WorldWideScience

Sample records for microbial enrichment culture

  1. Enrichment of Microbial Cultures for Hydrolysis of EA2192

    National Research Council Canada - National Science Library

    Rastogi, Vipin

    1998-01-01

    .... The enrichment was initiated using consortium adapted to biodegrade hydrolyzed vx (courtesy Dr. DeFrank). Based on NMR analysis, the concentration of EA2192 reduced from 120 ppm to 50 ppm in 48 hr of growth...

  2. Microbial dynamics in anaerobic enrichment cultures degrading di-n-butyl phthalic acid ester

    DEFF Research Database (Denmark)

    Trably, Eric; Batstone, Damien J.; Christensen, Nina

    2008-01-01

    losses were observed in the sterile controls (20-22%), substantial DBP biodegradation was found in the enrichment cultures (90-99%). In addition, significant population changes were observed. The dominant bacterial species in the DBP-degrading cultures was affiliated to Soehngenia saccharolytica...... in enrichment cultures degrading phthalic acid esters under methanogenic conditions. A selection pressure was applied by adding DBP at 10 and 200 mg L(-1) in semi-continuous anaerobic reactors. The microbial dynamics were monitored using single strand conformation polymorphism (SSCP). While only limited abiotic...

  3. Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Tara J.; Foght, Julia M. [Department of Biological Sciences, University of Alberta, Edmonton, Alberta (Canada); Budwill, Karen [Carbon and Energy Management, Alberta Innovates-Technology Futures, 250 Karl Clark Road, Edmonton, Alberta (Canada)

    2010-05-01

    Coalbed methane is an unconventional fuel source associated with certain coal seams. Biogenic methane can comprise a significant portion of the gas found in coal seams, yet the role of microbes in methanogenesis in situ is uncertain. The purpose of this study was to detect and identify major bacterial and archaeal species associated with coal sampled from sub-bituminous methane-producing coal beds in western Canada, and to examine the potential for methane biogenesis from coal. Enrichment cultures of coal samples were established to determine how nutrient amendment influenced the microbial community and methane production in the laboratory. 16S rRNA gene clone libraries were constructed using DNA extracted and amplified from uncultured coal samples and from methanogenic coal enrichment cultures. Libraries were screened using restriction fragment length polymorphism, and representative clones were sequenced. Most (> 50%) of the bacterial sequences amplified from uncultured coal samples were affiliated with Proteobacteria that exhibit nitrate reduction, nitrogen fixation and/or hydrogen utilization activities, including Pseudomonas, Thauera and Acidovorax spp., whereas enrichment cultures were dominated by Bacteroidetes, Clostridia and/or Lactobacillales. Archaeal 16S rRNA genes could not be amplified from uncultured coal, suggesting that methanogens are present in coal below the detection levels of our methods. However, enrichment cultures established with coal inocula produced significant volumes of methane and the archaeal clone libraries were dominated by sequences closely affiliated with Methanosarcina spp. Enrichment cultures incubated with coal plus organic nutrients produced more methane than either nutrient or coal supplements alone, implying that competent methanogenic consortia exist in coal beds but that nutrient limitations restrict their activity in situ. This report adds to the scant literature on coal bed microbiology and suggests how microbes may be

  4. Lipid recovery from a vegetable oil emulsion using microbial enrichment cultures

    NARCIS (Netherlands)

    Tamis, J.; Sorokin, D.Y.; Jiang, Y.; Van Loosdrecht, M.C.M.; Kleerebezem, R.

    2015-01-01

    Background Many waste streams have a relatively high vegetable oil content, which is a potential resource that should be recovered. Microbial storage compound production for the recovery of lipids from lipid-water emulsions with open (unsterilized) microbial cultures was investigated in a sequencing

  5. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media

    International Nuclear Information System (INIS)

    Wu, Manli; Chen, Liming; Tian, Yongqiang; Ding, Yi; Dick, Warren A.

    2013-01-01

    A consortium composed of many different bacterial species is required to efficiently degrade polycyclic aromatic hydrocarbons (PAH) in oil-contaminated soil. We obtained six PAH-degrading microbial consortia from three oil-contaminated soils using two different isolation culture media. Denaturing gradient gel electrophoresis (DGGE) and sequence analyses of amplified 16s rRNA genes confirmed the bacterial community was greatly affected by both the culture medium and the soil from which the consortia were enriched. Three bacterial consortia enriched using malt yeast extract (MYE) medium showed higher degradation rates of PAHs than consortia enriched using Luria broth (LB) medium. Consortia obtained from a soil and then added back to that same soil was more effective in degrading PAHs than adding, to the same soil, consortia isolated from other, unrelated soils. This suggests that inoculum used for bioremediation should be from the same, or very similar nearby soils, as the soil that is actually being bioremediated. -- Highlights: •Six PAH-degrading microbial consortia were isolated from three oil-contaminated soils. •The bacterial community by 16s rRNA genes was affected by culture media and source soil. •Inoculum should be from the same or similar soil as the soil being bioremediated. -- Bioremediation of oil-contaminated soils was most effective when using inoculum of microbial consortia from the same or similar soil as the soil being bioremediated

  6. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation.

    Science.gov (United States)

    Sutton, Nora B; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H M

    2015-01-01

    While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2-4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose

  7. Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia.

    Science.gov (United States)

    Entcheva, P; Liebl, W; Johann, A; Hartsch, T; Streit, W R

    2001-01-01

    Enrichment cultures of microbial consortia enable the diverse metabolic and catabolic activities of these populations to be studied on a molecular level and to be explored as potential sources for biotechnology processes. We have used a combined approach of enrichment culture and direct cloning to construct cosmid libraries with large (>30-kb) inserts from microbial consortia. Enrichment cultures were inoculated with samples from five environments, and high amounts of avidin were added to the cultures to favor growth of biotin-producing microbes. DNA was extracted from three of these enrichment cultures and used to construct cosmid libraries; each library consisted of between 6,000 and 35,000 clones, with an average insert size of 30 to 40 kb. The inserts contained a diverse population of genomic DNA fragments isolated from the consortia organisms. These three libraries were used to complement the Escherichia coli biotin auxotrophic strain ATCC 33767 Delta(bio-uvrB). Initial screens resulted in the isolation of seven different complementing cosmid clones, carrying biotin biosynthesis operons. Biotin biosynthesis capabilities and growth under defined conditions of four of these clones were studied. Biotin measured in the different culture supernatants ranged from 42 to 3,800 pg/ml/optical density unit. Sequencing the identified biotin synthesis genes revealed high similarities to bio operons from gram-negative bacteria. In addition, random sequencing identified other interesting open reading frames, as well as two operons, the histidine utilization operon (hut), and the cluster of genes involved in biosynthesis of molybdopterin cofactors in bacteria (moaABCDE).

  8. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media.

    Science.gov (United States)

    Wu, Manli; Chen, Liming; Tian, Yongqiang; Ding, Yi; Dick, Warren A

    2013-07-01

    A consortium composed of many different bacterial species is required to efficiently degrade polycyclic aromatic hydrocarbons (PAH) in oil-contaminated soil. We obtained six PAH-degrading microbial consortia from three oil-contaminated soils using two different isolation culture media. Denaturing gradient gel electrophoresis (DGGE) and sequence analyses of amplified 16s rRNA genes confirmed the bacterial community was greatly affected by both the culture medium and the soil from which the consortia were enriched. Three bacterial consortia enriched using malt yeast extract (MYE) medium showed higher degradation rates of PAHs than consortia enriched using Luria broth (LB) medium. Consortia obtained from a soil and then added back to that same soil was more effective in degrading PAHs than adding, to the same soil, consortia isolated from other, unrelated soils. This suggests that inoculum used for bioremediation should be from the same, or very similar nearby soils, as the soil that is actually being bioremediated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    Science.gov (United States)

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-08-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.

  10. Microbial Diversity in Sulfate-Reducing Marine Sediment Enrichment Cultures Associated with Anaerobic Biotransformation of Coastal Stockpiled Phosphogypsum (Sfax, Tunisia

    Directory of Open Access Journals (Sweden)

    Hana Zouch

    2017-08-01

    Full Text Available Anaerobic biotechnology using sulfate-reducing bacteria (SRB is a promising alternative for reducing long-term stockpiling of phosphogypsum (PG, an acidic (pH ~3 by-product of the phosphate fertilizer industries containing high amounts of sulfate. The main objective of this study was to evaluate, for the first time, the diversity and ability of anaerobic marine microorganisms to convert sulfate from PG into sulfide, in order to look for marine SRB of biotechnological interest. A series of sulfate-reducing enrichment cultures were performed using different electron donors (i.e., acetate, formate, or lactate and sulfate sources (i.e., sodium sulfate or PG as electron acceptors. Significant sulfide production was observed from enrichment cultures inoculated with marine sediments, collected near the effluent discharge point of a Tunisian fertilizer industry (Sfax, Tunisia. Sulfate sources impacted sulfide production rates from marine sediments as well as the diversity of SRB species belonging to Deltaproteobacteria. When PG was used as sulfate source, Desulfovibrio species dominated microbial communities of marine sediments, while Desulfobacter species were mainly detected using sodium sulfate. Sulfide production was also affected depending on the electron donor used, with the highest production obtained using formate. In contrast, low sulfide production (acetate-containing cultures was associated with an increase in the population of Firmicutes. These results suggested that marine Desulfovibrio species, to be further isolated, are potential candidates for bioremediation of PG by immobilizing metals and metalloids thanks to sulfide production by these SRB.

  11. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation

    NARCIS (Netherlands)

    Sutton, N.B.; Atashgahi, S.; Saccenti, E.; Grotenhuis, J.T.C.; Smidt, H.; Rijnaarts, H.H.M.

    2015-01-01

    While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the

  12. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    International Nuclear Information System (INIS)

    Lee, Duu-Jong; Lee, Chin-Yu; Chang, Jo-Shu

    2012-01-01

    Highlights: ► We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. ► Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. ► The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. ► The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  13. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duu-Jong, E-mail: cedean@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Lee, Chin-Yu [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. Black-Right-Pointing-Pointer Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. Black-Right-Pointing-Pointer The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. Black-Right-Pointing-Pointer The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  14. N-acyl homoserine lactone-degrading microbial enrichment cultures isolated from Penaeus vannamei shrimp gut and their probiotic properties in Brachionus plicatilis cultures.

    Science.gov (United States)

    Tinh, Nguyen Thi Ngoc; Asanka Gunasekara, R A Y S; Boon, Nico; Dierckens, Kristof; Sorgeloos, Patrick; Bossier, Peter

    2007-10-01

    Three bacterial enrichment cultures (ECs) were isolated from the digestive tract of Pacific white shrimp Penaeus vannamei, by growing the shrimp microbial communities in a mixture of N-acyl homoserine lactone (AHL) molecules. The ECs, characterized by denaturing gradient gel electrophoresis analysis and subsequent rRNA sequencing, degraded AHL molecules in the degradation assays. Apparently, the resting cells of the ECs also degraded one of the three types of quorum-sensing signal molecules produced by Vibrio harveyi in vitro [i.e. harveyi autoinducer 1 (HAI-1)]. The most efficient AHL-degrading ECs, EC5, was tested in Brachionus experiments. EC5 degraded the V. harveyi HAI-1 autoinducer in vivo, neutralizing the negative effect of V. harveyi autoinducer 2 (AI-2) mutant, in which only the HAI-1- and CAI-1-mediated components of the quorum-sensing system are functional on the growth of Brachionus. This suggests that EC5 interferes with HAI-1-regulated metabolism in V. harveyi. These AHL-degrading ECs need to be tested in other aquatic systems for their probiotic properties, preferably in combination with specific AI-2-degrading bacteria.

  15. Effect of Long Time Oxygen Exposure on Power Generation of Microbial Fuel Cell with Enriched Mixed Culture

    International Nuclear Information System (INIS)

    Mimi Hani Abu Bakar; Mimi Hani Abu Bakar; Mimi Hani Abu Bakar; Pasco, N.F.; Gooneratne, R.; Hong, K.B.; Hong, K.B.; Hong, K.B.

    2016-01-01

    In this study, we are interested in the effect of long time exposure of the microbial fuel cells (MFCs) to air on the electrochemical performance. Here, MFCs enriched using an effluent from a MFC operated for about eight months. After 30 days, the condition of these systems was reversed from aerobic to anaerobic and vice versa, and their effects were observed for 11 days. The results show that for anaerobic MFCs, power generation was reduced when the anodes were exposed to dissolved oxygen of 7.5 ppm. The long exposure of anodic biofilm to air led to poor electrochemical performance. The power generation recovered fully when air supply stopped entering the anode compartment with a reduction of internal resistance up to 53 %. The study was able to show that mixed facultative microorganism able to strive through the aerobic condition for about a month at 7.5 ppm oxygen or less. The anaerobic condition was able to turn these microbes into exoelectrogen, producing considerable power in relative to their aerobic state. (author)

  16. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    Science.gov (United States)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of

  17. Sequential enrichment of microbial population exhibiting enhanced biodegradation of crude oil

    International Nuclear Information System (INIS)

    Venkateswaran, Kasthuri; Harayama, Shigeaki.

    1995-01-01

    The distribution of oil-degrading bacteria in the coastal waters and sediments of Hokkaido, Japan, was surveyed. It was found that the potential of mixed microbial populations to degrade weathered crude oil was not confined to any ecological components (water or sediment) nor to the sampling stations. One microbial culture that was stable during repeated subculturing degraded 45% of the saturates and 20% of the aromatics present in crude oil in 10 days during the initial screening. The residual hydrocarbons in this culture were extracted by chloroform and dispersed in a fresh seawater-based medium and subsequently inoculated with microorganisms from the first culture. After full growth of the second culture, the residual hydrocarbons were extracted and dispersed in a fresh medium in which microorganisms from the second culture had been inoculated. This sequential process was carried out six times to enrich those microorganisms that grew on the recalcitrant components of crude oil. After repeated exposure of the residual crude oil to the enriched microorganisms, about 80% of the initially added crude oil was degraded. The cultures obtained after each enrichment cycle were kept, and the degradation of fresh crude oil by the enriched microorganisms was monitored. The degrading activity of the enriched cultures increased as the number of enrichment cycles increased. A microbial population that had been selected six times on the residual crude oil could degrade 70% of the saturates and 30% of the aromatics of crude oil, indicating that growth of a microbial population on residual crude oil improved its ability to biodegrade crude oil. 21 refs., 2 tabs., 7 figs

  18. Enrichment and isolation of microbial strains degrading bioplastic ...

    African Journals Online (AJOL)

    acer

    2015-07-08

    Jul 8, 2015 ... The sea sediments and sea water samples were collected from sites highly polluted with plastic waste from one of the beaches of Mumbai, India. Polymer sample. PVA (M.W. 125000) in powdered form was purchased from S. D.. Fine Chemicals, Mumbai, India. Enrichment of PVA degrading microbial stains.

  19. Enrichment of high ammonia tolerant methanogenic culture

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Proietti, Nicolas

    Ammonia is the major toxicant in full scale anaerobic digesters of animal wastes which are rich in proteins and/or urea, such as pig or poultry wastes. Ammonia inhibition decreases methane production rates, increases volatile fatty acids concentration and leads to economic losses for the biogas...... was derived from a full scale biogas reactor (Hashøj, Denmark), fed with 75% animal manure and 25% food industries organic waste. Basal anaerobic medium was used for the enrichment along with sodium acetate (1 g HAc L-1) as a carbon source. Fluorescence insitu hybridization (FISH) was used to determine...... exclusively to strict aceticlastic methanogens. Results obtained in this study, demonstrated for the first time that strictly aceticlastic methanogens, derived from an enriched culture, can efficiently produce methane under high ammonia levels....

  20. Conversion of Crude Oil to Methane by a Microbial Consortium Enriched From Oil Reservoir Production Waters

    Directory of Open Access Journals (Sweden)

    Carolina eBerdugo-Clavijo

    2014-05-01

    Full Text Available The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls, corresponding to the detection of an alkyl succinate synthase gene (assA in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic versus sessile within a subsurface crude oil reservoir.

  1. Enrichment of Pb, Hg and Cr in cultured carp otolith

    African Journals Online (AJOL)

    AJL

    2012-01-26

    Jan 26, 2012 ... converted to certain organic metal compounds under microbial activity, and ... these years, the chosen aquatic organisms are aquatic algae, zooplankton ..... enriched and accumulated in marine animals. In natural water, the ...

  2. Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings.

    Science.gov (United States)

    Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J

    2016-10-01

    Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.

  3. Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters

    International Nuclear Information System (INIS)

    Mosher, Jennifer J.; Drake, Meghan M.; Carroll, Susan L.; Yang, Zamin K.; Schadt, Christopher W.; Brown, Stephen D.; Podar, Mircea; Hazen, Terry C.; Arkin, Adam P.; Phelps, Tommy J.; Palumbo, Anthony V.; Faybishenko, Boris A.; Elias, Dwayne A.

    2010-01-01

    The Department of Energy site at Hanford, WA, has been historically impacted by U and Cr from the nuclear weapons industry. In an attempt to stimulate microbial remediation of these metals, in-situ lactate enrichment experiments are ongoing. In order to bridge the gap from the laboratory to the field, we inoculated triplicate anaerobic, continuous-flow glass reactors with groundwater collected from well Hanford 100-H in order to obtain a stable, enriched community while selecting for metal-reducing bacteria. Each reactor was fed from a single carboy containing defined media with 30 mM lactate at a rate of 0.223 ml/min under continuous nitrogen flow at 9 ml/min. Cell counts, organic acids, gDNA (for qPCR and pyrosequencing) and gases were sampled during the experiment. Cell counts remained low (less than 1x107 cells/ml) during the first two weeks of the experiment, but by day 20, had reached a density greater than 1x108 cells/ml. Metabolite analysis showed a decrease in the lactate concentrations over time. Pyruvate concentrations ranged from 20-40 uM the first week of the experiment then was undetectable after day 10. Likewise, formate appeared in the reactors during the first week with concentrations of 1.48-1.65 mM at day 7 then the concentrations decreased to 0.69-0.95 on day 10 and were undetectable on day 15. Acetate was present in low amounts on day 3 (0.15-0.33 mM) and steadily increased to 3.35-5.22 mM over time. Similarly, carbon dioxide was present in low concentrations early on and increased to 0.28-0.35 mM as the experiment progressed. We also were able to detect low amounts of methane (10-20 uM) during the first week of the experiment, but by day 10 the methane was undetectable. From these results and pyrosequencing analysis, we conclude that a shift in the microbial community dynamics occurred over time to eventually form a stable and enriched microbial community. Comprehensive investigations such as these allow for the examination of not only which

  4. Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures

    Directory of Open Access Journals (Sweden)

    Reis Maria AM

    2008-07-01

    Full Text Available Abstract Background This paper presents a metabolic model describing the production of polyhydroxyalkanoate (PHA copolymers in mixed microbial cultures, using mixtures of acetic and propionic acid as carbon source material. Material and energetic balances were established on the basis of previously elucidated metabolic pathways. Equations were derived for the theoretical yields for cell growth and PHA production on mixtures of acetic and propionic acid as functions of the oxidative phosphorylation efficiency, P/O ratio. The oxidative phosphorylation efficiency was estimated from rate measurements, which in turn allowed the estimation of the theoretical yield coefficients. Results The model was validated with experimental data collected in a sequencing batch reactor (SBR operated under varying feeding conditions: feeding of acetic and propionic acid separately (control experiments, and the feeding of acetic and propionic acid simultaneously. Two different feast and famine culture enrichment strategies were studied: (i either with acetate or (ii with propionate as carbon source material. Metabolic flux analysis (MFA was performed for the different feeding conditions and culture enrichment strategies. Flux balance analysis (FBA was used to calculate optimal feeding scenarios for high quality PHA polymers production, where it was found that a suitable polymer would be obtained when acetate is fed in excess and the feeding rate of propionate is limited to ~0.17 C-mol/(C-mol.h. The results were compared with published pure culture metabolic studies. Conclusion Acetate was more conducive toward the enrichment of a microbial culture with higher PHA storage fluxes and yields as compared to propionate. The P/O ratio was not only influenced by the selected microbial culture, but also by the carbon substrate fed to each culture, where higher P/O ratio values were consistently observed for acetate than propionate. MFA studies suggest that when mixtures of

  5. 21 CFR 866.2330 - Enriched culture medium.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2330 Enriched culture... solid biological materials intended for medical purposes to cultivate and identify fastidious...

  6. Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil.

    Science.gov (United States)

    Bååth, E; Díaz-Raviña, M; Bakken, L R

    2005-11-01

    The effect of long-term elevated soil Pb levels on soil microbiota was studied at a forest site in Norway, where the soil has been severely contaminated with Pb since the last period of glaciation (several thousand years). Up to 10% Pb (total amount, w/w) has been found in the top layer. The microbial community was drastically affected, as judged from changes in the phospholipid fatty acid (PLFA) pattern. Specific PLFAs that were high in Pb-enriched soil were branched (especially br17:0 and br18:0), whereas PLFAs common in eukaryotic organisms such as fungi (18:2omega6,9 and 20:4) were low compared with levels at adjacent, uncontaminated sites. Congruent changes in the PLFA pattern were found upon analyzing the culturable part of the bacterial community. The high Pb concentrations in the soil resulted in increased tolerance to Pb of the bacterial community, measured using both thymidine incorporation and plate counts. Furthermore, changes in tolerance were correlated to changes in the community structure. The bacterial community of the most contaminated soils showed higher specific activity (thymidine and leucine incorporation rates) and higher culturability than that of control soils. Fungal colony forming units (CFUs) were 10 times lower in the most Pb-enriched soils, the species composition was widely different from that in control soils, and the isolated fungi had high Pb tolerance. The most commonly isolated fungus in Pb-enriched soils was Tolypocladium inflatum. Comparison of isolates from Pb-enriched soil and isolates from unpolluted soils showed that T. inflatum was intrinsically Pb-tolerant, and that the prolonged conditions with high Pb had not selected for any increased tolerance.

  7. Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams

    Science.gov (United States)

    Vladislav Gulis; Amy D. Rosemond; Keller Suberkropp; Holly S. Weyers; Jonathan P. Benstead

    2004-01-01

    We determined the effects of nutrient enrichment on wood decomposition rates and microbial activity during a 3-year study in two headwater streams at Coweeta Hydrologic Laboratory, NC, U.S.A. After a 1-year pretreatment period, one of the streams was continuously enriched with inorganic nutrients (nitrogen and phosphorus) for 2 years while the other stream served as a...

  8. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing.

    Science.gov (United States)

    Thoendel, Matthew; Jeraldo, Patricio R; Greenwood-Quaintance, Kerryl E; Yao, Janet Z; Chia, Nicholas; Hanssen, Arlen D; Abdel, Matthew P; Patel, Robin

    2016-08-01

    Metagenomic whole genome sequencing for detection of pathogens in clinical samples is an exciting new area for discovery and clinical testing. A major barrier to this approach is the overwhelming ratio of human to pathogen DNA in samples with low pathogen abundance, which is typical of most clinical specimens. Microbial DNA enrichment methods offer the potential to relieve this limitation by improving this ratio. Two commercially available enrichment kits, the NEBNext Microbiome DNA Enrichment Kit and the Molzym MolYsis Basic kit, were tested for their ability to enrich for microbial DNA from resected arthroplasty component sonicate fluids from prosthetic joint infections or uninfected sonicate fluids spiked with Staphylococcus aureus. Using spiked uninfected sonicate fluid there was a 6-fold enrichment of bacterial DNA with the NEBNext kit and 76-fold enrichment with the MolYsis kit. Metagenomic whole genome sequencing of sonicate fluid revealed 13- to 85-fold enrichment of bacterial DNA using the NEBNext enrichment kit. The MolYsis approach achieved 481- to 9580-fold enrichment, resulting in 7 to 59% of sequencing reads being from the pathogens known to be present in the samples. These results demonstrate the usefulness of these tools when testing clinical samples with low microbial burden using next generation sequencing. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Performance evaluation of nanoclay enriched anti-microbial hydrogels for biomedical applications

    Directory of Open Access Journals (Sweden)

    Sonali Karnik

    2016-02-01

    Full Text Available A major factor contributing to the failure of orthopedic and orthodontic implants is post-surgical infection. Coating metallic implant surfaces with anti-microbial agents has shown promise but does not always prevent the formation of bacterial biofilms. Furthermore, breakdown of these coatings within the human body can cause release of the anti-microbial drugs in an uncontrolled or unpredictable fashion. In this study, we used a calcium alginate and calcium phosphate cement (CPC hydrogel composite as the base material and enriched these hydrogels with the anti-microbial drug, gentamicin sulfate, loaded within a halloysite nanotubes (HNTs. Our results demonstrate a sustained and extended release of gentamicin from hydrogels enriched with the gentamicin-loaded HNTs. When tested against the gram-negative bacteria, the hydrogel/nanoclay composites showed a pronounced zone of inhibition suggesting that anti-microbial doped nanoclay enriched hydrogels can prevent the growth of bacteria. The release of gentamicin sulfate for a period of five days from the nanoclay-enriched hydrogels would supply anti-microbial agents in a sustained and controlled manner and assist in preventing microbial growth and biofilm formation on the titanium implant surface. A pilot study, using mouse osteoblasts, confirmed that the nanoclay enriched surfaces are also cell supportive as osteoblasts readily, proliferated and produced a type I collagen and proteoglycan matrix.

  10. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  11. Mangrove succession enriches the sediment microbial community in South China.

    Science.gov (United States)

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-06-06

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession.

  12. Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions.

    Science.gov (United States)

    Yu, Chaowei; Reddy, Amitha P; Simmons, Christopher W; Simmons, Blake A; Singer, Steven W; VanderGheynst, Jean S

    2015-01-01

    Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methods included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. A stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under thermophilic and

  13. Methanogenic degradation of acetone by an enrichment culture

    OpenAIRE

    Platen, Harald; Schink, Bernhard

    1987-01-01

    An anaerobic enrichment culture degraded 1 mol of acetone to 2 tool of methane and 1 tool of carbon dioxide. Two microorganisms were involved in this process, a filament-forming rod similar to Methanothrix sp. and an unknown rod with round to slightly pointed ends. Both organisms formed aggregates up to 300 gm in diameter. No fluorescing bacteria were observed indicating that hydrogen or formate-utilizing methanogens are not involved in this process. Acetate was utilized in this culture by th...

  14. Growth of microbial mixed cultures under anaerobic, alkaline conditions

    International Nuclear Information System (INIS)

    Wenk, M.

    1993-09-01

    Cement and concrete are the most important engineered barrier materials in a repository for low- and intermediate-level waste and thus represent the most significant component of the total disposal inventory. Based on the chemical composition of the concrete used in the repository and the groundwater fluxes in the modelled host rock, it is to be expected that the pH in the near vicinity of the repository could exceed a value of 10.5 for more than a million years. The groundwater in the repository environment also has a limited carbon concentration. Since microorganisms will be present in a repository and can even find suitable living conditions within the waste itself, investigations were carried out in order to establish the extent to which microbial activity is possible under the extreme conditions of the repository near-field. For the investigations, alkalophilic cultures were enriched from samples from alkaline habitats and from Valanginian Marl. Anaerobic bacteria with fermentative, sulfate-reducing and methanogenic metabolism were selected. The growth and activity of the mixed cultures were studied under alkaline conditions and the dependence on pH and carbon concentration determined. All the mixed cultures investigated are alkalophilic. The optimum growth range for the cultures is between pH 9.0 and pH 10.0. The activity limit for the fermentative mixed culture is at pH 12, for the sulfate-reducers at pH 11 and for the methanogens at pH 10.5. Given the limited supply of carbon, the mixed cultures can only grow under slightly alkaline conditions. Only the fermentative cultures are capable of surviving with limited carbon supply at pH 13. (author) 24 figs., 18 tabs., 101 refs

  15. Improved performance of microbial fuel cells enriched with natural microbial inocula and treated by electrical current

    International Nuclear Information System (INIS)

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun

    2013-01-01

    Microbial fuel cells (MFCs) are increasingly attracting attention as a sustainable technology as they convert chemical energy in organic wastes to electricity. In this study, the effects of different inoculum sources (river sediment, activated sludge and anaerobic sludge) and electrical current stimulation were evaluated using single-chamber air-cathode MFCs as model reactors based on performance in enrichment process and electrochemical characteristics of the reactors. The result revealed the rapid anodic biofilm development and substrate utilization of the anaerobic sludge-inoculated MFC. It was also found that the river sediment-inoculated MFC achieved the highest power output of 195 μW, or 98 mW m −2 , due to better developed anodic biofilm confirmed by scanning electron microscopy. The current stimulation enhanced the anodic biofilm attachment over time, and therefore reduced the MFC internal resistance by 27%, increased the electrical capacitance by four folds, and improved the anodic biofilm resilience against substrate deprivation. For mature MFCs, a transient application of a negative voltage (−3 V) improved the cathode activity and maximum power output by 37%. This improvement was due to the bactericidal effect of the electrode potential higher than +1.5 V vs. SHE, demonstrating a substantial benefit of treating MFC cathode after long-term operation using suitable direct electrical current. -- Highlights: •Voltage stimulation (+2 V) during inoculation reduced MFC internal resistance and improved biofilm resilience. •Voltage stimulation increased biofilm electrical capacitance by 5-fold. •Negative voltage stimulation (−3 V) enhanced the maximum power output by 37%. •River sediment MFC obtained higher power due to better anodic biofilm coverage. •Anaerobic sludge quickly developed anodic biofilm for MFC and quickly utilized volatile fatty acids

  16. Electrospinning of microbial polyester for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Hyeong [Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Lee, Ik Sang [Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Ko, Young-Gwang [Department of Polymer Science and Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Meng, Wan [Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Jung, Kyung-Hye [Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Kang, Inn-Kyu [Department of Polymer Science, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Ito, Yoshihiro [Kanagawa Academy of Science and Technology, KSP East 309, Sakado 3-2-1, Takatsu-ku, Kawasaki 213-0012 (Japan)

    2007-03-01

    Biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as a nanofibrous mat by electrospinning. The specific surface area and the porosity of electrospun PHBV nanofibrous mat were determined. When the mechanical properties of flat film and electrospun PHBV nanofibrous mats were investigated, both the tensile modulus and strength of electrospun PHBV were less than those of cast PHBV film. However, the elongation ratio of nanofiber mat was higher than that of the cast film. The structure of electrospun nanofibers using PHBV-trifluoroethanol solutions depended on the solution concentrations. When x-ray diffraction patterns of bulk PHBV before and after electrospinning were compared, the crystallinity of PHBV was not significantly affected by the electrospinning process. Chondrocytes adhered and grew on the electrospun PHBV nanofibrous mat better than on the cast PHBV film. Therefore, the electrospun PHBV was considered to be suitable for cell culture.

  17. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Naoko [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan)]. E-mail: ysd75@esi.nagoya-u.ac.jp; Yoshida, Yukina [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Handa, Yuko [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kim, Hyo-Keun [Korea Ginseng and Tobacco Research Institute, Taejon 305-345 (Korea, Republic of); Ichihara, Shigeyuki [Faculty of Agriculture, Meijo University, Nagoya 468-8502 (Japan); Katayama, Arata [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2007-08-01

    Dechlorination of PCP has been observed previously under anaerobic condition in paddy soil. However, there is poor information about the dechlorination pathway of PCP and the microbial community associated with the PCP dechlorination in paddy soil. In this study, an anaerobic microbial community dechlorinating PCP was enriched by serial transfers from a paddy soil using a medium containing PCP, lactate and the steam-sterilized paddy soil. The enriched microbial community dechlorinated PCP completely to phenol under the anaerobic condition by a dechlorinating pathway as follows; PCP {sup {yields}} 2,3,4,5-tetrachlorophenol {sup {yields}} 3,4,5-trichlorophenol {sup {yields}} 3,5-dichlorophenol {sup {yields}} 3-chlorophenol {sup {yields}} phenol. Intermediate products such as 3-chlorophenol were not accumulated, which were immediately dechlorinated to phenol. The enriched microbial community was characterized physiologically by testing the effects of electron donors and electron acceptors on the dechlorinating activity. The dechlorinating activity was promoted with lactate, pyruvate, and hydrogen as electron donors but not with acetate. Electron acceptors, nitrate and sulphate, inhibited the dechlorinating activity competitively but not iron (III). The microbial group associated with the anaerobic dechlorination was characterized by the effect of specific inhibitors on the PCP dechlorination. Effects of specific metabolic inhibitors and antibiotics indicated the involvement of Gram-positive spore-forming bacteria with the PCP dechlorinating activity, which was represented as bacteria of phylum Firmicutes. The structure of the microbial community was characterized by fluorescence in situ hybridization, quinone profiling, and PCR-DGGE (denaturing gel gradient electrophoresis). The combined results indicated the predominance of Clostridium species of phylum Firmicutes in the microbial community. Desulfitobacterium spp. known as anaerobic Gram-positive spore

  18. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil

    International Nuclear Information System (INIS)

    Yoshida, Naoko; Yoshida, Yukina; Handa, Yuko; Kim, Hyo-Keun; Ichihara, Shigeyuki; Katayama, Arata

    2007-01-01

    Dechlorination of PCP has been observed previously under anaerobic condition in paddy soil. However, there is poor information about the dechlorination pathway of PCP and the microbial community associated with the PCP dechlorination in paddy soil. In this study, an anaerobic microbial community dechlorinating PCP was enriched by serial transfers from a paddy soil using a medium containing PCP, lactate and the steam-sterilized paddy soil. The enriched microbial community dechlorinated PCP completely to phenol under the anaerobic condition by a dechlorinating pathway as follows; PCP → 2,3,4,5-tetrachlorophenol → 3,4,5-trichlorophenol → 3,5-dichlorophenol → 3-chlorophenol → phenol. Intermediate products such as 3-chlorophenol were not accumulated, which were immediately dechlorinated to phenol. The enriched microbial community was characterized physiologically by testing the effects of electron donors and electron acceptors on the dechlorinating activity. The dechlorinating activity was promoted with lactate, pyruvate, and hydrogen as electron donors but not with acetate. Electron acceptors, nitrate and sulphate, inhibited the dechlorinating activity competitively but not iron (III). The microbial group associated with the anaerobic dechlorination was characterized by the effect of specific inhibitors on the PCP dechlorination. Effects of specific metabolic inhibitors and antibiotics indicated the involvement of Gram-positive spore-forming bacteria with the PCP dechlorinating activity, which was represented as bacteria of phylum Firmicutes. The structure of the microbial community was characterized by fluorescence in situ hybridization, quinone profiling, and PCR-DGGE (denaturing gel gradient electrophoresis). The combined results indicated the predominance of Clostridium species of phylum Firmicutes in the microbial community. Desulfitobacterium spp. known as anaerobic Gram-positive spore-forming bacteria dechlorinating PCP were not detected by PCR using a

  19. Short- and long-term effects of nutrient enrichment on microbial exoenzyme activity in mangrove peat

    KAUST Repository

    Keuskamp, Joost A.; Feller, Ilka C.; Laanbroek, Hendrikus J.; Verhoeven, Jos T.A.; Hefting, Mariet M.

    2015-01-01

    -limited mangroves. To examine this, we quantified the short- and long-term effects of N and P enrichment on microbial biomass and decomposition-related enzyme activities in a Rhizophora mangle-dominated mangrove, which had been subjected to fertilisation treatments

  20. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

    2011-06-15

    The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

  1. Culture-dependent and -independent approaches establish the complexity of a PAH-degrading microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, M.; Sabate, J.; Solanas, A.M. [Barcelona Univ., Barcelona (Spain). Dept. of Microbiology; Guasp, C.; Lalucat, J. [Illes Balears Univ., Palma de Mallorca (Spain). Dept. of Biology

    2005-11-15

    Microbial consortia are used in the decontamination of polluted environmental sites. A microbial consortium obtained by batch enrichment culture is a closed system with controlled conditions in which micro-organisms with a potentially high growth rate are selected and become dominant. The aim of this study was to identify the members of consortium AM, in which earlier batch enrichment work had shown high biodegradation rates of the aromatic fraction of polycyclic aromatic hydrocarbon (PAH). The AM consortium was obtained by sequential enrichment in liquid culture with a PAH mixture of 3- and 4- ringed PAHs as the sole source of carbon and energy. The consortium was examined using a triple approach method based on various cultivation strategies, denaturing gradient electrophoresis (DGGE) and the screening of 16S and 18S rRNA gene clone libraries. Eleven different sequences by culture-dependent techniques and 7 by both DGGE and clone libraries were obtained, yielding 19 different microbial components. Proteobacteria were the dominant group, representing 83 per cent of the total, while the Cytophaga-Flexibactor-Bacteroides group (CFB) was 11 per cent, and Ascomycota fungi were 6 per cent. It was determined that {beta}-Proteobacteria were predominant in the DGGE and clone library methods, whereas they were a minority in culturable strains. The highest diversity and number of noncoincident sequences was achieved by the cultivation method that showed members of the {alpha},{beta}, and {gamma}-Proteobacteria, CFB bacterial group, and Ascomycota fungi. Only 6 of the 11 strains isolated showed PAH-degrading capability. The bacterial strain (AMS7) and the fungal strain (AMF1) achieved the greatest PAH depletion. Results indicated that polyphasic assessment is necessary for a proper understanding of the composition of a microbial consortium. It was concluded that microbial consortia are more complex than previously realized. 54 refs., 3 tabs., 3 figs.

  2. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell

    Science.gov (United States)

    Miceli, Joseph F.; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I.; Krajmalnik-Brown, Rosa

    2014-01-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (~11 A/m2) and Coulombic efficiency (~70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ~80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed micro bial cultures containing complementing biochemical pathways. PMID:25048958

  3. Microbial culture collection for enhancement of microbial biotechnology

    International Nuclear Information System (INIS)

    Jong Bor Chyan; Pauline Liew Woan Ying; Goh Chee Meng; Mat Rasol Awang

    2007-01-01

    A bacterial culture collection was established in Agrotechnology and Biosciences Division since 2004. The culture collection was named MINT Bacterial Culture Collection (MBCC). The main objective is to preserve the indigenous bacterial cultures isolated from various environments. Later, the collection was extended to commercially available plasmids, recombinant clones and selected PCR products. This paper describes the importance of culture collection, the experience and the difficulties encountered. (Author)

  4. Analysis of microbial community and nitrogen transition with enriched nitrifying soil microbes for organic hydroponics.

    Science.gov (United States)

    Saijai, Sakuntala; Ando, Akinori; Inukai, Ryuya; Shinohara, Makoto; Ogawa, Jun

    2016-06-27

    Nitrifying microbial consortia were enriched from bark compost in a water system by regulating the amounts of organic nitrogen compounds and by controlling the aeration conditions with addition of CaCO 3 for maintaining suitable pH. Repeated enrichment showed reproducible mineralization of organic nitrogen via the conversion of ammonium ions ([Formula: see text]) and nitrite ions ([Formula: see text]) into nitrate ions ([Formula: see text]). The change in microbial composition during the enrichment was investigated by PCR-DGGE analysis with a focus on prokaryote, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and eukaryote cell types. The microbial transition had a simple profile and showed clear relation to nitrogen ions transition. Nitrosomonas and Nitrobacter were mainly detected during [Formula: see text] and [Formula: see text] oxidation, respectively. These results revealing representative microorganisms acting in each ammonification and nitrification stages will be valuable for the development of artificial simple microbial consortia for organic hydroponics that consisted of identified heterotrophs and autotrophic nitrifying bacteria.

  5. Pyrosequencing reveals high-temperature cellulolytic microbial consortia in Great Boiling Spring after in situ lignocellulose enrichment.

    Directory of Open Access Journals (Sweden)

    Joseph P Peacock

    Full Text Available To characterize high-temperature cellulolytic microbial communities, two lignocellulosic substrates, ammonia fiber-explosion-treated corn stover and aspen shavings, were incubated at average temperatures of 77 and 85°C in the sediment and water column of Great Boiling Spring, Nevada. Comparison of 109,941 quality-filtered 16S rRNA gene pyrosequences (pyrotags from eight enrichments to 37,057 quality-filtered pyrotags from corresponding natural samples revealed distinct enriched communities dominated by phylotypes related to cellulolytic and hemicellulolytic Thermotoga and Dictyoglomus, cellulolytic and sugar-fermenting Desulfurococcales, and sugar-fermenting and hydrogenotrophic Archaeoglobales. Minor enriched populations included close relatives of hydrogenotrophic Thermodesulfobacteria, the candidate bacterial phylum OP9, and candidate archaeal groups C2 and DHVE3. Enrichment temperature was the major factor influencing community composition, with a negative correlation between temperature and richness, followed by lignocellulosic substrate composition. This study establishes the importance of these groups in the natural degradation of lignocellulose at high temperatures and suggests that a substantial portion of the diversity of thermophiles contributing to consortial cellulolysis may be contained within lineages that have representatives in pure culture.

  6. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan.

    Science.gov (United States)

    Bacosa, Hernando P; Suto, Koichi; Inoue, Chihiro

    2013-01-01

    Mangroves constitute valuable coastal resources that are vulnerable to oil pollution. One of the major processes to remove oil from contaminated mangrove sediment is microbial degradation. A study on heavy oil- and hydrocarbon-degrading bacterial consortia from mangrove sediments in Okinawa, Japan was performed to evaluate their capacity to biodegrade and their microbial community composition. Surface sediment samples were obtained from mangrove sites in Okinawa (Teima, Oura, and Okukubi) and enriched with heavy oil as the sole carbon and energy source. The results revealed that all enriched microbial consortia degraded more than 20% of heavy oil in 21 days. The K1 consortium from Okukubi site showed the most extensive degradative capacity after 7 and 21 days. All consortia degraded more than 50% of hexadecane but had little ability to degrade polycyclic aromatic hydrocarbons (PAHs). The consortia were dominated by Pseudomonas or Burkholderia. When incubated in the presence of hydrocarbon compounds, the active bacterial community shifted to favor the dominance of Pseudomonas. The K1 consortium was a superior degrader, demonstrating the highest ability to degrade aliphatic and aromatic hydrocarbon compounds; it was even able to degrade heavy oil at a concentration of 15%(w/v). The dominance and turn-over of Pseudomonas and Burkholderia in the consortia suggest an important ecological role for and relationship between these two genera in the mangrove sediments of Okinawa.

  7. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part A-Monocyclic and Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-08-01

    Present study focused on the screening of bacterial consortium for biodegradation of monocyclic aromatic hydrocarbon (MAH) and polycyclic aromatic hydrocarbons (PAHs). Target compounds in the present study were naphthalene, acenaphthene, phenanthrene (PAHs), and benzene (MAH). Microbial consortia enriched with the above target compounds were used in screening experiments. Naphthalene-enriched consortium was found to be the most efficient consortium, based on its substrate degradation rate and its ability to degrade other aromatic pollutants with significantly high efficiency. Substrate degradation rate with naphthalene-enriched culture followed the order benzene > naphthalene > acenaphthene > phenanthrene. Chryseobacterium and Rhodobacter were discerned as the predominant species in naphthalene-enriched culture. They are closely associated to the type strain Chryseobacterium arthrosphaerae and Rhodobacter maris, respectively. Single substrate biodegradation studies with naphthalene (PAH) and benzene (MAH) were carried out using naphthalene-enriched microbial consortium (NAPH). Phenol and 2-hydroxybenzaldehyde were identified as the predominant intermediates during benzene and naphthalene degradation, respectively. Biodegradation of toluene, ethyl benzene, xylene, phenol, and indole by NAPH was also investigated. Monod inhibition model was able to simulate biodegradation kinetics for benzene, whereas multiple substrate biodegradation model was able to simulate biodegradation kinetics for naphthalene.

  8. Dynamics of culturable soil microbial communities during ...

    African Journals Online (AJOL)

    Ecological zones impacted significantly (P < 0.05) on bacterial proliferation, but not on fungal growth. Sampling period significantly (P < 0.05) affected microbial density and the semi-arid agroecozone was more supportive of microbial proliferation than the arid zone. A total of nine predominant fungal species belonging to ...

  9. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms

    Directory of Open Access Journals (Sweden)

    Varese Giovanna C

    2010-02-01

    Full Text Available Abstract Background The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure via enrichment (i.e., serial growth transfers on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. Results In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms on Diesel (G1 and HiQ Diesel (G2, respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30°C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20°C for several months. Conclusions ENZ-G1 and ENZ-G2 are very similar highly enriched consortia

  10. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms.

    Science.gov (United States)

    Zanaroli, Giulio; Di Toro, Sara; Todaro, Daniela; Varese, Giovanna C; Bertolotto, Antonio; Fava, Fabio

    2010-02-16

    The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation) is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure) via enrichment (i.e., serial growth transfers) on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures) of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms) on Diesel (G1) and HiQ Diesel (G2), respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30 degrees C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20 degrees C for several months. ENZ-G1 and ENZ-G2 are very similar highly enriched consortia of bacteria and a fungus capable of

  11. Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures

    International Nuclear Information System (INIS)

    Culbertson, C.W.; Zehnder, A.J.B.; Oremland, R.S.

    1981-01-01

    Acetylene disappeared from the gas phase of anaerobically incubated estuarine sediment slurries, and loss was accompanied by increased levels of carbon dioxide. Acetylene loss was inhibited by chloroamphenicol, air, and autoclaving. Addition of 14 C 2 H 2 to slurries resulted in the formation of 14 CO 2 and the transient appearance of 14 C-soluble intermediates, of which acetate was a major component. Acetylene oxidation stimulated sulfate reduction; however, sulfate reduction was not required for the loss of C 2 H 2 to occur. Enrichment cultures were obtained which grew anaerobically at the expense of C 2 H 2

  12. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat

    Directory of Open Access Journals (Sweden)

    Jerome eBabauta

    2014-01-01

    Full Text Available Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode with tip size ~20 µm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.

  13. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat.

    Science.gov (United States)

    Babauta, Jerome T; Atci, Erhan; Ha, Phuc T; Lindemann, Stephen R; Ewing, Timothy; Call, Douglas R; Fredrickson, James K; Beyenal, Haluk

    2014-01-01

    Phototrophic microbial mats frequently exhibit sharp, light-dependent redox gradients that regulate microbial respiration on specific electron acceptors as a function of depth. In this work, a benthic phototrophic microbial mat from Hot Lake, a hypersaline, epsomitic lake located near Oroville in north-central Washington, was used to develop a microscale electrochemical method to study local electron transfer processes within the mat. To characterize the physicochemical variables influencing electron transfer, we initially quantified redox potential, pH, and dissolved oxygen gradients by depth in the mat under photic and aphotic conditions. We further demonstrated that power output of a mat fuel cell was light-dependent. To study local electron transfer processes, we deployed a microscale electrode (microelectrode) with tip size ~20 μm. To enrich a subset of microorganisms capable of interacting with the microelectrode, we anodically polarized the microelectrode at depth in the mat. Subsequently, to characterize the microelectrode-associated community and compare it to the neighboring mat community, we performed amplicon sequencing of the V1-V3 region of the 16S gene. Differences in Bray-Curtis beta diversity, illustrated by large changes in relative abundance at the phylum level, suggested successful enrichment of specific mat community members on the microelectrode surface. The microelectrode-associated community exhibited substantially reduced alpha diversity and elevated relative abundances of Prosthecochloris, Loktanella, Catellibacterium, other unclassified members of Rhodobacteraceae, Thiomicrospira, and Limnobacter, compared with the community at an equivalent depth in the mat. Our results suggest that local electron transfer to an anodically polarized microelectrode selected for a specific microbial population, with substantially more abundance and diversity of sulfur-oxidizing phylotypes compared with the neighboring mat community.

  14. Production of microbial biomass protein by sequential culture fermentation of Arachniotus sp., and Candida utilis

    International Nuclear Information System (INIS)

    Ahmed, S.; Ahmad, F.; Hashmi, A.S.

    2010-01-01

    Sequential culture fermentation by Arachniotus sp. at 35 deg. C for 72 h and followed by Candida utilis fermentation at 35 deg. C for 72 h more resulted in higher production of microbial biomass protein. 6% (w/v) corn stover, 0.0075% CaCl/sub 2/.2H/sub 2/O, 0.005% MgSO/sub 4/.7H/sub 2/O, 0.01% KH/sub 2/PO/sub 4/, C:N ratio of 30:1 and 1% molasses gave higher microbial biomass protein production by the sequential culture fermentation of Arachniotus sp., and C. utilis. The mixed microbial biomass protein produced in the 75-L fermentor contained 16.41%, 23.51%, 10.9%, 12.11% and 0.12% true protein, crude protein, crude fiber, ash and RNA content, respectively. The amino acid profile of final mixed microbial biomass protein showed that it was enriched with essential amino acids. Thus, the potential utilization of corn stover can minimize the cost for growth of these microorganisms and enhance microbial biomass protein production by sequential culture fermentation. (author)

  15. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan.

