecoma capensis flower extract, which is reported for the first time. However, minimum inhibitory concentrations (MIC's for both bacteria and fungi were relatively high (0.5-3.0 mg. As for antiquorum sensing activity against Chromobacterium violaceum, superior activity (>17 mm QS inhibition was associated with Sonchus oleraceus and Laurus nobilis extracts and weak to good activity (8-17 mm was recorded for other plants. In conclusion, results indicate the potential of these plant extracts in treating microbial infections through cell growth inhibition or quorum sensing antagonism, which is reported for the first time, thus validating their medicinal use.

  6. Germination, growth and physiological responses of Senegalia ...

    African Journals Online (AJOL)

    Dioumacor FALL

    2016-09-14

    Sep 14, 2016 ... to that of the total number of seeds in the sample at different salinity levels. Growth ..... therefore to limitations of chlorophyll synthesis. These ... was taken up than Cl. −. , indicating that S. senegal, V. seyal and P. juliflora are an ion accumulators. The strong .... Field Manual for Local Level Land Degradation.

  7. Growth response and survival of Heterobranchus longifilis ...

    African Journals Online (AJOL)

    In an effort to utilize feed efficiently, promote growth, increase survival and reduce labour costs associated with feeding, Heterobranchus longifilis ingerlings were placed on one of four feeding frequencies; once/day, twice/day; once every other day, and twice every other day for 56 days. They were fed with a commercial ...

  8. Effects of triclosan on host response and microbial biomarkers during experimental gingivitis.

    Science.gov (United States)

    Pancer, Brooke A; Kott, Diana; Sugai, James V; Panagakos, Fotinos S; Braun, Thomas M; Teles, Ricardo P; Giannobile, William V; Kinney, Janet S

    2016-05-01

    This exploratory randomized, controlled clinical trial sought to evaluate anti-inflammatory and -microbial effects of triclosan during experimental gingivitis as assessed by host response biomarkers and biofilm microbial pathogens. Thirty participants were randomized to triclosan or control dentifrice groups who ceased homecare for 21 days in an experimental gingivitis (EG) protocol. Plaque and gingival indices and saliva, plaque, and gingival crevicular fluid (GCF) were assessed/collected at days 0, 14, 21 and 35. Levels and proportions of 40 bacterial species from plaque samples were determined using checkerboard DNA-DNA hybridization. Ten biomarkers associated with inflammation, matrix degradation, and host protection were measured from GCF and saliva and analysed using a multiplex array. Participants were stratified as "high" or "low" responders based on gingival index and GCF biomarkers and bacterial biofilm were combined to generate receiver operating characteristic curves and predict gingivitis susceptibility. No differences in mean PI and GI values were observed between groups and non-significant trends of reduction of host response biomarkers with triclosan treatment. Triclosan significantly reduced levels of A. actinomycetemcomitans and P. gingivalis during induction of gingivitis. Triclosan reduced microbial levels during gingivitis development (ClinicalTrials.gov NCT01799226). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Cross-reactive microbial peptides can modulate HIV-specific CD8+ T cell responses.

    Directory of Open Access Journals (Sweden)

    Christopher W Pohlmeyer

    Full Text Available Heterologous immunity is an important aspect of the adaptive immune response. We hypothesized that this process could modulate the HIV-1-specific CD8+ T cell response, which has been shown to play an important role in HIV-1 immunity and control. We found that stimulation of peripheral blood mononuclear cells (PBMCs from HIV-1-positive subjects with microbial peptides that were cross-reactive with immunodominant HIV-1 epitopes resulted in dramatic expansion of HIV-1-specific CD8+ T cells. Interestingly, the TCR repertoire of HIV-1-specific CD8+ T cells generated by ex vivo stimulation of PBMCs using HIV-1 peptide was different from that of cells stimulated with cross-reactive microbial peptides in some HIV-1-positive subjects. Despite these differences, CD8+ T cells stimulated with either HIV-1 or cross-reactive peptides effectively suppressed HIV-1 replication in autologous CD4+ T cells. These data suggest that exposure to cross-reactive microbial antigens can modulate HIV-1-specific immunity.

  10. Differences in stability of seed-associated microbial assemblages in response to invasion by phytopathogenic microorganisms

    Directory of Open Access Journals (Sweden)

    Samir Rezki

    2016-04-01

    Full Text Available Seeds are involved in the vertical transmission of microorganisms from one plant generation to another and consequently act as reservoirs for the plant microbiota. However, little is known about the structure of seed-associated microbial assemblages and the regulators of assemblage structure. In this work, we have assessed the response of seed-associated microbial assemblages of Raphanus sativus to invading phytopathogenic agents, the bacterial strain Xanthomonas campestris pv. campestris (Xcc 8004 and the fungal strain Alternaria brassicicola Abra43. According to the indicators of bacterial (16S rRNA gene and gyrB sequences and fungal (ITS1 diversity employed in this study, seed transmission of the bacterial strain Xcc 8004 did not change the overall composition of resident microbial assemblages. In contrast seed transmission of Abra43 strongly modified the richness and structure of fungal assemblages without affecting bacterial assemblages. The sensitivity of seed-associated fungal assemblage to Abra43 is mostly related to changes in relative abundance of closely related fungal species that belong to the Alternaria genus. Variation in stability of the seed microbiota in response to Xcc and Abra43 invasions could be explained by differences in seed transmission pathways employed by these micro-organisms, which ultimately results in divergence in spatio-temporal colonization of the seed habitat.

  11. Microbial Community Structure of a Leachfield Soil: Response to Intermittent Aeration and Tetracycline Addition

    Directory of Open Access Journals (Sweden)

    David A. Potts

    2013-04-01

    Full Text Available Soil-based wastewater treatment systems, or leachfields, rely on microbial processes for improving the quality of wastewater before it reaches the groundwater. These processes are affected by physicochemical system properties, such as O2 availability, and disturbances, such as the presence of antimicrobial compounds in wastewater. We examined the microbial community structure of leachfield mesocosms containing native soil and receiving domestic wastewater under intermittently-aerated (AIR and unaerated (LEACH conditions before and after dosing with tetracycline (TET. Community structure was assessed using phospholipid fatty acid analysis (PLFA, analysis of dominant phylotypes using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR–DGGE, and cloning and sequencing of 16S rRNA genes. Prior to dosing, the same PLFA biomarkers were found in soil from AIR and LEACH treatments, although AIR soil had a larger active microbial population and higher concentrations for nine of 32 PLFA markers found. AIR soil also had a larger number of dominant phylotypes, most of them unique to this treatment. Dosing of mesocosms with TET had a more marked effect on AIR than LEACH soil, reducing the size of the microbial population and the number and concentration of PLFA markers. Dominant phylotypes decreased by ~15% in response to TET in both treatments, although the AIR treatment retained a higher number of phylotypes than the LEACH treatment. Fewer than 10% of clones were common to both OPEN ACCESS Water 2013, 5 506 AIR and LEACH soil, and fewer than 25% of the clones from either treatment were homologous with isolates of known genus and species. These included human pathogens, as well as bacteria involved in biogeochemical transformations of C, N, S and metals, and biodegradation of various organic contaminants. Our results show that intermittent aeration has a marked effect on the size and structure of the microbial community that develops in

  12. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    Science.gov (United States)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  13. Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology.

    Science.gov (United States)

    Xue, Yingying; Qian, Chen; Wang, Zhilong; Xu, Jian-He; Yang, Rude; Qi, Hanshi

    2010-01-01

    Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box-Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.

  14. Response of microbial communities to experimental warming and precipitation decrease in Rzecin peatland (Poland)

    Science.gov (United States)

    Basińska, Anna M.; Gąbka, Maciej; Reczuga, Monika; Łuców, Dominika; Stróżecki, Marcin; Samson, Mateusz; Józefczyk, Damian; Chojnicki, Bogdan; Urbaniak, Marek; Leśny, Jacek; Olejnik, Janusz; Gilbert, Daniel; Silvennoinen, Hanna; Juszczak, Radosław; Lamentowicz, Mariusz

    2017-04-01

    In the last decade researchers are intensively testing the consequences of different climate change scenarios. Due to high biodiversity, huge amount of stored carbon and their sensitivity to environmental changes, peatlands became important for the temperature increase and drought experiments. Analyses showed that mosses, vascular plants and microbial communities were affected by warming or drought, but still not all effects are clear. Studying the response of microbial groups and indicators (e.g. mixotrophic species of testate amoeba) to warming in combination with decrease of precipitation will allow to better understand the future environmental changes. To recognize the inflow of organic matter and the carbon fixing processes in disturbed environment, we need to analyse the structure and biomass of main groups living in peatlands and the response of those groups to disturbances. The Polish - Norway "WETMAN" project was designed to recognize biotic and abiotic components of ecosystem response to active warming and decrease of precipitation. In this study we present the response of microbial communities and chosen testate amoeba species (TA) to different treatments: warming, warming and decreased precipitation and only decreased precipitation, in relation to control plots. The microbial biomass of upper and lower Sphagnum segments were analysed separately. Particular microbial groups were positively correlated with manipulations e. g. microalgae and rotifers, and other were negatively affected by combination of drought and warming e.g. cyanobacteria and testate amoeba. The structure of community was modified by manipulations, and differed in the case of upper and lower segment of Sphagnum. RDA analyses showed that different factors were crucial for the biomass of microbial groups in upper (conductivity, temperature and phosphorus) and lower (nitrates and sodium) segment. Considering higher taxonomic resolution we found that at the beginning of the experiment TA

  15. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    Directory of Open Access Journals (Sweden)

    Kai Xue

    2016-09-01

    Full Text Available Clipping (i.e., harvesting aboveground plant biomass is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened.

  16. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution.

    Science.gov (United States)

    Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M

    2016-09-01

    There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events. © 2016 John Wiley & Sons Ltd.

  17. Effects of degradable protein and non-fibre carbohydrates on microbial growth and fermentation in the rumen simulating fermenter (Rusitec

    Directory of Open Access Journals (Sweden)

    Xiang H. Zhao

    2015-05-01

    Full Text Available A rumen simulation technique (Rusitec apparatus with eight 800 ml fermentation vessels was used to investigate the effects of rumen degradable protein (RDP level and non-fibre carbohydrate (NFC type on ruminal fermentation, microbial growth, and populations of ruminal cellulolytic bacteria. Treatments consisted of two NFC types (starch and pectin supplemented with 0 g/d (low RDP or 1.56 g/d (high RDP sodium caseinate. Apparent disappearance of dry matter and organic matter was greater for pectin than for starch treatment (P<0.01 with low or high RDP. A NFC × RDP interaction was observed for neutral detergent fibre disappearance (P=0.01, which was lower for pectin than for starch only under low RDP conditions. Compared with starch, pectin treatment increased the copy numbers of Ruminococcus albus (P≤0.01 and Ruminococcus flavefaciens (P≤0.09, the molar proportion of acetate (P<0.01, the acetate:propionate ratio (P<0.01, and methane production (P<0.01, but reduced the propionate proportion (P<0.01. Increasing dietary RDP increased the production of total VFA (P=0.01, methane (P<0.01, ammonia N (P<0.01, and microbial N (P<0.01. Significant NFC × RDP interaction and interaction tendency were observed for ammonia N production (P=0.01 and daily N flow of total microorganisms (P=0.07, which did not differ under low RDP conditions, but pectin produced greater microbial N and less ammonia N than starch with increased RDP. Results showed NFC type, RDP level, and their interaction affected ruminal fermentation and microbial growth, and under sufficient ruminal degradable N pectin had greater advantage in microbial N synthesis than starch in vitro.

  18. Final technical report. Can microbial functional traits predict the response and resilience of decomposition to global change?

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Steven D. [Univ. of California, Irvine, CA (United States)

    2015-09-24

    The role of specific micro-organisms in the carbon cycle, and their responses to environmental change, are unknown in most ecosystems. This knowledge gap limits scientists’ ability to predict how important ecosystem processes, like soil carbon storage and loss, will change with climate and other environmental factors. The investigators addressed this knowledge gap by transplanting microbial communities from different environments into new environments and measuring the response of community composition and carbon cycling over time. Using state-of-the-art sequencing techniques, computational tools, and nanotechnology, the investigators showed that microbial communities on decomposing plant material shift dramatically with natural and experimentally-imposed drought. Microbial communities also shifted in response to added nitrogen, but the effects were smaller. These changes had implications for carbon cycling, with lower rates of carbon loss under drought conditions, and changes in the efficiency of decomposition with nitrogen addition. Even when transplanted into the same conditions, microbial communities from different environments remained distinct in composition and functioning for up to one year. Changes in functioning were related to differences in enzyme gene content across different microbial groups. Computational approaches developed for this project allowed the conclusions to be tested more broadly in other ecosystems, and new computer models will facilitate the prediction of microbial traits and functioning across environments. The data and models resulting from this project benefit the public by improving the ability to predict how microbial communities and carbon cycling functions respond to climate change, nutrient enrichment, and other large-scale environmental changes.

  19. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes.

    Science.gov (United States)

    Wang, Cheng; Dong, Da; Strong, P J; Zhu, Weijing; Ma, Zhuang; Qin, Yong; Wu, Weixiang

    2017-08-16

    Animal manure is a reservoir of antibiotic resistance genes (ARGs) that pose a potential health risk globally, especially for resistance to the antibiotics commonly used in livestock production (such as tetracycline, sulfonamide, and fluoroquinolone). Currently, the effects of biological treatment (composting) on the transcriptional response of manure ARGs and their microbial hosts are not well characterized. Composting is a dynamic process that consists of four distinct phases that are distinguished by the temperature resulting from microbial activity, namely the mesophilic, thermophilic, cooling, and maturing phases. In this study, changes of resistome expression were determined and related to active microbiome profiles during the dynamic composting process. This was achieved by integrating metagenomic and time series metatranscriptomic data for the evolving microbial community during composting. Composting noticeably reduced the aggregated expression level of the manure resistome, which primarily consisted of genes encoding for tetracycline, vancomycin, fluoroquinolone, beta-lactam, and aminoglycoside resistance, as well as efflux pumps. Furthermore, a varied transcriptional response of resistome to composting at the ARG levels was highlighted. The expression of tetracycline resistance genes (tetM-tetW-tetO-tetS) decreased during composting, where distinctive shifts in the four phases of composting were related to variations in antibiotic concentration. Composting had no effect on the expression of sulfonamide and fluoroquinolone resistance genes, which increased slightly during the thermophilic phase and then decreased to initial levels. As indigenous populations switched greatly throughout the dynamic composting, the core resistome persisted and their reservoir hosts' composition was significantly correlated with dynamic active microbial phylogenetic structure. Hosts for sulfonamide and fuoroquinolone resistance genes changed notably in phylognetic structure

  20. Microbial growth yield estimates from thermodynamics and its importance for degradation of pesticides and formation of biogenic non-extractable residues

    DEFF Research Database (Denmark)

    Brock, Andreas Libonati; Kästner, M.; Trapp, Stefan

    2017-01-01

    NER. Formation of microbial mass can be estimated from the microbial growth yield, but experimental data is rare. Instead, we suggest using prediction methods for the theoretical yield based on thermodynamics. Recently, we presented the Microbial Turnover to Biomass (MTB) method that needs a minimum...... and using the released CO2 as a measure for microbial activity, we predicted a range for the formation of biogenic NER. For the majority of the pesticides, a considerable fraction of the NER was estimated to be biogenic. This novel approach provides a theoretical foundation applicable to the evaluation...

  1. Single-cell genomics reveal metabolic strategies for microbial growth and survival in an oligotrophic aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Michael J.; Kennedy, David W.; Castelle, Cindy; Field, Erin; Stepanauskas, Ramunas; Fredrickson, Jim K.; Konopka, Allan

    2014-02-09

    Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site and have been shown to significantly change in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single cell genomics techniques to shed light on the physiological niche of these microorganisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa3­-type and cbb3-type cytochrome c oxidases. These SAGs encoded a wide-range of both intra-and extra­-cellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors (TBDRs), which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. CRISPR-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic microorganisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area subsurface and biogeochemical shifts associated with Columbia River water intrusion.

  2. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures.

    Science.gov (United States)

    Mazzoleni, Stefano; Landi, Carmine; Cartenì, Fabrizio; de Alteriis, Elisabetta; Giannino, Francesco; Paciello, Lucia; Parascandola, Palma

    2015-07-30

    Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.

  3. Response of broiler chickens to diets containing artificially dried high-moisture maize supplemented with microbial enzymes

    OpenAIRE

    Bhuiyan, M.M; Islam, A.F; Iji, P.A

    2010-01-01

    The effect of feeding high-moisture maize grains dried in the sun or artificially in a forced draught oven at 80, 90 or 100 ºC for 24 hours and supplemented with microbial enzymes (Avizyme 1502 and Phyzyme XP) on growth performance, visceral organs, tissue protein, enzyme activity and gut development was investigated in a broiler growth trial. Feed intake (FI) up to 21 days decreased as a results of oven drying of grains whereas supplementation with microbial enzymes increased FI compared to ...

  4. Growth response of juveniles of Clarias bidorsalis to imported ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... Growth response of Clarias bidorsalis juveniles weighing between 5 - 10 g that were fed with extruded. (floating) imported ... and showed that daily food consumption and weight gain of fish that were ... mental period. The feed ...

  5. growth and yield response of carrot (daucus carota l.)

    African Journals Online (AJOL)

    User

    Mampong Campus to investigate the growth and yield responses of carrot to different rates of soil amendments ... quires a deep and well-drained loamy soil with high amount of ... The factors considered in the ..... processing carrot root yields.

  6. Microbial growth in Acrocomia aculeata pulp oil, Jatropha curcas oil, and their respective biodiesels under simulated storage conditions

    Directory of Open Access Journals (Sweden)

    Juciana Clarice Cazarolli

    2016-12-01

    Full Text Available With increasing demands for biodiesel in Brazil, diverse oil feedstocks have been investigated for their potentials for biodiesel production. Due to the high biodegradability of natural oils and their respective biodiesels, microbial growths and consequent deterioration of final product quality are generally observed during storage. This study was aimed at evaluating the susceptibility of Acrocomia aculeata pulp oil and Jatropha curcas oil as well as their respective biodiesels to biodeterioration during a simulated storage period. The experiment was conducted in microcosms containing oil/biodiesel and an aqueous phase over 30 d. The levels of microbial contamination included biodiesel and oil as received, inoculated with fungi, and sterile. Samples were collected every 7 d to measure pH, surface tension, acidity index, and microbial biomass. The initial and final ester contents of the biodiesels were also determined by gas chromatography. The major microbial biomass was detected in A. aculeata pulp and J. curcas biodiesels. Significant reductions in pH values were observed for treatments with A. aculeata pulp biodiesel as a carbon source (p

  7. Life in Ice: Microbial Growth Dynamics and Greenhouse Gas Production During Winter in a Thermokarst Bog Revealed by Stable Isotope Probing Targeted Metagenomics

    Science.gov (United States)

    Blazewicz, S.; White, R. A., III; Tas, N.; Euskirchen, E. S.; Mcfarland, J. W.; Jansson, J.; Waldrop, M. P.

    2016-12-01

    Permafrost contains a reservoir of frozen C estimated to be twice the size of the current atmospheric C pool. In response to changing climate, permafrost is rapidly warming which could result in widespread seasonal thawing. When permafrost thaws, soils that are rich in ice and C often transform into thermokarst wetlands with anaerobic conditions and significant production of atmospheric CH4. While most C flux research in recently thawed permafrost concentrates on the few summer months when seasonal thaw has occurred, there is mounting evidence that sizeable portions of annual CO2 and CH4 efflux occurs over winter or during a rapid burst of emissions associated with seasonal thaw. A potential mechanism for such efflux patterns is microbial activity in frozen soils over winter where gasses produced are partially trapped within ice until spring thaw. In order to better understand microbial transformation of soil C to greenhouse gas over winter, we applied stable isotope probing (SIP) targeted metagenomics combined with process measurements and field flux data to reveal activities of microbial communities in `frozen' soil from an Alaskan thermokarst bog. Field studies revealed build-up of CO2 and CH4 in frozen soils suggesting that microbial activity persisted throughout the winter in soils poised just below the freezing point. Laboratory incubations designed to simulate in-situ winter conditions (-1.5 °C and anaerobic) revealed continuous CH4 and CO2 production. Strikingly, the quantity of CH4 produced in 6 months in frozen soil was equivalent to approximately 80% of CH4 emitted during the 3 month summer `active' season. Heavy water SIP targeted iTag sequencing revealed growing bacteria and archaea in the frozen anaerobic soil. Growth was primarily observed in two bacterial phyla, Firmicutes and Bacteroidetes, suggesting that fermentation was likely the major C mineralization pathway. SIP targeted metagenomics facilitated characterization of the primary metabolic

  8. Growth, haematological and biochemical responses of growing ...

    African Journals Online (AJOL)

    p2492989

    Abstract. Physiological and productive responses to recombinant bovine somatotropin (rbST) injection and calcium soap of fatty acids (CSFA) supplementation were studied in post-weaning male Rahmani lambs. Male lambs (n = 20) of similar initial body weight (27.9 kg) and age (162 d) were divided randomly into four.

  9. The utilization of microbial inoculants based on irradiated compost in dryland remediation to increase the growth of king grass and maize

    International Nuclear Information System (INIS)

    TRD Larasati; N Mulyana; D Sudradjat

    2016-01-01

    This research was conducted to evaluate the capability of functional microbial inoculants to remediate drylands. The microbial inoculants used consist of hydrocarbon-degrading microbial inoculants and plant-growth-promoting microbial inoculants. Compost-based carrier was sterilized by a gamma irradiation dose of 25 kGy to prepare seed inoculants. The irradiated-compost-based hydrocarbon-degrading microbial inoculants and king grass (Pennisetum purpureum Schumach.) were used to remediate oil-sludge-contaminated soil using in-situ composting for 60 days. The results showed that they could reduce THP (total petroleum hydrocarbons) by up to 82.23%. Plant-growth-promoting microbial inoculants were able to increase the dry weight of king grass from 47.39 to 100.66 g/plant, N uptake from 415.53 to 913.67 mg/plant, and P uptake from 76.52 to 178.33 mg/plant. Cow dung and irradiated-compost-based plant-growth-promoting microbial inoculants were able to increase the dry weight of maize (Zea mays L.) from 5.75 to 6.63 ton/ha (12.54%) and dry weight of grain potential from 5.30 to 7.15 ton/ha (35.03%). The results indicate that irradiated-compost-based microbial inoculants are suitable for remediating a dryland and therefore increase potential resources and improve the quality of the environment. (author)

  10. Response of soil microbial communities to roxarsone pollution along a concentration gradient.

    Science.gov (United States)

    Liu, Yaci; Zhang, Zhaoji; Li, Yasong; Wen, Yi; Fei, Yuhong

    2017-07-29

    The extensive use of roxarsone (3-nitro-4-hydroxyphenylarsonic acid) as a feed additive in the broiler poultry industry can lead to environmental arsenic contamination. This study was conducted to reveal the response of soil microbial communities to roxarsone pollution along a concentration gradient. To explore the degradation process and degradation kinetics of roxarsone concentration gradients in soil, the concentration shift of roxarsone at initial concentrations of 0, 50, 100, and 200 mg/kg, as well as that of the arsenic derivatives, was detected. The soil microbial community composition and structure accompanying roxarsone degradation were investigated by high-throughput sequencing. The results showed that roxarsone degradation was inhibited by a biological inhibitor, confirming that soil microbes were absolutely essential to its degradation. Moreover, soil microbes had considerable potential to degrade roxarsone, as a high initial concentration of roxarsone resulted in a substantially increased degradation rate. The concentrations of the degradation products HAPA (3-amino-4-hydroxyphenylarsonic acid), AS(III), and AS(V) in soils were significantly positively correlated. The soil microbial community composition and structure changed significantly across the roxarsone contamination gradient, and the addition of roxarsone decreased the microbial diversity. Some bacteria tended to be inhibited by roxarsone, while Bacillus, Paenibacillus, Arthrobacter, Lysobacter, and Alkaliphilus played important roles in roxarsone degradation. Moreover, HAPA, AS(III), and AS(V) were significantly positively correlated with Symbiobacterium, which dominated soils containing roxarsone, and their abundance increased with increasing initial roxarsone concentration. Accordingly, Symbiobacterium could serve as indicator of arsenic derivatives released by roxarsone as well as the initial roxarsone concentration. This is the first investigation of microbes closely related to roxarsone

  11. Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    Science.gov (United States)

    Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin

    2011-01-01

    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722

  12. Microbial Shifts in the Intestinal Microbiota of Salmonella Infected Chickens in Response to Enrofloxacin.

    Science.gov (United States)

    Li, Jun; Hao, Haihong; Cheng, Guyue; Liu, Chunbei; Ahmed, Saeed; Shabbir, Muhammad A B; Hussain, Hafiz I; Dai, Menghong; Yuan, Zonghui

    2017-01-01

    Fluoroquinolones (FQs) are important antibiotics used for treatment of Salmonella infection in poultry in many countries. However, oral administration of fluoroquinolones may affect the composition and abundance of a number of bacterial taxa in the chicken intestine. Using 16S rRNA gene sequencing, the microbial shifts in the gut of Salmonella infected chickens in response to enrofloxacin treatments at different dosages (0, 0.1, 4, and 100 mg/kg b.w.) were quantitatively evaluated. The results showed that the shedding levels of Salmonella were significantly reduced in the high dosage group as demonstrated by both the culturing method and 16S rRNA sequencing method. The average values of diversity indices were higher in the control group than in the three medicated groups. Non-metric multidimensional scaling (NMDS) analysis results showed that the microbial community of high dosage group was clearly separated from the other three groups. In total, 25 genera were significantly enriched (including 6 abundant genera: Lactococcus , Bacillus , Burkholderia , Pseudomonas , Rhizobium , and Acinetobacter ) and 23 genera were significantly reduced in the medicated groups than in the control group for the treatment period, but these bacterial taxa recovered to normal levels after therapy withdrawal. Additionally, 5 genera were significantly reduced in both treatment and withdrawal periods (e.g., Blautia and Anaerotruncus ) and 23 genera (e.g., Enterobacter and Clostridium ) were significantly decreased only in the withdrawal period, indicating that these genera might be the potential targets for the fluoroquinolones antimicrobial effects. Specially, Enterococcus was significantly reduced under high dosage of enrofloxacin treatment, while significantly enriched in the withdrawal period, which was presumably due to the resistance selection. Predicted microbial functions associated with genetic information processing were significantly decreased in the high dosage group. Overall

  13. Microbial Shifts in the Intestinal Microbiota of Salmonella Infected Chickens in Response to Enrofloxacin

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-09-01

    Full Text Available Fluoroquinolones (FQs are important antibiotics used for treatment of Salmonella infection in poultry in many countries. However, oral administration of fluoroquinolones may affect the composition and abundance of a number of bacterial taxa in the chicken intestine. Using 16S rRNA gene sequencing, the microbial shifts in the gut of Salmonella infected chickens in response to enrofloxacin treatments at different dosages (0, 0.1, 4, and 100 mg/kg b.w. were quantitatively evaluated. The results showed that the shedding levels of Salmonella were significantly reduced in the high dosage group as demonstrated by both the culturing method and 16S rRNA sequencing method. The average values of diversity indices were higher in the control group than in the three medicated groups. Non-metric multidimensional scaling (NMDS analysis results showed that the microbial community of high dosage group was clearly separated from the other three groups. In total, 25 genera were significantly enriched (including 6 abundant genera: Lactococcus, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Acinetobacter and 23 genera were significantly reduced in the medicated groups than in the control group for the treatment period, but these bacterial taxa recovered to normal levels after therapy withdrawal. Additionally, 5 genera were significantly reduced in both treatment and withdrawal periods (e.g., Blautia and Anaerotruncus and 23 genera (e.g., Enterobacter and Clostridium were significantly decreased only in the withdrawal period, indicating that these genera might be the potential targets for the fluoroquinolones antimicrobial effects. Specially, Enterococcus was significantly reduced under high dosage of enrofloxacin treatment, while significantly enriched in the withdrawal period, which was presumably due to the resistance selection. Predicted microbial functions associated with genetic information processing were significantly decreased in the high dosage group

  14. Microbial Community Response to Simulated Petroleum Seepage in Caspian Sea Sediments

    Directory of Open Access Journals (Sweden)

    Katrin Knittel

    2017-04-01

    Full Text Available Anaerobic microbial hydrocarbon degradation is a major biogeochemical process at marine seeps. Here we studied the response of the microbial community to petroleum seepage simulated for 190 days in a sediment core from the Caspian Sea using a sediment-oil-flow-through (SOFT system. Untreated (without simulated petroleum seepage and SOFT sediment microbial communities shared 43% bacterial genus-level 16S rRNA-based operational taxonomic units (OTU0.945 but shared only 23% archaeal OTU0.945. The community differed significantly between sediment layers. The detection of fourfold higher deltaproteobacterial cell numbers in SOFT than in untreated sediment at depths characterized by highest sulfate reduction rates and strongest decrease of gaseous and mid-chain alkane concentrations indicated a specific response of hydrocarbon-degrading Deltaproteobacteria. Based on an increase in specific CARD-FISH cell numbers, we suggest the following groups of sulfate-reducing bacteria to be likely responsible for the observed decrease in aliphatic and aromatic hydrocarbon concentration in SOFT sediments: clade SCA1 for propane and butane degradation, clade LCA2 for mid- to long-chain alkane degradation, clade Cyhx for cycloalkanes, pentane and hexane degradation, and relatives of Desulfobacula for toluene degradation. Highest numbers of archaea of the genus Methanosarcina were found in the methanogenic zone of the SOFT core where we detected preferential degradation of long-chain hydrocarbons. Sequencing of masD, a marker gene for alkane degradation encoding (1-methylalkylsuccinate synthase, revealed a low diversity in SOFT sediment with two abundant species-level MasD OTU0.96.

  15. Effect of dry mycelium of Penicillium chrysogenum fertilizer on soil microbial community composition, enzyme activities and snap bean growth.

    Science.gov (United States)

    Wang, Bing; Liu, Huiling; Cai, Chen; Thabit, Mohamed; Wang, Pu; Li, Guomin; Duan, Ziheng

    2016-10-01

    The dry mycelium fertilizer (DMF) was produced from penicillin fermentation fungi mycelium (PFFM) following an acid-heating pretreatment to degrade the residual penicillin. In this study, it was applied into soil as fertilizer to investigate its effects on soil properties, phytotoxicity, microbial community composition, enzyme activities, and growth of snap bean in greenhouse. As the results show, pH, total nitrogen, total phosphorus, total potassium, and organic matter of soil with DMF treatments were generally higher than CON treatment. In addition, the applied DMF did not cause heavy metal and residual drug pollution of the modified soil. The lowest GI values (<0.3) were recorded at DMF8 (36 kg DMF/plat) on the first days after applying the fertilizer, indicating that severe phytotoxicity appeared in the DMF8-modified soil. Results of microbial population and enzyme activities illustrated that DMF was rapidly decomposed and the decomposition process significantly affected microbial growth and enzyme activities. The DMF-modified soil phytotoxicity decreased at the late fertilization time. DMF1 was considered as the optimum amount of DMF dose based on principal component analysis scores. Plant height and plant yield of snap bean were remarkably enhanced with the optimum DMF dose.

  16. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    Directory of Open Access Journals (Sweden)

    M J L Coolen

    2015-03-01

    Full Text Available Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gases, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after eleven days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.

  17. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    Science.gov (United States)

    Coolen, Marco J. L.; Orsi, William D.

    2015-01-01

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw. PMID:25852660

  18. Improved growth response to GH treatment in irradiated children

    International Nuclear Information System (INIS)

    Lannering, B.; Albertsson-Wikland, K.

    1989-01-01

    The growth response to two years of GH treatment was studied in fifteen children after radiotherapy for a cranial tumour. The growth response was compared to that of short children (-2 SD) and that of children with idiopathic growth hormone deficiency (GHD) of similar ages. All children were treated with hGH 0.1 IU/kg/day s.c.; which is a higher dose and frequency than previously reported for irradiated children. On this protocol the growth rate increased 5.0 +- 0.5 cm/y (mean +- SEM) the first year and 3.8 +- 0.7 cm/y the second year compared to the growth rate the year before GH-treatment. Although the net gain in growth was higher than previously reported, the first year growth response was significantly reduced (p less than 0.05) compared to that of GHD-children (7.6 +- 0.5 cm/y) but exceeded (p less than 0.05) that of short children (3.4 +- 0.3 cm/y). The median spontaneous 24 h-GH secretion was 209 mU/l in the short children, 52 mU/l in the irradiated children and 16 mU/l in the idiopathic GHD children. Thus the growth increment varied inversely to the spontaneous GH secretion observed in the three groups

  19. Early growth and postprandial appetite regulatory hormone responses

    DEFF Research Database (Denmark)

    Perälä, Mia-Maria; Kajantie, Eero; Valsta, Liisa M

    2013-01-01

    Strong epidemiological evidence suggests that slow prenatal or postnatal growth is associated with an increased risk of CVD and other metabolic diseases. However, little is known whether early growth affects postprandial metabolism and, especially, the appetite regulatory hormone system. Therefore......, we investigated the impact of early growth on postprandial appetite regulatory hormone responses to two high-protein and two high-fat content meals. Healthy, 65-75-year-old volunteers from the Helsinki Birth Cohort Study were recruited; twelve with a slow increase in BMI during the first year of life......, early growth may have a role in programming appetite regulatory hormone secretion in later life. Slow early growth is also associated with higher postprandial insulin and TAG responses but not with incretin levels....

  20. Microbial Response to UV Exposure and Nitrogen Limitation in Desert Soil Crusts

    Science.gov (United States)

    Fulton, J. M.; Van Mooy, B. A.

    2016-12-01

    Microbiotic soil crusts have diverse biomarker distributions and C and N stable isotopic compositions that covary with soil type. Sparse plant cover and the relative lack of soil disturbance in arid/semi-arid landscapes allows populations of soil cyanobacteria to develop along with fungi and heterotrophic bacteria. Microbial communities in this extreme environment depend in part on the production of scytonemin, a UV protective pigment, by cyanobacteria near the top of the crust. N limitation of microbial growth also affects soil crust population dynamics, increasing the requirement of N2fixation by diazotrophic cyanobacteria. We collected 56 soil crust samples from 27 locations throughout the Great Salt Lake Desert, including four transects spanning high-elevation, erosion-dominated soils to lower elevation soils dominated by silt-accumulation. Erosion-dominated soil surfaces included rounded gravel and cobbles; in the interstices there were poorly-developed microbiotic crusts on sandy loam with low δ15N values near 0‰ that point toward microbial growth dependent on cyanobacterial N2 fixation. Nutrients regenerated by heterotrophic bacteria may have been eroded from the system, providing a positive feedback for N2 fixation. High scytonemin:chlorophyll a ratios suggest that cyanobacteria required enhanced protection from UV damage in these crusts. A similar increase in scytonemin:chlorophyll a ratio during soil crust rehydration experiments also points toward the importance of UV protection. Glycolipid:phospholipid ratios were lowest where N2 fixation was favored, however, suggesting that the cyanobacterial population was relatively small, possibly because of the metabolic cost of N2fixation. Microbiotic crusts on silt loam soils, on the other hand, had higher δ15N values between 3.5 and 7.8‰, consistent with heterotrophic growth and nutrient recycling. Lower scytonemin:chlorophyll a ratios suggest that relatively high photosynthetic activity was supported in

  1. Spring thaw ionic pulses boost nutrient availability and microbial growth in entombed Antarctic Dry Valley cryoconite holes.

    Science.gov (United States)

    Telling, Jon; Anesio, Alexandre M; Tranter, Martyn; Fountain, Andrew G; Nylen, Thomas; Hawkings, Jon; Singh, Virendra B; Kaur, Preeti; Musilova, Michaela; Wadham, Jemma L

    2014-01-01

    The seasonal melting of ice entombed cryoconite holes on McMurdo Dry Valley glaciers provides oases for life in the harsh environmental conditions of the polar desert where surface air temperatures only occasionally exceed 0°C during the Austral summer. Here we follow temporal changes in cryoconite hole biogeochemistry on Canada Glacier from fully frozen conditions through the initial stages of spring thaw toward fully melted holes. The cryoconite holes had a mean isolation age from the glacial drainage system of 3.4 years, with an increasing mass of aqueous nutrients (dissolved organic carbon, total nitrogen, total phosphorus) with longer isolation age. During the initial melt there was a mean nine times enrichment in dissolved chloride relative to mean concentrations of the initial frozen holes indicative of an ionic pulse, with similar mean nine times enrichments in nitrite, ammonium, and dissolved organic matter. Nitrate was enriched twelve times and dissolved organic nitrogen six times, suggesting net nitrification, while lower enrichments for dissolved organic phosphorus and phosphate were consistent with net microbial phosphorus uptake. Rates of bacterial production were significantly elevated during the ionic pulse, likely due to the increased nutrient availability. There was no concomitant increase in photosynthesis rates, with a net depletion of dissolved inorganic carbon suggesting inorganic carbon limitation. Potential nitrogen fixation was detected in fully melted holes where it could be an important source of nitrogen to support microbial growth, but not during the ionic pulse where nitrogen availability was higher. This study demonstrates that ionic pulses significantly alter the timing and magnitude of microbial activity within entombed cryoconite holes, and adds credence to hypotheses that ionic enrichments during freeze-thaw can elevate rates of microbial growth and activity in other icy habitats, such as ice veins and subglacial regelation zones.

  2. Effect of different film packaging on microbial growth in minimally processed cactus pear (Opuntia ficus-indica).

    Science.gov (United States)

    Palma, A; Mangia, N P; Fadda, A; Barberis, A; Schirra, M; D'Aquino, S

    2013-01-01

    Microorganisms are natural contaminants of fresh produce and minimally processed products, and contamination arises from a number of sources, including the environment, postharvest handling and processing. Fresh-cut products are particularly susceptible to microbial contaminations because of the changes occurring in the tissues during processing. In package gas composition of modified atmosphere packaging (MAP) in combination with low storage temperatures besides reducing physiological activity of packaged produce, can also delay pathogen growth. Present study investigated on the effect of MAPs, achieved with different plastic films, on microbial growth of minimally processed cactus pear (Opuntio ficus-indica) fruit. Five different plastic materials were used for packaging the manually peeled fruit. That is: a) polypropylene film (Termoplast MY 40 micron thickness, O2 transmission rate 300 cc/m2/24h); b) polyethylene film (Bolphane BHE, 11 micron thickness, O2 transmission rate 19000 cc/m2/24h); c) polypropylene laser-perforated films (Mach Packaging) with 8, 16 or 32 100-micron holes. Total aerobic psychrophilic, mesophilic microorganisms, Enterobacteriaceae, yeast, mould populations and in-package CO2, O2 and C2H4 were determined at each storage time. Different final gas compositions, ranging from 7.8 KPa to 17.1 KPa O2, and 12.7 KPa to 2.6 KPa CO2, were achieved with MY and micro perforated films, respectively. Differences were detected in the mesophilic, Enterobacteriaceae and yeast loads, while no difference was detected in psychrophilic microorganisms. At the end of storage, microbial load in fruits sealed with MY film was significantly lower than in those sealed with BHE and micro perforated films. Furthermore, fruits packed with micro-perforated films showed the highest microbial load. This occurrence may in part be related to in-package gas composition and in part to a continuous contamination of microorganisms through micro-holes.

  3. Spring thaw ionic pulses boost nutrient availability and microbial growth in entombed Antarctic Dry Valley cryoconite holes

    Directory of Open Access Journals (Sweden)

    Jon eTelling

    2014-12-01

    Full Text Available The seasonal melting of ice entombed cryoconite holes on McMurdo Dry Valley glaciers provides oases for life in the harsh environmental conditions of the polar desert where surface air temperatures only occasionally exceed 0°C during the Austral summer. Here we follow temporal changes in cryoconite hole biogeochemistry on Canada Glacier from fully frozen conditions through the initial stages of spring thaw towards fully melted holes. The cryoconite holes had a mean isolation age from the glacial drainage system of 3.4 years, with an increasing mass of aqueous nutrients (dissolved organic carbon, total nitrogen, total phosphorus with longer isolation age. During the initial melt there was a mean nine times enrichment in dissolved chloride relative to mean concentrations of the initial frozen holes indicative of an ionic pulse, with similar mean nine times enrichments in nitrite, ammonium, and dissolved organic matter. Nitrate was enriched twelve times and dissolved organic nitrogen six times, suggesting net nitrification, while lower enrichments for dissolved organic phosphorus and phosphate were consistent with net microbial phosphorus uptake. Rates of bacterial production were significantly elevated during the ionic pulse, likely due to the increased nutrient availability. There was no concomitant increase in photosynthesis rates, with a net depletion of dissolved inorganic carbon suggesting inorganic carbon limitation. Potential nitrogen fixation was detected in fully melted holes where it could be an important source of nitrogen to support microbial growth, but not during the ionic pulse where nitrogen availability was higher. This study demonstrates that ionic pulses significantly alter the timing and magnitude of microbial activity within entombed cryoconite holes, and adds credence to hypotheses that ionic enrichments during freeze-thaw can elevate rates of microbial growth and activity in other icy habitats, such as ice veins and

  4. Review of microbial responses to abiotic environmental factors in the context of the proposed Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A [Lawrence Livermore National Lab., Livermore, CA (United States); Stroes-Gascoyne, S

    2000-10-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behaviour into performance assessment models. One effort was to expand an existing modelling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories, 1) abiotic factors, 2) community dynamics and in-situ considerations, 3) nutrient considerations and 4) transport of radionuclides. The complete bibliography (included in Appendix A) represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain. The first part of the report (Chapters 1-3) is a review of general microbial states, phases and requirements for growth, conditions for 'normal growth' and other types of growth, survival strategies and cell death. It contains primarily well-established ideas in microbiology. Microbial capabilities for survival and adaptation to environmental changes are examined because a repository placed at Yucca Mountain would have two effects. First, the natural environment would be perturbed by the excavation and construction of the repository and

  5. Review of microbial responses to abiotic environmental factors in the context of the proposed Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A. [Lawrence Livermore National Lab., Livermore, CA (United States); Stroes-Gascoyne, S

    2000-10-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behaviour into performance assessment models. One effort was to expand an existing modelling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories, 1) abiotic factors, 2) community dynamics and in-situ considerations, 3) nutrient considerations and 4) transport of radionuclides. The complete bibliography (included in Appendix A) represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain. The first part of the report (Chapters 1-3) is a review of general microbial states, phases and requirements for growth, conditions for 'normal growth' and other types of growth, survival strategies and cell death. It contains primarily well-established ideas in microbiology. Microbial capabilities for survival and adaptation to environmental changes are examined because a repository placed at Yucca Mountain would have two effects. First, the natural environment would be perturbed by the excavation and construction of the

  6. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system.

    Science.gov (United States)

    Bowker, Colleen; Sain, Amanda; Shatalov, Max; Ducoste, Joel

    2011-02-01

    A research study has been performed to determine the ultraviolet (UV) fluence-response of several target non-pathogenic microorganisms to UV light emitting diodes (UV-LEDs) by performing collimated beam tests. UV-LEDs do not contain toxic mercury, offer design flexibility due to their small size, and have a longer operational life than mercury lamps. Comsol Multiphysics was utilized to create an optimal UV-LED collimated beam design based on number and spacing of UV-LEDs and distance of the sample from the light source while minimizing the overall cost. The optimized UV-LED collimated beam apparatus and a low-pressure mercury lamp collimated beam apparatus were used to determine the UV fluence-response of three surrogate microorganisms (Escherichia coli, MS-2, T7) to 255 nm UV-LEDs, 275 nm UV-LEDs, and 254 nm low-pressure mercury lamps. Irradiation by low-pressure mercury lamps produced greater E. coli and MS-2 inactivation than 255 nm and 275 nm UV-LEDs and similar T7 inactivation to irradiation by 275 nm UV-LEDs. The 275 nm UV-LEDs produced more efficient T7 and E. coli inactivation than 255 nm UV-LEDs while both 255 nm and 275 nm UV-LEDs produced comparable microbial inactivation for MS-2. Differences may have been caused by a departure from the time-dose reciprocity law due to microbial repair mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Inhibitors degradation and microbial response during continuous anaerobic conversion of hydrothermal liquefaction wastewater.

    Science.gov (United States)

    Si, Buchun; Li, Jiaming; Zhu, Zhangbing; Shen, Mengmeng; Lu, Jianwen; Duan, Na; Zhang, Yuanhui; Liao, Qiang; Huang, Yun; Liu, Zhidan

    2018-07-15

    One critical challenge of hydrothermal liquefaction (HTL) is its complex aqueous product, which has a high concentration of organic pollutants (up to 100gCOD/L) and diverse fermentation inhibitors, such as furfural, phenolics and N-heterocyclic compounds. Here we report continuous anaerobic digestion of HTL wastewater via an up-flow anaerobic sludge bed reactor (UASB) and packed bed reactor (PBR). Specifically, we investigated the transformation of fermentation inhibitors and microbial response. GC-MS identified the complete degradation of furfural and 5-hydroxymethylfurfural (5-HMF), and partial degradation (54.0-74.6%) of organic nitrogen and phenolic compounds, including 3-hydroxypyridine, phenol and 4-ethyl-phenol. Illumina MiSeq sequencing revealed that the bacteria families related to detoxification increased in response to the HTL aqueous phase. In addition, the increase of acetate-oxidizing bacteria in UASB and acetogens in PBR showed a strengthened acetogenesis. As for the archaeal communities, an increase in hydrogenotrophic methanogens was observed. Based on GC-MS/HPLC and microbial analysis, we speculate that dominant fermentation inhibitors were transformed into intermediates (Acetyl-CoA and acetate), further contributing to biomethane formation. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. New insights into microbial responses to oil spills from the Deepwater Horizon incident

    Energy Technology Data Exchange (ETDEWEB)

    Mason, O.U.; Hazen, T.C.

    2011-06-15

    On April 20, 2010, a catastrophic eruption of methane caused the Deepwater Horizon exploratory drill rig drilling the Macondo Well in Mississippi Canyon Block 252 (MC252) to explode. The Deepwater Horizon oil spill was unprecendeted for several reasons: the volume of oil released; the spill duration; the well depth; the distance from the shore-line (77 km or about 50 miles); the type of oil (light crude); and the injection of dispersant directly at the wellhead. This study clearly demonstrated that there was a profound and significant response by certain members of the in situ microbial community in the deep-sea in the Gulf of Mexico. In particular putative hydrocarbon degrading Bacteria appeared to bloom in response to the Deepwater Horizon oil spill, even though the temperature at these depths is never >5 C. As the plume aged the shifts in the microbial community on a temporal scale suggested that different, yet metabolically important members of the community were able to respond to a myriad of plume constituents, e.g. shifting from propane/ethane to alkanes and finally to methane. Thus, the biodegradation of hydrocarbons in the plume by Bacteria was a highly significant process in the natural attenuation of many compounds released during the Deepwater Horizon oil spill.

  9. Different Mechanisms of Soil Microbial Response to Global Change Result in Different Outcomes in the MIMICS-CN Model

    Science.gov (United States)

    Kyker-Snowman, E.; Wieder, W. R.; Grandy, S.

    2017-12-01

    Microbial-explicit models of soil carbon (C) and nitrogen (N) cycling have improved upon simulations of C and N stocks and flows at site-to-global scales relative to traditional first-order linear models. However, the response of microbial-explicit soil models to global change factors depends upon which parameters and processes in a model are altered by those factors. We used the MIcrobial-MIneral Carbon Stabilization Model with coupled N cycling (MIMICS-CN) to compare modeled responses to changes in temperature and plant inputs at two previously-modeled sites (Harvard Forest and Kellogg Biological Station). We spun the model up to equilibrium, applied each perturbation, and evaluated 15 years of post-perturbation C and N pools and fluxes. To model the effect of increasing temperatures, we independently examined the impact of decreasing microbial C use efficiency (CUE), increasing the rate of microbial turnover, and increasing Michaelis-Menten kinetic rates of litter decomposition, plus several combinations of the three. For plant inputs, we ran simulations with stepwise increases in metabolic litter, structural litter, whole litter (structural and metabolic), or labile soil C. The cumulative change in soil C or N varied in both sign and magnitude across simulations. For example, increasing kinetic rates of litter decomposition resulted in net releases of both C and N from soil pools, while decreasing CUE produced short-term increases in respiration but long-term accumulation of C in litter pools and shifts in soil C:N as microbial demand for C increased and biomass declined. Given that soil N cycling constrains the response of plant productivity to global change and that soils generate a large amount of uncertainty in current earth system models, microbial-explicit models are a critical opportunity to advance the modeled representation of soils. However, microbial-explicit models must be improved by experiments to isolate the physiological and stoichiometric

  10. Douglas-fir displays a range of growth responses to ...

    Science.gov (United States)

    Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) growth in the Pacific Northwest is affected by climatic, edaphic factors and Swiss needle cast (SNC) disease. We examine Douglas-fir growth responses to temperature, dewpoint deficit (DPD), soil moisture, and SNC using time series intervention analysis of intra-annual tree-ring width data collected at nine forest stands in western Oregon, USA. The effects of temperature and SNC were similar in importance on tree growth at all sites. Previous-year DPD during the annual drought period was a key factor limiting growth regionally. Winter temperature was more important at high elevation cool sites, whereas summer temperature was more important at warm and dry sites. Growth rate increased with summer temperature to an optimum (Topt) then decreased at higher temperatures. At drier sites, temperature and water affected growth interactively such that Topt decreased with decreasing summer soil moisture. With climate change, growth rates increased at high elevation sites and declined at mid-elevation inland sites since ~1990. Growth response to climate is masked by SNC regionally. We conclude that as temperature rises and precipitation patterns shift towards wetter winters and drier summers, Douglas-fir will experience greater temperature and water stress and an increase in severity of SNC. By the end of the 21st century, climate models predict hotter, drier summers and warmer, wetter winters in the Pac

  11. Microbial Inoculantes Effects on Growth Promotion of Mangrove and Citrullus vulgaris San Andrés Isla, Colombia

    Directory of Open Access Journals (Sweden)

    Tania Galindo

    2006-01-01

    Full Text Available In order to test the effect of two microbial inoculants (obtained from red and black mangrove roots on the growth and stability of mangrove and watermelon plants, four treatments were carried out in San Andres Island, Colombia. The treatments consisted in the application of the inoculants in: A. germinans propagules collected in a mangrove area, and then individually planted in gavels with sun-pasteurized soil (in order to decrease the microbial load, A. germinans and R. mangle plants collected in the proximity of nursery trees, A. germinans and R. mangle planted and maintained in nursery, and in Citrullus vulgaris seeds planted in a traditional cultivar without chemical fertilizers. The growth and vegetative development variables were: number of nodes, number of leaves and steam length. The inoculants (phosphate solubilizing microorganisms -PSM- and nitrogen fixing bacteria -NFB- were applied in the mentioned vegetable material, doing measures during three months. The results show a positive effect on growth measured by steam length in plants treated specifically with the inoculants in C. vulgaris and A. germinans seedlings maintained in nursery.

  12. Microbial growth and sensory quality of dried potato slices irradiated by electrons

    International Nuclear Information System (INIS)

    Kim, Hyun-Jin; Song, Hyeon-Jeong; Song, Kyung-Bin

    2011-01-01

    Electron beam irradiation was applied to secure the microbial safety of dried purple sweet potato. After purple sweet potato slices had been dehydrated with 20% (w/w) maltodextrin solution, the samples were irradiated at doses 2, 4, 6, 8, and 10 kGy and then stored at 20 o C for 60 days. Microbiological data indicated that the populations of total aerobic bacteria and of yeast and molds significantly decreased with increase in irradiation dosage. Specifically, microbial load was reduced by about three log cycles at 6 kGy compared to those of the control. Based on the color measurement of the potato slices, electron beam irradiation treatment did not affect the color quality. Sensory evaluation results also showed that electron beam irradiation did not affect overall sensory scores during storage. These results suggest that electron beam irradiation could be useful for improving microbial safety without impairing the quality of the potato slices during storage.

  13. Optimization of marine waste based-growth media for microbial lipase production using mixture design methodology.

    Science.gov (United States)

    Sellami, Mohamed; Kedachi, Samiha; Frikha, Fakher; Miled, Nabil; Ben Rebah, Faouzi

    2013-01-01

    Lipase production by Staphylococcus xylosus and Rhizopus oryzae was investigated using a culture medium based on a mixture of synthetic medium and supernatants generated from tuna by-products and Ulva rigida biomass. The proportion of the three medium components was optimized using the simplex-centroid mixture design method (SCMD). Results indicated that the experimental data were in good agreement with predicted values, indicating that SCMD was a reliable method for determining the optimum mixture proportion of the growth medium. Maximal lipase activities of 12.5 and 23.5 IU/mL were obtained with a 50:50 (v:v) mixture of synthetic medium and tuna by-product supernatant for Staphylococcus xylosus and Rhizopus oryzae, respectively. The predicted responses from these mixture proportions were also validated experimentally.

  14. Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak.

    Science.gov (United States)

    Morales, Sergio E; Holben, William E

    2013-01-01

    Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2) emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface and near-surface soils. Using a simulated subsurface CO2 storage leak scenario, we demonstrate how CO2 flow upward through the soil column altered both the abundance (DNA) and activity (mRNA) of microbial functional groups mediating carbon and nitrogen transformations. These microbial responses were found to be seasonally dependent and correlated to shifts in atmospheric conditions. While both DNA and mRNA levels were affected by elevated CO2, they did not react equally, suggesting two separate mechanisms for soil microbial community response to high CO2 levels. The results did not always agree with previous studies on elevated atmospheric (rather than subsurface) CO2 using FACE (Free-Air CO2 Enrichment) systems, suggesting that microbial community response to CO2 seepage from the subsurface might differ from its response to atmospheric CO2 increases.

  15. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    Science.gov (United States)

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.

  16. Growth Response of Silver Fir and Bosnian Pine from Kosovo

    OpenAIRE

    Elvin Toromani; Faruk Bojaxhi

    2010-01-01

    Background and Purpose: This paper explore the growth-climate relationships in total ring width chronologies of silver fir (Abies alba Mill.) and Bosnian pine (Pinus heldreichii Christ). The objective of this study is to quantify the climate influence on radial growth of both species. The relationships between climate and ring widths were analyzed using extreme growing years (called pointer years), simple correlations and response functions analysis (bootstrapped coefficients). The objectives...

  17. Bean leaf growth response to moderate ozone levels

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L S

    1973-01-01

    The middle leaflet from the first trifoliate leaf of pinto bean plants (Phaseolus vulgaris) was subjected to various ozone levels for both 12 and 24 h to show moderate oxidant injury. Rates of leaf expansion were used as criteria to measure the effects of ozone at three leaflet positions. Growth analysis included Y-intercepts indicating growth after day 1, growth after day 3, and regression line slopes between days 1 and 7 after the beginning of the experiments. Slopes of growth rate regression lines differentiated untreated leaflets from leaflets exposed to a 0.60 ppm-h (0.05 ppm for 12 h) dose. Growth rates of plants exposed to 1.20 ppm-h (either 0.05 ppm for 24 h, or 0.10 ppm for 12 h) were distinguishable from untreated plants within three days. Basal leaf portions showed the most differential ozone response compared with lateral and tip positions.

  18. Contrasting response to nutrient manipulation in Arctic mesocosms are reproduced by a minimum microbial food web model.

    Science.gov (United States)

    Larsen, Aud; Egge, Jorun K; Nejstgaard, Jens C; Di Capua, Iole; Thyrhaug, Runar; Bratbak, Gunnar; Thingstad, T Frede

    2015-03-01

    A minimum mathematical model of the marine pelagic microbial food web has previously shown to be able to reproduce central aspects of observed system response to different bottom-up manipulations in a mesocosm experiment Microbial Ecosystem Dynamics (MEDEA) in Danish waters. In this study, we apply this model to two mesocosm experiments (Polar Aquatic Microbial Ecology (PAME)-I and PAME-II) conducted at the Arctic location Kongsfjorden, Svalbard. The different responses of the microbial community to similar nutrient manipulation in the three mesocosm experiments may be described as diatom-dominated (MEDEA), bacteria-dominated (PAME-I), and flagellated-dominated (PAME-II). When allowing ciliates to be able to feed on small diatoms, the model describing the diatom-dominated MEDEA experiment give a bacteria-dominated response as observed in PAME I in which the diatom community comprised almost exclusively small-sized cells. Introducing a high initial mesozooplankton stock as observed in PAME-II, the model gives a flagellate-dominated response in accordance with the observed response also of this experiment. The ability of the model originally developed for temperate waters to reproduce population dynamics in a 10°C colder Arctic fjord, does not support the existence of important shifts in population balances over this temperature range. Rather, it suggests a quite resilient microbial food web when adapted to in situ temperature. The sensitivity of the model response to its mesozooplankton component suggests, however, that the seasonal vertical migration of Arctic copepods may be a strong forcing factor on Arctic microbial food webs.

  19. Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments.

    Directory of Open Access Journals (Sweden)

    Robert J Martinez

    Full Text Available BACKGROUND: Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. METHODOLOGY/PRINCIPAL FINDINGS: Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P or glycerol-3-phosphate (G3P] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P and 20 day (G3P amended treatments, maximum phosphate (PO4(3- concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5 treatments and greatest with G3P (pH 6.8 treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%-50% and 3%-17% of total detected Archaea and Bacteria, respectively. CONCLUSIONS/SIGNIFICANCE: This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium

  20. The Egyptian Red Sea coastal microbiome: A study revealing differential microbial responses to diverse anthropogenic pollutants.

    Science.gov (United States)

    Mustafa, Ghada A; Abd-Elgawad, Amr; Ouf, Amged; Siam, Rania

    2016-07-01

    The Red Sea is considered one of the youngest oceanic systems, with unique physical, geochemical and biological characteristics. Tourism, industrialization, extensive fishing, oil processing and shipping are extensive sources of pollution in the Red Sea. We analyzed the geochemical characteristics and microbial community of sediments along the Egyptian coast of the Red Sea. Our sites mainly included 1) four ports used for shipping aluminum, ilmenite and phosphate; 2) a site previously reported to have suffered extensive oil spills; and 3) a site impacted by tourism. Two major datasets for the sediment of ten Red Sea coastal sites were generated; i) a chemical dataset included measurements of carbon, hydrogen, nitrogen and sulfur, metals and selected semi-volatile oil; and ii) a 16S rRNA Pyrotags bacterial metagenomic dataset. Based on the taxonomic assignments of the 16S rRNA Pyrotags to major bacterial groups, we report 30 taxa constituting an Egyptian Red Sea Coastal Microbiome. Bacteria that degrade hydrocarbons were predominant in the majority of the sites, particularly in two ports where they reached up to 76% of the total identified genera. In contrast, sulfate-reducing and sulfate-oxidizing bacteria dominated two lakes at the expense of other hydrocarbon metabolizers. Despite the reported "Egyptian Red Sea Coastal Microbiome," sites with similar anthropogenic pollutants showed unique microbial community abundances. This suggests that the abundance of a specific bacterial community is an evolutionary mechanism induced in response to selected anthropogenic pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems

    Directory of Open Access Journals (Sweden)

    Diego N. Chavarría

    2016-06-01

    Full Text Available Agricultural systems where monoculture prevails are characterized by fertility losses and reduced contribution to ecosystem services. Including cover crops (CC as part of an agricultural system is a promising choice in sustainable intensification of those demanding systems. We evaluated soil microbial functionality in cash crops in response to the inclusion of CC by analyzing soil microbial functions at two different periods of the agricultural year (cash crop harvest and CC desiccation during 2013 and 2014. Three plant species were used as CC: oat (Avena sativa L., vetch (Vicia sativa L. and radish (Raphanus sativus L. which were sown in two different mixtures of species: oat and radish mix (CC1 and oat, radish and vetch mix (CC2, with soybean monoculture and soybean/corn being the cash crops. The study of community level physiological profiles showed statistical differences in respiration of specific C sources indicating an improvement of catabolic diversity in CC treatments. Soil enzyme activities were also increased with the inclusion of CC mixtures, with values of dehydrogenase activity and fluorescein diacetate hydrolysis up to 38.1% and 35.3% higher than those of the control treatment, respectively. This research evidenced that CC inclusion promotes soil biological quality through a contribution of soil organic carbon, improving the sustainability of agrosystems. The use of a CC mixture of three plant species including the legume vetch increased soil biological processes and catabolic diversity, with no adverse effects on cash crop grain yield.

  2. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems

    Energy Technology Data Exchange (ETDEWEB)

    Chavarría, D.N.; Verdenelli, R.A.; Muñoz, M.J.; Conforto, C.; Restovich, S.B.; Andriulo, A.E.; Meriles, J.M.; Vargas-Gil, S.

    2016-11-01

    Agricultural systems where monoculture prevails are characterized by fertility losses and reduced contribution to ecosystem services. Including cover crops (CC) as part of an agricultural system is a promising choice in sustainable intensification of those demanding systems. We evaluated soil microbial functionality in cash crops in response to the inclusion of CC by analyzing soil microbial functions at two different periods of the agricultural year (cash crop harvest and CC desiccation) during 2013 and 2014. Three plant species were used as CC: oat (Avena sativa L.), vetch (Vicia sativa L.) and radish (Raphanus sativus L.) which weresown in two different mixtures of species: oat and radish mix (CC1) and oat, radish and vetch mix (CC2), with soybean monoculture and soybean/corn being the cash crops. The study of community level physiological profiles showed statistical differences in respiration of specific C sources indicating an improvement of catabolic diversity in CC treatments. Soil enzyme activities were also increased with the inclusion of CC mixtures, with values of dehydrogenase activity and fluorescein diacetate hydrolysis up to 38.1% and 35.3% higher than those of the control treatment, respectively. This research evidenced that CC inclusion promotes soil biological quality through a contribution of soil organic carbon, improving the sustainability of agrosystems. The use of a CC mixture of three plant species including the legume vetch increased soil biological processes and catabolic diversity, with no adverse effects on cash crop grain yield. (Author)

  3. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics.

    Science.gov (United States)

    Prescott, Aaron M; McCollough, Forest W; Eldreth, Bryan L; Binder, Brad M; Abel, Steven M

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  4. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    Directory of Open Access Journals (Sweden)

    Aaron M. Prescott

    2016-08-01

    Full Text Available Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. However, the dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB. In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB. Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms

  5. The effect of starch, inulin, and degradable protein on ruminal fermentation and microbial growth in rumen simulation technique

    Directory of Open Access Journals (Sweden)

    Xiang H. Zhao

    2014-03-01

    Full Text Available A rumen simulation technique apparatus with eight 800 mL fermentation vessels was used to investigate the effects of rumen degradable protein (RDP level and non-fibre carbohydrate (NFC type on ruminal fermentation, microbial growth, and populations of ruminal cellulolytic bacteria. Treatments consisted of two NFC types (starch and inulin supplemented with 0 g/d (low RDP or 1.56 g/d (high RDP sodium caseinate. No significant differences existed among dietary treatments in the apparent disappearance of dietary nutrients except for dietary N, which increased with increased dietary RDP (P<0.001. Compared with starch, inulin treatments reduced the molar proportion of acetate (P<0.001, the acetate:propionate ratio (P<0.001, and methane production (P=0.006, but increased the butyrate proportion (P<0.001. Increased dietary RDP led to increases in production of total volatile fatty acid (P=0.014 and methane (P=0.050, various measures of N (P≤0.046, and 16s rDNA copy numbers of Ruminococcus flavefaciens (P≤0.010. Non-fibre carbohydrate source did not affect daily microbial N flow regardless of dietary RDP, but ammonia N production was lower for inulin than for starch treatments under high RDP conditions (P<0.001. Compared with starch treatments, inulin depressed the copy numbers of Fibrobacter succinogenes in solid fraction (P=0.023 and R. flavefaciens in liquid (P=0.017 and solid fractions (P=0.007, but it increased the carboxymethylcellulase activity in solid fraction (P=0.045. Current results suggest that starch and inulin differ in ruminal volatile fatty acid fermentation but have similar effects on ruminal digestion and microbial synthesis in vitro, although inulin suppressed the growth of partial ruminal cellulolytic bacteria.

  6. TLR-dependent human mucosal epithelial cell responses to microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Paola eMassari

    2014-08-01

    Full Text Available AbstractToll-Like Receptor (TLR signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in humans as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites, specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners, their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.

  7. Maximum in the middle: nonlinear response of microbial plankton to ultraviolet radiation and phosphorus.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Medina-Sánchez

    Full Text Available The responses of heterotrophic microbial food webs (HMFW to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (<20 days acute development following a noticeable unimodal response to P enrichment, which peaked at intermediate P-enrichment levels and, unexpectedly, was more accentuated under ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.

  8. The effect of microbial inocula on the growth of black locust, Siberian elm and silver maple seedlings

    Directory of Open Access Journals (Sweden)

    Hajnal-Jafari Timea

    2014-01-01

    Full Text Available Growth and development of forest plants depend mostly on the soil microbial activity since no mineral or organic fertilizers are applied. Microbial processes can be activated and conditions for plants development improved with the introduction of selected microorganisms in the soil. With the aim of obtaining quality planting material in a shorter period of time, the effects of Azotobacter chroococcum and Streptomyces sp. on the early growth of black locust (Robinia pseudoacacia, Siberian elm (Ulmus pumila and silver-leaf maple (Acer dasycarpum were investigated in this study. Microorganisms were applied individually and in a mixture (1:1. Plant height was measured on the 90th, 120th and 180th day after planting. Plant diameter, as well as the number of actinomycetes and azotobacters was measured at the end of the vegetation period (180 days after planting. Applied microorganisms had a positive effect on the seedling height in all three plant species, with the best effect found in the black locust. Effectiveness of applied microorganisms on seedling diameter was the highest in the silver-leaf maple. The largest number of azotobacters was found in the rhizosphere of black locust. Number of microorganisms from both groups was increased in the inoculated variants. [Projekat Ministarstva nauke Republike Srbije, br. III 43002

  9. Soil microbial communities buffer physiological responses to drought stress in three hardwood species.

    Science.gov (United States)

    Kannenberg, Steven A; Phillips, Richard P

    2017-03-01

    Trees possess myriad adaptations for coping with drought stress, but the extent to which their drought responses are influenced by interactions with soil microbes is poorly understood. To explore the role of microbes in mediating tree responses to drought stress, we exposed saplings of three species (Acer saccharum, Liriodendron tulipifera, and Quercus alba) to a four week experimental drought in mesocosms. Half of the pots were inoculated with a live soil slurry (i.e., a microbial inoculum derived from soils beneath the canopies of mature A. saccharum, L. tulipifera or Q. alba stands), while the other half of the pots received a sterile soil slurry. Soil microbes ameliorated drought stress in L. tulipifera by minimizing reductions in leaf water potential and by reducing photosynthetic declines. In A. saccharum, soil microbes reduced drought stress by lessening declines in leaf water potential, though these changes did not buffer the trees from declining photosynthetic rates. In Q. alba, soil microbes had no effects on leaf physiological parameters during drought stress. In all species, microbes had no significant effects on dynamic C allocation during drought stress, suggesting that microbial effects on plant physiology were unrelated to source-sink dynamics. Collectively, our results suggest that soil microbes have the potential to alter key parameters that are used to diagnose drought sensitivity (i.e., isohydry or anisohydry). To the extent that our results reflect dynamics occurring in forests, a revised perspective on plant hydraulic strategies that considers root-microbe interactions may lead to improved predictions of forest vulnerability to drought.

  10. Effect of Mangifera Indica Leaves Extract on Growth Response of ...

    African Journals Online (AJOL)

    Effect of Mangifera indica leaves extracts on growth response of Oreochromis niloticus was evaluated for 42 days. 5 diets at approximately 40% crude protein containing varying levels of the extracts at 0%, 5%, 15% and 25% were formulated. These were fed to fingerlings of O. niloticus (mean weight, 5.25 – 6.05g) that were ...

  11. Growth response of fluted pumpkin (Telfairia occidentalis Hook. F) to ...

    African Journals Online (AJOL)

    user

    2011-10-06

    Oct 6, 2011 ... An investigation of the growth response of fluted pumpkin to different combinations of irrigation intervals and spent mushroom ... as vine length, number of leaves, leaf area, number of branches, vine fresh weight and total shoot yield across the treatment variants. ... and physical conditions. Organic fertilizers ...

  12. 143 GROWTH RESPONSE OF EXPLANTS OF Irvingia gabonensis ...

    African Journals Online (AJOL)

    1&5 Department of Plant Science and Biotechnology, University of Port Harcourt. 2&3Department of Botany, University of Calabar. 4Department of Biological Sciences, Cross River State University of Technology. ABSTRACT. Growth response of explants of Irvingia gabonensis to in vitro treatment was investigated using full ...

  13. Long-term salt stress responsive growth, carbohydrate metabolism ...

    African Journals Online (AJOL)

    We investigated the long-term responses of tobacco tissues to salt stress, with a particular interest for growth parameters, proline (Pro) accumulation, and carbohydrate metabolism. Exposure of 17-day-old tobacco plants to 0.2 M NaCl was followed by a higher decrease in dry matter in roots than shoots with a decrease of ...

  14. Evaluation of Growth Performance of Tomato in Response to ...

    African Journals Online (AJOL)

    Sunusi

    ABSTRACT. Field experiment was conducted in 2013 and 2014 to evaluate growth performance of two tomato genotypes in response to biochar application and arbuscular mycorrhizal fungal (AMF) inoculation at the. Teaching and Research Farm, Federal University of Agriculture, Abeokuta. The experiment was laid out.

  15. Evaluation of Growth Performance of Tomato in Response to ...

    African Journals Online (AJOL)

    Field experiment was conducted in 2013 and 2014 to evaluate growth performance of two tomato genotypes in response to biochar application and arbuscular mycorrhizal fungal (AMF) inoculation at the Teaching and Research Farm, Federal University of Agriculture, Abeokuta. The experiment was laid out in a split-split ...

  16. Growth response of Pterocarpus soyauxii and Lophira alata ...

    African Journals Online (AJOL)

    Growth response of Pterocarpus soyauxii and Lophira alata seedlings to host soil mycorrhizal inocula in relation to land use types. ... and that could be critical for successful rejuvenation of tropical trees. Key words. Arbuscular mycorrhiza-host soil inoculum-Iand use types-Pterocarpus soyauxii-Lophira alata-Cameroon ...

  17. Chenodeoxycholic acid stimulated fibroblast growth factor 19 response

    DEFF Research Database (Denmark)

    Borup, C; Wildt, S; Rumessen, J J

    2017-01-01

    BACKGROUND: Bile acid diarrhoea is underdiagnosed and better diagnostic tests are needed. Fasting serum fibroblast growth factor-19 (FGF19) has insufficient diagnostic value, but this may be improved by stimulation. AIM: To explore if an impaired FGF19 response identifies primary bile acid...

  18. Growth response of Ricinus communis L (castor oil) in spent ...

    African Journals Online (AJOL)

    The growth response of castor oil plant, Ricinus communis, in spent lubricating oil (SLO) was investigated using 1-6% w/w SLO and a control. The result showed that highest percent germination of approximately 92, was obtained in control and the least in 5% w/w. The early germination obtained in this study was significant ...

  19. Genetics of growth habit and photoperiodic response to flowering ...

    Indian Academy of Sciences (India)

    2014-04-16

    Apr 16, 2014 ... 3Department of Agricultural Entomology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra,. Bangalore 560 065, India. [Keerthi C. M., Ramesh S., Byregowda M., Rao A. M., Rajendra Prasad B. S. and Vaijayanthi P. V. 2014 Genetics of growth habit and photoperiodic response to flowering ...

  20. A preliminary study on growth response of broiler finishers fed ...

    African Journals Online (AJOL)

    A preliminary study on growth response of broiler finishers fed processed mottle Mucuna beans ( Mucuna pruriens var. utilis ) ... They were fed diets (20% CP, 13 MJME/kg) incorporating 0%, 5% and 10% processed mottle “Mucuna” beans. A completely randomized design was used. Feed and water were supplied and ...

  1. Microbial Community Response to Carbon Substrate Amendment in Mercury Impacted Sediments: Implications on Microbial Methylation of Mercury.

    Science.gov (United States)

    Elias, D. A.; Somenahally, A. C.; Moberly, J. G.; Hurt, R. A., Jr.; Brown, S. D.; Podar, M.; Palumbo, A. V.; Gilmour, C. C.

    2015-12-01

    Methylmercury (MeHg) is a neurotoxic and bio-accumulative product of the microbial methylation of inorganic mercury (Hg(II)). Methylating organisms are now known to exist in almost all anaerobic niches including fermentation, Fe(III)- and sulfate- reduction as well as methanogenesis. The study objective was to determine the effect of different carbon sources on the microbial community and methylating populations in particular along a Hg contaminated creek. Sediment cores from upstream and downstream at the Hg contaminated East Fork Poplar Creek (EFPC), Oak Ridge TN, and a background site were sectioned by depth, and Hg-methylation potential (HgMP) assays were performed using stable isotope spikes. Sediments from the lowest depth possessed the highest in-situ activity. Replicate samples were amended with different carbon substrates (cellulose, acetate, propionate, lactate, ethanol and methanol), spiked with stable isotopes for HgMP assays and incubated for 24hrs. Sequencing of the 16S rRNA gene was performed to determine alterations in Bacterial and Archaeal population dynamics. Additionally, bioinformatics and our new qualitative and quantitative hgcAB primers were utilized to determine microbial community structure alterations and correlate organism and gene abundance with altered MeHg generation. HgMP was significantly reduced in cellulose amended sediments while acetate and propionate slightly decreased HgMP in both sites. Methanol, ethanol and lactate increased the HgMP in EFPC downstream while cellulose amendment significantly decreased the Proteobacteria, and the Firmicutes increased but none are currently known to produce MeHg. Geobacter bemidjiensis in particular significantly decreased in cellulose amended sediments in all three sites from being predominant in-situ. This suggests that in EFPC downstream and background sites, the prevalent Hg-methyaltors might be Deltaprotebacteria, since upstream, cellulose amendment did not reduce HgMP even though

  2. Divergent taxonomic and functional responses of microbial communities to field simulation of aeolian soil erosion and deposition.