    Science.gov (United States)

    Bacosa, Hernando Pactao; Inoue, Chihiro

    2015-01-01

    The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh.

    Science.gov (United States)

    Flury, Sabine; Gessner, Mark O

    2011-02-01

    Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had an influence on bacterial community structure, with the apparent number of dominant genotypes increasing from spring to summer. Microbial respiration was unaffected by any treatment, and nitrogen enrichment had no clear effect on any of the microbial parameters considered. Overall, these results suggest that microbes associated with decomposing plant litter in nutrient-rich freshwater marshes are resistant to extra nitrogen supplies but are likely to respond to temperature increases projected for this century.

  17. Microbial cultures in open globe injuries in southern India.

    Science.gov (United States)

    Gupta, Arvind; Srinivasan, Renuka; Kaliaperumal, Subashini; Setia, Sajita

    2007-07-01

    To determine the risk factors leading to positive intraocular culture in patients with open globe injury. A prospective interventional study involving 110 eyes of 110 patients of more than 15 years of age, presenting with open globe injury, was undertaken. Emergency repair of the injured globe was done. Prolapsed intraocular tissue or aqueous humour was sent for microbial work up before repair. In endophthalmitis cases intravitreal antibiotics were given according to the antimicrobial sensitivity. Chi-square and logistic regression analysis were used to determine the risk factors. Fifty-six patients showed microbial contamination. Bacteria were cultured in 42 patients and fungi in 14 patients. Nineteen patients developed endophthalmitis, of which 18 patients showed microbial growth initially. In univariate analysis, initial visual acuity (8 mm, P 72 h, P 8 mm, P = 0.013) were associated with increased risk of positive microbial culture. Six patients had intraocular foreign body but were culture negative. Age, gender, site of injury and presence of cataract did not significantly affect the culture positivity. Microbial contamination is a risk factor for the development for endophthalmitis. Despite the high frequency of microbial contamination, it develops only in few cases. Systemic antibiotics, virulence of the organism and host factors play a role in the manifestation of endophthalmitis. Prophylaxis with intraocular antibiotics should be strongly considered in cases with poor vision at presentation, larger corneoscleral laceration, delayed surgical intervention and uveal tissue or vitreous prolapse.

  18. Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter.

    Science.gov (United States)

    Liao, Xiaobin; Chen, Chao; Zhang, Jingxu; Dai, Yu; Zhang, Xiaojian; Xie, Shuguang

    2015-01-01

    Dimethylamine (DMA) is one of the important precursors of drinking water disinfection by-product N-nitrosodimethylamine (NDMA). Reduction of DMA to minimize the formation of carcinogenic NDMA in drinking water is of practical importance. Biodegradation plays a major role in elimination of DMA pollution in the environment, yet information on DMA removal by drinking water biofilter is still lacking. In this study, microcosms with different treatments were constructed to investigate the potential of DMA removal by a mixed culture enriched from a drinking water biofilter and the effects of carbon and nitrogen sources. DMA could be quickly mineralized by the enrichment culture. Amendment of a carbon source, instead of a nitrogen source, had a profound impact on DMA removal. A shift in bacterial community structure was observed with DMA biodegradation, affected by carbon and nitrogen sources. Proteobacteria was the predominant phylum group in DMA-degrading microcosms. Microorganisms from a variety of bacterial genera might be responsible for the rapid DMA mineralization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Influence of hexavalent chromium on lactate-enriched Hanford groundwater microbial communities.

    Energy Technology Data Exchange (ETDEWEB)

    Somenahally, Anil C [ORNL; Mosher, Jennifer J [ORNL; Yuan, Tong [University of Oklahoma; Podar, Mircea [ORNL; Phelps, Tommy Joe [ORNL; Brown, Steven D [ORNL; Yang, Zamin Koo [ORNL; Hazen, Terry C [ORNL; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Palumbo, Anthony Vito [ORNL; Zhou, Jizhong [University of Oklahoma; Elias, Dwayne A [ORNL

    2013-01-01

    Microbial reduction and immobilization of chromate (Cr(VI)) is a plausible bioremediation strategy. However, higher Cr(VI) concentrations may impose stress on native Cr-reducing communities. We sought to determine if Cr(VI) would influence the lactate enriched native microbial community structure and function in groundwater from the Cr contaminated site at Hanford, WA. Steady state continuous flow bioreactors were amended with lactate and Cr(VI) (0.0, 0.1 and 3.0 mg/L). Microbial growth, metabolites, Cr(VI) concentrations, 16S rRNA gene sequences and GeoChip based functional gene composition in bioreactors were monitored for 15 weeks. Temporal trends and some differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) was reduced in the bioreactors. With lactate enrichment, the native communities did not significantly differ between Cr concentrations. Native bacterial communities were diverse, whereas after lactate enrichment, Pelosinus spp., and Sporotalea spp., were the most predominant groups in all bioreactors. Similarly, the Archaea diversity significantly decreased from Methanosaeta (35%), Methanosarcina (17%), Halobacteriales (12%), Methanoregula (8%) and others, to mostly Methanosarcina spp. (95%) after lactate enrichment. Composition of several key functional genes was distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant probes (chrA), Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result the 3.0 mg/L Cr(VI) did not appear to give chromate reducing strains a competitive advantage for proliferation or for increasing Cr-reduction.

  20. The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections

    Science.gov (United States)

    Boundy-Mills, Kyria; Hess, Matthias; Bennett, A. Rick; Ryan, Matthew; Kang, Seogchan; Nobles, David; Eisen, Jonathan A.; Inderbitzin, Patrik; Sitepu, Irnayuli R.; Torok, Tamas; Brown, Daniel R.; Cho, Juliana; Wertz, John E.; Mukherjee, Supratim; Cady, Sherry L.

    2015-01-01

    The mission of the United States Culture Collection Network (USCCN; http://usccn.org) is “to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind.” Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections. PMID:26092453

  1. Modeling of Pharmaceutical Biotransformation by Enriched Nitrifying Culture under Different Metabolic Conditions

    DEFF Research Database (Denmark)

    Xu, Yifeng; Chen, Xueming; Yuan, Zhiguo

    2018-01-01

    Pharmaceutical removal could be significantly enhanced through cometabolism during nitrification processes. To date, pharmaceutical biotransformation models have not considered the formation of transformation products associated with the metabolic type of microorganisms. Here we report a comprehe......Pharmaceutical removal could be significantly enhanced through cometabolism during nitrification processes. To date, pharmaceutical biotransformation models have not considered the formation of transformation products associated with the metabolic type of microorganisms. Here we report...... a comprehensive model to describe and evaluate the biodegradation of pharmaceuticals and the formation of their biotransformation products by enriched nitrifying cultures. The biotransformation of parent compounds was linked to the microbial processes via cometabolism induced by ammonium-oxidizing bacteria (AOB......) growth, metabolism by AOB, cometabolism by heterotrophs (HET) growth, and metabolism by HET in the model framework. The model was calibrated and validated using experimental data from pharmaceutical biodegradation experiments at realistic levels, taking two pharmaceuticals as examples, i.e., atenolol...

  2. Microbial degradation of Cold Lake Blend and Western Canadian select dilbits by freshwater enrichments.

    Science.gov (United States)

    Deshpande, Ruta S; Sundaravadivelu, Devi; Techtmann, Stephen; Conmy, Robyn N; Santo Domingo, Jorge W; Campo, Pablo

    2018-06-15

    Treatability experiments were conducted to determine the biodegradation of diluted bitumen (dilbit) at 5 and 25 °C for 72 and 60 days, respectively. Microbial consortia obtained from the Kalamazoo River Enbridge Energy spill site were enriched on dilbit at both 5 (cryo) and 25 (meso) ºC. On every sampling day, triplicates were sacrificed and residual hydrocarbon concentrations (alkanes and polycyclic aromatic hydrocarbons) were determined by GCMS/MS. The composition and relative abundance of different bacterial groups were identified by 16S rRNA gene sequencing analysis. While some physicochemical differences were observed between the two dilbits, their biodegradation profiles were similar. The rates and extent of degradation were greater at 25 °C. Both consortia metabolized 99.9% of alkanes; however, the meso consortium was more effective at removing aromatics than the cryo consortium (97.5 vs 70%). Known hydrocarbon-degrading bacteria were present in both consortia (Pseudomonas, Rhodococcus, Hydrogenophaga, Parvibaculum, Arthrobacter, Acidovorax), although their relative abundances depended on the temperatures at which they were enriched. Regardless of the dilbit type, the microbial community structure significantly changed as a response to the diminishing hydrocarbon load. Our results demonstrate that dilbit can be effectively degraded by autochthonous microbial consortia from sites with recent exposure to dilbit contamination. Published by Elsevier B.V.

  3. Resource recovery from organic waste streams by microbial enrichment cultures

    NARCIS (Netherlands)

    Tamis, J.

    2015-01-01

    Polyhydroxyalkanoate (PHA) is a natural product that can potentially replace a part of the chemicals and plastics derived from fossil sources. One of the main barriers for market entry of PHA is its relatively high price compared to conventional (fossil) feedstocks. This high price is related to

  4. Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula.

    Science.gov (United States)

    Shehab, Noura A; Ortiz-Medina, Juan F; Katuri, Krishna P; Hari, Ananda Rao; Amy, Gary; Logan, Bruce E; Saikaly, Pascal E

    2017-09-01

    Applying microbial electrochemical technologies for the treatment of highly saline or thermophilic solutions is challenging due to the lack of proper inocula to enrich for efficient exoelectrogens. Brine pools from three different locations (Valdivia, Atlantis II and Kebrit) in the Red Sea were investigated as potential inocula sources for enriching exoelectrogens in microbial electrolysis cells (MECs) under thermophilic (70°C) and hypersaline (25% salinity) conditions. Of these, only the Valdivia brine pool produced high and consistent current 6.8±2.1A/m 2 -anode in MECs operated at a set anode potential of +0.2V vs. Ag/AgCl (+0.405V vs. standard hydrogen electrode). These results show that exoelectrogens are present in these extreme environments and can be used to startup MEC under thermophilic and hypersaline conditions. Bacteroides was enriched on the anode of the Valdivia MEC, but it was not detected in the open circuit voltage reactor seeded with the Valdivia brine pool. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula

    KAUST Repository

    Chehab, Noura A.

    2017-05-03

    Applying microbial electrochemical technologies for the treatment of highly saline or thermophilic solutions is challenging due to the lack of proper inocula to enrich for efficient exoelectrogens. Brine pools from three different locations (Valdivia, Atlantis II and Kebrit) in the Red Sea were investigated as potential inocula sources for enriching exoelectrogens in microbial electrolysis cells (MECs) under thermophilic (70°C) and hypersaline (25% salinity) conditions. Of these, only the Valdivia brine pool produced high and consistent current 6.8 ± 2.1 A/m2-anode in MECs operated at a set anode potential of +0.2 V vs. Ag/AgCl (+0.405 V vs. standard hydrogen electrode). These results show that exoelectrogens are present in these extreme environments and can be used to startup MEC under thermophilic and hypersaline conditions. Bacteroides was enriched on the anode of the Valdivia MEC, but it was not detected in the open circuit voltage reactor seeded with the Valdivia brine pool.

  6. Characterization of microbial compositions in a thermophilic chemostat of mixed culture fermentation.

    Science.gov (United States)

    Zhang, Fang; Yang, Jing-Hua; Dai, Kun; Chen, Yun; Li, Qiu-Rong; Gao, Fa-Ming; Zeng, Raymond J

    2016-02-01

    The microbial community compositions of a chemostat enriched in a thermophilic (55 °C) mixed culture fermentation (MCF) for hydrogen production under different operational conditions were revealed in this work by integrating denaturing gradient gel electrophoresis (DGGE), Illumina Miseq high-throughput sequencing, and 16S rRNA clone library sequencing. The results showed that the community structure of the enriched cultures was relatively simple. Clones close to the genera of Thermoanaerobacter and/or Bacillus mainly dominated the bacteria. And homoacetogens and archaea were washed out and not detected even by Illumina Miseq high-throughput sequencing which supported the benefit for hydrogen production. On the other hand, the results revealed that the metabolic shift was clearly associated with the change of dominated bacterial groups. The effects of hydrogen partial pressure (PH2) and pH from 4.0 to 5.5 on the microbial compositions were not notable and Thermoanaerobacter was dominant, thus, the metabolites were also not changed. While Bacillus, Thermoanaerobacter and Propionispora hippei dominated the bacteria communities at neutral pH, or Bacillus and Thermoanaerobacter dominated at high influent glucose concentrations, consequently the main metabolites shifted to acetate, ethanol, propionate, or lactate. Thereby, the effect of microbial composition on the metabolite distribution and shift shall be considered when modeling thermophilic MCF in the future.

  7. Short- and long-term effects of nutrient enrichment on microbial exoenzyme activity in mangrove peat

    KAUST Repository

    Keuskamp, Joost A.

    2015-02-01

    © 2014 Elsevier Ltd. Mangroves receive increasing quantities of nutrients as a result of coastal development, which could lead to significant changes in carbon sequestration and soil subsidence. We hypothesised that mangrove-produced tannins induce a nitrogen (N) limitation on microbial decomposition even when plant growth is limited by phosphorus (P). As a result, increased N influx would lead to a net loss of sequestered carbon negating the ability to compensate for sea level rise in P-limited mangroves. To examine this, we quantified the short- and long-term effects of N and P enrichment on microbial biomass and decomposition-related enzyme activities in a Rhizophora mangle-dominated mangrove, which had been subjected to fertilisation treatments for a period of fifteen years. We compared microbial biomass, elemental stoichiometry and potential enzyme activity in dwarf and fringe-type R. mangle-dominated sites, where primary production is limited by P or N depending on the proximity to open water. Even in P-limited mangroves, microbial activity was N-limited as indicated by stoichiometry and an increase in enzymic activity upon N amendment. Nevertheless, microbial biomass increased upon field additions of P, indicating that the carbon supply played even a larger role. Furthermore, we found that P amendment suppressed phenol oxidase activity, while N amendment did not. The possible differential nutrient limitations of microbial decomposers versus primary producers implies that the direction of the effect of eutrophication on carbon sequestration is nutrient-specific. In addition, this study shows that phenol oxidase activities in this system decrease through P, possibly strengthening the enzymic latch effect of mangrove tannins. Furthermore, it is argued that the often used division between N-harvesting, P-harvesting, and carbon-harvesting exoenzymes needs to be reconsidered.

  8. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh

    DEFF Research Database (Denmark)

    Flury, Sabine; Gessner, Mark

    2011-01-01

    obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had......Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions...... of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles...

  9. Applications Research of Microbial Ecological Preparation in Sea Cucumber Culture

    Science.gov (United States)

    Jiang, Jiahui; Wang, Guangyu

    2017-12-01

    At present, micro ecological preparation is widely applied in aquaculture with good effect. The application of micro ecological preparation in sea cucumber culture can effectively improve the economic benefits. The micro ecological preparation can play the role of inhibiting harmful bacteria, purifying water quality and saving culture cost in the process of sea cucumber culture. We should select appropriate bacteria, guarantee stable environment and use with long-term in the applications of microbial ecological preparation in sea cucumber culture to obtain good effects.

  10. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes

    Directory of Open Access Journals (Sweden)

    Shiue-Lin eLi

    2015-02-01

    Full Text Available Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at + mV (vs. SHE at all pH ranges tested (from pH = 4 to 8, while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte equipped with carbon-felt electrodes. In both cases, when potentials of +630 or 130 mV (vs. SHE were applied, currents were consistently higher at +630 then at 0 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter not well known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes.

  11. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Bacosa, Hernando Pactao, E-mail: hernando.bacosa@utexas.edu [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373 (United States); Inoue, Chihiro [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-02-11

    Highlights: • Most bacterial consortia from tsunami sediment degraded PAH mixture and pyrene. • The consortia were dominated by known and unknown PAHs-degrading bacteria. • Dokdonella clone is a potential new species and PAH degrader from tsunami sediment. • PAH-RHDα is better than nidA gene for estimating pyrene-degraders in the consortia. • First report on the PAH degradation and PAH-degrading bacteria from tsunami sediment. - Abstract: The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils.

  12. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan

    International Nuclear Information System (INIS)

    Bacosa, Hernando Pactao; Inoue, Chihiro

    2015-01-01

    Highlights: • Most bacterial consortia from tsunami sediment degraded PAH mixture and pyrene. • The consortia were dominated by known and unknown PAHs-degrading bacteria. • Dokdonella clone is a potential new species and PAH degrader from tsunami sediment. • PAH-RHDα is better than nidA gene for estimating pyrene-degraders in the consortia. • First report on the PAH degradation and PAH-degrading bacteria from tsunami sediment. - Abstract: The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils

  13. Microbial contaminants of cultured Hibiscus cannabinus and Telfaria ...

    African Journals Online (AJOL)

    Nine microbial contaminants comprising of five bacteria and four fungi species were isolated from Hibiscus cannabinus and Telfaria occidentalis cultured tissues. The rate of occurrence of bacteria isolates was higher than that of fungi. The bacterial isolates includes Pseudomonas syringae pv phaseolicoli, Bacillus ...

  14. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie; Lantz, Anna Eliasson

    2015-06-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.

  15. Diversity of reductive dehalogenase genes from environmental samples and enrichment cultures identified with degenerate primer PCR screens.

    Directory of Open Access Journals (Sweden)

    Laura Audrey Hug

    2013-11-01

    Full Text Available Reductive dehalogenases are the critical enzymes for anaerobic organohalide respiration, a microbial metabolic process that has been harnessed for bioremediation efforts to resolve chlorinated solvent contamination in groundwater and is implicated in the global halogen cycle. Reductive dehalogenase sequence diversity is informative for the dechlorination potential of the site or enrichment culture. A suite of degenerate PCR primers targeting a comprehensive curated set of reductive dehalogenase genes was designed and applied to twelve DNA samples extracted from contaminated and pristine sites, as well as six enrichment cultures capable of reducing chlorinated compounds to non-toxic end-products. The amplified gene products from four environmental sites and two enrichment cultures were sequenced using Illumina HiSeq, and the reductive dehalogenase complement of each sample determined. The results indicate that the diversity of the reductive dehalogenase gene family is much deeper than is currently accounted for: one-third of the translated proteins have less than 70% pairwise amino acid identity to database sequences. Approximately 60% of the sequenced reductive dehalogenase genes were broadly distributed, being identified in four or more samples, and often in previously sequenced genomes as well. In contrast, 17% of the sequenced reductive dehalogenases were unique, present in only a single sample and bearing less than 90% pairwise amino acid identity to any previously identified proteins. Many of the broadly distributed reductive dehalogenases are uncharacterized in terms of their substrate specificity, making these intriguing targets for further biochemical experimentation. Finally, comparison of samples from a contaminated site and an enrichment culture derived from the same site eight years prior allowed examination of the effect of the enrichment process.

  16. Effects of shelter and enrichment on the ecology and nutrient cycling of microbial communities of subtidal carbonate sediments.

    Science.gov (United States)

    Forehead, Hugh I; Kendrick, Gary A; Thompson, Peter A

    2012-04-01

    The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10 days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Nutrient Enrichment Mediates the Relationships of Soil Microbial Respiration with Climatic Factors in an Alpine Meadow

    Directory of Open Access Journals (Sweden)

    Ning Zong

    2015-01-01

    Full Text Available Quantifying the effects of nutrient additions on soil microbial respiration (Rm and its contribution to soil respiration (Rs are of great importance for accurate assessment ecosystem carbon (C flux. Nitrogen (N addition either alone (coded as LN and HN or in combination with phosphorus (P (coded as LN + P and HN + P were manipulated in a semiarid alpine meadow on the Tibetan Plateau since 2008. Either LN or HN did not affect Rm, while LN + P enhanced Rm during peak growing periods, but HN + P did not affect Rm. Nutrient addition also significantly affected Rm/Rs, and the correlations of Rm/Rs with climatic factors varied with years. Soil water content (Sw was the main factor controlling the variations of Rm/Rs. During the years with large rainfall variations, Rm/Rs was negatively correlated with Sw, while, in years with even rainfall, Rm/Rs was positively correlated with Sw. Meanwhile, in N + P treatments the controlling effects of climatic factors on Rm/Rs were more significant than those in CK. Our results indicate that the sensitivity of soil microbes to climatic factors is regulated by nutrient enrichment. The divergent effects of Sw on Rm/Rs suggest that precipitation distribution patterns are key factors controlling soil microbial activities and ecosystem C fluxes in semiarid alpine meadow ecosystems.

  18. Enrichment of the hydrogen-producing microbial community from marine intertidal sludge by different pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongyan [Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Shinan District, Qingdao 266071, Shandong (China); College of Marine Science and Engineering, University of Science and Technology, Tianjin 300457 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Wang, Guangce [Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Shinan District, Qingdao 266071, Shandong (China); College of Marine Science and Engineering, University of Science and Technology, Tianjin 300457 (China); Zhu, Daling; Pan, Guanghua [College of Marine Science and Engineering, University of Science and Technology, Tianjin 300457 (China)

    2009-12-15

    To determine the effects of pretreatment on hydrogen production and the hydrogen-producing microbial community, we treated the sludge from the intertidal zone of a bathing beach in Tianjin with four different pretreatment methods, including acid treatment, heat-shock, base treatment as well as freezing and thawing. The results showed that acid pretreatment significantly promoted the hydrogen production by sludge and provided the highest efficiency of hydrogen production among the four methods. The efficiency of the hydrogen production of the acid-pretreated sludge was 0.86 {+-} 0.07 mol H{sub 2}/mol glucose (mean {+-} S.E.), whereas that of the sludge treated with heat-shock, freezing and thawing, base method and control was 0.41 {+-} 0.03 mol H{sub 2}/mol glucose, 0.17 {+-} 0.01 mol H{sub 2}/mol glucose, 0.11 {+-} 0.01 mol H{sub 2}/mol glucose and 0.20 {+-} 0.04 mol H{sub 2}/mol glucose, respectively. The result of denaturing gradient gel electrophoresis (DGGE) showed that pretreatment methods altered the composition of the microbial community that accounts for hydrogen production. Acid and heat pretreatments were favorable to enrich the dominant hydrogen-producing bacterium, i.e. Clostridium sp., Enterococcus sp. and Bacillus sp. However, besides hydrogen-producing bacteria, much non-hydrogen-producing Lactobacillus sp. was also found in the sludge pretreated with base, freezing and thawing methods. Therefore, based on our results, we concluded that, among the four pretreatment methods using acid, heat-shock, base or freezing and thawing, acid pretreatment was the most effective method for promoting hydrogen production of microbial community. (author)

  19. Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation.

    Science.gov (United States)

    Omrani, Rahma; Spini, Giulia; Puglisi, Edoardo; Saidane, Dalila

    2018-04-01

    Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution.

  20. Microbial Biosynthesis of Silver Nanoparticles in Different Culture Media.

    Science.gov (United States)

    Luo, Ke; Jung, Samuel; Park, Kyu-Hwan; Kim, Young-Rok

    2018-01-31

    Microbial biosynthesis of metal nanoparticles has been extensively studied for the applications in biomedical sciences and engineering. However, the mechanism for their synthesis through microorganism is not completely understood. In this study, several culture media were investigated for their roles in the microbial biosynthesis of silver nanoparticles (AgNPs). The size and morphology of the synthesized AgNPs were analyzed by UV-vis spectroscopy, Fourier-transform-infrared (FT-IR), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The results demonstrated that nutrient broth (NB) and Mueller-Hinton broth (MHB) among tested media effectively reduced silver ions to form AgNPs with different particle size and shape. Although the involved microorganism enhanced the reduction of silver ions, the size and shape of the particles were shown to mainly depend on the culture media. Our findings suggest that the growth media of bacterial culture play an important role in the synthesis of metallic nanoparticles with regard to their size and shape. We believe our findings would provide useful information for further exploration of microbial biosynthesis of AgNPs and their biomedical applications.

  1. Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation

    NARCIS (Netherlands)

    de Lima Brossi, Maria Julia; Jiménez Avella, Diego; Cortes Tolalpa, Larisa; van Elsas, Jan

    Here, we investigated how different plant biomass, and-for one substrate-pH, drive the composition of degrader microbial consortia. We bred such consortia from forest soil, incubated along nine aerobic sequential - batch enrichments with wheat straw (WS1, pH 7.2; WS2, pH 9.0), switchgrass (SG, pH

  2. The binning of metagenomic contigs for microbial physiology of mixed cultures.

    Science.gov (United States)

    Strous, Marc; Kraft, Beate; Bisdorf, Regina; Tegetmeyer, Halina E

    2012-01-01

    So far, microbial physiology has dedicated itself mainly to pure cultures. In nature, cross feeding and competition are important aspects of microbial physiology and these can only be addressed by studying complete communities such as enrichment cultures. Metagenomic sequencing is a powerful tool to characterize such mixed cultures. In the analysis of metagenomic data, well established algorithms exist for the assembly of short reads into contigs and for the annotation of predicted genes. However, the binning of the assembled contigs or unassembled reads is still a major bottleneck and required to understand how the overall metabolism is partitioned over different community members. Binning consists of the clustering of contigs or reads that apparently originate from the same source population. In the present study eight metagenomic samples from the same habitat, a laboratory enrichment culture, were sequenced. Each sample contained 13-23 Mb of assembled contigs and up to eight abundant populations. Binning was attempted with existing methods but they were found to produce poor results, were slow, dependent on non-standard platforms or produced errors. A new binning procedure was developed based on multivariate statistics of tetranucleotide frequencies combined with the use of interpolated Markov models. Its performance was evaluated by comparison of the results between samples with BLAST and in comparison to existing algorithms for four publicly available metagenomes and one previously published artificial metagenome. The accuracy of the new approach was comparable or higher than existing methods. Further, it was up to a 100 times faster. It was implemented in Java Swing as a complete open source graphical binning application available for download and further development (http://sourceforge.net/projects/metawatt).

  3. The binning of metagenomic contigs for microbial physiology of mixed cultures

    Directory of Open Access Journals (Sweden)

    Marc eStrous

    2012-12-01

    Full Text Available So far, microbial physiology has dedicated itself mainly to pure cultures. In nature, cross feeding and competition are important aspects of microbial physiology and these can only be addressed by studying complete communities such as enrichment cultures. Metagenomic sequencing is a powerful tool to characterize such mixed cultures. In the analysis of metagenomic data, well established algorithms exist for the assembly of short reads into contigs and for the annotation of predicted genes. However, the binning of the assembled contigs or unassembled reads is still a major bottleneck and required to understand how the overall metabolism is partitioned over different community members. Binning consists of the clustering of contigs or reads that apparently originate from the same source population.In the present study eight metagenomic samples originating from the same habitat, a laboratory enrichment culture, were sequenced. Each sample contained 13-23 Mb of assembled contigs and up to eight abundant populations. Binning was attempted with existing methods but they were found to produce poor results, were slow, dependent on non-standard platforms or produced errors. A new binning procedure was developed based on multivariate statistics of tetranucleotide frequencies combined with the use of interpolated Markov models. Its performance was evaluated by comparison of the results between samples with BLAST and in comparison to exisiting algorithms for four publicly available metagenomes and one previously published artificial metagenome. The accuracy of the new approach was comparable or higher than existing methods. Further, it was up to a hunderd times faster. It was implemented in Java Swing as a complete open source graphical binning application available for download and further development (http://sourceforge.net/projects/metawatt.

  4. Substrate-Driven Convergence of the Microbial Community in Lignocellulose-Amended Enrichments of Gut Microflora from the Canadian Beaver (Castor canadensis) and North American Moose (Alces americanus).

    Science.gov (United States)

    Wong, Mabel T; Wang, Weijun; Lacourt, Michael; Couturier, Marie; Edwards, Elizabeth A; Master, Emma R

    2016-01-01

    Strategic enrichment of microcosms derived from wood foragers can facilitate the discovery of key microbes that produce enzymes for the bioconversion of plant fiber (i.e., lignocellulose) into valuable chemicals and energy. In this study, lignocellulose-degrading microorganisms from the digestive systems of Canadian beaver (Castor canadensis) and North American moose (Alces americanus) were enriched under methanogenic conditions for over 3 years using various wood-derived substrates, including (i) cellulose (C), (ii) cellulose + lignosulphonate (CL), (iii) cellulose + tannic acid (CT), and (iv) poplar hydrolysate (PH). Substantial improvement in the conversion of amended organic substrates into biogas was observed in both beaver dropping and moose rumen enrichment cultures over the enrichment phases (up to 0.36-0.68 ml biogas/mg COD added), except for enrichments amended with tannic acid where conversion was approximately 0.15 ml biogas/mg COD added. Multiplex-pyrosequencing of 16S rRNA genes revealed systematic shifts in the population of Firmicutes, Bacteroidetes, Chlorobi, Spirochaetes, Chloroflexi, and Elusimicrobia in response to the enrichment. These shifts were predominantly substrate driven, not inoculum driven, as revealed by both UPGMA clustering pattern and OTU distribution. Additionally, the relative abundance of multiple OTUs from poorly defined taxonomic lineages increased from less than 1% to 25-50% in microcosms amended with lignocellulosic substrates, including OTUs from classes SJA-28, Endomicrobia, orders Bacteroidales, OPB54, and family Lachnospiraceae. This study provides the first direct comparison of shifts in microbial communities that occurred in different environmental samples in response to multiple relevant lignocellulosic carbon sources, and demonstrates the potential of enrichment to increase the abundance of key lignocellulolytic microorganisms and encoded activities.

  5. Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition.

    Science.gov (United States)

    Vekeman, Bram; Dumolin, Charles; De Vos, Paul; Heylen, Kim

    2017-02-01

    Cultivation of microbial representatives of specific functional guilds from environmental samples depends largely on the suitability of the applied growth conditions. Especially the cultivation of marine methanotrophs has received little attention, resulting in only a limited number of ex situ cultures available. In this study we investigated the effect of adhesion material and headspace composition on the methane oxidation activity in methanotrophic enrichments obtained from marine sediment. Addition of sterilized natural sediment or alternatively the addition of acid-washed silicon dioxide significantly increased methane oxidation. This positive effect was attributed to bacterial adhesion on the particles via extracellular compounds, with a minimum amount of particles required for effect. As a result, the particles were immobilized, thus creating a stratified environment in which a limited diffusive gas gradients could build up and various microniches were formed. Such diffusive gas gradient might necessitate high headspace concentrations of CH 4 and CO 2 for sufficient concentrations to reach the methane-oxidizing bacteria in the enrichment culture technique. Therefore, high concentrations of methane and carbon dioxide, in addition to the addition of adhesion material, were tested and indeed further stimulated methane oxidation. Use of adhesion material in combination with high concentrations of methane and carbon dioxide might thus facilitate the cultivation and subsequent enrichment of environmentally important members of this functional guild. The exact mechanism of the observed positive effects on methane oxidation and the differential effect on methanotrophic diversity still needs to be explored.

  6. Atrazine and its metabolites degradation in mineral salts medium and soil using an enrichment culture.

    Science.gov (United States)

    Kumar, Anup; Singh, Neera

    2016-03-01

    An atrazine-degrading enrichment culture was used to study degradation of atrazine metabolites viz. hydroxyatrazine, deethylatrazine, and deisopropylatrazine in mineral salts medium. Results suggested that the enrichment culture was able to degrade only hydroxyatrazine, and it was used as the sole source of carbon and nitrogen. Hydroxyatrazine degradation slowed down when sucrose and/or ammonium hydrogen phosphate were supplemented as the additional sources of carbon and nitrogen, respectively. The enrichment culture could degrade high concentrations of atrazine (up to 110 μg/mL) in mineral salts medium, and neutral pH was optimum for atrazine degradation. Further, except in an acidic soil, enrichment culture was able to degrade atrazine in three soil types having different physico-chemical properties. Raising the pH of acidic soil to neutral or alkaline enabled the enrichment culture to degrade atrazine suggesting that acidic pH inhibited atrazine-degrading ability. The study suggested that the enrichment culture can be successfully utilized to achieve complete degradation of atrazine and its persistent metabolite hydroxyatrazine in the contaminated soil and water.

  7. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part B--Nitrogen-, Sulfur-, and Oxygen-Containing Heterocyclic Aromatic Compounds.

    Science.gov (United States)

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-07-01

    Present study focused on the biodegradation of various heterocyclic nitrogen, sulfur, and oxygen (NSO) compounds using naphthalene-enriched culture. Target compounds in the study were pyridine, quinoline, benzothiophene, and benzofuran. Screening studies were carried out using different microbial consortia enriched with specific polycyclic aromatic hydrocarbon (PAH) and NSO compounds. Among different microbial consortia, naphthalene-enriched culture was the most efficient consortium based on high substrate degradation rate. Substrate degradation rate with naphthalene-enriched culture followed the order pyridine > quinoline > benzofuran > benzothiophene. Benzothiophene and benzofuran were found to be highly recalcitrant pollutants. Benzothiophene could not be biodegraded when concentration was above 50 mg/l. It was observed that 2-(1H)-quinolinone, benzothiophene-2-one, and benzofuran-2,3-dione were formed as metabolic intermediates during biodegradation of quinoline, benzothiophene, and benzofuran, respectively. Quinoline-N and pyridine-N were transformed into free ammonium ions during the biodegradation process. Biodegradation pathways for various NSO compounds are proposed. Monod inhibition model was able to simulate single substrate biodegradation kinetics satisfactorily. Benzothiophene and benzofuran biodegradation kinetics, in presence of acetone, was simulated using a generalized multi-substrate model.

  8. Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture.

    Science.gov (United States)

    Gambelli, Lavinia; Guerrero-Cruz, Simon; Mesman, Rob J; Cremers, Geert; Jetten, Mike S M; Op den Camp, Huub J M; Kartal, Boran; Lueke, Claudia; van Niftrik, Laura

    2018-02-01

    Methane is a very potent greenhouse gas and can be oxidized aerobically or anaerobically through microbe-mediated processes, thus decreasing methane emissions in the atmosphere. Using a complementary array of methods, including phylogenetic analysis, physiological experiments, and light and electron microscopy techniques (including electron tomography), we investigated the community composition and ultrastructure of a continuous bioreactor enrichment culture, in which anaerobic oxidation of methane (AOM) was coupled to nitrate reduction. A membrane bioreactor was seeded with AOM biomass and continuously fed with excess methane. After 150 days, the bioreactor reached a daily consumption of 10 mmol nitrate · liter -1 · day -1 The biomass consisted of aggregates that were dominated by nitrate-dependent anaerobic methane-oxidizing " Candidatus Methanoperedens"-like archaea (40%) and nitrite-dependent anaerobic methane-oxidizing " Candidatus Methylomirabilis"-like bacteria (50%). The " Ca Methanoperedens" spp. were identified by fluorescence in situ hybridization and immunogold localization of the methyl-coenzyme M reductase (Mcr) enzyme, which was located in the cytoplasm. The " Ca Methanoperedens" sp. aggregates consisted of slightly irregular coccoid cells (∼1.5-μm diameter) which produced extruding tubular structures and putative cell-to-cell contacts among each other. " Ca Methylomirabilis" sp. bacteria exhibited the polygonal cell shape typical of this genus. In AOM archaea and bacteria, cytochrome c proteins were localized in the cytoplasm and periplasm, respectively, by cytochrome staining. Our results indicate that AOM bacteria and archaea might work closely together in the process of anaerobic methane oxidation, as the bacteria depend on the archaea for nitrite. Future studies will be aimed at elucidating the function of the cell-to-cell interactions in nitrate-dependent AOM. IMPORTANCE Microorganisms performing nitrate- and nitrite-dependent anaerobic

  9. Enrichment methodology to increase the positivity of cultures from body fluids

    Directory of Open Access Journals (Sweden)

    Alessandra Valle Daur

    Full Text Available Isolation and identification of etiological agents found in body fluids can be of critical importance for the recovery of patients suffering from potentially-severe infections, which are often followed by serious sequels. Eighty-two samples of different body fluids were analyzed using two different methods: (1 the conventional culture method (agar plating and (2 the enrichment culture technique, using the Bact/Alert® blood culture bottle. The number of positive cultures increased on average from 9.7% to 23.1% with the enrichment culture technique. Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus were the most frequently isolated bacteria. The enrichment method could provide a more accurate means the identifying etiological agents.

  10. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    International Nuclear Information System (INIS)

    Skelton, David; Goodyear, Abbey; Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T.; Logan, Timothy M.

    2010-01-01

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U- 13 C-glucose and 15 N-glutamate as labeled precursors. This study suggests that uniformly 15 N, 13 C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  11. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, David; Goodyear, Abbey [Florida State University, Department of Chemistry and Biochemistry (United States); Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T. [Florida State University, Institute of Molecular Biophysics (United States); Logan, Timothy M., E-mail: tlogan@fsu.ed [Florida State University, Department of Chemistry and Biochemistry (United States)

    2010-10-15

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-{sup 13}C-glucose and {sup 15}N-glutamate as labeled precursors. This study suggests that uniformly {sup 15}N,{sup 13}C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  12. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens

    Directory of Open Access Journals (Sweden)

    Thompson Vicki S

    2006-01-01

    Full Text Available Abstract Background Chromium is a transition metal most commonly found in the environment in its trivalent [Cr(III] and hexavalent [Cr(VI] forms. The EPA maximum total chromium contaminant level for drinking water is 0.1 mg/l (0.1 ppm. Many water sources, especially underground sources, are at low temperatures (less than or equal to 15 Centigrade year round. It is important to evaluate the possibility of microbial remediation of Cr(VI contamination using microorganisms adapted to these low temperatures (psychrophiles. Results Core samples obtained from a Cr(VI contaminated aquifer at the Hanford facility in Washington were enriched in Vogel Bonner medium at 10 Centigrade with 0, 25, 50, 100, 200, 400 and 1000 mg/l Cr(VI. The extent of Cr(VI reduction was evaluated using the diphenyl carbazide assay. Resistance to Cr(VI up to and including 1000 mg/l Cr(VI was observed in the consortium experiments. Reduction was slow or not observed at and above 100 mg/l Cr(VI using the enrichment consortium. Average time to complete reduction of Cr(VI in the 30 and 60 mg/l Cr(VI cultures of the consortium was 8 and 17 days, respectively at 10 Centigrade. Lyophilized consortium cells did not demonstrate adsorption of Cr(VI over a 24 hour period. Successful isolation of a Cr(VI reducing organism (designated P4 from the consortium was confirmed by 16S rDNA amplification and sequencing. Average time to complete reduction of Cr(VI at 10 Centigrade in the 25 and 50 mg/l Cr(VI cultures of the isolate P4 was 3 and 5 days, respectively. The 16S rDNA sequence from isolate P4 identified this organism as a strain of Arthrobacter aurescens, a species that has not previously been shown to be capable of low temperature Cr(VI reduction. Conclusion A. aurescens, indigenous to the subsurface, has the potential to be a predominant metal reducer in enhanced, in situ subsurface bioremediation efforts involving Cr(VI and possibly other heavy metals and radionuclides.

  13. DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Lacroix, E. J. M.; Reimer, K. J. [Royal Military College, Dept. of Chemistry and Chemical Engineering, Kingston, On (Canada); Yu, Z.; Mohn, W. W. [British Columbia Univ., Dept. of Microbiology and Immunology, Vancouver, BC (Canada); Eriksson, M. [Royal Inst. of Technology, Dept. of Biotechnology, Stockholm (Sweden)

    2001-12-01

    Oil spills are fairly common in polar tundra regions, including remote locations, and are a threat to the relatively fragile ecosystem. Remediation must be done economically and with minimum additional damage. Bioremediation is considered to be the appropriate technology, although its application in polar tundra regions is not well documented. Most studies of hydrocarbon remediation in polar regions have concerned marine oil spills, while a few studies have demonstrated on-site polar tundra soil remediation. A few of these demonstrated the presence of psychrotolerant hydrocarbon-degrading bacteria in polar tundra soils. Because fuels are complex mixtures of hydrocarbons, microbial consortia rather than pure cultures may be the most effective agents in degrading fuels. Despite their potential advantages for bioaugmentation applications, consortia are difficult to characterize and monitor. Molecular methods based on DNA analysis partially address these difficulties. One such approach is to randomly clone rRNA gene (rDNA) fragments and to sequence as a set of clones. The relative abundance of individual sequences in the clone library is related to the relative abundance of the corresponding organism in the community. In this study a psychrotolerant, fuel-degrading consortium was enriched with Arctic tundra soil. The enrichment substrate for the consortium was Jet A-1 fuel, which is very similar to Arctic diesel fuel, a common contaminant in the region. The objectives of the study were to (1) characterize thr consortium by DNA- and culture-based methods, (2) develop quantitative polymerase chain reaction assays for populations of predominant consortium members, and (3) determine the dynamics of those populations during incubation of the consortium. Result showed that is possible to quantitatively monitor members of a microbial consortium, with potential application for bioremediation of Arctic tundra soil. The relative abundance of consortium members was found to vary

  14. Use of γ-hexachlorocyclohexane as a terminal electron acceptor by an anaerobic enrichment culture

    International Nuclear Information System (INIS)

    Elango, Vijai; Kurtz, Harry D.; Anderson, Christina; Freedman, David L.

    2011-01-01

    Highlights: ► Use of γ-hexachlorocyclohexane as a terminal electron acceptor was demonstrated. ► H 2 served as the electron donor for an enrichment culture that dechlorinated γ-HCH. ► H 2 consumption for acetogenesis and methanogenesis stopped in HEPES media. ► Addition of vancomycin significantly slowed the rate of γ-HCH dechlorination. ► Previously identified chlororespiring microbes were not detected in the enrichment. - Abstract: The use of γ-hexachlorocyclohexane (HCH) as a terminal electron acceptor via organohalide respiration was demonstrated for the first time with an enrichment culture grown in a sulfate-free HEPES-buffered anaerobic mineral salts medium. The enrichment culture was initially developed with soil and groundwater from an industrial site contaminated with HCH isomers, chlorinated benzenes, and chlorinated ethenes. When hydrogen served as the electron donor, 79–90% of the electron equivalents from hydrogen were used by the enrichment culture for reductive dechlorination of the γ-HCH, which was provided at a saturation concentration of approximately 10 mg/L. Benzene and chlorobenzene were the only volatile transformation products detected, accounting for 25% and 75% of the γ-HCH consumed (on a molar basis), respectively. The enrichment culture remained active with only hydrogen as the electron donor and γ-HCH as the electron acceptor through several transfers to fresh mineral salts medium for more than one year. Addition of vancomycin to the culture significantly slowed the rate of γ-HCH dechlorination, suggesting that a Gram-positive organism is responsible for the reduction of γ-HCH. Analysis of the γ-HCH dechlorinating enrichment culture did not detect any known chlororespiring genera, including Dehalobacter. In bicarbonate-buffered medium, reductive dechlorination of γ-HCH was accompanied by significant levels of acetogenesis as well as methanogenesis.

  15. Isolation of Methylophaga spp. from Marine Dimethylsulfide-Degrading Enrichment Cultures and Identification of Polypeptides Induced during Growth on Dimethylsulfide▿

    OpenAIRE

    Schäfer, Hendrik

    2007-01-01

    Dimethylsulfide (DMS)-degrading enrichment cultures were established from samples of coastal seawater, nonaxenic Emiliania huxleyi cultures, and mixed marine methyl halide-degrading enrichment cultures. Bacterial populations from a broad phylogenetic range were identified in the mixed DMS-degrading enrichment cultures by denaturing gradient gel electrophoresis (DGGE). Sequences of dominant DGGE bands were similar to those of members of the genera Methylophaga and Alcanivorax. Several closely ...

  16. A strict anaerobic extreme thermophilic hydrogen-producing culture enriched from digested household waste

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Kotay, Shireen Meher; Trably, Eric

    2009-01-01

    The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H-2) producers from digested household solid wastes. A strict anaerobic extreme thermophilic H-2 producing bacterial culture was enriched from a lab-scale digester treating household...... wastes at 70 degrees C. The enriched mixed culture consisted of two rod-shaped bacterial members growing at an optimal temperature of 80 degrees C and an optimal pH 8.1. The culture was able to utilize glucose, galactose, mannose, xylose, arabinose, maltose, sucrose, pyruvate and glycerol as carbon...... sources. Growth on glucose produced acetate, H-2 and carbon dioxide. Maximal H-2 production rate on glucose was 1.1 mmol l(-1) h(-1) with a maximum H-2 yield of 1.9 mole H-2 per mole glucose. 16S ribosomal DNA clone library analyses showed that the culture members were phylogenetically affiliated...

  17. Characteristics of enriched cultures for bio-huff-`n`-puff tests at Jilin oil field

    Energy Technology Data Exchange (ETDEWEB)

    Xiu-Yuan Wang; Gang Dai; Yan-Fen Xue; Shu-Hua Xie [Institute of Microbiology, Beijing (China)] [and others

    1995-12-31

    Three enriched cultures (48, 15a, and 26a), selected from more than 80 soil and water samples, could grow anaerobically in the presence of crude oil at 30{degrees}C and could ferment molasses to gases and organic acids. Oil recovery by culture 48 in the laboratory model experiment was enhanced by 25.2% over the original reserves and by 53.7% over the residual reserves. Enriched culture 48 was composed of at least 4 species belonging to the genera Eubacterium, Fusobacterium, and Bacteroides. This enriched culture was used as inoculum for MEOR field trials at Jilin oil field with satisfactory results. The importance of the role of these isolates in EOR was confirmed by their presence and behavior in the fluids produced from the microbiologically treated reservoir.

  18. Impact of estuarine gradients on reductive dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin in river sediment enrichment cultures.

    Science.gov (United States)

    Dam, Hang T; Häggblom, Max M

    2017-02-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) are among the most persistent organic pollutants. Although the total input of PCDDs into the environment has decreased substantially over the past four decades, their input via non-point sources is still increasing, especially in estuarine metropolitan areas. Here we report on the microbially mediated reductive dechlorination of PCDDs in anaerobic enrichment cultures established from sediments collected from five locations along the Hackensack River, NJ and investigate the impacts of sediment physicochemical characteristics on dechlorination activity. Dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TeCDD) and abundance of Dehalococcoides spp. negatively correlated with salinity and sulfate concentration in sediments used to establish the cultures. 1,2,3,4-TeCDD was dechlorinated to a lesser extent in cultures established from sediments from the tidally influenced estuarine mouth of the river. In cultures established from low salinity sediments, 1,2,3,4-TeCDD was reductively dechlorinated with the accumulation of 2-monochlorodibenzo-p-dioxin as the major product. Sulfate concentrations above 2 mM inhibited 1,2,3,4-TecDD dechlorination activity. Consecutive lateral- and peri- dechlorination took place in enrichment cultures with a minimal accumulation of 2,3-dichlorodibenzo-p-dioxin in active cultures. A Dehalococcoides spp. community was enriched and accounted for up to 64% of Chloroflexi detected in these sediment cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Microbial community dynamics in thermophilic undefined milk starter cultures.

    Science.gov (United States)

    Parente, Eugenio; Guidone, Angela; Matera, Attilio; De Filippis, Francesca; Mauriello, Gianluigi; Ricciardi, Annamaria

    2016-01-18

    Model undefined thermophilic starter cultures were produced from raw milk of nine pasta-filata cheesemaking plants using a selective procedure based on pasteurization and incubation at high temperature with the objective of studying the microbial community dynamics and the variability in performances under repeated (7-13) reproduction cycles with backslopping. The traditional culture-dependent approach, based on random isolation and molecular characterization of isolates was coupled to the determination of pH and the evaluation of the ability to produce acid and fermentation metabolites. Moreover, a culture-independent approach based on amplicon-targeted next-generation sequencing was employed. The microbial diversity was evaluated by 16S rRNA gene sequencing (V1-V3 regions), while the microdiversity of Streptococcus thermophilus populations was explored by using novel approach based on sequencing of partial amplicons of the phosphoserine phosphatase gene (serB). In addition, the occurrence of bacteriophages was evaluated by qPCR and by multiplex PCR. Although it was relatively easy to select for a community dominated by thermophilic lactic acid bacteria (LAB) within a single reproduction cycle, final pH, LAB populations and acid production activity fluctuated over reproduction cycles. Both culture-dependent and -independent methods showed that the cultures were dominated by either S. thermophilus or Lactobacillus delbrueckii subsp. lactis or by both species. Nevertheless, subdominant mesophilic species, including lactococci and spoilage organisms, persisted at low levels. A limited number of serB sequence types (ST) were present in S. thermophilus populations. L. delbrueckii and Lactococcus lactis bacteriophages were below the detection limit of the method used and high titres of cos type S. thermophilus bacteriophages were detected in only two cases. In one case a high titre of bacteriophages was concurrent with a S. thermophilus biotype shift in the culture

  20. Community proteomics provides functional insight into polyhydroxyalkanoate production by a mixed microbial culture cultivated on fermented dairy manure.

    Science.gov (United States)

    Hanson, Andrea J; Guho, Nicholas M; Paszczynski, Andrzej J; Coats, Erik R

    2016-09-01

    Polyhydroxyalkanoates (PHAs) are bio-based, biodegradable polyesters that can be produced from organic-rich waste streams using mixed microbial cultures (MMCs). To maximize PHA production, MMCs are enriched for bacteria with a high polymer storage capacity through the application of aerobic dynamic feeding (ADF) in a sequencing batch reactor (SBR), which consequently induces a feast-famine metabolic response. Though the feast-famine response is generally understood empirically at a macro-level, the molecular level is less refined. The objective of this study was to investigate the microbial community composition and proteome profile of an enriched MMC cultivated on fermented dairy manure. The enriched MMC exhibited a feast-famine response and was capable of producing up to 40 % (wt. basis) PHA in a fed-batch reactor. High-throughput 16S rRNA gene sequencing revealed a microbial community dominated by Meganema, a known PHA-producing genus not often observed in high abundance in enrichment SBRs. The application of the proteomic methods two-dimensional electrophoresis and LC-MS/MS revealed PHA synthesis, energy generation, and protein synthesis prominently occurring during the feast phase, corroborating bulk solution variable observations and theoretical expectations. During the famine phase, nutrient transport, acyl-CoA metabolism, additional energy generation, and housekeeping functions were more pronounced, informing previously under-determined MMC functionality under famine conditions. During fed-batch PHA production, acetyl-CoA acetyltransferase and PHA granule-bound phasin proteins were in increased abundance relative to the SBR, supporting the higher PHA content observed. Collectively, the results provide unique microbial community structural and functional insight into feast-famine PHA production from waste feedstocks using MMCs.

  1. Bioremediation of oil sludge contaminated soil using bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost

    International Nuclear Information System (INIS)

    Tri Retno, D.L.; Mulyana, N.

    2013-01-01

    Bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost was used on bioremediation of microcosm scale contaminated by hydrocarbon soil. Bioremediation composting was carried out for 42 days. Composting was done with a mixture of bulking agent (sawdust, residual sludge biogas and compost) by 30%, mud petroleum (oil sludge) by 20% and 50% of soil. Mixture of 80% soil and 20% oil sludge was used as a control. Irradiated compost was used as a carrier for consortia of microbial inoculants (F + B) which biodegradable hydrocarbons. Treatment variations include A1, A2, B1, B2, C1, C2, D1 and D2. Process parameters were observed to determine the optimal conditions include: temperature, pH, water content, TPC (Total Plate Count) and degradation of % TPH (Total Petroleum Hydrocarbon). Optimal conditions were achieved in the remediation of oil sludge contamination of 20% using the B2 treatment with the addition consortia of microbial inoculants based by irradiated compost of sawdust (bulking agentby 30% at concentrations of soil by 50% with TPH degradation optimal efficiency of 81.32%. The result of GC-MS analysis showed that bioremediation for 42 days by using a sawdust as a mixture of bulking agents which enriched consortia of microbial inoculants based by irradiated compost is biodegradeable, so initial hydrocarbons with the distribution of the carbon chain C-7 to C-54 into final hydrocarbons with the distribution of carbon chain C-6 to C-8. (author)

  2. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2012-01-01

    Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO2, biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using...... the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic- and thermophilic anaerobic cultures were enriched to convert CO2 to CH4...... by addition of H2. Enrichment at thermophilic temperature (55°C) resulted in CO2 and H2 bioconversion rate of 320 mL CH4/(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic- and thermophilic-enriched cultures, as revealed...

  3. High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n-alkanes-degrading methanogenic enrichment culture

    Directory of Open Access Journals (Sweden)

    Bo Liang

    2016-09-01

    Full Text Available In the present study, the microbial community and functional gene composition of a long-term active alkane-degrading methanogenic culture was established after two successive enrichment culture transfers and incubated for a total period of 1750 days. Molecular analysis was conducted after the second transfer (incubated for 750 days for both the active alkanes-degrading methanogenic enrichment cultures (T2-AE and the background control (T2-BC. A net increase of methane as the end product was detected in the headspace of the enrichment cultures amended with long-chain n-alkanes and intermediate metabolites, including octadecanoate, hexadecanoate, isocaprylate, butyrate, isobutyrate, propionate, acetate and formate were measured in the liquid cultures. The composition of microbial community shifted through the successive transfers over time of incubation. Sequences of bacterial and archaeal 16S rRNA gene (16S rDNA and mcrA functional gene indicated that bacterial sequences affiliated to Thermodesulfovibrio spp. and Anaerolineaceae and archaeal sequences falling within the genus Methanoculleus were the most frequently encountered and thus represented the dominant members performing the anaerobic degradation of long-chain n-alkanes and methanogenesis. In addition, the presence of assA functional genes encoding the alkylsuccinate synthase α subunit indicated that fumarate addition mechanism could be considered as a possible initial activation step of n-alkanes in the present study. The succession pattern of microbial communities indicates that Thermodesulfovibrio spp. could be a generalist participating in the metabolism of intermediates, while Anaerolineaceae plays a key role in the initial activation of long-chain n-alkane biodegradation.

  4. Effect of different enrichment strategies on microbial community structure in petroleum-contaminated marine sediment in Dalian, China.

    Science.gov (United States)

    Chen, Chao; Liu, Qiu; Liu, Changjian; Yu, Jicheng

    2017-04-15

    An oil spill occurred at Xingang Port, Dalian, China in 2010. Four years after this spill, oil contamination was still detected in samples collected nearby. In this study, the strains that evolved in the sediment were screened by high-throughput sequencing technology. Most of these strains were genera reported to have functions associated with crude oil biodegradation. The diversities and numbers of microbes were monitored through enrichment culturing; the dominant strains propagated at first, but the enrichment could not be continued, which indicated that the prolonged culture was not effective in the enrichment of the micro-consortium. Oxygen was also observed to affect the propagation of the dominant microbes. The results showed the role of culture strategies and oxygen in the enrichment of the petroleum-degrading microbes. Therefore, dominant strains could be screened by optimizing both the enrichment time and oxygen concentration used for culturing to facilitate oil biodegradation in the marine ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enrichment of skin-derived neural precursor cells from dermal cell populations by altering culture conditions.

    Science.gov (United States)

    Bayati, Vahid; Gazor, Rohoullah; Nejatbakhsh, Reza; Negad Dehbashi, Fereshteh

    2016-01-01

    As stem cells play a critical role in tissue repair, their manipulation for being applied in regenerative medicine is of great importance. Skin-derived precursors (SKPs) may be good candidates for use in cell-based therapy as the only neural stem cells which can be isolated from an accessible tissue, skin. Herein, we presented a simple protocol to enrich neural SKPs by monolayer adherent cultivation to prove the efficacy of this method. To enrich neural SKPs from dermal cell populations, we have found that a monolayer adherent cultivation helps to increase the numbers of neural precursor cells. Indeed, we have cultured dermal cells as monolayer under serum-supplemented (control) and serum-supplemented culture, followed by serum free cultivation (test) and compared. Finally, protein markers of SKPs were assessed and compared in both experimental groups and differentiation potential was evaluated in enriched culture. The cells of enriched culture concurrently expressed fibronectin, vimentin and nestin, an intermediate filament protein expressed in neural and skeletal muscle precursors as compared to control culture. In addition, they possessed a multipotential capacity to differentiate into neurogenic, glial, adipogenic, osteogenic and skeletal myogenic cell lineages. It was concluded that serum-free adherent culture reinforced by growth factors have been shown to be effective on proliferation of skin-derived neural precursor cells (skin-NPCs) and drive their selective and rapid expansion.

  6. Differential Gene Expression Profiling of Enriched Human Spermatogonia after Short- and Long-Term Culture

    Directory of Open Access Journals (Sweden)

    Sabine Conrad

    2014-01-01

    Full Text Available This study aimed to provide a molecular signature for enriched adult human stem/progenitor spermatogonia during short-term (<2 weeks and long-term culture (up to more than 14 months in comparison to human testicular fibroblasts and human embryonic stem cells. Human spermatogonia were isolated by CD49f magnetic activated cell sorting and collagen−/laminin+ matrix binding from primary testis cultures obtained from ten adult men. For transcriptomic analysis, single spermatogonia-like cells were collected based on their morphology and dimensions using a micromanipulation system from the enriched germ cell cultures. Immunocytochemical, RT-PCR and microarray analyses revealed that the analyzed populations of cells were distinct at the molecular level. The germ- and pluripotency-associated genes and genes of differentiation/spermatogenesis pathway were highly expressed in enriched short-term cultured spermatogonia. After long-term culture, a proportion of cells retained and aggravated the “spermatogonial” gene expression profile with the expression of germ and pluripotency-associated genes, while in the majority of long-term cultured cells this molecular profile, typical for the differentiation pathway, was reduced and more genes related to the extracellular matrix production and attachment were expressed. The approach we provide here to study the molecular status of in vitro cultured spermatogonia may be important to optimize the culture conditions and to evaluate the germ cell plasticity in the future.

  7. Enriched ammonia-tolerant methanogenic cultures as bioaugmentation inocula in continuous biomethanation processes

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Treu, Laura; Angelidaki, Irini

    2017-01-01

    reactor (CSTR), resulted in up to 90% recovery of the methane production compared to the uninhibited production. However, cultivation of pure strains has practical difficulties due to the need of special growth media and sterile conditions. In contrast, acclimatized enriched cultures have minor sterility...... requirements. In the current study, an enriched ammonia-tolerant methanogenic culture was bioaugmented in a CSTR reactor operating under ammonia-induced, inhibited-steady-state. The results demonstrated that bioaugmentation, completely counteracted the ammonia toxicity effect. This indicates that a commercial...

  8. L-Lactate-selective microbial sensor based on flavocytochrome b2-enriched yeast cells using recombinant and nanotechnology approaches.

    Science.gov (United States)

    Karkovska, Maria; Smutok, Oleh; Stasyuk, Nataliya; Gonchar, Mykhailo

    2015-11-01

    In the recent years, nanotechnology is the most developing branch due to a wide variety of potential applications in biomedical, biotechnological and agriculture fields. The binding nanoparticles with various biological molecules makes them attractive candidates for using in sensor technologies. The particularly actual is obtaining the bionanomembranes based on biocatalytic elements with improved sensing characteristics. The aim of this investigation is to study the properties of microbial L-lactate-selective sensor based on using the recombinant Hansenula polymorpha yeast cells overproducing flavocytochrome b2 (FC b2), as well as additionally enriched by the enzyme bound with gold nanoparticles (FC b2-nAu). Although, the high permeability of the living cells to nanoparticles is being intensively studied (mostly for delivery of drugs), the idea of using both recombinant technology and nanotechnology to increase the amount of the target enzyme in the biosensing layer is really novel. The FC b2-nAu-enriched living and permeabilized yeast cells were used for construction of a bioselective membrane of microbial L-lactate-selective amperometric biosensor. Phenazine methosulphate was served as a free defusing electron transfer mediator which provides effective electron transfer from the reduced enzyme to the electrode surface. It was shown that the output to L-lactate of FC b2-nAu-enriched permeabilized yeast cells is 2.5-fold higher when compared to the control cells. The obtained results confirm that additional enrichment of the recombinant yeast cell by the enzyme bound with nanoparticles improves the analytical parameters of microbial sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy.

    Science.gov (United States)

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-11-24

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.

  10. Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: results of a 5-year continuous enrichment

    Science.gov (United States)

    Keller Suberkropp; Vladislav Gulis; Amy D. Rosemond; Jonathan Benstead

    2010-01-01

    Our study examined the response of leaf detritus–associated microorganisms (both bacteria and fungi) to a 5-yr continuous nutrient enrichment of a forested headwater stream. Leaf litter dominates detritus inputs to such streams and, on a system wide scale, serves as the key substrate for microbial colonization. We determined physiological responses as microbial biomass...

  11. Microbial ecology and starter culture technology in coffee processing.

    Science.gov (United States)

    Vinícius de Melo Pereira, Gilberto; Soccol, Vanete Thomaz; Brar, Satinder Kaur; Neto, Ensei; Soccol, Carlos Ricardo

    2017-09-02

    Coffee has been for decades the most commercialized food product and most widely consumed beverage in the world, with over 600 billion cups served per year. Before coffee cherries can be traded and processed into a final industrial product, they have to undergo postharvest processing on farms, which have a direct impact on the cost and quality of a coffee. Three different methods can be used for transforming the coffee cherries into beans, known as wet, dry, and semi-dry methods. In all these processing methods, a spontaneous fermentation is carried out in order to eliminate any mucilage still stuck to the beans and helps improve beverage flavor by microbial metabolites. The microorganisms responsible for the fermentation (e.g., yeasts and lactic acid bacteria) can play a number of roles, such as degradation of mucilage (pectinolytic activity), inhibition of mycotoxin-producing fungi growth, and production of flavor-active components. The use of starter cultures (mainly yeast strains) has emerged in recent years as a promising alternative to control the fermentation process and to promote quality development of coffee product. However, scarce information is still available about the effects of controlled starter cultures in coffee fermentation performance and bean quality, making it impossible to use this technology in actual field conditions. A broader knowledge about the ecology, biochemistry, and molecular biology could facilitate the understanding and application of starter cultures for coffee fermentation process. This review provides a comprehensive coverage of these issues, while pointing out new directions for exploiting starter cultures in coffee processing.

  12. Salmonella testing of pooled pre-enrichment broth cultures for screening multiple food samples.

    Science.gov (United States)

    Price, W R; Olsen, R A; Hunter, J E

    1972-04-01

    A method has been described for testing multiple food samples for Salmonella without loss in sensitivity. The method pools multiple pre-enrichment broth cultures into single enrichment broths. The subsequent stages of the Salmonella analysis are not altered. The method was found applicable to several dry food materials including nonfat dry milk, dried egg albumin, cocoa, cottonseed flour, wheat flour, and shredded coconut. As many as 25 pre-enrichment broth cultures were pooled without apparent loss in the sensitivity of Salmonella detection as compared to individual sample analysis. The procedure offers a simple, yet effective, way to increase sample capacity in the Salmonella testing of foods, particularly where a large proportion of samples ordinarily is negative. It also permits small portions of pre-enrichment broth cultures to be retained for subsequent individual analysis if positive tests are found. Salmonella testing of pooled pre-enrichment broths provides increased consumer protection for a given amount of analytical effort as compared to individual sample analysis.

  13. Yersinia enterocolitica in slaughter pig tonsils: enumeration and detection by enrichment versus direct plating culture.

    Science.gov (United States)

    Van Damme, Inge; Habib, Ihab; De Zutter, Lieven

    2010-02-01

    Tonsil samples from 139 slaughter pigs were examined for the presence of pathogenic Yersinia enterocolitica by enrichment procedures based on the standard method ISO 10273:2003. In addition, samples were tested by direct plating method to evaluate its efficiency compared to the enrichment culture methods and to quantify the level of contamination in porcine tonsils. In total, 52 samples (37.4%) were positive for pathogenic Y. enterocolitica, all belonging to bioserotype 4/O:3. Fifty out of the 52 positive samples (96.2%) were detected by direct plating. Enumeration showed an average concentration of 4.5 log(10) CFU g(-1) and 4.4 log(10) CFU g(-1) tonsil on Salmonella-Shigella-desoxycholate-calcium chloride (SSDC) and cefsulodin-irgasan-novobiocin (CIN) agar plates, respectively. The enrichment procedures recommended by the ISO 10273:2003 method were not optimal for the isolation of pathogenic Y. enterocolitica from pig tonsils: two days enrichment in irgasan-ticarcillin-potassium chlorate (ITC) broth resulted in an isolation rate of 84.6%, while 5 days enrichment in peptone-sorbitol-bile (PSB) broth recovered only 59.6% of positive samples. Reducing the enrichment time in PSB from 5 to 2 days resulted in a significantly higher recovery rate (94.2%) and might serve as an appropriate enrichment protocol for the isolation of pathogenic Y. enterocolitica from pig tonsils. Compared to enrichment culture methods, results based on direct plating can be obtained in a shorter time course and provide quantitative data that might be needed for further risk assessment studies.

  14. Difference of microbial community stressed in artificial pit muds for Luzhou-flavour liquor brewing revealed by multiphase culture-independent technology.

    Science.gov (United States)

    Zhang, L; Zhou, R; Niu, M; Zheng, J; Wu, C

    2015-11-01

    Artificial pit muds (APMs) is produced by peats, aged pit muds, yellow and black clays etc. and is one of essential factors for Luzhou-flavour liquor production. The microbial community of APMs significantly influence the quality of Luzhou-flavour liquor. The aim of this study was to investigate the differences in bacterial, archaeal and fungal community of APMs, starters and materials. Multiphase culture-independent technology were employed in this study, including nested PCR-denaturing gradient gel electrophoresis (nested PCR-DGGE), phospholipid fatty acid (PLFA), phospholipid ether lipids (PLEL) and fluorescence in situ hybridization (FISH) analysis. Results suggested that the microbial diversity significantly changed under environmental stress and different culture patterns during APMs cultivation. The dominant bacteria in APMs mainly fell into Clostridiales, Lactobacillales, Bacteroidales and Rhizobiales, Archaea affiliated with Methanomicrobiales and Methanosarcinales, and fungi belonged to Saccharomycetales and Eurotiales. Furthermore, the microbial community structures of APMs cultured by ground pile pattern were more similar with that of aged pit muds, meanwhile, the relative bands intensities of microbes, which are the main contributors for liquor brewing, increased with the culture times. Not only the niche selection and biogeochemical properties of APMs, but also the mutual collaboration and constraint between different microbes may result in enriching different liquor-brewing microbes into APMs. APM cultivation technology was necessary to promote enriching functional liquor-brewing microbes into APMs. These results may facilitate understanding the microbial succession during APMs manufacture. © 2015 The Society for Applied Microbiology.

  15. Breast Cancer Stem Cell Culture and Enrichment Using Poly(ε-Caprolactone Scaffolds

    Directory of Open Access Journals (Sweden)

    Sònia Palomeras

    2016-04-01

    Full Text Available The cancer stem cell (CSC population displays self-renewal capabilities, resistance to conventional therapies, and a tendency to post-treatment recurrence. Increasing knowledge about CSCs’ phenotype and functions is needed to investigate new therapeutic strategies against the CSC population. Here, poly(ε-caprolactone (PCL, a biocompatible polymer free of toxic dye, has been used to fabricate scaffolds, solid structures suitable for 3D cancer cell culture. It has been reported that scaffold cell culture enhances the CSCs population. A RepRap BCN3D+ printer and 3 mm PCL wire were used to fabricate circular scaffolds. PCL design and fabrication parameters were first determined and then optimized considering several measurable variables of the resulting scaffolds. MCF7 breast carcinoma cell line was used to assess scaffolds adequacy for 3D cell culture. To evaluate CSC enrichment, the Mammosphere Forming Index (MFI was performed in 2D and 3D MCF7 cultures. Results showed that the 60° scaffolds were more suitable for 3D culture than the 45° and 90° ones. Moreover, 3D culture experiments, in adherent and non-adherent conditions, showed a significant increase in MFI compared to 2D cultures (control. Thus, 3D cell culture with PCL scaffolds could be useful to improve cancer cell culture and enrich the CSCs population.

  16. Engaging High School Girls in Native American Culturally Responsive STEAM Enrichment Activities

    Science.gov (United States)

    Kant, Joanita M.; Burckhard, Suzette R.; Meyers, Richard T.

    2018-01-01

    Providing science, technology, engineering, art, and mathematics (STEAM) culturally responsive enrichment activities is one way of promoting more interest in science, technology, engineering, and mathematics (STEM) studies and careers among indigenous students. The purpose of the study was to explore the impact, if any, of STEAM culturally…

  17. Using Enrichment Clusters to Address the Needs of Culturally and Linguistically Diverse Learners

    Science.gov (United States)

    Allen, Jennifer K.; Robbins, Margaret A.; Payne, Yolanda Denise; Brown, Katherine Backes

    2016-01-01

    Using data from teacher interviews, classroom observations, and a professional development workshop, this article explains how one component of the schoolwide enrichment model (SEM) has been implemented at a culturally diverse elementary school serving primarily Latina/o and African American students. Based on a broadened conception of giftedness,…

  18. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    Science.gov (United States)

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-06-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 +/- 0.06, 1.0 +/- 0.13 and 0.4 +/- 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation.

  19. Examination of a Culturable Microbial Population from the Gastrointestinal Tract of the Wood-Eating Loricariid Catfish Panaque nigrolineatus

    Directory of Open Access Journals (Sweden)

    Harold J. Schreier

    2013-08-01

    Full Text Available Fish play a critical role in nutrient cycling and organic matter flow in aquatic environments. However, little is known about the microbial diversity within the gastrointestinal tracts that may be essential in these degradation activities. Panaque nigrolineatus is a loricariid catfish found in the Neotropics that have a rare dietary strategy of consuming large amounts of woody material in its natural environment. As a consequence, the gastrointestinal (GI tract of P. nigrolineatus is continually exposed to high levels of cellulose and other recalcitrant wood compounds and is, therefore, an attractive, uncharacterized system to study microbial community diversity. Our previous 16S rRNA gene surveys demonstrated that the GI tract microbial community includes phylotypes having the capacity to degrade cellulose and fix molecular nitrogen. In the present study we verify the presence of a resident microbial community by fluorescence microscopy and focus on the cellulose-degrading members by culture-based and 13C-labeled cellulose DNA stable-isotope probing (SIP approaches. Analysis of GI tract communities generated from anaerobic microcrystalline cellulose enrichment cultures by 16S rRNA gene analysis revealed phylotypes sharing high sequence similarity to known cellulolytic bacteria including Clostridium, Cellulomonas, Bacteroides, Eubacterium and Aeromonas spp. Related bacteria were identified in the SIP community, which also included nitrogen-fixing Azospirillum spp. Our ability to enrich for specialized cellulose-degrading communities suggests that the P. nigrolineatus GI tract provides a favorable environment for this activity and these communities may be involved in providing assimilable carbon under challenging dietary conditions.

  20. An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes

    Directory of Open Access Journals (Sweden)

    Hannes Horn

    2016-11-01

    Full Text Available Many marine sponges are populated by dense and taxonomically diverse microbial consortia. We employed a metagenomics approach to unravel the differences in the functional gene repertoire among three Mediterranean sponge species, Petrosia ficiformis, Sarcotragus foetidus, Aplysina aerophoba and seawater. Different signatures were observed between sponge and seawater metagenomes with regard to microbial community composition, GC content, and estimated bacterial genome size. Our analysis showed further a pronounced repertoire for defense systems in sponge metagenomes. Specifically, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR, restriction modification, DNA phosphorothioation and phage growth limitation systems were enriched in sponge metagenomes. These data suggest that defense is an important functional trait for an existence within sponges that requires mechanisms to defend against foreign DNA from microorganisms and viruses. This study contributes to an understanding of the evolutionary arms race between viruses/phages and bacterial genomes and it sheds light on the bacterial defenses that have evolved in the context of the sponge holobiont.

  1. Rumen Biohydrogenation and Microbial Community Changes Upon Early Life Supplementation of 22:6n-3 Enriched Microalgae to Goats

    Directory of Open Access Journals (Sweden)

    Lore Dewanckele

    2018-03-01

    Full Text Available Dietary supplementation of docosahexaenoic acid (DHA-enriched products inhibits the final step of biohydrogenation in the adult rumen, resulting in the accumulation of 18:1 isomers, particularly of trans(t-11 18:1. Occasionally, a shift toward the formation of t10 intermediates at the expense of t11 intermediates can be triggered. However, whether similar impact would occur when supplementing DHA-enriched products during pregnancy or early life remains unknown. Therefore, the current in vivo study aimed to investigate the effect of a nutritional intervention with DHA in the early life of goat kids on rumen biohydrogenation and microbial community. Delivery of DHA was achieved by supplementing DHA-enriched microalgae (DHA Gold either to the maternal diet during pregnancy (prenatal or to the diet of the young offspring (postnatal. At the age of 12 weeks, rumen fluid was sampled for analysis of long-chain fatty acids and microbial community based on bacterial 16S rRNA amplicon sequencing. Postnatal supplementation with DHA-enriched microalgae inhibited the final biohydrogenation step, as observed in adult animals. This resulted particularly in increased ruminal proportions of t11 18:1 rather than a shift to t10 intermediates, suggesting that both young and adult goats might be less prone to dietary induced shifts toward the formation of t10 intermediates, in comparison with cows. Although Butyrivibrio species have been identified as the most important biohydrogenating bacteria, this genus was more abundant when complete biohydrogenation, i.e. 18:0 formation, was inhibited. Blautia abundance was positively correlated with 18:0 accumulation, whereas Lactobacillus spp. Dialister spp. and Bifidobacterium spp. were more abundant in situations with greater t10 accumulation. Extensive comparisons made between current results and literature data indicate that current associations between biohydrogenation intermediates and rumen bacteria in young goats

  2. Microbial diversity in an Armenian geothermal spring assessed by molecular and culture-based methods.

    Science.gov (United States)

    Panosyan, Hovik; Birkeland, Nils-Kåre

    2014-11-01

    The phylogenetic diversity of the prokaryotic community thriving in the Arzakan hot spring in Armenia was studied using molecular and culture-based methods. A sequence analysis of 16S rRNA gene clone libraries demonstrated the presence of a diversity of microorganisms belonging to the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Epsilonproteobacteria, Firmicutes, Bacteroidetes phyla, and Cyanobacteria. Proteobacteria was the dominant group, representing 52% of the bacterial clones. Denaturing gradient gel electrophoresis profiles of the bacterial 16S rRNA gene fragments also indicated the abundance of Proteobacteria, Bacteroidetes, and Cyanobacteria populations. Most of the sequences were most closely related to uncultivated microorganisms and shared less than 96% similarity with their closest matches in GenBank, indicating that this spring harbors a unique community of novel microbial species or genera. The majority of the sequences of an archaeal 16S rRNA gene library, generated from a methanogenic enrichment, were close relatives of members of the genus Methanoculleus. Aerobic endospore-forming bacteria mainly belonging to Bacillus and Geobacillus were detected only by culture-dependent methods. Three isolates were successfully obtained having 99, 96, and 96% 16S rRNA gene sequence similarities to Arcobacter sp., Methylocaldum sp., and Methanoculleus sp., respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Short- and long-term effects of nutrient enrichment on microbial exoenzyme activity in mangrove peat

    NARCIS (Netherlands)

    Keuskamp, Joost|info:eu-repo/dai/nl/315031840; Feller, Ilka C; Laanbroek, Riks|info:eu-repo/dai/nl/070378282; Verhoeven, Jos|info:eu-repo/dai/nl/068425023; Hefting, Mariet|info:eu-repo/dai/nl/256197628

    Mangroves receive increasing quantities of nutrients as a result of coastal development, which could lead to significant changes in carbon sequestration and soil subsidence. We hypothesised that mangroveproduced tannins induce a nitrogen (N) limitation on microbial decomposition even when plant

  4. Short- and long-term effects of nutrient enrichment on microbial exoenzyme activity in mangrove peat

    NARCIS (Netherlands)

    Keuskamp, Joost; Feller, Ilka C; Laanbroek, Riks; Verhoeven, Jos; Hefting, Mariet

    2014-01-01

    Mangroves receive increasing quantities of nutrients as a result of coastal development, which could lead to significant changes in carbon sequestration and soil subsidence. We hypothesised that mangroveproduced tannins induce a nitrogen (N) limitation on microbial decomposition even when plant

  5. Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula

    KAUST Repository

    Chehab, Noura A.; Ortiz-Madina, Juan F.; Katuri, Krishna; Rao, Hari Ananda; Amy, Gary L.; Logan, Bruce E.; Saikaly, Pascal

    2017-01-01

    environments and can be used to startup MEC under thermophilic and hypersaline conditions. Bacteroides was enriched on the anode of the Valdivia MEC, but it was not detected in the open circuit voltage reactor seeded with the Valdivia brine pool.

  6. Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Karadag, Dogan; Puhakka, Jaakko A. [Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere (Finland)

    2010-10-15

    The temperature effect (37-65 C) on H{sub 2} production from glucose in an open-mixed culture bioreactor using an enrichment culture from a hot spring was studied. The dynamics of microbial communities was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). At 45 and 60 C the H{sub 2} production was the highest i.e. 1.71 and 0.85 mol H{sub 2}/mol glucose, respectively. No H{sub 2} was produced at temperatures 50 and 55 C. At 37-45 C, H{sub 2} production was produced by butyrate type fermentation while fermentation mechanism changed to ethanol type at 60 C. Clostridium species were dominant at 37-45 C while at 50-55 C and 60 C the culture was dominated by Bacillus coagulans and Thermoanaerobacterium, respectively. In the presence of B. Coagulans the metabolism was directed to lactate production. The results show that the mixed culture had two optima for H{sub 2} production and that the microbial communities and metabolic patterns promptly changed according to changing temperatures. (author)

  7. Erythrocyte enrichment in hematopoietic progenitor cell cultures based on magnetic susceptibility of the hemoglobin.

    Directory of Open Access Journals (Sweden)

    Xiaoxia Jin

    Full Text Available Using novel media formulations, it has been demonstrated that human placenta and umbilical cord blood-derived CD34+ cells can be expanded and differentiated into erythroid cells with high efficiency. However, obtaining mature and functional erythrocytes from the immature cell cultures with high purity and in an efficient manner remains a significant challenge. A distinguishing feature of a reticulocyte and maturing erythrocyte is the increasing concentration of hemoglobin and decreasing cell volume that results in increased cell magnetophoretic mobility (MM when exposed to high magnetic fields and gradients, under anoxic conditions. Taking advantage of these initial observations, we studied a noninvasive (label-free magnetic separation and analysis process to enrich and identify cultured functional erythrocytes. In addition to the magnetic cell separation and cell motion analysis in the magnetic field, the cell cultures were characterized for cell sedimentation rate, cell volume distributions using differential interference microscopy, immunophenotyping (glycophorin A, hemoglobin concentration and shear-induced deformability (elongation index, EI, by ektacytometry to test for mature erythrocyte attributes. A commercial, packed column high-gradient magnetic separator (HGMS was used for magnetic separation. The magnetically enriched fraction comprised 80% of the maturing cells (predominantly reticulocytes that showed near 70% overlap of EI with the reference cord blood-derived RBC and over 50% overlap with the adult donor RBCs. The results demonstrate feasibility of label-free magnetic enrichment of erythrocyte fraction of CD34+ progenitor-derived cultures based on the presence of paramagnetic hemoglobin in the maturing erythrocytes.

  8. Microbial functional genes enriched in the Xiangjiang River sediments with heavy metal contamination.

    Science.gov (United States)

    Jie, Shiqi; Li, Mingming; Gan, Min; Zhu, Jianyu; Yin, Huaqun; Liu, Xueduan

    2016-08-08

    Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. A total of 25595 functional genes involved in different biogeochemical processes have been detected in three sites, and different diversities and structures of microbial functional genes were observed. The analysis of gene overlapping, unique genes, and various diversity indices indicated a significant correlation between the level of heavy metal contamination and the functional diversity. Plentiful resistant genes related to various metal were detected, such as copper, arsenic, chromium and mercury. The results indicated a significantly higher abundance of genes involved in metal resistance including sulfate reduction genes (dsr) in studied site with most serious heavy metal contamination, such as cueo, mer, metc, merb, tehb and terc gene. With regard to the relationship between the environmental variables and microbial functional structure, S, Cu, Cd, Hg and Cr were the dominating factor shaping the microbial distribution pattern in three sites. This study suggests that high level of heavy metal contamination resulted in higher functional diversity and the abundance of metal resistant genes. These variation therefore significantly contribute to the resistance, resilience and stability of the microbial community subjected to the gradient of heavy metals contaminant in Xiangjiang River.

  9. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing

    2012-05-01

    Nitrogen removal is needed in microbial fuel cells (MFCs) for the treatment of most waste streams. Current designs couple biological denitrification with side-stream or combined nitrification sustained by upstream or direct aeration, which negates some of the energy-saving benefits of MFC technology. To achieve simultaneous nitrification and denitrification, without extra energy input for aeration, the air cathode of a single-chamber MFC was pre-enriched with a nitrifying biofilm. Diethylamine-functionalized polymer (DEA) was used as the Pt catalyst binder on the cathode to improve the differential nitrifying biofilm establishment. With pre-enriched nitrifying biofilm, MFCs with the DEA binder had an ammonia removal efficiency of up to 96.8% and a maximum power density of 900 ± 25 mW/m 2, compared to 90.7% and 945 ± 42 mW/m 2 with a Nafion binder. A control with Nafion that lacked nitrifier pre-enrichment removed less ammonia and had lower power production (54.5% initially, 750 mW/m 2). The nitrifying biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode, and enhanced system stability. These results demonstrated that with proper cathode pre-enrichment it is possible to simultaneously remove organics and ammonia in a single-chamber MFC without supplemental aeration. © 2012 Elsevier Ltd.

  10. Culture Optimization and Amino Acid Composition of Cr-Enriched Mycelia of Pleurotus cornucopiae SD-01

    Directory of Open Access Journals (Sweden)

    Fan-Yun Meng

    2010-01-01

    Full Text Available Chromium(III is an essential trace element for humans and animals. Pleutorus cornucopiae SD-01 is a nutritional and functional mushroom containing many kinds of bioactive ingredients. The aims of this work are to optimize the conditions of P. cornucopiae SD-01 cultivation with Cr enrichment in submerged culture by determining the dry cell mass, Cr content in mycelia and the rate of Cr enrichment, and to analyze the amino acid composition of Cr-enriched mycelia. The optimal medium contained (in g/L: potato 200, sucrose 25, yeast extract 4, KH2PO4 1 and MgSO4·7H2O 1. The optimum parameters of liquid culture were temperature 25 °C, cultivation time 6 days, the volume of the medium 100 mL, rotation speed 160 rpm and initial pH=6.5. Under the optimized conditions, the values of the dry cell mass, Cr content in mycelia and the rate of Cr enrichment were (6.63±0.35 g/L, (3670±211 μg/g and (12.15±1.01 % respectively, which were by (23.23±1.22, (18.19±1.06 and (45.68±2.67 % respectively, higher than those in the control. Chromium(III in Cr-enriched mycelia was mainly combined with protein and polysaccharide. The contents of total amino acids and essential amino acids in Cr-enriched mycelia were increased by (31.25±0.58 and (44.26±0.76 %, respectively.

  11. Biodecolorization of the azo dye Reactive Red 2 by a halotolerant enrichment culture.

    Science.gov (United States)

    Beydilli, M Inan; Pavlostathis, Spyros G

    2007-11-01

    The decolorization of the azo dye Reactive Red 2 (RR2) under anoxic conditions was investigated using a mesophilic (35 degrees C) halotolerant enrichment culture capable of growth at 100 g/L sodium chloride (NaCl). Batch decolorization assays were conducted with the unacclimated halotolerant culture, and dye decolorization kinetics were determined as a function of the initial dye, biomass, carbon source, and an externally added oxidation-reduction mediator (anthraquinone-2,6-disulphonic acid) concentrations. The maximum biomass-normalized RR2 decolorization rate by the halotolerant enrichment culture under batch, anoxic incubation conditions was 26.8 mg dye/mg VSSxd. Although RR2 decolorization was inhibited at RR2 concentrations equal to and higher than 300 mg/L, the halotolerant culture achieved a 156-fold higher RR2 decolorization rate compared with a previously reported, biomass-normalized RR2 decolorization rate by a mixed mesophilic (35 degrees C) methanogenic culture in the absence of NaCl. Decolorization kinetics at inhibitory RR2 levels were described based on the Haldane model (Haldane, 1965). Five repetitive dyeing/decolorization cycles performed using the halotolerant culture and the same RR2 dyebath solution demonstrated the feasibility of biological renovation and reuse of commercial-strength spent reactive azo dyebaths.

  12. Biodeterioration of epoxy resin: a microbial survey through culture-independent and culture-dependent approaches.

    Science.gov (United States)

    Pangallo, Domenico; Bučková, Maria; Kraková, Lucia; Puškárová, Andrea; Šaková, Nikoleta; Grivalský, Tomaš; Chovanová, Katarina; Zemánková, Milina

    2015-02-01

    During the 20th century, synthetic polymers were greatly used in the field of art. In particular, the epoxy resins were used for both conservation and for creating sculptures. The biodeterioration of these polymers has not been adequately studied. The aim of this investigation was to examine the microflora responsible for the deterioration of an epoxy statue exposed to outdoor conditions. Fungal and bacterial microflora were isolated from the art object, clustered by fluorescence-ITS (internal transcribed spacer), identified by ITS and 16S rRNA sequencing and tested for their lipolytic abilities by three agar assays. Different algal, bacterial, cyanobacterial and fungal clone libraries were constructed. The surrounding airborne microflora was analyzed using culture-dependent and culture-independent approaches. The results indicated the presence, on the statue surface, of an interesting and differentiate microbial community composed of rock-inhabiting members, algal photobionts (Trebouxia spp., Chloroidium ellipsoideum and Chlorella angustoellipsoidea), Cyanobacteria (Leptolyngbya sp., Phormidium sp., Cylindrospermum stagnale, Hassallia byssoidea and Geitlerinema sp.), black yeasts related to the species Friedmanniomyces endolithicus, Pseudotaeniolina globosa, Phaeococcomyces catenatus and Catenulostroma germanicum and several plant-associated fungi. This investigation provides new information on the potential microfloral inhabitants of epoxy resin discovering a new ecological niche, occupied mainly by several members of rock-colonizing microbial species. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria.

    Science.gov (United States)

    Biosca, Elena G; Flores, Raquel; Santander, Ricardo D; Díez-Gil, José Luis; Barreno, Eva

    2016-01-01

    Lichens, self-supporting mutualistic associations between a fungal partner and one or more photosynthetic partners, also harbor non-photosynthetic bacteria. The diversity and contribution of these bacteria to the functioning of lichen symbiosis have recently begun to be studied, often by culture-independent techniques due to difficulties in their isolation and culture. However, culturing as yet unculturable lichenic bacteria is critical to unravel their potential functional roles in lichen symbiogenesis, to explore and exploit their biotechnological potential and for the description of new taxa. Our objective was to improve the recovery of lichen associated bacteria by developing novel isolation and culture approaches, initially using the lichen Pseudevernia furfuracea. We evaluated the effect of newly developed media enriched with novel lichen extracts, as well as the influence of thalli washing time and different disinfection and processing protocols of thalli. The developed methodology included: i) the use of lichen enriched media to mimic lichen nutrients, supplemented with the fungicide natamycin; ii) an extended washing of thalli to increase the recovery of ectolichenic bacteria, thus allowing the disinfection of thalli to be discarded, hence enhancing endolichenic bacteria recovery; and iii) the use of an antioxidant buffer to prevent or reduce oxidative stress during thalli disruption. The optimized methodology allowed significant increases in the number and diversity of culturable bacteria associated with P. furfuracea, and it was also successfully applied to the lichens Ramalina farinacea and Parmotrema pseudotinctorum. Furthermore, we provide, for the first time, data on the abundance of culturable ecto- and endolichenic bacteria that naturally colonize P. furfuracea, R. farinacea and P. pseudotinctorum, some of which were only able to grow on lichen enriched media. This innovative methodology is also applicable to other microorganisms inhabiting these

  14. Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria

    Science.gov (United States)

    Biosca, Elena G.; Flores, Raquel; Santander, Ricardo D.; Díez-Gil, José Luis; Barreno, Eva

    2016-01-01

    Lichens, self-supporting mutualistic associations between a fungal partner and one or more photosynthetic partners, also harbor non-photosynthetic bacteria. The diversity and contribution of these bacteria to the functioning of lichen symbiosis have recently begun to be studied, often by culture-independent techniques due to difficulties in their isolation and culture. However, culturing as yet unculturable lichenic bacteria is critical to unravel their potential functional roles in lichen symbiogenesis, to explore and exploit their biotechnological potential and for the description of new taxa. Our objective was to improve the recovery of lichen associated bacteria by developing novel isolation and culture approaches, initially using the lichen Pseudevernia furfuracea. We evaluated the effect of newly developed media enriched with novel lichen extracts, as well as the influence of thalli washing time and different disinfection and processing protocols of thalli. The developed methodology included: i) the use of lichen enriched media to mimic lichen nutrients, supplemented with the fungicide natamycin; ii) an extended washing of thalli to increase the recovery of ectolichenic bacteria, thus allowing the disinfection of thalli to be discarded, hence enhancing endolichenic bacteria recovery; and iii) the use of an antioxidant buffer to prevent or reduce oxidative stress during thalli disruption. The optimized methodology allowed significant increases in the number and diversity of culturable bacteria associated with P. furfuracea, and it was also successfully applied to the lichens Ramalina farinacea and Parmotrema pseudotinctorum. Furthermore, we provide, for the first time, data on the abundance of culturable ecto- and endolichenic bacteria that naturally colonize P. furfuracea, R. farinacea and P. pseudotinctorum, some of which were only able to grow on lichen enriched media. This innovative methodology is also applicable to other microorganisms inhabiting these

  15. Enrichments of methanotrophic-heterotrophic cultures with high poly-β-hydroxybutyrate (PHB) accumulation capacities.

    Science.gov (United States)

    Zhang, Tingting; Wang, Xiaowei; Zhou, Jiti; Zhang, Yu

    2018-03-01

    Methanotrophic-heterotrophic communities were selectively enriched from sewage sludge to obtain a mixed culture with high levels of poly-β-hydroxybutyrate (PHB) accumulation capacity from methane. Methane was used as the carbon source, N 2 as sole nitrogen source, and oxygen and Cu content were varied. Copper proved essential for PHB synthesis. All cultures enriched with Cu could accumulate high content of PHB (43.2%-45.9%), while only small amounts of PHB were accumulated by cultures enriched without Cu (11.9%-17.5%). Batch assays revealed that communities grown with Cu and a higher O 2 content synthesized more PHB, which had a wider optimal CH 4 :O 2 range and produced a high PHB content (48.7%) even though in the presence of N 2 . In all methanotrophic-heterotrophic communities, both methanotrophic and heterotrophic populations showed the ability to accumulate PHB. Although methane was added as the sole carbon source, heterotrophs dominated with abundances between 77.2% and 85.6%. All methanotrophs detected belonged to type II genera, which formed stable communities with heterotrophs of different PHB production capacities. Copyright © 2017. Published by Elsevier B.V.

  16. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    International Nuclear Information System (INIS)

    Son, Ahjeong; Schmidt, Carl J.; Shin, Hyejin; Cha, Daniel K.

    2011-01-01

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  17. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ahjeong, E-mail: ason@auburn.edu [Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Schmidt, Carl J. [Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 (United States); Shin, Hyejin [Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (United States); Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

    2011-01-30

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  18. Short- and long-term effects of nutrient enrichment on microbial exoenzyme activity in mangrove peat

    NARCIS (Netherlands)

    Keuskamp, Joost A.; Feller, Ilka C.; Laanbroek, Hendrikus J.; Verhoeven, Jos T.A.; Hefting, Mariet M.

    2015-01-01

    Abstract Mangroves receive increasing quantities of nutrients as a result of coastal development, which could lead to significant changes in carbon sequestration and soil subsidence. We hypothesised that mangrove-produced tannins induce a nitrogen (N) limitation on microbial decomposition even when

  19. Microbial Stereoselective One-Step Conversion of Diols to Chiral Lactones in Yeast Cultures

    Directory of Open Access Journals (Sweden)

    Filip Boratyński

    2015-12-01

    Full Text Available It has been shown that whole cells of different strains of yeast catalyze stereoselective oxidation of meso diols to the corresponding chiral lactones. Among screening-scale experiments, Candida pelliculosa ZP22 was selected as the most effective biocatalyst for the oxidation of monocyclic diols 3a–b with respect to the ratio of high conversion to stereoselectivity. This strain was used in the preparative oxidation, affording enantiomerically-enriched isomers of lactones: (+-(3aR,7aS-cis-hexahydro-1(3H -isobenzofuranone (2a and (+-(3aS,4,7,7aR-cis-tetrahydro-1(3H-isobenzofuranone (2b. Scaling up the culture growth, as well as biotransformation conditions has been successfully accomplished. Among more bulky substrates, bicyclic diol 3d was totally converted into enantiomerically-pure exo-bridged (+-(3aR,4S,7R,7aS-cis-tetrahydro-4,7-methanoisobenzofuran -1(3H-one (2d by Yarrovia lipolytica AR71. Microbial oxidation of diol 3f by Candida sake AM908 and Rhodotorula rubra AM4 afforded optically-pure cis-3-butylhexahydro-1(3H -isobenzofuranone (2f, however with low conversion.

  20. Comparative study with two different enrichments in the culture media used in the disinfectant efficacy assay.

    Science.gov (United States)

    Sabagh, Bruna Peres; Souto, Aline da Silva Soares; Reis, Louise Moreira; Silva, Sérgio Alves da; Pereira, Daniella Cristina Rodrigues; Neves, Marta de Campos; Pinheiro, Rodrigo Rollin; Duarte, Rafael Silva; Miyazaki, Neide Hiromi Tokumaru; Bôas, Maria Helena Simões Villas

    2012-02-01

    Recent changes in Brazilian legislation for commercial disinfectants have been published due to the recent epidemic of nosocomial infections caused by rapidly growing mycobacteria (RGM) in many states of Brazil over the last 8years. One of these documents requires that all the manufacturers provide evidence of efficacy of sterilizing and disinfectant products, used for semi critical medical devices, against the Mycobacterium bovis BCG Moreau and Mycobacterium abscessus subsp. bolletii INCQS 00594 strains by using the Confirmative in vitro Test for Determining Tuberculocidal Activity of Disinfectants recommended by the Association of Official Analytical Chemists. These changes have caused additional costs and increased problems for importation of enrichment products at national laboratories where disinfectant efficacy assay service is performed. Middlebrook ADC Enrichment (ADC) is provided by a unique manufacturer and used in the official protocol. The aim of the present study was to evaluate an alternative in house low-cost enrichment composed of fetal bovine serum and glucose (FBSG) with ADC for performance of disinfectant efficacy assay against mycobacteria. After obtaining the growth curves for M. abscessus ATCC 19977, M. abscessus subsp. bolletii INCQS 00594, Mycobacterium chelonae ATCC 35752, and Mycobacterium fortuitum ATCC 6841 by using ADC enrichment and FBSG in Kirchners and 7H9 culture media. Through statistical analysis via the Kruskal-Wallis test on the evaluation of microorganism growth rate, it was observed that there was no inhibition of RGM growth by any of the enrichments used. These results suggest that low-cost enrichment FBSG may be used as a potential substitute of ADC for composition of media for mycobacterial growth, including in disinfectant tests. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Interactions between warming, nutrient enrichment and detritivores on litter decomposition and associated microbial decomposers

    OpenAIRE

    Sanaei Moghadam, Fatemeh

    2013-01-01

    Leaf litter decomposition constitutes an important source of energy in many aquatic environments that is controlled by the joint action of microbial decomposers such as bacteria and fungi and also animal detritivores. In view of current scenarios of global environmental change, it is predicted that rapid temperature increases could directly affect most ecosystems including freshwaters. Additionally, human activities and industrial development have impacted water quality of many streams and ri...

  2. Composting-Like Conditions Are More Efficient for Enrichment and Diversity of Organisms Containing Cellulase-Encoding Genes than Submerged Cultures.

    Directory of Open Access Journals (Sweden)

    Senta Heiss-Blanquet

    Full Text Available Cost-effective biofuel production from lignocellulosic biomass depends on efficient degradation of the plant cell wall. One of the major obstacles for the development of a cost-efficient process is the lack of resistance of currently used fungal enzymes to harsh conditions such as high temperature. Adapted, thermophilic microbial communities provide a huge reservoir of potentially interesting lignocellulose-degrading enzymes for improvement of the cellulose hydrolysis step. In order to identify such enzymes, a leaf and wood chip compost was enriched on a mixture of thermo-chemically pretreated wheat straw, poplar and Miscanthus under thermophile conditions, but in two different set-ups. Unexpectedly, metagenome sequencing revealed that incubation of the lignocellulosic substrate with compost as inoculum in a suspension culture resulted in an impoverishment of putative cellulase- and hemicellulase-encoding genes. However, mimicking composting conditions without liquid phase yielded a high number and diversity of glycoside hydrolase genes and an enrichment of genes encoding cellulose binding domains. These identified genes were most closely related to species from Actinobacteria, which seem to constitute important players of lignocellulose degradation under the applied conditions. The study highlights that subtle changes in an enrichment set-up can have an important impact on composition and functions of the microcosm. Composting-like conditions were found to be the most successful method for enrichment in species with high biomass degrading capacity.