    Science.gov (United States)

    Ma, Xingyu; Zhao, Cancan; Gao, Ying; Liu, Bin; Wang, Tengxu; Yuan, Tong; Hale, Lauren; Nostrand, Joy D Van; Wan, Shiqiang; Zhou, Jizhong; Yang, Yunfeng

    2017-08-01

    Aeolian soil erosion and deposition have worldwide impacts on agriculture, air quality and public health. However, ecosystem responses to soil erosion and deposition remain largely unclear in regard to microorganisms, which are the crucial drivers of biogeochemical cycles. Using integrated metagenomics technologies, we analysed microbial communities subjected to simulated soil erosion and deposition in a semiarid grassland of Inner Mongolia, China. As expected, soil total organic carbon and plant coverage were decreased by soil erosion, and soil dissolved organic carbon (DOC) was increased by soil deposition, demonstrating that field simulation was reliable. Soil microbial communities were altered (p soil erosion and deposition, with dramatic increase in Cyanobacteria related to increased stability in soil aggregates. amyA genes encoding α-amylases were specifically increased (p = .01) by soil deposition and positively correlated (p = .02) to DOC, which likely explained changes in DOC. Surprisingly, most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or unaltered by both erosion and deposition, probably arising from acceleration of organic matter mineralization. These divergent responses support the necessity to include microbial components in evaluating ecological consequences. Furthermore, Mantel tests showed strong, significant correlations between soil nutrients and functional structure but not taxonomic structure, demonstrating close relevance of microbial function traits to nutrient cycling. © 2017 John Wiley & Sons Ltd.

  3. Dietary marker effects on fecal microbial ecology, fecal VFA, nutrient digestibility coefficients, and growth performance in finishing pigs.

    Science.gov (United States)

    Kerr, B J; Weber, T E; Ziemer, C J

    2015-05-01

    control diet. In Exp. 2, no effect of dietary marker on pig performance was noted. Overall, the data indicate that the inclusion of Cr2O3, Fe2O3, or TiO2 as digestibility markers have little to no impact on microbial ecology, fecal ammonia or VFA concentrations, nutrient digestibility, or pig growth performance indicating they are suitable for use in digestion studies.

  4. Growth Response of Silver Fir and Bosnian Pine from Kosovo

    Directory of Open Access Journals (Sweden)

    Elvin Toromani

    2010-06-01

    Full Text Available Background and Purpose: This paper explore the growth-climate relationships in total ring width chronologies of silver fir (Abies alba Mill. and Bosnian pine (Pinus heldreichii Christ. The objective of this study is to quantify the climate influence on radial growth of both species. The relationships between climate and ring widths were analyzed using extreme growing years (called pointer years, simple correlations and response functions analysis (bootstrapped coefficients. The objectives of this study were: (1 to define the pattern of climatic response of each species, (2 to highlight the influence of local ecological conditions on tree's growth, and (3 to compare the response of silver fir and Bosnian pine to climate. Responses of total ring width to climate were estimated by establishing the mean relationship between growth and climate through simple correlations analysis and bootstrapped response functions. The response to climatic variability was also assessed by analyzing pointer years which correspond to abrupt changes in growth pattern and revealing the tree-growth response to extreme climatic events. For the period 1908-2008 the mean sensitivity (MS of total ring width chronology for Bosnian pine (0.209 was higher than silver fir (0.169 suggesting that Bosnian pine is more sensitive to climate (pointer years were more frequent in ring width chronology of Bosnian pine than in silver fir ring width chronology. The high values of first-order autocorrelations for Bosnian pine (0.674 indicated a strong dependence of current growth on the previous year’s growth. Pointer years analysis underlined the high sensitivity to spring temperatures and precipitation for both species. Radial growth for both species depends strongly on spring climate variables (temperatures and precipitation which play a significant role particularly for earlywood production. Material and Methods: We selected 12 silver fir trees and 15 Bosnian pine trees and took two 5

  5. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions

    NARCIS (Netherlands)

    Cipriano, M.A.P.; Lupatini, M.; Santos, L.; Silva, M. da; Roesch, L.F.W.; Destefano, S.; Freitas, S.; Kuramae, E.E.

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR) are well described and recommended for several crops worldwide. However, one of the most common problems in PGPR research is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial

  6. Analysis of the microbial growth in 60Co γ-irradiated foods by calorimetry

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Hayashi, Toshio; Hamasaki, Koji; Wirkner, Sandra; Constantinoiu, Elena; Takahashi, Katsutada

    2002-01-01

    Using a heat conduction calorimeter equipped with 24 sample units the heat evolutions from growing 60 Co γ-irradiated bioburden of black pepper seeds and frozen beef were detected in the form of growth thermograms. 60 Co γ-irradiation affected the growth pattern in which a dose-dependent reduction of the growth rate constant was observed together with the retardation in growth, indicating a combination of bactericidal and bacteriostatic effects. We successfully determined the minimal inactivation doses for the two food samples using the relationship between the irradiation dose and the retardation in growth t α , or the growth rate constant μ obtained from the growth thermograms. These results strongly suggested the possibility of calorimetry as measure of predictive microbiology in food irradiation. (author)

  7. Analysis of the microbial growth in 60Co gamma-irradiated foods by calorimetry

    International Nuclear Information System (INIS)

    Furuta, M.; Hamasaki, K.; Wirkner, S.; Constantinoiu, E.; Takahashi, K.; Hayashi, T.

    2002-01-01

    Using a heat conduction calorimeter equipped with 24 sample units the heat evolutions from growing 60Co gamma-irradiated bioburden of black pepper seeds and frozen beef were detected in the form of growth thermograms. 60Co gamma-irradiation affected the growth pattern in which a dose-dependent reduction of the growth rate constant was observed together with the retardation in growth, indicating a combination of bactericidal and bacteriostatic effects. We successfully determined the minimal inactivation doses for the two food samples using the relationship between the irradiation dose and the retardation in growth talpha, or the growth rate constant mu obtained from the growth thermograms. These results strongly suggested the possibility of calorimetry as a measure of predictive microbiology in food irradiation

  8. Maximum in the middle: nonlinear response of microbial plankton to ultraviolet radiation and phosphorus.

    Science.gov (United States)

    Medina-Sánchez, Juan Manuel; Delgado-Molina, José Antonio; Bratbak, Gunnar; Bullejos, Francisco José; Villar-Argaiz, Manuel; Carrillo, Presentación

    2013-01-01

    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition) in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.

  9. Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash

    DEFF Research Database (Denmark)

    Cruz Paredes, Carla; Wallander, Håkan; Kjøller, Rasmus

    2017-01-01

    is the current land-use. In forestry, wood ash has been proposed as a liming agent and a fertilizer, but has been questioned due to the risk associated with its Cd content. The aim of this study was to determine the effects of wood ash on the structure and function of decomposer microbial communities in forest......The identification of causal links between microbial community structure and ecosystem functions are required for a mechanistic understanding of ecosystem responses to environmental change. One of the most influential factors affecting plants and microbial communities in soil in managed ecosystems...... soils and to assign them to causal mechanisms. To do this, we assessed the responses to wood ash application of (i) the microbial community size and structure, (ii) microbial community trait-distributions, including bacterial pH relationships and Cd-tolerance, to assign the microbial responses to p...

  10. Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: results of a 5-year continuous enrichment

    Science.gov (United States)

    Keller Suberkropp; Vladislav Gulis; Amy D. Rosemond; Jonathan Benstead

    2010-01-01

    Our study examined the response of leaf detritus–associated microorganisms (both bacteria and fungi) to a 5-yr continuous nutrient enrichment of a forested headwater stream. Leaf litter dominates detritus inputs to such streams and, on a system wide scale, serves as the key substrate for microbial colonization. We determined physiological responses as microbial biomass...

  11. Taxonomic and functional diversity provides insight into microbial pathways and stress responses in the saline Qinghai Lake, China.

    Directory of Open Access Journals (Sweden)

    Qiuyuan Huang

    Full Text Available Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m saline (1.4% lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E. Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change.

  12. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone.

    Science.gov (United States)

    Dos Santos, Christine; Essioux, Laurent; Teinturier, Cécile; Tauber, Maïté; Goffin, Vincent; Bougnères, Pierre

    2004-07-01

    Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo- or heterodimers was approximately 30% higher than through full-length GHR homodimers (P < 0.0001). One-half of Europeans are hetero- or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.

  13. Growth and development rates have different thermal responses.

    Science.gov (United States)

    Forster, Jack; Hirst, Andrew G; Woodward, Guy

    2011-11-01

    Growth and development rates are fundamental to all living organisms. In a warming world, it is important to determine how these rates will respond to increasing temperatures. It is often assumed that the thermal responses of physiological rates are coupled to metabolic rate and thus have the same temperature dependence. However, the existence of the temperature-size rule suggests that intraspecific growth and development are decoupled. Decoupling of these rates would have important consequences for individual species and ecosystems, yet this has not been tested systematically across a range of species. We conducted an analysis on growth and development rate data compiled from the literature for a well-studied group, marine pelagic copepods, and use an information-theoretic approach to test which equations best describe these rates. Growth and development rates were best characterized by models with significantly different parameters: development has stronger temperature dependence than does growth across all life stages. As such, it is incorrect to assume that these rates have the same temperature dependence. We used the best-fit models for these rates to predict changes in organism mass in response to temperature. These predictions follow a concave relationship, which complicates attempts to model the impacts of increasing global temperatures on species body size.

  14. Selective progressive response of soil microbial community to wild oat roots

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Brodie, E.L.; DeSantis, T.Z.; Andersen, G.L.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Roots moving through soil enact physical and chemical changes that differentiate rhizosphere from bulk soil, and the effects of these changes on soil microorganisms have long been a topic of interest. Use of a high-density 16S rRNA microarray (PhyloChip) for bacterial and archaeal community analysis has allowed definition of the populations that respond to the root within the complex grassland soil community; this research accompanies previously reported compositional changes, including increases in chitinase and protease specific activity, cell numbers and quorum sensing signal. PhyloChip results showed a significant change in 7% of the total rhizosphere microbial community (147 of 1917 taxa); the 7% response value was confirmed by16S rRNA T-RFLP analysis. This PhyloChip-defined dynamic subset was comprised of taxa in 17 of the 44 phyla detected in all soil samples. Expected rhizosphere-competent phyla, such as Proteobacteria and Firmicutes, were well represented, as were less-well-documented rhizosphere colonizers including Actinobacteria, Verrucomicrobia and Nitrospira. Richness of Bacteroidetes and Actinobacteria decreased in soil near the root tip compared to bulk soil, but then increased in older root zones. Quantitative PCR revealed {beta}-Proteobacteria and Actinobacteria present at about 10{sup 8} copies of 16S rRNA genes g{sup -1} soil, with Nitrospira having about 10{sup 5} copies g{sup -1} soil. This report demonstrates that changes in a relatively small subset of the soil microbial community are sufficient to produce substantial changes in function in progressively more mature rhizosphere zones.

  15. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure.

    Science.gov (United States)

    Wu, Wencheng; Wu, Jiahui; Liu, Xiaowen; Chen, Xianbin; Wu, Yingxin; Yu, Shixiao

    2017-09-01

    Recently, several studies have showed that both organic and inorganic fertilizers are effective in immobilizing heavy metals at low cost, in comparison to other remediation strategies for heavy metal-contaminated farmlands. A pot trial was conducted in this study to examine the effects of inorganic P fertilizer and organic fertilizer, in single application or in combination, on growth of maize, heavy metal availabilities, enzyme activities, and microbial community structure in metal-contaminated soils from an electronic waste recycling region. Results showed that biomass of maize shoot and root from the inorganic P fertilizer treatments were respectively 17.8 and 10.0 folds higher than the un-amended treatments (CK), while the biomass in the organic fertilizer treatments was only comparable to the CK. In addition, there were decreases of 85.0% in Cd, 74.3% in Pb, 66.3% in Cu, and 91.9% in Zn concentrations in the roots of maize grown in inorganic P fertilizer amended soil. Consistently, urease and catalase activities in the inorganic P fertilizer amended soil were 3.3 and 2.0 times higher than the CK, whereas no enhancement was observed in the organic fertilizer amended soil. Moreover, microbial community structure was improved by the application of inorganic P fertilizer, but not by organic fertilizer; the beneficial microbial groups such as Kaistobacter and Koribacter were most frequently detected in the inorganic P fertilizer amended soil. The negligible effect from the organic fertilizer might be ascribed to the decreased pH value in soils. The results suggest that the application of inorganic P fertilizer (or in combination with organic fertilizer) might be a promising strategy for the remediation of heavy metals contaminated soils in electronic waste recycling region. Copyright © 2017. Published by Elsevier Inc.

  16. Combined treatment with mild heat, manothermosonication and pulsed electric fields reduces microbial growth in milk

    OpenAIRE

    Halpin, R. M.; Cregenzan-Alberti, O.; Whyte, P.; Lyng, J. G.; Noci, F.

    2013-01-01

    In recent years, there has been considerable interest in non-thermal milk processing. The objective of the present study was to assess the efficacy of two non-thermal technologies (manothermosonication; MTS, and pulsed electric fields; PEF) in comparison to thermal pasteurisation, by assessing the microbial levels of each of these milk samples post-processing. Homogenised milk was subjected to MTS (frequency; 20 kHz, amplitude; 27.9 μm, pressure; 225 kPa) at two temperatures (37 °C or 55 °C),...

  17. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities.

    Science.gov (United States)

    Strickland, Michael S; McCulley, Rebecca L; Nelson, Jim A; Bradford, Mark A

    2015-01-01

    Inputs of low molecular weight carbon (LMW-C) to soil - primarily via root exudates- are expected to be a major driver of microbial activity and source of stable soil organic carbon. It is expected that variation in the type and composition of LMW-C entering soil will influence microbial community composition and function. If this is the case then short-term changes in LMW-C inputs may alter processes regulated by these communities. To determine if change in the composition of LMW-C inputs influences microbial community function and composition, we conducted a 90 day microcosm experiment whereby soils sourced from three different land covers (meadows, deciduous forests, and white pine stands) were amended, at low concentrations, with one of eight simulated root exudate treatments. Treatments included no addition of LMW-C, and the full factorial combination of glucose, glycine, and oxalic acid. After 90 days, we conducted a functional response assay and determined microbial composition via phospholipid fatty acid analysis. Whereas we noted a statistically significant effect of exudate treatments, this only accounted for ∼3% of the variation observed in function. In comparison, land cover and site explained ∼46 and ∼41% of the variation, respectively. This suggests that exudate composition has little influence on function compared to site/land cover specific factors. Supporting the finding that exudate effects were minor, we found that an absence of LMW-C elicited the greatest difference in function compared to those treatments receiving any LMW-C. Additionally, exudate treatments did not alter microbial community composition and observable differences were instead due to land cover. These results confirm the strong effects of land cover/site legacies on soil microbial communities. In contrast, short-term changes in exudate composition, at meaningful concentrations, may have little impact on microbial function and composition.

  18. Microbial modeling of Alicyclobacillus acidoterrestris CRA 7152 growth in orange juice with nisin added.

    Science.gov (United States)

    Peña, Wilmer Edgard Luera; de Massaguer, Pilar Rodriguez

    2006-08-01

    The adaptation time of Alicyclobacillus acidoterrestris CRA 7152 in orange juice was determined as a response to pH (3 to 5.8), temperature (20 to 54 degrees C), soluble solids concentration ((o)Brix; 11 to 19 (o)Brix), and nisin concentration (0 to 70 IU/ ml) effects. A four-factor central composite rotational design was used. Viable microorganisms were enumerated by plating on K medium (pH 3.7). Two primary models were used to represent growth and adaptation time. A second-order polynomial model was applied to analyze the effects of factors. Results showed that the Baranyi and Roberts model was better than the modified Gompertz model, considering the determination coefficient (R2) for experimental data description. Inhibition of bacteria can be obtained through several studied combinations for at least 47 days of storage. The shortest period of adaptation was observed between 37 to 45 degrees C, with pHs between 4 and 5, yet the longest periods of adaptation could be obtained around 20 degrees C with pHs close to 3.0. Statistical analysis of the quadratic model showed that the adaptation time increased as temperature or pH decreased, and as nisin concentration or soluble solids increased. The model showed that adaptation time has a minimum value for juice without nisin added, with 13.5% soluble solids, pH 5.0, and incubated at 43.8 degrees C. The statistical parameters that validated this model were an R2 of 0.816, a bias factor of 0.96, and an accuracy factor of 1.14. Manipulation of more than one factor, as well as the use of an antimicrobial agent, can be an alternative to preventing the development of A. acidoterrestris in orange juice, thus contributing to increased orange juice shelf life.

  19. Response of Escherichia coli growth rate to osmotic shock.

    Science.gov (United States)

    Rojas, Enrique; Theriot, Julie A; Huang, Kerwyn Casey

    2014-05-27

    It has long been proposed that turgor pressure plays an essential role during bacterial growth by driving mechanical expansion of the cell wall. This hypothesis is based on analogy to plant cells, for which this mechanism has been established, and on experiments in which the growth rate of bacterial cultures was observed to decrease as the osmolarity of the growth medium was increased. To distinguish the effect of turgor pressure from pressure-independent effects that osmolarity might have on cell growth, we monitored the elongation of single Escherichia coli cells while rapidly changing the osmolarity of their media. By plasmolyzing cells, we found that cell-wall elastic strain did not scale with growth rate, suggesting that pressure does not drive cell-wall expansion. Furthermore, in response to hyper- and hypoosmotic shock, E. coli cells resumed their preshock growth rate and relaxed to their steady-state rate after several minutes, demonstrating that osmolarity modulates growth rate slowly, independently of pressure. Oscillatory hyperosmotic shock revealed that although plasmolysis slowed cell elongation, the cells nevertheless "stored" growth such that once turgor was reestablished the cells elongated to the length that they would have attained had they never been plasmolyzed. Finally, MreB dynamics were unaffected by osmotic shock. These results reveal the simple nature of E. coli cell-wall expansion: that the rate of expansion is determined by the rate of peptidoglycan insertion and insertion is not directly dependent on turgor pressure, but that pressure does play a basic role whereby it enables full extension of recently inserted peptidoglycan.

  20. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea

    KAUST Repository

    Ziegler, Maren; Roik, Anna Krystyna; Porter, Adam; Zubier, Khalid; Mudarris, Mohammed S.; Ormond, Rupert; Voolstra, Christian R.

    2016-01-01

    Coral-associated bacteria play an increasingly recognized part in coral health. We investigated the effect of local anthropogenic impacts on coral microbial communities on reefs near Jeddah, the largest city on the Saudi Arabian coast of the central Red Sea. We analyzed the bacterial community structure of water and corals (Pocillopora verrucosa and Acropora hemprichii) at sites that were relatively unimpacted, exposed to sedimentation & local sewage, or in the discharge area of municipal wastewaters. Coral microbial communities were significantly different at impacted sites: in both corals the main symbiotic taxon decreased in abundance. In contrast, opportunistic bacterial families, such as e.g. Vibrionaceae and Rhodobacteraceae, were more abundant in corals at impacted sites. In conclusion, microbial community response revealed a measurable footprint of anthropogenic impacts to coral ecosystems close to Jeddah, even though the corals appeared visually healthy.

  1. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea

    KAUST Repository

    Ziegler, Maren

    2016-01-04

    Coral-associated bacteria play an increasingly recognized part in coral health. We investigated the effect of local anthropogenic impacts on coral microbial communities on reefs near Jeddah, the largest city on the Saudi Arabian coast of the central Red Sea. We analyzed the bacterial community structure of water and corals (Pocillopora verrucosa and Acropora hemprichii) at sites that were relatively unimpacted, exposed to sedimentation & local sewage, or in the discharge area of municipal wastewaters. Coral microbial communities were significantly different at impacted sites: in both corals the main symbiotic taxon decreased in abundance. In contrast, opportunistic bacterial families, such as e.g. Vibrionaceae and Rhodobacteraceae, were more abundant in corals at impacted sites. In conclusion, microbial community response revealed a measurable footprint of anthropogenic impacts to coral ecosystems close to Jeddah, even though the corals appeared visually healthy.

  2. Influence of Inoculation, Nitrogen and Phosphorus Levels on Wheat Growth and Soil Microbial Biomass-N Using 15N Techniques

    International Nuclear Information System (INIS)

    Galal, Y.G.; El-Ghandour, I.A.; Abdel Raouf, A.M.; Osman, M.E.

    2003-01-01

    Pot experiment was carried out with wheat that cultivated in virgin sandy soil and inoculated with Rhizobium (Rh), mycorrhizea (VAM) and mixture of both. The objective of this work was to verify the potential of these inoculum on wheat production, nutrient acquisition and microbial biomass N (MBN) contribution as affected by N and P fertilizers levels. MBN was detected through the fumigation-extraction method. Nitrogen and phosphorus fertilizers were applied at three levels, 0; 25 ppm N and 3.3 ppm P and 50 ppm N and 6.6 ppm P in the form of ( 15 NH 4 ) 2 SO 4 , 5% atom excess and super-phosphate, respectively. The effect of inoculation and chemical fertilizers on dry matter (DM), N and P uptake (shoot and grain) and MBN were traced. The obtained data revealed that the highest DM and N uptake by wheat shoot were recorded with the dual inoculation (Rh + VAM) at the highest level of N and P fertilizers. The highest grain yield was detected with single inoculum of AM fungi while N and P uptake were with dual inoculation at the same rate of fertilizers. Inoculation with Rh either alone or in combination with VAM have a positive and stimulative effect on wheat growth and N and P uptake indicating the possibilities of extending the use of symbiotic microorganisms to be applied with cereals. The fluctuation in the soil microbial biomass N did not gave a chance to recognize, exactly, the impact of inoculation and/or fertilization levels

  3. Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats.

    Science.gov (United States)

    Cantalapiedra-Hijar, G; Yáñez-Ruiz, D R; Martín-García, A I; Molina-Alcaide, E

    2009-02-01

    The effects of forage type and forage:concentrate ratio (F:C) on apparent nutrient digestibility, ruminal fermentation, and microbial growth were investigated in goats. A comparison between liquid (LAB) and solid (SAB)-associated bacteria to estimate microbial N flow (MNF) from urinary purine derivative excretion was also examined. Treatments were a 2 x 2 factorial arrangement of forage type (grass hay vs. alfalfa hay) and high vs. low F:C (70:30 and 30:70, respectively). Four ruminally cannulated goats were fed, at maintenance intake, 4 experimental diets according to a 4 x 4 Latin square design. High-concentrate diets resulted in greater (P 0.05) when diets included alfalfa hay. Total protozoa numbers and holotricha proportion were greater and less (P forage used. The MNF measured in goats fed different diets was influenced by the bacterial pellet (LAB or SAB). In addition, the purine bases:N ratio values found were different from those reported in the literature, which underlines the need for these variables to be analyzed directly in pellets isolated from specific animals and experimental conditions.

  4. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield.

    Directory of Open Access Journals (Sweden)

    Meike T Wortel

    2018-02-01

    Full Text Available Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts.

  5. Inhibition of Microbial Growth by Fatty Amine Catalysts from Polyurethane Foam Test Tube Plugs

    Science.gov (United States)

    Bach, John A.; Wnuk, Richard J.; Martin, Delano G.

    1975-01-01

    When polyurethane foam test tube plugs are autoclaved, they release volatile fatty amines that inhibit the growth of some microorganisms. The chemical structures of these amines were determined by the use of a gas chromatographmass spectrometer. They are catalysts used to produce the foam. The problem of contaminating growth media with toxic substances released from polymeric materials is discussed. PMID:1096816

  6. The effect of dosages of microbial consortia formulation and synthetic fertilizer on the growth and yield of field-grown chili

    Science.gov (United States)

    Istifadah, N.; Sapta, D.; Krestini, H.; Natalie, B.; Suryatmana, P.; Nurbaity, A.; Hidersah, R.

    2018-03-01

    Chili (Capsicum annuum, L) is one of important horticultural crop in Indonesia. Formulation of microbial consortia containing Bacillus subtilis, Pseudomonas sp., Azotobacter chroococcum and Trichoderma harzianum has been developed. This study evaluated the effects of dosage of the microbial formulation combined with NPK fertilizer on growth and yield of chili plants in the field experiment. The experiment was arranged in completely randomized design of factorial, in which the first factor was dosage of formulation (0, 2.5, 5.0, 7.5, 10 g per plant) and the second factor was NPK fertilizer dosage (0, 25, 50 and 75% of the standard dosage). The treatments were replicated three times. For application, the formulation was mixed with chicken manure 1:10 (w/v). The results showed that application of microbial formulation solely improved the chili growth. There was interaction between dosages of the microbial formulation and NPK fertilizer in improving plant height, nitrogen availability and the chili yield, while there was no interaction between those dosages in improving the root length. Combination between microbial formulation at the dosage of 5.0-7.5 g per plant combined with NPK fertilizer with the dosage 50 or 75% of the standard dosage support relatively better growth and the chili yield.

  7. Soil Microbial Activity Responses to Fire in a Semi-arid Savannah Ecosystem Pre- and Post-Monsoon Season

    Science.gov (United States)

    Jimenez, J. R.; Raub, H. D.; Jong, E. L.; Muscarella, C. R.; Smith, W. K.; Gallery, R. E.

    2017-12-01

    Extracellular enzyme activities (EEA) of soil microorganisms can act as important proxies for nutrient limitation and turnover in soil and provide insight into the biochemical requirements of microbes in terrestrial ecosystems. In semi-arid ecosystems, microbial activity is influenced by topography, disturbances such as fire, and seasonality from monsoon rains. Previous studies from forest ecosystems show that microbial communities shift to similar compositions after severe fires despite different initial conditions. In semi-arid ecosystems with high spatial heterogeniety, we ask does fire lead to patch intensification or patch homogenization and how do monsoon rains influence the successional trajectories of microbial responses? We analyzed microbial activity and soil biogeochemistry throughout the monsoon season in paired burned and unburned sites in the Santa Rita Experimental Range, AZ. Surface soil (5cm) from bare-ground patches, bole, canopy drip line, and nearby grass patches for 5 mesquite trees per site allowed tests of spatiotemporal responses to fire and monsoon rain. Microbial activity was low during the pre-monsoon season and did not differ between the burned and unburned sites. We found greater activity near mesquite trees that reflects soil water and nutrient availability. Fire increased soil alkalinity, though soils near mesquite trees were less affected. Soil water content was significantly higher in the burned sites post-monsoon, potentially reflecting greater hydrophobicity of burned soils. Considering the effects of fire in these semi-arid ecosystems is especially important in the context of the projected changing climate regime in this region. Assessing microbial community recovery pre-, during, and post-monsoon is important for testing predictions about whether successional pathways post-fire lead to recovery or novel trajectories of communities and ecosystem function.

  8. Divergent Responses of Forest Soil Microbial Communities under Elevated CO2 in Different Depths of Upper Soil Layers.

    Science.gov (United States)

    Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye

    2018-01-01

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial

  9. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    Directory of Open Access Journals (Sweden)

    Cong Wang

    Full Text Available Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta. Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina regardless of DIP condition. Group V (Amphidinium carterae exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine

  10. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    Science.gov (United States)

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  11. Effects of various weaning times on growth performance, rumen fermentation and microbial population of yellow cattle calves

    Directory of Open Access Journals (Sweden)

    Huiling Mao

    2017-11-01

    Full Text Available Objective This study was conducted to investigate the effects of weaning times on the growth performance, rumen fermentation and microbial communities of yellow cattle calves. Methods Eighteen calves were assigned to a conventional management group that was normally weaned (NW, n = 3 or to early weaned (EW group where calves were weaned when the feed intake of solid feed (starter reached 500 g (EW500, n = 5, 750 g (EW750, n = 5, or 1,000 g (EW1,000, n = 5. Results Compared with NW, the EW treatments increased average daily gain (p0.05, but changes in bacterial composition were found. Conclusion From the present study, it is inferred that EW is beneficial for rumen fermentation, and weaning when the feed intake of the starter reached 750 g showed much better results.

  12. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    H.S. El-Sheshtawy

    2015-06-01

    Full Text Available In this study, the bacterium Bacillus licheniformis has been isolated from oil reservoir; the ability of this bacterium to produce a biosurfactant was detected. Surface properties of the produced biosurfactant were confirmed by determining the emulsification power as well as surface and interfacial tension. The crude biosurfactant has been extracted from supernatant culture growth, and the yield of crude biosurfactant was about 1 g/l. Also, chemical structure of the produced biosurfactant was confirmed using FTIR analysis. Results revealed that, the emulsification power has been increased up to 96% and the surface tension decreased from 72 of distilled water to 36 mN/m after 72 h of incubation. The potential application of this bacterial species in microbial-enhanced oil recovery (MEOR was investigated. The percent of oil recovery was 16.6% upon application in a sand pack column designed to stimulate an oil recovery. It also showed antimicrobial activity against the growth of different strains of SRB (sulfate reducing bacteria. Results revealed that a complete inhibition of SRB growth using 1.0% crude biosurfactant is achieved after 3 h.

  13. Microbial Composition in Decomposing Pine Litter Shifts in Response to Common Soil Secondary Minerals

    Science.gov (United States)

    Welty-Bernard, A. T.; Heckman, K.; Vazquez, A.; Rasmussen, C.; Chorover, J.; Schwartz, E.

    2011-12-01

    A range of environmental and biotic factors have been identified that drive microbial community structure in soils - carbon substrates, redox conditions, mineral nutrients, salinity, pH, and species interactions. However, soil mineralogy has been largely ignored as a candidate in spite of recent studies that indicate that minerals have a substantial impact on soil organic matter stores and subsequent fluxes from soils. Given that secondary minerals and organic colloids govern a soil's biogeochemical activity due to surface area and electromagnetic charge, we propose that secondary minerals are a strong determinant of the communities that are responsible for process rates. To test this, we created three microcosms to study communities during decomposition using pine forest litter mixed with two common secondary minerals in soils (goethite and gibbsite) and with quartz as a control. Changes in bacterial and fungal communities were tracked over the 154-day incubation by pyrosequencing fragments of the bacterial 16S and fungal 18S rRNA genes. Ordination using nonmetric multidimensional scaling showed that bacterial communities separated on the basis of minerals. Overall, a single generalist - identified as an Acidobacteriaceae isolate - dominated all treatments over the course of the experiment, representing roughly 25% of all communities. Fungal communities discriminated between the quartz control alone and mineral treatments as a whole. Again, several generalists dominated the community. Coniochaeta ligniaria dominated communities with abundances ranging from 29 to 40%. The general stability of generalist populations may explain the similarities between treatment respiration rates. Variation between molecular fingerprints, then, were largely a function of unique minor members with abundances ranging from 0.01 to 8%. Carbon availability did not surface as a possible mechanism responsible for shifts in fingerprints due to the relatively large mass of needles in the

  14. Infant Responsiveness, Alertness, Hemoglobin and Growth in Rural Sidama, Ethiopia

    Science.gov (United States)

    Aubuchon-Endsley, Nicki L.; Grant, Stephanie L.; Thomas, David G.; Kennedy, Tay S.; Berhanu, Getenesh; Stoecker, Barbara J.; Hubbs-Tait, Laura; Hambidge, K. Michael

    2011-01-01

    Several recent studies have supported relations between infant behavior (alertness and responsiveness) and nutrition (e.g. Dempsey 2008, Wachs et al 2005) in addition to investigating infant behavior within the context of changes in iron status over time (e.g. Black et al. 2004, Murray-Kolb & Beard 2009). Existing research is typically limited to investigation of the effects of a single vitamin or mineral and no studies have been found that examined the influence that early alertness and responsiveness have on growth in early infancy, despite the fact that relations between behavior and nutritional status may be bidirectional (Hulthén 2003). The current study used a sample of Ethiopian infants and investigated anthropometrics, hemoglobin, the frequency of alertness, and the frequency of responsiveness at 6 and 9 months of age. Six-month weight-for-age predicted 9-month frequency of alertness, while 6-month hemoglobin predicted 9-month frequency of responsiveness. Compared to responsive infants, non-responsive infants at 6 months remained more non-responsive at 9 months, though weight-for-age for both groups converged at 9 months. Results support relations between nutrition and behavior (alertness and responsiveness) and provide evidence of a potentially useful tool (the Laboratory Temperament Assessment Battery [Lab-TAB]) that was adapted to evaluate these relations in Ethiopia. PMID:22233352

  15. Effects of Resveratrol and Essential Oils on Growth Performance, Immunity, Digestibility and Fecal Microbial Shedding in Challenged Piglets

    Directory of Open Access Journals (Sweden)

    S. T. Ahmed

    2013-05-01

    Full Text Available A study was conducted to evaluate the effects of resveratrol and essential oils from medicinal plants on the growth performance, immunity, digestibility, and fecal microbial shedding of weaned piglets. A total of 48 weaned piglets (8 kg initial weight, 28-d-old were randomly allotted to four dietary treatments with 3 replications of 4 piglets each. The dietary treatments were NC (negative control; basal diet, PC (positive control; basal diet+0.002% apramycin, T1 (basal diet+0.2% resveratrol, and T2 (basal diet+0.0125% essential oil blend. All piglets were orally challenged with 5 ml culture fluid containing 2.3×108 cfu/ml of Escherichia coli KCTC 2571 and 5.9×108 cfu/ml Salmonella enterica serover Typhimurium. The PC group (p0.05. Serum IgG level was increased in the T1 group, whereas TNF-α levels was reduced in the supplemented groups compared to control (p<0.05. The PC diet improved the dry matter (DM digestibility, whereas PC and T2 diets improved nitrogen (N digestibility compared to NC and T1 diets (p<0.05. Fecal Salmonella and E. coli counts were reduced in all treatment groups compared to control (p<0.05. Fecal Lactobacillus spp. count was increased in the T2 group compared to others (p<0.05. Dietary treatments had no significant effect on fecal Bacillus spp. count throughout the entire experimental period. Based on these results, resveratrol showed strong potential as antibiotic alternatives for reversing the adverse effects of weaning stress on growth performance, immunity and microbial environment in E. coli and Salmonella-challenged piglets.

  16. Microbial community responses in forest mineral soil to compaction, organic matter removal, and vegetation control

    Science.gov (United States)

    Matt D. Busse; Samual E. Beattie; Robert F. Powers; Filpe G. Sanchez; Allan E. Tiarks

    2006-01-01

    We tested three disturbance hypotheses in young conifer plantations: H1: soil compaction and removal of surface organic matter produces sustained changes in microbial community size, activity, and structure in mineral soil; H2: microbial community characteristics in mineral soil are linked to the recovery of plant diversity...

  17. Microbial response of an acid forest soil to experimental soil warming

    Science.gov (United States)

    S.S. Arnold; I.J. Fernandez; L.E. Rustad; L.M. Zibilske

    1999-01-01

    Effects of increased soil temperature on soil microbial biomass and dehydrogenase activity were examined on organic (O) horizon material in a low-elevation spruce-fir ecosystem. Soil temperature was maintained at 5 °C above ambient during the growing season in the experimental plots, and soil temperature, moisture, microbial biomass, and dehydrogenase activity were...

  18. Effects of 2-hydroxy-4-(methylthio) butanoic acid (HMB) on microbial growth in continuous culture.

    Science.gov (United States)

    Noftsger, S M; St-Pierre, N R; Karnati, S K R; Firkins, J L

    2003-08-01

    2-Hydroxy-4-(methylthio) butanoic acid (HMB) positively affects milk composition and yield, potentially through ruminal actions. Four continuous culture fermenters were used to determine the optimal concentration of HMB for digestibility of organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF), and hemicellulose and synthesis of microbial N. A highly degradable mix of hay and grain was used as a basal diet to simulate a typical lactation diet. Three concentrations of HMB (0, 0.055, and 0.110%) and one concentration of dl-Met (0.097%) were infused into the fermenters according to a 4 x 4 Latin square design. Digesta samples were collected during the last 3 d of each of the four 10-d experimental periods. Digestibility of OM, hemicellulose, and NDF was largely insensitive to treatment. Digestibility of ADF showed a quadratic effect to supplementation of HMB, with 0.055% having lower digestibility than 0 or 0.110%. Total production of VFA was not influenced by HMB supplementation, but differences in concentration and production of individual VFA were seen. Isobutyrate increased linearly with increasing HMB supplementation. Propionate concentration decreased linearly with increased HMB supplementation, but propionate production showed a quadratic trend (P = 0.13). A higher concentration of acetate was detected for dl-Met compared with the highest HMB concentration. There were trends (P HMB. Microbial efficiency was not different among treatments. The proportion of bacterial N produced from NH3-N decreased linearly with increasing HMB, and bacteria receiving dl-Met synthesized more N from NH3-N than those receiving HMB. These data suggest that supplementation of HMB may have a sparing effect on branched chain volatile fatty acids because the fatty acids are not needed to provide carbon for synthesis of valine, isoleucine and leucine with ammonia. Comparisons of bacterial community structure in the fermenter effluent samples using PCR amplicons

  19. PLANT-MICROBIAL INTERACTIONS IN THE RHIZOSPHERE – STRATEGIES FOR PLANT GROWTH-PROMOTION

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2012-03-01

    Full Text Available Plant growth-promoting rhizobacteria (PGPR are a group of bacteria that can actively colonize plant rootsand enhance plant growth using different mechanisms: production of plant growth regulators like indoleacetic acid,gibberellic acid, cytokinins and ethylene(Zahir et al., 2003, providing the host plant with fixed nitrogen, solubilizationof soil phosphorus, enhance Fe uptake, biocontrol, reducing the concentration of heavy metals. PGPR are perfectcandidates to be used as biofertilizers – eco-friendly alternative to common applied chemical fertilizer in today’sagriculture. The most important benefit of PGPR usage is related to the reduction of environmental pollution in conditionof increasing crop yield. This review presents the main mechanisms involved in PGPR promotion of plant growth.