  3. Establishment and Characterization of an Anaerobic Thermophilic (55 degrees C) Enrichment Culture Degrading Long-Chain Fatty Acids

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ahring, Birgitte Kiær

    1995-01-01

    A thermophilic, long-chain fatty acid-oxidizing culture was enriched. Stearate was used as the substrate, and methane and carbon dioxide were the sole end products. Cultivation was possible only when a fed-batch system was used or with addition of activated carbon or bentonite. The enrichment...

  4. Stable acetate production in extreme-thermophilic (70ºC) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    NARCIS (Netherlands)

    Zhang, F.; Zhang, Y.; Ding, J.; Dai, K.; Van Loosdrecht, M.C.M.; Zeng, R.J.

    2014-01-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in

  5. Microbial ecology of artisanal italian cheese: Molecular microbial characterization by culture-independent method

    International Nuclear Information System (INIS)

    Colombo, E.; Scarpellini, M.; Franzatti, L.; Dioguardi, L.

    2009-01-01

    Present study will treat the next topics: ecology of the natural and man made environments and functional diversity of bacteria. The microbial communities in artisanal goat cheeses produced in mountain pastures (typical farms) in Piemonte mountain (North of Italy) change a lot during precessing and ripening time. Moreover cheese microbial ecosystems are different in each small dairy because adventitious microflora can come from the environment and contamination the milk before the cheese making process and the product during manufacture and ripening. (Author)

  6. Microbial ecology of artisanal italian cheese: Molecular microbial characterization by culture-independent method

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, E.; Scarpellini, M.; Franzatti, L.; Dioguardi, L.

    2009-07-01

    Present study will treat the next topics: ecology of the natural and man made environments and functional diversity of bacteria. The microbial communities in artisanal goat cheeses produced in mountain pastures (typical farms) in Piemonte mountain (North of Italy) change a lot during precessing and ripening time. Moreover cheese microbial ecosystems are different in each small dairy because adventitious microflora can come from the environment and contamination the milk before the cheese making process and the product during manufacture and ripening. (Author)

  7. Proteomic characterization of golgi membranes enriched from Arabidopsis suspension cell cultures

    DEFF Research Database (Denmark)

    Hansen, Sara Fasmer; Ebert, Berit; Rautengarten, Carsten

    2016-01-01

    The plant Golgi apparatus has a central role in the secretory pathway and is the principal site within the cell for the assembly and processing of macromolecules. The stacked membrane structure of the Golgi apparatus along with its interactions with the cytoskeleton and endoplasmic reticulum has...... historically made the isolation and purification of this organelle difficult. Density centrifugation has typically been used to enrich Golgi membranes from plant microsomal preparations, and aside from minor adaptations, the approach is still widely employed. Here we outline the enrichment of Golgi membranes...... from an Arabidopsis cell suspension culture that can be used to investigate the proteome of this organelle. We also provide a useful workflow for the examination of proteomic data as the result of multiple analyses. Finally, we highlight a simple technique to validate the subcellular localization...

  8. Functional implications of the microbial community structure of undefined mesophilic starter cultures

    NARCIS (Netherlands)

    Smid, E.J.; Erkus, O.; Spus, M.; Wolkers-Rooijackers, J.C.M.; Alexeeva, S.V.; Kleerebezem, M.

    2014-01-01

    This review describes the recent advances made in the studies of the microbial community of complex and undefined cheese starter cultures. We report on work related to the composition of the cultures at the level of genetic lineages, on the presence and activity of bacteriophages and on the

  9. Enriched cultures of lactic acid bacteria from selected Zimbabwean fermented food and medicinal products with potential as therapy or prophylaxis against yeast infections

    Directory of Open Access Journals (Sweden)

    Alec Chabwinja

    2017-10-01

    Full Text Available Objective: To investigate the antifungal activity of crude cultures of putative strains of lactic acid bacteria (LAB from a selection of Zimbabwean traditional and commercial food/ medicinal products against yeasts (strains of environmental isolates of Candida albicans and Rhodotorula spp.. Methods: Cultures of putative LAB from our selection of fermented products were enriched in de Man, Rogosa and Sharpe and isolated on de Man, Rogosa and Sharpe agar. Results: The crude microbial cultures from the products that showed high antifungal activities (zone of inhibition, mm were as follows: supernatant-free microbial pellet (SFMP from an extract of Melia azedarach leaves [(27.0 ± 2.5 mm] > cell-free culture supernatants (CFCS from Maaz Dairy sour milk and Mnandi sour milk [approximately (26.0 ± 1.8/2.5 mm] > CFCS and SFMP from Amansi hodzeko [(25.0 ± 1.5 mm] > CFCS from Parinari curatellifolia fruit [(24.0 ± 1.5 mm], SFMP from Parinari curatellifolia fruit [(24.0 ± 1.4 mm] and SFMP from mahewu [(20.0 ± 1.5 mm]. These cultures also showed high tolerance to acidic conditions (pH 4.0 and pH 5.0. However, culture from WAYA LGG (shown elsewhere to harbour antimicrobial activities showed no antifungal activity. The LAB could have inhibited yeasts by either competitive exclusion or the release of antimicrobial metabolites. Conclusions: Our cultures of LAB from a selection of Zimbabwean fermented products, especially Ziziphus mauritiana and fermented milk products have great potential for use as antifungal probiotics against yeast infections. Studies are ongoing to determine the exact mechanisms that are employed by the putative LAB to inhibit Candida albicans.

  10. Selection of culturable environmental microbial strains for cellular ...

    African Journals Online (AJOL)

    Environmental pollution by organic compounds is a global problem. Biological treatment methods are used to restore polluted environments. Microbial immobilization on abiotic surfaces is a recent strategy to improve the efficiency of these processes. In this technique, cell adhesion is a fundamental step for subsequent ...

  11. Culture-Dependent and -Independent Methods Capture Different Microbial Community Fractions in Hydrocarbon-Contaminated Soils

    OpenAIRE

    Stefani, Franck O. P.; Bell, Terrence H.; Marchand, Charlotte; de la Providencia, Ivan E.; El Yassimi, Abdel; St-Arnaud, Marc; Hijri, Mohamed

    2015-01-01

    Bioremediation is a cost-effective and sustainable approach for treating polluted soils, but our ability to improve on current bioremediation strategies depends on our ability to isolate microorganisms from these soils. Although culturing is widely used in bioremediation research and applications, it is unknown whether the composition of cultured isolates closely mirrors the indigenous microbial community from contaminated soils. To assess this, we paired culture-independent (454-pyrosequenci...

  12. Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    2016-10-01

    Full Text Available Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children’s health. Here we examined the effects of longterm (14 days and low dose (1 μM exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain.

  13. Microchemostat - microbial continuous culture in a polymer-based, instrumented microbioreactor

    DEFF Research Database (Denmark)

    Zhang, Z.; Bocazzi, P.; Choi, H. G.

    2006-01-01

    -based microbioreactor system integrated with optical density (OD), pH, and dissolved oxygen (DO) real-time measurements for continuous cultivation of microbial cells. Escherichia coli (E. coli) cells are continuously cultured in a 150 mL, membrane-aerated, well-mixed microbioreactor fed by a pressure-driven flow......In a chemostat, microbial cells reach a steady state condition at which cell biomass production, substrates and the product concentrations remain constant. These features make continuous culture a unique and powerful tool for biological and physiological research. We present a polymer...

  14. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition.

    Science.gov (United States)

    Wang, Cheng; Dong, Da; Wang, Haoshu; Müller, Karin; Qin, Yong; Wang, Hailong; Wu, Weixiang

    2016-01-01

    Compost habitats sustain a vast ensemble of microbes specializing in the degradation of lignocellulosic plant materials and are thus important both for their roles in the global carbon cycle and as potential sources of biochemical catalysts for advanced biofuels production. Studies have revealed substantial diversity in compost microbiomes, yet how this diversity relates to functions and even to the genes encoding lignocellulolytic enzymes remains obscure. Here, we used a metagenomic analysis of the rice straw-adapted (RSA) microbial consortia enriched from compost ecosystems to decipher the systematic and functional contexts within such a distinctive microbiome. Analyses of the 16S pyrotag library and 5 Gbp of metagenomic sequence showed that the phylum Actinobacteria was the predominant group among the Bacteria in the RSA consortia, followed by Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidetes. The CAZymes profile revealed that CAZyme genes in the RSA consortia were also widely distributed within these bacterial phyla. Strikingly, about 46.1 % of CAZyme genes were from actinomycetal communities, which harbored a substantially expanded catalog of the cellobiohydrolase, β-glucosidase, acetyl xylan esterase, arabinofuranosidase, pectin lyase, and ligninase genes. Among these communities, a variety of previously unrecognized species was found, which reveals a greater ecological functional diversity of thermophilic Actinobacteria than previously assumed. These data underline the pivotal role of thermophilic Actinobacteria in lignocellulose biodegradation processes in the compost habitat. Besides revealing a new benchmark for microbial enzymatic deconstruction of lignocelluloses, the results suggest that actinomycetes found in compost ecosystems are potential candidates for mining efficient lignocellulosic enzymes in the biofuel industry.

  15. Functional implications of the microbial community structure of undefined mesophilic starter cultures.

    Science.gov (United States)

    Smid, Eddy J; Erkus, Oylum; Spus, Maciej; Wolkers-Rooijackers, Judith C M; Alexeeva, Svetlana; Kleerebezem, Michiel

    2014-08-29

    This review describes the recent advances made in the studies of the microbial community of complex and undefined cheese starter cultures. We report on work related to the composition of the cultures at the level of genetic lineages, on the presence and activity of bacteriophages and on the population dynamics during cheese making and during starter culture propagation. Furthermore, the link between starter composition and starter functionality will be discussed. Finally, recent advances in predictive metabolic modelling of the multi-strain cultures will be discussed in the context of microbe-microbe interactions.

  16. Semi-solid microbial fermentation of rice and wheat straw for protein enrichment and increased digestibility

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanya, R.H.; Bhatawdekar, S.P.

    1980-12-01

    Rice and wheat straws were hydrolyzed in various concentrations of sulfuric acid at different temperatures and different water: substrate ratios. The maximum amount of sugars of about 30-34% was released when heated at 121 degrees C with 0.5 N H2SO4 at a water: substrate ratio of 3:1. The pH of the hydrolyzed straws was raised to 5.0-5.5 with 5 N NH4OH. Such ammoniated straws were inoculated with the cultures of Penicillium funiculosum Thom. and Candida utilis (Henneb.) Lodder and Kreger-van Rij, and fermentation was carried out on semi-solid substrate for 5-7 days at room temperature. The fermentation resulted in 37-180% increase in crude protein, 23-100% increase in crude fat and 20-30% increase in the digestibility. (Refs. 29).

  17. Effect of starter cultures on microbial and physicochemical ...

    African Journals Online (AJOL)

    sunny

    2014-10-22

    Oct 22, 2014 ... 1Research Unity, Food and Science Technologies–UR 04 AGR02, High Food Industries School of Tunisia, 58 Avenue .... The mixture of each batch was stuffed into artificial ..... Effects of starter cultures and additives on.

  18. Assessment of microbial diversity under arid plants by culture ...

    African Journals Online (AJOL)

    Capparis deciduas) and pearl millet (Pennisetum glaucum) was assessed and defined by culture-dependent and cultureindependent approaches on the basis of 16S rRNA and random amplified polymorphic DNA (RAPD) analysis. The average ...

  19. Ammonia tolerant enriched methanogenic cultures as bioaugmentation inocula to alleviate ammonia inhibition in continuous anaerobic reactors

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Angelidaki, Irini

    Ammonia is the most common inhibitor of anaerobic digestion (AD) process, resulting in suboptimal exploitation of the biogas potential of the feedstocks, causing significant economic losses to the biogas plants. Ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic...... methanogens are more robust to ammonia toxicity effect. It has been shown that bioaugmentation of a pure strain of a hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) in an ammonia inhibited continuous anaerobic reactor can improve methane production more than 30%. Nevertheless, cultivation...... tolerant methanogenic culture as potential bioaugmentation inoculum in a continuous stirred tank reactor (CSTR) operating under “inhibited steady-state”, triggered by high ammonia levels (5 g NH4+-N L-1). The results of the current study established for the first time that bioaugmentation of an enriched...

  20. Formation of industrial mixed culture biofilm in chlorophenol cultivated medium of microbial fuel cell

    Science.gov (United States)

    Hassan, Huzairy; Jin, Bo; Dai, Sheng; Ngau, Cornelius

    2016-11-01

    The formation of microbial biofilm while maintaining the electricity output is a challenging topic in microbial fuel cell (MFC) studies. This MFC critical factor becomes more significant when handling with industrial wastewater which normally contains refractory and toxic compounds. This study explores the formation of industrial mixed culture biofilm in chlorophenol cultivated medium through observing and characterizing microscopically its establishment on MFC anode surface. The mixed culture was found to develop its biofilm on the anode surface in the chlorophenol environment and established its maturity and dispersal stages with concurrent electricity generation and phenolic degradation. The mixed culture biofilm engaged the electron transfer roles in MFC by generating current density of 1.4 mA/m2 and removing 53 % of 2,4-dichlorophenol. The results support further research especially on hazardous wastewater treatment using a benign and sustainable method.

  1. Culture-dependent and -independent investigations of microbial diversity on urinary catheters

    DEFF Research Database (Denmark)

    Xu, Yijuan; Moser, Claus Ernst; Abu Al-Soud, Waleed

    2012-01-01

    Catheter-associated urinary tract infection is caused by bacteria, which ascend the catheter along its external or internal surface to the bladder and subsequently develop into biofilms on the catheter and uroepithelium. Antibiotic-treated bacteria and bacteria residing in biofilm can be difficult...... to culture. In this study we used culture-based and 16S rRNA gene-based culture-independent methods (fingerprinting, cloning, and pyrosequencing) to determine the microbial diversity of biofilms on 24 urinary catheters. Most of the patients were catheterized for...

  2. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Mlynariková, K.; Samek, Ota; Bernatová, Silvie; Růžička, F.; Ježek, Jan; Hároniková, A.; Šiler, Martin; Zemánek, Pavel; Holá, V.

    2015-01-01

    Roč. 15, č. 11 (2015), s. 29635-29647 ISSN 1424-8220 R&D Projects: GA MŠk ED0017/01/01; GA ČR(CZ) GA15-20645S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : Raman spectroscopy * bacteria * yeasts * culture media Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.033, year: 2015

  3. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

    OpenAIRE

    Mlyn?rikov?, Katar?na; Samek, Ota; Bernatov?, Silvie; R??i?ka, Filip; Je?ek, Jan; H?ronikov?, Andrea; ?iler, Martin; Zem?nek, Pavel; Hol?, Veronika

    2015-01-01

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organis...

  4. Feasibility study of an alkaline-based chemical treatment for the purification of polyhydroxybutyrate produced by a mixed enriched culture

    NARCIS (Netherlands)

    Jiang, Y.; Mikova, G.; Kleerebezem, R.; van der Wielen, L.A.M.; Cuellar, M.C.

    2015-01-01

    This study focused on investigating the feasibility of purifying polyhydroxybutyrate (PHB) from mixed culture biomass by alkaline-based chemical treatment. The PHB-containing biomass was enriched on acetate under non-sterile conditions. Alkaline treatment (0.2 M NaOH) together with surfactant SDS

  5. Feasibility study of an alkaline-based chemical treatment for the purification of polyhydroxybutyrate produced by a mixed enriched culture

    NARCIS (Netherlands)

    Jiang, Y.; Mikova, G.; Kleerebezem, R.; Van der Wielen, L.A.M.; Cuellar Soares, M.C.

    2015-01-01

    This study focused on investigating the feasibility of purifying polyhydroxybutyrate (PHB) from mixed culture biomass by alkaline-based chemical treatment. The PHB-containing biomass was enriched on acetate under non-sterile conditions. Alkaline treatment (0.2 M NaOH) together with surfactant SDS

  6. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie

    2015-01-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses, with or with...... of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.......Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses....... The microbial growth caused changes in the crude oil–brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil–brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition...

  7. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods.

    Science.gov (United States)

    Coton, Monika; Pawtowski, Audrey; Taminiau, Bernard; Burgaud, Gaëtan; Deniel, Franck; Coulloumme-Labarthe, Laurent; Fall, Abdoulaye; Daube, Georges; Coton, Emmanuel

    2017-05-01

    Kombucha, historically an Asian tea-based fermented drink, has recently become trendy in Western countries. Producers claim it bears health-enhancing properties that may come from the tea or metabolites produced by its microbiome. Despite its long history of production, microbial richness and dynamics have not been fully unraveled, especially at an industrial scale. Moreover, the impact of tea type (green or black) on microbial ecology was not studied. Here, we compared microbial communities from industrial-scale black and green tea fermentations, still traditionally carried out by a microbial biofilm, using culture-dependent and metabarcoding approaches. Dominant bacterial species belonged to Acetobacteraceae and to a lesser extent Lactobacteriaceae, while the main identified yeasts corresponded to Dekkera, Hanseniaspora and Zygosaccharomyces during all fermentations. Species richness decreased over the 8-day fermentation. Among acetic acid bacteria, Gluconacetobacter europaeus, Gluconobacter oxydans, G. saccharivorans and Acetobacter peroxydans emerged as dominant species. The main lactic acid bacteria, Oenococcus oeni, was strongly associated with green tea fermentations. Tea type did not influence yeast community, with Dekkera bruxellensis, D. anomala, Zygosaccharomyces bailii and Hanseniaspora valbyensis as most dominant. This study unraveled a distinctive core microbial community which is essential for fermentation control and could lead to Kombucha quality standardization. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Benzoate-driven dehalogenation of chlorinated ethenes in microbial cultures from a contaminated aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Bunge, M.; Kleikemper, J.; Miniaci, C.; Duc, L.; Muusse, M.G.; Zeyer, J. [Swiss Federal Institute of Technology (ETH), Zurich (Switzerland). Inst. of Biogeochemistry and Pollutant Dynamics, Soil Biology; Hause, G. [Halle-Wittenberg Univ., Halle (Germany). Biocenter

    2007-10-15

    Microbial dehalogenation of tetrachloroethene (PCE) and cis-dichloroethene (cis-DCE) was studied in cultures from a continuous stirred tank reactor initially inoculated with aquifer material from a PCE-contaminated site. Cultures amended with hydrogen and acetate readily dechlorinated PCE and cis-DCE; however, this transformation was incomplete and resulted in the accumulation of chlorinated intermediates and only small amounts of ethene within 60 days of incubation. Conversely, microbial PCE and cis-DCE dechlorination in cultures with benzoate and acetate resulted in the complete transformation to ethene within 30 days. Community fingerprinting by denaturing gradient gel electrophoresis (DGGE) revealed the predominance of phylotypes closely affiliated with Desulfitobacterium, Dehalococcoides, and Syntrophus species. The Dehalococcoides culture VZ, obtained from small whitish colonies in cis-DCE dechlorinating agarose cultures, revealed an irregular cell diameter between 200 and 500 nm, and a spherical or biconcave disk-shaped morphology. These organisms were identified as responsible for the dechlorination of cis-DCE to ethene in the PCE-dechlorinating consortia, operating together with the Desulfitobacterium as PCE-to-cis-DCE dehalogenating bacterium and with a Syntrophus species as potential hydrogen-producing partner in cultures with benzoate. (orig.)

  9. Culture-Dependent and -Independent Methods Capture Different Microbial Community Fractions in Hydrocarbon-Contaminated Soils.

    Directory of Open Access Journals (Sweden)

    Franck O P Stefani

    Full Text Available Bioremediation is a cost-effective and sustainable approach for treating polluted soils, but our ability to improve on current bioremediation strategies depends on our ability to isolate microorganisms from these soils. Although culturing is widely used in bioremediation research and applications, it is unknown whether the composition of cultured isolates closely mirrors the indigenous microbial community from contaminated soils. To assess this, we paired culture-independent (454-pyrosequencing of total soil DNA with culture-dependent (isolation using seven different growth media techniques to analyse the bacterial and fungal communities from hydrocarbon-contaminated soils. Although bacterial and fungal rarefaction curves were saturated for both methods, only 2.4% and 8.2% of the bacterial and fungal OTUs, respectively, were shared between datasets. Isolated taxa increased the total recovered species richness by only 2% for bacteria and 5% for fungi. Interestingly, none of the bacteria that we isolated were representative of the major bacterial OTUs recovered by 454-pyrosequencing. Isolation of fungi was moderately more effective at capturing the dominant OTUs observed by culture-independent analysis, as 3 of 31 cultured fungal strains ranked among the 20 most abundant fungal OTUs in the 454-pyrosequencing dataset. This study is one of the most comprehensive comparisons of microbial communities from hydrocarbon-contaminated soils using both isolation and high-throughput sequencing methods.

  10. Culture-Dependent and -Independent Methods Capture Different Microbial Community Fractions in Hydrocarbon-Contaminated Soils.

    Science.gov (United States)

    Stefani, Franck O P; Bell, Terrence H; Marchand, Charlotte; de la Providencia, Ivan E; El Yassimi, Abdel; St-Arnaud, Marc; Hijri, Mohamed

    2015-01-01

    Bioremediation is a cost-effective and sustainable approach for treating polluted soils, but our ability to improve on current bioremediation strategies depends on our ability to isolate microorganisms from these soils. Although culturing is widely used in bioremediation research and applications, it is unknown whether the composition of cultured isolates closely mirrors the indigenous microbial community from contaminated soils. To assess this, we paired culture-independent (454-pyrosequencing of total soil DNA) with culture-dependent (isolation using seven different growth media) techniques to analyse the bacterial and fungal communities from hydrocarbon-contaminated soils. Although bacterial and fungal rarefaction curves were saturated for both methods, only 2.4% and 8.2% of the bacterial and fungal OTUs, respectively, were shared between datasets. Isolated taxa increased the total recovered species richness by only 2% for bacteria and 5% for fungi. Interestingly, none of the bacteria that we isolated were representative of the major bacterial OTUs recovered by 454-pyrosequencing. Isolation of fungi was moderately more effective at capturing the dominant OTUs observed by culture-independent analysis, as 3 of 31 cultured fungal strains ranked among the 20 most abundant fungal OTUs in the 454-pyrosequencing dataset. This study is one of the most comprehensive comparisons of microbial communities from hydrocarbon-contaminated soils using both isolation and high-throughput sequencing methods.

  11. Comparative analysis of microbial community of novel lactic acid fermentation inoculated with different undefined mixed cultures.

    Science.gov (United States)

    Liang, Shaobo; Gliniewicz, Karol; Mendes-Soares, Helena; Settles, Matthew L; Forney, Larry J; Coats, Erik R; McDonald, Armando G

    2015-03-01

    Three undefined mixed cultures (activated sludge) from different municipal wastewater treatment plants were used as seeds in a novel lactic acid fermentation process fed with potato peel waste (PPW). Anaerobic sequencing batch fermenters were run under identical conditions to produce predominantly lactic acid. Illumina sequencing was used to examine the 16S rRNA genes of bacteria in the three seeds and fermenters. Results showed that the structure of microbial communities of three seeds were different. All three fermentation products had unique community structures that were dominated (>96%) by species of the genus Lactobacillus, while members of this genus constituted undefined mixed cultures were robust and resilient, which provided engineering prospects for the microbial utilization of carbohydrate wastes to produce lactic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Process optimization for polyhydroxyalkanoate (PHA) production from waste via microbial enrichment cultures

    NARCIS (Netherlands)

    Korkakaki, E.

    2017-01-01

    Polyhydroxyalkanoates (PHA) are compounds naturally produced by microorganisms, with many industrial applications, either as bioplastics or as precursors for production of chemicals. Until now, industrial PHA production was conducted with pure strains of bacteria fed with well-defined feedstocks,

  13. Experimental Investigation Of Microbially Induced Corrosion Of Test Samples And Effect Of Self-assembled Hydrophobic Monolayers. Exposure Of Test Samples To Continuous Microbial Cultures, Chemical Analysis, And Biochemical Studies

    CERN Document Server

    Laurinavichius, K S

    1998-01-01

    Experimental Investigation Of Microbially Induced Corrosion Of Test Samples And Effect Of Self-assembled Hydrophobic Monolayers. Exposure Of Test Samples To Continuous Microbial Cultures, Chemical Analysis, And Biochemical Studies

  14. Study of selenocompounds from selenium-enriched culture of edible sprouts.

    Science.gov (United States)

    Funes-Collado, Virginia; Morell-Garcia, Albert; Rubio, Roser; López-Sánchez, José Fermín

    2013-12-15

    Selenium is recognised as an essential micronutrient for humans and animals. One of the main sources of selenocompounds in the human diet is vegetables. Therefore, this study deals with the Se species present in different edible sprouts grown in Se-enriched media. We grew alfalfa, lentil and soy in a hydroponic system amended with soluble salts, containing the same proportion of Se, in the form of Se(VI) and Se(IV). Total Se in the sprouts was determined by acidic digestion in a microwave system and by ICP/MS. Se speciation was carried out by enzymatic extraction (Protease XIV) and measured by LC-ICP/MS. The study shows that the Se content of plants depends on the content in the growth culture, and that part of the inorganic Se was biotransformed mainly into SeMet. These results contribute to our understanding of the uptake of inorganic Se and its biotransformation by edible plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Assessing the effects of iron enrichment across holobiont compartments reveals reduced microbial nitrogen fixation in the Red Sea coral Pocillopora verrucosa

    KAUST Repository

    Radecker, Nils; Pogoreutz, Claudia; Ziegler, Maren; Ashok, Ananya; Barreto, Marcelle M.; Chaidez, Veronica; Grupstra, Carsten G. B.; Ng, Yi Mei; Perna, Gabriela; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    The productivity of coral reefs in oligotrophic tropical waters is sustained by an efficient uptake and recycling of nutrients. In reef-building corals, the engineers of these ecosystems, this nutrient recycling is facilitated by a constant exchange of nutrients between the animal host and endosymbiotic photosynthetic dinoflagellates (zooxanthellae), bacteria, and other microbes. Due to the complex interactions in this so-called coral holobiont, it has proven difficult to understand the environmental limitations of productivity in corals. Among others, the micronutrient iron has been proposed to limit primary productivity due to its essential role in photosynthesis and bacterial processes. Here, we tested the effect of iron enrichment on the physiology of the coral Pocillopora verrucosa from the central Red Sea during a 12-day experiment. Contrary to previous reports, we did not see an increase in zooxanthellae population density or gross photosynthesis. Conversely, respiration rates were significantly increased, and microbial nitrogen fixation was significantly decreased. Taken together, our data suggest that iron is not a limiting factor of primary productivity in Red Sea corals. Rather, increased metabolic demands in response to iron enrichment, as evidenced by increased respiration rates, may reduce carbon (i.e., energy) availability in the coral holobiont, resulting in reduced microbial nitrogen fixation. This decrease in nitrogen supply in turn may exacerbate the limitation of other nutrients, creating a negative feedback loop. Thereby, our results highlight that the effects of iron enrichment appear to be strongly dependent on local environmental conditions and ultimately may depend on the availability of other nutrients.

  16. Assessing the effects of iron enrichment across holobiont compartments reveals reduced microbial nitrogen fixation in the Red Sea coral Pocillopora verrucosa

    KAUST Repository

    Radecker, Nils

    2017-07-31

    The productivity of coral reefs in oligotrophic tropical waters is sustained by an efficient uptake and recycling of nutrients. In reef-building corals, the engineers of these ecosystems, this nutrient recycling is facilitated by a constant exchange of nutrients between the animal host and endosymbiotic photosynthetic dinoflagellates (zooxanthellae), bacteria, and other microbes. Due to the complex interactions in this so-called coral holobiont, it has proven difficult to understand the environmental limitations of productivity in corals. Among others, the micronutrient iron has been proposed to limit primary productivity due to its essential role in photosynthesis and bacterial processes. Here, we tested the effect of iron enrichment on the physiology of the coral Pocillopora verrucosa from the central Red Sea during a 12-day experiment. Contrary to previous reports, we did not see an increase in zooxanthellae population density or gross photosynthesis. Conversely, respiration rates were significantly increased, and microbial nitrogen fixation was significantly decreased. Taken together, our data suggest that iron is not a limiting factor of primary productivity in Red Sea corals. Rather, increased metabolic demands in response to iron enrichment, as evidenced by increased respiration rates, may reduce carbon (i.e., energy) availability in the coral holobiont, resulting in reduced microbial nitrogen fixation. This decrease in nitrogen supply in turn may exacerbate the limitation of other nutrients, creating a negative feedback loop. Thereby, our results highlight that the effects of iron enrichment appear to be strongly dependent on local environmental conditions and ultimately may depend on the availability of other nutrients.

  17. Microbial pollution indicators and culturable heterotrophic bacteria in a Mediterranean area (Southern Adriatic Sea Italian coasts)

    Science.gov (United States)

    Stabili, L.; Cavallo, R. A.

    2011-05-01

    In the present study we evaluated the degree of microbial water pollution along the coast line between Brindisi and Santa Maria di Leuca (Southern Adriatic Sea) as well as the culturable heterotrophic bacteria abundances and biodiversity in relation to the microbiological quality of the water. A total of 3773 colonies were isolated, subcultured and identified by several morphological, cultural and biochemical methods including the standardized API 20 E and API 20 NE tests. Along the examined coastal tract the microbial pollution indicators were always below the tolerance limits for bathing waters defined by the CEE directive, suggesting a good sanitary quality. Concerning culturable heterotrophic bacteria, different temporal density trends were observed in the four sites in relation to their geographical position. A positive relationship between the bacterial abundances and the temperature was observed in S. Cataldo and Otranto. The culturable bacterial community was mainly composed of the genera Aeromonas, Pseudomonas, Photobacterium and Flavobacterium. The Enterobacteriaceae family represented a conspicuous component of the bacterial community too. Bacilli were predominant among the Gram-positive bacteria. Of interest is the isolation of yeasts (2% at the surface and 1% at the bottom) taking into account their capability of biodegradation of various materials. Because of the low level of microbial pollution recorded, our results are indicative of the natural variation and diversity of the culturable bacterial community in such an oligotrophic ecosystem and could represent a good point of comparison with other ecosystems as well as a baseline for long term studies aimed to evaluate the effects of environmental fluctuations and human impacts on this aspect of biodiversity in coastal areas.

  18. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    OpenAIRE

    Gonzalez-Toril , E.; Amils , R.; J. Delmas , Robert; Petit , Jean-Robert; Komarek , J.; Elster , J.

    2009-01-01

    Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas), in a minimal mineral (oligotrophic) media. Molecular analysis of more than 200 16S rRNA gene sequences showed...

  19. From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems.

    Science.gov (United States)

    Garza, Daniel R; Dutilh, Bas E

    2015-11-01

    Microorganisms and the viruses that infect them are the most numerous biological entities on Earth and enclose its greatest biodiversity and genetic reservoir. With strength in their numbers, these microscopic organisms are major players in the cycles of energy and matter that sustain all life. Scientists have only scratched the surface of this vast microbial world through culture-dependent methods. Recent developments in generating metagenomes, large random samples of nucleic acid sequences isolated directly from the environment, are providing comprehensive portraits of the composition, structure, and functioning of microbial communities. Moreover, advances in metagenomic analysis have created the possibility of obtaining complete or nearly complete genome sequences from uncultured microorganisms, providing important means to study their biology, ecology, and evolution. Here we review some of the recent developments in the field of metagenomics, focusing on the discovery of genetic novelty and on methods for obtaining uncultured genome sequences, including through the recycling of previously published datasets. Moreover we discuss how metagenomics has become a core scientific tool to characterize eco-evolutionary patterns of microbial ecosystems, thus allowing us to simultaneously discover new microbes and study their natural communities. We conclude by discussing general guidelines and challenges for modeling the interactions between uncultured microorganisms and viruses based on the information contained in their genome sequences. These models will significantly advance our understanding of the functioning of microbial ecosystems and the roles of microbes in the environment.

  20. Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations

    NARCIS (Netherlands)

    Bollmann, A.; Laanbroek, H.J.

    2001-01-01

    Until now enrichments of ammonia-oxidizing bacteria from natural ammonium-limited environments have been performed mainly in the presence of much higher ammonia concentrations than those present in the natural environment and many have resulted in the enrichment and isolation of environmentally less

  1. Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations

    NARCIS (Netherlands)

    Bollmann, A.; Laanbroek, H.J.

    2001-01-01

    Until now enrichments of ammonia-oxidizing bacteria from natural ammonium-limited environments have been performed mainly in the presence of much higher ammonia concentrations than those present in the natural environment and many have resulted in the enrichment and isolation of environmentally

  2. Bacterial community analysis in chlorpyrifos enrichment cultures via DGGE and use of bacterial consortium for CP biodegradation.

    Science.gov (United States)

    Akbar, Shamsa; Sultan, Sikander; Kertesz, Michael

    2014-10-01

    The organophosphate pesticide chlorpyrifos (CP) has been used extensively since the 1960s for insect control. However, its toxic effects on mammals and persistence in environment necessitate its removal from contaminated sites, biodegradation studies of CP-degrading microbes are therefore of immense importance. Samples from a Pakistani agricultural soil with an extensive history of CP application were used to prepare enrichment cultures using CP as sole carbon source for bacterial community analysis and isolation of CP metabolizing bacteria. Bacterial community analysis (denaturing gradient gel electrophoresis) revealed that the dominant genera enriched under these conditions were Pseudomonas, Acinetobacter and Stenotrophomonas, along with lower numbers of Sphingomonas, Agrobacterium and Burkholderia. Furthermore, it revealed that members of Bacteroidetes, Firmicutes, α- and γ-Proteobacteria and Actinobacteria were present at initial steps of enrichment whereas β-Proteobacteria appeared in later steps and only Proteobacteria were selected by enrichment culturing. However, when CP-degrading strains were isolated from this enrichment culture, the most active organisms were strains of Acinetobacter calcoaceticus, Pseudomonas mendocina and Pseudomonas aeruginosa. These strains degraded 6-7.4 mg L(-1) day(-1) of CP when cultivated in mineral medium, while the consortium of all four strains degraded 9.2 mg L(-1) day(-1) of CP (100 mg L(-1)). Addition of glucose as an additional C source increased the degradation capacity by 8-14 %. After inoculation of contaminated soil with CP (200 mg kg(-1)) disappearance rates were 3.83-4.30 mg kg(-1) day(-1) for individual strains and 4.76 mg kg(-1) day(-1) for the consortium. These results indicate that these organisms are involved in the degradation of CP in soil and represent valuable candidates for in situ bioremediation of contaminated soils and waters.

  3. PCR amplification of Bartonella koehlerae from human blood and enrichment blood cultures

    Directory of Open Access Journals (Sweden)

    Breitschwerdt Edward B

    2010-08-01

    Full Text Available Abstract Background Cats appear to be the primary reservoir host for Bartonella koehlerae, an alpha Proteobacteria that is most likely transmitted among cat populations by fleas (Ctenocephalides felis. Bartonella koehlerae has caused endocarditis in a dog and in one human patient from Israel, but other clinically relevant reports involving this bacterium are lacking. Despite publication of numerous, worldwide epidemiological studies designed to determine the prevalence of Bartonella spp. bacteremia in cats, B. koehlerae has never been isolated using conventional blood agar plates. To date, successful isolation of B. koehlerae from cats and from the one human endocarditis patient has consistently required the use of chocolate agar plates. Results In this study, Bartonella koehlerae bacteremia was documented in eight immunocompetent patients by PCR amplification and DNA sequencing, either prior to or after enrichment blood culture using Bartonella alpha Proteobacteria growth medium. Presenting symptoms most often included fatigue, insomnia, joint pain, headache, memory loss, and muscle pain. Four patients were also infected with Bartonella vinsonii subsp. berkhoffii genotype II. After molecular documentation of B. koehlerae infection in these patients, a serological test was developed and serum samples were tested retrospectively. Bartonella koehlerae antibodies were not detected (titers B. koehlerae antibody titers of 1:64 or greater. Conclusions Although biased by a study population consisting of individuals with extensive arthropod and animal exposure, the results of this study suggest that B. koehlerae bacteremia is more common in immunocompetent people than has been previously suspected. Future studies should more thoroughly define modes of transmission and risk factors for acquiring infection with B. koehlerae. In addition, studies are needed to determine if B. koehlerae is a cause or cofactor in the development of arthritis, peripheral

  4. Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate

    Science.gov (United States)

    Ren, Jingli; Yuan, Qigang

    2017-08-01

    A three dimensional microbial continuous culture model with a restrained microbial growth rate is studied in this paper. Two types of dilution rates are considered to investigate the dynamic behaviors of the model. For the unforced system, fold bifurcation and Hopf bifurcation are detected, and numerical simulations reveal that the system undergoes degenerate Hopf bifurcation. When the system is periodically forced, bifurcation diagrams for periodic solutions of period-one and period-two are given by researching the Poincaré map, corresponding to different bifurcation cases in the unforced system. Stable and unstable quasiperiodic solutions are obtained by Neimark-Sacker bifurcation with different parameter values. Periodic solutions of various periods can occur or disappear and even change their stability, when the Poincaré map of the forced system undergoes Neimark-Sacker bifurcation, flip bifurcation, and fold bifurcation. Chaotic attractors generated by a cascade of period doublings and some phase portraits are given at last.

  5. Starter Culture Selection for Making Chinese Sesame-Flavored Liquor Based on Microbial Metabolic Activity in Mixed-Culture Fermentation

    Science.gov (United States)

    Wu, Qun; Ling, Jie

    2014-01-01

    Selection of a starter culture with excellent viability and metabolic activity is important for inoculated fermentation of traditional food. To obtain a suitable starter culture for making Chinese sesame-flavored liquor, the yeast and bacterium community structures were investigated during spontaneous and solid-state fermentations of this type of liquor. Five dominant species in spontaneous fermentation were identified: Saccharomyces cerevisiae, Pichia membranaefaciens, Issatchenkia orientalis, Bacillus licheniformis, and Bacillus amyloliquefaciens. The metabolic activity of each species in mixed and inoculated fermentations of liquor was investigated in 14 different cocultures that used different combinations of these species. The relationships between the microbial species and volatile metabolites were analyzed by partial least-squares (PLS) regression analysis. We found that S. cerevisiae was positively correlated to nonanal, and B. licheniformis was positively associated with 2,3-butanediol, isobutyric acid, guaiacol, and 4-vinyl guaiacol, while I. orientalis was positively correlated to butyric acid, isovaleric acid, hexanoic acid, and 2,3-butanediol. These three species are excellent flavor producers for Chinese liquor. Although P. membranaefaciens and B. amyloliquefaciens were not efficient flavor producers, the addition of them alleviated competition among the other three species and altered their growth rates and flavor production. As a result, the coculture of all five dominant species produced the largest amount of flavor compounds. The result indicates that flavor producers and microbial interaction regulators are important for inoculated fermentation of Chinese sesame-flavored liquor. PMID:24814798

  6. Community composition and ultrastructure of a nitrate-dependent anaerobic methane-oxidizing enrichment culture

    NARCIS (Netherlands)

    Gambelli, L.; Guerrero-Cruz, Simon; Mesman, R.; Cremers, G.; Jetten, M.S.M.; Camp, H.J.M. op den; Lueke, Claudia; Niftrik, L.A.M.P. van

    2017-01-01

    Methane is a very potent greenhouse gas and can be oxidized aerobically or anaerobically through microbial-mediated processes, thus decreasing methane emissions to the atmosphere. Using a complementary array of methods including phylogenetic analysis, physiological experiments, and light and

  7. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

    Science.gov (United States)

    Fu, Liang; Ding, Jing; Lu, Yong-Ze; Ding, Zhao-Wei; Zeng, Raymond J

    2017-05-01

    The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO 3 - , NO 2 - , and NH 4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 10 8 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  8. Illumina sequencing-based analysis of a microbial community enriched under anaerobic methane oxidation condition coupled to denitrification revealed coexistence of aerobic and anaerobic methanotrophs.

    Science.gov (United States)

    Siniscalchi, Luciene Alves Batista; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto Lemos; de Araújo, Juliana Calabria

    2017-07-01

    Methane is produced in anaerobic environments, such as reactors used to treat wastewaters, and can be consumed by methanotrophs. The composition and structure of a microbial community enriched from anaerobic sewage sludge under methane-oxidation condition coupled to denitrification were investigated. Denaturing gradient gel electrophoresis (DGGE) analysis retrieved sequences of Methylocaldum and Chloroflexi. Deep sequencing analysis revealed a complex community that changed over time and was affected by methane concentration. Methylocaldum (8.2%), Methylosinus (2.3%), Methylomonas (0.02%), Methylacidiphilales (0.45%), Nitrospirales (0.18%), and Methanosarcinales (0.3%) were detected. Despite denitrifying conditions provided, Nitrospirales and Methanosarcinales, known to perform anaerobic methane oxidation coupled to denitrification (DAMO) process, were in very low abundance. Results demonstrated that aerobic and anaerobic methanotrophs coexisted in the reactor together with heterotrophic microorganisms, suggesting that a diverse microbial community was important to sustain methanotrophic activity. The methanogenic sludge was a good inoculum to enrich methanotrophs, and cultivation conditions play a selective role in determining community composition.

  9. Building Learning Communities for Research Collaboration and Cross-Cultural Enrichment in Science Education

    Science.gov (United States)

    Sparrow, E. B.

    2003-12-01

    The GLOBE program has provided opportunities for environmental science research and education collaborations among scientists, teachers and K-12 students, and for cross-cultural enrichment nationally and abroad. In Alaska, GLOBE has also provided funding leverage in some cases, and a base for several other science education programs that share a common goal of increasing student interest, understanding, process skills and achievement in science, through involvement in ongoing research investigations. These programs that use GLOBE methodologies (standardized scientific measurements and learning activities developed by scientists and educators) are: Global Change Education Using Western Science and Native Knowledge also known as "Observing Locally, Connecting Globally" (OLCG); Alaska Earth System Science Education Alliance: Improving Understanding of Climate Variability and Its Relevance to Rural Alaska; Schoolyard Long Term Ecological Research; Alaska Rural Research Partnership; Alaska Partnership for Teacher Enhancement; Alaska Lake Ice and Snow Observatory Network; Alaska Boreal Forest Council Education Outreach; Calypso Farm and Ecology Center; Environmental Education Outreach; and also GLOBE Arctic POPs (persistent organic pollutants) a program that involves countries in the circumpolar North. The University of Alaska GLOBE Partnership has collaborated with the BLM Campbell Creek Science Center Globe Partnership in facilitating GLOBE Training Workshops and providing teacher support. GLOBE's extensive website including data entry, archive, analysis and visualization capabilities; GLOBE Teacher Guide, videos and other materials provided; excellent GLOBE science research and education staff, training support office, GLOBE help desk, alignment of GLOBE curriculum with national science education standards and GLOBE certification of teachers trained on even just one GLOBE investigation, have made it easier to implement GLOBE in the classroom. Using GLOBE, whole

  10. Enrichment and Characterization of PCB-Degrading Bacteria as Potential Seed Cultures for Bioremediation of Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Dubravka Hršak

    2007-01-01

    Full Text Available The main objective of our study was to obtain seed cultures for enhancing the transformation of polychlorinated biphenyls (PCBs in contaminated soil of the transformer station in Zadar, Croatia, damaged during warfare activities in 1991. For enrichment, six soil samples were collected from different polluted areas and microcosm approach, stimulating the growth of biphenyl-degrading bacteria, was employed. Enrichment experiments resulted in the selection of two fast growing mixed cultures TSZ7 and AIR1, originating from the soil of the transformer station and the airport area, respectively. Both cultures showed significant PCB-degrading activity (56 to 60 % of PCB50 mixture was reduced after a two-week cultivation. Furthermore, the cultures displayed similar PCB-degrading competence and reduced di-to tetrachlorobiphenyls more effectively than penta- to hepta-chlorobiphenyls. Strain Z6, identified as Rhodococcus erythropolis, was found to be the only culture member showing PCB-transformation potential similar to that of the mixed culture TSZ7, from which it was isolated. Based on the metabolites identified in the assay with the single congener 2,4,4’-chlorobiphenyl, we proposed that the strain Z6 was able to use both the 2,3-and 3,4-dioxygenase pathways. Furthermore, the identified metabolites suggested that beside these pathways another unidentified pathway might also be active in strain Z6. Based on the obtained results, the culture TSZ7 and the strain Z6 were designated as potential seed cultures for bioremediation of the contaminated soil.

  11. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs.

    Science.gov (United States)

    Orphan, V J; Taylor, L T; Hafenbradl, D; Delong, E F

    2000-02-01

    Recent investigations of oil reservoirs in a variety of locales have indicated that these habitats may harbor active thermophilic prokaryotic assemblages. In this study, we used both molecular and culture-based methods to characterize prokaryotic consortia associated with high-temperature, sulfur-rich oil reservoirs in California. Enrichment cultures designed for anaerobic thermophiles, both autotrophic and heterotrophic, were successful at temperatures ranging from 60 to 90 degrees C. Heterotrophic enrichments from all sites yielded sheathed rods (Thermotogales), pleomorphic rods resembling Thermoanaerobacter, and Thermococcus-like isolates. The predominant autotrophic microorganisms recovered from inorganic enrichments using H(2), acetate, and CO(2) as energy and carbon sources were methanogens, including isolates closely related to Methanobacterium, Methanococcus, and Methanoculleus species. Two 16S rRNA gene (rDNA) libraries were generated from total community DNA collected from production wellheads, using either archaeal or universal oligonucleotide primer sets. Sequence analysis of the universal library indicated that a large percentage of clones were highly similar to known bacterial and archaeal isolates recovered from similar habitats. Represented genera in rDNA clone libraries included Thermoanaerobacter, Thermococcus, Desulfothiovibrio, Aminobacterium, Acidaminococcus, Pseudomonas, Halomonas, Acinetobacter, Sphingomonas, Methylobacterium, and Desulfomicrobium. The archaeal library was dominated by methanogen-like rDNAs, with a lower percentage of clones belonging to the Thermococcales. Our results strongly support the hypothesis that sulfur-utilizing and methane-producing thermophilic microorganisms have a widespread distribution in oil reservoirs and the potential to actively participate in the biogeochemical transformation of carbon, hydrogen, and sulfur in situ.

  12. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments

    Directory of Open Access Journals (Sweden)

    Elizabeth Trembath-Reichert

    2016-04-01

    Full Text Available Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM. This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME and sulfate-reducing bacteria (SRB. These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag. Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to

  13. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments.

    Science.gov (United States)

    Trembath-Reichert, Elizabeth; Case, David H; Orphan, Victoria J

    2016-01-01

    Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co

  14. Phenotypic responses to interspecies competition and commensalism in a naturally-derived microbial co-culture

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nymul; Maezato, Yukari; McClure, Ryan S.; Brislawn, Colin J.; Mobberley, Jennifer M.; Isern, Nancy; Chrisler, William B.; Markillie, Lye Meng; Barney, Brett M.; Song, Hyun-Seob; Nelson, William C.; Bernstein, Hans C.

    2018-01-10

    The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL-58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesized – and confirmed – that co-cultivation under glucose as the sole carbon source would result in a competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL-48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold.

  15. Nitrification-driven forms of nitrogen metabolism in microbial mat communities thriving along an ammonium-enriched subsurface geothermal stream

    Science.gov (United States)

    Nishizawa, Manabu; Koba, Keisuke; Makabe, Akiko; Yoshida, Naohiro; Kaneko, Masanori; Hirao, Shingo; Ishibashi, Jun-ichiro; Yamanaka, Toshiro; Shibuya, Takazo; Kikuchi, Tohru; Hirai, Miho; Miyazaki, Junichi; Nunoura, Takuro; Takai, Ken

    2013-07-01

    We report here the concurrence and interaction among forms of nitrogen metabolism in thermophilic microbial mat communities that developed in an ammonium-abundant subsurface geothermal stream. First, the physical and chemical conditions of the stream water at several representative microbial mat habitats (including upper, middle and downstream sites) were characterized. A thermodynamic calculation using these physical and chemical conditions predicted that nitrification consisting of ammonia and nitrite oxidations would provide one of the largest energy yields of chemolithotrophic metabolisms. Second, near-complete prokaryotic 16S rRNA gene clone analysis was conducted for representative microbial mat communities at the upper, middle and downstream sites. The results indicated a dynamic shift in the 16S rRNA gene phylotype composition through physical and chemical variations of the stream water. The predominant prokaryotic components varied from phylotypes related to hydrogeno (H2)- and thio (S)-trophic Aquificales, thermophilic methanotrophs and putative ammonia-oxidizing Archaea (AOA) located upstream (72 °C) to the phylotypes affiliated with putative AOA and nitrite-oxidizing bacteria (NOB) located at the middle and downstream sites (65 and 57 °C, respectively). In addition, the potential in situ metabolic activities of different forms of nitrogen metabolism were estimated through laboratory experiments using bulk microbial mat communities. Finally, the compositional and isotopic variation in nitrogen compounds was investigated in the stream water flowing over the microbial mats and in the interstitial water inside the mats. Although the stream water was characterized by a gradual decrease in the total ammonia concentration (ΣNH3: the sum of ammonia and ammonium concentrations) and a gradual increase in the total concentration of nitrite and nitrate (NO2- + NO3-), the total inorganic nitrogen concentration (TIN: the sum of ΣNH3, NO2- and NO3- concentrations

  16. Environmental Remediation Full-Scale Implementation: Back to Simple Microbial Massive Culture Approaches

    Directory of Open Access Journals (Sweden)

    Agung Syakti

    2010-10-01

    Full Text Available Using bioaugmentation and biostimulation approach for contaminated soil bioremediation were investigated and implemented on field scale. We combine those approaches by culturing massively the petrophilic indigenous microorganisms from chronically contaminated soil enriched by mixed manure. Through these methods, bioremediation performance revealed promising results in removing the petroleum hydrocarbons comparatively using metabolite by product such as biosurfactant, specific enzymes and other extra-cellular product which are considered as a difficult task and will impact on cost increase.

  17. A Moderately Thermophilic Mixed Microbial Culture for Bioleaching of Chalcopyrite Concentrate at High Pulp Density

    Science.gov (United States)

    Wang, Yuguang; Zeng, Weimin; Qiu, Guanzhou; Chen, Xinhua

    2014-01-01

    Three kinds of samples (acid mine drainage, coal mine wastewater, and thermal spring) derived from different sites were collected in China. Thereafter, these samples were combined and then inoculated into a basal salts solution in which different substrates (ferrous sulfate, elemental sulfur, and chalcopyrite) served as energy sources. After that, the mixed cultures growing on different substrates were pooled equally, resulting in a final mixed culture. After being adapted to gradually increasing pulp densities of chalcopyrite concentrate by serial subculturing for more than 2 years, the final culture was able to efficiently leach the chalcopyrite at a pulp density of 20% (wt/vol). At that pulp density, the culture extracted 60.4% of copper from the chalcopyrite in 25 days. The bacterial and archaeal diversities during adaptation were analyzed by denaturing gradient gel electrophoresis and constructing clone libraries of the 16S rRNA gene. The results show that the culture consisted mainly of four species, including Leptospirillum ferriphilum, Acidithiobacillus caldus, Sulfobacillus acidophilus, and Ferroplasma thermophilum, before adapting to a pulp density of 4%. However, L. ferriphilum could not be detected when the pulp density was greater than 4%. Real-time quantitative PCR was employed to monitor the microbial dynamics during bioleaching at a pulp density of 20%. The results show that A. caldus was the predominant species in the initial stage, while S. acidophilus rather than A. caldus became the predominant species in the middle stage. F. thermophilum accounted for the greatest proportion in the final stage. PMID:24242252

  18. Microbial culture collections as pillars for promoting fungal diversity, conservation and exploitation.

    Science.gov (United States)

    Sette, Lara Durães; Pagnocca, Fernando Carlos; Rodrigues, André

    2013-11-01

    Fungi are a diverse group of organisms with an overall global number of 1.5M up to 3.3M species on Earth. Besides their ecological roles as decomposers, fungi are important in several aspects of applied research. Here, we review how culture collections may promote the knowledge on diversity, conservation and biotechnological exploitation of fungi. The impact of fungi diversity on biotechnological studies is discussed. We point out the major roles of microbial repositories, including fungal preservation, prospecting, identification, authentication and supply. A survey on the World Data Center for Microorganisms (WDCM) powered by the World Federation for Culture Collections and on the Genetic Heritage Management Council (CGEN) database revealed that 46 Brazilian culture collections registered in these databases are dedicate to preserving fungi. Most of these culture collections are located in the Southeast of Brazil. This scenario also demonstrates that Brazil has many collections focused on fungal strains, but the lack of up-to-date information in WDCM as well as of a solid national platform for culture collections registration do not allow accurate assessment of fungal preservation. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Comparison of Different Strategies for Selection/Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel

    DEFF Research Database (Denmark)

    Varrone, Cristiano; Heggeset, T. M. B.; Le, S. B.

    2015-01-01

    Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs), able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable...... Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h) and different dominant metabolic products were obtained, depending...... on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate). On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1...

  20. Application of the Lyapunov exponent to detect noise-induced chaos in oscillating microbial cultures

    International Nuclear Information System (INIS)

    Patnaik, P.R.

    2005-01-01

    Oscillating microbial processes can, under certain conditions, gravitate into chaotic behavior induced by external noise. Detection and control of chaos are important for the survival of the microorganisms and to operate a process usefully. In this study the largest Lyapunov exponent is recommended as a convenient and reliable index of chaos in continuous oscillating cultures. For the growth of Saccharomyces cerevisiae as a model system, the exponents increase with the oxygen mass transfer coefficient and decrease as the dilution rate increases. By comparing with the corresponding time-domain oscillations determined earlier, it is inferred that weakly oscillating cultures are less likely to be driven to chaotic behavior. The main carbon source, glucose, is quite robust to chaotic destabilization, thus enhancing its suitability as a manipulated variable for bioreactor control

  1. Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Sanjay K.S. [Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Mall Road, Delhi 110007 (India); Department of Biotechnology, University of Pune, Pune 411007 (India); Purohit, Hemant J. [Environmental Genomics Unit, National Environmental Engineering Research Institute (NEERI), CSIR, Nehru Marg, Nagpur 440020 (India); Kalia, Vipin C. [Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Mall Road, Delhi 110007 (India)

    2010-10-15

    Mixed microbial cultures (MMCs) based on 11 isolates belonging to Bacillus spp. (Firmicutes), Bordetella avium, Enterobacter aerogenes and Proteus mirabilis (Proteobacteria) were employed to produce hydrogen (H{sub 2}) under dark fermentative conditions. Under daily fed culture conditions (hydraulic retention time of 2 days), MMC6 and MMC4, immobilized on ligno-cellulosic wastes - banana leaves and coconut coir evolved 300-330 mL H{sub 2}/day. Here, H{sub 2} constituted 58-62% of the total biogas evolved. It amounted to a H{sub 2} yield of 1.54-1.65 mol/mol glucose utilized over a period of 60 days of fermentation. The involvement of various Bacillus spp. -Bacillus sp., Bacillus cereus, Bacillus megaterium, Bacillus pumilus and Bacillus thuringiensis as components of the defined MMCs for H{sub 2} production has been reported here for the first time. (author)

  2. Microbial Diversity of a Camembert-Type Cheese Using Freeze-Dried Tibetan Kefir Coculture as Starter Culture by Culture-Dependent and Culture-Independent Methods

    Science.gov (United States)

    Mei, Jun; Guo, Qizhen; Wu, Yan; Li, Yunfei

    2014-01-01

    The biochemical changes occurring during cheese ripening are directly and indirectly dependent on the microbial associations of starter cultures. Freeze-dried Tibetan kefir coculture was used as a starter culture in the Camembert-type cheese production for the first time. Therefore, it's necessary to elucidate the stability, organization and identification of the dominant microbiota presented in the cheese. Bacteria and yeasts were subjected to culture-dependent on selective media and culture-independent polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) analysis and sequencing of dominant bands to assess the microbial structure and dynamics through ripening. In further studies, kefir grains were observed using scanning electron microscopy (SEM) methods. A total of 147 bacteria and 129 yeasts were obtained from the cheese during ripening. Lactobacillus paracasei represents the most commonly identified lactic acid bacteria isolates, with 59 of a total of 147 isolates, followed by Lactococcus lactis (29 isolates). Meanwhile, Kazachstania servazzii (51 isolates) represented the mainly identified yeast isolate, followed by Saccharomyces cerevisiae (40 isolates). However, some lactic acid bacteria detected by sequence analysis of DGGE bands were not recovered by plating. The yeast S. cerevisiae and K. servazzii are described for the first time with kefir starter culture. SEM showed that the microbiota were dominated by a variety of lactobacilli (long and curved) cells growing in close association with a few yeasts in the inner portion of the grain and the short lactobacilli were observed along with yeast cells on the exterior portion. Results indicated that conventional culture method and PCR-DGGE should be combined to describe in maximal detail the microbiological composition in the cheese during ripening. The data could help in the selection of appropriate commercial starters for Camembert-type cheese. PMID:25360757

  3. Microbial diversity of a Camembert-type cheese using freeze-dried Tibetan kefir coculture as starter culture by culture-dependent and culture-independent methods.

    Directory of Open Access Journals (Sweden)

    Jun Mei

    Full Text Available The biochemical changes occurring during cheese ripening are directly and indirectly dependent on the microbial associations of starter cultures. Freeze-dried Tibetan kefir coculture was used as a starter culture in the Camembert-type cheese production for the first time. Therefore, it's necessary to elucidate the stability, organization and identification of the dominant microbiota presented in the cheese. Bacteria and yeasts were subjected to culture-dependent on selective media and culture-independent polymerase chain reaction (PCR-denaturing gradient gel electrophoresis (DGGE analysis and sequencing of dominant bands to assess the microbial structure and dynamics through ripening. In further studies, kefir grains were observed using scanning electron microscopy (SEM methods. A total of 147 bacteria and 129 yeasts were obtained from the cheese during ripening. Lactobacillus paracasei represents the most commonly identified lactic acid bacteria isolates, with 59 of a total of 147 isolates, followed by Lactococcus lactis (29 isolates. Meanwhile, Kazachstania servazzii (51 isolates represented the mainly identified yeast isolate, followed by Saccharomyces cerevisiae (40 isolates. However, some lactic acid bacteria detected by sequence analysis of DGGE bands were not recovered by plating. The yeast S. cerevisiae and K. servazzii are described for the first time with kefir starter culture. SEM showed that the microbiota were dominated by a variety of lactobacilli (long and curved cells growing in close association with a few yeasts in the inner portion of the grain and the short lactobacilli were observed along with yeast cells on the exterior portion. Results indicated that conventional culture method and PCR-DGGE should be combined to describe in maximal detail the microbiological composition in the cheese during ripening. The data could help in the selection of appropriate commercial starters for Camembert-type cheese.

  4. Microbial diversity of a Camembert-type cheese using freeze-dried Tibetan kefir coculture as starter culture by culture-dependent and culture-independent methods.

    Science.gov (United States)

    Mei, Jun; Guo, Qizhen; Wu, Yan; Li, Yunfei

    2014-01-01

    The biochemical changes occurring during cheese ripening are directly and indirectly dependent on the microbial associations of starter cultures. Freeze-dried Tibetan kefir coculture was used as a starter culture in the Camembert-type cheese production for the first time. Therefore, it's necessary to elucidate the stability, organization and identification of the dominant microbiota presented in the cheese. Bacteria and yeasts were subjected to culture-dependent on selective media and culture-independent polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) analysis and sequencing of dominant bands to assess the microbial structure and dynamics through ripening. In further studies, kefir grains were observed using scanning electron microscopy (SEM) methods. A total of 147 bacteria and 129 yeasts were obtained from the cheese during ripening. Lactobacillus paracasei represents the most commonly identified lactic acid bacteria isolates, with 59 of a total of 147 isolates, followed by Lactococcus lactis (29 isolates). Meanwhile, Kazachstania servazzii (51 isolates) represented the mainly identified yeast isolate, followed by Saccharomyces cerevisiae (40 isolates). However, some lactic acid bacteria detected by sequence analysis of DGGE bands were not recovered by plating. The yeast S. cerevisiae and K. servazzii are described for the first time with kefir starter culture. SEM showed that the microbiota were dominated by a variety of lactobacilli (long and curved) cells growing in close association with a few yeasts in the inner portion of the grain and the short lactobacilli were observed along with yeast cells on the exterior portion. Results indicated that conventional culture method and PCR-DGGE should be combined to describe in maximal detail the microbiological composition in the cheese during ripening. The data could help in the selection of appropriate commercial starters for Camembert-type cheese.

  5. Culturable microbial groups and thallium-tolerant fungi in soils with high thallium contamination.

    Science.gov (United States)

    Sun, Jialong; Zou, Xiao; Ning, Zengping; Sun, Min; Peng, Jingquan; Xiao, Tangfu

    2012-12-15

    Thallium (Tl) contamination in soil exerts a significant threat to the ecosystem health due to its high toxicity. However, little is known about the effect of Tl on the microbial community in soil. The present study aimed at characterizing the culturable microbial groups in soils which experience for a long time high Tl contamination and elevated Hg and As. The contamination originates from As, Hg and Tl sulfide mineralization and the associated mining activities in the Guizhou Province, Southwest China. Our investigation showed the existence of culturable bacteria, filamentous fungi and actinomyces in long-term Tl-contaminated soils. Some fungal groups grow in the presence of high Tl level up to 1000 mg kg⁻¹. We have isolated and identified nine Tl-tolerant fungal strains based on the morphological traits and ITS analysis. The dominant genera identified were Trichoderma, Penicillium and Paecilomyces. Preliminary data obtained in this study suggested that certain microbes were able to face high Tl pollution in soil and maintain their metabolic activities and resistances. The highly Tl-tolerant fungi that we have isolated are potentially useful in the remediation of Tl-contaminated sites. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Electrochemically Driven Fermentation of Organic Substrates with Undefined Mixed Microbial Cultures.

    Science.gov (United States)

    Villano, Marianna; Paiano, Paola; Palma, Enza; Miccheli, Alfredo; Majone, Mauro

    2017-08-10

    Growing scientific interest in mixed microbial culture-based anaerobic biotechnologies for the production of value-added chemicals and fuels from organic waste residues requires a parallel focus on the development and implementation of strategies to control the distribution of products. This study examined the feasibility of an electrofermentation approach, based on the introduction of a polarized (-700 mV vs. the standard hydrogen electrode) graphite electrode in the fermentation medium, to steer the product distribution during the conversion of organic substrates (glucose, ethanol, and acetate supplied as single compounds or in mixtures) by undefined mixed microbial cultures. In batch experiments, the polarized electrode triggered a nearly 20-fold increase (relative to open circuit controls) in the yield of isobutyrate production (0.43±0.01 vs. 0.02±0.02 mol mol -1 glucose) during the anaerobic fermentation of the ternary mixture of substrates, without adversely affecting the rate of substrate bioconversion. The observed change in the fermentative metabolism was most likely triggered by the (potentiostatic) regulation of the oxidation-reduction potential of the reaction medium rather than by the electrode serving as an electron donor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing; Saito, Tomonori; Regan, John M.

    2012-01-01

    biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode

  8. Comparison of direct-plating and broth-enrichment culture methods for detection of potential bacterial pathogens in respiratory secretions.

    Science.gov (United States)

    Kaur, Ravinder; Wischmeyer, Jareth; Morris, Matthew; Pichichero, Michael E

    2017-11-01

    We compared the recovery of potential respiratory bacterial pathogens and normal flora from nasopharyngeal specimens collected from children during health and at the onset of acute otitis media (AOM) by selective direct-plating and overnight broth-enrichment. Overall, 3442 nasal wash (NW) samples collected from young children were analysed from a 10-year prospective study. NWs were cultured by (1) direct-plating to TSAII/5 % sheep blood agar and chocolate agar plates and (2) overnight broth-enrichment in BacT/ALERT SA-broth followed by plating. Standard microbiology techniques were applied to identify three dominant respiratory bacterial pathogens: Streptococcus pneumoniae (Spn), Haemophilus influenzae (Hflu) and Moraxella catarrhalis (Mcat) as well as two common nasal flora, Staphylococcus aureus (SA) and alpha-haemolytic Streptococci (AHS).Results/Key findings. Direct-plating of NW resulted in isolation of Spn from 37.8 %, Hflu from 13.6 % and Mcat from 33.2 % of samples. In comparison, overnight broth-enrichment isolated fewer Spn (30.1 %), Hflu (6.2 %) and Mcat (16.2 %) (Penrichment resulted in significant increased isolation of SA (6.0 %) and AHS (30.1 %) (Penrichment when samples were collected from healthy children but not during AOM. In middle ear fluids (MEF) at the onset of AOM, broth-enrichment resulted in higher recovery of Spn (+10.4 %, Penrichment significantly reduces the accurate detection of bacterial respiratory pathogens and increases identification of SA and AHS in NW. Broth-enrichment improves detection of bacterial respiratory pathogens in MEF samples.

  9. Embedded Voices: Building a Non-Learning Culture within a Learning Enrichment Programme

    Science.gov (United States)

    Hymer, Barry; Watkins, Chris; Dawson, Elizabeth; Buxton, Ruth

    2015-01-01

    The researchers examined transcripts of comments made and dialogues engaged in by children, teachers and student teaching assistants during a 10-week enrichment programme for gifted and talented children aged 7-9 years. Attempts were made to match these utterances with the programme's aims and aspirations as expressed in a promotional document.…

  10. Enrichment and molecular characterization of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives.

    Science.gov (United States)

    El-Fantroussi, S; Verstraete, W; Top, E M

    2000-12-01

    Soil treated with linuron for more than 10 years showed high biodegradation activity towards methoxy-methyl urea herbicides. Untreated control soil samples taken from the same location did not express any linuron degradation activity, even after 40 days of incubation. Hence, the occurrence in the field of a microbiota having the capacity to degrade a specific herbicide was related to the long-term treatment of the soil. The enrichment culture isolated from treated soil showed specific degradation activity towards methoxy-methyl urea herbicides, such as linuron and metobromuron, while dimethyl urea herbicides, such as diuron, chlorotoluron, and isoproturon, were not transformed. The putative metabolic intermediates of linuron and metobromuron, the aniline derivatives 3, 4-dichloroaniline and 4-bromoaniline, were also degraded. The temperature of incubation drastically affected degradation of the aniline derivatives. Whereas linuron was transformed at 28 and 37 degrees C, 3,4-dichloroaniline was transformed only at 28 degrees C. Monitoring the enrichment process by reverse transcription-PCR and denaturing gradient gel electrophoresis (DGGE) showed that a mixture of bacterial species under adequate physiological conditions was required to completely transform linuron. This research indicates that for biodegradation of linuron, several years of adaptation have led to selection of a bacterial consortium capable of completely transforming linuron. Moreover, several of the putative species appear to be difficult to culture since they were detectable by DGGE but were not culturable on agar plates.

  11. Novel co-culture plate enables growth dynamic-based assessment of contact-independent microbial interactions.

    Directory of Open Access Journals (Sweden)

    Thomas J Moutinho

    Full Text Available Interactions between microbes are central to the dynamics of microbial communities. Understanding these interactions is essential for the characterization of communities, yet challenging to accomplish in practice. There are limited available tools for characterizing diffusion-mediated, contact-independent microbial interactions. A practical and widely implemented technique in such characterization involves the simultaneous co-culture of distinct bacterial species and subsequent analysis of relative abundance in the total population. However, distinguishing between species can be logistically challenging. In this paper, we present a low-cost, vertical membrane, co-culture plate to quantify contact-independent interactions between distinct bacterial populations in co-culture via real-time optical density measurements. These measurements can be used to facilitate the analysis of the interaction between microbes that are physically separated by a semipermeable membrane yet able to exchange diffusible molecules. We show that diffusion across the membrane occurs at a sufficient rate to enable effective interaction between physically separate cultures. Two bacterial species commonly found in the cystic fibrotic lung, Pseudomonas aeruginosa and Burkholderia cenocepacia, were co-cultured to demonstrate how this plate may be implemented to study microbial interactions. We have demonstrated that this novel co-culture device is able to reliably generate real-time measurements of optical density data that can be used to characterize interactions between microbial species.

  12. In situ and Enriched Microbial Community Composition and Function Associated with Coal Bed Methane from Powder River Basin Coals

    Science.gov (United States)

    Barnhart, Elliott; Davis, Katherine; Varonka, Matthew; Orem, William; Fields, Matthew

    2016-04-01

    Coal bed methane (CBM) is a relatively clean source of energy but current CBM production techniques have not sustained long-term production or produced enough methane to remain economically practical with lower natural gas prices. Enhancement of the in situ microbial community that actively generates CBM with the addition of specific nutrients could potentially sustain development. CBM production more than doubled from native microbial populations from Powder River Basin (PRB) coal beds, when yeast extract and several individual components of yeast extract (proteins and amino acids) were added to laboratory microcosms. Microbial populations capable of hydrogenotrophic (hydrogen production/utilization) methanogenesis were detected in situ and under non-stimulated conditions. Stimulation with yeast extract caused a shift in the community to microorganisms capable of acetoclastic (acetate production/utilization) methanogenesis. Previous isotope analysis from CBM production wells indicated a similar microbial community shift as observed in stimulation experiments: hydrogenotrophic methanogenesis was found throughout the PRB, but acetoclastic methanogenesis dominated major recharge areas. In conjunction, a high proportion of cyanobacterial and algal SSU rRNA gene sequences were detected in a CBM well within a major recharge area, suggesting that these phototrophic organisms naturally stimulate methane production. In laboratory studies, adding phototrophic (algal) biomass stimulated CBM production by PRB microorganisms similarly to yeast extract (~40μg methane increase per gram of coal). Analysis of the British thermal unit (BTU) content of coal from long-term incubations indicated >99.5% of BTU content remained after CBM stimulation with either algae or yeast extract. Biomimicry of in situ algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate

  13. Microbial response to oil enrichment in Gulf of Mexico sediment measured using a novel long-term benthic lander system

    Directory of Open Access Journals (Sweden)

    Beth N. Orcutt

    2017-04-01

    Full Text Available Weathered crude oil sank to the seafloor following the 'Deepwater Horizon' disaster in 2010, removing this oil from further physical and photo-chemical degradation processes and leaving benthic processes as the mechanisms for altering and remediating this hydrocarbon source. To quantify potential microbial oil degradation rates at the seafloor, and associated changes in sediment microbial community structure and pore fluid composition, we used a benthic lander system to deploy novel sediment flow-through chambers at a natural hydrocarbon seep in the Gulf of Mexico (at a depth of 1226 m in lease block GC600 roughly 265 km southwest of the 'Deepwater Horizon' wellhead (at 1500 m depth. Sediment amended with 20% unweathered crude oil had elevated rates of sulfate reduction over the course of the 5-month-long experiment as compared to an unamended control, yielding potential rates of sulfate reduction (600–800 mmol m–2 d–1 among the highest measured in hydrocarbon-influenced seafloor sediment. Oil amendment also stimulated methane production towards the end of the experiment, and led to slightly higher cell densities without significant changes in microbial community structure, based on 16S rRNA gene sequence libraries and fatty acid profiles. Assuming a link between sulfate reduction and hydrocarbon degradation, these results suggest that electron acceptor availability may become limiting in heavily oiled deep-sea environments, resulting in minimal degradation of deposited oil. This study provides unique data on seafloor sediment responses to oil deposition, and reveals the value of using observatories to fill the gap in understanding deep-sea microbial processes, especially for ephemeral and stochastic events such as oil spills.

  14. Feasibility of biohydrogen production from industrial wastes using defined microbial co-culture

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2015-01-01

    Full Text Available BACKGROUND: The development of clean or novel alternative energy has become a global trend that will shape the future of energy. In the present study, 3 microbial strains with different oxygen requirements, including Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, were used to construct a hydrogen production system that was composed of a mixed aerobic-facultative anaerobic-anaerobic consortium. The effects of metal ions, organic acids and carbohydrate substrates on this system were analyzed and compared using electrochemical and kinetic assays. It was then tested using small-scale experiments to evaluate its ability to convert starch in 5 L of organic wastewater into hydrogen. For the one-step biohydrogen production experiment, H1 medium (nutrient broth and potato dextrose broth was mixed directly with GAM broth to generate H2 medium (H1 medium and GAM broth. Finally, Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D of three species microbial co-culture to produce hydrogen under anaerobic conditions. For the two-step biohydrogen production experiment, the H1 medium, after cultured the microbial strains Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, was centrifuged to remove the microbial cells and then mixed with GAM broth (H2 medium. Afterward, the bacterial strain Clostridium acetobutylicum ATCC 824 was inoculated into the H2 medium to produce hydrogen by anaerobic fermentation. RESULTS: The experimental results demonstrated that the optimum conditions for the small-scale fermentative hydrogen production system were at pH 7.0, 35°C, a mixed medium, including H1 medium and H2 medium with 0.50 mol/L ferrous chloride, 0.50 mol/L magnesium sulfate, 0.50 mol/L potassium chloride, 1% w/v citric acid, 5% w/v fructose and 5% w/v glucose. The overall hydrogen production efficiency in the shake flask fermentation group was 33.7 m

  15. Biodegradation of Chlorpyrifos by Pseudomonas Resinovarans Strain AST2.2 Isolated from Enriched Cultures.

    OpenAIRE

    Anish Sharma*,; Jyotsana Pandit; Ruchika Sharma and; Poonam Shirkot

    2016-01-01

    A bacterial strain AST2.2 with chlorpyrifos degrading ability was isolated by enrichment technique from apple orchard soil with previous history of chlorpyrifos use. Based on the morphological, biochemical tests and 16S rRNA sequence analysis, AST2.2 strain was identified as Pseudomonas resinovarans. The strain AST2.2 utilized chlorpyrifos as the sole source of carbon and energy. This strain exhibited growth upto 400mg/l concentration of chlorpyrifos and exhibited high extracellular organopho...

  16. Growth and nitrate reduction of Beggiatoa filaments studied in enrichment cultures

    DEFF Research Database (Denmark)

    Kamp, Anja

    In this thesis, several aspects of the gliding, filamentous, colourless sulphur bacteria Beggiatoa were investigated. The first part of this thesis addressed the growth mode, breakage of filaments for multiplication, and movement directions of filaments of Beggiatoa. Marine Beggiatoa were enriche...... to ammonium), whereas denitrification was not detected. This study revealed for the first time that a freshwater Beggiatoa strain was capable of intracellular accumulation of nitrate, and that the nitrate was used to perform DNRA....

  17. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture.

    Science.gov (United States)

    Busquet, M; Calsamiglia, S; Ferret, A; Cardozo, P W; Kamel, C

    2005-07-01

    Eight continuous culture fermentors inoculated with ruminal liquor from heifers fed a 50:50 alfalfa hay:concentrate diet (17.6% crude protein, 28.0% neutral detergent fiber) were used in 3 replicated periods to study the effects of cinnamaldehyde (CIN) and garlic oil (GAR) on rumen microbial fermentation. Treatments were no additive (negative control); 1.25 mg/L (MON) and 12.5 mg/L (MON10) of the ionophore antibiotic monensin (positive control); 31.2 mg/L CIN (CIN) and 312 mg/L (CIN10) of CIN; and 31.2 mg/L GAR (GAR) and 312 mg/L (GAR10) of GAR (Allium sativa). The MON10 caused expected changes in microbial fermentation patterns (a decrease in fiber digestion, ammonia N concentration, and proportions of acetate and butyrate; an increase in the proportion of propionate; and a trend to increase small peptide plus AA N concentration). The CIN decreased the proportion of acetate and branch-chained volatile fatty acids (VFA) and increased the proportion of propionate; CIN10 decreased the proportion of acetate and increased the proportion of butyrate compared with the control. The GAR10 increased the proportion of propionate and butyrate and decreased the proportion of acetate and branch-chained VFA compared with the control. The GAR10 also increased the small peptide plus amino acid N concentration, although no effects were observed on large peptides or ammonia N concentrations. The CIN and GAR10 resulted in similar effects as monensin, with the exception of the effects on the molar proportion of butyrate, which suggests that they might have a different mode of action in affecting in vitro microbial fermentation.

  18. Retention and transport of an anaerobic trichloroethene dechlorinating microbial culture in anaerobic porous media.

    Science.gov (United States)

    Zhang, Huixin; Ulrich, Ania C; Liu, Yang

    2015-06-01

    The influence of solution chemistry on microbial transport was examined using the strictly anaerobic trichloroethene (TCE) bioaugmentation culture KB-1(®). A column was employed to determine transport behaviors and deposition kinetics of three distinct functional species in KB-1(®), Dehalococcoides, Geobacter, and Methanomethylovorans, over a range of ionic strengths under a well-controlled anaerobic condition. A quantitative polymerase chain reaction (qPCR) was utilized to enumerate cell concentration and complementary techniques were implemented to evaluate cell surface electrokinetic potentials. Solution chemistry was found to positively affect the deposition rates, which was consistent with calculated Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Retained microbial profiles showed spatially constant colloid deposition rate coefficients, in agreement with classical colloid filtration theory (CFT). It was interesting to note that the three KB-1(®) species displayed similar transport and retention behaviors under the defined experimental conditions despite their different cell electrokinetic properties. A deeper analysis of cell characteristics showed that factors, such as cell size and shape, concentration, and motility were involved in determining adhesion behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Microbial Fuel Cells using Mixed Cultures of Wastewater for Electricity Generation

    International Nuclear Information System (INIS)

    Zain, S.M; Roslani, N.S.; Hashim, R.; Anuar, N.; Suja, F.; Basi, N.E.A.; Anuar, N.; Daud, W.R.W.

    2011-01-01

    Fossil fuels (petroleum, natural gas and coal) are the main resources for generating electricity. However, they have been major contributors to environmental problems. One potential alternative to explore is the use of microbial fuel cells (MFCs), which generate electricity using microorganisms. MFCs uses catalytic reactions activated by microorganisms to convert energy preserved in the chemical bonds between organic molecules into electrical energy. MFC has the ability to generate electricity during the wastewater treatment process while simultaneously treating the pollutants. This study investigated the potential of using different types of mixed cultures (raw sewage, mixed liquor from the aeration tank and return waste activated sludge) from an activated sludge treatment plant in MFCs for electricity generation and pollutant removals (COD and total kjeldahl nitrogen, TKN). The MFC in this study was designed as a dual-chambered system, in which the chambers were separated by a Nafion TM membrane using a mixed culture of wastewater as a bio catalyst. The maximum power density generated using activated sludge was 9.053 mW/ cm 2 , with 26.8 % COD removal and 40 % TKN removal. It is demonstrated that MFC offers great potential to optimize power generation using mixed cultures of wastewater. (author)

  20. A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell.

    Science.gov (United States)

    Bourdakos, Nicholas; Marsili, Enrico; Mahadevan, Radhakrishnan

    2014-04-01

    Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m(-2) , compared to 63 mW m(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. © 2013 Wiley Periodicals, Inc.

  1. The Legal Status of Microbial Food Cultures in the European Union

    DEFF Research Database (Denmark)

    Herody, Caroline; Soyeux, Y; Hansen, Egon Bech

    2010-01-01

    The production of fermented foods is one of the oldest food processing technologies known to man. Since the dawn of civilisation, methods for the fermentation of milks, meats, fish and vegetables have been used to produce safe foods with distinctive organoleptic properties. Microbial food cultures...... (MFC) with a technological impact on food are called “starter cultures”. They may be present as natural microflora in the food, or as a result of the intentional addition of the microorganisms in an industrial food fermentation process. MFC that are used for their beneficial effect on consumers’ health...... are called probiotics. Probiotics are always intentionally added to the food as they have been carefully selected and studied to guarantee that they provide a proven beneficial effect to consumers. They may be used in both fermented and non-fermented foods such as food supplements. This paper aims to provide...

  2. Proteomic profiling of an undefined microbial consortium cultured in fermented dairy manure: Methods development.

    Science.gov (United States)

    Hanson, Andrea J; Paszczynski, Andrzej J; Coats, Erik R

    2016-03-01

    The production of polyhydroxyalkanoates (PHA; bioplastics) from waste or surplus feedstocks using mixed microbial consortia (MMC) and aerobic dynamic feeding (ADF) is a growing field within mixed culture biotechnology. This study aimed to optimize a 2DE workflow to investigate the proteome dynamics of an MMC synthesizing PHA from fermented dairy manure. To mitigate the challenges posed to effective 2DE by this complex sample matrix, the bacterial biomass was purified using Accudenz gradient centrifugation (AGC) before protein extraction. The optimized 2DE method yielded high-quality gels suitable for quantitative comparative analysis and subsequent protein identification by LC-MS/MS. The optimized 2DE method could be adapted to other proteomic investigations involving MMC in complex organic or environmental matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparison of Different Strategies for Selection/Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel

    Directory of Open Access Journals (Sweden)

    C. Varrone

    2015-01-01

    Full Text Available Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs, able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable and stable MMC, trying to overcome inhibition problems and enhance substrate degradation efficiency, as well as generation of soluble fermentation products. Repeated transfers in small batches and fed-batch conditions have been applied, comparing the use of different inoculum, growth media, and Kinetic Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h and different dominant metabolic products were obtained, depending on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate. On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1,3-propanediol and butyrate production. Changes in microbial composition were monitored by means of Next Generation Sequencing, revealing a dominance of glycerol consuming species, such as Clostridium, Klebsiella, and Escherichia.

  4. Comparison of Different Strategies for Selection/Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel.

    Science.gov (United States)

    Varrone, C; Heggeset, T M B; Le, S B; Haugen, T; Markussen, S; Skiadas, I V; Gavala, H N

    2015-01-01

    Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs), able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable and stable MMC, trying to overcome inhibition problems and enhance substrate degradation efficiency, as well as generation of soluble fermentation products. Repeated transfers in small batches and fed-batch conditions have been applied, comparing the use of different inoculum, growth media, and Kinetic Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h) and different dominant metabolic products were obtained, depending on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate). On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1,3-propanediol and butyrate production. Changes in microbial composition were monitored by means of Next Generation Sequencing, revealing a dominance of glycerol consuming species, such as Clostridium, Klebsiella, and Escherichia.

  5. An Autonomous System for Experimental Evolution of Microbial Cultures: Test Results Using Ultraviolet-C Radiation and Escherichia Coli.

    Science.gov (United States)

    Ouandji, Cynthia; Wang, Jonathan; Arismendi, Dillon; Lee, Alonzo; Blaich, Justin; Gentry, Diana

    2017-01-01

    At its core, the field of microbial experimental evolution seeks to elucidate the natural laws governing the history of microbial life by understanding its underlying driving mechanisms. However, observing evolution in nature is complex, as environmental conditions are difficult to control. Laboratory-based experiments for observing population evolution provide more control, but manually culturing and studying multiple generations of microorganisms can be time consuming, labor intensive, and prone to inconsistency. We have constructed a prototype, closed system device that automates the process of directed evolution experiments in microorganisms. It is compatible with any liquid microbial culture, including polycultures and field samples, provides flow control and adjustable agitation, continuously monitors optical density (OD), and can dynamically control environmental pressures such as ultraviolet-C (UV-C) radiation and temperature. Here, the results of the prototype are compared to iterative exposure and survival assays conducted using a traditional hood, UV-C lamp, and shutter system.

  6. Reductive dehalogenation of polychlorinated biphenyls by anaerobic microorganisms enriched from Dutch sediments

    NARCIS (Netherlands)

    HartkampCommandeur, LCM; Gerritse, J; Govers, HAJ; Parsons, [No Value

    The dehalogenation of PCBs by anaerobic microbial cultures enriched from Dutch sediments was investigated. One mixed culture originating from estuarine sediments of the River Rhine (the Chemie Harbour), dehalogenated 2,2',3,3',4,4'- and 2,2,',3,3',6,6'-hexachlorobiphenyls (HCB) to yield penta- and

  7. Damage of guinea pig heart and arteries by a trioleate-enriched diet and of cultured cardiomyocytes by oleic acid.

    Directory of Open Access Journals (Sweden)

    Josef Krieglstein

    2010-03-01

    Full Text Available Mono-unsaturated fatty acids (MUFAs like oleic acid have been shown to cause apoptosis of cultured endothelial cells by activating protein phosphatase type 2C alpha and beta (PP2C. The question arises whether damage of endothelial or other cells could be observed in intact animals fed with a trioleate-enriched diet.Dunkin-Hartley guinea pigs were fed with a trioleate-enriched diet for 5 months. Advanced atherosclerotic changes of the aorta and the coronary arteries could not be seen but the arteries appeared in a pre-atherosclerotic stage of vascular remodelling. However, the weight and size of the hearts were lower than in controls and the number of apoptotic myocytes increased in the hearts of trioleate-fed animals. To confirm the idea that oleic acid may have caused this apoptosis by activation of PP2C, cultured cardiomyocytes from guinea pigs and mice were treated with various lipids. It was demonstrable that oleic acid dose-dependently caused apoptosis of cardiomyocytes from both species, yet, similar to previous experiments with cultured neurons and endothelial cells, stearic acid, elaidic acid and oleic acid methylester did not. The apoptotic effect caused by oleic acid was diminished when PP2C alpha and beta were downregulated by siRNA showing that PP2C was causally involved in apoptosis caused by oleic acid.The glycerol trioleate diet given to guinea pigs for 5 months did not cause marked atherosclerosis but clearly damaged the hearts by activating PP2C alpha and beta. The diet used with 24% (wt/wt glycerol trioleate is not comparable to human diets. The detrimental role of MUFAs for guinea pig heart tissue in vivo is shown for the first time. Whether it is true for humans remains to be shown.

  8. Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis.

    OpenAIRE

    Maymó-Gatell, X; Tandoi, V; Gossett, J M; Zinder, S H

    1995-01-01

    We have been studying an anaerobic enrichment culture which, by using methanol as an electron donor, dechlorinates tetrachloroethene (PCE) to vinyl chloride and ethene. Our previous results indicated that H2 was the direct electron donor for rductive dechlorination of PCE by the methanol-PCE culture. Most-probable-number counts performed on this culture indicated low numbers ( or equal to 10(6)/ml...

  9. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    Science.gov (United States)

    González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

    2009-01-01

    Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas), in a minimal mineral (oligotrophic) media. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. Phylogenetic comparison with the currently available rDNA database allowed sequences belonging to Proteobacteria Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla to be identified. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the marine Antarctic soil the poorest (only one). Snow samples from Col du Midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteriaclone). The only microorganism identified in the Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. Most of the identified microorganisms had been detected previously in cold environments, marine sediments soils and rocks. Air current dispersal is the best model to explain the presence of very specific microorganisms, like those identified in this work, in environments very distant and very different from each other.

  10. Degradation of paracetamol by pure bacterial cultures and their microbial consortium.

    Science.gov (United States)

    Zhang, Lili; Hu, Jun; Zhu, Runye; Zhou, Qingwei; Chen, Jianmeng

    2013-04-01

    Three bacterial strains utilizing paracetamol as the sole carbon, nitrogen, and energy source were isolated from a paracetamol-degrading aerobic aggregate, and assigned to species of the genera Stenotrophomonas and Pseudomonas. The Stenotrophomonas species have not included any known paracetamol degraders until now. In batch cultures, the organisms f1, f2, and fg-2 could perform complete degradation of paracetamol at concentrations of 400, 2,500, and 2,000 mg/L or below, respectively. A combination of three microbial strains resulted in significantly improved degradation and mineralization of paracetamol. The co-culture was able to use paracetamol up to concentrations of 4,000 mg/L, and mineralized 87.1 % of the added paracetamol at the initial of 2,000 mg/L. Two key metabolites of the biodegradation pathway of paracetamol, 4-aminophenol, and hydroquinone were detected. Paracetamol was degraded predominantly via 4-aminophenol to hydroquinone with subsequent ring fission, suggesting new pathways for paracetamol-degrading bacteria. The degradation of paracetamol could thus be performed by the single isolates, but is stimulated by a synergistic interaction of the three-member consortium, suggesting a possible complementary interaction among the various isolates. The exact roles of each of the strains in the consortium need to be further elucidated.

  11. Harnessing the landscape of microbial culture media to predict new organism–media pairings

    Science.gov (United States)

    Oberhardt, Matthew A.; Zarecki, Raphy; Gronow, Sabine; Lang, Elke; Klenk, Hans-Peter; Gophna, Uri; Ruppin, Eytan

    2015-01-01

    Culturing microorganisms is a critical step in understanding and utilizing microbial life. Here we map the landscape of existing culture media by extracting natural-language media recipes into a Known Media Database (KOMODO), which includes >18,000 strain–media combinations, >3300 media variants and compound concentrations (the entire collection of the Leibniz Institute DSMZ repository). Using KOMODO, we show that although media are usually tuned for individual strains using biologically common salts, trace metals and vitamins/cofactors are the most differentiating components between defined media of strains within a genus. We leverage KOMODO to predict new organism–media pairings using a transitivity property (74% growth in new in vitro experiments) and a phylogeny-based collaborative filtering tool (83% growth in new in vitro experiments and stronger growth on predicted well-scored versus poorly scored media). These resources are integrated into a web-based platform that predicts media given an organism's 16S rDNA sequence, facilitating future cultivation efforts. PMID:26460590

  12. Impact of a Microbial Cocktail Used as a Starter Culture on Cocoa Fermentation and Chocolate Flavor

    Directory of Open Access Journals (Sweden)

    Igor Magalhães da Veiga Moreira

    2017-05-01

    Full Text Available Chocolate production suffered a vast impact with the emergence of the “witches’ broom” disease in cocoa plants. To recover cocoa production, many disease-resistant hybrid plants have been developed. However, some different cocoa hybrids produce cocoa beans that generate chocolate with variable quality. Fermentation of cocoa beans is a microbiological process that can be applied for the production of chocolate flavor precursors, leading to overcoming the problem of variable chocolate quality. The aim of this work was to use a cocktail of microorganisms as a starter culture on the fermentation of the ripe cocoa pods from PH15 cocoa hybrid, and evaluate its influence on the microbial communities present on the fermentative process on the compounds involved during the fermentation, and to perform the chocolate sensorial characterization. According to the results obtained, different volatile compounds were identified in fermented beans and in the chocolate produced. Bitterness was the dominant taste found in non-inoculated chocolate, while chocolate made with inoculated beans showed bitter, sweet, and cocoa tastes. 2,3-Butanediol and 2,3-dimethylpyrazine were considered as volatile compounds making the difference on the flavor of both chocolates. Saccharomyces cerevisiae UFLA CCMA 0200, Lactobacillus plantarum CCMA 0238, and Acetobacter pasteurianus CCMA 0241 are proposed as starter cultures for cocoa fermentation.

  13. Impact of a Microbial Cocktail Used as a Starter Culture on Cocoa Fermentation and Chocolate Flavor.

    Science.gov (United States)

    Magalhães da Veiga Moreira, Igor; de Figueiredo Vilela, Leonardo; da Cruz Pedroso Miguel, Maria Gabriela; Santos, Cledir; Lima, Nelson; Freitas Schwan, Rosane

    2017-05-09

    Chocolate production suffered a vast impact with the emergence of the "witches' broom" disease in cocoa plants. To recover cocoa production, many disease-resistant hybrid plants have been developed. However, some different cocoa hybrids produce cocoa beans that generate chocolate with variable quality. Fermentation of cocoa beans is a microbiological process that can be applied for the production of chocolate flavor precursors, leading to overcoming the problem of variable chocolate quality. The aim of this work was to use a cocktail of microorganisms as a starter culture on the fermentation of the ripe cocoa pods from PH15 cocoa hybrid, and evaluate its influence on the microbial communities present on the fermentative process on the compounds involved during the fermentation, and to perform the chocolate sensorial characterization. According to the results obtained, different volatile compounds were identified in fermented beans and in the chocolate produced. Bitterness was the dominant taste found in non-inoculated chocolate, while chocolate made with inoculated beans showed bitter, sweet, and cocoa tastes. 2,3-Butanediol and 2,3-dimethylpyrazine were considered as volatile compounds making the difference on the flavor of both chocolates. Saccharomyces cerevisiae UFLA CCMA 0200, Lactobacillus plantarum CCMA 0238, and Acetobacter pasteurianus CCMA 0241 are proposed as starter cultures for cocoa fermentation.

  14. Culturally Diverse Literature: Enriching Variety in an Era of Common Core State Standards

    Science.gov (United States)

    Boyd, Fenice B.; Causey, Lauren L.; Galda, Lee

    2015-01-01

    The authors argue for the overwhelming importance of finding and including culturally diverse literature into the curricula teachers are authorized to teach. They discuss the implications of use and offer ideas on how to identify quality literature to include in classroom and school libraries.

  15. Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture.

    Science.gov (United States)

    Zhao, Siyan; Rogers, Matthew J; He, Jianzhong

    2017-07-01

    Trihalomethanes such as chloroform and bromoform, although well-known as a prominent class of disinfection by-products, are ubiquitously distributed in the environment due to widespread industrial usage in the past decades. Chloroform and bromoform are particularly concerning, of high concentrations detected and with long half-lives up to several hundred days in soils and groundwater. In this study, we report a Dehalobacter- and Desulfovibrio-containing co-culture that exhibits dehalogenation of chloroform (~0.61 mM) to dichloromethane and bromoform (~0.67 mM) to dibromomethane within 10-15 days. This co-culture was further found to dechlorinate 1,1,1-trichloroethane (1,1,1-TCA) (~0.65 mM) to 1,1-dichloroethane within 12 days. The Dehalobacter species present in this co-culture, designated Dehalobacter sp. THM1, was found to couple growth with dehalogenation of chloroform, bromoform, and 1,1,1-TCA. Strain THM1 harbors a newly identified reductive dehalogenase (RDase), ThmA, which catalyzes chloroform, bromoform, and 1,1,1-TCA dehalogenation. Additionally, based on the sequences of thmA and other identified chloroform RDase genes, ctrA, cfrA, and tmrA, a pair of chloroform RDase gene-specific primers were designed and successfully applied to investigate the chloroform dechlorinating potential of microbial communities. The comparative analysis of chloroform RDases with tetrachloroethene RDases suggests a possible approach in predicting the substrate specificity of uncharacterized RDases in the future.

  16. Effects of 2-hydroxy-4-(methylthio) butanoic acid (HMB) on microbial growth in continuous culture.

    Science.gov (United States)

    Noftsger, S M; St-Pierre, N R; Karnati, S K R; Firkins, J L

    2003-08-01

    2-Hydroxy-4-(methylthio) butanoic acid (HMB) positively affects milk composition and yield, potentially through ruminal actions. Four continuous culture fermenters were used to determine the optimal concentration of HMB for digestibility of organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF), and hemicellulose and synthesis of microbial N. A highly degradable mix of hay and grain was used as a basal diet to simulate a typical lactation diet. Three concentrations of HMB (0, 0.055, and 0.110%) and one concentration of dl-Met (0.097%) were infused into the fermenters according to a 4 x 4 Latin square design. Digesta samples were collected during the last 3 d of each of the four 10-d experimental periods. Digestibility of OM, hemicellulose, and NDF was largely insensitive to treatment. Digestibility of ADF showed a quadratic effect to supplementation of HMB, with 0.055% having lower digestibility than 0 or 0.110%. Total production of VFA was not influenced by HMB supplementation, but differences in concentration and production of individual VFA were seen. Isobutyrate increased linearly with increasing HMB supplementation. Propionate concentration decreased linearly with increased HMB supplementation, but propionate production showed a quadratic trend (P = 0.13). A higher concentration of acetate was detected for dl-Met compared with the highest HMB concentration. There were trends (P HMB. Microbial efficiency was not different among treatments. The proportion of bacterial N produced from NH3-N decreased linearly with increasing HMB, and bacteria receiving dl-Met synthesized more N from NH3-N than those receiving HMB. These data suggest that supplementation of HMB may have a sparing effect on branched chain volatile fatty acids because the fatty acids are not needed to provide carbon for synthesis of valine, isoleucine and leucine with ammonia. Comparisons of bacterial community structure in the fermenter effluent samples using PCR amplicons

  17. Studying Microbial Mat Functioning Amidst "Unexpected Diversity": Methodological Approaches and Initial Results from Metatranscriptomes of Mats Over Diel cycles, iTags from Long Term Manipulations, and Biogeochemical Cycling in Simplified Microbial Mats Constructed from Cultures

    Science.gov (United States)

    Bebout, B.; Bebout, L. E.; Detweiler, A. M.; Everroad, R. C.; Lee, J.; Pett-Ridge, J.; Weber, P. K.