  20. Regular Exercise Enhances the Immune Response Against Microbial Antigens Through Up-Regulation of Toll-like Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Qishi Zheng

    2015-09-01

    Full Text Available Background/Aims: Regular physical exercise can enhance resistance to many microbial infections. However, little is known about the mechanism underlying the changes in the immune system induced by regular exercise. Methods: We recruited members of a university badminton club as the regular exercise (RE group and healthy sedentary students as the sedentary control (SC group. We investigated the distribution of peripheral blood mononuclear cell (PBMC subsets and functions in the two groups. Results: There were no significant differences in plasma cytokine levels between the RE and SC groups in the true resting state. However, enhanced levels of IFN-γ, TNF-α, IL-6, IFN-α and IL-12 were secreted by PBMCs in the RE group following microbial antigen stimulation, when compared to the SC group. In contrast, the levels of TNF-α and IL-6 secreted by PBMC in the RE group were suppressed compared with those in SC group following non-microbial antigen stimulation (concanavalin A or α-galactosylceramide. Furthermore, PBMC expression of TLR2, TLR7 and MyD88 was significantly increased in the RE group in response to microbial antigen stimulation. Conclusion: Regular exercise enhances immune cell activation in response to pathogenic stimulation leading to enhanced cytokine production mediated via the TLR signaling pathways.

  1. Impact of drying-rewetting events on the response of soil microbial functions to dairyfibre and Miscanthus biochars

    Science.gov (United States)

    Bonnett, Sam; Vink, Stefanie; Baker, Kate; Saghir, Muhammad; Hornung, Andreas

    2014-05-01

    Biochar application has been shown to positively affect soil microbial functions such as reducing greenhouse gas emissions, increasing water/nutrient availability and increasing crop yields in tropical regions (Lehmann & Joseph, 2009). Understanding the dynamics of biochar application to soil microbial processes is critical for ensuring that soil quality, integrity and sustainability of the soil sub-system are maintained for crop growth. The aim of this British Ecological Society (BES) funded study was to examine the effect of two types of biochar on soil physicochemistry, GHG production, soil enzyme activities and microbial biomass in typical agricultural soil types and whether the effects were altered by drying, rewetting and flooding events. Miscanthus and dairyfibre (a mixture of straw and manure) feedstocks from Harper Adams University were pyrolyzed by Aston University at 450 °C using 100 kg/hr pyroformer technology. Two sieved soil types (sandy loam and clay loam) were mixed with dry biochar to produce 2 and 10 % w/w treatments for comparison with controls and maintained at 15 °C in temperature controlled incubators. At 0, 22, 44, 80, 101, and 114 days, soil was collected for determination of heterotrophic respiration, and microbial biomass by substrate-induced respiration (SIR), by gas headspace incubation and analysis of carbon dioxide (CO2) and nitrous oxide (N2O) by gas chromatography. Soil was sampled for the determination of water-extractable carbon, pH, and extracellular enzyme activities. Soil samples were maintained at field gravimetric water content between 0 and 44 days; air dried between 44 and 80 days; rewetted between 80 and 101 days; and flooded between 101 to 114 days. Results showed that the impact of biochar on soil microbial processes was dependent on biochar type and soil type, the level of biochar application and changes in soil moisture. Biochar affected soil pH particularly within the dairyfibre treatments, potentially due to the

  2. Influence of mechanical disintegration on the microbial growth of aerobic sludge biomass: A comparative study of ultrasonic and shear gap homogenizers by oxygen uptake measurements.

    Science.gov (United States)

    Divyalakshmi, P; Murugan, D; Sivarajan, M; Saravanan, P; Lajapathi Rai, C

    2015-11-01

    Wastewater treatment plant incorporates physical, chemical and biological processes to treat and remove the contaminants. The main drawback of conventional activated sludge process is the huge production of excess sludge, which is an unavoidable byproduct. The treatment and disposal of excess sludge costs about 60% of the total operating cost. The ideal way to reduce excess sludge production during wastewater treatment is by preventing biomass formation within the aerobic treatment train rather than post treatment of the generated sludge. In the present investigation two different mechanical devices namely, Ultrasonic and Shear Gap homogenizers have been employed to disintegrate the aerobic biomass. This study is intended to restrict the multiplication of microbial biomass and at the same time degrade the organics present in wastewater by increasing the oxidative capacity of microorganisms. The disintegrability on biomass was determined by biochemical methods. Degree of inactivation provides the information on inability of microorganisms to consume oxygen upon disruption. The soluble COD quantifies the extent of release of intra cellular compounds. The participation of disintegrated microorganism in wastewater treatment process was carried out in two identical respirometeric reactors. The results show that Ultrasonic homogenizer is very effective in the disruption of microorganisms leading to a maximum microbial growth reduction of 27%. On the other hand, Shear gap homogenizer does not favor the sludge growth reduction rather it facilitates the growth. This study also shows that for better microbial growth reduction, floc size reduction alone is not sufficient but also microbial disruption is essential. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Biofilm growth on polyvinylchloride surface incubated in suboptimal microbial warm water and effect of sanitizers on biofilm removal post biofilm formation

    Science.gov (United States)

    An in vitro experiment was conducted to understand the nature of biofilm growth on polyvinyl chloride (PVC) surface when exposed to sub optimal quality microbial water (> 4 log10 cfu/ml) obtained from poultry drinking water source mimicking water in waterlines during the first week of poultry broodi...

  4. Effect of gamma irradiation and storage time on microbial growth and physicochemical characteristics of pumpkin (Cucurbita Moschata Duchesne ex Poiret) puree.

    Science.gov (United States)

    Gliemmo, María F; Latorre, María E; Narvaiz, Patricia; Campos, Carmen A; Gerschenson, Lía N

    2014-01-01

    The effect of gamma irradiation (0-2 kGy) and storage time (0-28 days) on microbial growth and physicochemical characteristics of a packed pumpkin puree was studied. For that purpose, a factorial design was applied. The puree contained potassium sorbate, glucose and vanillin was stored at 25°C . Gamma irradiation diminished and storage time increased microbial growth. A synergistic effect between both variables on microbial growth was observed. Storage time decreased pH and color of purees. Sorbate content decreased with storage time and gamma irradiation. Mathematical models of microbial growth generated by the factorial design allowed estimating that a puree absorbing 1.63 kGy would have a shelf-life of 4 days. In order to improve this time, some changes in the applied hurdles were assayed. These included a thermal treatment before irradiation, a reduction of irradiation dose to 0.75 kGy and a decrease in storage temperature at 20°C . As a result, the shelf-life of purees increased to 28 days.

  5. Use of an uncertainty analysis for genome-scale models as a prediction tool for microbial growth processes in subsurface environments.

    Science.gov (United States)

    Klier, Christine

    2012-03-06

    The integration of genome-scale, constraint-based models of microbial cell function into simulations of contaminant transport and fate in complex groundwater systems is a promising approach to help characterize the metabolic activities of microorganisms in natural environments. In constraint-based modeling, the specific uptake flux rates of external metabolites are usually determined by Michaelis-Menten kinetic theory. However, extensive data sets based on experimentally measured values are not always available. In this study, a genome-scale model of Pseudomonas putida was used to study the key issue of uncertainty arising from the parametrization of the influx of two growth-limiting substrates: oxygen and toluene. The results showed that simulated growth rates are highly sensitive to substrate affinity constants and that uncertainties in specific substrate uptake rates have a significant influence on the variability of simulated microbial growth. Michaelis-Menten kinetic theory does not, therefore, seem to be appropriate for descriptions of substrate uptake processes in the genome-scale model of P. putida. Microbial growth rates of P. putida in subsurface environments can only be accurately predicted if the processes of complex substrate transport and microbial uptake regulation are sufficiently understood in natural environments and if data-driven uptake flux constraints can be applied.

  6. Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python.

    Science.gov (United States)

    Andrew, Audra L; Perry, Blair W; Card, Daren C; Schield, Drew R; Ruggiero, Robert P; McGaugh, Suzanne E; Choudhary, Amit; Secor, Stephen M; Castoe, Todd A

    2017-05-02

    Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems. Identified enriched canonical pathways and upstream regulators indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues. These results suggest that largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during such extreme regenerative growth.

  7. Organic Matter Loading Modifies the Microbial Community Responsible for Nitrogen Loss in Estuarine Sediments.

    Science.gov (United States)

    Babbin, Andrew R; Jayakumar, Amal; Ward, Bess B

    2016-04-01

    Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using (15)N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more, and the fraction of nitrogen loss attributed to anammox slightly reduced, by the higher organic matter addition. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community composition as determined using a nirS microarray, indicating that the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.

  8. Microbial Community Changes in Response to Ethanol or Methanol Amendments for U(VI) Reduction

    International Nuclear Information System (INIS)

    Vishnivetskaya, Tatiana A.; Brandt, Craig C.; Madden, Andrew; Drake, Meghan M.; Kostka, Joel; Akob, Denise M.; Kusel, Kirsten; Palumbo, Anthony Vito

    2010-01-01

    Microbial community responses to ethanol, methanol and methanol + humics amendments in relationship to uranium bioremediation were studied in laboratory microcosm experiments using sediments and ground water from a uranium-contaminated site in Oak Ridge, Tennessee. Ethanol addition always resulted in uranium reduction at rate of 0.8-1.0 mol l -1 d -1 while methanol addition did so occasionally at rate 0.95 mol l -1 d -1 . The type of carbon source added, the duration of incubation, and the sampling site influenced the bacterial community structure upon incubation. Analysis of 16S rRNA gene clone libraries indicated (1) bacterial communities found in ethanol- and methanol-amended samples with U(VI) reduction were similar due to presence of -Proteobacteria, and -Proteobacteria (members of the families Burkholderiaceae, Comamonadaceae, Oxalobacteraceae, and Rhodocyclaceae); (2) methanol-amended samples without U(VI) reduction exhibited the lowest diversity and the bacterial community contained 69.2-92.8% of the family Methylophilaceae; and (3) the addition of humics resulted in an increase of phylogenetic diversity of -Proteobacteria (Rodoferax, Polaromonas, Janthinobacterium, Methylophilales, unclassified) and Firmicutes (Desulfosporosinus, Clostridium).

  9. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.

    2003-01-01

    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  10. Dietary microbial phytase exerts mixed effects on the gut health of tilapia: a possible reason for the null effect on growth promotion.

    Science.gov (United States)

    Hu, Jun; Ran, Chao; He, Suxu; Cao, Yanan; Yao, Bin; Ye, Yuantu; Zhang, Xuezhen; Zhou, Zhigang

    2016-06-01

    The present study evaluated the effects of dietary microbial phytase on the growth and gut health of hybrid tilapia (Oreochromis niloticus ♀×Oreochromis aureus ♂), focusing on the effect on intestinal histology, adhesive microbiota and expression of immune-related cytokine genes. Tilapia were fed either control diet or diet supplemented with microbial phytase (1000 U/kg). Each diet was randomly assigned to four groups of fish reared in cages (3×3×2 m). After 12 weeks of feeding, weight gain and feed conversion ratio of tilapia were not significantly improved by dietary microbial phytase supplementation. However, significantly higher level of P content in the scales, tighter and more regular intestinal mucosa folds were observed in the microbial phytase group and the microvilli density was significantly increased. The adhesive gut bacterial communities were strikingly altered by microbial phytase supplementation (0·41phytase, as indicated by the up-regulated intestinal expressions of the cytokine genes (tnf-α and tgf-β) and hsp70. In addition, the gut microvilli height was significantly decreased in the phytase group. These results indicate that dietary microbial phytase may exert mixed effects on hybrid tilapia, and can guide our future selection of phytases as aquafeed additives - that is, eliminating those that can stimulate intestinal inflammation.

  11. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem.

    Science.gov (United States)

    He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2014-03-01

    The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems.

  12. Microbial Community Dynamics from Permafrost Across the Pleistocene-Holocene Boundary and Response to Abrupt Climate Change

    Science.gov (United States)

    Hammad, A.; Mahony, M.; Froese, D. G.; Lanoil, B. D.

    2014-12-01

    Earth is currently undergoing rapid warming similar to that observed about 10,000 years ago at the end of the Pleistocene. We know a considerable amount about the adaptations and extinctions of mammals and plants at the Pleistocene/Holocene (P/H) boundary, but relatively little about changes at the microbial level. Due to permafrost soils' freezing anoxic conditions, they act as microbial diversity archives allowing us to determine how microbial communities adapted to the abrupt warming at the end of P. Since microbial community composition only helps differentiate viable and extant microorganisms in frozen permafrost, microbial activity in thawing permafrost must be investigated to provide a clear understanding of microbial response to climate change. Current increased temperatures will result in warming and potential thaw of permafrost and release of stored organic carbon, freeing it for microbial utilization; turning permafrost into a carbon source. Studying permafrost viable microbial communities' diversity and activity will provide a better understanding of how these microorganisms respond to soil edaphic variability due to climate change across the P/H boundary, providing insight into the changes that the soil community is currently undergoing in this modern era of rapid climate change. Modern soil, H and P permafrost cores were collected from Lucky Lady II site outside Dawson City, Yukon. 16S rRNA high throughput sequencing of permafrost DNA showed the same trends for total and viable community richness and diversity with both decreasing with permafrost depth and only the richness increasing in mid and early P. The modern, H and P soils had 50.9, 33.9, and 27.3% unique viable species and only 14% of the total number of viable species were shared by all soils. Gas flux measurements of thawed permafrost showed metabolic activity in modern and permafrost soils, aerobic CH­­4 consumption in modern, some H and P soils, and anaerobic CH­­4 production in one H

  13. High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production.

    Science.gov (United States)

    Cheng, Xiaoliang; Hiras, Jennifer; Deng, Kai; Bowen, Benjamin; Simmons, Blake A; Adams, Paul D; Singer, Steven W; Northen, Trent R

    2013-01-01

    Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS)-based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC), Medium 84 + rolled oats, and M9TE + MCC at 45°C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45°C than at all other temperatures. While T. bispora is reported to grow optimally at 60°C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45°C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.

  14. High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production

    Directory of Open Access Journals (Sweden)

    Xiaoliang eCheng

    2013-12-01

    Full Text Available Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC, Medium 84 + rolled oats, and M9TE + MCC at 45 °C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45 °C than at all other temperatures. While T. bispora is reported to grow optimally at 60 °C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45 °C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.

  15. Transient negative biochar effects on plant growth are strongest after microbial species loss

    NARCIS (Netherlands)

    Hol, (Gera) W.H.G.; Vestergård, M.; Ten Hooven, F.C.; Duyts, H.; Van de Voorde, T.F.J.; Bezemer, T. Martijn

    2017-01-01

    Biochar has been explored as an organic amendment to improve soil quality and benefit plant growth. The overall positive effects of biochar on crop yields are generally attributed to abiotic changes, while the alternative causal pathway via changes in soil biota is unexplored. We compared plant

  16. Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance.

    Science.gov (United States)

    Du, Huamao; Lo, Tat-Ming; Sitompul, Johnner; Chang, Matthew Wook

    2012-08-10

    Despite extensive use of silver nanoparticles for antimicrobial applications, cellular mechanisms underlying microbial response to silver nanoparticles remain to be further elucidated at the systems level. Here, we report systems-level response of Escherichia coli to silver nanoparticles using transcriptome-based biochemical and phenotype assays. Notably, we provided the evidence that anaerobic respiration is induced upon exposure to silver nanoparticles. Further we showed that anaerobic respiration-related regulators and enzymes play an important role in E. coli resistance to silver nanoparticles. In particular, our results suggest that arcA is essential for resistance against silver NPs and the deletion of fnr, fdnH and narH significantly increases the resistance. We envision that this study offers novel insights into modes of antimicrobial action of silver nanoparticles, and cellular mechanisms contributing to the development of microbial resistance to silver nanoparticles. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    2017-03-01

    Full Text Available In order to increase nutritive values of soybean meal (SBM, 3 species of microbes were used to ferment SBM. Through a 3 × 3 orthogonal design and parameter measurements of soybean peptide and anti-nutritional factor contents in the fermented soybean meal (FSBM, it was estimated that the best microbial proportion of Bacillus subtilis, Hansenula anomala and Lactobacillus casei was 2:1:2 for SBM fermentation (P  0.05. However, newly-weaned piglets (d 28–38 fed 10% FSBM and different levels of plasma protein obtained higher average daily gain (ADG and feed conversion ratio (FCR, compared with those without FSBM but with 6% plasma protein (P < 0.05. Piglets (d 38–68 fed diets supplemented with FSBM and soybean protein concentrate (SBPC at 3.75% and 7.5% respectively increased nutrient digestibility, fecal enzyme activity and lactic acid bacteria counts, and decreased fecal Escherichia coli counts (P < 0.05, compared with the control. These data indicated that FSBM had positive effects on nutrient digestibility and fecal microflora for piglets.

  18. The response of CD1d-restricted invariant NKT cells to microbial pathogens and their products

    Directory of Open Access Journals (Sweden)

    Luc eVan Kaer

    2015-05-01

    Full Text Available Invariant natural killer T (iNKT cells become activated during a wide variety of infections. This includes organisms lacking cognate CD1d-binding glycolipid antigens recognized by the semi-invariant T cell receptor of iNKT cells. Additional studies have shown that iNKT cells also become activated in vivo in response to microbial products such as bacterial lipopolysaccharide, a potent inducer of cytokine production in antigen-presenting cells (APCs. Other studies have shown that iNKT cells are highly responsive to stimulation by cytokines such as interleukin-12. These findings have led to the concept that microbial pathogens can activate iNKT cells either directly via glycolipids, or indirectly by inducing cytokine production in APCs. iNKT cells activated in this manner produce multiple cytokines that can influence the outcome of infection, usually in favor of the host, although potent iNKT cell activation may contribute to an uncontrolled cytokine storm and sepsis. One aspect of the response of iNKT cells to microbial pathogens is that it is short-lived and followed by an extended time period of unresponsiveness to reactivation. This refractory period may represent a means to avoid chronic activation and cytokine production by iNKT cells, thus protecting the host against some of the negative effects of iNKT cell activation, but potentially putting the host at risk for secondary infections. These effects of microbial pathogens and their products on iNKT cells are not only important for understanding the role of these cells in immune responses against infections but also for the development of iNKT cell-based therapies.

  19. Response of Functional Structure of Soil Microbial Community to Multi-level Nitrogen Additions on the Central Tibetan Plateau

    Science.gov (United States)

    Zhang, G.; Yuan, Y.

    2015-12-01

    The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. Tibet is the one of the most threatened regions by nitrogen deposition, thus understanding how its microbial communities function maybe of high importance to predicting microbial responses to nitrogen deposition. Here we describe a short-time nitrogen addition conducted in an alpine steppe ecosystem to investigate the response of functional structure of soil microbial community to multi-level nitrogen addition. Using a GeoChip 4.0, we showed that functional diversities and richness of functional genes were unchanged at low level of nitrogen fertilizer inputs (=40 kg N ha-1 yr-1). Detrended correspondence analysis indicated that the functional structure of microbial communities was markedly different across the nitrogen gradients. Most C degradation genes whose abundances significantly increased under elevated N fertilizer were those involved in the degradation of relatively labile C (starch, hemicellulose, cellulose), whereas the abundance of certain genes involved in the degradation of recalcitrant C (i.e. lignin) was largely decreased (such as manganese peroxidase, mnp). The results suggest that the elevated N fertilization rates might significantly accelerate the labile C degradation, but might not spur recalcitrant C degradation. The combined effect of gdh and ureC genes involved in N cycling appeared to shift the balance between ammonia and organic N toward organic N ammonification and hence increased the N mineralization potential. Moreover, Urease directly involved in urea mineralization significantly increased. Lastly, Canonical correspondence analysis showed that soil (TOC+NH4++NO3-+NO2-+pH) and plant (Aboveground plant productivity + Shannon Diversity) variables could explain 38.9% of the variation of soil microbial community composition. On the basis of above observations, we predict that increasing of nitrogen

  20. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities

    Directory of Open Access Journals (Sweden)

    Michael S Strickland

    2015-08-01

    Full Text Available Inputs of low molecular weight carbon (LMW-C to soil −primarily via root exudates− are expected to be a major driver of microbial activity and source of stable soil organic carbon. It is expected that variation in the type and composition of LMW-C entering soil will influence microbial community composition and function. If this is the case then short-term changes in LMW-C inputs may alter processes regulated by these communities. To determine if change in the composition of LMW-C inputs influences microbial community function and composition, we conducted a 90 day microcosm experiment whereby soils sourced from three different land covers (meadows, deciduous forests, and white pine stands were amended, at low concentrations, with one of eight simulated root exudate treatments. Treatments included no addition of LMW-C, and the full factorial combination of glucose, glycine, and oxalic acid. After 90 days, we conducted a functional response assay and determined microbial composition via phospholipid fatty acid analysis. Whereas we noted a statistically significant effect of exudate treatments, this only accounted for ~3% of the variation observed in function. In comparison, land cover and site explained ~46 and ~41% of the variation, respectively. This suggests that exudate composition has little influence on function

  1. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.

    Science.gov (United States)

    Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

    2014-01-01

    Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.

  2. Responses of Soil Microbial Community Structure and Diversity to Agricultural Deintensification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jian; S.HU; RUI Wen-Yi; C.TU; H.G.DIAB; F.J.LOUWS; J.P.MUELLER; N.CREAMER; M.BELL; M.G.WAGGER

    2005-01-01

    Using a scheme of agricultural fields with progressively less intensive management (deintensification), different management practices in six agroecosystems located near Goldsboro, NC, USA were tested in a large-scale experiment, including two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT), an organic farming system (OR), an integrated cropping system with animals (IN), a successional field (SU), and a plantation woodlot (WO). Microbial phospholipid fatty acid (PLFA) profiles and substrate utilization patterns (BIOLOG ECO plates) were measured to examine the effects of deintensification on the structure and diversity of soil microbial communities. Principle component analyses of PLFA and BIOLOG data showed that the microbial community structure diverged among the soils of the six systems.Lower microbial diversity was found in lowly managed ecosystem than that in intensive and moderately managed agroecosystems, and both fungal contribution to the total identified PLFAs and the ratio of microbial biomass C/N increased along with agricultural deintensification. Significantly higher ratios of C/N (P < 0.05) were found in the WO and SU systems, and for fungal/bacterial PLFAs in the WO system (P < 0.05). There were also significant decreases (P < 0.05)along with agricultural deintensification for contributions of total bacterial and gram positive (G+) bacterial PLFAs.Agricultural deintensification could facilitate the development of microbial communities that favor soil fungi over bacteria.

  3. Do the ban on use of anti-microbial growth promoter impact on technical change and the efficiency of slaughter-pig production

    DEFF Research Database (Denmark)

    Lawson, Lartey; Otto, Lars; Jensen, Peter Vig

    2005-01-01

    infections, and in effect stimu-lated the utilization of feedstuff and reduced the mortality rate. However, fears for increas-ing bacteria resistance with subsequent health hazards for humans and livestock has lead to societal debates about the pros and cons of its use in livestock production. Antibiotic......This study aims at investigating the effects of the ban on the use of anti-microbial growth promoters in the production of “Finishing Pigs” for slaughter. We investigate if the ban on the use of anti-microbial growth promoters has for specialised pig-producers altered the productivity of inputs......, technical change and the efficiency of production. This paper complements an earlier paper that investigated the impact of the ban on weaned-pig produc-tion. Background: The study is motivated by the fact that antimicrobial growth promoters have been known world wide to protect livestock from bacteria...

  4. Microbial and biogeochemical responses to projected future nitrate enrichment in the California upwelling system

    Directory of Open Access Journals (Sweden)

    Katherine Rose Marie Mackey

    2014-11-01

    Full Text Available Coastal California is a dynamic upwelling region where nitrogen (N and iron (Fe can both limit productivity and influence biogeochemistry over different spatial and temporal scales. With global change, the flux of nitrate from upwelling is expected to increase over the next century, potentially driving additional oceanic regions toward Fe limitation. In this study we explored the effect of changes in Fe/N ratio on native phytoplankton from five currently Fe-replete sites near the major California upwelling centers at Bodega Bay and Monterey Bay using nutrient addition incubation experiments. Despite the high nitrate levels (13-30 M in the upwelled water, phytoplankton at three of the five sites showed increased growth when 10 M nitrate was added. None of the sites showed enhanced growth following addition of 10 nM Fe. Nitrate additions favored slow sinking single-celled diatoms over faster sinking chain-forming diatoms, suggesting that future increases in nitrate flux could affect carbon and silicate export and alter grazer populations. In particular, solitary cells of Cylindrotheca were more abundant than the toxin-producing genus Pseudonitzschia following nitrate addition. These responses suggest the biogeochemistry of coastal California could change in response to future increases in nitrate, and multiple stressors like ocean acidification and hypoxia may further result in ecosystem shifts.

  5. Microbial background flora in small-scale cheese production facilities does not inhibit growth and surface attachment of Listeria monocytogenes.

    Science.gov (United States)

    Schirmer, B C T; Heir, E; Møretrø, T; Skaar, I; Langsrud, S

    2013-10-01

    The background microbiota of 5 Norwegian small-scale cheese production sites was examined and the effect of the isolated strains on the growth and survival of Listeria monocytogenes was investigated. Samples were taken from the air, food contact surfaces (storage surfaces, cheese molds, and brine) and noncontact surfaces (floor, drains, and doors) and all isolates were identified by sequencing and morphology (mold). A total of 1,314 isolates were identified and found to belong to 55 bacterial genera, 1 species of yeast, and 6 species of mold. Lactococcus spp. (all of which were Lactococcus lactis), Staphylococcus spp., Microbacterium spp., and Psychrobacter sp. were isolated from all 5 sites and Rhodococcus spp. and Chryseobacterium spp. from 4 sites. Thirty-two genera were only found in 1 out of 5 facilities each. Great variations were observed in the microbial background flora both between the 5 producers, and also within the various production sites. The greatest diversity of bacteria was found in drains and on rubber seals of doors. The flora on cheese storage shelves and in salt brines was less varied. A total of 62 bacterial isolates and 1 yeast isolate were tested for antilisterial activity in an overlay assay and a spot-on-lawn assay, but none showed significant inhibitory effects. Listeria monocytogenes was also co-cultured on ceramic tiles with bacteria dominating in the cheese production plants: Lactococcus lactis, Pseudomonas putida, Staphylococcus equorum, Rhodococcus spp., or Psychrobacter spp. None of the tested isolates altered the survival of L. monocytogenes on ceramic tiles. The conclusion of the study was that no common background flora exists in cheese production environments. None of the tested isolates inhibited the growth of L. monocytogenes. Hence, this study does not support the hypothesis that the natural background flora in cheese production environments inhibits the growth or survival of L. monocytogenes. Copyright © 2013 American

  6. Areva 2009 responsible growth report: more energy, less CO2

    International Nuclear Information System (INIS)

    2009-01-01

    This document is the 2009 annual responsible growth report of AREVA which presents itself as having consolidated its leadership position in its original business of nuclear power while expanding considerably in renewable energies (wind, solar, bio-energies and hydrogen/storage) to become a leading provider of solutions for carbon-free power generation. The main chapters of the report are: the group and its strategy, Areva's nuclear power solutions (is nuclear a sustainable energy source?, supply, technological excellence, safety, recycling and waste, acceptability, non-proliferation), Areva's renewable energy solutions (how much of the energy mix should be renewable?, rising demand, competitiveness and efficiency, responsible development), Areva's human resources (gender balance, health and safety, diversity and opportunity, hiring and training). Data and balanced scorecard for sustainable development are also given

  7. Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation.

    Science.gov (United States)

    Sun, Ran; Belcher, Richard W; Liang, Jianqiang; Wang, Li; Thater, Brian; Crowley, David E; Wei, Gehong

    2015-07-01

    Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is normally limited by their low solubility and poor bioavailability. Prior research suggests that biosurfactants are synthesized as intermediates during the production of mucilage at the root tip. To date the effects of mucilage on PAH degradation and microbial community response have not been directly examined. To address this question, our research compared 3 cowpea breeding lines (Vigna unguiculata) that differed in mucilage production for their effects on phenanthrene (PHE) degradation in soil. The High Performance Liquid Chromatography results indicated that the highest PHE degradation rate was achieved in soils planted with mucilage producing cowpea line C1, inoculated with Bradyrhizobium, leading to 91.6% PHE disappearance in 5 weeks. In root printing tests, strings treated with mucilage and bacteria produced larger clearing zones than those produced on mucilage treated strings with no bacteria or bacteria inoculated strings. Experiments with 14C-PHE and purified mucilage in soil slurry confirmed that the root mucilage significantly enhanced PHE mineralization (82.7%), which is 12% more than the control treatment without mucilage. The profiles of the PHE degraders generated by Denaturing gradient gel electrophoresis suggested that cowpea C1, producing a high amount of root mucilage, selectively enriched the PHE degrading bacteria population in rhizosphere. These findings indicate that root mucilage may play a significant role in enhancing PHE degradation and suggests that differences in mucilage production may be an important criterion for selection of the best plant species for use in phytoremediation of PAH contaminated soils. Copyright © 2015. Published by Elsevier B.V.

  8. Quantifying the Importance of the Rare Biosphere for Microbial Community Response to Organic Pollutants in a Freshwater Ecosystem.

    Science.gov (United States)

    Wang, Yuanqi; Hatt, Janet K; Tsementzi, Despina; Rodriguez-R, Luis M; Ruiz-Pérez, Carlos A; Weigand, Michael R; Kizer, Heidi; Maresca, Gina; Krishnan, Raj; Poretsky, Rachel; Spain, Jim C; Konstantinidis, Konstantinos T

    2017-04-15

    A single liter of water contains hundreds, if not thousands, of bacterial and archaeal species, each of which typically makes up a very small fraction of the total microbial community (biosphere." How often, and via what mechanisms, e.g., clonal amplification versus horizontal gene transfer, the rare taxa and genes contribute to microbial community response to environmental perturbations represent important unanswered questions toward better understanding the value and modeling of microbial diversity. We tested whether rare species frequently responded to changing environmental conditions by establishing 20-liter planktonic mesocosms with water from Lake Lanier (Georgia, USA) and perturbing them with organic compounds that are rarely detected in the lake, including 2,4-dichlorophenoxyacetic acid (2,4-D), 4-nitrophenol (4-NP), and caffeine. The populations of the degraders of these compounds were initially below the detection limit of quantitative PCR (qPCR) or metagenomic sequencing methods, but they increased substantially in abundance after perturbation. Sequencing of several degraders (isolates) and time-series metagenomic data sets revealed distinct cooccurring alleles of degradation genes, frequently carried on transmissible plasmids, especially for the 2,4-D mesocosms, and distinct species dominating the post-enrichment microbial communities from each replicated mesocosm. This diversity of species and genes also underlies distinct degradation profiles among replicated mesocosms. Collectively, these results supported the hypothesis that the rare biosphere can serve as a genetic reservoir, which can be frequently missed by metagenomics but enables community response to changing environmental conditions caused by organic pollutants, and they provided insights into the size of the pool of rare genes and species. IMPORTANCE A single liter of water or gram of soil contains hundreds of low-abundance bacterial and archaeal species, the so called rare biosphere. The

  9. Growth response of microorganisms to different molecular fractions of lignite

    Energy Technology Data Exchange (ETDEWEB)

    Polman, J.K.; Breckenridge, C.R.; Dugan, P.R.; Quigley, D.R.

    1990-01-01

    Our research is primarily concerned with isolating and characterizing microbes which are able to dissimilate coal and convert it to other useful chemicals. This quarter, general growth responses of microorganisms cultivated in the presence of different molecular weight fractions of lignite coal were examined. Aerobic and anaerobic environmental samples from a variety of ecological niches were used as inocula. Growth of the microorganisms in these samples on the following types of media was tested: COAL medium, containing alkali-solubilized whole coal; THFI medium, containing the alkali-solubilized, tetrahydrofuran-insoluble, macromolecular portion of whole coal; THFS medium, containing the THF-soluble, low molecular weight portion of whole coal; and CON medium, void of any coal constituent. Overall results indicated that the presence of the THF-soluble, low molecular weight coal fraction enhanced the growth yield and the variety of aerobic microorganisms compared to the other coal fractions or the control medium. Conversely, anaerobic microbes grew best on media which contained the macromolecular fraction. 12 refs., 5 tabs.

  10. Microbial biomass dynamics dominate N cycle responses to warming in a sub-arctic peatland

    Science.gov (United States)

    Weedon, J. T.; Aerts, R.; Kowalchuk, G. K.; van Bodegom, P. M.

    2012-04-01

    The balance of primary production and decomposition in sub-arctic peatlands may shift with climate change. Nitrogen availability will modulate this shift, but little is known about the drivers of soil nitrogen dynamics in these environments, and how they are influenced by rising soil temperatures. We used a long-term open top chamber warming experiment in Abisko, Sweden, to test for the interactive effects of spring warming, summer warming and winter snow addition on soil organic and inorganic nitrogen fluxes, potential activities of carbon and nitrogen cycle enzymes, and the structure of the soil-borne microbial communities. Summer warming increased the flux of soil organic nitrogen over the growing season, while simultaneously causing a seasonal decrease in microbial biomass, suggesting that N flux is driven by large late-season dieback of microbes. This change in N cycle dynamics was not reflected in any of the measured potential enzyme activities. Moreover, the soil microbial community structure was stable across treatments, suggesting non-specific microbial dieback. To further test whether the observed patterns were driven by direct temperature effects or indirect effects (via microbial biomass dynamics), we conducted follow-up controlled experiments in soil mesocosms. Experimental additions of dead microbial cells had stronger effects on N pool sizes and enzyme activities than either plant litter addition or a 5 °C alteration in incubation temperatures. Peat respiration was positively affected by both substrate addition and higher incubation temperatures, but the temperature-only effect was not sufficient to account for the increases in respiration observed in previous field experiments. We conclude that warming effects on peatland N cycling (and to some extent C cycling) are dominated by indirect effects, acting through alterations to the seasonal flux of microbe-derived organic matter. We propose that climate change models of soil carbon and nitrogen

  11. Insights on the host stress, fear and growth responses to the deoxynivalenol feed contaminant in broiler chickens.

    Science.gov (United States)

    Ghareeb, Khaled; Awad, Wageha A; Sid-Ahmed, Omer E; Böhm, Josef

    2014-01-01

    Mycotoxins pose an important danger to human and animal health. Poultry feeds are frequently contaminated with deoxynivalenol (DON) mycotoxin. It is thus of great importance to evaluate the effects of DON on the welfare related parameters in poultry industry. In the present study, the effects of contamination of broiler diet with 10 mg DON/kg feed on plasma corticosterone and heterophil to lymphocyte (H/L) ratio as indicators of stress, tonic immobility duration as an index for fear response and growth performance of broiler chickens were studied. In addition, the effect of a microbial feed additive either alone or in combination with DON contamination on these different aspects was also evaluated. The results showed that DON feeding significantly affected the welfare related parameters of broiler chickens. The feeding of DON contaminated diet resulted in an elevation of plasma corticosterone, higher H/L ratio and increased the fear levels as indicated by longer duration of tonic immobility reaction. Furthermore, DON reduced the body weight and body weight gain during the starter phase definitely at the second and third week. However, during grower phase, feeding of DON decreased the body weight at the fourth week and reduced the body gain at the fifth week. Addition of the microbial feed additive, a commercial antidote for DON mycotoxin, was able to overcome DON effects on stress index (H/L ratio), fearfulness and growth parameters of broilers. In conclusion, we showed for the first time that the DON feeding increased the underlying fearfulness and physiological stress responses of broilers and resulted in a reduction in the welfare status as indicated by higher plasma corticosterone, higher H/L ratio and higher fearfulness. Additionally, feeding the microbial feed additive was effective in reducing the adverse effects of DON on the bird's welfare and can improve the performance of broiler chickens.

  12. Insights on the host stress, fear and growth responses to the deoxynivalenol feed contaminant in broiler chickens.

    Directory of Open Access Journals (Sweden)

    Khaled Ghareeb

    Full Text Available Mycotoxins pose an important danger to human and animal health. Poultry feeds are frequently contaminated with deoxynivalenol (DON mycotoxin. It is thus of great importance to evaluate the effects of DON on the welfare related parameters in poultry industry. In the present study, the effects of contamination of broiler diet with 10 mg DON/kg feed on plasma corticosterone and heterophil to lymphocyte (H/L ratio as indicators of stress, tonic immobility duration as an index for fear response and growth performance of broiler chickens were studied. In addition, the effect of a microbial feed additive either alone or in combination with DON contamination on these different aspects was also evaluated. The results showed that DON feeding significantly affected the welfare related parameters of broiler chickens. The feeding of DON contaminated diet resulted in an elevation of plasma corticosterone, higher H/L ratio and increased the fear levels as indicated by longer duration of tonic immobility reaction. Furthermore, DON reduced the body weight and body weight gain during the starter phase definitely at the second and third week. However, during grower phase, feeding of DON decreased the body weight at the fourth week and reduced the body gain at the fifth week. Addition of the microbial feed additive, a commercial antidote for DON mycotoxin, was able to overcome DON effects on stress index (H/L ratio, fearfulness and growth parameters of broilers. In conclusion, we showed for the first time that the DON feeding increased the underlying fearfulness and physiological stress responses of broilers and resulted in a reduction in the welfare status as indicated by higher plasma corticosterone, higher H/L ratio and higher fearfulness. Additionally, feeding the microbial feed additive was effective in reducing the adverse effects of DON on the bird's welfare and can improve the performance of broiler chickens.