    2014-12-01

    Microbial mats are famously amongst the most diverse microbial ecosystems on Earth, inhabiting some of the most inclement environments known, including hypersaline, dry, hot, cold, nutrient poor, and high UV environments. The high microbial diversity of microbial mats makes studies of microbial ecology notably difficult. To address this challenge, we have been using a combination of metagenomics, metatranscriptomics, iTags and culture-based simplified microbial mats to study biogeochemical cycling (H2 production, N2 fixation, and fermentation) in microbial mats collected from Elkhorn Slough, Monterey Bay, California. Metatranscriptomes of microbial mats incubated over a diel cycle have revealed that a number of gene systems activate only during the day in Cyanobacteria, while the remaining appear to be constitutive. The dominant cyanobacterium in the mat (Microcoleus chthonoplastes) expresses several pathways for nitrogen scavenging undocumented in cultured strains, as well as the expression of two starch storage and utilization cycles. Community composition shifts in response to long term manipulations of mats were assessed using iTags. Changes in community diversity were observed as hydrogen fluxes increased in response to a lowering of sulfate concentrations. To produce simplified microbial mats, we have isolated members of 13 of the 15 top taxa from our iTag libraries into culture. Simplified microbial mats and simple co-cultures and consortia constructed from these isolates reproduce many of the natural patterns of biogeochemical cycling in the parent natural microbial mats, but against a background of far lower overall diversity, simplifying studies of changes in gene expression (over the short term), interactions between community members, and community composition changes (over the longer term), in response to environmental forcing.

  18. Comparative analysis and culturing of the microbial community of Aiptasia pallida, A Sea Anemone Model for Coral Biology

    KAUST Repository

    Binsarhan, Mohammad

    2016-01-01

    Recent works has highlighted the contribution of microbes to animal function. In this regard, the microbial community associated with corals has become a growing field of research in order to understand how microbes contribute to the host organisms’ response to environmental changes. It has been shown that microbes associated with corals have important functions in the coral holobiont such as immunity and nutrient assimilation. However, corals are notoriously difficult to work with. To this end, the sea anemone Aiptasia is becoming a model organism for coral symbiosis. Given the importance of host-­microbiome interactions, the topic of this thesis is to assess microbial structure of Aiptasia, culture prominent bacterial members, and compare bacterial community structure to corals. Different molecular methods have been applied using 16S rRNA bacterial gene fragments to characterize the microbial composition of Aiptasia. 16S rRNA gene sequence derived from cultured bacteria was compared to 16S rRNA gene sequences retrieved from native Red Sea Aiptasia. Inter-­individual as well as methodological differences were found to account for variance in microbiome composition. However, all approaches showed a highly abundant microbial taxon belonging to the genus Alteromonas in all samples. The Alteromonas species was successfully isolated for further research targeting microbiome selection mechanisms in Aiptasia. Future investigations by using different molecular tools will help to define the functions and relationship between the Aiptasia and its complex microbiome.

  19. Characterization of mixed-culture biofilms established in microbial fuel cells

    International Nuclear Information System (INIS)

    Yang, Suling; Du, Fangzhou; Liu, Hong

    2012-01-01

    For the successful operation of a microbial fuel cell, it is important to characterize the biofilm on the anode. The behavior of MFCs during initial biofilm growth and characterization of anodic biofilm were studied using two-chamber MFCs with activated sludge as inoculum. After three times' replacement of the anodic growth medium, the biofilms were well developed, and a maximum closed circuit potential of 0.41 V and 0.37 V (1000 Ω resistor) was achieved using acetate and glucose, respectively. Electron microscopy revealed that there were rod-shaped cells 0.2–0.3 μm wide by 1.5–2.5 μm long in the anode biofilm in the acetate-fed MFC, and these cells were mainly arranged by monolayer. The biofilm in the glucose-fed MFC was made of cocci-shaped cells in chains and a thick matrix. Both using acetate and glucose, the anodic bacterial communities were different than those of the activated sludge. Cyclic voltammograms suggested that extracellular electron transfer in these MFCs was accomplished mainly by the biofilms on the anode and not by bacteria-produced mediators. -- Highlights: ► The mixed-culture biofilms established in MFCs were characterized. ► The possible electron transfer mechanism was presented. ► In these MFCs the anodic area should be much larger.

  20. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    Directory of Open Access Journals (Sweden)

    E. González-Toril

    2009-01-01

    Full Text Available Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area and the Andes (Nevado Illimani summit, Bolivia, from Antarctic aerosol (French station Dumont d'Urville and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas, in a minimal mineral (oligotrophic media. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. Phylogenetic comparison with the currently available rDNA database allowed sequences belonging to Proteobacteria Alpha-, Beta- and Gamma-proteobacteria, Actinobacteria and Bacteroidetes phyla to be identified. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified and the marine Antarctic soil the poorest (only one. Snow samples from Col du Midi (Alps and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones. These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteriaclone. The only microorganism identified in the Antarctica soil (Brevundimonas sp. was also detected in the Antarctic aerosol. Most of the identified microorganisms had been detected previously in cold environments, marine sediments soils and rocks. Air current dispersal is the best model to explain the presence of very specific microorganisms, like those identified in this work, in environments very distant and very different from each other.

  1. Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid.

    Science.gov (United States)

    Liang, Shaobo; Gliniewicz, Karol; Gerritsen, Alida T; McDonald, Armando G

    2016-05-01

    Mixed cultures fermentation can be used to convert organic wastes into various chemicals and fuels. This study examined the fermentation performance of four batch reactors fed with different agricultural (orange, banana, and potato (mechanical and steam)) peel wastes using mixed cultures, and monitored the interval variation of reactor microbial communities with 16S rRNA genes using Illumina sequencing. All four reactors produced similar chemical profile with lactic acid (LA) as dominant compound. Acetic acid and ethanol were also observed with small fractions. The Illumina sequencing results revealed the diversity of microbial community decreased during fermentation and a community of largely lactic acid producing bacteria dominated by species of Lactobacillus developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Enrichment of probiotic ice cream with different dietary fibers: Structural characteristics and culture viability.

    Science.gov (United States)

    Akalın, A S; Kesenkas, H; Dinkci, N; Unal, G; Ozer, E; Kınık, O

    2018-01-01

    This study evaluated the effect of 5 dietary fibers (apple, orange, oat, bamboo, and wheat) on the physicochemical, rheological, and textural characteristics; sensory properties; and culture viability of probiotic ice cream stored at -18°C for 180 d. The presence of orange and apple fibers increased the titratable acidity, decreased the lightness (color) value of the ice creams, and enhanced the red and yellow coloration. Compared with the control sample, the consistency indices and apparent viscosities of the experimental samples increased with the addition of all dietary fibers except oat fiber. The highest viscosity was obtained in the sample fortified with apple fiber, whereas the ice cream containing orange fiber showed the highest hardness after d 60 of storage. The addition of orange and apple fibers significantly increased melting resistance; however, panelists did not generally like these samples in terms of taste-flavor. All ice creams had viable counts of Lactobacillus acidophilus of ≥7 log cfu/g during storage except the samples with orange and bamboo fiber. Bifidobacterium lactis counts were also found to be >6 log cfu/g in those samples until d 150 of storage. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Chlorinated Electron Acceptor Abundance Drives Selection of Dehalococcoides mccartyi (D. mccartyi Strains in Dechlorinating Enrichment Cultures and Groundwater Environments

    Directory of Open Access Journals (Sweden)

    Alfredo Pérez-de-Mora

    2018-05-01

    Full Text Available Dehalococcoides mccartyi (D. mccartyi strains differ primarily from one another by the number and identity of the reductive dehalogenase homologous catalytic subunit A (rdhA genes within their respective genomes. While multiple rdhA genes have been sequenced, the activity of the corresponding proteins has been identified in only a few cases. Examples include the enzymes whose substrates are groundwater contaminants such as trichloroethene (TCE, cis-dichloroethene (cDCE and vinyl chloride (VC. The associated rdhA genes, namely tceA, bvcA, and vcrA, along with the D. mccartyi 16S rRNA gene are often used as biomarkers of growth in field samples. In this study, we monitored an additional 12 uncharacterized rdhA sequences identified in the metagenome in the mixed D. mccartyi-containing culture KB-1 to monitor population shifts in more detail. Quantitative PCR (qPCR assays were developed for 15 D. mccartyi rdhA genes and used to measure population diversity in 11 different sub-cultures of KB-1, each enriched on different chlorinated ethenes and ethanes. The proportion of rdhA gene copies relative to D. mccartyi 16S rRNA gene copies revealed the presence of multiple distinct D. mccartyi strains in each culture, many more than the two strains inferred from 16S rRNA analysis. The specific electron acceptor amended to each culture had a major influence on the distribution of D. mccartyi strains and their associated rdhA genes. We also surveyed the abundance of rdhA genes in samples from two bioaugmented field sites (Canada and United Kingdom. Growth of the dominant D. mccartyi strain in KB-1 was detected at the United Kingdom site. At both field sites, the measurement of relative rdhA abundances revealed D. mccartyi population shifts over time as dechlorination progressed from TCE through cDCE to VC and ethene. These shifts indicate a selective pressure of the most abundant chlorinated electron acceptor, as was also observed in lab cultures. These

  4. Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures.

    Science.gov (United States)

    Silva, Fernando; Campanari, Sabrina; Matteo, Stefania; Valentino, Francesco; Majone, Mauro; Villano, Marianna

    2017-07-25

    A sequencing batch reactor (SBR) is typically used for selecting mixed microbial cultures (MMC) for polyhydroxyalkanoate (PHA) production. Since many waste streams suitable as process feedstock for PHA production are nitrogen-deficient, a nutrient supply in the SBR is typically required to allow for efficient microbial growth. The scope of this study was to devise a nitrogen feeding strategy which allows controlling the nitrogen levels during the feast and famine regime of a lab-scale SBR, thereby selecting for PHA-storing microorganisms. At the beginning of the cycle the reactor was fed with a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5gCODL -1 d -1 (i.e. 260CmmolL -1 d -1 ), whereas nitrogen (in the form of ammonium sulphate) was added either simultaneously to the carbon feed (coupled feeding strategy) or after the end of the feast phase (uncoupled feeding strategy). As a main result, PHA production was more than doubled (up to about 1300±64mgCODL -1 ) when carbon and nitrogen were separately fed and the higher PHA production also corresponded to an 82% increase in the polymer HV content (up to 20±1%, wtwt -1 ). Three SBR runs were performed with the uncoupled carbon and nitrogen feeding at different carbon to nitrogen (C/N) ratios (of 14.3, 17.9, and 22.3CmolNmol -1 , respectively) which were varied by progressively reducing the concentration of the nitrogen feeding. In spite of a comparable PHA storage yield at 14.3 and 17.9CmolNmol -1 (0.41±0.05 gCOD PHA gCOD VFA -1 and 0.38±0.05 gCOD PHA gCOD VFA -1 , respectively), the storage response of the selected MMC significantly decreased when the C/N ratio was set at the highest investigated value. Notably, an increase in this parameter also resulted in a change in the HV content in the polymer regardless the composition of the organic acids solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Using Culture beyond Its Borders: The Use of Content-Enriched Instruction and the Effects of Input Enhancement on Learning in High School French Classes

    Science.gov (United States)

    Grim, Frédérique

    2014-01-01

    The American Council on the Teaching of Foreign Languages Standards emphasizes the integration of Communication, Cultures, Connections, Comparisons, and Communities within teaching. "Content-enriched instruction" aims at teaching linguistic forms within content and eases the implementation of the five Cs. The focus is at beginning levels…

  6. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities.

    Science.gov (United States)

    Oliveira, Catarina S S; Silva, Carlos E; Carvalho, Gilda; Reis, Maria A

    2017-07-25

    Production of polyhydroxyalkanoates (PHAs) by open mixed microbial cultures (MMCs) has been attracting increasing interest as an alternative technology to PHA production by pure cultures, due to the potential for lower costs associated with the use of open systems (eliminating the requirement for sterile conditions) and the utilisation of cheap feedstock (industrial and agricultural wastes). Such technology relies on the efficient selection of an MMC enriched in PHA-accumulating organisms. Fermented cheese whey, a protein-rich complex feedstock, has been used previously to produce PHA using the feast and famine regime for selection of PHA accumulating cultures. While this selection strategy was found efficient when operated at relatively low organic loading rate (OLR, 2g-CODL -1 d -1 ), great instability and low selection efficiency of PHA accumulating organisms were observed when higher OLR (ca. 6g-CODL -1 d -1 ) was applied. High organic loading is desirable as a means to enhance PHA productivity. In the present study, a new selection strategy was tested with the aim of improving selection for high OLR. It was based on uncoupling carbon and nitrogen supply and was implemented and compared with the conventional feast and famine strategy. For this, two selection reactors were fed with fermented cheese whey applying an OLR of ca. 8.5g-CODL -1 (with 3.8g-CODL -1 resulting from organic acids and ethanol), and operated in parallel under similar conditions, except for the timing of nitrogen supplementation. Whereas in the conventional strategy nitrogen and carbon substrates were added simultaneously at the beginning of the cycle, in the uncoupled substrates strategy, nitrogen addition was delayed to the end of the feast phase (i.e. after exogenous carbon was exhausted). The two different strategies selected different PHA-storing microbial communities, dominated by Corynebacterium and a Xantomonadaceae, respectively with the conventional and the new approaches. The new

  7. Enrichment culture and identification of endophytic methanotrophs isolated from peatland plants.

    Science.gov (United States)

    Stępniewska, Zofia; Goraj, Weronika; Kuźniar, Agnieszka; Łopacka, Natalia; Małysza, Magdalena

    2017-09-01

    Aerobic methane-oxidizing bacteria (MOB) are an environmentally significant group of microorganisms due to their role in the global carbon cycle. Research conducted over the past few decades has increased the interest in discovering novel genera of methane-degrading bacteria, which efficiently utilize methane and decrease the global warming effect. Moreover, methanotrophs have more promising applications in environmental bioengineering, biotechnology, and pharmacy. The investigations were undertaken to recognize the variety of endophytic methanotrophic bacteria associated with Carex nigra, Vaccinium oxycoccus, and Eriophorum vaginatum originating from Moszne peatland (East Poland). Methanotrophic bacteria were isolated from plants by adding sterile fragments of different parts of plants (roots and stems) to agar mineral medium (nitrate mineral salts (NMS)) and incubated at different methane values (1-20% CH4). Single colonies were streaked on new NMS agar media and, after incubation, transferred to liquid NMS medium. Bacterial growth dynamics in the culture solution was studied by optical density-OD600 and methane consumption. Changes in the methane concentration during incubation were controlled by the gas chromatography technique. Characterization of methanotrophs was made by fluorescence in situ hybridization (FISH) with Mg705 and Mg84 for type I methanotrophs and Ma450 for type II methanotrophs. Identification of endophytes was performed after 16S ribosomal RNA (rRNA) and mmoX gene amplification. Our study confirmed the presence of both types of methanotrophic bacteria (types I and II) with the predominance of type I methanotrophs. Among cultivable methanotrophs, there were different strains of the genus Methylomonas and Methylosinus. Furthermore, we determined the potential of the examined bacteria for methane oxidation, which ranged from 0.463 ± 0.067 to 5.928 ± 0.169 μmol/L CH4/mL/day.

  8. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques.

    Science.gov (United States)

    Bjerrum, L; Engberg, R M; Leser, T D; Jensen, B B; Finster, K; Pedersen, K

    2006-07-01

    The microbial communities of the ileum and cecum of broiler chickens from a conventional and an organic farm were investigated using conventional culture techniques as well as cloning and sequencing of 16S rRNA genes. Eighty-five percent of the 557 cloned sequences were <97% related to known cultured species. The chicken ileum was dominated by lactobacilli, whereas the cecum harbored a more diverse microbial community. The cecum was dominated by a large group of bacteria with hitherto no close cultured relatives but most closely related to Faecalibacterium prausnitzii. Approximately 49 and 20% of the cecal clones belonged to this cluster in conventional and organic broiler chickens, respectively. We were, however, able to recover a number of these phylotypes by cultivation, and the isolates were shown to be butyric acid producers. The investigation was a descriptive rather than a comparative study of 2 different rearing systems; however, several differences were observed. For instance, Clostridium perfringens was found in significantly higher numbers in the birds from the organic farm compared with the conventional broilers, probably due to the addition of salinomycin to the conventional feed. In the ileum, the abundance of the different Lactobacillus species differed between the 2 broiler types. The culture-based and culture-independent techniques complemented each other well. Strengths and limitations of the different methods are discussed.

  9. Microbial ecology: new insights into the great wide-open culture independent sea

    Science.gov (United States)

    Microbial communities are the basis for most, if not all, biochemical or biogeochemical functions in the environment. These environments are vastly different with respect to matrix, function, and biodiversity, and as such, present minute to stark differences in their respective microbial communities...

  10. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source

    International Nuclear Information System (INIS)

    Chang, Yi-Huang; Chang, Ku-Shang; Lee, Ching-Fu; Hsu, Chuan-Liang; Huang, Cheng-Wei; Jang, Hung-Der

    2015-01-01

    To realize the feasibility of biodiesel production from high-lipid cell culture, microbial lipid production by the oleaginous yeasts was studied using glucose and sucrose as carbon source. Among the tested strains, Cryptococcus sp. SM5S05 accumulated the highest levels of intracellular lipids. The crude lipid contents of Cryptococcus sp. cultured in yeast malt agar reached 30% on a dry weight basis. The accumulation of lipids strongly depended on carbon/nitrogen ratio and nitrogen concentration. The highest content of lipids, measured at a carbon/nitrogen ratio of 60–90 and at a nitrogen concentration of 0.2%, was 60–57% lipids in the dry biomass. Batch cultures using corncob hydrolysate demonstrated that there was minimal inhibitory effect with a reducing sugar concentration of 60 g l −1 or higher. Batch cultures of Cryptococcus sp. SM5S05 in the corncob hydrolysate medium with 60 g l −1 glucose resulted in a dry biomass, lipid yields, and content of 12.6 g l −1 , 7.6 g l −1 , and 60.2%, respectively. The lipids contained mainly long-chain saturated and unsaturated fatty acids with 16 and 18 carbon atoms. The fatty acid profile of Cryptococcus oils was quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with corncob hydrolysate being utilized as the raw material for the oleaginous yeast. The results showed that the microbial lipid from Cryptococcus sp. was a potential alternative resource for biodiesel production. - Highlights: • Microbial oil production from oleaginous yeast Cryptococcus sp. was studied. • Accumulation of lipid strongly depended on C/N ratio and nitrogen concentration. • Cultures in hydrolysate medium with 60 g/l glucose resulted in maximum lipid yields. • Maximal lipid content in the Cryptococcus sp. were 60.2% on dried weight basis

  11. Incubation of Aquilaria subintegra with Microbial Culture Supernatants Enhances Production of Volatile Compounds and Improves Quality of Agarwood Oil.

    Science.gov (United States)

    Monggoot, Sakon; Kulsing, Chadin; Wong, Yong Foo; Pripdeevech, Patcharee

    2018-06-01

    Incubation with microbial culture supernatants improved essential oil yield from Aquilaria subintegra woodchips. The harvested woodchips were incubated with de man, rogosa and sharpe (MRS) agar, yeast mold (YM) agar medium and six different microbial culture supernatants obtained from Lactobacillus bulgaricus , L. acidophilus , Streptococcus thermophilus , Lactococcus lactis , Saccharomyces carlsbergensis and S. cerevisiae prior to hydrodistillation. Incubation with lactic acid bacteria supernatants provided higher yield of agarwood oil (0.45% w/w) than that obtained from yeast (0.25% w/w), agar media (0.23% w/w) and water (0.22% w/w). The composition of agarwood oil from all media and microbial supernatant incubations was investigated by using gas chromatography-mass spectrometry. Overall, three major volatile profiles were obtained, which corresponded to water soaking (control), as well as, both YM and MRS media, lactic acid bacteria, and yeast supernatant incubations. Sesquiterpenes and their oxygenated derivatives were key components of agarwood oil. Fifty-two volatile components were tentatively identified in all samples. Beta-agarofuran, α-eudesmol, karanone, α-agarofuran and agarospirol were major components present in most of the incubated samples, while S. cerevisiae -incubated A. subintegra provided higher amount of phenyl acetaldehyde. Microbial culture supernatant incubation numerically provided the highest yield of agarwood oil compared to water soaking traditional method, possibly resulting from activity of extracellular enzymes produced by the microbes. Incubation of agarwood with lactic acid bacteria supernatant significantly enhanced oil yields without changing volatile profile/composition of agarwood essential oil, thus this is a promising method for future use.

  12. Effect of nitrogen source on methanol oxidation and genetic diversity of methylotrophic mixed cultures enriched from pulp and paper mill biofilms.

    Science.gov (United States)

    Babbitt, Callie W; Lindner, Angela S

    2011-04-01

    Methanol-oxidizing bacteria may play an important role in the development and use of biological treatment systems for the removal of methanol from industrial effluents. Optimization of methanol degradation potential in such systems is contingent on availability of nutrients, such as nitrogen, in the most favorable form and concentration. To that end, this study examined the variation in growth, methanol degradation, and bacterial diversity of two mixed methylotrophic cultures that were provided nitrogen either as ammonium or nitrate and in three different concentrations. Methanol-degrading cultures were enriched from biofilms sampled at a pulp and paper mill and grown in liquid batch culture with methanol as the only carbon source and either ammonium or nitrate as the only added nitrogen source. Results indicate that growth and methanol removal of the mixed cultures increase directly with increased nitrogen, added in either form. However, methanol removal and bacterial diversity, as observed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) methods, were higher when using nitrate as the nitrogen source for enrichment and growth, rather than ammonium. Based on results described here, nitrate may potentially be a better nitrogen source when enriching or working with mixed methylotrophic cultures, and possibly more effective when used as a nutrient addition to biofilters.

  13. Cultivation and irradiation of human fibroblasts in a medium enriched with platelet lysate for obtaining feeder layer in epidermal cell culture

    International Nuclear Information System (INIS)

    Yoshito, Daniele

    2011-01-01

    For over 30 years, the use of culture medium, enriched with bovine serum, and murines fibroblasts, with the rate of proliferation controlled by irradiation or by share anticarcinogenic drugs, has been playing successfully its role in assisting in the development of keratinocytes in culture, for clinical purposes. However, currently there is a growing concern about the possibility of transmitting prions and animals viruses to transplanted patients. Taking into account this concern, the present work aims to cultivate human fibroblasts in a medium enriched with human platelets lysate and determine the irradiation dose of these cells, for obtaining feeder layer in epidermal cell culture. For carrying out the proposed objective, platelets lysis has standardized, this lysate was used for human fibroblasts cultivation and the irradiation dose enough to inhibit its duplication was evaluated. Human keratinocytes were cultivated in these feeder layers, in culture medium enriched with the lysate. With these results we conclude that the 10% platelets lysate promoted a better adhesion and proliferation of human fibroblasts and in all dose levels tested (60 to 300 Gy), these had their mitotic activity inactivated by ionizing irradiation, being that the feeder layers obtained with doses from 70 to 150 Gy were those that provided the best development of keratinocytes in medium containing 2.5% of human platelet lysate. Therefore, it was possible to standardize both the cultivation of human fibroblasts as its inactivation for use as feeder layer in culture of keratinocytes, so as to eliminate xenobiotics components. (author)

  14. Effects of dietary changes and yeast culture (Saccharomyces cerevisiae) on rumen microbial fermentation of Holstein heifers.

    Science.gov (United States)

    Moya, D; Calsamiglia, S; Ferret, A; Blanch, M; Fandiño, J I; Castillejos, L; Yoon, I

    2009-09-01

    The effects of a dietary challenge to induce digestive upsets and supplementation with yeast culture on rumen microbial fermentation were studied using 12 Holstein heifers (277 +/- 28 kg of BW) fitted with a ruminal cannula, in a crossover design with 2 periods of 5 wk. In each period, after 3 wk of adaptation to a 100% forage diet, the dietary challenge consisted of increasing the amount of grain at a rate of 2.5 kg/d (as-fed basis) over a period of 4 d, until a 10:90 forage:concentrate diet was reached, and then it was maintained for 10 d. Between periods, animals were fed again the 100% forage diet without any treatment for 1 wk as a wash-out period. Treatments started the first day of each period, and they were a control diet (CL) or the same diet with addition of yeast culture (YC, Diamond V XPCLS). Digestive upsets were determined by visual observation of bloat or by a reduction in feed intake (as-fed basis) of 50% or more compared with intake on the previous day. Feed intake was determined daily at 24-h intervals during the adaptation period and daily at 2, 6, and 12 h postfeeding during the dietary challenge. Ruminal liquid samples were collected daily during the dietary challenge to determine ruminal pH at 0, 3, 6, and 12 h postfeeding, and total and individual VFA, lactic acid, ammonia-N, and rumen fluid viscosity at 0 and 6 h postfeeding. The 16s rRNA gene copies of Streptococcus bovis and Megasphaera elsdenii were determined by quantitative PCR. Foam height and strength of the rumen fluid were also determined the day after the digestive upset to evaluate potential foam production. A total of 20 cases (83.3%) of digestive upsets were recorded in both periods during the dietary challenge, all diagnosed due to a reduction in feed intake. Rumen fermentation profile at 0 h on the digestive upset day was characterized by low ruminal pH, which remained under 6.0 for 18 h, accompanied by elevated total VFA concentration and, in some cases, by elevated lactate

  15. Polyhydroxyalkanoate synthesis by mixed microbial consortia cultured on fermented dairy manure: Effect of aeration on process rates/yields and the associated microbial ecology.

    Science.gov (United States)

    Coats, Erik R; Watson, Benjamin S; Brinkman, Cynthia K

    2016-12-01

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers that can substitute for petroleum-based plastics in a variety of applications. One avenue to commercial PHA production involves coupling waste-based synthesis with the use of mixed microbial consortia (MMC). In this regard, production requires maximizing the enrichment of a MMC capable of feast-famine PHA synthesis, with the metabolic response induced through imposition of aerobic-dynamic feeding (ADF) conditions. However, the concept of PHA production in complex matrices remains unrefined; process operational improvements are needed, along with an enhanced understanding of the MMC. Research presented herein investigated the effect of aeration on feast-famine PHA synthesis, with four independent aeration state systems studied; MMC were fed volatile fatty acid (VFA)-rich fermented dairy manure. Regardless of the aeration state, all MMC exhibited a feast-famine response based on observed carbon cycling. Moreover, there was no statistical difference in PHA synthesis rates, with q PHA ranging from 0.10 to 0.19 CmmolPHA gVSS -1 min -1 ; VFA uptake rates exhibited similar statistical indifferences. PHA production assessments on the enriched MMC resulted in maximum intracellular concentrations ranging from 22.5 to 90.7% (mgPHA mgVSS -1 ); at maximum concentration, the mean hydroxyvalerate mol content was 73 ± 0.6%. While a typical feast-famine dissolved oxygen (DO) pattern was observed at maximum aeration, less resolution was observed at decreasing aeration rates, suggesting that DO may not be an optimal process monitoring parameter. At lower aeration states, nitrogen cycling patterns, supported by molecular investigations targeting AOBs and NOBs, indicate that NO 2 and NO 3 sustained feast-famine PHA synthesis. Next-generation sequencing analysis of the respective MMC revealed numerous and diverse genera exhibiting the potential to achieve PHA synthesis, suggesting functional redundancy embedded in the diverse

  16. Evaluation of microbial diversity in the pilot-scale beer brewing process by culture-dependent and culture-independent method.

    Science.gov (United States)

    Takahashi, M; Kita, Y; Kusaka, K; Mizuno, A; Goto-Yamamoto, N

    2015-02-01

    In the brewing industry, microbial management is very important for stabilizing the quality of the product. We investigated the detailed microbial community of beer during fermentation and maturation, to manage beer microbiology in more detail. We brewed a beer (all-malt) and two beerlike beverages (half- and low-malt) in pilot-scale fermentation and investigated the microbial community of them using a next-generation sequencer (454 GS FLX titanium), quantitative PCR, flow cytometry and a culture-dependent method. From 28 to 88 genera of bacteria and from 9 to 38 genera of eukaryotic micro-organisms were detected in each sample. Almost all micro-organisms died out during the boiling process. However, bacteria belonging to the genera Acidovorax, Bacillus, Brevundimonas, Caulobacter, Chryseobacterium, Methylobacterium, Paenibacillus, Polaromonas, Pseudomonas, Ralstonia, Sphingomonas, Stenotrophomonas, Tepidimonas and Tissierella were detected at the early and middle stage of fermentation, even though their cell densities were low (below approx. 10(3) cells ml(-1) ) and they were not almost detected at the end of fermentation. We revealed that the microbial community of beer during fermentation and maturation is very diverse and several bacteria possibly survive during fermentation. In this study, we revealed the detailed microbial communities of beer using next-generation sequencing. Some of the micro-organisms detected in this study were found in beer brewing process for the first time. Additionally, the possibility of growth of several bacteria at the early and middle stage of fermentation was suggested. © 2014 The Society for Applied Microbiology.

  17. Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer.

    Science.gov (United States)

    Kuppardt, Anke; Kleinsteuber, Sabine; Vogt, Carsten; Lüders, Tillmann; Harms, Hauke; Chatzinotas, Antonis

    2014-08-01

    Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.

  18. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures.

    Science.gov (United States)

    Mazzoleni, Stefano; Landi, Carmine; Cartenì, Fabrizio; de Alteriis, Elisabetta; Giannino, Francesco; Paciello, Lucia; Parascandola, Palma

    2015-07-30

    Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.

  19. Identification of Multiple Dehalogenase Genes Involved in Tetrachloroethene-to-Ethene Dechlorination in a Dehalococcoides-Dominated Enrichment Culture

    Directory of Open Access Journals (Sweden)

    Mohamed Ismaeil

    2017-01-01

    Full Text Available Chloroethenes (CEs are widespread groundwater toxicants that are reductively dechlorinated to nontoxic ethene (ETH by members of Dehalococcoides. This study established a Dehalococcoides-dominated enrichment culture (designated “YN3” that dechlorinates tetrachloroethene (PCE to ETH with high dechlorination activity, that is, complete dechlorination of 800 μM PCE to ETH within 14 days in the presence of Dehalococcoides species at 5.7±1.9×107 copies of 16S rRNA gene/mL. The metagenome of YN3 harbored 18 rdhA genes (designated YN3rdhA1–18 encoding the catalytic subunit of reductive dehalogenase (RdhA, four of which were suggested to be involved in PCE-to-ETH dechlorination based on significant increases in their transcription in response to CE addition. The predicted proteins for two of these four genes, YN3RdhA8 and YN3RdhA16, showed 94% and 97% of amino acid similarity with PceA and VcrA, which are well known to dechlorinate PCE to trichloroethene (TCE and TCE to ETH, respectively. The other two rdhAs, YN3rdhA6 and YN3rdhA12, which were never proved as rdhA for CEs, showed particularly high transcription upon addition of vinyl chloride (VC, with 75±38 and 16±8.6 mRNA copies per gene, respectively, suggesting their possible functions as novel VC-reductive dehalogenases. Moreover, metagenome data indicated the presence of three coexisting bacterial species, including novel species of the genus Bacteroides, which might promote CE dechlorination by Dehalococcoides.

  20. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques

    DEFF Research Database (Denmark)

    Friis-Holm, Lotte Bjerrum; Engberg, R.M.; Leser, T.D.

    2006-01-01

    The microbial communities of the ileum and cecum of broiler chickens from a conventional and an organic farm were investigated using conventional culture techniques as well as cloning and sequencing of 16S rRNA genes. Eighty-five percent of the 557 cloned sequences were ...% of the cecal clones belonged to this cluster in conventional and organic broiler chickens, respectively. We were, however, able to recover a number of these phylotypes by cultivation, and the isolates were shown to be butyric acid producers. The investigation was a descriptive rather than a comparative study...

  1. Characterization of Fe (III)-reducing enrichment culture and isolation of Fe (III)-reducing bacterium Enterobacter sp. L6 from marine sediment.

    Science.gov (United States)

    Liu, Hongyan; Wang, Hongyu

    2016-07-01

    To enrich the Fe (III)-reducing bacteria, sludge from marine sediment was inoculated into the medium using Fe (OH)3 as the sole electron acceptor. Efficiency of Fe (III) reduction and composition of Fe (III)-reducing enrichment culture were analyzed. The results indicated that the Fe (III)-reducing enrichment culture with the dominant bacteria relating to Clostridium and Enterobacter sp. had high Fe (III) reduction of (2.73 ± 0.13) mmol/L-Fe (II). A new Fe (III)-reducing bacterium was isolated from the Fe (III)-reducing enrichment culture and identified as Enterobacter sp. L6 by 16S rRNA gene sequence analysis. The Fe (III)-reducing ability of strain L6 under different culture conditions was investigated. The results indicated that strain L6 had high Fe (III)-reducing activity using glucose and pyruvate as carbon sources. Strain L6 could reduce Fe (III) at the range of NaCl concentrations tested and had the highest Fe (III) reduction of (4.63 ± 0.27) mmol/L Fe (II) at the NaCl concentration of 4 g/L. This strain L6 could reduce Fe (III) with unique properties in adaptability to salt variation, which indicated that it can be used as a model organism to study Fe (III)-reducing activity isolated from marine environment. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Multiplexed Single Intact Cell Droplet Digital PCR (MuSIC ddPCR) Method for Specific Detection of Enterohemorrhagic E. coli (EHEC) in Food Enrichment Cultures

    OpenAIRE

    McMahon, Tanis C.; Blais, Burton W.; Wong, Alex; Carrillo, Catherine D.

    2017-01-01

    Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin (stx) and intimin (eae)]. However, false positives arise when complex food matrices, such as beef, contain mixtu...

  3. Improved detection of Burkholderia pseudomallei from non-blood clinical specimens using enrichment culture and PCR: narrowing diagnostic gap in resource-constrained settings.

    Science.gov (United States)

    Tellapragada, Chaitanya; Shaw, Tushar; D'Souza, Annet; Eshwara, Vandana Kalwaje; Mukhopadhyay, Chiranjay

    2017-07-01

    To evaluate the diagnostic utility of enrichment culture and PCR for improved case detection rates of non-bacteraemic form of melioidosis in limited resource settings. Clinical specimens (n = 525) obtained from patients presenting at a tertiary care hospital of South India with clinical symptoms suggestive of community-acquired pneumonia, lower respiratory tract infections, superficial or internal abscesses, chronic skin ulcers and bone or joint infections were tested for the presence of Burkholderia pseudomallei using conventional culture (CC), enrichment culture (EC) and PCR. Sensitivity, specificity, positive and negative predictive values of CC and PCR were initially deduced using EC as the gold standard method. Further, diagnostic accuracies of all the three methods were analysed using Bayesian latent class modelling (BLCM). Detection rates of B. pseudomallei using CC, EC and PCR were 3.8%, 5.3% and 6%, respectively. Diagnostic sensitivities and specificities of CC and PCR were 71.4, 98.4% and 100 and 99.4%, respectively in comparison with EC as the gold standard test. With Bayesian latent class modelling, EC and PCR demonstrated sensitivities of 98.7 and 99.3%, respectively, while CC showed a sensitivity of 70.3% for detection of B. pseudomallei. An increase of 1.6% (95% CI: 1.08-4.32%) in the case detection rate of melioidosis was observed in the study population when EC and/or PCR were used in adjunct to the conventional culture technique. Our study findings underscore the diagnostic superiority of enrichment culture and/or PCR over conventional microbiological culture for improved case detection of melioidosis from non-blood clinical specimens. © 2017 John Wiley & Sons Ltd.

  4. The diagnosis of chronic endometritis in infertile asymptomatic women: a comparative study of histology, microbial cultures, hysteroscopy, and molecular microbiology.

    Science.gov (United States)

    Moreno, Inmaculada; Cicinelli, Ettore; Garcia-Grau, Iolanda; Gonzalez-Monfort, Marta; Bau, Davide; Vilella, Felipe; De Ziegler, Dominique; Resta, Leonardo; Valbuena, Diana; Simon, Carlos

    2018-06-01

    Chronic endometritis is a persistent inflammation of the endometrial mucosa caused by bacterial pathogens such as Enterobacteriaceae, Enterococcus, Streptococcus, Staphylococcus, Mycoplasma, and Ureaplasma. Although chronic endometritis can be asymptomatic, it is found in up to 40% of infertile patients and is responsible for repeated implantation failure and recurrent miscarriage. Diagnosis of chronic endometritis is based on hysteroscopy of the uterine cavity, endometrial biopsy with plasma cells being identified histologically, while specific treatment is determined based on microbial culture. However, not all microorganisms implicated are easily or readily culturable needing a turnaround time of up to 1 week. We sought to develop a molecular diagnostic tool for chronic endometritis based on real-time polymerase chain reaction equivalent to using the 3 classic methods together, overcoming the bias of using any of them alone. Endometrial samples from patients assessed for chronic endometritis (n = 113) using at least 1 or several conventional diagnostic methods namely histology, hysteroscopy, and/or microbial culture, were blindly evaluated by real-time polymerase chain reaction for the presence of 9 chronic endometritis pathogens: Chlamydia trachomatis, Enterococcus, Escherichia coli, Gardnerella vaginalis, Klebsiella pneumoniae, Mycoplasma hominis, Neisseria gonorrhoeae, Staphylococcus, and Streptococcus. The sensitivity and specificity of the molecular analysis vs the classic diagnostic techniques were compared in the 65 patients assessed by all 3 recognized classic methods. The molecular method showed concordant results with histological diagnosis in 30 samples (14 double positive and 16 double negative) with a matching accuracy of 46.15%. Concordance of molecular and hysteroscopic diagnosis was observed in 38 samples (37 double positive and 1 double negative), with an accuracy of 58.46%. When the molecular method was compared to microbial culture

  5. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.

    Science.gov (United States)

    Hanly, Timothy J; Henson, Michael A

    2011-02-01

    Sequential uptake of pentose and hexose sugars that compose lignocellulosic biomass limits the ability of pure microbial cultures to efficiently produce value-added bioproducts. In this work, we used dynamic flux balance modeling to examine the capability of mixed cultures of substrate-selective microbes to improve the utilization of glucose/xylose mixtures and to convert these mixed substrates into products. Co-culture simulations of Escherichia coli strains ALS1008 and ZSC113, engineered for glucose and xylose only uptake respectively, indicated that improvements in batch substrate consumption observed in previous experimental studies resulted primarily from an increase in ZSC113 xylose uptake relative to wild-type E. coli. The E. coli strain ZSC113 engineered for the elimination of glucose uptake was computationally co-cultured with wild-type Saccharomyces cerevisiae, which can only metabolize glucose, to determine if the co-culture was capable of enhanced ethanol production compared to pure cultures of wild-type E. coli and the S. cerevisiae strain RWB218 engineered for combined glucose and xylose uptake. Under the simplifying assumption that both microbes grow optimally under common environmental conditions, optimization of the strain inoculum and the aerobic to anaerobic switching time produced an almost twofold increase in ethanol productivity over the pure cultures. To examine the effect of reduced strain growth rates at non-optimal pH and temperature values, a break even analysis was performed to determine possible reductions in individual strain substrate uptake rates that resulted in the same predicted ethanol productivity as the best pure culture. © 2010 Wiley Periodicals, Inc.

  6. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    Science.gov (United States)

    Jahnke, Linda L.; Edger, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; DesMarais, David J.; Cady, Sherry; Hope, Janet M.; Summons, Roger E.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarkers and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber. "Thermocrinis sp. HI", Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyls. The fatty acids of all cultured organisms were dominated by a very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as CIS() monoethers with the expection of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known 'pink-streamers community' (PSC), siliceous filaments of a microbial consortia growing in the upper outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic Aquificales n-C-20:1 and cy-C-21, and in addition, a series of iso-branched fatty acids from i-C-15:0 to i-C-21:0, With i-C-17:0 dominant in the PSC and i-C-19:0 in the biofilm, suggesting the presence of two major bacterial groups. Bacteriohopanepolyols were absent and the minute quantities of archaeol detected showed that Archaea were only minor constituents. Carbon isotopic compositions of the PSC yielded information about community structure and likely physiology. Biomass was C-13-depleted (10.9%) relative to available

  7. Leveraging culture collections for the discovery and development of microbial biological control agents

    Science.gov (United States)

    The incorporation of living microbial biological control agents into integrated pest management programs is highly desirable because it reduces the use of chemical insecticides harmful to livestock, humans and the environment. In addition, it provides an alternative means to combat resistance to che...

  8. Utilizing a Robotic Sprayer for High Lateral and Mass Resolution MALDI FT-ICR MSI of Microbial Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Anderton, Christopher R.; Chu, Rosalie K.; Tolic, Nikola; Creissen, Alain V.; Pasa-Tolic, Ljiljana

    2016-01-07

    The ability to visualize biochemical interactions between microbial communities using MALDI MSI has provided tremendous insights into a variety of biological fields. Matrix application using a sieve proved to be incredibly useful, but it had many limitations that include uneven matrix coverage and limitation in the types of matrices one could employ in their studies. Recently, there has been a concerted effort to improve matrix application for studying agar plated microbial cultures, many of which utilized automated matrix sprayers. Here, we describe the usefulness of using a robotic sprayer for matrix application. The robotic sprayer has two-dimensional control over where matrix is applied and a heated capillary that allows for rapid drying of the applied matrix. This method provided a significant increase in MALDI sensitivity over the sieve method, as demonstrated by FT-ICR MS analysis, facilitating the ability to gain higher lateral resolution MS images of Bacillus Subtilis than previously reported. This method also allowed for the use of different matrices to be applied to the culture surfaces.

  9. Multiplexed Single Intact Cell Droplet Digital PCR (MuSIC ddPCR) Method for Specific Detection of Enterohemorrhagic E. coli (EHEC) in Food Enrichment Cultures.

    Science.gov (United States)

    McMahon, Tanis C; Blais, Burton W; Wong, Alex; Carrillo, Catherine D

    2017-01-01

    Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin ( stx ) and intimin ( eae )]. However, false positives arise when complex food matrices, such as beef, contain mixtures of eae -negative STEC and eae -positive E. coli , but no EHEC with both markers in a single cell. To reduce false-positive detection of EHEC in food enrichment samples, a Multiplexed, Single Intact Cell droplet digital PCR (MuSIC ddPCR) assay capable of detecting the co-occurrence of the stx and eae genes in a single bacterial cell was developed. This method requires: (1) dispersal of intact bacteria into droplets; (2) release of genomic DNA (gDNA) by heat lysis; and (3) amplification and detection of genetic targets ( stx and eae ) using standard TaqMan chemistries with ddPCR. Performance of the method was tested with panels of EHEC and non-target E. coli . By determining the linkage (i.e., the proportion of droplets in which stx and eae targets were both amplified), samples containing EHEC (typically greater than 20% linkage) could be distinguished from samples containing mixtures of eae -negative STEC and eae -positive E. coli (0-2% linkage). The use of intact cells was necessary as this linkage was not observed with gDNA extracts. EHEC could be accurately identified in enrichment broth cultures containing excess amounts of background E. coli and in enrichment cultures derived from ground beef/pork and leafy-green produce samples. To our knowledge, this is the first report of dual-target detection in single bacterial cells using ddPCR. The application of MuSIC ddPCR to enrichment-culture screening would reduce false-positives, thereby improving the cost, speed, and

  10. Evidence for cooperative mineralization of diuron by Arthrobacter sp. BS2 and Achromobacter sp. SP1 isolated from a mixed culture enriched from diuron exposed environments.

    Science.gov (United States)

    Devers-Lamrani, Marion; Pesce, Stéphane; Rouard, Nadine; Martin-Laurent, Fabrice

    2014-12-01

    Diuron was found to be mineralized in buffer strip soil (BS) and in the sediments (SED) of the Morcille river in the Beaujolais vineyard repeatedly treated with this herbicide. Enrichment cultures from BS and SED samples led to the isolation of three bacterial strains transforming diuron to 3,4-dichloroaniline (3,4-DCA) its aniline derivative. 16S rRNA sequencing revealed that they belonged to the genus Arthrobacter (99% of similarity to Arthrobacter globiformis strain K01-01) and were designated as Arthrobacter sp. BS1, BS2 and SED1. Diuron-degrading potential characterized by sequencing of the puhA gene, characterizing the diuron-degradaing potential, revealed 99% similarity to A. globiformis strain D47 puhA gene isolated a decade ago in the UK. These isolates were also able to use chlorotoluron for their growth. Although able to degrade linuron and monolinuron to related aniline derivatives they were not growing on them. Enrichment cultures led to the isolation of a strain from the sediments entirely degrading 3,4-DCA. 16S rRNA sequence analysis showed that it was affiliated to the genus Achromobacter (99% of similarity to Achromobacter sp. CH1) and was designated as Achromobacter sp. SP1. The dcaQ gene encoding enzyme responsible for the transformation of 3,4-DCA to chlorocatechol was found in SP1 with 99% similarity to that of Comamonas testosteroni WDL7. This isolate also used for its growth a range of anilines (3-chloro-4-methyl-aniline, 4-isopropylaniline, 4-chloroaniline, 3-chloroaniline, 4-bromoaniline). The mixed culture composed of BS2 and SP1 strains entirely mineralizes (14)C-diuron to (14)CO2. Diuron-mineralization observed in the enrichment culture could result from the metabolic cooperation between these two populations. Copyright © 2014. Published by Elsevier Ltd.

  11. A simple laser-based device for simultaneous microbial culture and absorbance measurement

    Science.gov (United States)

    Abrevaya, X. C.; Cortón, E.; Areso, O.; Mauas, P. J. D.

    2013-07-01

    In this work we present a device specifically designed to study microbial growth with several applications related to environmental microbiology and other areas of research as astrobiology. The Automated Measuring and Cultivation device (AMC-d) enables semi-continuous absorbance measurements directly during cultivation. It can measure simultaneously up to 16 samples. Growth curves using low and fast growing microorganism were plotted, including Escherichia coli and Haloferax volcanii, a halophilic archaeon.

  12. A Simple Laser-Based Device for Simultaneous Microbial Culture and Absorbance Measurement

    OpenAIRE

    Abrevaya, X. C.; Cortón, E.; Areso, O.; Mauas, P. J. D.

    2012-01-01

    In this work we present a device specifically designed to study microbial growth with several applications related to environmental microbiology and other areas of research as astrobiology. The Automated Measuring and Cultivation device (AMC-d) enables semi-continuous absorbance measurements directly during cultivation. It can measure simultaneously up to 16 samples. Growth curves using low and fast growing microorganism were plotted, including Escherichia coli and Haloferax volcanii, a halop...

  13. Egypt’s Red Sea Coast: Phylogenetic analysis of cultured microbial consortia in industrialized sites

    Directory of Open Access Journals (Sweden)

    Ghada A. Mustafa

    2014-08-01

    Full Text Available The Red Sea has a unique geography and ecosystem and its shores are very rich in mangrove, macro-algae and coral reefs. Different sources of pollution are affecting the Red Sea shores and waters which impacts biological life including microbial life. We assessed the effects of industrialization, along the Egyptian Red Sea coast in eight coastal sites and two lakes, on microbial life. The bacterial community in sediment samples was analyzed using bacterial 16S rDNApyrosequencing of V6-V4 hypervariable regions. Taxonomical assignment of 131,402 significant reads to major bacterial taxa revealed five main bacterial phyla dominating the sampled Red Sea sites. This includes Proteobacteria (68%, Firmicutes (13%, Fusobacteria (12%, Bacteriodetes (6% and Spirochetes (0.03%. Further analysis revealed distinct bacterial consortium formed mainly of: 1 marine Vibrio’s- suggesting a Marine Vibrio phenomenon 2 potential human pathogens and 3 oil-degrading bacteria. We discuss a distinct microbial consortium in Solar Lake West near Taba/Eilat and Saline Lake in Ras Muhammad; revealing the highest abundance of human pathogens versus no pathogens, respectively. Our results draw attention to the affects of industrialization on the Red Sea, and suggest further analysis to overcome hazardous affects on the impacted sites.

  14. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity.

    Science.gov (United States)

    Velmourougane, Kulandaivelu

    2016-01-01

    A study was undertaken with an objective of evaluating the long-term impacts of organic (ORG) and conventional (CON) methods of coffee farming on soil physical, chemical, biological, and microbial diversity. Electrical conductivity and bulk density were found to increase by 34% and 21%, respectively, in CON compared to ORG system, while water holding capacity was found decreased in both the systems. Significant increase in organic carbon was observed in ORG system. Major nutrients, nitrogen and potassium, levels showed inclination in both ORG and CON system, but the trend was much more pronounced in CON system. Phosphorus was found to increase in both ORG and CON system, but its availability was found to be more with CON system. In biological attributes, higher soil respiration and fluorescein diacetate activity were recorded in ORG system compared to CON system. Higher soil urease activity was observed in CON system, while dehydrogenase activity does not show significant differences between ORG and CON systems. ORG system was found to have higher macrofauna (31.4%), microbial population (34%), and microbial diversity indices compared to CON system. From the present study, it is accomplished that coffee soil under long-term ORG system has better soil properties compared to CON system.

  15. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries

    International Nuclear Information System (INIS)

    Alvarez, P.J.J.; Vogel, T.M.

    1991-01-01

    Release of petroleum hydrocarbons in the environment is a widespread occurrence. One particular concern is the contamination of drinking water sources by the toxic, water-soluble, and mobile petroleum components benzene, toluene, and xylene (BTX). Benzene, toluene, and p-xylene (BTX) were degraded by indigenous mixed cultures in sandy aquifer material and by two pure cultures isolated from the same site. Although BTX compounds have a similar chemical structure, the fate of individual BTX compounds differed when the compounds were fed to each pure culture and mixed culture aquifer slurries. The identification of substrate interactions aided the understanding of this behavior. Beneficial substrate interactions included enhanced degradation of benzene-dependent degradation of toluene and p-xylene by Arthrobacter sp. strain HCB. Detrimental substrate interactions included retardation in benzene and toluene degradation by the presence of p-xylene in both aquifer slurries and Pseudomonas incubations. The catabolic diversity of microbes in the environment precludes generalizations about the capacity of individual BTX compounds to enhance or inhibit the degradation of other BTX compounds

  16. Uranium enrichment. Enrichment processes

    International Nuclear Information System (INIS)

    Alexandre, M.; Quaegebeur, J.P.

    2009-01-01

    Despite the remarkable progresses made in the diversity and the efficiency of the different uranium enrichment processes, only two industrial processes remain today which satisfy all of enriched uranium needs: the gaseous diffusion and the centrifugation. This article describes both processes and some others still at the demonstration or at the laboratory stage of development: 1 - general considerations; 2 - gaseous diffusion: physical principles, implementation, utilisation in the world; 3 - centrifugation: principles, elementary separation factor, flows inside a centrifuge, modeling of separation efficiencies, mechanical design, types of industrial centrifuges, realisation of cascades, main characteristics of the centrifugation process; 4 - aerodynamic processes: vortex process, nozzle process; 5 - chemical exchange separation processes: Japanese ASAHI process, French CHEMEX process; 6 - laser-based processes: SILVA process, SILMO process; 7 - electromagnetic and ionic processes: mass spectrometer and calutron, ion cyclotron resonance, rotating plasmas; 8 - thermal diffusion; 9 - conclusion. (J.S.)

  17. Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge.

    Science.gov (United States)

    Alves, Joana I; Stams, Alfons J M; Plugge, Caroline M; Alves, M Madalena; Sousa, Diana Z

    2013-12-01

    Thermophilic (55 °C) anaerobic microbial communities were enriched with a synthetic syngas mixture (composed of CO, H2 , and CO2 ) or with CO alone. Cultures T-Syn and T-CO were incubated and successively transferred with syngas (16 transfers) or CO (9 transfers), respectively, with increasing CO partial pressures from 0.09 to 0.88 bar. Culture T-Syn, after 4 successive transfers with syngas, was also incubated with CO and subsequently transferred (9 transfers) with solely this substrate - cultures T-Syn-CO. Incubation with syngas and CO caused a rapid decrease in the microbial diversity of the anaerobic consortium. T-Syn and T-Syn-CO showed identical microbial composition and were dominated by Desulfotomaculum and Caloribacterium species. Incubation initiated with CO resulted in the enrichment of bacteria from the genera Thermincola and Thermoanaerobacter. Methane was detected in the first two to three transfers of T-Syn, but production ceased afterward. Acetate was the main product formed by T-Syn and T-Syn-CO. Enriched T-CO cultures showed a two-phase conversion, in which H2 was formed first and then converted to acetate. This research provides insight into how thermophilic anaerobic communities develop using syngas/CO as sole energy and carbon source can be steered for specific end products and subsequent microbial synthesis of chemicals. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    Science.gov (United States)

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W.

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media for three serial batches and produced increasing proportions of uniformly labeled lycopene (14.3 +/− 1.2 %, 39.6 +/− 0.5 %, and 48.9 +/− 1.5% with consistent yields (from 5.8 to 9 mg/L). An optimized 9-day-long 13C-loading and 18-day-long labeling strategy developed based on glucose utilization and lycopene yields, yielded 13C-lycopene with 93% 13C isotopic purity, and 55% of isotopomers were uniformly labeled. Furthermore, an optimized acetone and hexane extraction led to a four-fold increase in lycopene recovery from cultures compared to a standard extraction. PMID:23561155

  19. Epidemiology of Salmonella sp. in California cull dairy cattle: prevalence of fecal shedding and diagnostic accuracy of pooled enriched broth culture of fecal samples

    Directory of Open Access Journals (Sweden)

    Omran A. Abu Aboud

    2016-08-01

    Full Text Available Background The primary objective of this cross-sectional study was to estimate the crude, seasonal and cull-reason stratified prevalence of Salmonella fecal shedding in cull dairy cattle on seven California dairies. A secondary objective was to estimate and compare the relative sensitivity (Se and specificity (Sp for pools of 5 and 10 enriched broth cultures of fecal samples for Salmonella sp. detection. Methods Seven dairy farms located in the San Joaquin Valley of California were identified and enrolled in the study as a convenience sample. Cull cows were identified for fecal sampling once during each season between 2014 and 2015, specifically during spring, summer, fall, and winter, and 10 cows were randomly selected for fecal sampling at the day of their sale. In addition, study personnel completed a survey based on responses of the herd manager to questions related to the previous four month’s herd management. Fecal samples were frozen until testing for Salmonella. After overnight enrichment in liquid broth, pools of enrichment broth (EBP were created for 5 and 10 samples. All individual and pooled broths were cultured on selective media with putative Salmonella colonies confirmed by biochemical testing before being serogrouped and serotyped. Results A total of 249 cull cows were enrolled into the study and their fecal samples tested for Salmonella. The survey-weighted period prevalence of fecal shedding of all Salmonella sp. in the cull cow samples across all study herds and the entire study period was 3.42% (N = 249; SE 1.07. The within herd prevalence of Salmonella shed in feces did not differ over the four study seasons (P = 0.074. The Se of culture of EBP of five samples was 62.5% (SE = 17.12, which was not statistically different from the Se of culture of EBP of 10 (37.5%, SE = 17.12, P = 0.48. The Sp of culture of EBP of five samples was 95.24% (SE = 3.29 and for pools of 10 samples was 100.00% (SE = 0. There was no statistical

  20. Effect of biofilm and selective mixed culture on microbial fuel cell for the treatment of tempeh industrial wastewater

    Science.gov (United States)

    Arbianti, Rita; Surya Utami, Tania; Leondo, Vifki; Elisabeth; Andyah Putri, Syafira; Hermansyah, Heri

    2018-03-01

    Microbial Fuel Cell (MFC) provides a new alternative in the treatment of organic waste. MFC produces 50-90% less sludge to be disposed than other methods. MFC technology can utilize existing microorganisms in the waste as a catalyst to generate electricity and simultaneously also serves as a wastewater treatment unit itself. Tempeh wastewater is one of the abundant industrial wastewater which can be processed using MFC. Research using the selective mixed culture is very likely to do due to the good result on COD removals by adding mixed culture. Microorganisms in tempeh wastewater consist of bacteria gram positive and gram negative. This study focused on the aspects of waste treatment which is determined by decreased levels of COD and BOD. Variations in this study are the formation time of biofilm and the addition of selective gram. MFC operated for 50 hours. For a variation of biofilm formation, experiments were performed after incubation by replacing incubation substrates used in the formation of biofilms. Biofilm formation time in this study was 3 days, 5 days, 7 days and 14 days. Gram positive and gram negative bacteria were used in selective mixed culture experiments. Selective mixed culture added to the reactor by 1 mL and 5 mL. Selection of gram-positive or gram-negative bacteria carried by growing mixed culture on selective media. COD and BOD levels were measured in the wastewater before and after the experiment conducted in each variation. Biofilm formation optimum time is 7 days which decrease COD and BOD levels by 18.2% and 35.9%. The addition of gram negative bacteria decreases COD and BOD levels by 29.32% and 51.32%. Further research is needed in order to get a better result on decreasing levels of COD and BOD.

  1. Microbial identification and automated antibiotic susceptibility testing directly from positive blood cultures using MALDI-TOF MS and VITEK 2.

    Science.gov (United States)

    Wattal, C; Oberoi, J K

    2016-01-01

    The study addresses the utility of Matrix Assisted Laser Desorption/Ionisation Time-Of-Flight mass spectrometry (MALDI-TOF MS) using VITEK MS and the VITEK 2 antimicrobial susceptibility testing (AST) system for direct identification (ID) and timely AST from positive blood culture bottles using a lysis-filtration method (LFM). Between July and December 2014, a total of 140 non-duplicate mono-microbial blood cultures were processed. An aliquot of positive blood culture broth was incubated with lysis buffer before the bacteria were filtered and washed. Micro-organisms recovered from the filter were first identified using VITEK MS and its suspension was used for direct AST by VITEK 2 once the ID was known. Direct ID and AST results were compared with classical methods using solid growth. Out of the 140 bottles tested, VITEK MS resulted in 70.7 % correct identification to the genus and/ or species level. For the 103 bottles where identification was possible, there was agreement in 97 samples (94.17 %) with classical culture. Compared to the routine method, the direct AST resulted in category agreement in 860 (96.5 %) of 891 bacteria-antimicrobial agent combinations tested. The results of direct ID and AST were available 16.1 hours before those of the standard approach on average. The combined use of VITEK MS and VITEK 2 directly on samples from positive blood culture bottles using a LFM technique can result in rapid and reliable ID and AST results in blood stream infections to result in early institution of targeted treatment. The combination of LFM and AST using VITEK 2 was found to expedite AST more reliably.

  2. Microbial flora analysis for the degradation of beta-cypermethrin.

    Science.gov (United States)

    Qi, Zhang; Wei, Zhang

    2017-03-01

    In the Xinjiang region of Eurasia, sustained long-term and continuous cropping of cotton over a wide expanse of land is practiced, which requires application of high levels of pyrethroid and other classes of pesticides-resulting in high levels of pesticide residues in the soil. In this study, soil samples were collected from areas of long-term continuous cotton crops with the aim of obtaining microbial resources applicable for remediation of pyrethroid pesticide contamination suitable for the soil type and climate of that area. Soil samples were first used to culture microbial flora capable of degrading beta-cypermethrin using an enrichment culture method. Structural changes and ultimate microbial floral composition during enrichment were analyzed by high-throughput sequencing. Four strains capable of degrading beta-cypermethrin were isolated and preliminarily classified. Finally, comparative rates and speeds of degradation of beta-cypermethrin between relevant microbial flora and single strains were determined. After continuous subculture for 3 weeks, soil sample microbial flora formed a new type of microbial flora by rapid succession, which showed stable growth by utilizing beta-cypermethrin as the sole carbon source (GXzq). This microbial flora mainly consisted of Pseudomonas, Hyphomicrobium, Dokdonella, and Methyloversatilis. Analysis of the microbial flora also permitted separation of four additional strains; i.e., GXZQ4, GXZQ6, GXZQ7, and GXZQ13 that, respectively, belonged to Streptomyces, Enterobacter, Streptomyces, and Pseudomonas. Under culture conditions of 37 °C and 180 rpm, the degradation rate of beta-cypermethrin by GXzq was as high as 89.84% within 96 h, which exceeded that achieved by the single strains GXZQ4, GXZQ6, GXZQ7, and GXZQ13 and their derived microbial flora GXh.

  3. Egypt's Red Sea coast: phylogenetic analysis of cultured microbial consortia in industrialized sites.

    Science.gov (United States)

    Mustafa, Ghada A; Abd-Elgawad, Amr; Abdel-Haleem, Alyaa M; Siam, Rania

    2014-01-01

    The Red Sea possesses a unique geography, and its shores are rich in mangrove, macro-algal and coral reef ecosystems. Various sources of pollution affect Red Sea biota, including microbial life. We assessed the effects of industrialization on microbes along the Egyptian Red Sea coast at eight coastal sites and two lakes. The bacterial communities of sediment samples were analyzed using bacterial 16S rDNA pyrosequencing of V6-V4 hypervariable regions. The taxonomic assignment of 131,402 significant reads to major bacterial taxa revealed five main bacterial phyla dominating the sampled sites: Proteobacteria (68%), Firmicutes (13%), Fusobacteria (12%), Bacteriodetes (6%), and Spirochetes (0.03%). Further analysis revealed distinct bacterial consortia that primarily included (1) marine Vibrio spp.-suggesting a "marine Vibrio phenomenon"; (2) potential human pathogens; and (3) oil-degrading bacteria. We discuss two divergent microbial consortia that were sampled from Solar Lake West near Taba/Eilat and Saline Lake in Ras Muhammad; these consortia contained the highest abundance of human pathogens and no pathogens, respectively. Our results draw attention to the effects of industrialization on the Red Sea and suggest the need for further analysis to overcome the hazardous effects observed at the impacted sites.

  4. Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Argun, Hidayet; Kargi, Fikret; Kapdan, Ilgi K. [Department of Environmental Engineering, Dokuz Eylul University, Buca, Izmir (Turkey)

    2009-03-15

    Hydrogen formation performances of different anaerobic bacteria were investigated in batch dark fermentation of waste wheat powder solution (WPS). Serum bottles containing wheat powder were inoculated with pure cultures of Clostridium acetobutylicum (CAB), Clostridium butyricum (CB), Enterobacter aerogenes (EA), heat-treated anaerobic sludge (ANS) and a mixture of those cultures (MIX). Cumulative hydrogen formation (CHF), hydrogen yield (HY) and specific hydrogen production rate (SHPR) were determined for every culture. The heat-treated anaerobic sludge was found to be the most effective culture with a cumulative hydrogen formation of 560 ml, hydrogen yield of 223 ml H{sub 2} g{sup -1} starch and a specific hydrogen production rate of 32.1 ml H{sub 2} g{sup -1} h{sup -1}. (author)

  5. The role of lactic acid bacteria (Lactobacillus sp yel133) from beef in inhibiting of microbial contaminants on various fillers of starter culture

    Science.gov (United States)

    Yunilas; Mirwandhono, E.

    2018-02-01

    The role of Lactic Acid Bacteria (LAB) on the starter culture can be seen from the ability to grow and suppress the growth of microbial contaminants (fungi). The research aimed to investigate the role of LAB (Lactobacillus sp YEL133) in inhibiting microbial contaminants (fungi) on starter cultures of various fillers. The materials used in this research was Lactobacillus sp YEL133 from beef and various fillers (rice flour, corn starch and wheat flour). The research methods used completely randomized design (CRD) with 3 treatments and 4 replications. The treatments of this research was P1(rice flour), P2 (corn starch) and P3 (wheat flour) that inoculated with Lactobacillus sp YEL133. Parameters which is observed such as: growth of lactic acid bacteria, total microbes and total fungi as microbial contaminants. The results showed that the starter culture with a filler material of rice flour produce lactic acid bacteria and microbes were highly significant (P wheat flour, as well as able to suppress the growth of microbial contaminants (fungi). The conclusion of the research is the use Lactobacillus sp YEL133 can suppress the growth of fungi on the starter culture using rice flour.

  6. Sensitivity of Direct Culture, Enrichment and PCR for Detection of Campylobacter jejuni and C. coli in Broiler Flocks at Slaughter.

    Science.gov (United States)

    Rodgers, J D; Simpkin, E; Lee, R; Clifton-Hadley, F A; Vidal, A B

    2017-06-01

    Broiler chicken flocks are a significant source of Campylobacter jejuni and Campylobacter coli that result in the major public health problem of campylobacteriosis. Accurate estimates of the prevalence of both C. coli and C. jejuni in flocks would enhance epidemiological understanding, risk assessment and control options. This study combined results from a panel of 10 detection tests (direct culture, enrichment and PCR) on caecal samples from flocks at slaughter. A parallel interpretation approach was used to determine the presence of Campylobacter spp. and for C. jejuni and C. coli individually. The sample was considered positive if at least one method detected the target and this interpretation was taken to represent a 'proxy gold standard' for detection in the absence of a gold standard reference test. The sensitivity of each individual method to detect Campylobacter spp., C. jejuni and C. coli was then estimated relative to the proxy gold standard. Enrichment in adapted Exeter broth (deficient in polymyxin B) with a resuscitation step was 100% sensitive, whilst direct culture on modified charcoal cefoperazone deoxycholate agar (mCCDA) was highly sensitive (97.9%). Enrichment methods using Preston broth and Bolton broth were significantly less sensitive. Enrichment in Exeter broth promoted the recovery of C. jejuni, whilst enrichment in Bolton broth favoured C. coli. A RT-PCR detection test could identify 80% of flocks that were co-colonised with both species. This study found that 76.3% (n = 127) of flocks were colonised with Campylobacter spp. The majority (95.9%) of Campylobacter-positive flocks were colonised with C. jejuni; however, approximately one-third of positive flocks were simultaneously colonised with both C. jejuni and C. coli. The findings highlight the impact of different detection methodologies on the accuracy of the estimated incidence of both C. jejuni and C. coli entering the abattoir within broiler flocks and the associated

  7. Survival of microbial cultures on mineral while passing dense layers of the atmosphere

    Science.gov (United States)

    Viacheslav, Ilyin; Novikova, Nataliya; Deshevaya, Elena; Polikarpov, Nikolay; Slobodkin, Alexander; Gavrilov, Sergey; Ionov, Viktor; Morozova, Julia

    The purpose of the experiment is to study the possibility of extremophilic microorganisms survival in meteorite-like mineral while passing through the dense layers of the atmosphere. For this purpose cultures of bacteria were placed into the holes made in basalt pieces fixed to the outer wall of the spacecraft Bion M1. Control: similar materials placed in the outer container, prevented from overheating in the dense layers of the atmosphere by lid. In the flight experiment five strains of thermophilic bacteria and 2 strains of hyperthermophilic archaea from the collection of the Institute of Microbiology, RAS were used. In addition, microorganisms were selected from the collection of the Institute of Biomedical Problems, isolated from the environment objects of ISS: 10 fungal cultures and a culture of bacteria Bacillus pumilus. For thermophiles and hyperthermophiles the ability to redox interactions with minerals is considered as a priority physiological property. Ability of thermophiles to anaerobic growth also meets the conditions of the experiment - testing cell survival of microorganisms in the conditions of extraterrestrial space and ancient anaerobic atmosphere of the Earth. After 30-days flight in orbit control all spore-forming microorganisms have been successfully survived. Hyperthermophilic archaea growth in all control was significantly less intensive. Meanwhile, in one experimental samples there was obtained signs of survival of spore forming bacteria culture Carboxydocella ferrireducens. However, the maximum concentration of cells was 2 orders of magnitude below the values characteristic of an actively growing culture of the microorganism. Due to damage of holes in the stone, this result was obtained only in one replicate and for final prove of survival of C. ferrireducens when returning through the dense layers of the atmosphere it is necessary to repeat the experiment It should be noted that an important indicator of the possibility of survival of C

  8. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria

    International Nuclear Information System (INIS)

    Rao, A. Gangagni; Ravichandra, P.; Joseph, Johny; Jetty, Annapurna; Sarma, P.N.

    2007-01-01

    Mixed cultures of sulfate reducing bacteria (SRB) were isolated from anaerobic cultures and enriched with SRB media. Studies on batch and continuous reactors for the removal of SO 2 with bulk drug industry wastewater as an organic source using isolated mixed cultures of SRB revealed that isolation and enrichment methodology adopted in the present study were apt to suppress the undesirable growth of anaerobic bacteria other than SRB. Studies on anaerobic reactors showed that process was sustainable at COD/S ratio of 2.2 and above with optimum sulfur loading rate (SLR) of 5.46 kg S/(m 3 day), organic loading rate (OLR) of 12.63 kg COD/(m 3 day) and at hydraulic residence time (HRT) of 8 h. Free sulfide (FS) concentration in the range of 300-390 mg FS/l was found to be inhibitory to mixed cultures of SRB used in the present studies

  9. The influence of fish culture in floating net cages on microbial indicators of water quality

    Directory of Open Access Journals (Sweden)

    K. Gorlach-Lira

    Full Text Available This work was carried out to analyse the microbiological parameters of the water quality of a reservoir used for the irrigation and culture of tilapia (Oreochromis niloticus in floating net cages. The physico-chemical parameters, counts of mesophilic total aerobic bacteria, total and thermotolerant coliforms and fecal streptococci, and the presence of Escherichia coli in samples of water collected in three sites of the reservoir (pre-culture site, culture site, post-culture site were analysed. The levels of ammonia (0.047-0.059 mg/L, nitrite (0.001-0.021 mg/L and total phosphorus (0.050-0.355 mg/L in the water did not show significant differences (p > 0.05 between sampling sites. The levels of total bacteria in the water varied between 1.3 x 104 and 67.3 x 104 CFU/100 mL. The MPN values of thermotolerant coliforms (< 930 MPN/100 mL were within values recommended for water used for fish culture and/or irrigation. The presence of E. coli and fecal streptococci were verified in 48% and 56% of analysed samples, respectively. The site with floating net cages showed more samples contaminated with E. coli and fecal streptococci than other sampling points.

  10. ACCUMULATION OF POLY-B-HYDROXYBUTYRATE IN A METHANE- ENRICHED, HALOGENATED, HYDROCARBON-DEGRADING SOIL COLUMN: IMPLICATIONS FOR MICROBIAL COMMUNITY STRUCTURE AND NUTRITIONAL STATUS

    Science.gov (United States)

    The prokarotic, endogenous storage polymer poly--hydroxybutyrate (PHB) accumulated in soil from a methane-enriched, halogenated hydrocarbon-degrading soil column. Based on phospholipid ester-linked fatty acid (PLFA) profiles, this mocrocosm has been previously reported to be sign...

  11. Microbial transformation of tannin-rich substrate to gallic acid through co-culture method.

    Science.gov (United States)

    Banerjee, Rintu; Mukherjee, Gargi; Patra, Krushna Chandra

    2005-05-01

    Modified solid-state fermentation (MSSF) of tannin-rich substrate yielding tannase and gallic acid was carried out using a co-culture of the filamentous fungi, Rhizopus oryzae (RO IIT RB-13, NRRL 21498) and Aspergillus foetidus (GMRB013 MTCC 3557). Powdered fruits of Terminalia chebula and powdered pod cover of Caesalpinia digyna was used in the process and the different process parameters for maximum production of tannase and gallic acid by co-culture method were optimized through media engineering. MSSF was carried out at the optimum conditions of 30 degrees C and 80% relative humidity. The optimal pH and incubation period was 5.0 and 48 h respectively. Through the co-culture technique the maximum yield of tannase and gallic acid was found to be 41.3 U/ml and 94.8% respectively.

  12. Optimization of culture conditions and electricity generation using Geobacter sulfurreducens in a dual-chambered microbial fuel-cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi-Sun; Lee, Yu-jin [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of)

    2010-12-15

    The promise of generating electricity from the oxidation of organic substances using metal-reducing bacteria is drawing attention as an alternate form of bio-technology with positive environmental implications. In this study, we examined various experimental factors to obtain the maximum power output in a dual-chamber mediator-less microbial fuel-cell (MFC) using Geobacter sulfurreducens and acetate as an electron donor in a semi-continuous mode. The G. sulfurreducens culture conditions were optimized in a nutrient buffer containing 20 mM of acetate and 50 mM of fumarate at pH 6.8 and 30 C. For use in the MFC system, electrodes were made with carbon paper (area: 11.5 cm{sup 2}) and spaced 1.5 cm apart. Once the MFC was inoculated with the pre-cultured G. sulfurreducens in the anode chamber and while air was continuously sparged to the cathode chamber, the cells produced electricity stably over 60 days with the regular addition of 20 mM acetate, generating the maximum power density of 7 mW/m{sup 2} with a 5000 and ohm; load. The current output was significantly increased, by 1.6 times after 20 days of incubation under the same experimental conditions, when the carbon-paper anode was coated with carbon nanotubes. (author)

  13. The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system.

    Science.gov (United States)

    Sannasiddappa, Thippeswamy H; Costabile, Adele; Gibson, Glenn R; Clarke, Simon R

    2011-01-01

    An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furthermore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.

  14. EvoBot: Towards a Robot-Chemostat for Culturing and Maintaining Microbial Fuel Cells (MFCs)

    DEFF Research Database (Denmark)

    Theodosiou, Pavlina; Faina, Andres; Nejatimoharrami, Farzad

    2017-01-01

    , which is akin to a chemostat. The chemostat is a well-known microbiology method for culturing bacterial cells under controlled conditions with continuous nutrient supply. EvoBot is perhaps the first pioneering attempt at functionalizing the 3D printing technology by combining it with the chemostat...

  15. Simple Sample Preparation Method for Direct Microbial Identification and Susceptibility Testing From Positive Blood Cultures.

    Science.gov (United States)

    Pan, Hong-Wei; Li, Wei; Li, Rong-Guo; Li, Yong; Zhang, Yi; Sun, En-Hua

    2018-01-01

    Rapid identification and determination of the antibiotic susceptibility profiles of the infectious agents in patients with bloodstream infections are critical steps in choosing an effective targeted antibiotic for treatment. However, there has been minimal effort focused on developing combined methods for the simultaneous direct identification and antibiotic susceptibility determination of bacteria in positive blood cultures. In this study, we constructed a lysis-centrifugation-wash procedure to prepare a bacterial pellet from positive blood cultures, which can be used directly for identification by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and antibiotic susceptibility testing by the Vitek 2 system. The method was evaluated using a total of 129 clinical bacteria-positive blood cultures. The whole sample preparation process could be completed in identification was 96.49% for gram-negative bacteria and 97.22% for gram-positive bacteria. Vitek 2 antimicrobial susceptibility testing of gram-negative bacteria showed an agreement rate of antimicrobial categories of 96.89% with a minor error, major error, and very major error rate of 2.63, 0.24, and 0.24%, respectively. Category agreement of antimicrobials against gram-positive bacteria was 92.81%, with a minor error, major error, and very major error rate of 4.51, 1.22, and 1.46%, respectively. These results indicated that our direct antibiotic susceptibility analysis method worked well compared to the conventional culture-dependent laboratory method. Overall, this fast, easy, and accurate method can facilitate the direct identification and antibiotic susceptibility testing of bacteria in positive blood cultures.

  16. Simple Sample Preparation Method for Direct Microbial Identification and Susceptibility Testing From Positive Blood Cultures

    Directory of Open Access Journals (Sweden)

    Hong-wei Pan

    2018-03-01

    Full Text Available Rapid identification and determination of the antibiotic susceptibility profiles of the infectious agents in patients with bloodstream infections are critical steps in choosing an effective targeted antibiotic for treatment. However, there has been minimal effort focused on developing combined methods for the simultaneous direct identification and antibiotic susceptibility determination of bacteria in positive blood cultures. In this study, we constructed a lysis-centrifugation-wash procedure to prepare a bacterial pellet from positive blood cultures, which can be used directly for identification by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS and antibiotic susceptibility testing by the Vitek 2 system. The method was evaluated using a total of 129 clinical bacteria-positive blood cultures. The whole sample preparation process could be completed in <15 min. The correct rate of direct MALDI-TOF MS identification was 96.49% for gram-negative bacteria and 97.22% for gram-positive bacteria. Vitek 2 antimicrobial susceptibility testing of gram-negative bacteria showed an agreement rate of antimicrobial categories of 96.89% with a minor error, major error, and very major error rate of 2.63, 0.24, and 0.24%, respectively. Category agreement of antimicrobials against gram-positive bacteria was 92.81%, with a minor error, major error, and very major error rate of 4.51, 1.22, and 1.46%, respectively. These results indicated that our direct antibiotic susceptibility analysis method worked well compared to the conventional culture-dependent laboratory method. Overall, this fast, easy, and accurate method can facilitate the direct identification and antibiotic susceptibility testing of bacteria in positive blood cultures.

  17. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron reducing conditions

    Science.gov (United States)

    Huang, S.; Jaffé, P. R.

    2014-08-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron were measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454-pyrosequencing, and real-time quantitative PCR analysis. We believe that one of the dominant microbial species in our system (an uncultured Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  18. X-ray spectroscopic studies of uranium transformations in microbial cultures

    International Nuclear Information System (INIS)

    Dodge, C.J.; Francis, A.J.; Clayton, C.R.

    1995-01-01

    Microbial transformations of uranyl nitrate, U:citric acid, and mixed metal U:Fe:citric acid complex were investigated. X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) analyses showed that soluble U 6+ was reduced to insoluble U 4+ by Clostridium sp. and was associated with the bacterial surface, whereas U 3+ was observed within the biomass. Uranium forms a binuclear complex with citric acid involving two carboxylic acid groups and the hydroxyl group. Biodegradation studies of U:citric acid and U:Fe:citric acid complexes using Pseudomonas fluorescens showed they were recalcitrant. The lack of biodegradation was due to the nature of the metal-citrate complex species and not due to toxicity. Characterization of the mixed metal U:Fe:citric acid complex by extended X-ray absorption fine structure (EXAFS) indicated that Fe was associated with the U and citric acid, resulting in formation of a bionuclear mixed metal citrate complex

  19. Simulation of Feedforward-Feedback Control of Dissolved Oxygen of Microbial Repeated Fed-batch Culture

    Directory of Open Access Journals (Sweden)

    Ling Gao

    2016-09-01

    Full Text Available Fed-batch culture is often used in industry, and dissolved oxygen (DO concentration control is important in fermentation process control. DO control is often applied by using feedback (FB control strategy. But, feedforward-feedback (FF-FB control has the advantage in dealing with the time-varying characteristics resulted from the cell growth during the fermentation process. Mathematical modeling and computer simulation is a useful tool in analysis of the control system.  In this research, the FF-FB DO control and FB substrate control of repeated fed-batch culture process is modeled and simulated. The results showed the feasibility of the control strategy. These results are useful for control system development and process analyses and optimization.

  20. Removal of hydrocarbon from refinery tank bottom sludge employing microbial culture.

    Science.gov (United States)

    Saikia, Rashmi Rekha; Deka, Suresh

    2013-12-01

    Accumulation of oily sludge is becoming a serious environmental threat, and there has not been much work reported for the removal of hydrocarbon from refinery tank bottom sludge. Effort has been made in this study to investigate the removal of hydrocarbon from refinery sludge by isolated biosurfactant-producing Pseudomonas aeruginosa RS29 strain and explore the biosurfactant for its composition and stability. Laboratory investigation was carried out with this strain to observe its efficacy of removing hydrocarbon from refinery sludge employing whole bacterial culture and culture supernatant to various concentrations of sand-sludge mixture. Removal of hydrocarbon was recorded after 20 days. Analysis of the produced biosurfactant was carried out to get the idea about its stability and composition. The strain could remove up to 85 ± 3 and 55 ± 4.5 % of hydrocarbon from refinery sludge when whole bacterial culture and culture supernatant were used, respectively. Maximum surface tension reduction (26.3 mN m(-1)) was achieved with the strain in just 24 h of time. Emulsification index (E24) was recorded as 100 and 80 % with crude oil and n-hexadecane, respectively. The biosurfactant was confirmed as rhamnolipid containing C8 and C10 fatty acid components and having more mono-rhamnolipid congeners than the di-rhamnolipid ones. The biosurfactant was stable up to 121 °C, pH 2-10, and up to a salinity value of 2-10 % w/v. To our knowledge, this is the first report showing the potentiality of a native strain from the northeast region of India for the efficient removal of hydrocarbon from refinery sludge.

  1. In vitro anti-microbial activity of extracts from the callus cultures of some Nigella species

    Czech Academy of Sciences Publication Activity Database

    Landa, P.; Maršík, Petr; Vaněk, Tomáš; Rada, V.; Kokoška, L.

    2006-01-01

    Roč. 61, č. 3 (2006), s. 285-288 ISSN 0006-3088 R&D Projects: GA ČR(CZ) GA525/02/0257; GA MŠk(CZ) 1P04OC926.001 Institutional research plan: CEZ:AV0Z40550506 Keywords : Nigella * callus culture * antimicrobial activity Subject RIV: CC - Organic Chemistry Impact factor: 0.213, year: 2006

  2. Microbial profile of the vitreous aspirates in culture proven exogenous endophthalmitis: A 10-year retrospective study

    Directory of Open Access Journals (Sweden)

    H Bhattacharjee

    2016-01-01

    Full Text Available Purpose: To describe the microbiological profile and clinical outcome in the eyes with culture-proven exogenous endophthalmitis. Methods: A retrospective analysis of 495 eyes diagnosed as exogenous endophthalmitis was performed over a period of 10 years. In all, aseptically collected aqueous and vitreous aspirates were cultured for bacteria and fungus using standard microbiological techniques. Gram-stain and KOH preparation of the specimens were also performed. The antibiotic susceptibility testing for bacterial isolates was performed by Kirby-Bauer disk diffusion method. The treatment was modified according to the antibiotic sensitivity profile. The final clinical ocular condition was divided into improved, stable or deteriorated. Results: Of 148 culture-proven endophthalmitis eyes, 137 (92.57% were referred from elsewhere, and 11 (7.43% belonged to our institute. Aetiologically, 76 (51.35% eyes were post-cataract surgery, 61 (41.22% were post-traumatic, 5 (3.38% eyes post-intravitreal anti-vascular endothelial growth factor injection, 5 associated with corneal diseases and 1 bleb-related endophthalmitis. In 31 (20.95% eyes, primary intravitreal antibiotics were given outside. The cultures revealed monomicrobial growth in 92.57% (n = 137 and polymicrobial growth in 7.43% (n = 11. Among the bacteria (n = 121, 81.76%, Pseudomonas species dominated overall (n = 32, 27.11% and post-operative (n = 26, 38.23% endophthalmitis group. Staphylococcus epidermidis (n = 14, 28% was prominent in post-traumatic endophthalmitis group. Ninety-two percent (n = 108 isolates of bacteria were sensitive to vancomycin. In 78 (52.7% eyes, the clinical ocular condition improved or remained stable while deteriorated in 51 (34.46%. Conclusion: A bacterial predominance was observed among causative organisms of exogenous endophthalmitis with Pseudomonas species being the most common. The appropriate surgical intervention improved or stabilised the visual acuity in nearly

  3. Non-Neuronal Cells Are Required to Mediate the Effects of Neuroinflammation: Results from a Neuron-Enriched Culture System.

    Science.gov (United States)

    Hui, Chin Wai; Zhang, Yang; Herrup, Karl

    2016-01-01

    Chronic inflammation is associated with activated microglia and reactive astrocytes and plays an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's. Both in vivo and in vitro studies have demonstrated that inflammatory cytokine responses to immune challenges contribute to neuronal death during neurodegeneration. In order to investigate the role of glial cells in this phenomenon, we developed a modified method to remove the non-neuronal cells in primary cultures of E16.5 mouse cortex. We modified previously reported methods as we found that a brief treatment with the thymidine analog, 5-fluorodeoxyuridine (FdU), is sufficient to substantially deplete dividing non-neuronal cells in primary cultures. Cell cycle and glial markers confirm the loss of ~99% of all microglia, astrocytes and oligodendrocyte precursor cells (OPCs). More importantly, under this milder treatment, the neurons suffered neither cell loss nor any morphological defects up to 2.5 weeks later; both pre- and post-synaptic markers were retained. Further, neurons in FdU-treated cultures remained responsive to excitotoxicity induced by glutamate application. The immunobiology of the FdU culture, however, was significantly changed. Compared with mixed culture, the protein levels of NFκB p65 and the gene expression of several cytokine receptors were altered. Individual cytokines or conditioned medium from β-amyloid-stimulated THP-1 cells that were, potent neurotoxins in normal, mixed cultures, were virtually inactive in the absence of glial cells. The results highlight the importance of our glial-depleted culture system and identifies and offer unexpected insights into the complexity of -brain neuroinflammation.

  4. Enrichment and identification of polycyclic aromatic compound-degrading bacteria enriched from sediment samples.

    Science.gov (United States)

    Long, Rachel M; Lappin-Scott, Hilary M; Stevens, Jamie R

    2009-07-01

    The degradation of polycyclic aromatic compounds (PACs) has been widely studied. Knowledge of the degradation of PACs by microbial populations can be utilized in the remediation of contaminated sites. To isolate and identify PAC-degrading bacteria for potential use in future bioremediation programmes, we established a series of PAC enrichments under the same experimental conditions from a single sediment sample taken from a highly polluted estuarine site. Enrichment cultures were established using the pollutants: anthracene, phenanthrene and dibenzothiophene as a sole carbon source. The shift in microbial community structure on each of these carbon sources was monitored by analysis of a time series of samples from each culture using 16S rRNA polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Significantly, our findings demonstrate that shifts in the constituent species within each degradative community are directly attributable to enrichment with different PACs. Subsequently, we characterized the microorganisms comprising the degradative communities within each enrichment using 16S rRNA sequence data. Our findings demonstrate that the ability to degrade PACs is present in five divisions of the Proteobacteria and Actinobacteria. By determining the precise identity of the PAC-degrading bacterial species isolated from a single sediment sample, and by comparing our findings with previously published research, we demonstrate how bacteria with similar PAC degrading capabilities and 16S rRNA signatures are found in similarly polluted environments in geographically very distant locations, e.g., China, Italy, Japan and Hawaii. Such a finding suggests that geographical barriers do not limit the distribution of key PAC-degrading bacteria; this finding is in accordance with the Baas-Becking hypothesis "everything is everywhere; the environment selects" and may have significant consequences for the global distribution of PAC-degrading bacteria and

  5. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions

    Science.gov (United States)

    Huang, S.; Jaffé, P. R.

    2015-02-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron was measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454 pyrosequencing, and real-time quantitative PCR analysis. We be Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  6. Direct conversion of sorghum carbohydrates to ethanol by a mixed microbial culture

    Energy Technology Data Exchange (ETDEWEB)

    Christakopoulos, Paul; Lianwu Li; Kekos, Dimitris; Macris, B.J. (National Technical Univ. of Athens (Greece). Dept. of Chemical Engineering)

    1993-01-01

    The carbohydrates of sweet sorghum were directly converted to ethanol by a mixed culture of Fusarium oxysporum F3 and Saccharomyces cerevisiae 2541. A number of factors affecting this bioconversion was studied. Optimum ethanol yields of 33.2 g/100 g of total sorghum carbohydrates, corresponding to 10.3 g/100 g of fresh stalks, were obtained. These values represented 68.6% of the theoretical yield based on total polysaccharides and exceeded that based on oligosaccharides of sorghum by 53.7%. The results demonstrated that more than half of the sorghum polysaccharides were directly fermented to ethanol, thus making the process worthy of further investigation. (author)

  7. Microscale validation of 4-aminoantipyrine test method for quantifying phenolic compounds in microbial culture

    International Nuclear Information System (INIS)

    Justiz Mendoza, Ibrahin; Aguilera Rodriguez, Isabel; Perez Portuondo, Irasema

    2014-01-01

    Validation of test methods microscale is currently of great importance due to the economic and environmental advantages possessed, which constitutes a prerequisite for the performance of services and quality assurance of the results to provide customer. This paper addresses the microscale validation of 4-aminoantipyrine spectrophotometric method for the quantification of phenolic compounds in culture medium. Parameters linearity, precision, regression, accuracy, detection limits, quantification limits and robustness were evaluated, addition to the comparison test with no standardized method for determining polyphenols (Folin Ciocalteu). The results showed that both methods are feasible for determining phenols

  8. Simultaneous production of acetate and methane from glycerol by selective enrichment of hydrogenotrophic methanogens in extreme-thermophilic (70 °C) mixed culture fermentation

    International Nuclear Information System (INIS)

    Zhang, Fang; Zhang, Yan; Chen, Yun; Dai, Kun; Loosdrecht, Mark C.M. van; Zeng, Raymond J.

    2015-01-01

    Highlights: • Simultaneous production of acetate and methane from glycerol was investigated. • Acetate accounted for more than 90% of metabolites in liquid solutions. • The maximum concentration of acetate was above 13 g/L. • 93% of archaea were hydrogenotrophic methanogens. • Thermoanaerobacter was main bacterium and its percentage was 92%. - Abstract: The feasibility of simultaneous production of acetate and methane from glycerol was investigated by selective enrichment of hydrogenotrophic methanogens in an extreme-thermophilic (70 °C) fermentation. Fed-batch experiments showed acetate was produced at the concentration up to 13.0 g/L. A stable operation of the continuous stirred tank reactor (CSTR) was reached within 100 days. Acetate accounted for more than 90 w/w% of metabolites in the fermentation liquid. The yields of methane and acetate were close to the theoretical yields with 0.74–0.80 mol-methane/mol-glycerol and 0.63–0.70 mol-acetate/mol-glycerol. The obtained microbial community was characterized. Hydrogenotrophic methanogens, mainly Methanothermobacter thermautotrophicus formed 93% of the methanogenogenic community. This confirms that a high temperature (70 °C) could effectively select for hydrogenotrophic methanogenic archaea. Thermoanaerobacter spp. was the main bacterium forming 91.5% of the bacterial population. This work demonstrated the conversion of the byproduct of biodiesel production, glycerol, to acetate as a chemical and biogas for energy generation

  9. Comparison among four proposed direct blood culture microbial identification methods using MALDI-TOF MS

    Directory of Open Access Journals (Sweden)

    Ali M. Bazzi

    2017-05-01

    Full Text Available Summary: Matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF mass spectrometry facilitates rapid and accurate identification of pathogens, which is critical for sepsis patients.In this study, we assessed the accuracy in identification of both Gram-negative and Gram-positive bacteria, except for Streptococcus viridans, using four rapid blood culture methods with Vitek MALDI-TOF-MS. We compared our proposed lysis centrifugation followed by washing and 30% acetic acid treatment method (method 2 with two other lysis centrifugation methods (washing and 30% formic acid treatment (method 1; 100% ethanol treatment (method 3, and picking colonies from 90 to 180 min subculture plates (method 4. Methods 1 and 2 identified all organisms down to species level with 100% accuracy, except for Streptococcus viridans, Streptococcus pyogenes, Enterobacter cloacae and Proteus vulgaris. The latter two were identified to genus level with 100% accuracy. Each method exhibited excellent accuracy and precision in terms of identification to genus level with certain limitations. Keywords: MALDI-TOF, Gram-negative, Gram-positive, Sepsis, Blood culture

  10. Shaping Pedagogical Approaches to Learning through Play: A Pathway to Enriching Culture and Heritage in Abu Dhabi Kindergartens

    Science.gov (United States)

    Baker, Fiona S.

    2018-01-01

    The United Arab Emirates (UAE) Ministry of Social Affairs has launched an initiative to revive traditional play so as to increase children's knowledge of the UAE's rich culture, traditions and heritage. Inspired by the initiative, this qualitative study is a synthesis of locally written historical accounts interlaced with 52 Emirati kindergarten…

  11. Application of culture-dependent and culture-independent methods for the identification of Lactobacillus kefiranofaciens in microbial consortia present in kefir grains.

    Science.gov (United States)

    Hamet, Maria Fernanda; Londero, Alejandra; Medrano, Micaela; Vercammen, Elisabeth; Van Hoorde, Koenraad; Garrote, Graciela L; Huys, Geert; Vandamme, Peter; Abraham, Analía G

    2013-12-01

    The biological and technological characteristics of kefiran as well as its importance in grain integrity led us to analyze the microbial kefir grain consortium with focus on Lactobacillus kefiranofaciens. The presence of L. kefiranofaciens in the nine kefir grains studied was demonstrated by denaturing gradient gel electrophoresis. By culture dependent methods applying a methodology focused on the search of this species, 22 isolates with typical morphology were obtained and identified applying a combination of SDS-PAGE of whole cell proteins, (GTG)5-PCR and sequence analysis of the housekeeping gene encoding the α-subunit of bacterial phenylalanyl-tRNA synthase (pheS). This polyphasic approach allowed the reliable identification of 11 L. kefiranofaciens, 5 Lactobacillus paracasei, 4 Lactobacillus kefiri and 2 Lactobacillus parakefiri isolates. Isolated L. kefiranofaciens strains produced polysaccharide in strain-dependent concentrations and EPS produced by them also differed in the degree of polymerization. The isolation and accurate identification of L. kefiranofaciens is relevant taking into account the important role of this microorganism in the grain ecosystem as well as its potential application as starter in food fermentations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio.

    Science.gov (United States)

    Arshad, Arslan; Dalcin Martins, Paula; Frank, Jeroen; Jetten, Mike S M; Op den Camp, Huub J M; Welte, Cornelia U

    2017-12-01

    Microorganisms are main drivers of the sulfur, nitrogen and carbon biogeochemical cycles. These elemental cycles are interconnected by the activity of different guilds in sediments or wastewater treatment systems. Here, we investigated a nitrate-reducing microbial community in a laboratory-scale bioreactor model that closely mimicked estuary or brackish sediment conditions. The bioreactor simultaneously consumed sulfide, methane and ammonium at the expense of nitrate. Ammonium oxidation occurred solely by the activity of anammox bacteria identified as Candidatus Scalindua brodae and Ca. Kuenenia stuttgartiensis. Fifty-three percent of methane oxidation was catalyzed by archaea affiliated to Ca. Methanoperedens and 47% by Ca. Methylomirabilis bacteria. Sulfide oxidation was mainly shared between two proteobacterial groups. Interestingly, competition for nitrate did not lead to exclusion of one particular group. Metagenomic analysis showed that the most abundant taxonomic group was distantly related to Thermodesulfovibrio sp. (87-89% 16S rRNA gene identity, 52-54% average amino acid identity), representing a new family within the Nitrospirae phylum. A high quality draft genome of the new species was recovered, and analysis showed high metabolic versatility. Related microbial groups are found in diverse environments with sulfur, nitrogen and methane cycling, indicating that these novel Nitrospirae bacteria might contribute to biogeochemical cycling in natural habitats. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.

    Science.gov (United States)

    Nordhoff, M; Tominski, C; Halama, M; Byrne, J M; Obst, M; Kleindienst, S; Behrens, S; Kappler, A

    2017-07-01

    Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans ) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers ( Nocardioides and Rhodanobacter ) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats. IMPORTANCE Most described nitrate

  14. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS

    Science.gov (United States)

    Nordhoff, M.; Tominski, C.; Halama, M.; Byrne, J. M.; Obst, M.; Behrens, S.

    2017-01-01

    ABSTRACT Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers (Nocardioides and Rhodanobacter) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats. IMPORTANCE Most described nitrate

  15. Co-culture microorganisms with different initial proportions reveal the mechanism of chalcopyrite bioleaching coupling with microbial community succession.

    Science.gov (United States)

    Ma, Liyuan; Wang, Xingjie; Feng, Xue; Liang, Yili; Xiao, Yunhua; Hao, Xiaodong; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan

    2017-01-01

    The effect of co-culture microorganisms with different initial proportions on chalcopyrite bioleaching was investigated. Communities were rebuilt by six typical strains isolated from the same habitat. The results indicated, by community with more sulfur oxidizers at both 30 and 40°C, the final copper extraction rate was 19.8% and 6.5% higher, respectively, than that with more ferrous oxidizers. The variations of pH, redox potential, ferrous and copper ions in leachate also provided evidences that community with more sulfur oxidizers was more efficient. Community succession of free and attached cells revealed that initial proportions played decisive roles on community dynamics at 30°C, while communities shared similar structures, not relevant to initial proportions at 40°C. X-ray diffraction analysis confirmed different microbial functions on mineral surface. A mechanism model for chalcopyrite bioleaching was established coupling with community succession. This will provide theoretical basis for reconstructing an efficient community in industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Change of lactose content after milk fermentation using various microbial cultures

    Directory of Open Access Journals (Sweden)

    Ivana Vinko

    2011-06-01

    Full Text Available The purpose of this study was to determine lactose and lactic acid content and acidity changes in typified milk prior to fermentation and in dairy products on 1st and 28th day of their storage at 8 °C in cold environment. In this study 5 different dairy products were observed: yogurt, extra lactose yogurt, bifido milk, sour cream and sour milk. The enzymatic method for determination of lactose has been used. The biggest change in lactose and lactic acid content, according to study results, has happened in the process of fermentation, as expected. About 16-20 % of lactose has been converted by mesophilus, while significantly bigger part (round 30 % of lactose to lactic acid has been converted by thermophilus. The smallest part of lactose conversion was performed by Bifidobacterium therapy culture (just 15 % after the first day and 19 % on 28th day of cold storage which is due to the greater adjustment period of Bifidobacterium in milk for lactose fermentation.