  13. Varied growth response of cogongrass ecotypes to elevated CO2

    Directory of Open Access Journals (Sweden)

    G. Brett Runion

    2016-01-01

    Full Text Available Cogongrass [Imperata cylindrica (L. P. Beauv] is an invasive C4 perennial grass which is listed as one of the top ten worst weeds in the world and is a major problem in the Southeast US. Five cogongrass ecotypes (Florida, Hybrid, Louisiana, Mobile, and North Alabama collected across the Southeast and a red-tip ornamental variety were container grown for six months in open top chambers under ambient and elevated (ambient plus 200 ppm atmospheric CO2. Elevated CO2 increased average dry weight (13% which is typical for grasses. Elevated CO2 increased height growth and both nitrogen and water use efficiencies, but lowered tissue nitrogen concentration; again, these are typical plant responses to elevated CO2. The hybrid ecotype tended to exhibit the greatest growth (followed by Louisiana, North Alabama, and Florida ecotypes while the red-tip and Mobile ecotypes were smallest. Interactions of CO2 with ecotype generally showed that the hybrid, Louisiana, Florida, and/or North Alabama ecotypes showed a positive response to CO2 while the Mobile and red-tip ecotypes did not. Cogongrass is a problematic invasive weed in the southeastern U.S. and some ecotypes may become more so as atmospheric CO2 continues to rise.

  14. Behavioral Responses of Concholepas concholepas (Bruguière, 1789) Larvae to Natural and Artificial Settlement Cues and Microbial Films.

    Science.gov (United States)

    Rodriguez, S R; Riquelme, C; Campos, E O; Chavez, P; Brandan, E; Inestrosa, N C

    1995-12-01

    The behavioral responses of veliger larvae of the gastropod Concholepas concholepas were studied in the presence of different natural and artificial settlement cues and microbial films. Early pre-competent larvae stopped swimming, sank (due to ciliary arrests, retraction of the velum into the shell, or both), and remained inactive on the substratum when exposed to conspecific mucus and hemolymph. In both cases the effect was time-dependent and the number of larvae showing these behaviors decreased over time. Larvae exposed to NH4Cl (ammonium ion) showed a similar time- and dose-dependent response. A positive and time-dependent response was also observed when larvae were exposed to different extracellular matrix (ECM) components (i.e., collagen, gelatin, and fibronectin) and sulfated polysaccharides (i.e., carrageenan, heparin, and chondroitin sulfate). In this case the larvae remained attached to the substratum. However, the effect of sulfated polysaccharides on C. concholepas larval behavior was faster than that observed with other ECM molecules. We also studied the responses of premetamorphic C. concholepas larvae exposed to different microbial films. In chemotaxis experiments with different films, with glass as the substratum, larvae showed a significant preference for multispecific and diatoms films. When shells of C. concholepas were used as the substratum, the preference for multispecific films was clear and significant. Likewise, larvae showed velar contractions in the presence of all the films tested. Larvae exposed to multispecific films and to the microalga Prasinocladus marinus showed an increased ciliar movement. The finding that mucus and hemolymph of conspecific adults and ECM molecules (mainly sulfated polysaccharides) induce the cessation of swimming of C. concholepas larvae suggests a possible role for cell-surface receptors in mediating the larval response of marine organisms. Likewise, the positive chemotaxis responses of C. concholepas larvae to

  15. Microculture model studies on the effect of various gas atmospheres on microbial growth at different temperatures.

    Science.gov (United States)

    Eklund, T; Jarmund, T

    1983-08-01

    A microculture technique, employing 96-well tissue culture plates in plastic bags, was used to test the effect of different gas atmospheres (vacuum, air, nitrogen, and carbon dioxide) on the growth of Escherichia coli, Bacillus macerans, Salmonella typhimurium. Candida albicans, Lactobacillus plantarum, Pseudomonas/Acinetobacter/moraxella-group, Brochothrix thermosphacta and Yersinia enterocolitica at 2, 6, and 20 degrees C. In general, carbon dioxide was the most effective inhibitor. The inhibition increased with decreasing temperature. Only the combination of carbon dioxide and 2 degrees C provided complete inhibition of Broch. thermosphacta and Y. enterocolitica.

  16. Response of Indian growth hormone deficient children to growth hormone therapy: association with pituitary size.

    Science.gov (United States)

    Khadilkar, Vaman V; Prasad, Hemchand Krishna; Ekbote, Veena H; Rustagi, Vaishakhi T; Singh, Joshita; Chiplonkar, Shashi A; Khadilkar, Anuradha V

    2015-05-01

    To ascertain the impact of pituitary size as judged by Magnetic Resonance Imaging (MRI), on response to Growth Hormone (GH) therapy in GH deficient children. Thirty nine children (9.1 ± 2.7 y, 22 boys) with non-acquired GH deficiency (21 Isolated GH deficiency and 18 Combined pituitary hormone deficiency) were consecutively recruited and followed up for one year. Clinical, radiological (bone age and MRI) and biochemical parameters were studied. Children with hypoplastic pituitary (pituitary height deficit (height for age Z-score -6.0 vs. -5.0) and retardation of skeletal maturation (bone age chronological age ratio of 0.59 vs. 0.48) at baseline as compared to children with normal pituitary heights (p growth hormone deficient children with hypoplastic pituitary respond better to therapy with GH in short term.

  17. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem.

    Science.gov (United States)

    Smith, Chris R; Blair, Peter L; Boyd, Charlie; Cody, Brianne; Hazel, Alexander; Hedrick, Ashley; Kathuria, Hitesh; Khurana, Parul; Kramer, Brent; Muterspaw, Kristin; Peck, Charles; Sells, Emily; Skinner, Jessica; Tegeler, Cara; Wolfe, Zoe

    2016-11-01

    The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no-till, had a much greater impact on nearly everything measured compared to the crop planted. No-till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no-till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff-both of which have ecosystem-level effects and both direct and indirect effects on humans and other organisms.

  18. Microbial Products and Biofertilizers in Improving Growth and Productivity of Apple - a Review.

    Science.gov (United States)

    Mosa, Walid F A E; Sas-Paszt, Lidia; Frąc, Mateusz; Trzciński, Paweł

    2016-08-26

    The excessive use of mineral fertilizers causes many negative consequences for the environment as well as potentially dangerous effects of chemical residues in plant tissues on the health of human and animal consumers. Bio-fertilizers are formulations of beneficial microorganisms, which upon application can increase the availability of nutrients by their biological activity and help to improve soil health. Microbes involved in the formulation of bio-fertilizers not only mobilize N and P but mediate the process of producing crops and foods naturally. This method avoids the use of synthetic chemical fertilizers and genetically modified organisms to influence the growth of crops. In addition to their role in enhancing the growth of the plants, biofertilizers can act as biocontrol agents in the rhizosphere at the same time. Biofertilizers are very safe for human, animal and environment. The use of Azotobacter, Azospirillum, Pseudomonas, Acetobacter, Burkholderia, Bacillus, Paenibacillus and some members of the Enterobacteriaceae is gaining worldwide importance and acceptance and appears to be the trend for the future.

  19. Microbial growth on oxalate by a route not involving glyoxylate carboligase

    Science.gov (United States)

    Blackmore, Maureen A.; Quayle, J. R.

    1970-01-01

    1. The metabolism of oxalate by the pink-pigmented organisms, Pseudomonas AM1, Pseudomonas AM2, Protaminobacter ruber and Pseudomonas extorquens has been compared with that of the non-pigmented Pseudomonas oxalaticus. 2. During growth on oxalate, all the organisms contain oxalyl-CoA decarboxylase, formate dehydrogenase and oxalyl-CoA reductase. This is consistent with oxidation of oxalate to carbon dioxide taking place via oxalyl-CoA, formyl-CoA and formate as intermediates, and also reduction of oxalate to glyoxylate taking place via oxalyl-CoA. 3. The pink-pigmented organisms, when grown on oxalate, contain l-serine–glyoxylate aminotransferase and hydroxypyruvate reductase but do not contain glyoxylate carboligase. The converse of this obtains in oxalate-grown Ps. oxalaticus. This indicates that, in contrast with Ps. oxalaticus, synthesis of C3 compounds from oxalate by the pink-pigmented organisms occurs by a variant of the `serine pathway' used by Pseudomonas AM1 during growth on C1 compounds. 4. Evidence in favour of this scheme is provided by the finding that a mutant of Pseudomonas AM1 that lacks hydroxypyruvate reductase is not able to grow on oxalate. PMID:5472155

  20. Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces

    International Nuclear Information System (INIS)

    Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H 2 MoO 4 ), which is based on molybdenum trioxide (MoO 3 ). The modification of various materials (e.g. polymers, metals) with MoO 3 particles or sol–gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Highlights: ► The presented modifications of materials surfaces with MoO 3 are non-cytotoxic and decrease biofilm growth and bacteria transmission. ► The material is insensitive towards emerging resistances of bacteria. ► Strong potential to reduce spreading of infectious agents on inanimate surfaces.

  1. Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Nissen, Silke [ORNL; Vishnivetskaya, T. [University of Tennessee, Knoxville (UTK); Shah, Manesh B [ORNL; Pffifner, Susan [University of Tennessee, Knoxville (UTK); Hettich, Robert {Bob} L [ORNL; Loeffler, Frank E [ORNL

    2013-01-01

    High performance mass spectrometry instrumentation coupled with improved protein extraction techniques enable metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e., 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e., Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences in protein expression between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected up-gradient of the EVO injection points. In particular, proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate (PHB) granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of a Dechloromonas sp. was highly expressed suggesting active nitrous oxide (N2O) respiration. c-type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that metal reduction has not commenced 4 days post EVO delivery. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique for complementing nucleic acid-based approaches.

  2. Microbial functional diversity responses to 2 years since biochar application in silt-loam soils on the Loess Plateau.

    Science.gov (United States)

    Zhu, Li-Xia; Xiao, Qian; Shen, Yu-Fang; Li, Shi-Qing

    2017-10-01

    microbial functional diversity affected by biochar were not effective indicators of soil quality in earlier maize growth periods in this region. Copyright © 2017. Published by Elsevier Inc.

  3. Microbial population responses in three stratified Antarctic meltwater ponds during the autumn freeze

    DEFF Research Database (Denmark)

    Safi, Karl; Hawes, Ian; Sorrell, Brian Keith

    2012-01-01

    The planktonic microbial communities of three meltwater ponds, located on the McMurdo Ice Shelf, were investigated from the end of January 2008 to early April, during which almost the entire pond volumes froze. The ponds were comprised of an upper mixed layer overlying a salt-stabilized density g...... for increasing heterotrophy within the remaining microbial communities, although all components of the food web eventually decline as the final freeze approaches....... role of autotrophic and heterotrophic microplankton within the ponds. The results showed that microbial groups responded to the onset of winter by declining in abundance, though an exception was the appearance of filamentous cyanobacteria in the water column in March. As freezing progressed, autotrophs...... declined more rapidly than heterotrophs and grazing rates and abundances of mixotrophic and heterotrophic organisms increased. Grazing pressure on bacteria and picophytoplankton also increased, in part explaining their decline over time. The results indicate that stressors imposed during freezing select...

  4. Marked Response in Microbial Community and Metabolism in the Ileum and Cecum of Suckling Piglets After Early Antibiotics Exposure

    Directory of Open Access Journals (Sweden)

    Miao Yu

    2018-05-01

    Full Text Available In modern swine husbandry systems, antibiotics have been used as growth promoters for piglets during suckling or weaning period. However, while early colonization of intestinal microbiota has been regarded crucial for the host’s later life performance and well-being, little is known about the impact of antibiotics on intestinal microbiota in suckling piglets. The present study aimed to investigate the effects of early antibiotics exposure on gut microbiota and microbial metabolism of suckling piglets. Sixteen litters of suckling piglets were fed a creep feed diet with (Antibiotic or without (Control antibiotics from postnatal days 7–23 (n = 8. The ileal and cecal digesta were obtained for microbial composition and microbial metabolites analysis. The results showed that the antibiotics significantly altered the bacterial community composition by decreasing (P < 0.05 the diversity and richness in the ileum. The antibiotics significantly reduced the abundance of Lactobacillus in both the ileum and cecum, increased the abundance of Streptococcus, unclassified Enterococcaceae, unclassified Fusobacteriales, and Corynebacterium in the ileum, and the abundance of unclassified Ruminococcaceae and unclassified Erysipelotrichaceae in the cecum. The antibiotics decreased (P < 0.05 ileal lactate concentration and cecal concentration of total short-chain fatty acids (SCFAs. But the antibiotics enhanced protein fermentation (P < 0.05 in the ileum and cecum, as ileal concentrations of putrescine and cadaverine, and cecal concentrations of isobutyrate, isovalerate, putrescine, cadaverine, spermine, and spermidine were significantly increased (P < 0.05. These results indicated that early antibiotics exposure significantly altered the microbial composition of suckling piglets toward a vulnerable and unhealthy gut environment. The findings provide a new insight on the antibiotics impact on neonates and may provide new framework for designing alternatives to the

  5. Inhibition of microbial growth by spice extracts and their effect of irradiation

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Meixu, G.

    1994-01-01

    The antimicrobial activity of black pepper, rosemary and red pepper has been tested against 12 microorganisms. Alcoholic extracts of these spices were not exhibited strong activity against gram-negative bacteria in laboratory media. The growth of Bacillus subtilis and Clostridium botulinum type A was inhibited by 1% of black pepper, 0.5% rosemary and 0.03% red pepper. A little reduction of antimicrobial activity to B. subtilis was observed on extracts of gamma-irradiated black pepper or rosemary at 10 and 50 kGy. In the case of red pepper, irradiation of 10 or 50 kGy enhanced a little of antimicrobial activity to B. subtilis. Similar effect of irradiation was also observed on the inhibition of aflatoxin production by Aspergillus parasiticus in SL broth. (author)

  6. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, M.; Wu, W.-M.; Wu, L.; He, Z.; Van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; Gu, B.; Watson, D.; Jardine, P.M.; Marsh, T.L.; Tiedje, J.M.; Hazen, T.C.; Criddle, C.S.; Zhou, J.

    2010-02-15

    A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 {micro}gl{sup -1}) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.

  7. Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems.

    Science.gov (United States)

    Zhang, Yu; Xie, Jianping; Liu, Miaomiao; Tian, Zhe; He, Zhili; van Nostrand, Joy D; Ren, Liren; Zhou, Jizhong; Yang, Min

    2013-10-15

    It is widely demonstrated that antibiotics in the environment affect microbial community structure. However, direct evidence regarding the impacts of antibiotics on microbial functional structures in wastewater treatment systems is limited. Herein, a high-throughput functional gene array (GeoChip 3.0) in combination with quantitative PCR and clone libraries were used to evaluate the microbial functional structures in two biological wastewater treatment systems, which treat antibiotic production wastewater mainly containing oxytetracycline. Despite the bacteriostatic effects of antibiotics, the GeoChip detected almost all key functional gene categories, including carbon cycling, nitrogen cycling, etc., suggesting that these microbial communities were functionally diverse. Totally 749 carbon-degrading genes belonging to 40 groups (24 from bacteria and 16 from fungi) were detected. The abundance of several fungal carbon-degrading genes (e.g., glyoxal oxidase (glx), lignin peroxidase or ligninase (lip), manganese peroxidase (mnp), endochitinase, exoglucanase_genes) was significantly correlated with antibiotic concentrations (Mantel test; P functional genes have been enhanced by the presence of antibiotics. However, from the fact that the majority of carbon-degrading genes were derived from bacteria and diverse antibiotic resistance genes were detected in bacteria, it was assumed that many bacteria could survive in the environment by acquiring antibiotic resistance and may have maintained the position as a main player in nutrient removal. Variance partitioning analysis showed that antibiotics could explain 24.4% of variations in microbial functional structure of the treatment systems. This study provides insights into the impacts of antibiotics on microbial functional structure of a unique system receiving antibiotic production wastewater, and reveals the potential importance of the cooperation between fungi and bacteria with antibiotic resistance in maintaining the

  8. Response of Microbial Community Function to Fluctuating Geochemical Conditions within a Legacy Radioactive Waste Trench Environment.

    Science.gov (United States)

    Vázquez-Campos, Xabier; Kinsela, Andrew S; Bligh, Mark W; Harrison, Jennifer J; Payne, Timothy E; Waite, T David

    2017-09-01

    During the 1960s, small quantities of radioactive materials were codisposed with chemical waste at the Little Forest Legacy Site (Sydney, Australia) in 3-meter-deep, unlined trenches. Chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess the impact of changing water levels upon the microbial ecology and contaminant mobility. Collectively, results demonstrated that oxygen-laden rainwater rapidly altered the redox balance in the trench water, strongly impacting microbial functioning as well as the radiochemistry. Two contaminants of concern, plutonium and americium, were shown to transition from solid-iron-associated species immediately after the initial rainwater pulse to progressively more soluble moieties as reducing conditions were enhanced. Functional metagenomics revealed the potentially important role that the taxonomically diverse microbial community played in this transition. In particular, aerobes dominated in the first day, followed by an increase of facultative anaerobes/denitrifiers at day 4. Toward the mid-end of the sampling period, the functional and taxonomic profiles depicted an anaerobic community distinguished by a higher representation of dissimilatory sulfate reduction and methanogenesis pathways. Our results have important implications to similar near-surface environmental systems in which redox cycling occurs. IMPORTANCE The role of chemical and microbiological factors in mediating the biogeochemistry of groundwaters from trenches used to dispose of radioactive materials during the 1960s is examined in this study. Specifically, chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess how changing water levels influence microbial ecology and

  9. Effects of various weaning times on growth performance, rumen fermentation and microbial population of yellow cattle calves

    Science.gov (United States)

    Mao, Huiling; Xia, Yuefeng; Tu, Yan; Wang, Chong; Diao, Qiyu

    2017-01-01

    Objective This study was conducted to investigate the effects of weaning times on the growth performance, rumen fermentation and microbial communities of yellow cattle calves. Methods Eighteen calves were assigned to a conventional management group that was normally weaned (NW, n = 3) or to early weaned (EW) group where calves were weaned when the feed intake of solid feed (starter) reached 500 g (EW500, n = 5), 750 g (EW750, n = 5), or 1,000 g (EW1,000, n = 5). Results Compared with NW, the EW treatments increased average daily gain (pcalves in EW750 had a higher (pintake than those in EW1,000 from wk 9 to the end of the trial. The concentrations of total volatile fatty acids in EW750 were greater than in NW and EW1,000 (p0.05), but changes in bacterial composition were found. Conclusion From the present study, it is inferred that EW is beneficial for rumen fermentation, and weaning when the feed intake of the starter reached 750 g showed much better results. PMID:28423879

  10. Microbial Activity Response to Solar Radiation across Contrasting Environmental Conditions in Salar de Huasco, Northern Chilean Altiplano.

    Science.gov (United States)

    Hernández, Klaudia L; Yannicelli, Beatriz; Olsen, Lasse M; Dorador, Cristina; Menschel, Eduardo J; Molina, Verónica; Remonsellez, Francisco; Hengst, Martha B; Jeffrey, Wade H

    2016-01-01

    In high altitude environments, extreme levels of solar radiation and important differences of ionic concentrations over narrow spatial scales may modulate microbial activity. In Salar de Huasco, a high-altitude wetland in the Andean mountains, the high diversity of microbial communities has been characterized and associated with strong environmental variability. Communities that differed in light history and environmental conditions, such as nutrient concentrations and salinity from different spatial locations, were assessed for bacterial secondary production (BSP, 3 H-leucine incorporation) response from short-term exposures to solar radiation. We sampled during austral spring seven stations categorized as: (a) source stations, with recently emerged groundwater (no-previous solar exposure); (b) stream running water stations; (c) stations connected to source waters but far downstream from source points; and (d) isolated ponds disconnected from ground sources or streams with a longer isolation and solar exposure history. Very high values of 0.25 μE m -2 s -1 , 72 W m -2 and 12 W m -2 were measured for PAR, UVA, and UVB incident solar radiation, respectively. The environmental factors measured formed two groups of stations reflected by principal component analyses (near to groundwater sources and isolated systems) where isolated ponds had the highest BSP and microbial abundance (35 microalgae taxa, picoeukaryotes, nanoflagellates, and bacteria) plus higher salinities and PO 4 3- concentrations. BSP short-term response (4 h) to solar radiation was measured by 3 H-leucine incorporation under four different solar conditions: full sun, no UVB, PAR, and dark. Microbial communities established in waters with the longest surface exposure (e.g., isolated ponds) had the lowest BSP response to solar radiation treatments, and thus were likely best adapted to solar radiation exposure contrary to ground source waters. These results support our light history (solar exposure

  11. Solar energy system reduces time taken to inhibit microbial growth in soil

    Energy Technology Data Exchange (ETDEWEB)

    Phitthayarachasak, Thanathep; Thepa, Sirichai; Kongkiattikajorn, Jirasak [Energy Technology Division, School of Energy Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Prachauthid Road, Tungkru, Bangkok 10140 (Thailand)

    2009-11-15

    This research studied how to reduce the time consumption and to increase and improve the efficiency of the solarization process. The asymmetry compound parabolic concentrator (ACPC) was developed to produce boiling water to be utilized while the solarization process was in operation. This could decrease the time consumed in the solarization process from 4 to 6 weeks to 4 h, with a temperature of approximately 41.25 C at the various depth levels, not exceeding 50 cm. The test to inhibit the growth of Ralstonia solanacearum, the causative agent of wilt in crops leaves, indicated that R. solanacearum was reduced from the total bacterial population of 10.9 x 10{sup 8} colony forming unit/g soil (cfu g{sup -1}) at soil surface to 9.0 x 10{sup 7}, 7.5 x 10{sup 4} and 4.1 x 10{sup 3} cfu g{sup -1} within 1, 2 and 4 h, respectively. (author)

  12. Insulin and insulin-like growth factor receptors and responses

    International Nuclear Information System (INIS)

    Roth, R.A.; Steele-Perkins, G.; Hari, J.; Stover, C.; Pierce, S.; Turner, J.; Edman, J.C.; Rutter, W.J.

    1988-01-01

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  13. Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk.

    Science.gov (United States)

    LeBouder, Emmanuel; Rey-Nores, Julia E; Raby, Anne-Catherine; Affolter, Michael; Vidal, Karine; Thornton, Catherine A; Labéta, Mario O

    2006-03-15

    The mechanisms controlling innate microbial recognition in the neonatal gut are still to be fully understood. We have sought specific regulatory mechanisms operating in human breast milk relating to TLR-mediated microbial recognition. In this study, we report a specific and differential modulatory effect of early samples (days 1-5) of breast milk on ligand-induced cell stimulation via TLRs. Although a negative modulation was exerted on TLR2 and TLR3-mediated responses, those via TLR4 and TLR5 were enhanced. This effect was observed in human adult and fetal intestinal epithelial cell lines, monocytes, dendritic cells, and PBMC as well as neonatal blood. In the latter case, milk compensated for the low capacity of neonatal plasma to support responses to LPS. Cell stimulation via the IL-1R or TNFR was not modulated by milk. This, together with the differential effect on TLR activation, suggested that the primary effect of milk is exerted upstream of signaling proximal to TLR ligand recognition. The analysis of TLR4-mediated gene expression, used as a model system, showed that milk modulated TLR-related genes differently, including those coding for signal intermediates and regulators. A proteinaceous milk component of > or =80 kDa was found to be responsible for the effect on TLR4. Notably, infant milk formulations did not reproduce the modulatory activity of breast milk. Together, these findings reveal an unrecognized function of human milk, namely, its capacity to influence neonatal microbial recognition by modulating TLR-mediated responses specifically and differentially. This in turn suggests the existence of novel mechanisms regulating TLR activation.

  14. Interactions Between Stress and Sex in Microbial Responses Within the Microbiota-Gut-Brain Axis in a Mouse Model.

    Science.gov (United States)

    Tsilimigras, Matthew C B; Gharaibeh, Raad Z; Sioda, Michael; Gray, Laura; Fodor, Anthony A; Lyte, Mark

    2018-05-01

    Animal models are frequently used to examine stress response, but experiments seldom include females. The connection between the microbiota-gut-brain axis and behavioral stress response is investigated here using a mixed-sex mouse cohort. CF-1 mice underwent alternating days of restraint and forced swim for 19 days (male n = 8, female n = 8) with matching numbers of control animals at which point the 16S rRNA genes of gut microbiota were sequenced. Mixed linear models accounting for stress status and sex with individuals nested in cage to control for cage effects evaluated these data. Murine behaviors in elevated plus-maze, open-field, and light/dark box were investigated. Community-level associations with sex, stress, and their interaction were significant. Males had higher microbial diversity than females (p = .025). Of the 638 operational taxonomic units detected in at least 25% of samples, 94 operational taxonomic units were significant: 31 (stress), 61 (sex), and 34 (sex-stress interaction). Twenty of the 39 behavioral measures were significant for stress, 3 for sex, and 6 for sex-stress. However, no significant associations between behavioral measures and specific microbes were detected. These data suggest sex influences stress response and the microbiota-gut-brain axis and that studies of behavior and the microbiome therefore benefit from consideration of how sex differences drive behavior and microbial community structure. Host stress resilience and absence of associations between stress-induced behaviors with specific microbes suggests that hypothalamic-pituitary-adrenal axis activation represents a threshold for microbial influence on host behavior. Future studies are needed in examining the intersection of sex, stress response, and the microbiota-gut-brain axis.

  15. Reduced neonatal regulatory T cell response to microbial stimuli associates with subsequent eczema in high-risk infants.

    Science.gov (United States)

    Ismail, Intan H; Boyle, Robert J; Mah, Li-Jeen; Licciardi, Paul V; Tang, Mimi L K

    2014-11-01

    Regulatory T cells (Treg) play an essential role in early immune programming and shaping the immune response towards a pro-allergic or tolerant state. We evaluated cord blood Treg and cytokine responses to microbial and non-microbial stimuli in infants at high risk of allergic disease and their associations with development of allergic disease in the first year. Cord blood mononuclear cells from 72 neonates were cultured with toll-like receptors (TLR2) ligands: lipoteichoic acid (LTA) and heat-killed Lactobacillus rhamnosus GG (HKL); TLR4 ligand: lipopolysaccharide (LPS); ovalbumin (OVA); anti-CD3; or media for 48 h. Treg numbers and Treg cytokines were assessed in relation to allergic disease outcomes during the first year of life (eczema and atopic sensitization). Infants with eczema (n = 24) had reduced percentages of FoxP3(hi)CD25(hi) Treg in LTA (p = 0.01, adj p = 0.005) and HKL (p = 0.04, adj p = 0.02) stimulated cultures as well as reduced IL-10 (p = 0.01) production following HKL stimulation compared to those without eczema (n = 48). No differences in Treg or cytokine responses to LPS, OVA or anti-CD3 were seen. Infants who developed sensitization had lower percentages of Treg following TLR2 stimulation (but not other stimuli) compared to non-sensitized infants. High-risk children who develop allergic disease in the first year of life have deficient Treg responses to microbial stimuli but not allergen from the time of birth, which may contribute to failure of immune tolerance development in infancy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Growth and ABA responses of maple seedlings to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, A.; Robitaille, G.; Boutin, R. [Canadian Forestry Service, Sainte Foy, PQ (Canada); Nadeau, P. [Agriculture and Agri-Food Canada Research Station, Sainte-Foy, PQ (Canada)

    1995-12-01

    The impacts of low pH and 2.0 mM aluminum (Al) on the growth of sugar maple seedlings was assessed over a 13-week period. The hypothesis was that low pH and high aluminum concentration would lower the vigor of sugar maple seedlings and were contributing factors to sugar maple stand decline. The effects of the stresses were measured in roots and shoots. The concentration of abscisis acid (ABA) in xylem sap in response to Al over time was measured to determine whether it could be used as an indicator of Al stress in sugar maple seedlings. At week 9, total leaf area of Al-treated seedlings was reduced by 27%, but by week 13 leaf area was similar for seedlings in all treatments. None of the other growth parameters examined were negatively affected by the treatments at either week 9 or week 13. ABA concentration in the xylem sap was not affected by any of the treatments. The duration of exposure to Al was found critical when assessing a threshold concentration for Al toxicity because plants can acclimate to an Al concentration previously considered toxic. 36 refs., 1 tab., 6 figs.

  17. Responses of microbial community to pH stress in bioleaching of low grade copper sulfide.

    Science.gov (United States)

    Wang, Yuguang; Li, Kai; Chen, Xinhua; Zhou, Hongbo

    2018-02-01

    The microbial diversity and dynamics in the leachates and on the ore surfaces of different depth of the column were analyzed during bioleaching of low grade copper sulfide at different pH, after inoculation with the same inoculum containing mesophiles and moderate thermophiles. The results indicate that low pH was beneficial to enhance copper extraction. The highest copper extraction (86%) was obtained when pH was controlled at 1.0-1.5. The microbial structures on the ore surfaces were independent of community structures in the leachate, even at the top portion of column. Microbial richness and evenness increased with decreasing pH during bioleaching. pH had significant effects on microbial community structure in the leachate and on the mineral surface of different depth of the column. Leptospirillum ferriphilum accounted for the highest proportions of the community at most times when pH was operated during bioleaching, especially at the end of run. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Structural and metabolic responses of microbial community to sewage-borne chlorpyrifos in constructed wetlands.

    Science.gov (United States)

    Zhang, Dan; Wang, Chuan; Zhang, Liping; Xu, Dong; Liu, Biyun; Zhou, Qiaohong; Wu, Zhenbin

    2016-06-01

    Long-term use of chlorpyrifos poses a potential threat to the environment that cannot be ignored, yet little is known about the succession of substrate microbial communities in constructed wetlands (CWs) under chlorpyrifos stress. Six pilot-scale CW systems receiving artificial wastewater containing 1mg/L chlorpyrifos were established to investigate the effects of chlorpyrifos and wetland vegetation on the microbial metabolism pattern of carbon sources and community structure, using BIOLOG and denaturing gradient gel electrophoresis (DGGE) approaches. Based on our samples, BIOLOG showed that Shannon diversity (H') and richness (S) values distinctly increased after 30days when chlorpyrifos was added. At the same time, differences between the vegetated and the non-vegetated systems disappeared. DGGE profiles indicated that H' and S had no significant differences among four different treatments. The effect of chlorpyrifos on the microbial community was mainly reflected at the physiological level. Principal component analysis (PCA) of both BIOLOG and DGGE showed that added chlorpyrifos made a difference on test results. Meanwhile, there was no difference between the vegetation and no-vegetation treatments after addition of chlorpyrifos at the physiological level. Moreover, the vegetation had no significant effect on the microbial community at the genetic level. Comparisons were made between bacteria in this experiment and other known chlorpyrifos-degrading bacteria. The potential chlorpyrifos-degrading ability of bacteria in situ may be considerable. Copyright © 2016. Published by Elsevier B.V.

  19. Cucumber rhizosphere microbial community response to biocontrol agent Bacillus subtilis B068150

    Science.gov (United States)

    Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum f. sp. Cucumerinum. However, their survival ability in cucumber rhizosphere and non-rhizosphere as well as their influence on native microbial communities has not been fully i...

  20. Responses of redwood soil microbial community structure and N transformations to climate change

    Science.gov (United States)

    Damon C. Bradbury; Mary K. Firestone

    2012-01-01

    Soil microorganisms perform critical ecosystem functions, including decomposition, nitrogen (N) mineralization and nitrification. Soil temperature and water availability can be critical determinants of the rates of these processes as well as microbial community composition and structure. This research examined how changes in climate affect bacterial and fungal...

  1. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2013-05-01

    Full Text Available The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply-rooted and poorly understood archaea, bacteria and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1 phototrophic mats, (2 ‘filamentous streamer’ communities, and (3 archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments.

  2. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation

    NARCIS (Netherlands)

    Sutton, N.B.; Atashgahi, S.; Saccenti, E.; Grotenhuis, J.T.C.; Smidt, H.; Rijnaarts, H.H.M.

    2015-01-01

    While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the

  3. Response of microbial communities to pesticide residues in soil restored with Azolla imbricata.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2018-01-01

    Under conditions of Azolla imbricata restoration, the high-throughput sequencing technology was employed to determine change trends of microbial community structures in the soil that had undergone long-term application of pesticides. The relationship between the content of pesticide residues in the soil and the microbial community structure was analyzed. The results indicated that the microbial diversity was strongly negatively correlated with the contents of pesticide residues in the soil. At a suitable dosage of 5 kg fresh A. imbricata per square meter of soil area, the soil microbial diversity increased by 12.0%, and the contents of pesticide residues decreased by 26.8-72.1%. Sphingobacterium, Sphingopyxis, Thermincola, Sphingobium, Acaryochloris, Megasphaera, Ralstonia, Pseudobutyrivibrio, Desulfitobacterium, Nostoc, Oscillochloris, and Aciditerrimonas may play major roles in the degradation of pesticide residues. Thauera, Levilinea, Geothrix, Thiobacillus, Thioalkalispira, Desulfobulbus, Polycyclovorans, Fluviicola, Deferrisoma, Erysipelothrix, Desulfovibrio, Cytophaga, Vogesella, Zoogloea, Azovibrio, Halomonas, Paludibacter, Crocinitomix, Haliscomenobacter, Hirschia, Silanimonas, Alkalibacter, Woodsholea, Peredibacter, Leptolinea, Chitinivorax, Candidatus_Lumbricincola, Anaerovorax, Propionivibrio, Parasegetibacter, Byssovorax, Runella, Leptospira, and Nitrosomonas may be indicators to evaluate the contents of pesticide residues.

  4. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill

    DEFF Research Database (Denmark)

    Mason, Olivia U.; Scott, Nicole M.; Gonzalez, Antonio

    2014-01-01

    The Deepwater Horizon (DWH) oil spill in the spring of 2010 resulted in an input of similar to 4.1 million barrels of oil to the Gulf of Mexico; >22% of this oil is unaccounted for, with unknown environmental consequences. Here we investigated the impact of oil deposition on microbial communities...

  5. Microbial shifts in the swine nasal microbiota in response to parenteral antimicrobial administration.

    Science.gov (United States)

    Zeineldin, Mohamed; Aldridge, Brian; Blair, Benjamin; Kancer, Katherine; Lowe, James

    2018-05-24

    The continuous administration of antimicrobials in swine production has been widely criticized with the increase of antimicrobial-resistant bacteria and dysbiosis of the beneficial microbial communities. While an increasing number of studies investigate the effects of antimicrobial administration on swine gastrointestinal microbiota biodiversity, the impact of their use on the composition and diversity of nasal microbial communities has not been widely explored. The objective of this study was to characterize the short-term impact of different parenteral antibiotics administration on the composition and diversity of nasal microbial communities in growing pigs. Five antimicrobial treatment groups, each consisting of four, eight-week old piglets, were administered one of the antimicrobials; Ceftiofur Crystalline free acid (CCFA), Ceftiofur hydrochloride (CHC), Tulathromycin (TUL), Oxytetracycline (OTC), and Procaine Penicillin G (PPG) at label dose and route. Individual deep nasal swabs were collected immediately before antimicrobial administration (control = day 0), and again on days 1, 3, 7, and 14 after dosing. The nasal microbiota across all the samples were dominated by Firmicutes, proteobacteria and Bacteroidetes. While, the predominant bacterial genera were Moraxella, Clostridium and Streptococcus. Linear discriminant analysis, showed a pronounced, antimicrobial-dependent microbial shift in the composition of nasal microbiota and over time from day 0. By day 14, the nasal microbial compositions of the groups receiving CCFA and OTC had returned to a distribution that closely resembled that observed on day 0. In contrast, pigs that received CHC, TUL and PPG appeared to deviate away from the day 0 composition by day 14. Based on our results, it appears that the impact of parenteral antibiotics on the swine nasal microbiota is variable and has a considerable impact in modulating the nasal microbiota structure. Our results will aid in developing alternative

  6. Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide.

    Science.gov (United States)

    Tejada, Manuel; García, Carlos; Hernández, Teresa; Gómez, Isidoro

    2015-07-01

    We performed a laboratory study into the effect of cypermethrin insecticide applied to different concentrations on biological properties in two soils [Typic Xerofluvent (soil A) and Xerollic Calciorthid (soil B)]. Two kg of each soil were polluted with cypermethrin at a rate of 60, 300, 600, and 1,200 g ha(-1) (C1, C2, C3, and C4 treatments). A nonpolluted soil was used as a control (C0 treatment). For all treatments and each experimental soil, soil dehydrogenase, urease, β-glucosidase, phosphatase, and arylsulphatase activities and soil microbial community were analysed by phospholipid fatty acids, which were measured at six incubation times (3, 7, 15, 30, 60, and 90 days). The behavior of the enzymatic activities and microbial population were dependent on the dose of insecticide applied to the soil. Compared with the C0 treatment, in soil A, the maximum inhibition of the enzymatic activities was at 15, 30, 45, and 90 days for the C1, C2, C3, and C4 treatments, respectively. However, in soil B, the maximum inhibition occurred at 7, 15, 30, and 45 days for the C1, C2, C3, and C4 treatments, respectively. These results suggest that the cypermethrin insecticide caused a negative effect on soil enzymatic activities and microbial diversity. This negative impact was greater when a greater dose of insecticide was used; this impact was also greater in soil with lower organic matter content. For both soils, and from these respective days onward, the enzymatic activities and microbial populations progressively increased by the end of the experimental period. This is possibly due to the fact that the insecticide or its breakdown products and killed microbial cells, subsequently killed by the insecticide, are being used as a source of energy or as a carbon source for the surviving microorganisms for cell proliferation.

  7. Role of microbial inoculation and industrial by-product phosphogypsum in growth and nutrient uptake of maize (Zea mays L.) grown in calcareous soil.

    Science.gov (United States)

    Al-Enazy, Abdul-Aziz R; Al-Oud, Saud S; Al-Barakah, Fahad N; Usman, Adel Ra

    2017-08-01

    Alkaline soils with high calcium carbonate and low organic matter are deficient in plant nutrient availability. Use of organic and bio-fertilizers has been suggested to improve their properties. Therefore, a greenhouse experiment was conducted to evaluate the integrative role of phosphogypsum (PG; added at 0.0, 10, 30, and 50 g PG kg -1 ), cow manure (CM; added at 50 g kg -1 ) and mixed microbial inoculation (Incl.; Azotobacter chroococcum, and phosphate-solubilizing bacteria Bacillus megaterium var. phosphaticum and Pseudomonas fluorescens) on growth and nutrients (N, P, K, Fe, Mn, Zn and Cu) uptake of maize (Zea mays L.) in calcareous soil. Treatment effects on soil chemical and biological properties and the Cd and Pb availability to maize plants were also investigated. Applying PG decreased soil pH. The soil available P increased when soil was inoculated and/or treated with CM, especially with PG. The total microbial count and dehydrogenase activity were enhanced with PG+CM+Incl. Inoculated soils treated with PG showed significant increases in NPK uptake and maize plant growth. However, the most investigated treatments showed significant decreases in shoot micronutrients. Cd and Pb were not detected in maize shoots. Applying PG with microbial inoculation improved macronutrient uptake and plant growth. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Microbial response to oil enrichment in Gulf of Mexico sediment measured using a novel long-term benthic lander system

    Directory of Open Access Journals (Sweden)

    Beth N. Orcutt

    2017-04-01

    Full Text Available Weathered crude oil sank to the seafloor following the 'Deepwater Horizon' disaster in 2010, removing this oil from further physical and photo-chemical degradation processes and leaving benthic processes as the mechanisms for altering and remediating this hydrocarbon source. To quantify potential microbial oil degradation rates at the seafloor, and associated changes in sediment microbial community structure and pore fluid composition, we used a benthic lander system to deploy novel sediment flow-through chambers at a natural hydrocarbon seep in the Gulf of Mexico (at a depth of 1226 m in lease block GC600 roughly 265 km southwest of the 'Deepwater Horizon' wellhead (at 1500 m depth. Sediment amended with 20% unweathered crude oil had elevated rates of sulfate reduction over the course of the 5-month-long experiment as compared to an unamended control, yielding potential rates of sulfate reduction (600–800 mmol m–2 d–1 among the highest measured in hydrocarbon-influenced seafloor sediment. Oil amendment also stimulated methane production towards the end of the experiment, and led to slightly higher cell densities without significant changes in microbial community structure, based on 16S rRNA gene sequence libraries and fatty acid profiles. Assuming a link between sulfate reduction and hydrocarbon degradation, these results suggest that electron acceptor availability may become limiting in heavily oiled deep-sea environments, resulting in minimal degradation of deposited oil. This study provides unique data on seafloor sediment responses to oil deposition, and reveals the value of using observatories to fill the gap in understanding deep-sea microbial processes, especially for ephemeral and stochastic events such as oil spills.

  9. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis

    International Nuclear Information System (INIS)

    L'Hote, Corine G.M.; Knowles, Margaret A.

    2005-01-01

    FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer

  10. Growth and applicability of radiation-responsive silica nanowires

    Science.gov (United States)

    Bettge, Martin

    Surface energetics play an important role in processes on the nanoscale. Nanowire growth via vapor-liquid-solid (VLS) mechanism is no exception in this regard. Interfacial and line energies are found to impose some fundamental limits during three-phase nanowire growth and lead to formation of stranded nanowires with fascinating characteristics such as high responsiveness towards ion irradiation. By using two materials with a relatively low surface energy (indium and silicon oxide) this is experimentally and theoretically demonstrated in this doctoral thesis. The augmentation of VLS nanowire growth with ion bombardment enables fabrication of vertically aligned silica nanowires over large areas. Synthesis of their arrays begins with a thin indium film deposited on a Si or SiO 2 surface. At temperatures below 200ºC, the indium film becomes a self-organized seed layer of molten droplets, receiving a flux of atomic silicon by DC magnetron sputtering. Simultaneous vigorous ion bombardment through substrate biasing aligns the growing nanowires vertically and expedites mixing of oxygen and silicon into the indium. The vertical growth rate can reach up to 1000 nm-min-1 in an environment containing only argon and traces of water vapor. Silicon oxide precipitates from each indium seed in the form of multiple thin strands having diameters less than 9 nm and practically independent of droplet size. The strands form a single loose bundle, eventually consolidating to form one vertically aligned nanowire. These observations are in stark contrast to conventional VLS growth in which one liquid droplet precipitates a single solid nanowire and in which the precipitated wire diameter is directly proportional to the droplet diameter. The origin of these differences is revealed through a detailed force balance analysis, analogous to Young's relation, at the three-phase line. The liquid-solid interfacial energy of indium/silica is found to be the largest energy contribution at the three

  11. Unfolding Role of a Danger Molecule Adenosine Signaling in Modulation of Microbial Infection and Host Cell Response

    Directory of Open Access Journals (Sweden)

    Jaden S. Lee

    2018-01-01

    Full Text Available Ectonucleotidases CD39 and CD73, specific nucleotide metabolizing enzymes located on the surface of the host, can convert a pro-inflammatory environment driven by a danger molecule extracellular-ATP to an adenosine-mediated anti-inflammatory milieu. Accordingly, CD39/CD73 signaling has been strongly implicated in modulating the intensity, duration, and composition of purinergic danger signals delivered to host. Recent studies have eluted potential roles for CD39 and CD73 in selective triggering of a variety of host immune cells and molecules in the presence of pathogenic microorganisms or microbial virulence molecules. Growing evidence also suggests that CD39 and CD73 present complimentary, but likely differential, actions against pathogens to shape the course and severity of microbial infection as well as the associated immune response. Similarly, adenosine receptors A2A and A2B have been proposed to be major immunomodulators of adenosine signaling during chronic inflammatory conditions induced by opportunistic pathogens, such as oral colonizer Porphyromonas gingivalis. Therefore, we here review the recent studies that demonstrate how complex network of molecules in the extracellular adenosine signaling machinery and their interactions can reshape immune responses and may also be targeted by opportunistic pathogens to establish successful colonization in human mucosal tissues and modulate the host immune response.

  12. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation.

    Science.gov (United States)

    Sutton, Nora B; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H M

    2015-01-01

    While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2-4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose

  13. Response of core microbial consortia to hydrocarbon contaminations in coastal sediment habitats

    Directory of Open Access Journals (Sweden)

    Mathilde Jeanbille

    2016-10-01

    Full Text Available Traditionally, microbial surveys investigating the effect of chronic anthropogenic pressure such as polyaromatic hydrocarbons (PAHs contaminations consider just the alpha and beta diversity and ignore the interactions among the different taxa forming the microbial community. Here, we investigated the ecological relationships between the three domains of life (i.e. Bacteria, Archaea and Eukarya using 454 pyrosequencing data of the 16S rRNA and 18S rRNA genes from chronically impacted and pristine sediments, along the coasts of the Mediterranean Sea (Gulf of Lion, Vermillion coast, Corsica, Bizerte lagoon and Lebanon and the French Atlantic Ocean (Bay of Biscay and English Channel. Our approach provided a robust ecological framework for the partition of the taxa abundance distribution into 859 core OTUs and 6629 satellite OTUs. OTUs forming the core microbial community showed the highest sensitivity to changes in environmental and contaminant variations, with salinity, latitude, temperature, particle size distribution, total organic carbon (TOC and PAH concentrations as main drivers of community assembly. The core communities were dominated by Gammaproteobacteria and Deltaproteobacteria for Bacteria, by Thaumarchaeota, Bathyarchaeota and Thermoplasmata for Archaea and Metazoa and Dinoflagellata for Eukarya. In order to find associations among microorganisms, we generated a co-occurrence network in which PAHs were found to impact significantly the potential predator – prey relationship in one microbial consortium composed of ciliates and Actinobacteria. Comparison of network topological properties between contaminated and non-contaminated samples showed substantial differences in the structure of the network and indicated a higher vulnerability to environmental perturbations in the contaminated sediments.

  14. Soil microbial community structure and function responses to successive planting of Eucalyptus.

    Science.gov (United States)

    Chen, Falin; Zheng, Hua; Zhang, Kai; Ouyang, Zhiyun; Li, Huailin; Wu, Bing; Shi, Qian

    2013-10-01

    Many studies have shown soil degradation after the conversion of native forests to exotic Eucalyptus plantations. However, few studies have investigated the long-term impacts of short-rotation forestry practices on soil microorganisms. The impacts of Eucalyptus successive rotations on soil microbial communities were evaluated by comparing phospholipid fatty acid (PLFA) abundances, compositions, and enzyme activities of native Pinus massoniana plantations and adjacent 1st, 2nd, 3rd, 4th generation Eucalyptus plantations. The conversion from P. massoniana to Eucalyptus plantations significantly decreased soil microbial community size and enzyme activities, and increased microbial physiological stress. However, the PLFA abundances formed "u" shaped quadratic functions with Eucalyptus plantation age. Alternatively, physiological stress biomarkers, the ratios of monounsaturated to saturated fatty acid and Gram+ to Gram- bacteria, formed "n"' shaped quadratic functions, and the ratio of cy17:0 to 16:1omega7c decreased with plantation age. The activities of phenol oxidase, peroxidase, and acid phosphatase increased with Eucalyptus plantation age, while the cellobiohydrolase activity formed "u" shaped quadratic functions. Soil N:P, alkaline hydrolytic nitrogen, soil organic carbon, and understory cover largely explained the variation in PLFA profiles while soil N:P, alkaline hydrolytic nitrogen, and understory cover explained most of the variability in enzyme activity. In conclusion, soil microbial structure and function under Eucalyptus plantations were strongly impacted by plantation age. Most of the changes could be explained by altered soil resource availability and understory cover associated with successive planting of Eucalyptus. Our results highlight the importance of plantation age for assessing the impacts of plantation conversion as well as the importance of reducing disturbance for plantation management.

  15. The effect of the Falcon 460 EC fungicide on soil microbial communities, enzyme activities and plant growth.

    Science.gov (United States)

    Baćmaga, Małgorzata; Wyszkowska, Jadwiga; Kucharski, Jan

    2016-10-01

    Fungicides are considered to be effective crop protection chemicals in modern agriculture. However, they can also exert toxic effects on non-target organisms, including soil-dwelling microbes. Therefore, the environmental fate of fungicides has to be closely monitored. The aim of this study was to evaluate the influence of the Falcon 460 EC fungicide on microbial diversity, enzyme activity and resistance, and plant growth. Samples of sandy loam with pH KCl 7.0 were collected for laboratory analyses on experimental days 30, 60 and 90. Falcon 460 EC was applied to soil in the following doses: control (soil without the fungicide), dose recommended by the manufacturer, 30-fold higher than the recommended dose, 150-fold higher than the recommended dose and 300-fold higher than the recommended dose. The observed differences in the values of the colony development index and the eco-physiological index indicate that the mixture of spiroxamine, tebuconazole and triadimenol modified the biological diversity of the analyzed groups of soil microorganisms. Bacteria of the genus Bacillus and fungi of the genera Penicillium and Rhizopus were isolated from fungicide-contaminated soil. The tested fungicide inhibited the activity of dehydrogenases, catalase, urease, acid phosphatase and alkaline phosphatase. The greatest changes were induced by the highest fungicide dose 300-fold higher than the recommended dose. Dehydrogenases were most resistant to soil contamination. The Phytotoxkit test revealed that the analyzed fungicide inhibits seed germination capacity and root elongation. The results of this study indicate that excessive doses of the Falcon 460 EC fungicide 30-fold higher than the recommended dose to 300-fold higher than the recommended dose) can induce changes in the biological activity of soil. The analyzed microbiological and biochemical parameters are reliable indicators of the fungicide's toxic effects on soil quality.

  16. Microbial characteristics of purple paddy soil in response to Pb pollution.

    Science.gov (United States)

    Jiang, Qiu-Ju; Zhang, Yue-Qiang; Zhang, La-Mei; Zhou, Xin-Bin; Shi, Xiao-Jun

    2014-05-01

    The study focused on the change of microbial characteristics affected by Plumbum pollution with purple paddy soil in an incubation experiment. The results showed that low concentration of Plumbum had little effect on most of microbial amounts, biological activity and enzymatic activity. However, denitrifying activity was inhibited severely, and inhibition rate was up to 98%. Medium and high concentration of Plumbum significantly reduced the amounts and activity of all microorganisms and enzymatic activity, which increased with incubation time. Negative correlations were found between Plumbum concentrations and microbial amounts, biological activity and enzymatic activities except fungi and actinomyces. Thus they can be used to indicate the Plumbum pollution levels to some extent. LD(50) of denitrifying bacteria (DB) and ED50 of denitrifying activity were 852mg/kg and 33.5mg/kg. Across all test soil microbes, denitrifying bacteria was most sensitive to Plumbum pollution in purple paddy soil. Value of early warning showed that anaerobic cellulose-decomposing bacteria (ACDB) and actinomyces were also sensitive to Plumbum pollution. We concluded that denitrifying activity, actinomyces, ACDB or DB can be chosen as predictor of Plumbum contamination in purple paddy soil.

  17. Responses of soil microbial activity to cadmium pollution and elevated CO2.

    Science.gov (United States)

    Chen, Yi Ping; Liu, Qiang; Liu, Yong Jun; Jia, Feng An; He, Xin Hua

    2014-03-06

    To address the combined effects of cadmium (Cd) and elevated CO2 on soil microbial communities, DGGE (denaturing gradient gel electrophoresis) profiles, respiration, carbon (C) and nitrogen (N) concentrations, loessial soils were exposed to four levels of Cd, i.e., 0 (Cd0), 1.5 (Cd1.5), 3.0 (Cd3.0) and 6.0 (Cd6.0) mg Cd kg(-1) soil, and two levels of CO2, i.e., 360 (aCO2) and 480 (eCO2) ppm. Compared to Cd0, Cd1.5 increased fungal abundance but decreased bacterial abundance under both CO2 levels, whilst Cd3.0 and Cd6.0 decreased both fungal and bacterial abundance. Profiles of DGGE revealed alteration of soil microbial communities under eCO2. Soil respiration decreased with Cd concentrations and was greater under eCO2 than under aCO2. Soil total C and N were greater under higher Cd. These results suggest eCO2 could stimulate, while Cd pollution could restrain microbial reproduction and C decomposition with the restraint effect alleviated by eCO2.

  18. Microbial Community Response to Terrestrially Derived Dissolved Organic Matter in the Coastal Arctic

    Directory of Open Access Journals (Sweden)

    Rachel E. Sipler

    2017-06-01

    Full Text Available Warming at nearly twice the global rate, higher than average air temperatures are the new ‘normal’ for Arctic ecosystems. This rise in temperature has triggered hydrological and geochemical changes that increasingly release carbon-rich water into the coastal ocean via increased riverine discharge, coastal erosion, and the thawing of the semi-permanent permafrost ubiquitous in the region. To determine the biogeochemical impacts of terrestrially derived dissolved organic matter (tDOM on marine ecosystems we compared the nutrient stocks and bacterial communities present under ice-covered and ice-free conditions, assessed the lability of Arctic tDOM to coastal microbial communities from the Chukchi Sea, and identified bacterial taxa that respond to rapid increases in tDOM. Once thought to be predominantly refractory, we found that ∼7% of dissolved organic carbon and ∼38% of dissolved organic nitrogen from tDOM was bioavailable to receiving marine microbial communities on short 4 – 6 day time scales. The addition of tDOM shifted bacterial community structure toward more copiotrophic taxa and away from more oligotrophic taxa. Although no single order was found to respond universally (positively or negatively to the tDOM addition, this study identified 20 indicator species as possible sentinels for increased tDOM. These data suggest the true ecological impact of tDOM will be widespread across many bacterial taxa and that shifts in coastal microbial community composition should be anticipated.

  19. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1.

    Science.gov (United States)

    Li, Xiaojie; Han, Bing; Xu, Manyu; Han, Liping; Zhao, Yanying; Liu, Zhilan; Dong, Hansong; Zhang, Chunling

    2014-04-01

    The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice. And growth-promoting responses were determined mainly as an increase of chlorophyll a/b ratio, which indicates a potential elevation of photosynthesis rates, and enhancements of photosynthesis and EXP expression in the three plant species. In Arabidopsis, Hpa1-induced growth-promoting responses were partially compromised by a defect in ethylene perception or gibberellin biosynthesis. In tomato and rice, compromises of Hpa1-induced growth-promoting responses were caused by a pharmacological treatment with an ethylene perception inhibitor or a gibberellin biosynthesis inhibitor. In the three plant species, moreover, Hpa1-induced growth-promoting responses were significantly impaired, but not totally eliminated, by abolishing ethylene perception or gibberellin synthesis. However, simultaneous nullifications in both ethylene perception and gibberellin biosynthesis almost canceled the full effects of Hpa1 on plant growth, photosynthesis, and EXP2 expression. Theses results suggest that ethylene and gibberellin coregulate Hpa1-induced plant growth enhancement and associated physiological and molecular responses.

  20. Response of soil organic carbon fractions, microbial community composition and carbon mineralization to high-input fertilizer practices under an intensive agricultural system

    Science.gov (United States)

    Wu, Xueping; Gebremikael, Mesfin Tsegaye; Wu, Huijun; Cai, Dianxiong; Wang, Bisheng; Li, Baoguo; Zhang, Jiancheng; Li, Yongshan; Xi, Jilong

    2018-01-01

    Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile carbon (C) pools, microbial community structure and C mineralization rate under an intensive wheat-maize double cropping system in Northern China. Soil samples in 0–10 cm layer were collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools (including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C, MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil microbial communities and SOC mineralization rate from those observed in the CK treatment. Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related microbial communities, and resulted in 53% higher cumulative mineralization of C compared to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial community structure. Further addition of manure on the top of straw in the NPSM treatment did not significantly increase microbial community abundances, but it did alter microbial community structure by increasing G+/G- ratio compared to that of NPS. The cumulative mineralization of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully taken into account when setting realistic and effective goals

  1. [Influence of Mirabilis jalapa Linn. Growth on the Microbial Community and Petroleum Hydrocarbon Degradation in Petroleum Contaminated Saline-alkali Soil].

    Science.gov (United States)

    Jiao, Hai-hua; Cui, Bing-jian; Wu, Shang-hua; Bai, Zhi-hui; Huang, Zhan-bin

    2015-09-01

    In order to explore the effect of Mirabilis jalapa Linn. growth on the structure characteristics of the microbial community and the degradation of petroleum hydrocarbon (TPH) in the petroleum-contaminated saline-alkali soil, Microbial biomass and species in the rhizosphere soils of Mirabilis jalapa Linn. in the contaminated saline soil were studied with the technology of phospholipid fatty acids (PLFAs) analysis. The results showed that comparing to CK soils without Mirabilis jalapa Linn., the ratio of PLFAs species varied were 71. 4%, 69. 2% and 33. 3% in the spring, summer and autumn season, respectively. In addition, there was distinct difference of the biomasses of the microbial community between the CK and rhizosphere soils and among the difference seasons of growth of Mirabilis jalapa Linn.. Compare to CK soil, the degradation rates of total petroleum hydrocarbon (TPH) was increased by 47. 6%, 28. 3%, and 18. 9% in spring, summer, and autumn rhizosphere soils, respectively. Correlation analysis was used to determine the correlation between TPH degradation and the soil microbial community. 77. 8% of the total soil microbial PLFAs species showed positive correlation to the TPH degradation (the correlation coefficient r > 0), among which, 55. 6% of PLFAs species showed high positive correlation(the correlation coefficient was r≥0. 8). In addition, the relative content of SAT and MONO had high correlation with TPH degradation in the CK sample soils, the corelation coefficient were 0. 92 and 0. 60 respectively; However, the percent of positive correlation was 42. 1% in the rhizosphere soils with 21. 1% of them had high positive correlation. The relative content of TBSAT, MONO and CYCLO had moderate or low correlation in rhizosphere soils, and the correlation coefficient were 0. 56, 0. 50, and 0. 07 respectively. Our study showed that the growth of mirabilis Mirabilis jalapa Linn. had a higher influence on the species and biomass of microbial community in the

  2. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1

    OpenAIRE

    Li, Xiaojie; Han, Bing; Xu, Manyu; Han, Liping; Zhao, Yanying; Liu, Zhilan; Dong, Hansong; Zhang, Chunling

    2014-01-01

    The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice...

  3. Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol

    DEFF Research Database (Denmark)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-01-01

    community. In this study, a self-stacked submersible microbial fuel cell (SSMFC) powered by glycerol was tested to elucidate this important issue. In series connection, the maximum voltage output reached to 1.15 V, while maximum current density was 5.73 mA in parallel. In both connections, the maximum power......Stack connection (i.e., in series or parallel) of microbial fuel cell (MFC) is an efficient way to boost the power output for practical application. However, there is little information available on short-term changes in stack connection and its effect on the electricity generation and microbial...... density increased with the initial glycerol concentration. However, the glycerol degradation was even faster in parallel connection. When the SSMFC was shifted from series to parallel connection, the reactor reached to a stable power output without any lag phase. Meanwhile, the anodic microbial community...

  4. Response of soil microbial communities to red mud-based stabilizer remediation of cadmium-contaminated farmland.

    Science.gov (United States)

    Li, Hui; Liu, Lemian; Luo, Lin; Liu, Yan; Wei, Jianhong; Zhang, Jiachao; Yang, Yuan; Chen, Anwei; Mao, Qiming; Zhou, Yaoyu

    2018-04-01

    In this work, a field test was conducted to investigate the effects of heavy metal stabilizer addition on brown rice and microbial variables in a cadmium (Cd)-contaminated farmland from April to October in 2016. Compared with the control, red mud-based stabilizer (RMDL) effectively reduced the concentration of Cd in brown rice (with the removal rate of 48.14% in early rice, 20.24 and 47.62% in late rice). The results showed that adding 0.3 kg m -2 RDML in early rice soil or soil for both early and late rice increased the microbial biomass carbon (MBC), the number of culturable heterotrophic bacteria and fungi, and the catalase activity in soil at different stages of paddy rice growth. Furthermore, there was no notable difference in the diversity of the bacterial species, community composition, and relative abundance at phylum (or class) or operational taxonomic unit (OTU) levels between the control and treatment (RMDL addition) groups. In a word, RMDL could be highly recommended as an effective remediation stabilizer for Cd-contaminated farmland, since its continuous application in paddy soil cultivating two seasons rice soil could effectively decrease the Cd content in brown rice and had no negative impact on soil microorganisms.

  5. Differences in microbial communities and performance between suspended and attached growth anaerobic membrane bioreactors treating synthetic municipal wastewater

    KAUST Repository

    Harb, Moustapha; Xiong, Yanghui; Guest, Jeremy; Amy, Gary L.; Hong, Pei-Ying

    2015-01-01

    operational taxonomic units (OTUs) most closely related to fermentative bacteria (e.g., Microbacter margulisiae) were dominant in the suspended biomass of the CSTR, accounting for 30% of the microbial community. Conversely, methanogenic archaea (e

  6. Segmental heterogeneity of enzymatic response during compensatory renal growth

    International Nuclear Information System (INIS)

    Hoang, T.; Bergeron, M.

    1985-01-01

    The activities of DNA polymerase α and key enzymes of gluconeogenesis and glycolysis were measured in different segments of the rat nephron at various times (up to 96 hrs) following a unilateral nephrectomy (UNx). Tubule fragments were obtained after collagenase treatment followed by centrifugation on a Percoll gradient. The DNA polymerase α activity in control rats showed moderate and similar values in different segmental extracts as well as in the whole kidney extract (1700-1800 μμmole[ 3 H] dAMP/mg DNA). In Unx rats, activity in proximal tubules (PT) measured at 24, 48, 72 and 96 hrs after nephrectomy represented an increase of 60%, 200%, 420% and 370% respectively over control values. Distal tubule fragments (DT) showed only minor increases. The results demonstrate that the proximal tubule accounts for most of the compensatory renal growth (CRG) in the remaining kidney. The gluconeogenic and glycolytic enzymes were confined to the PT and those of glycolysis to the DT fragments. Following UNx, the specific activities of these enzymes were not modified in the remaining kidney; however, the overall activity of gluconeogenesis was increased as a result of the cell hyperplasia occurring in the PT. The work also illustrates that biochemical studies of CRG on the whole organ may provide misleading information due to the presence of heterogeneous cell populations in the mammalian kidney and to their uneven response in CRG

  7. Mycobacterial r32-kDa antigen-specific T-cell responses correlate with successful treatment and a heightened anti-microbial response in human leprosy patients.

    Science.gov (United States)

    Neela, Venkata Sanjeev Kumar; Devalraju, Kamakshi Prudhula; Pydi, Satya Sudheer; Sunder, Sharada Ramaseri; Adiraju, Kameswara Rao; Singh, Surya Satyanarayana; Anandaraj, M P J S; Valluri, Vijaya Lakshmi

    2016-09-01

    Immunological characterization of mycobacterial peptides may help not only in the preparation of a vaccine for leprosy but also in developing in vitro T-cell assays that could perhaps be used as an in vitro correlate for treatment outcome. The main goal of this study was to evaluate the use of Mycobacterium bovis recombinant 32-kDa protein (r32-kDa) antigen-stimulated T-cell assay as a surrogate marker for treatment outcome and monitor vitamin D receptor (VDR)-mediated anti-microbial responses during multidrug therapy (MDT) in leprosy. Newly diagnosed tuberculoid and lepromatous leprosy patients were enrolled and followed up during their course of MDT at 6 and 12 months. IFN-γ, IL-10, IL-17 and IL-23 levels in culture supernatants and expression of VDR, TLR2, LL37 and DEFB in r32-kDa-stimulated PBMCs were measured. Controls comprised household contacts (HHCs) and healthy endemic subjects (HCs). Significant differences were observed in the levels of IFN-γ, IL-17, IL-23, VDR and anti-microbial peptides LL37 and DEFB after treatment and when compared with that of HHCs and HCs, respectively. These findings suggest that responses to r32-kDa antigen reflect an improved immunological and anti-microbial response in leprosy patients during therapy, thereby indicating its potential use as an immune correlate in the treatment of leprosy patients. © The Japanese Society for Immunology. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination

    International Nuclear Information System (INIS)

    Tang, Shirong; Liao, Shangqiang; Guo, Junkang; Song, Zhengguo; Wang, Ruigang; Zhou, Xiaomin

    2011-01-01

    Highlights: ► Elevated CO 2 and microbial inoculation, alone or in combination, significantly promoted growth of P. americana, and A. cruentus. ► Total tissue Cs in plants was significantly increased. ► A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana. ► The two plants had slightly different contents of antioxidant enzymes. ► Combined effects of elevated CO 2 and microbial inoculation can be explored for CO 2 - and microbe-assisted phytoextraction technology. - Abstract: Growth and cesium uptake responses of plants to elevated CO 2 and microbial inoculation, alone or in combination, can be explored for clean-up of contaminated soils, and this induced phytoextraction may be better than the natural process. The present study used open-top chambers to investigate combined effects of Burkholderia sp. D54 inoculation and elevated CO 2 (860 μL L −1 ) on growth and Cs uptake by Phytolacca americana and Amaranthus cruentus grown on soil spiked with various levels of Cs (0–1000 mg kg −1 ). Elevated CO 2 and bacterial inoculation, alone or in combination, significantly increased biomass production with increased magnitude, ranging from 22% to 139% for P. americana, and 14% to 254% for A. cruentus. Total tissue Cs in both plants was significantly greater for bacterial inoculation treatment singly, and combined treatments of bacterial inoculation and elevated CO 2 than for the control treatment in most cases. Regardless of CO 2 concentrations and bacterial inoculation, A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana, but they had slightly different contents of antioxidant enzymes. It is concluded that combined effects of elevated CO 2 and microbial inoculation with regard to plant ability to grow and remove radionuclides from soil can be explored for CO 2 - and microbe-assisted phytoextraction technology.

  9. Responses of microbial community from tropical pristine coastal soil to crude oil contamination

    Directory of Open Access Journals (Sweden)

    Daniel Morais

    2016-02-01

    Full Text Available Brazilian offshore crude oil exploration has increased after the discovery of new reservoirs in the region known as pré-sal, in a depth of 7.000 m under the water surface. Oceanic islands near these areas represent sensitive environments, where changes in microbial communities due oil contamination could stand for the loss of metabolic functions, with catastrophic effects to the soil services provided from these locations. This work aimed to evaluate the effect of petroleum contamination on microbial community shifts (Archaea, Bacteria and Fungi from Trindade Island coastal soils. Microcosms were assembled and divided in two treatments, control and contaminated (weathered crude oil at the concentration of 30 g kg−1, in triplicate. Soils were incubated for 38 days, with CO2 measurements every four hours. After incubation, the total DNA was extracted, purified and submitted for target sequencing of 16S rDNA, for Bacteria and Archaea domains and Fungal ITS1 region, using the Illumina MiSeq platform. Three days after contamination, the CO2 emission rate peaked at more than 20 × the control and the emissions remained higher during the whole incubation period. Microbial alpha-diversity was reduced for contaminated-samples. Fungal relative abundance of contaminated samples was reduced to almost 40% of the total observed species. Taxonomy comparisons showed rise of the Actinobacteria phylum, shifts in several Proteobacteria classes and reduction of the Archaea class Nitrososphaerales. This is the first effort in acquiring knowledge concerning the effect of crude oil contamination in soils of a Brazilian oceanic island. This information is important to guide any future bioremediation strategy that can be required.

  10. Soil microbial responses to climate warming in Northern Andean alpine ecosystems

    Science.gov (United States)

    Gallery, R. E.; Lasso, E.

    2017-12-01

    The historically cooler temperatures and waterlogged soils of tropical alpine grasslands (páramo) have resulted in low decomposition rates and a large buildup of organic matter, making páramo one of the most important carbon sinks in tropical biomes. The climatic factors that favored the carbon accumulation are changing, and as a result páramo could play a disproportionate role in driving climate feedbacks through increased carbon released from these large soil carbon stores. Open top chamber warming experiments were established in the Colombian Andes in 2016 to quantify the magnitude of climate change on carbon balance and identify microbial and plant traits that regulate these impacts. Two focal sites differ in mean annual temperature, precipitation, and plant community richness. Heterotrophic respiration (RH,) was measured from soil cores incubated at temperatures representing current and projected warming. The warming effect on RH was sensitive to soil moisture, which could reflect shifts in microbial community composition and/or extracellular enzyme production or efficiency as soils dry. Bacterial, archaeal, and fungal communities in ambient and warmed plots were measured through high-throughput amplicon sequencing of the 16S rRNA and ITS1 rRNA gene regions. Communities showed strong spatial structuring both within and among páramo, reflecting the topographic heterogeneity of these ecosystems. Significant differences in relative abundance of dominant microbial taxa between páramo could be largely explained by soil bulk density, water holding capacity, and non-vascular plant cover. Phototrophs common to anoxic soils (e.g., Rhodospirillaceae, Hyphomicrobiaceae) were abundant. Taxa within Euryarchaeota were recovered, suggesting methanogenesis potential. Exploration of the magnitude and temperature sensitivity of methane flux is needed in these seasonally anoxic soils whose dynamics could have significant implications for the global climate system.

  11. Role of EPS, Dispersant and Nutrients on the Microbial Response and MOS Formation in the Subarctic Northeast Atlantic

    Directory of Open Access Journals (Sweden)

    Tony Gutierrez

    2017-04-01

    Full Text Available In this study we report the formation of marine oil snow (MOS, its associated microbial community, the factors influencing its formation, and the microbial response to crude oil in surface waters of the Faroe-Shetland Channel (FSC. The FSC is a subarctic region that is hydrodynamically complex located in the northeast Atlantic where oil extraction is currently occurring and where exploration is likely to expand into its deeper waters (>500 m. A major oil spill in this region may mirror the aftermath that ensued following the Deepwater Horizon (DWH blowout in the Gulf of Mexico, where the massive influx of Macondo crude oil triggered the formation of copious quantities of rapidly sinking MOS and successional blooms of opportunistic oil-degrading bacteria. In laboratory experiments, we simulated environmental conditions in sea surface waters of the FSC using water collected from this site during the winter of 2015. We demonstrated that the presence of dispersant triggers the formation of MOS, and that nutrient amendments magnify this. Illumina MiSeq sequencing revealed the enrichment on MOS of associated oil-degrading (Cycloclasticus, Thalassolituus, Marinobacter and EPS-producing (Halomonas, Pseudoalteromonas, Alteromonas bacteria, and included major representation by Psychrobacter and Cobetia with putative oil-degrading/EPS-producing qualities. The formation of marine snow, in the absence of crude oil and dispersant, in seawater amended with nutrients alone indicated that the de novo synthesis of bacterial EPS is a key factor in MOS formation, and the glycoprotein composition of the MOS aggregates confirmed that its amorphous biopolymeric matrix was of microbial (likely bacterial origin. The presence of dispersants and crude oil with/without nutrients resulted in distinct microbial responses marked by intermittent, and in some cases short-lived, blooms of opportunistic heterotrophs, principally obligate hydrocarbonoclastic (Alcanivorax

  12. Functional and compositional responses in soil microbial communities along two metal pollution gradients: does the level of historical pollution affect resistance against secondary stress?

    NARCIS (Netherlands)

    Azarbad, H.; Niklinska, M.; Nikiel, K.; van Straalen, N.M.; Röling, W.F.M.

    2015-01-01

    We examined how the exposure to secondary stressors affected the functional and compositional responses of microbial communities along two metal pollution gradients in Polish forests and whether responses were influenced by the level of metal pollution. Basal respiration rate and community

  13. Response to growth hormone therapy in adolescents with familial panhypopituitarism.

    Science.gov (United States)

    Kulshreshtha, B; Eunice, M; Ammini, A C

    2010-04-01

    Familial combined pituitary hormone deficiency is a rare endocrine disorder. We describe growth patterns of four children (3 females and 1 male) from two families with combined pituitary hormone deficiency. These children received growth hormone at ages ranging from 14.5 years to 19 years. While all the female siblings reached their target height, the male sibling was much shorter than mid parental height. The reasons for sexual dimorphism in growth patterns in these children are unclear.

  14. Microbial quality of soil from the Pampa biome in response to different grazing pressures

    Directory of Open Access Journals (Sweden)

    Rafael S. Vargas

    2015-06-01

    Full Text Available The aim of this study was to evaluate the impact of different grazing pressures on the activity and diversity of soil bacteria. We performed a long-term experiment in Eldorado do Sul, southern Brazil, that assessed three levels of grazing pressure: high pressure (HP, with 4% herbage allowance (HA, moderate pressure (MP, with 12% HA, and low pressure (LP, with 16% HA. Two reference areas were also assessed, one of never-grazed native vegetation (NG and another of regenerated vegetation after two years of grazing (RG. Soil samples were evaluated for microbial biomass and enzymatic (β-glucosidase, arylsulfatase and urease activities. The structure of the bacterial community and the population of diazotrophic bacteria were evaluated by RFLP of the 16S rRNA and nifH genes, respectively. The diversity of diazotrophic bacteria was assessed by partial sequencing of the 16S rDNA gene. The presence of grazing animals increased soil microbial biomass in MP and HP. The structures of the bacterial community and the populations of diazotrophic bacteria were altered by the different grazing managements, with a greater diversity of diazotrophic bacteria in the LP treatment. Based on the characteristics evaluated, the MP treatment was the most appropriate for animal production and conservation of the Pampa biome.

  15. Responses of Microbial Community Composition to Temperature Gradient and Carbon Steel Corrosion in Production Water of Petroleum Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-12-01

    Full Text Available Oil reservoir production systems are usually associated with a temperature gradient and oil production facilities frequently suffer from pipeline corrosion failures. Both bacteria and archaea potentially contribute to biocorrosion of the oil production equipment. Here the response of microbial populations from the petroleum reservoir to temperature gradient and corrosion of carbon steel coupons were investigated under laboratory condition. Carbon steel coupons were exposed to production water from a depth of 1809 m of Jiangsu petroleum reservoir (China and incubated for periods of 160 and 300 days. The incubation temperatures were set at 37, 55, and 65°C to monitoring mesophilic, thermophilic and hyperthermophilic microorganisms associated with anaerobic carbon steel corrosion. The results showed that corrosion rate at 55°C (0.162 ± 0.013 mm year-1 and 37°C (0.138 ± 0.008 mm year-1 were higher than that at 65°C (0.105 ± 0.007 mm year-1, and a dense biofilm was observed on the surface of coupons under all biotic incubations. The microbial community analysis suggests a high frequency of bacterial taxa associated with families Porphyromonadaceae, Enterobacteriaceae, and Spirochaetaceae at all three temperatures. While the majority of known sulfate-reducing bacteria, in particular Desulfotignum, Desulfobulbus and Desulfovibrio spp., were predominantly observed at 37°C; Desulfotomaculum spp., Thermotoga spp. and Thermanaeromonas spp. as well as archaeal members closely related to Thermococcus and Archaeoglobus spp. were substantially enriched at 65°C. Hydrogenotrophic methanogens of the family Methanobacteriaceae were dominant at both 37 and 55°C; acetoclastic Methanosaeta spp. and methyltrophic Methanolobus spp. were enriched at 37°C. These observations show that temperature changes significantly alter the microbial community structure in production fluids and also affected the biocorrosion of carbon steel under anaerobic conditions.

  16. Modelling of tomato stem diameter growth rate based on physiological responses

    International Nuclear Information System (INIS)

    Li, L.; Tan, J.; Lv, T.

    2017-01-01

    The stem diameter is an important parameter describing the growth of tomato plant during vegetative growth stage. A stem diameter growth model was developed to predict the response of plant growth under different conditions. By analyzing the diurnal variations of stem diameter in tomato (Solanum lycopersicum L.), it was found that the stem diameter measured at 3:00 am was the representative value as the daily basis of tomato stem diameter. Based on the responses of growth rate in stem diameter to light and temperature, a linear regression relationship was applied to establish the stem diameter growth rate prediction model for the vegetative growth stage in tomato and which was further validated by experiment. The root mean square error (RMSE) and relative error (RE) were used to test the correlation between measured and modeled stem diameter variations. Results showed that the model can be used in prediction for stem diameter growth rate at vegetative growth stage in tomato. (author)

  17. Growth responses of Escherichia coli and Myxococcus xanthus on ...

    African Journals Online (AJOL)

    Bacteria colonize surfaces responding to the physicochemical properties of substrates. A systematic study was carried out with growing single bacterial colonies on the surface of agar media to decipher the interaction between bacterial growth and substrate stiffness. We investigated the growth kinetics of wild-type ...

  18. Provenance-specific growth responses to drought and air warming in three European oak species

    Energy Technology Data Exchange (ETDEWEB)

    Arend, Matthias; Kuster, Thomas; Gunthardt-Goerg, Madeleine S.; Dobbertin, Matthias

    2011-03-15

    This study evaluated oak growth responses to air warming through research conducted with species coming from climatically different sites submitted to differing climates including periodic drought and air warming. Results showed different responses to drought and air warming as an adaptation to the conditions, and differences in growth response from one provenance to another were found but local climate factors were not responsible. This study highlighted that provenance was important to growth responses and it will have to be taken into account for regeneration of oaks in a changed climate if these results are confirmed.

  19. Morphology and ultrastructure of epilithic versus cryptic, microbial growth in lower Cambrian phosphorites from the Montagne Noire, France.

    Science.gov (United States)

    Alvaro, J J; Clausen, S

    2010-03-01

    The lower Cambrian grainy phosphorites of the northern Montagne Noire occur interbedded with grey to black, laminated to massive shales and limestones deposited along the edge of a continental shelf, associated with slope-related facies and unstable substrates. The concentration of phosphate took place by repeated alternations of low sedimentation rates and condensation (hardgrounds), in situ early-diagenetic precipitation of fluorapatite, winnowing and polyphase reworking of previously phosphatized skeletons and hardground-derived clasts. The succession of repeated cycles of sedimentation, phosphate concentration, and reworking led to multi-event phosphate deposits rich in allochthonous particles. Phosphogenesis was primarily mediated by microbial activity, which is evidenced by the abundance of phosphatized putative microbial remains. These occur as smooth and segmented filaments, sheaths, and ovoid-shaped coccoids. These simple morphologies commonly form composite frameworks as a result of their aggregation and entanglement, leading to the record of biofilms, microbial mats, and complex networks. These infested the calcitic skeletonized microfossils that littered the substrate. Microbial activity evidences epilithic (anisotropic coatings on skeletons), euendolithic (perforating skeletal walls), and cryptoendolithic (lining inter- and intraparticulate pores) strategies, the latter dominated by bundles of filaments and globular clusters that grew along the cavities of helcionellids and hyoliths. According to their epilithic versus cryptic strategies, microbial populations that penetrated and dwelled inside hard skeletal substrates show different network and colonial morphologies. These early Cambrian shell concentrations were the loci of a stepwise colonization made by saprophytic to mutualistic, cyanobacterial-fungal consortia. Their euendolithic and cryptoendolithic ecological niches provided microbial refugia to manage the grazing impact mainly led by metazoans.

  20. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Stark, Sari; Tolvanen, Anne

    2009-01-01

    Climate warming increases the cover of deciduous shrubs in arctic ecosystems and herbivory is also known to have a strong influence on the biomass and composition of vegetation. However, research combining herbivory with warming is largely lacking. Our study describes how warming and simulated...... setup of the International Tundra Experiment (ITEX). Wounding of the dominant deciduous dwarf shrub Vaccinium myrtillus L. to simulate herbivory was carried out annually. We measured vegetation cover in 2003 and 2007, soil nutrient concentrations in 2003 and 2006, soil microbial respiration in 2003...... and herbivory. 6 Synthesis. Our results show that warming increases the cover of V. myrtillus, which seems to enhance the nutrient sink strength of vegetation in the studied ecosystem. However, herbivory partially negates the effect of warming on plant N uptake and interacts with the effect of warming...

  1. Functional responses and adaptation of mesophilic microbial communities to psychrophilic anaerobic digestion.

    Science.gov (United States)

    Gunnigle, Eoin; Nielsen, Jeppe L; Fuszard, Matthew; Botting, Catherine H; Sheahan, Jerome; O'Flaherty, Vincent; Abram, Florence

    2015-12-01

    Psychrophilic (functions. Methanomicrobiales abundance increased at low temperature, which correlated with an increased contribution of CH4 production from hydrogenotrophic methanogenesis at 15°C. Methanosarcinales utilized acetate and H2/CO2 as CH4 precursors at both temperatures and a partial shift from acetoclastic to hydrogenotrophic methanogenesis was observed for this archaeal population at 15°C. An upregulation of protein expression was reported at low temperature as well as the detection of chaperones indicating that mesophilic communities experienced stress during long-term exposure to 15°C. Overall, changes in microbial community structure and function were found to underpin the adaptation of mesophilic sludge to psychrophilic AD. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Microbial responses to polycyclic aromatic hydrocarbon contamination in temporary river sediments: Experimental insights.

    Science.gov (United States)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Capri, Silvio; Casella, Patrizia; Fazi, Stefano; Marxsen, Juergen; Patrolecco, Luisa

    2016-01-15

    Temporary rivers are characterized by dry-wet phases and represent an important water resource in semi-arid regions worldwide. The fate and effect of contaminants have not been firmly established in temporary rivers such as in other aquatic environments. In this study, we assessed the effects of sediment amendment with Polycyclic Aromatic Hydrocarbons (PAHs) on benthic microbial communities. Experimental microcosms containing natural (Control) and amended sediments (2 and 20 mg PAHs kg(-1) were incubated for 28 days. The PAH concentrations in sediments were monitored weekly together with microbial community structural (biomass and phylogenetic composition by TGGE and CARD-FISH) and functional parameters (ATP concentration, community respiration rate, bacterial carbon production rate, extracellular enzyme activities). The concentration of the PAH isomers did not change significantly with the exception of phenanthrene. No changes were observed in the TGGE profiles, whereas the occurrence of Alpha- and Beta-Proteobacteria was significantly affected by the treatments. In the amended sediments, the rates of carbon production were stimulated together with aminopeptidase enzyme activity. The community respiration rates showed values significantly lower than the Control after 1 day from the amendment then recovering the Control values during the incubation. A negative trend between the respiration rates and ATP concentration was observed only in the amended sediments. This result indicates a potential toxic effect on the oxidative phosphorylation processes. The impoverishment of the energetic resources that follows the PAH impact may act as a domino on the flux of energy from prokaryotes to the upper level of the trophic chain, with the potential to alter the temporary river functioning.

  3. Investigation of the rumen microbial community responsible for degradation of a putative toxin in Acacia angustissima

    International Nuclear Information System (INIS)

    Collins, E.M.C.; Blackall, L.L.; Mcsweeney, C.S.; Krause, D.O.

    2005-01-01

    Acacia angustissima has been proposed as a protein supplement in countries where availability of high quality fodder for grazing animals is a problem due to extreme, dry climates. While A. angustissima thrives in harsh environments and provides valuable nutrients required by ruminants, it has also been found to contain anti-nutritive factors that currently preclude its widespread application. A number of non-protein amino acids have been identified in the leaves of A. angustissima and in the past these have been linked to toxicity in ruminants. The non-protein amino acid 4-n-acetyl-2,4-diaminobutyric acid (ADAB) had been determined to be the major non-protein amino acid in the leaves of A. angustissima. Thus, in this study, the aim was to identify microorganisms from the rumen environment capable of degrading ADAB. Using an ADAB-containing plant extract, a mixed enrichment culture was obtained that exhibited substantial ADAB-degrading ability. Attempts to isolate an ADAB-degrading micro-organism were carried out, but no isolates were able to degrade ADAB in pure culture. The mixed microbial community of the ADAB-degrading enrichment culture was further examined through the use of pure-culture-independent techniques. Fluorescence in situ hybridization (FISH) was employed to investigate the diversity within this sample. In addition two bacterial 16S rDNA clone libraries were constructed in an attempt to further elucidate the members of the microbial population. The clone libraries were constructed from serial dilutions of the enrichment culture, a 10 -5 dilution where complete degradation of ADAB occurred, and a 10 -7 dilution where ADAB degradation did not occur. Through the comparison of these two libraries it was hypothesized that clones belonging to the Firmicutes phylum were involved in ADAB degradation. A FISH probe, ADAB1268, was then designed to target these clones and was applied to the enrichment cultures to investigate their relative abundance within the

  4. Root carbon decomposition and microbial biomass response at different soil depths

    Science.gov (United States)

    Rumpel, C.

    2012-12-01

    The relationship between root litter addition and soil organic matter (SOM) formation in top- versus subsoils is unknown. The aim of this study was to investigate root litter decomposition and stabilisation in relation to microbial parameters in different soil depths. Our conceptual approach included incubation of 13C-labelled wheat roots at 30, 60 and 90 cm soil depth for 36 months under field conditions. Quantitative root carbon contribution to SOM was assessed, changes of bulk root chemistry studied by solid-state 13C NMR spectroscopy and lignin content and composition was assessed after CuO oxidation. Compound-specific isotope analysis allowed to assess the role of root lignin for soil C storage in the different soil depths. Microbial biomass and community structure was determined after DNA extraction. After three years of incubation, O-alkyl C most likely assigned to polysaccharides decreased in all soil depth compared to the initial root material. The degree of root litter decomposition assessed by the alkyl/O-alkyl ratio decreased with increasing soil depth, while aryl/O-alkyl ratio was highest at 60 cm depth. Root-derived lignin showed depth specific concentrations (30 fungi contribution increased after root litter addition. Their community structure changed after root litter addition and showed horizon specific dynamics. Our study shows that root litter addition can contribute to C storage in subsoils but did not influence C storage in topsoil. We conclude that specific conditions of single soil horizons have to be taken into account if root C dynamics are to be fully understood.

  5. Microbial community response to chlorine conversion in a chloraminated drinking water distribution system.

    Science.gov (United States)

    Wang, Hong; Proctor, Caitlin R; Edwards, Marc A; Pryor, Marsha; Santo Domingo, Jorge W; Ryu, Hodon; Camper, Anne K; Olson, Andrew; Pruden, Amy

    2014-09-16

    Temporary conversion to chlorine (i.e., "chlorine burn") is a common approach to controlling nitrification in chloraminated drinking water distribution systems, yet its effectiveness and mode(s) of action are not fully understood. This study characterized occurrence of nitrifying populations before, during and after a chlorine burn at 46 sites in a chloraminated distribution system with varying pipe materials and levels of observed nitrification. Quantitative polymerase chain reaction analysis of gene markers present in nitrifying populations indicated higher frequency of detection of ammonia oxidizing bacteria (AOB) (72% of samples) relative to ammonia oxidizing archaea (AOA) (28% of samples). Nitrospira nitrite oxidizing bacteria (NOB) were detected at 45% of samples, while presence of Nitrobacter NOB could not be confirmed at any of the samples. During the chlorine burn, the numbers of AOA, AOB, and Nitrospira greatly reduced (i.e., 0.8-2.4 log). However, rapid and continued regrowth of AOB and Nitrospira were observed along with nitrite production in the bulk water within four months after the chlorine burn, and nitrification outbreaks appeared to worsen 6-12 months later, even after adopting a twice annual burn program. Although high throughput sequencing of 16S rRNA genes revealed a distinct community shift and higher diversity index during the chlorine burn, it steadily returned towards a condition more similar to pre-burn than burn stage. Significant factors associated with nitrifier and microbial community composition included water age and sampling location type, but not pipe material. Overall, these results indicate that there is limited long-term effect of chlorine burns on nitrifying populations and the broader microbial community.

  6. Response of old-growth conifers to reduction in stand density in western Oregon forests

    Science.gov (United States)

    Latham, P.; Tappeiner, J. C.

    2002-01-01

    The positive growth response of healthy young trees to density reduction is well known. In contrast, large old trees are usually thought to be intrinsically limited in their ability to respond to increased growing space; therefore, density reduction is seldom used in stands of old-growth trees. We tested the null hypothesis that old-growth trees are incapable of responding with increased growth following density reduction. The diameter growth response of 271 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), ponderosa pine (Pinus ponderosa Dougl. ex Laws) and sugar pine (Pinus lambertiana Dougl.) trees ranging in age from 158 to 650 years was examined 20 to 50 years after density reduction. Density reduction involved either light thinning with removal of less vigorous trees, or shelterwood treatments in which overstory trees were not removed. Ratios of basal area growth after treatment to basal area growth before treatment, and several other measures of growth, all indicated that the old trees sometimes benefited and were not harmed by density reduction. Growth increased by 10% or more for 68% of the trees in treated stands, and nearly 30% of trees increased growth by over 50%. This growth response persisted for at least 20 years. During this 20-year period, only three trees in treated stands (1.5%) exhibited a rapid decrease in growth, whereas growth decreased in 64% of trees in untreated stands. The length of time before a growth response to density reduction occurred varied from 5 to 25 years, with the greatest growth response often occurring 20 to 25 years after treatment. These results have important implications both for the basic biology of aging in woody plants as well as for silvicultural practices in forests with old-growth trees.

  7. Long-term Root Growth Response to Thinning, Fertilization, and Water Deficit in Plantation Loblolly Pine

    Science.gov (United States)

    M.A. Sword-Sayer; Z. Tang

    2004-01-01

    High water deficits limit the new root growth of loblolly pine (Pinus taeda L.), potentially reducing soil resource availability and stand growth. We evaluated new root growth and stand production in response to thinning and fertilization in loblolly pine over a 6-year period that consisted of 3 years of low water deficit followed by 3 years of high...

  8. Effects of dietary chitosan on growth, lipid metabolism, immune response and antioxidant-related gene expression in Misgurnus anguillicaudatus.

    Science.gov (United States)

    Yan, J; Guo, C; Dawood, M A O; Gao, J

    2017-05-30

    This study was performed to evaluate the effects of dietary chitosan supplementation on growth performance, lipid metabolism, gut microbial, antioxidant status and immune responses of juvenile loach (Misgurnus anguillicaudatus). Five experimental diets were formulated to contain graded levels of chitosan (0 (control), 0.5, 1, 2 and 5% CHI) for 50 days. Results of the present study showed that body weight gain was significantly higher in fish fed chitosan supplemented diets in dose dependent manner than control group. Increasing dietary chitosan levels reduced gut lipid content. Meanwhile the mRNA expression levels of intestine lipoprotein lipase and fatty acid binding protein 2 were significantly reduced with incremental dietary chitosan level. The percentages of total monounsaturated fatty acid decreased, while polyunsaturated fatty acid increased with dietary chitosan. The fish fed 0.5% CHI had higher mucus lysozyme activity (LZM) than those fed 0% CHI, but the LZM activity was significantly decreased with advancing chitosan supplement. The expression levels of superoxide dismutase, catalase and glutathione peroxidase revealed a similar trend, where the highest expressions were found in fish fed 5% CHI diet. In the term of intestine microbiota between 0 and 1% CHI groups, the proportion of bacteria in the phylum Bacteroidetes increased, whereas the proportion of bacteria in the phylum Firmicutes decreased as the fish supplemented chitosan. In conclusion, supplementation of chitosan improved growth performance, antioxidant status and immunological responses in loach.

  9. Report on responsible growth. AREVA in 2008; Rapport de croissance responsable. AREVA en 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    All over the world, AREVA supplies its customers with solutions for carbon-free power generation and electricity transmission and distribution. With its knowledge and expertise in these fields, the group has a leading role to play in meeting the world's energy needs. Ranked first in the global nuclear power industry, AREVA's unique integrated offering covers every stage of the fuel cycle, reactor design and construction, and related services. In addition, the group is expanding its operations in renewable energies. AREVA is also a world leader in electricity transmission and distribution and offers its customers a complete range of solutions for greater grid stability and energy efficiency. Sustainable development is a core component of the group's industrial strategy. Its 75,000 employees work every day to make AREVA a responsible industrial player that is helping to supply ever cleaner, safer and more economical energy to the greatest number of people. Sustainable development is a keystone of AREVA's industrial strategy for achieving growth that is profitable, socially responsible and respectful of the environment. To translate this choice into reality, AREVA integrates sustainable development into its management practices via a continuous improvement initiative revolving around ten commitments: customer satisfaction, financial performance, governance, community involvement, environmental protection, innovation, continuous improvement, commitment to employees, risk management and prevention, dialogue and consensus building. This document is Areva's 2008 report on responsible growth. After the Messages from the Chairman of the Supervisory Board and from the Chief Executive Officer, the report presents the Key data and Highlights of the period, the Corporate governance, the Organization of the group, the Share information and shareholder relations, the uranium reserves, the growing energy demand and the World's population demographic

  10. Factors responsible for the growth of small business

    Directory of Open Access Journals (Sweden)

    JA Döckel

    2015-01-01

    Full Text Available Entrepreneurial conduct holds the key to economic growth. Thus those business that show growth and development are considered entrepreneurial, implying that SMME policy initiatives should focus on businesses with growth potential, and not the small business sector as a whole.  The success of a small business seems to depend on the intentions of the owner, together with factors associated with the ability of, and opportunity for, the specific business to grow.  The aim of this article is to make use of a multiple linear regression model to determine the variables that impact positively on business growth.  In addition to demand factors, it was established that smaller and younger businesses are the ones that grow faster. A successful business also shows a positive correlation between business management skills and entrepreneurial conduct.

  11. Growth Responses of Two Cultivated Okra Species (Abelmoschus ...

    African Journals Online (AJOL)

    The seeds were collected from home gardens in Benin City and NIHORT. ... crude oil contamination of soil may lead to reduction in growth characteristics. Keywords: Crude oil, Soil, ..... Review of Botanical Applications in Tropical Agriculture,.

  12. Growth and other physiological responses of bivalves in laboratory experiments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Milford lab maintains data sets relating to a variety of growth and physiology trials. These include husbandry techniques (i.e. stocking density, container size,...

  13. Growth, phenological and yield responses of a bambara groundnut ...

    African Journals Online (AJOL)

    Effects of irrigation levels and seed coat colour on growth, development, yield and ... Drought tolerance in bambara groundnut landraces was achieved by reduced canopy ... and maturity, and maintaining high water use efficiency under stress.

  14. Growth response of natural phytoplankton to enrichment of urea and ...

    African Journals Online (AJOL)

    user

    quality in particular salinity and nutrient concentration. In these ... only, with slow growth rate occurring 24 to 48 h following nutrient addition. There was an ..... has a different scale). ..... over nitrate because less metabolic energy is required to.

  15. Regression analysis of growth responses to water depth in three wetland plant species

    DEFF Research Database (Denmark)

    Sorrell, Brian K; Tanner, Chris C; Brix, Hans

    2012-01-01

    depths from 0 – 0.5 m. Morphological and growth responses to depth were followed for 54 days before harvest, and then analysed by repeated measures analysis of covariance, and non-linear and quantile regression analysis (QRA), to compare flooding tolerances. Principal results Growth responses to depth...

  16. Used of microbial phytase to replace inorganic phosphorus in sex-reversed red tilapia: 1 dose response

    Directory of Open Access Journals (Sweden)

    Wutiporn Phromkunthong

    2006-07-01

    Full Text Available Sex-reversed red tilapia of average initial body weight 5.5 g were fed seven practical diets containing 0, 500, 1,000, 2,000 and 4,000 units of microbial phytase/kg and two diets containing 0.2 and 0.3% feed grade dicalcium phosphate (DCP (but no microbial phytase, respectively. The experiment was carried out in 235- l glass aquaria filled with 180 l water and attached with a closed-recirculating water system with 0.8 l/min flow rate. The experimental period was 10 weeks. All experimental diets were formulated with plant-based protein of 30% and 6% fat. Results indicated an improvement in apparent digestibility coefficient of phosphorus (ADCP in fish given phytase supplemented feed. There was no difference in ADCP when 1,000 unit phytase/kg diet or higher phytase levels (2,000 and 4,000 unit phytase/kg diet or 0.2 and 0.3% DCP were supplemented. A significant increase was noted for hemoglobin in tilapia that received 1,000 unit phytase/kg diet or higher levels compared to the control. Serum phosphorus ma kedly increased when the fish were given feeds with 1,000 unit phytase/kg diet and over, while the supplementation of 500 unit phytase/kg diet and over increased serum zinc level. Higher levels of phosphorus were retained in bone whereas lower levels of phosphorus presented in the feces of tilapia fed feeds supplemented with phytase. Growth performance was markedly influenced when the fish were given feed with 4,000 unit phytase/kg diet.

  17. Novel co-culture plate enables growth dynamic-based assessment of contact-independent microbial interactions.

    Directory of Open Access Journals (Sweden)

    Thomas J Moutinho

    Full Text Available Interactions between microbes are central to the dynamics of microbial communities. Understanding these interactions is essential for the characterization of communities, yet challenging to accomplish in practice. There are limited available tools for characterizing diffusion-mediated, contact-independent microbial interactions. A practical and widely implemented technique in such characterization involves the simultaneous co-culture of distinct bacterial species and subsequent analysis of relative abundance in the total population. However, distinguishing between species can be logistically challenging. In this paper, we present a low-cost, vertical membrane, co-culture plate to quantify contact-independent interactions between distinct bacterial populations in co-culture via real-time optical density measurements. These measurements can be used to facilitate the analysis of the interaction between microbes that are physically separated by a semipermeable membrane yet able to exchange diffusible molecules. We show that diffusion across the membrane occurs at a sufficient rate to enable effective interaction between physically separate cultures. Two bacterial species commonly found in the cystic fibrotic lung, Pseudomonas aeruginosa and Burkholderia cenocepacia, were co-cultured to demonstrate how this plate may be implemented to study microbial interactions. We have demonstrated that this novel co-culture device is able to reliably generate real-time measurements of optical density data that can be used to characterize interactions between microbial species.

  18. Xylem traits, leaf longevity and growth phenology predict growth and mortality response to defoliation in northern temperate forests.

    Science.gov (United States)

    Foster, Jane R

    2017-09-01

    Defoliation outbreaks are biological disturbances that alter tree growth and mortality in temperate forests. Trees respond to defoliation in many ways; some recover rapidly, while others decline gradually or die. Functional traits such as xylem anatomy, growth phenology or non-structural carbohydrate (NSC) storage could explain these responses, but idiosyncratic measures used by defoliation studies have frustrated efforts to generalize among species. Here, I test for functional differences with published growth and mortality data from 37 studies, including 24 tree species and 11 defoliators from North America and Eurasia. I synthesized data into standardized variables suitable for numerical models and used linear mixed-effects models to test the hypotheses that responses to defoliation vary among species and functional groups. Standardized data show that defoliation responses vary in shape and degree. Growth decreased linearly or curvilinearly, least in ring-porous Quercus and deciduous conifers (by 10-40% per 100% defoliation), whereas growth of diffuse-porous hardwoods and evergreen conifers declined by 40-100%. Mortality increased exponentially with defoliation, most rapidly for evergreen conifers, then diffuse-porous, then ring-porous species and deciduous conifers (Larix). Goodness-of-fit for functional-group models was strong (R2c = 0.61-0.88), if lower than species-specific mixed-models (R2c = 0.77-0.93), providing useful alternatives when species data are lacking. These responses are consistent with functional differences in leaf longevity, wood growth phenology and NSC storage. When defoliator activity lags behind wood-growth, either because xylem-growth precedes budburst (Quercus) or defoliator activity peaks later (sawflies on Larix), impacts on annual wood-growth will always be lower. Wood-growth phenology of diffuse-porous species and evergreen conifers coincides with defoliation and responds more drastically, and lower axial NSC storage makes them

  19. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    Directory of Open Access Journals (Sweden)

    Astrid eWingler

    2015-01-01

    Full Text Available Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g. via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellins (GA and jasmonate (JA play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor (CBF dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants.

  20. Soil microbial and faunal responses to herbicide tolerant maize and herbicide in two soils

    DEFF Research Database (Denmark)

    Griffiths, Bryan; Caul, Sandra; Thompson, J.

    2008-01-01

    using a tiered approach at laboratory, glasshouse and field scales. Soil for the experiment was taken from field sites where the same maize cultivars were grown to allow comparison between results under glasshouse and field conditions. The maize cultivars T25 (GM HT glufosinate-ammonium tolerant....... The main effects on all measured parameters were those of soil type and plant growth stage, with four categories of subsequent interaction: (1) there were no effects of herbicide on plant growth or soil microarthropods: (2) the maize cultivar (but not the GM HT trait) had effects on the decomposition...

  1. Landscape Change and Microbial Response in the McMurdo Dry Valleys, Antarctica: Preliminary Results

    Science.gov (United States)

    Fountain, A. G.; Levy, J.; Gooseff, M. N.; Van Horn, D. J.; Obryk, M.; Pettersson, R.; Telling, J. W.; Glennie, C. L.

    2017-12-01

    Permafrost in the McMurdo Dry Valleys (MDV), Antarctica is ubiquitous with active layer depths ranging from a few cm at the highest elevations to 1 m near sea level. Although many landscapes in this region have been considered stable over millennia, ad-hoc field observations have documented extreme geomorphic changes in the valley bottoms over the past decade. To assess these changes across the region, we compared a lidar dataset surveyed in the austral summers of 2001-2002 against one surveyed in 2014-2015. Results showed that the vertical resolution of the surveys was resolution of the elevation differences and we ignored differences 1m) landscape changes, including stream channel incision into buried ice deposits (implying the advection of heat by stream water locally degrades thermokarst) and slope failures in thermokarst landforms from block failure and insolation-driven retreat. Smaller changes (bank erosion intercepted buried ice, or in thermokarst ponds. The magnitude and rate of change is much larger than observed previously in this otherwise stable and slowly changing environment. Biological surveys and experimental manipulations show that wetted soils host microbial communities different from those hosted by adjacent dry soils, and are hotspots of biodiversity highly susceptible to changing physical conditions. In all cases field-checked, the association of sediment and rock debris blanketing buried ice was noted, indicating these are the most vulnerable landscapes to climate warming. Ground penetrating radar mapping of buried ice showed, however, that not all buried ice is associated with landscape change due to the depth of burial, slope, and proximity to stream water. Similarly, modeling of soil temperatures suggests a spatial heterogeneity in warming rates across the valley bottom, as a consequence of microclimatic influences, topographic shading and moisture content. Collectively, these conditions imply that landscapes in the MDV will become

  2. Shifts in the Physiology and Stoichiometric Needs of Soil Microbial Communities from Subarctic Soils in Response to Warming: Icelandic Geothermal Gradients as a Model.

    Science.gov (United States)

    Marañón-Jiménez, S.; Soong, J.; Leblans, N. I. W.; Sigurdsson, B. D.; Peñuelas, J.; Richter, A.; Asensio, D.; Fransen, E.; Janssens, I. A.

    2017-12-01

    Large amounts of CO2 can be released to the atmosphere from a faster mineralization of soil organic matter at warmer temperatures, thus inducing climate change feedbacks. Specifically, soils at high northern latitudes store more than half of the global surface soil carbon and are particularly vulnerable to temperature-driven C losses, since they warm more rapidly. Alterations to the temperature sensitivity, physiological functioning and stoichiometric constrains of soil microorganisms in response to rising temperatures can play a key role in these soil carbon (C) losses. We present results of several incubation experiments using soils from geothermal soil temperature gradients in Iceland that have undergone a range of warming intensities for seven years, encompassing the full range of IPCC warming scenarios for the northern region. Soil microbes from warmed soils did not show changes in their temperature sensitivity at the physiological level. On the contrary, seven years of chronic soil warming provoked a permanent increase of microbial metabolic quotients (i.e., respiration per unit of biomass), and a subsequent reduction in the C retained in biomass as substrate became limiting. After the initial depletion of labile soil C, increasing energy demands for metabolic maintenance and resource acquisition at higher temperatures may have triggered permanent functional changes or community shifts towards increasing respiratory costs of soil decomposers. Pointing to this, microbial communities showed a strong C limitation even at ambient soil temperatures, obscuring any metabolic response to nitrogen and phosphorous additions. The tight C:N stoichiometric constrains of soil microbial communities and the strong C limitation for microbial biomass may lead to a reduced capacity of microbial N retention, explaining the equivalent soil C and N losses found in response to soil warming. These results highlight the need to incorporate potential changes in microbial physiological

  3. Response of aerobic granular sludge to the long-term presence to nanosilver in sequencing batch reactors: Reactor performance, sludge property, microbial activity and community

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Xiangchun, E-mail: xchquan@bnu.edu.cn; Cen, Yan; Lu, Fang; Gu, Lingyun; Ma, Jingyun

    2015-02-15

    The increasing use of silver nanoparticles (Ag NPs) raises concerns about their potential toxic effects on the environment. Granular shape sludge is a special type of microbial aggregate. The response of aerobic granular sludge (AGS) to the long-term presence of Ag NPs has not been well studied. In this study, AGS was exposed to 5 and 50 mg/L Ag NPs in sequence batch reactors (SBRs) for 69 days, and its response was evaluated based on the sludge properties, microbial activity and community, and reactor performance. The results showed that Ag NPs caused inhibition to microbial activities of AGS from Day 35. At the end of 69 days of Ag NPs exposure, the microbial activity of AGS was significantly inhibited in terms of inhibitions of the ammonia oxidizing rate (33.0%), respiration rate (17.7% and 45.6%) and denitrification rate (6.8%), as well as decreases in the ammonia mono-oxygenase and nitrate reductase activities. During the long-term exposure, the AGS maintained its granular shape and large granule size (approximately 900 μm); the microbial community of AGS slightly changed, but the dominant microbial population remained. Overall, the AGS tolerated the toxicity of Ag NPs well, but a long-term exposure may produce chronic toxicity to the AGS, which is concerning. - Highlights: • AGS demonstrated a good tolerance to the long-term presence of Ag NPs. • Ag NPs did not produce acute toxicity but cause chronic toxicity to AGS. • AGS maintained granular shape, granule size and good settling ability. • The microbial community of AGS slightly changed after long-term Ag NPs exposure.

  4. Response of aerobic granular sludge to the long-term presence to nanosilver in sequencing batch reactors: Reactor performance, sludge property, microbial activity and community

    International Nuclear Information System (INIS)

    Quan, Xiangchun; Cen, Yan; Lu, Fang; Gu, Lingyun; Ma, Jingyun

    2015-01-01

    The increasing use of silver nanoparticles (Ag NPs) raises concerns about their potential toxic effects on the environment. Granular shape sludge is a special type of microbial aggregate. The response of aerobic granular sludge (AGS) to the long-term presence of Ag NPs has not been well studied. In this study, AGS was exposed to 5 and 50 mg/L Ag NPs in sequence batch reactors (SBRs) for 69 days, and its response was evaluated based on the sludge properties, microbial activity and community, and reactor performance. The results showed that Ag NPs caused inhibition to microbial activities of AGS from Day 35. At the end of 69 days of Ag NPs exposure, the microbial activity of AGS was significantly inhibited in terms of inhibitions of the ammonia oxidizing rate (33.0%), respiration rate (17.7% and 45.6%) and denitrification rate (6.8%), as well as decreases in the ammonia mono-oxygenase and nitrate reductase activities. During the long-term exposure, the AGS maintained its granular shape and large granule size (approximately 900 μm); the microbial community of AGS slightly changed, but the dominant microbial population remained. Overall, the AGS tolerated the toxicity of Ag NPs well, but a long-term exposure may produce chronic toxicity to the AGS, which is concerning. - Highlights: • AGS demonstrated a good tolerance to the long-term presence of Ag NPs. • Ag NPs did not produce acute toxicity but cause chronic toxicity to AGS. • AGS maintained granular shape, granule size and good settling ability. • The microbial community of AGS slightly changed after long-term Ag NPs exposure

  5. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions.

    Science.gov (United States)

    Cipriano, Matheus A P; Lupatini, Manoeli; Lopes-Santos, Lucilene; da Silva, Márcio J; Roesch, Luiz F W; Destéfano, Suzete A L; Freitas, Sueli S; Kuramae, Eiko E

    2016-12-01

    Plant growth promoting rhizobacteria are well described and recommended for several crops worldwide. However, one of the most common problems in research into them is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial community composition resulting from bacterial inoculation under field conditions. Here we evaluated the effect of 54 Pseudomonas strains on lettuce (Lactuca sativa) growth. The 12 most promising strains were phylogenetically and physiologically characterized for plant growth-promoting traits, including phosphate solubilization, hormone production and antagonism to pathogen compounds, and their effect on plant growth under farm field conditions. Additionally, the impact of beneficial strains on the rhizospheric bacterial community was evaluated for inoculated plants. The strains IAC-RBcr4 and IAC-RBru1, with different plant growth promoting traits, improved lettuce plant biomass yields up to 30%. These two strains also impacted rhizosphere bacterial groups including Isosphaera and Pirellula (phylum Planctomycetes) and Acidothermus, Pseudolabrys and Singusphaera (phylum Actinobacteria). This is the first study to demonstrate consistent results for the effects of Pseudomonas strains on lettuce growth promotion for seedlings and plants grown under tropical field conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses

    Directory of Open Access Journals (Sweden)

    Redon Emma

    2008-07-01

    Full Text Available Abstract Background The development of transcriptomic tools has allowed exhaustive description of stress responses. These responses always superimpose a general response associated to growth rate decrease and a specific one corresponding to the stress. The exclusive growth rate response can be achieved through chemostat cultivation, enabling all parameters to remain constant except the growth rate. Results We analysed metabolic and transcriptomic responses of Lactococcus lactis in continuous cultures at different growth rates ranging from 0.09 to 0.47 h-1. Growth rate was conditioned by isoleucine supply. Although carbon metabolism was constant and homolactic, a widespread transcriptomic response involving 30% of the genome was observed. The expression of genes encoding physiological functions associated with biogenesis increased with growth rate (transcription, translation, fatty acid and phospholipids metabolism. Many phages, prophages and transposon related genes were down regulated as growth rate increased. The growth rate response was compared to carbon and amino-acid starvation transcriptomic responses, revealing constant and significant involvement of growth rate regulations in these two stressful conditions (overlap 27%. Two regulators potentially involved in the growth rate regulations, llrE and yabB, have been identified. Moreover it was established that genes positively regulated by growth rate are preferentially located in the vicinity of replication origin while those negatively regulated are mainly encountered at the opposite, thus indicating the relationship between genes expression and their location on chromosome. Although stringent response mechanism is considered as the one governing growth deceleration in bacteria, the rigorous comparison of the two transcriptomic responses clearly indicated the mechanisms are distinct. Conclusion This work of integrative biology was performed at the global level using transcriptomic analysis

  7. Resilience of Soil Microbial Communities to Metals and Additional Stressors: DNA-Based Approaches for Assessing “Stress-on-Stress” Responses

    Directory of Open Access Journals (Sweden)

    Hamed Azarbad

    2016-06-01

    Full Text Available Many microbial ecology studies have demonstrated profound changes in community composition caused by environmental pollution, as well as adaptation processes allowing survival of microbes in polluted ecosystems. Soil microbial communities in polluted areas with a long-term history of contamination have been shown to maintain their function by developing metal-tolerance mechanisms. In the present work, we review recent experiments, with specific emphasis on studies that have been conducted in polluted areas with a long-term history of contamination that also applied DNA-based approaches. We evaluate how the “costs” of adaptation to metals affect the responses of metal-tolerant communities to other stress factors (“stress-on-stress”. We discuss recent studies on the stability of microbial communities, in terms of resistance and resilience to additional stressors, focusing on metal pollution as the initial stress, and discuss possible factors influencing the functional and structural stability of microbial communities towards secondary stressors. There is increasing evidence that the history of environmental conditions and disturbance regimes play central roles in responses of microbial communities towards secondary stressors.

  8. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    Science.gov (United States)

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  9. Cucumber Rhizosphere Microbial Community Response to Biocontrol Agent Bacillus subtilis B068150

    Directory of Open Access Journals (Sweden)

    Lihua Li

    2015-12-01

    Full Text Available Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum cucumerinum. Cucumber was grown in three soils with strain B068150 inoculated in a greenhouse for 90 days, and the colonization ability of strain B068150 in cucumber rhizosphere and non-rhizosphere soils was determined. Changes in total bacteria and fungi community composition and structures using denaturing gradient gel electrophoresis (DGGE and sequencing were determined. Colony counts showed that B068150 colonization in the rhizosphere was significantly higher (p < 0.001 than in non-rhizosphere soils. Based on our data, the introduction of B. bacillus B068150 did not change the diversity of microbial communities significantly in the rhizosphere of three soils. Our data showed that population density of B068150 in clay soil had a significant negative correlation on bacterial diversity in cucumber rhizosphere in comparison to loam and sandy soils, suggesting that the impact of B068150 might be soil specific.

  10. Phosphorus status and microbial community of paddy soil with the growth of annual ryegrass (Lolium multiflorum Lam.) under different phosphorus fertilizer treatments*

    Science.gov (United States)

    Guo, Hai-chao; Wang, Guang-huo

    2009-01-01

    Annual ryegrass (Lolium multiflorum Lam.) was grown in paddy soil in pots under different phosphorus (P) fertilizer treatments to investigate changes of P fractions and microbial community of the soil. The treatments included Kunyang phosphate rock (KPR) applications at 50 mg P/kg (KPR50) and 250 mg P/kg (KPR250), mono-calcium phosphate (MCP) application at 50 mg P/kg (MCP50), and the control without P application. The results showed that KPR50, KPR250, and MCP50 applications significantly increased the dry weight of the ryegrass by 13%, 38%, and 55%, and increased P uptake by 19%, 135%, and 324%, respectively. Compared with MCP50, the relative effectiveness of KPR50 and KPR250 treatments in ryegrass production was about 23% and 68%, respectively. After one season of ryegrass growth, the KPR50, KPR250, and MCP50 applications increased soil-available P by 13.4%, 26.8%, and 55.2%, respectively. More than 80% of the applied KPR-P remained as HCl-P fraction in the soil. Phospholipid fatty acid (PLFA) analysis showed that the total and bacterial PLFAs were significantly higher in the soils with KPR250 and MCP50 treatments compared with KPR50 and control. The latter had no significant difference in the total or bacterial PLFAs. The KPR50, KPR250, and MCP50 treatments increased fungal PLFA by 69%, 103%, and 69%, respectively. Both the principal component analysis and the cluster analysis of the PLFA data suggest that P treatments altered the microbial community composition of the soils, and that P availability might be an important contributor to the changes in the microbial community structure during the ryegrass growth in the paddy soils. PMID:19817001

  11. Quality control system response to stochastic growth of amyloid fibrils

    DEFF Research Database (Denmark)

    Pigolotti, S.; Lizana, L.; Sneppen, K.

    2013-01-01

    We introduce a stochastic model describing aggregation of misfolded proteins and degradation by the protein quality control system in a single cell. Aggregate growth is contrasted by the cell quality control system, that attacks them at different stages of the growth process, with an efficiency...... that decreases with their size. Model parameters are estimated from experimental data. Two qualitatively different behaviors emerge: a homeostatic state, where the quality control system is stable and aggregates of large sizes are not formed, and an oscillatory state, where the quality control system...

  12. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions.

    Science.gov (United States)

    Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian

    2013-10-01

    Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree

  13. The effects of genetic polymorphism on treatment response of recombinant human growth hormone.

    Science.gov (United States)

    Chen, Shi; You, Hanxiao; Pan, Hui; Zhu, Huijuan; Yang, Hongbo; Gong, Fengying; Wang, Linjie; Jiang, Yu; Yan, Chengsheng

    2017-12-06

    Recombinant human growth hormone (rhGH) has been widely used in clinical treatment of growth hormone deficiency (GHD) or non GHD since 1985 and technology have achieved a great development in different long-acting formulations. Although the mathematical models for predicting the growth hormone response could help clinicians get to an individual personalized growth dose, many patients just can't reach the target height and the growth hormone responses differed.Genetic polymorphisms may play a role in the varies of individual responses in this treatment process.This article gives an overview of the genetic polymorphisms research of growth hormone in recent years, in order to give some potential suggestion and guide for the dose titration during treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Geographic variation in growth responses in Phragmites australis

    NARCIS (Netherlands)

    Clevering, O.A.; Brix, H.; Lukavska, J.

    2001-01-01

    Phragmites australis is a cosmopolitan wetlands species occurring in a wide range of climatic habitats, It can be assumed that adaptations to climate have evolved to enable the synchronization of growth with the seasonality of the environment. To study these adaptations, European P. australis was

  15. Growth and Yield Responses of Vegetable Cowpea ( Vigna ...

    African Journals Online (AJOL)

    The amendment of acidic soil with lime application enhances nutrient availability for optimum vegetable cowpea production. Field experiments were conducted in the teaching and research farm of Michael Okpara University of Agriculture, Umudike during 2006 and 2007 cropping seasons to determine the growth and yield ...

  16. Growth, physiology and yield responses of Amaranthus cruentus ...

    African Journals Online (AJOL)

    Amaranthus cruentus, Corchorus olitorius and Vigna unguiculata are traditional leafy vegetables with potential to improve nutritional security of vulnerable people. The promotion of these crops is partly hindered by the lack of agronomic information. The effect of plant spacing on growth, physiology and yield of these three ...

  17. Growth and yield responses of Sphenostylis stenocarpa (Hochst ex ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-18

    Feb 18, 2009 ... The effects of varying levels (0, 110, 220, 330, 440, and 550 kg P/ha) of phosphate application on some growth and yield parameters of African yam bean were studied. Plant dry weight ... of the control treatment, (12.79 g). Grain yield was ... Key word: Fertilizer, phosphate, Sphenostylis stenocarpa, yield.

  18. Growth, assimilate partitioning and grain yield response of soybean ...

    African Journals Online (AJOL)

    This investigation tested variation in the growth components, assimilate partitioning and grain yield of soybean (Glycine max L. Merrrill) varieties established in CO2 enriched atmosphere when inoculated with mixtures of Arbuscular mycorrhizal fungi (AMF) species in the humid rainforest of Nigeria. A pot and a field ...

  19. Genotypic variation in growth and physiological responses of ...

    African Journals Online (AJOL)

    Beyaz Fasulye, Boncuk Sırık, Kökez, Oturak and Sırık) was investigated in terms of morphological and physiological. Plants were grown in a plant growth chamber at 26/18°C (day/night) temperature with RH 70% and 450 m-2 s-1 light intensity.

  20. Growth responses to ozone in plant species from wetlands

    NARCIS (Netherlands)

    Franzaring, J.H.; Tonneijck, A.E.G.; Kooijman, A.W.N.; Dueck, Th.A.

    2000-01-01

    Ten wet grassland species were fumigated with four concentrations of ozone (charcoal-filtered air, non-filtered air and non-filtered air plus 25 or 50 nl 1-1 ozone) in open-top chambers during one growing season to investigate the long-term effect of this air pollutant on various growth variables.

  1. Growth Response of Selected Mangrove Species to Domestic ...

    African Journals Online (AJOL)

    The sewage system of Dar es Salaam City, Tanzania, serves only 15% of the population, making sewage one of the leading sources of marine pollution. This study was initiated to assess the potential of peri-urban mangrove forests as filters and phyto-remediators of sewage and the growth of two mangrove species under ...

  2. the response of muscle cells during compensatory growth in rats

    African Journals Online (AJOL)

    selle het teen die hoogste tempo vermenigvuldig, maar die toename in spierselgroolte was laag. ... Today much is known of the interplay of the factors which determine rate and degree of recovery from under- nutrition. Again, a ~alth of information is available on ... fluence of nutrition on muscle cell growth in rats and dis·.

  3. Effect of Trichoderma isolates on tomato seedling growth response ...

    African Journals Online (AJOL)

    Trichoderma species are commonly used as biological control agents against phytopathogenic fungi and some isolates are able to improve plant growth. In this study, the effects of three Trichoderma isolates including Trichoderma harzianum isolate T969, T. harzianum isolate T447 and Trichoderma sp. isolate T in tomato ...

  4. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments

    Directory of Open Access Journals (Sweden)

    Ashleigh R. Currie

    2017-08-01

    Full Text Available Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2 and elevated temperature (ambient +4°C on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA and bacterial nitrite reductase (nirS were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

  5. Gastrointestinal and microbial responses to sulfate-supplemented drinking water in mice.

    Science.gov (United States)

    Deplancke, Bart; Finster, Kai; Graham, W Vallen; Collier, Chad T; Thurmond, Joel E; Gaskins, H Rex

    2003-04-01

    There is increasing evidence that hydrogen sulfide (H2S), produced by intestinal sulfate-reducing bacteria (SRB), may be involved in the etiopathogenesis of chronic diseases such as ulcerative colitis and colorectal cancer. The activity of SRB, and thus H2S production, is likely determined by the availability of sulfur-containing compounds in the intestine. However, little is known about the impact of dietary or inorganic sulfate on intestinal sulfate and SRB-derived H2S concentrations. In this study, the effects of short-term (7 day) and long-term (1 year) inorganic sulfate supplementation of the drinking water on gastrointestinal (GI) sulfate and H2S concentrations (and thus activity of resident SRBs), and the density of large intestinal sulfomucin-containing goblet cells, were examined in C3H/HeJBir mice. Additionally, a PCR-denaturing gradient gel electrophoresis (DGGE)-based molecular ecology technique was used to examine the impact of sulfate-amended drinking water on microbial community structure throughout the GI tract. Average H2S concentrations ranged from 0.1 mM (stomach) to 1 mM (cecum). A sulfate reduction assay demonstrated in situ production of H2S throughout the GI tract, confirming the presence of SRB. However, H2S generation and concentrations were greatest in the cecum and colon. Sulfate supplementation of drinking water did not significantly increase intestinal sulfate or H2S concentrations, suggesting that inorganic sulfate is not an important modulator of intestinal H2S concentrations, although it altered the bacterial profiles of the stomach and distal colon of 1-year-old mice. This change in colonic bacterial profiles may reflect a corresponding increase in the density of sulfomucin-containing goblet cells in sulfate-supplemented compared with control mice.

  6. Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations.

    Science.gov (United States)

    Liu, Q; Tang, J; Liu, X; Song, B; Zhen, M; Ashbolt, N J

    2017-10-01

    Study the response of microbial communities and selected petroleum hydrocarbon (PH)-degrading genes on simulated PH spills in soils/sediments from different geographic locations. A microcosm experiment was conducted by spiking mixtures of petroleum hydrocarbons (PHs) to soils/sediments collected from four different regions of China, including the Dagang Oilfield (DG), Sand of Bohai Sea (SS), Northeast China (NE) and Xiamen (XM). Changes in bacterial community and the abundance of PH-degrading genes (alkB, nah and phe) were analysed by denaturing gradient electrophoresis (DGGE) and qPCR, respectively. Degradation of alkanes and PAHs in SS and NE materials were greater (P < 0·05) than those in DG and XM. Clay content was negatively correlated with the degradation of total alkanes by 112 days and PAHs by 56 days, while total organic carbon content was negatively correlated with initial degradation of total alkanes as well as PAHs. Abundances of alkB, nah and phe genes increased 10- to 100-fold and varied by soil type over the incubation period. DGGE fingerprints identified the dominance of α-, β- and γ-Proteobacteria (Gram -ve) and Actinobacteria (Gram +ve) bacteria associated with degradation of PHs in the materials studied. The geographic divergence resulting from the heterogeneity of physicochemical properties of soils/sediments appeared to influence the abundance of metabolic genes and community structure of microbes capable of degrading PHs. When developing practical in-situ bioremediation approaches for PHs contamination of soils/sediment, appropriate microbial community structures and the abundance of PH-degrading genes appear to be influenced by geographic location. © 2017 The Society for Applied Microbiology.

  7. Capacity of Albit® Plant Growth Stimulator for Mitigating Side-effects of Pesticides on Soil Microbial Respiration

    Directory of Open Access Journals (Sweden)

    Natalia N. Karpun

    2017-11-01

    Full Text Available Microorganisms give an early and integrated measure of soil functioning. In particular, soil microbial respiration is recommended for monitoring soil quality. The present study aims to determine the capacity of Albit® (poly-β-hydroxybutyrate, PHB to reduce the detrimental effects of pesticides on soil microbial respiration. The effects of three conventional pesticides (deltamethrin, dithianon, and difenoconazole on basal respiration (BR and substrate-induced respiration (SIR were assessed in the presence and absence of Albit®. The studied pesticides caused negative impacts on soil functioning, reducing BR and SIR. Applications of Albit® increased BR and SIR, and both BR and SIR were kept similar to the control when pesticides were applied with Albit®. PHB, an active ingredient of Albit®, is known to increase beneficial microflora in the rhizosphere due to its regulatory activity on indigenous microorganisms. Thus, more studies should be carried out under different edaphoclimatic conditions to study the benefits of Albit® applications along with pesticides in order to mitigate their side effects on soil microbial functioning.

  8. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils.

    Science.gov (United States)

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  9. Live mass, carcass and wool growth responses to supplementation ...

    African Journals Online (AJOL)

    (KOK) teen peile van 0, 100 of 200 g/d in kombinasie met heel mielies teen. 0, 100 of 200 g/d as byvoeding tot 'n dieet van koringstrooi plus ureum vir SA Vleismerino- ... the optimum level of nutrition for live mass-gain and wool growth in terms of protein to energy ratios by supplying nutrients via the abomasum, either by ...

  10. Growth and yield of anthurium in response to gibberellic acid

    Directory of Open Access Journals (Sweden)

    Juliana Domingues Lima

    2014-01-01

    Full Text Available Gibberellic acid (GA3 induces flowering of plants of various genera of the Araceae family. Therefore, it was evaluated the effect of GA3 on the growth and yield of Anthurium andraeanum cv. 'Apalai'. For this purpose, micropropagated seedlings were planted in nursery beds under 70% shade. The experimental design was completely randomized in subdivided plots with eight replications. The growth regulation effect was assessed in each plot and the time to flowering after the start of the treatments was assessed in each subplot. The GA3 concentrations were 0, 150, 300, 450 and 600mg L-1, applied every 60 days by spraying on the leaves. The applications and evaluations started after the production of marketable floral stems. Every month the number of leaves was counted and their dimensions were measured, while every week the presence of inflorescences and the point of their commercial harvest were assessed and the respective dimensions were measured. Application of GA3 at 150, 300 and 450 mg L-1 promoted an increase in the leaf area. However, there was no increase in the number of inflorescences produced or their quality, making it impossible to recommend the use of this growth regulator for commercial production of this flower.

  11. Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15N labelled exudates

    DEFF Research Database (Denmark)

    Kusliene, Gedrime; Rasmussen, Jim; Kuzyakov, Yakov

    2014-01-01

    and actinomycetes was unaffected by plant species, but pool of Gram-negative and Gram-positive bacteria was greater under white clover at the 10 percent significance level. In the short term, microorganisms more actively utilised fresh exudates (13C-labelled) of ryegrass than of white clover. We expected ryegrass...... microbial groups in soil under white clover (Trifolium repens L.) and ryegrass (Lolium perenne L.) following leaf-labelling with 13C-bicarbonate and 15N-urea. In this way microbial N and 15N and the composition of PLFAs reflect the medium-term (two months) response of microorganisms to rhizodeposits......, whereas the 13C-label of the PLFAs reflects the short-term (one week) utilisation of root exudates following labelling of shoots. In the medium term, microbial biomass N and 15N were greater under the ryegrass, whereas total PLFA was higher under white clover. The relative abundance of fungi...

  12. 17-β-Estradiol Upregulates the Stress Response in Candida albicans: Implications for Microbial Virulence

    OpenAIRE

    C. O’Connor; M. Essmann; B. Larsen

    1998-01-01

    Objective: The influence of 17-β-estradiol on the stress response of Candida albicans was studied.Methods: The survival of clinical isolates of C. albicans treated with 17-β-estradiol after heat and oxidative stress was measured by viable plate counts. Cellular proteins were analyzed via SDSPAGE.Results: The heat stress response induced by 17-β-estradiol in C. albicans grown at 25 ℃ protected the organisms against the lethal temperature of 48.5 ℃, as shown by viable plate counts. 17-β-estradi...

  13. 17-beta-estradiol upregulates the stress response in Candida albicans: implications for microbial virulence.

    OpenAIRE

    O'Connor, C; Essmann, M; Larsen, B

    1998-01-01

    OBJECTIVE: The influence of 17-beta-estradiol on the stress response of Candida albicans was studied. METHODS: The survival of clinical isolates of C. albicans treated with 17-beta-estradiol after heat and oxidative stress was measured by viable plate counts. Cellular proteins were analyzed via SDS-PAGE. RESULTS: The heat stress response induced by 17-beta-estradiol in C. albicans grown at 25 degrees C protected the organisms against the lethal temperature of 48.5 degrees C, as shown by viabl...

  14. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers.

    Science.gov (United States)

    Baurhoo, B; Ferket, P R; Zhao, X

    2009-11-01

    The effects of 2 levels of mannanoligosaccharide (MOS) in feed were compared with antibiotic growth promoters on growth performance, intestinal morphology, cecal and litter microbial populations, and carcass parameters in broilers raised in a sanitary environment. Dietary treatments included: 1) antibiotic growth promoter-free diet (control), 2) VIRG (diet 1 + 16.5 mg/kg of virginiamycin), 3) BACT (diet 1 + 55 mg/kg of bacitracin), 4) LMOS (diet 1 + 0.2% MOS), and 5) HMOS (diet 1 + 0.5% MOS). Birds were randomly assigned to 3 replicate pens/treatment (n = 55/pen). Body weight and feed intake were recorded weekly throughout 38 d. At d 14, 24, and 34, a 1-cm segment of duodenum, jejunum, and ileum was used in morphological analysis (n = 9 birds/d per treatment). At the same bird ages, cecal contents were assayed for lactobacilli, bifidobacteria, Salmonella, Campylobacter, and Escherichia coli, whereas litter was analyzed for Salmonella, Campylobacter, and E. coli. Carcass yields (breast fillet and tenders, thigh, drumstick, and wing) were determined at d 38. Body weight, feed conversion, and carcass yields did not differ among treatments. In contrast to birds fed VIRG or BACT, LMOS and HMOS consistently increased (P litter from all treatments were free of Salmonella. At d 14 and 24, cecal E. coli and Campylobacter counts were not different among treatments. In comparison to birds fed control, at d 34, BACT, LMOS, and HMOS significantly reduced (P Litter bacterial counts were not altered by dietary treatments. In conclusion, under conditions of this study, MOS conferred intestinal health benefits to chickens by improving its morphological development and microbial ecology. But, there were no additional benefits of the higher MOS dosage.

  15. Effect of Fermented Supplementation on Growth Performance, Nutrient Digestibility, Blood Characteristics, Fecal Microbial and Fecal Noxious Gas Content in Growing Pigs

    Directory of Open Access Journals (Sweden)

    L. Yan

    2012-12-01

    Full Text Available A total of 96 growing pigs ((Landrace×Yorkshire×Duroc; BW = 26.58±1.41 kg were used in a 6-wk feeding trail to evaluate the effects of fermented chlorella (FC supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Pigs were randomly allotted into 1 of 4 dietary treatments with 6 replicate pens (2 barrows and 2 gilts per treatment. Dietary treatments were: i negative control (NC, basal diet (without antibiotics; ii positive control (PC, NC+0.05% tylosin; iii (fermented chlorella 01 FC01, NC+0.1% FC, and iv fermented chlorella 02 (FC02, NC+0.2% FC. In this study, feeding pigs PC or FC01 diets led to a higher average daily gain (ADG and dry matter (DM digestibility than those fed NC diet (p0.05 was observed on the body weight, average daily feed intake (ADFI, gain:feed (G:F ratio, the apparent total tract digestibility of N and energy throughout the experiment. The inclusion of PC or FC did not affect the blood characteristics (p>0.05. Moreover, dietary FC treatment led to a higher (p<0.05 lactobacillus concentration and lower E. coli concentration than the NC treatment, whereas the antibiotic supplementation only decreased the E. coli concentration. Pigs fed FC or PC diet had reduced (p<0.05 fecal NH3 and H2S content compared with those fed NC diet. In conclusion, our results indicated that the inclusion of FC01 treatment could improve the growth performance, nutrient digestibility, fecal microbial shedding (lower E. coli and higher lactobacillus, and decrease the fecal noxious gas emission in growing pigs when compared with the group fed the basal diet. In conclusion, dietary FC could be considered as a good source of supplementation in growing pigs because of its growth promoting effect.

  16. Growth properties and growth factor responsiveness in skin fibroblasts from centenarians.

    Science.gov (United States)

    Tesco, G; Vergelli, M; Grassilli, E; Salomoni, P; Bellesia, E; Sikora, E; Radziszewska, E; Barbieri, D; Latorraca, S; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Franceschi, C; Sorbi, S

    1998-03-27

    Human fibroblast cultures, which have a finite replicative lifespan in vitro, are the most widely used model for the study of senescence at the cellular level. An inverse relationship between replicative capability and donor age has been reported in human fibroblast strains. We studied the growth capacity of fibroblast primary cultures derived from people whose lifespan was as closer as possible to the expected maximum human lifespan, i.e. people over one hundred. Our data suggest that outgrowth of fibroblasts from biopsies, growth kinetics at different population doubling levels, capability to respond to a classical mitogenic stimulus (such as 20% serum) and a variety of growth factors, were remarkably similar in fibroblasts from centenarians and young controls. On the whole, our data challenge the tenet of a simple and strict relationship between in vivo aging and in vitro proliferative capability of human fibroblasts, at least at the individual level.

  17. Response of soil microbial and invertebrate communities to tracked vehicle disturbance in tallgrass prairie

    Science.gov (United States)

    P.S. Althoff; T.C. Todd; S.J. Thien; M.A. Callaham

    2009-01-01

    Soil biota drive fundamental ecosystem processes such as decomposition, nutrient cycling, and maintenance of soil structure. They are especially active in grassland ecosystems such as the tallgrass by heterotrophic soil organisms. Because both soil microbes and soil fauna display perturbation responses that integrate the physical, chemical, and biological changes to...

  18. Growth response and nutrient uptake of blue pine (Pinus wallichiana seedlings inoculated with rhizosphere microorganisms under temperate nursery conditions

    Directory of Open Access Journals (Sweden)

    M.A. Ahangar

    2012-11-01

    Full Text Available Microbial inoculants (Trichoderma harzianum, Pseudomonas fluorescens,Laccaria laccata inoculated either individually or in combinationsignificantly improved the growth and biomass of blue pine seedlings. The ECM fungus Laccaria laccata, when inoculated individually, showed significantly higher plant growth, followed by Pseudomonas fluorescens and Trichoderma harzianum. The combined inoculation of rhizosphere microorganisms showed synergistic growth promoting action and proved superior in enhancing the growth of blue pine than individual inoculation. Co-inoculation of L. laccata with P. fluorescens resulted in higher ectomycorrhizal root colonization. Uptake of nutrients (N, P, K was significantly improved by microbial inoculants, tested individually or in combination. Combined inoculation of L. laccata with T. harzianum and P. fluorescens significantly increased in N, P and K contents in blue pine seedlings as compared to control. Acid phosphatase activity in the rhizosphere of blue pine seedlings was also enhanced by these microorganisms. L. laccata exhibited higher acid phosphatase activity followed by P. fluorescens.

  19. Growth hormone, prolactin and cortisol response to exercise in patients with depression

    DEFF Research Database (Denmark)

    Krogh, Jesper; Nordentoft, Merete; Mohammad-Nezhad, Mahdi

    2010-01-01

    BACKGROUND: A blunted growth hormone and prolactin response to pharmacological stress test have previously been found in depressed patients, as well as an increased cortisol response to psychosocial stress. This study investigated these hormones in response to acute exercise using an incremental...... bicycle test. METHOD: A cross-sectional comparison of cortisol, growth hormone, and prolactin in depressed (n=137) and healthy (n=44) subjects during rest and in response to an incremental bicycle test. Secondly, we tested the depressed patients again after a 4-month randomized naturalistic exercise...... intervention. RESULTS: Resting plasma levels of growth hormone (GH), cortisol, or prolactin (PRL) did not differ between depressed and healthy subjects (all p-values>.12). In response to an incremental bicycle test the GH (p=.02) and cortisol (p=.05) response in depressed was different compared to healthy...

  20. Impacts of biostimulant products on the growth of wheat and the microbial communities of its rhizosphere under contrasted production systems

    OpenAIRE

    Nguyen, Minh; Bodson, Bernard; Colinet, Gilles; Jijakli, Haissam; Ongena, Marc; Vandenbol, Micheline; du Jardin, Patrick; Spaepen, Stijn; Delaplace, Pierre

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are one of the major biostimulant classes due to their ability to stimulate root growth, enhance mineral availability, and nutrient use efficiency in crops. PGPR-containing biostimulant products could therefore make agriculture more sustainable by reducing demand for chemical fertilizer and lessen their negative environmental impacts. The aim of this project is to screen PGPR strains to (1) enhance wheat fitness level (growth, photosynthesis efficie...

  1. Uniform shrub growth response to June temperature across the North Slope of Alaska

    Science.gov (United States)

    Ackerman, Daniel E.; Griffin, Daniel; Hobbie, Sarah E.; Popham, Kelly; Jones, Erin; Finlay, Jacques C.

    2018-04-01

    The expansion of woody shrubs in arctic tundra alters many aspects of high-latitude ecosystems, including carbon cycling and wildlife habitat. Dendroecology, the study of annual growth increments in woody plants, has shown promise in revealing how climate and environmental conditions interact with shrub growth to affect these key ecosystem properties. However, a predictive understanding of how shrub growth response to climate varies across the heterogeneous landscape remains elusive. Here we use individual-based mixed effects modeling to analyze 19 624 annual growth ring measurements in the stems of Salix pulchra (Cham.), a rapidly expanding deciduous shrub. Stem samples were collected at six sites throughout the North Slope of Alaska. Sites spanned four landscapes that varied in time since glaciation and hence in soil properties, such as nutrient availability, that we expected would modulate shrub growth response to climate. Ring growth was remarkably coherent among sites and responded positively to mean June temperature. The strength of this climate response varied slightly among glacial landscapes, but in contrast to expectations, this variability was not systematically correlated with landscape age. Additionally, shrubs at all sites exhibited diminishing marginal growth gains in response to increasing temperatures, indicative of alternative growth limiting mechanisms in particularly warm years, such as temperature-induced moisture limitation. Our results reveal a regionally-coherent and robust shrub growth response to early season growing temperature, with local soil properties contributing only a minor influence on shrub growth. Our conclusions strengthen predictions of changes to wildlife habitat and improve the representation of tundra vegetation dynamics in earth systems models in response to future arctic warming.

  2. Effect of Acclimatization Time to Microbial Cell Growth and Biosynthesis of Mesophilic Gammaproteobacterium, in Orbital Shake Flasks

    Directory of Open Access Journals (Sweden)

    Azoddein Abd. Aziz Mohd

    2017-01-01

    Full Text Available Growth pattern of Pseudomonas putida (ATCC 49128, was found to predominantly rely on the age of the inoculums, prior to its contact with physical and chemical agents and nutrient availability. Under suitable inoculums, bacteria tend to grow faster in a batch type of growth pattern which is usually sustained until after nutrient depletion. In this research, the bacterial growth pattern was studied in an incubator shake flask using 8 g nutrient media and physical operational parameters temperature of 37oC and agitation of 180 rpm over a period of 24, 48 and 72 hours. Prior to this, P. putida was added into 20.0 ml nutrient broth and incubated in an incubator for 24 hours at 37oC, before adding it to 180 ml nutrient broth 30% (v/v1-. Growth, via acclimatization was initially observed after 1hr of inoculation with an overwhelming exponential growth of 2.69-2.57 within first 24 hr, exceeding the 48 and 72 hrs ranges. This additionally relates to particular cell biomass growth rate (μ of 0.58 hr1-, 3.87 number of generation (n, generation time (g 1.09 and growth rate constant (k of 0.01 hr1-, achievable within 24 hrs. It was therefore concluded that the sensitivity of this strain to time is significant, as optimal growth was achieved within 24 hrs of acclimatization, thereby showing a drastic reduction in the time of growth.

  3. Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates.

    Science.gov (United States)

    Patel, Vrutika; Sharma, Anukriti; Lal, Rup; Al-Dhabi, Naif Abdullah; Madamwar, Datta

    2016-03-22

    Gauging the microbial community structures and functions become imperative to understand the ecological processes. To understand the impact of long-term oil contamination on microbial community structure soil samples were taken from oil fields located in different industrial regions across Kadi, near Ahmedabad, India. Soil collected was hence used for metagenomic DNA extraction to study the capabilities of intrinsic microbial community in tolerating the oil perturbation. Taxonomic profiling was carried out by two different complementary approaches i.e. 16S rDNA and lowest common ancestor. The community profiling revealed the enrichment of phylum "Proteobacteria" and genus "Chromobacterium," respectively for polluted soil sample. Our results indicated that soil microbial diversity (Shannon diversity index) decreased significantly with contamination. Further, assignment of obtained metagenome reads to Clusters of Orthologous Groups (COG) of protein and Kyoto Encyclopedia of Genes and Genomes (KEGG) hits revealed metabolic potential of indigenous microbial community. Enzymes were mapped on fatty acid biosynthesis pathway to elucidate their roles in possible catalytic reactions. To the best of our knowledge this is first study for influence of edible oil on soil microbial communities via shotgun sequencing. The results indicated that long-term oil contamination significantly affects soil microbial community structure by acting as an environmental filter to decrease the regional differences distinguishing soil microbial communities.

  4. Differential responses of onion and garlic against plant growth regulators

    International Nuclear Information System (INIS)

    Oozunidou, G.; Asif, M.; Giannakuola, A.; Iliass, A.

    2011-01-01

    The effects of Gibberellic acid-GA3, Prohexadione-Calcium, and Ethephon pre-harvest application on yield, biomass production, photosynthetic function, lipid peroxidation and quality characteristics of onion (Allium cepa L.) and garlic (Allium sativum L.) plants were investigated. Shoot length and biomass of onion and garlic, expressed either in fresh or dry weight, increased significantly under GA3, while a progressive decrease under Prohex-Ca and Ethephon occurred. Higher MDA (lipid peroxidation) values were recorded after Prohex-Ca and Ethephon supply on onion and garlic plants; it seems that GA3 treatment prevents lipid peroxidation as measured with the help of the TBARS method. Plants treated with Prohex-Ca and Ethephon revealed higher peroxidase activity compared to control and GA3 treated plants. Considering the results of MDA content and peroxidase activities it can be assumed that GA3 treated plants are slightly protected from the natural course of oxidative stress, which occurs during ageing as observed for control samples. The fluctuations of chlorophyll fluorescence parameters represent a general decline in chloroplasts function after plant growth regulators exposure, whereas in combination to the suppressed chlorophyll content, structural malformations of photo systems may also occur. The production of ascorbic acid, glucose and fructose content seems to be enhanced under GA3 in both species, while their values were depressed under Prohex-Ca and Ethephon. Overall, only GA3 supply leads to a vigorous onion and garlic growth and yield. (author)

  5. Growth and Physiological Responses of Phaseolus Species to Salinity Stress

    Directory of Open Access Journals (Sweden)

    J. S. Bayuelo-Jiménez

    2012-01-01

    Full Text Available This paper reports the changes on growth, photosynthesis, water relations, soluble carbohydrate, and ion accumulation, for two salt-tolerant and two salt-sensitive Phaseolus species grown under increasing salinity (0, 60 and 90 mM NaCl. After 20 days exposure to salt, biomass was reduced in all species to a similar extent (about 56%, with the effect of salinity on relative growth rate (RGR confined largely to the first week. RGR of salt-tolerant species was reduced by salinity due to leaf area ratio (LAR reduction rather than a decline in photosynthetic capacity, whereas unit leaf rate and LAR were the key factors in determining RGR on salt-sensitive species. Photosynthetic rate and stomatal conductance decreased gradually with salinity, showing significant reductions only in salt-sensitive species at the highest salt level. There was little difference between species in the effect of salinity on water relations, as indicated by their positive turgor. Osmotic adjustment occurred in all species and depended on higher K+, Na+, and Cl− accumulation. Despite some changes in soluble carbohydrate accumulation induced by salt stress, no consistent contributions in osmotic adjustment could be found in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation in Phaseolus species.

  6. Effects of Biofertilizer Containing Microbial of N-fixer, P Solubilizer and Plant Growth Factor Producer on Cabbage (Brassica oleraceae var. Capitata Growth And Soil Enzymatic Activities: A Greenhouse Trial

    Directory of Open Access Journals (Sweden)

    Sarjiya Antonius

    2012-05-01

    Full Text Available The objective of this greenhouse study was to evaluate the effects of four different concentrations of biofertilizers containing Pseudomonas sp., Bacillus sp. and Streptomyces sp. on soil properties and to evaluate the growth of Brassica oleraceae var. capitata. The application treatments included control (no fertilizer and four concentration of diluted biofertilizer per pot (20 ml, 40 ml, 60 mland 80 ml. The application of biofertilizer containing benefi cial bacteria signifi cantly increased the growth of B. oleraceae. The useof biofertilizer resulted higher biomass weight and length as well as root length. This greenhouse study also indicated that differentamount of biofertilizer application had almost similar effects. Microbial inoculum not only increased plant harvest, but also improvedsoil properties, such as number of microorganisms, respiration and urease activities.

  7. Growth Response of Explants of Irvingia Gabonensis (O'rorke, Baill ...

    African Journals Online (AJOL)

    Growth response of explants of Irvingia gabonensis to in vitro treatment was investigated using full, half and one quarter strength mineral components based on Murashige and Skoog medium. Plant growth regulator (kinetin-Kin) with concentration levels of 0, 1, 2, 3, 4 and 5mg/l were used for shoots initiation, while axillary ...

  8. Solanum cultivar responses to arbuscular mycorrhizal fungi: growth ...

    African Journals Online (AJOL)

    A greenhouse experiment was carried out in a sandy soil with a low available phosphorus to evaluate responsiveness of four Solanum aethiopicum cultivars to indigenous arbuscular mycorrhizal fungi. Results showed clear interaction between genetic variability of cultivars and fungal isolates on shoot biomass and on ...

  9. C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth

    DEFF Research Database (Denmark)

    Chua, Song Lin; Sivakumar, Krishnakumar; Rybtke, Morten Levin

    2015-01-01

    tellurite (TeO3(2-)) exposure induced the intracellular content of the secondary messenger cyclic di-GMP (c-di-GMP) of Pseudomonas aeruginosa. Two diguanylate cyclases (DGCs), SadC and SiaD, were responsible for the increased intracellular content of c-di-GMP. Enhanced c-di-GMP levels by TeO3(2-) further...... increased P. aeruginosa biofilm formation and resistance to TeO3(2-). P. aeruginosa ΔsadCΔsiaD and PAO1/p(lac)-yhjH mutants with low intracellular c-di-GMP content were more sensitive to TeO3(2-) exposure and had low relative fitness compared to the wild-type PAO1 planktonic and biofilm cultures exposed...... to TeO3(2-). Our study provided evidence that c-di-GMP level can play an important role in mediating stress response in microbial communities during both planktonic and biofilm modes of growth....

  10. Modeling lodgepole pine radial growth relative to climate and genetics using universal growth-trend response functions.

    Science.gov (United States)

    McLane, Sierra C; LeMay, Valerie M; Aitken, Sally N

    2011-04-01

    Forests strongly affect Earth's carbon cycles, making our ability to forecast forest-productivity changes associated with rising temperatures and changes in precipitation increasingly critical. In this study, we model the influence of climate on annual radial growth using lodgepole pine (Pinus contorta) trees grown for 34 years in a large provenance experiment in western Canada. We use a random-coefficient modeling approach to build universal growth-trend response functions that simultaneously incorporate the impacts of different provenance and site climates on radial growth trends under present and future annual (growth-year), summer, and winter climate regimes. This approach provides new depth to traditional quantitative genetics population response functions by illustrating potential changes in population dominance over time, as well as indicating the age and size at which annual growth begins declining for any population growing in any location under any present or future climate scenario within reason, given the ages and climatic conditions sampled. Our models indicate that lodgepole pine radial-growth levels maximize between 3.9 degrees and 5.1 degrees C mean growth-year temperature. This translates to productivity declining by the mid-21st century in southern and central British Columbia (BC), while increasing beyond the 2080s in northern BC and Yukon, as temperatures rise. Relative to summer climate indices, productivity is predicted to decline continuously through the 2080s in all locations, while relative to winter climate variables, the opposite trend occurs, with the growth increases caused by warmer winters potentially offsetting the summer losses. Trees from warmer provenances, i.e., from the center of the species range, perform best in nearly all of our present and future climate-scenario models. We recommend that similar models be used to analyze population growth trends relative to annual and intra-annual climate in other large-scale provenance

  11. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    Science.gov (United States)

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.

  12. Growth and cesium uptake responses of Phytolacca americana Linn. and Amarant