  17. Comparison among four proposed direct blood culture microbial identification methods using MALDI-TOF MS.

    Science.gov (United States)

    Bazzi, Ali M; Rabaan, Ali A; El Edaily, Zeyad; John, Susan; Fawarah, Mahmoud M; Al-Tawfiq, Jaffar A

    Matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry facilitates rapid and accurate identification of pathogens, which is critical for sepsis patients. In this study, we assessed the accuracy in identification of both Gram-negative and Gram-positive bacteria, except for Streptococcus viridans, using four rapid blood culture methods with Vitek MALDI-TOF-MS. We compared our proposed lysis centrifugation followed by washing and 30% acetic acid treatment method (method 2) with two other lysis centrifugation methods (washing and 30% formic acid treatment (method 1); 100% ethanol treatment (method 3)), and picking colonies from 90 to 180min subculture plates (method 4). Methods 1 and 2 identified all organisms down to species level with 100% accuracy, except for Streptococcus viridans, Streptococcus pyogenes, Enterobacter cloacae and Proteus vulgaris. The latter two were identified to genus level with 100% accuracy. Each method exhibited excellent accuracy and precision in terms of identification to genus level with certain limitations. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  18. Isotope enrichment

    International Nuclear Information System (INIS)

    Lydtin, H-J.; Wilden, R.J.; Severin, P.J.W.

    1978-01-01

    The isotope enrichment method described is based on the recognition that, owing to mass diffusion and thermal diffusion in the conversion of substances at a heated substrate while depositing an element or compound onto the substrate, enrichment of the element, or a compound of the element, with a lighter isotope will occur. The cycle is repeated for as many times as is necessary to obtain the degree of enrichment required

  19. Uranium enrichment

    International Nuclear Information System (INIS)

    1990-01-01

    This report looks at the following issues: How much Soviet uranium ore and enriched uranium are imported into the United States and what is the extent to which utilities flag swap to disguise these purchases? What are the U.S.S.R.'s enriched uranium trading practices? To what extent are utilities required to return used fuel to the Soviet Union as part of the enriched uranium sales agreement? Why have U.S. utilities ended their contracts to buy enrichment services from DOE?

  20. Physiology of inactivation of microbial cells by near-ultraviolet light: mode of action and application for the enrichment of mutants of Escherichia coli and saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Peters, J.

    1976-01-01

    The mode of action of near-ultraviolet (NUV) light was studied in Escherichia coli. NUV light (maximum emission at 365 nm) caused the photodestruction of ribonucleoside diphosphate (RDP) reductase activity in vivo. Evidence was presented for a model suggesting that the loss of RDP-reductase resulted in a metabolic state analogous to that produced during starvation for thymine. Some important properties of cells irradiated by NUV light, cell death, loss of the ability to support the replication of DNA phages and a delay in the onset of cell division in sublethally irradiated cells, were accounted for in terms of photoinactivation of RDP-reductase. Conditions were described under which NUV light was an effective counterselective agent for the enrichment of mutants of Escherichia coli and Saccharomyces cerevisiae

  1. Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona.

    Science.gov (United States)

    Ikner, Luisa A; Toomey, Rickard S; Nolan, Ginger; Neilson, Julia W; Pryor, Barry M; Maier, Raina M

    2007-01-01

    Kartchner Caverns in Benson, AZ, was opened for tourism in 1999 after a careful development protocol that was designed to maintain predevelopment conditions. As a part of an ongoing effort to determine the impact of humans on this limestone cave, samples were collected from cave rock surfaces along the cave trail traveled daily by tour groups (200,000 visitors year-1) and compared to samples taken from areas designated as having medium (30-40 visitors year-1) and low (2-3 visitors year-1) levels of human exposure. Samples were also taken from fiberglass moldings installed during cave development. Culturable bacteria were recovered from these samples and 90 unique isolates were identified by using 16S rRNA polymerase chain reaction and sequencing. Diversity generally decreased as human impact increased leading to the isolation of 32, 27, and 22 strains from the low, medium, and high impact areas, respectively. The degree of human impact was also reflected in the phylogeny of the isolates recovered. Although most isolates fell into one of three phyla: Actinobacteria, Firmicutes, or Proteobacteria, the Proteobacteria were most abundant along the cave trail (77% of the isolates), while Firmicutes predominated in the low (66%) and medium (52%) impact areas. Although the abundance of Proteobacteria along the cave trail seems to include microbes of environmental rather than of anthropogenic origin, it is likely that their presence is a consequence of increased organic matter availability due to lint and other organics brought in by cave visitors. Monitoring of the cave is still in progress to determine whether these bacterial community changes may impact the future development of cave formations.

  2. Dynamics of the Content of Lactobacilli, Microbial Metabolites and Antimicrobial Activity of Growing Culture of Lactobacillus Plantarum 8P-A3

    Directory of Open Access Journals (Sweden)

    I. Yu. Chicherin

    2013-01-01

    Full Text Available The dynamics of the content of lactobacilli, microbial metabolites and antimicrobial activity of growing cultures of Lactobacillus plantarum 8Р-А3 was studied. Lactobacilli L. plantarum 8Р-А3 and test microorganisms isolated from the intestinal contents of patients with dysbacteriosis were used in experiments. Study of the component composition of growing culture supernatant of lactobacilli was carried out by gas liquid chromatography with mass selective detection. By 54 h of cultivation the content of viable microbial cells in the native culture of Lactobacillus achieves 3,0·109 in 1 mL without further increase during the cultivation. The principal component of lactobacilli culture medium possessing antibacterial activity is lactic acid. In addition to lactic acid, which accounts for 70% of the total metabolites, the culture medium and the supernatant contain salts of phosphoric acid (14% as well as amino acids, carboxylic acids, fatty acids, sugars and polyhydric alcohol constituting of up to 16% of the total metabolites. It is found that during the cultivation in liquid medium lactobacilli produce metabolites which possess antibacterial activity against pathogenic bacteria that cause intestinal infections.

  3. Heavy metal incorporation in foraminiferal calcite: results from multi-element enrichment culture experiments with Ammonia tepida

    Directory of Open Access Journals (Sweden)

    G.-J. Reichart

    2010-08-01

    Full Text Available The incorporation of heavy metals into carbonate tests of the shallow water benthic foraminifer Ammonia tepida was investigated under controlled laboratory conditions. Temperature, salinity, and pH of the culture solutions were kept constant throughout the duration of this experiment, while trace metal concentrations were varied. Concentrations of Ni, Cu, and Mn were set 5-, 10-, and 20 times higher than levels found in natural North Sea water; for reference, a control experiment with pure filtered natural North Sea water was also analysed. The concentrations of Cu and Ni from newly grown chambers were determined by means of both μ-synchrotron XRF and Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS. The results of both independent analytical techniques agreed within the analytical uncertainty. In general, the concentration of the analysed elements in the tests increased in line with their concentration in the culture solutions. Potential toxic and/or chemical competition effects might have resulted in the decreased incorporation of Ni and Cu into the calcite of the specimens exposed to the highest elemental concentrations. Mn incorporation exhibited large variability in the experiment with the 20-fold increased element concentrations, potentially due to antagonistic effects with Cu. The partition coefficients of Cu and Ni were calculated to be 0.14 ± 0.02 and 1.0 ± 0.5, respectively, whereas the partition coefficient of Mn was estimated to be least 2.4. These partition coefficients now open the way for reconstructing past concentrations for these elements in sea water.

  4. Determination of the cause of the symptoms on yellow yam (Dioscorea cayenensis Lam.) leaf tissue and their eradication, enriching the culture medium and using techniques of meristem culture, thermo and chemotherapy on in vitro conditions

    International Nuclear Information System (INIS)

    Brenes Huertas, Mauricio

    2010-01-01

    Yams (Dioscorea spp) has been cultivated for exportation in Costa Rica, in North Huetar region. In vitro culture technique has been used for multiplying planting material for many advantages. However, cleaning of viruses that affect has been ineffective. Viruses such as: the potyvirus, potexvirus, cucumovirus . Methods like meristem culture, chemotherapy, thermotherapy and combinations of these have been used for the elimination of virus in plant species. The plants were evaluated in indexing assays, observing symptoms, serological methods and electron microscopy, among others. Other problems that have been affecting in vitro plant are deficient culture media in some nutrient. The presence of some abnormal characteristics in leaf tissue was determined whether have been caused by a virus or a nutritional deficiency in the culture medium. The presence of the virus has tried to find using ELISA and electron microscopy. Tests meristem culture, thermotherapy and chemotherapy have been made for the eradication of a possible virus; which have been assessed by observation of symptomatology and ELISA. The efficiency of the culture medium was evaluated to enrich it with nitrogen or excess iron. None of the suspected virus found in ELISA tests. Filaments are presumably viral particles were found through analysis of ultrastructure, as well as alterations in chloroplasts which indicated the presence of a pathogen or toxicity. Thermotherapy and chemotherapy with the concentration of 40 mg/L of ribavirin have been the most effective for the elimination of symptoms in virus eradication treatments. Assessments nutrient concentrations have shown that the differences between the various treatments used were undetectable. The symptoms presented were caused, according to the conclusions, by a virus which should preferably deal with thermotherapy. (author) [es

  5. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  6. Enrichment of carbon monoxide utilising microorganisms from methanogenic bioreactor sludge

    OpenAIRE

    Pereira, Ana Luísa; Stams, Alfons Johannes Maria; Alves, M. M.; Sousa, D. Z.

    2015-01-01

    Conversion of CO is the rate limiting step during anaerobic conversion of syngas (a gaseous mixture mainly composed of CO, CO2 and H2). In this work we study the microbial diversity in anaerobic sludge submitted to extended contact to syngas in a multi-orifice baffled bioreactor (MOBB). Methane was the main product resulting from syngas conversion in the MOBB. Enrichment cultures started with this sludge produced methane as final product, but also acetate. 16S rRNA gene analysis revealed a pr...

  7. Feeding glycerol-enriched yeast culture improves performance, energy status, and heat shock protein gene expression of lactating Holstein cows under heat stress.

    Science.gov (United States)

    Liu, J; Ye, G; Zhou, Y; Liu, Y; Zhao, L; Liu, Y; Chen, X; Huang, D; Liao, S F; Huang, K

    2014-06-01

    This study was conducted to evaluate the effects of supplemental common yeast culture (CY) and glycerol-enriched yeast culture (GY) on performance, plasma metabolites, antioxidant status, and heat shock protein 70 (HSP70) mRNA expression in lactating Holstein cows under heat stress. During summer months, 30 healthy multiparous lactating cows (parity 3.25 ± 0.48; 60 ± 13 d in milk [DIM]; 648 ± 57 kg BW; an average milk yield of 33.8 ± 1.6 kg/d) were blocked by parity, previous milk yield, and DIM and randomly allocated to 3 dietary treatments: no supplemental yeast culture (Control), 1 L/d of CY (33.1 g yeast) per cow, and 2 L/d of GY (153.2 g glycerol and 31.6 g yeast) per cow. During the 60-d experiment, values of air temperature and relative humidity inside the barn were recorded hourly every 3 d to calculate temperature-humidity index (THI). Weekly rectal temperatures (RT) and respiration rates and daily DMI and milk yield were recorded for all cows. Milk and blood samples were taken twice monthly, and BW and BCS were obtained on d 0 and 60. In this experiment, THI values indicated cows experienced a moderate heat stress. Cows supplemented with CY and GY had greater yields of milk, energy-corrected milk and milk fat, and milk fat percent but lower HSP70 mRNA expression in peripheral blood lymphocytes than Control cows (P cows. In conclusion, either CY or GY supplementation partially mitigated the negative effects of heat stress on performance and HSP70 mRNA expression of lactating cows, and GY supplementation provided additional improvements in energy status and HSP70 gene expression of lactating cows.

  8. Continuous-flow column study of reductive dehalogenation of PCE upon bioaugmentation with the Evanite enrichment culture

    Science.gov (United States)

    Azizian, Mohammad F.; Behrens, Sebastian; Sabalowsky, Andrew; Dolan, Mark E.; Spormann, Alfred M.; Semprini, Lewis

    2008-08-01

    A continuous-flow anaerobic column experiment was conducted to evaluate the reductive dechlorination of tetrachloroethene (PCE) in Hanford aquifer material after bioaugmentation with the Evanite (EV) culture. An influent PCE concentration of 0.09 mM was transformed to vinyl chloride (VC) and ethene (ETH) within a hydraulic residence time of 1.3 days. The experimental breakthrough curves were described by the one-dimensional two-site-nonequilibrium transport model. PCE dechlorination was observed after bioaugmentation and after the lactate concentration was increased from 0.35 to 0.67 mM. At the onset of reductive dehalogenation, cis-dichloroethene (c-DCE) concentrations in the column effluent exceeded the influent PCE concentration indicating enhanced PCE desorption and transformation. When the lactate concentration was increased to 1.34 mM, c-DCE reduction to vinyl chloride (VC) and ethene (ETH) occurred. Spatial rates of PCE and VC transformation were determined in batch-incubated microcosms constructed with aquifer samples obtained from the column. PCE transformation rates were highest in the first 5 cm from the column inlet and decreased towards the column effluent. Dehalococcoides cell numbers dropped from ˜ 73.5% of the total Bacterial population in the original inocula, to about 0.5% to 4% throughout the column. The results were consistent with estimates of electron donor utilization, with 4% going towards dehalogenation reactions.

  9. Uranium enrichment

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.

    1988-06-01

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  10. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Zhang, Xiao-Tao; Hou, Du-Jie [China Univ. of Geosciences, Beijing (China). The Key Lab. of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism; She, Yue-Hui [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology; Li, Hua-Min [Beijing Bioscience Research Center (China); Shu, Fu-Chang; Wang, Zheng-Liang [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Yu, Long-Jiang [Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology

    2012-08-15

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. (orig.)

  11. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    Science.gov (United States)

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.

  12. The social cost of coastal erosion. Using cultural theory to enrich the interpretation of stated preference data.

    Science.gov (United States)

    Kontogianni, A.; Tourkolias, C.; Vousdoukas, M.; Skourtos, M.

    2012-04-01

    Natural coastal processes are to a great extent modified by proximity to man-made structures. Engineered interventions, port facilities, housing and industrial infrastructure, all can increase the coastline fluctuations significantly relative to those along a long unobstructed coastline. As a consequence, coastlines are increasingly exposed to coastal erosion, a phenomenon defined as the encroachment of land by the sea after averaging over a period, which is sufficiently long to eliminate the impacts of weather, storm events and local sediment dynamics. In order to provide cost effective management of coastal erosion it is crucial to estimate both the benefits and costs associated with various management alternatives. The initiatives on Integrated Coastal Zone Manegment in Europe, but also the upcoming Marine Strategy Framwork Directive would benefit greatly from a proliferation of socioeconomic information to assist decision makers who must weigh the impacts of various types of coastal improvement and the cost of beach protection/restoration. In that spirit, the objective of the present research is to report the results of a survey undertaken in two resort beaches on the island of Lesvos (Greece), designed to estimate public preferences for avoiding coastal erosion. A mixed methodological approach is employed by combining an open-ended contingent valuation survey with cultural theory of risk perception. The empirical models to analyze individual choices of erosion control programs and the associated welfare measures are presented, followed by the discussion of model specification and estimation issues, and the results of the data analysis. Some concluding remarks are then presented. By choosing this approach we aim at improving our understanding of preference structure for avoiding public risk, accepted level of risk and perceptions thereof. The framework can also be used for assessing the social cost of extreme weather events such as storm surges in the coastal

  13. Uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1982-01-01

    The separation of uranium isotopes in order to enrich the fuel for light water reactors with the light isotope U-235 is an important part of the nuclear fuel cycle. After the basic principals of isotope separation the gaseous diffusion and the centrifuge process are explained. Both these techniques are employed on an industrial scale. In addition a short review is given on other enrichment techniques which have been demonstrated at least on a laboratory scale. After some remarks on the present situation on the enrichment market the progress in the development and the industrial exploitation of the gas centrifuge process by the trinational Urenco-Centec organisation is presented. (orig.)

  14. CD133-enriched Xeno-Free human embryonic-derived neural stem cells expand rapidly in culture and do not form teratomas in immunodeficient mice

    Directory of Open Access Journals (Sweden)

    Daniel L. Haus

    2014-09-01

    Full Text Available Common methods for the generation of human embryonic-derived neural stem cells (hNSCs result in cells with potentially compromised safety profiles due to maintenance of cells in conditions containing non-human proteins (e.g. in bovine serum or on mouse fibroblast feeders. Additionally, sufficient expansion of resulting hNSCs for scaling out or up in a clinically relevant time frame has proven to be difficult. Here, we report a strategy that produces hNSCs in completely “Xeno-Free” culture conditions. Furthermore, we have enriched the hNSCs for the cell surface marker CD133 via magnetic sorting, which has led to an increase in the expansion rate and neuronal fate specification of the hNSCs in vitro. Critically, we have also confirmed neural lineage specificity upon sorted hNSC transplantation into the immunodeficient NOD-scid mouse brain. The future use or adaptation of these protocols has the potential to better facilitate the advancement of pre-clinical strategies from the bench to the bedside.

  15. Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source

    International Nuclear Information System (INIS)

    Azabou, Samia; Mechichi, Tahar; Patel, Bharat K.C.; Sayadi, Sami

    2007-01-01

    A sulfate-reducing bacterium, was isolated from a 6 month trained enrichment culture in an anaerobic media containing phosphogypsum as a sulfate source, and, designated strain SA2. Cells of strain SA2 were rod-shaped, did not form spores and stained Gram-negative. Phylogenetic analysis of the 16S rRNA gene sequence of the isolate revealed that it was related to members of the genus Desulfomicrobium (average sequence similarity of 98%) with Desulfomicrobium baculatum being the most closely related (sequence similarity of 99%). Strain SA2 used thiosulfate, sulfate, sulfite and elemental sulfur as electron acceptors and produced sulfide. Strain SA2 reduced sulfate contained in 1-20 g/L phosphogypsum to sulfide with reduction of sulfate contained in 2 g/L phosphogypsum being the optimum concentration. Strain SA2 grew with metalloid, halogenated and non-metal ions present in phosphogypsum and with added high concentrations of heavy metals (125 ppm Zn and 100 ppm Ni, W, Li and Al). The relative order for the inhibitory metal concentrations, based on the IC 50 values, was Cu, Te > Cd > Fe, Co, Mn > F, Se > Ni, Al, Li > Zn

  16. Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria

    Science.gov (United States)

    Liu, Lin; Choi, Seokheun

    2017-04-01

    Among many energy harvesting techniques with great potential, microbial fuel cell (MFC) technology is arguably the most underdeveloped. Even so, excitement is building, as microorganisms can harvest electrical power from any biodegradable organic source (e.g. wastewater) that is readily available in resource-limited settings. Nevertheless, the requirement for endless introduction of organic matter imposes a limiting factor to this technology, demanding an active feeding system and additional power. Here, we demonstrated self-sustaining bioelectricity generation from a microliter-scale microbial fuel cell (MFC) by using the syntrophic interaction between heterotrophic exoelectrogenic bacteria and phototrophs. The MFC continuously generated light-responsive electricity from the heterotrophic bacterial metabolic respiration with the organic substrates produced by photosynthetic bacteria. Without additional organic fuel, the mixed culture in a 90-μL-chamber MFC generated self-sustained current for more than 13 days, while the heterotrophic culture produced current that decreased dramatically within a few hours. The current from the mixed culture was about 70 times greater than that of the device with only photosynthetic bacteria. The miniaturization provided a short start-up time, a well-controlled environment, and small internal resistance. Those advantages will become the general design platform for micropower generation.

  17. Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost.

    Science.gov (United States)

    Izquierdo, Javier A; Sizova, Maria V; Lynd, Lee R

    2010-06-01

    The enrichment from nature of novel microbial communities with high cellulolytic activity is useful in the identification of novel organisms and novel functions that enhance the fundamental understanding of microbial cellulose degradation. In this work we identify predominant organisms in three cellulolytic enrichment cultures with thermophilic compost as an inoculum. Community structure based on 16S rRNA gene clone libraries featured extensive representation of clostridia from cluster III, with minor representation of clostridial clusters I and XIV and a novel Lutispora species cluster. Our studies reveal different levels of 16S rRNA gene diversity, ranging from 3 to 18 operational taxonomic units (OTUs), as well as variability in community membership across the three enrichment cultures. By comparison, glycosyl hydrolase family 48 (GHF48) diversity analyses revealed a narrower breadth of novel clostridial genes associated with cultured and uncultured cellulose degraders. The novel GHF48 genes identified in this study were related to the novel clostridia Clostridium straminisolvens and Clostridium clariflavum, with one cluster sharing as little as 73% sequence similarity with the closest known relative. In all, 14 new GHF48 gene sequences were added to the known diversity of 35 genes from cultured species.

  18. Microbial electrosynthetic cells

    Energy Technology Data Exchange (ETDEWEB)

    May, Harold D.; Marshall, Christopher W.; Labelle, Edward V.

    2018-01-30

    Methods are provided for microbial electrosynthesis of H.sub.2 and organic compounds such as methane and acetate. Method of producing mature electrosynthetic microbial populations by continuous culture is also provided. Microbial populations produced in accordance with the embodiments as shown to efficiently synthesize H.sub.2, methane and acetate in the presence of CO.sub.2 and a voltage potential. The production of biodegradable and renewable plastics from electricity and carbon dioxide is also disclosed.

  19. Characterization of fungi in office dust: Comparing results of microbial secondary metabolites, fungal internal transcribed spacer region sequencing, viable culture and other microbial indices.

    Science.gov (United States)

    Park, J-H; Sulyok, M; Lemons, A R; Green, B J; Cox-Ganser, J M

    2018-05-04

    Recent developments in molecular and chemical methods have enabled the analysis of fungal DNA and secondary metabolites, often produced during fungal growth, in environmental samples. We compared 3 fungal analytical methods by analysing floor dust samples collected from an office building for fungi using viable culture, internal transcribed spacer (ITS) sequencing and secondary metabolites using liquid chromatography-tandem mass spectrometry. Of the 32 metabolites identified, 29 had a potential link to fungi with levels ranging from 0.04 (minimum for alternariol monomethylether) to 5700 ng/g (maximum for neoechinulin A). The number of fungal metabolites quantified per sample ranged from 8 to 16 (average = 13/sample). We identified 216 fungal operational taxonomic units (OTUs) with the number per sample ranging from 6 to 29 (average = 18/sample). We identified 37 fungal species using culture, and the number per sample ranged from 2 to 13 (average = 8/sample). Agreement in identification between ITS sequencing and culturing was weak (kappa = -0.12 to 0.27). The number of cultured fungal species poorly correlated with OTUs, which did not correlate with the number of metabolites. These suggest that using multiple measurement methods may provide an improved understanding of fungal exposures in indoor environments and that secondary metabolites may be considered as an additional source of exposure. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  1. Production of rhamnolipids by Pseudomonas aeruginosa is inhibited by H2S but resumes in a co-culture with P. stutzeri: applications for microbial enhanced oil recovery.

    Science.gov (United States)

    Zhao, Feng; Ma, Fang; Shi, Rongjiu; Zhang, Jie; Han, Siqin; Zhang, Ying

    2015-09-01

    Sulfate-reducing bacteria and H2S exist widely in oil production systems, and in situ production of rhamnolipids is promising for microbial enhanced oil recovery (MEOR). However, information of the effect of S(2-) on rhamnolipids production is scarce. Two facultative anaerobic rhamnolipids-producing bacterial strains, Pseudomonas aeruginosa SG and WJ-1, were used. Above 10 mg S(2-)/l, both cell growth and rhamnolipids production were inhibited. A large inoculum (9%, v/v) failed to completely relieve the inhibitory effect of 10 mg S(2-)/l. Below 30 mg S(2-)/l, both strains resumed rhamnolipid production through co-culturing with the denitrifying and sulphide-removing strain Pseudomonas stutzeri DQ1. H2S has a direct but reversible inhibitory effect on rhamnolipids production. Control of H2S in oilfields is indispensable to MEOR, and the co-culture method is effective in restoring rhamnolipid production in presence of S(2-).

  2. Culture-Dependent and Independent Studies of Microbial Diversity in Highly Copper-Contaminated Chilean Marine Sediments

    NARCIS (Netherlands)

    Besaury, L.; Marty, F.; Buquet, S.; Mesnage, V.; Muijzer, G.; Quillet, L.

    2013-01-01

    Cultivation and molecular-based approaches were used to study microbial diversity in two Chilean marine sediments contaminated with high (835 ppm) and very high concentrations of copper (1,533 ppm). The diversity of cultivable bacteria resistant to copper was studied at oxic and anoxic conditions,

  3. Microbial Life of North Pacific Oceanic Crust

    Science.gov (United States)

    Schumann, G.; Koos, R.; Manz, W.; Reitner, J.

    2003-12-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed reactions that influence the geophysical properties of these environments. Drilling into 45-Ma oceanic basaltic crust in a deepwater environment during ODP Leg 200 provided a promising opportunity to explore the abundance, diversity and activity of micro-organisms. The combined use of culture-independent molecular phylogenetic analyses and enrichment culture techniques is an advantageous approach in investigating subsurface microbial ecosystems. Enrichment culture methods allow the evaluation of potential activities and functions. Microbiological investigations revealed few aerobic cultivable, in part hitherto unknown, micro-organisms in deep submarine sediments and basaltic lava flows. 16S rDNA sequencing of isolates from sediment revealed the next relatives to be members of the genera Halomonas, Pseudomonas, and Lactobacillus. Within the Pseudomonadaceae the closest relative is Acinetobacter sp., which was isolated from a deep subsurface environment. The next phylogenetical relatives within the Halomonadaceae are bacteria typically isolated from Soda lakes, which are considered as model of early life conditions. Interestingly, not only sediment bacteria could be obtained in pure culture. Aerobic strains could also be successfully isolated from the massive tholeiitic basalt layer at a depth of 76.16 mbsf (46 m below the sediment/basement contact). These particular isolates are gram-positive with low G+C content of DNA, phylogenetically affiliated to the phylum Firmicutes. The closest neighbors are e.g. a marine Bacillus isolated from the Gulf of Mexico and a low G+C gram-positive bacterium, which belongs to the microbial flora in the deepest sea mud of the Mariana Trench, isolated from a depth of 10,897 m. Based on the similarity values, the isolates represent hitherto undescribed species of the deep

  4. Genome-centric metatranscriptomes and ecological roles of the active microbial populations during cellulosic biomass anaerobic digestion.

    Science.gov (United States)

    Jia, Yangyang; Ng, Siu-Kin; Lu, Hongyuan; Cai, Mingwei; Lee, Patrick K H

    2018-01-01

    Although anaerobic digestion for biogas production is used worldwide in treatment processes to recover energy from carbon-rich waste such as cellulosic biomass, the activities and interactions among the microbial populations that perform anaerobic digestion deserve further investigations, especially at the population genome level. To understand the cellulosic biomass-degrading potentials in two full-scale digesters, this study examined five methanogenic enrichment cultures derived from the digesters that anaerobically digested cellulose or xylan for more than 2 years under 35 or 55 °C conditions. Metagenomics and metatranscriptomics were used to capture the active microbial populations in each enrichment culture and reconstruct their meta-metabolic network and ecological roles. 107 population genomes were reconstructed from the five enrichment cultures using a differential coverage binning approach, of which only a subset was highly transcribed in the metatranscriptomes. Phylogenetic and functional convergence of communities by enrichment condition and phase of fermentation was observed for the highly transcribed populations in the metatranscriptomes. In the 35 °C cultures grown on cellulose, Clostridium cellulolyticum -related and Ruminococcus -related bacteria were identified as major hydrolyzers and primary fermenters in the early growth phase, while Clostridium leptum -related bacteria were major secondary fermenters and potential fatty acid scavengers in the late growth phase. While the meta-metabolism and trophic roles of the cultures were similar, the bacterial populations performing each function were distinct between the enrichment conditions. Overall, a population genome-centric view of the meta-metabolism and functional roles of key active players in anaerobic digestion of cellulosic biomass was obtained. This study represents a major step forward towards understanding the microbial functions and interactions at population genome level during the

  5. Temporal and Spatial Distribution of the Microbial Community of Winogradsky Columns.

    Directory of Open Access Journals (Sweden)

    David J Esteban

    Full Text Available Winogradsky columns are model microbial ecosystems prepared by adding pond sediment to a clear cylinder with additional supplements and incubated with light. Environmental gradients develop within the column creating diverse niches that allow enrichment of specific bacteria. The enrichment culture can be used to study soil and sediment microbial community structure and function. In this study we used a 16S rRNA gene survey to characterize the microbial community dynamics during Winogradsky column development to determine the rate and extent of change from the source sediment community. Over a period of 60 days, the microbial community changed from the founding pond sediment population: Cyanobacteria, Chloroflexi, Nitrospirae, and Planctomycetes increased in relative abundance over time, while most Proteobacteria decreased in relative abundance. A unique, light-dependent surface biofilm community formed by 60 days that was less diverse and dominated by a few highly abundant bacteria. 67-72% of the surface community was comprised of highly enriched taxa that were rare in the source pond sediment, including the Cyanobacteria Anabaena, a member of the Gemmatimonadetes phylum, and a member of the Chloroflexi class Anaerolinea. This indicates that rare taxa can become abundant under appropriate environmental conditions and supports the hypothesis that rare taxa serve as a microbial seed bank. We also present preliminary findings that suggest that bacteriophages may be active in the Winogradsky community. The dynamics of certain taxa, most notably the Cyanobacteria, showed a bloom-and-decline pattern, consistent with bacteriophage predation as predicted in the kill-the-winner hypothesis. Time-lapse photography also supported the possibility of bacteriophage activity, revealing a pattern of colony clearance similar to formation of viral plaques. The Winogradsky column, a technique developed early in the history of microbial ecology to enrich soil

  6. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments

    DEFF Research Database (Denmark)

    Fowler, Jane; Toth, Courtney R. A.; Gieg, Lisa M.

    2016-01-01

    , but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon......The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge......-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates...

  7. The effects of co-contaminants and native wetland sediments on the activity and dominant transformation mechanisms of a 1,1,2,2-tetrachloroethane (TeCA)-degrading enrichment culture

    Science.gov (United States)

    Lorah, Michelle M.; Schiffmacher, Emily N.; Becker, Jennifer G.; Voytek, Mary A.

    2016-01-01

    Bioremediation strategies, including bioaugmentation with chlorinated ethene-degrading enrichment cultures, have been successfully applied in the cleanup of subsurface environments contaminated with tetrachloroethene (PCE) and/or trichloroethene (TCE). However, these compounds are frequently found in the environment as components of mixtures that may also contain chlorinated ethanes and methanes. Under these conditions, the implementation of bioremediation may be complicated by inhibition effects, particularly when multiple dehalorespirers are present. We investigated the ability of the 1,1,2,2-tetrachloroethane (TeCA)-dechlorinating culture WBC-2 to biotransform TeCA alone, or a mixture of TeCA plus PCE and carbon tetrachloride (CT), in microcosms. The microcosms contained electron donors provided to biostimulate the added culture and sediment collected from a wetland where numerous “hotspots” of contamination with chlorinated solvent mixtures exist. The dominant TeCA biodegradation mechanism mediated by the WBC-2 culture in the microcosms was different in the presence of these wetland sediments than in the sediment-free enrichment culture or in previous WBC-2 bioaugmented microcosms and column tests conducted with wetland sediment collected at nearby sites. The co-contaminants and their daughter products also inhibited TeCA biodegradation by WBC-2. These results highlight the need to conduct biodegradability assays at new sites, particularly when multiple contaminants and dehalorespiring populations are present.

  8. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector

  9. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw.

    Science.gov (United States)

    Ozbayram, E Gozde; Kleinsteuber, Sabine; Nikolausz, Marcell; Ince, Bahar; Ince, Orhan

    2017-08-01

    The aim of this study was to determine the potential of bioaugmentation with cellulolytic rumen microbiota to enhance the anaerobic digestion of lignocellulosic feedstock. An anaerobic cellulolytic culture was enriched from sheep rumen fluid using wheat straw as substrate under mesophilic conditions. To investigate the effects of bioaugmentation on methane production from straw, the enrichment culture was added to batch reactors in proportions of 2% (Set-1) and 4% (Set-2) of the microbial cell number of the standard inoculum slurry. The methane production in the bioaugmented reactors was higher than in the control reactors. After 30 days of batch incubation, the average methane yield was 154 mL N CH 4 g VS -1 in the control reactors. Addition of 2% enrichment culture did not enhance methane production, whereas in Set-2 the methane yield was increased by 27%. The bacterial communities were examined by 454 amplicon sequencing of 16S rRNA genes, while terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of mcrA genes was applied to analyze the methanogenic communities. The results highlighted that relative abundances of Ruminococcaceae and Lachnospiraceae increased during the enrichment. However, Cloacamonaceae, which were abundant in the standard inoculum, dominated the bacterial communities of all batch reactors. T-RFLP profiles revealed that Methanobacteriales were predominant in the rumen fluid, whereas the enrichment culture was dominated by Methanosarcinales. In the batch rectors, the most abundant methanogens were affiliated to Methanobacteriales and Methanomicrobiales. Our results suggest that bioaugmentation with sheep rumen enrichment cultures can enhance the performance of digesters treating lignocellulosic feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cultivating microbial dark matter in benzene-degrading methanogenic consortia.

    Science.gov (United States)

    Luo, Fei; Devine, Cheryl E; Edwards, Elizabeth A

    2016-09-01

    The microbes responsible for anaerobic benzene biodegradation remain poorly characterized. In this study, we identified and quantified microbial populations in a series of 16 distinct methanogenic, benzene-degrading enrichment cultures using a combination of traditional 16S rRNA clone libraries (four cultures), pyrotag 16S rRNA amplicon sequencing (11 cultures), metagenome sequencing (1 culture) and quantitative polymerase chain reaction (qPCR; 12 cultures). An operational taxonomic unit (OTU) from the Deltaproteobacteria designated ORM2 that is only 84% to 86% similar to Syntrophus or Desulfobacterium spp. was consistently identified in all enrichment cultures, and typically comprised more than half of the bacterial sequences. In addition to ORM2, a sequence belonging to Parcubacteria (candidate division OD1) identified from the metagenome data was the only other OTU common to all the cultures surveyed. Culture transfers (1% and 0.1%) were made in the presence and absence of benzene, and the abundance of ORM2, OD1 and other OTUs was tracked over 415 days using qPCR. ORM2 sequence abundance increased only when benzene was present, while the abundance of OD1 and other OTUs increased even in the absence of benzene. Deltaproteobacterium ORM2 is unequivocally the benzene-metabolizing population. This study also hints at laboratory cultivation conditions for a member of the widely distributed yet uncultivated Parcubacteria (OD1). © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures

    Science.gov (United States)

    Sekar, Ramanan; Taillefert, Martial

    2016-01-01

    ABSTRACT Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. IMPORTANCE A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants

  12. Surface-to-surface biofilm transfer: a quick and reliable startup strategy for mixed culture microbial fuel cells.

    Science.gov (United States)

    Vogl, Andreas; Bischof, Franz; Wichern, Marc

    2016-01-01

    The startup of microbial fuel cells (MFCs) is known to be prone to failure or result in erratic performance impeding the research. The aim of this study was to advise a quick launch strategy for laboratory-scale MFCs that ensures steady operation performance in a short period of time. Different startup strategies were investigated and compared with membraneless single chamber MFCs. A direct surface-to-surface biofilm transfer (BFT) in an operating MFC proved to be the most efficient method. It provided steady power densities of 163 ± 13 mWm(-2) 4 days after inoculation compared to 58 ± 15 mWm(-2) after 30 days following a conventional inoculation approach. The in situ BFT eliminates the need for microbial acclimation during startup and reduces performance fluctuations caused by shifts in microbial biodiversity. Anaerobic pretreatment of the substrate and addition of suspended enzymes from an operating MFC into the new MFC proved to have a beneficial effect on startup and subsequent operation. Polarization methods were applied to characterize the startup phase and the steady state operation in terms of power densities, internal resistance and power overshoot during biofilm maturation. Applying this method a well-working MFC can be multiplied into an array of identically performing MFCs.

  13. Establishment of a Methanogenic Benzene-Degrading Culture and its Implication in Bioremediation

    Science.gov (United States)

    Qiao, W.; Luo, F.; Bawa, N.; Guo, S.; Ye, S.; Edwards, E.

    2017-12-01

    Benzene is a known human carcinogen and it is a common pollutant in groundwater, mainly resulting from petrochemical industry. Anaerobic degradation of benzene has significant advantages over aerobic processes for in situ bioremediation. In this study, new methanogenic and sulfate-reducing benzene degrading cultures have been enriched. Microbial community composition was characterized with two other previously established benzene-degrading cultures, and their potential use in bioaugmentation is investigated. In this study, a lab microcosm study was conducted anaerobically with contaminated soil and groundwater from a former chemical plant. Benzene degradation was observed in the presence of co-contaminants and electron donor. Through repetitive amendment of benzene, two enrichment cultures have been developed under sulfate and methanogenic conditions. Results from DNA amplicon sequencing and qPCR analysis revealed that an organism similar to previously described benzene-degrading Deltaproteobacterium has been enriched. The microbial community of this culture was compared with other two methanogenic benzene-degrading enrichment cultures that were derived from an oil refinery and a decommissioned gasoline station, and have been maintained for decades. Deltaproteobacterium ORM2-like microbes were dominate in all enrichment cultures, which brought to light benzene-degrading microbes, ORM2 were enriched under different geological conditions distributed around the world. The relative abundance of methanogens was much lower compared to previously established cultures, although substantial amount of methane was produced. The peripheral organisms also vary. To investigate effectiveness of using ORM2-dominant enrichment cultures in bioremediation, microcosm studies were set up using contaminated materials, and a ORM2-dominating methanogenic benzene-degrading culture was used for bioaugmentation. Results revealed that benzene degradation was speeded up under methanogenic or

  14. Microbial diversity and dynamics throughout manufacturing and ripening of surface ripened semi-hard Danish Danbo cheeses investigated by culture-independent techniques.

    Science.gov (United States)

    Ryssel, Mia; Johansen, Pernille; Al-Soud, Waleed Abu; Sørensen, Søren; Arneborg, Nils; Jespersen, Lene

    2015-12-23

    Microbial successions on the surface and in the interior of surface ripened semi-hard Danish Danbo cheeses were investigated by culture-dependent and -independent techniques. Culture-independent detection of microorganisms was obtained by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing, using amplicons of 16S and 26S rRNA genes for prokaryotes and eukaryotes, respectively. With minor exceptions, the results from the culture-independent analyses correlated to the culture-dependent plating results. Even though the predominant microorganisms detected with the two culture-independent techniques correlated, a higher number of genera were detected by pyrosequencing compared to DGGE. Additionally, minor parts of the microbiota, i.e. comprising surface and the interior of the cheeses diverged. During cheese production pyrosequencing determined Lactococcus as the dominating genus on cheese surfaces, representing on average 94.7%±2.1% of the OTUs. At day 6 Lactococcus spp. declined to 10.0% of the OTUs, whereas Staphylococcus spp. went from 0.0% during cheese production to 75.5% of the OTUs at smearing. During ripening, i.e. from 4 to 18 weeks, Corynebacterium was the dominant genus on the cheese surface (55.1%±9.8% of the OTUs), with Staphylococcus (17.9%±11.2% of the OTUs) and Brevibacterium (10.4%±8.3% of the OTUs) being the second and third most abundant genera. Other detected bacterial genera included Clostridiisalibacter (5.0%±4.0% of the OTUs), as well as Pseudoclavibacter, Alkalibacterium and Marinilactibacillus, which represented surface ripened semi-hard cheeses. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Characterization of multiple antibiotic resistance of culturable microorganisms and metagenomic analysis of total microbial diversity of marine fish sold in retail shops in Mumbai, India.

    Science.gov (United States)

    Naik, Onkar A; Shashidhar, Ravindranath; Rath, Devashish; Bandekar, Jayant R; Rath, Archana

    2018-03-01

    Marine fish species were analyzed for culturable and total metagenomic microbial diversity, antibiotic resistance (AR) pattern, and horizontal gene transfer in culturable microorganisms. We observed a high AR microbial load of 3 to 4 log CFU g -1 . Many fish pathogens like Providencia, Staphylococcus, Klebsiella pneumoniae, Enterobacter, Vagococcus, and Aeromonas veronii were isolated. Photobacterium and Vibrio were two major fish and human pathogens which were identified in the fish metagenome. Other pathogens that were identified were Shewanella, Acinetobacter, Psychrobacter, and Flavobacterium. Most of these pathogens were resistant to multiple antibiotics such as erythromycin, kanamycin, neomycin, streptomycin, penicillin, cefotaxime, bacitracin, rifampicin, trimethoprim, ciprofloxacin, and doxycycline with a high multiple antibiotic resistance index of 0.54-0.77. The fish microflora showed high prevalence of AR genes like bla TEM , Class I integron, tetA, aph(3')-IIIa, ermB, aadA, and sul1. Nineteen of 26 AR isolates harbored Class I integrons showing high co-resistance to trimethoprim, kanamycin, doxycycline, and cefotaxime. Mobile R-plasmids from 6 of the 12 AR pathogens were transferred to recipient E. coli after conjugation. The transconjugants harbored the same R-plasmid carrying bla CTX-M , dfr1, tetA, bla TEM , and cat genes. This study confirms that fish is a potential carrier of AR pathogens which can enter the human gut via food chain. To the best of our knowledge, this is the first study in the Indian subcontinent reporting a direct evidence of spread of AR pathogens to humans from specific marine fish consumption.

  16. Microbial communities involved in methane production from hydrocarbons in oil sands tailings.

    Science.gov (United States)

    Siddique, Tariq; Penner, Tara; Klassen, Jonathan; Nesbø, Camilla; Foght, Julia M

    2012-09-04

    Microbial metabolism of residual hydrocarbons, primarily short-chain n-alkanes and certain monoaromatic hydrocarbons, in oil sands tailings ponds produces large volumes of CH(4) in situ. We characterized the microbial communities involved in methanogenic biodegradation of whole naphtha (a bitumen extraction solvent) and its short-chain n-alkane (C(6)-C(10)) and BTEX (benzene, toluene, ethylbenzene, and xylenes) components using primary enrichment cultures derived from oil sands tailings. Clone libraries of bacterial 16S rRNA genes amplified from these enrichments showed increased proportions of two orders of Bacteria: Clostridiales and Syntrophobacterales, with Desulfotomaculum and Syntrophus/Smithella as the closest named relatives, respectively. In parallel archaeal clone libraries, sequences affiliated with cultivated acetoclastic methanogens (Methanosaetaceae) were enriched in cultures amended with n-alkanes, whereas hydrogenotrophic methanogens (Methanomicrobiales) were enriched with BTEX. Naphtha-amended cultures harbored a blend of these two archaeal communities. The results imply syntrophic oxidation of hydrocarbons in oil sands tailings, with the activities of different carbon flow pathways to CH(4) being influenced by the primary hydrocarbon substrate. These results have implications for predicting greenhouse gas emissions from oil sands tailings repositories.

  17. Effects of concentrate replacement by feed blocks on ruminal fermentation and microbial growth in goats and single-flow continuous-culture fermenters.

    Science.gov (United States)

    Molina-Alcaide, E; Pascual, M R; Cantalapiedra-Hijar, G; Morales-García, E Y; Martín-García, A I

    2009-04-01

    The effect of replacing concentrate with 2 different feed blocks (FB) on ruminal fermentation and microbial growth was evaluated in goats and in single-flow continuous-culture fermenters. Diets consisted of alfalfa hay plus concentrate and alfalfa hay plus concentrate with 1 of the 2 studied FB. Three trials were carried out with 6 rumen-fistulated Granadina goats and 3 incubation runs in 6 single-flow continuous-culture fermenters. Experimental treatments were assigned randomly within each run, with 2 repetitions for each diet. At the end of each in vivo trial, the rumen contents were obtained for inoculating the fermenters. For each incubation run, the fermenters were inoculated with ruminal fluid from goats fed the same diet supplied to the corresponding fermenter flask. The average pH values, total and individual VFA, and NH(3)-N concentrations, and acetate:propionate ratios in the rumen of goats were not affected (P >or= 0.10) by diet, whereas the microbial N flow (MNF) and efficiency were affected (P fermenters, the diet affected pH (Por= 0.05), and total (P=0.02), NH(3) (P=0.005), and non-NH(3) (P=0.02) N flows, whereas the efficiency of VFA production was not affected (P=0.75). The effect of diet on MNF and efficiency depended on the bacterial pellet used as a reference. An effect (Pfermenter contents and effluent were similar (P=0.05). Differences (Pfermentation variables and bacterial pellet compositions were found. Partial replacement of the concentrate with FB did not greatly compromise carbohydrate fermentation in unproductive goats. However, this was not the case for MNF and efficiency. Differences between the results obtained in vivo and in vitro indicate a need to identify conditions in fermenters that allow better simulation of fermentation, microbial growth, and bacterial pellet composition in vivo. Reduced feeding cost could be achieved with the inclusion of FB in the diets of unproductive goats without altering rumen fermentation.

  18. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-11-01

    This paper analyzes under four different scenarios the adequacy of a $500 million annual deposit into a fund to pay for the cost of cleaning up the Department of Energy's (DOE) three aging uranium enrichment plants. These plants are located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. In summary the following was found: A fixed annual $500 million deposit made into a cleanup fund would not be adequate to cover total expected cleanup costs, nor would it be adequate to cover expected decontamination and decommissioning (D and D) costs. A $500 million annual deposit indexed to an inflation rate would likely be adequate to pay for all expected cleanup costs, including D and D costs, remedial action, and depleted uranium costs

  19. Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis

    Science.gov (United States)

    Chen, Mingjie; Abriola, Linda M.; Amos, Benjamin K.; Suchomel, Eric J.; Pennell, Kurt D.; Löffler, Frank E.; Christ, John A.

    2013-08-01

    Reductive dechlorination catalyzed by organohalide-respiring bacteria is often considered for remediation of non-aqueous phase liquid (NAPL) source zones due to cost savings, ease of implementation, regulatory acceptance, and sustainability. Despite knowledge of the key dechlorinators, an understanding of the processes and factors that control NAPL dissolution rates and detoxification (i.e., ethene formation) is lacking. A recent column study demonstrated a 5-fold cumulative enhancement in tetrachloroethene (PCE) dissolution and ethene formation (Amos et al., 2009). Spatial and temporal monitoring of key geochemical and microbial (i.e., Geobacter lovleyi and Dehalococcoides mccartyi strains) parameters in the column generated a data set used herein as the basis for refinement and testing of a multiphase, compositional transport model. The refined model is capable of simulating the reactive transport of multiple chemical constituents produced and consumed by organohalide-respiring bacteria and accounts for substrate limitations and competitive inhibition. Parameter estimation techniques were used to optimize the values of sensitive microbial kinetic parameters, including maximum utilization rates, biomass yield coefficients, and endogenous decay rates. Comparison and calibration of model simulations with the experimental data demonstrate that the model is able to accurately reproduce measured effluent concentrations, while delineating trends in dechlorinator growth and reductive dechlorination kinetics along the column. Sensitivity analyses performed on the optimized model parameters indicate that the rates of PCE and cis-1,2-dichloroethene (cis-DCE) transformation and Dehalococcoides growth govern bioenhanced dissolution, as long as electron donor (i.e., hydrogen flux) is not limiting. Dissolution enhancements were shown to be independent of cis-DCE accumulation; however, accumulation of cis-DCE, as well as column length and flow rate (i.e., column residence time

  20. An Automated Sample Preparation Instrument to Accelerate Positive Blood Cultures Microbial Identification by MALDI-TOF Mass Spectrometry (Vitek®MS

    Directory of Open Access Journals (Sweden)

    Patrick Broyer

    2018-05-01

    Full Text Available Sepsis is the leading cause of death among patients in intensive care units (ICUs requiring an early diagnosis to introduce efficient therapeutic intervention. Rapid identification (ID of a causative pathogen is key to guide directed antimicrobial selection and was recently shown to reduce hospitalization length in ICUs. Direct processing of positive blood cultures by MALDI-TOF MS technology is one of the several currently available tools used to generate rapid microbial ID. However, all recently published protocols are still manual and time consuming, requiring dedicated technician availability and specific strategies for batch processing. We present here a new prototype instrument for automated preparation of Vitek®MS slides directly from positive blood culture broth based on an “all-in-one” extraction strip. This bench top instrument was evaluated on 111 and 22 organisms processed using artificially inoculated blood culture bottles in the BacT/ALERT® 3D (SA/SN blood culture bottles or the BacT/ALERT VirtuoTM system (FA/FN Plus bottles, respectively. Overall, this new preparation station provided reliable and accurate Vitek MS species-level identification of 87% (Gram-negative bacteria = 85%, Gram-positive bacteria = 88%, and yeast = 100% when used with BacT/ALERT® 3D and of 84% (Gram-negative bacteria = 86%, Gram-positive bacteria = 86%, and yeast = 75% with Virtuo® instruments, respectively. The prototype was then evaluated in a clinical microbiology laboratory on 102 clinical blood culture bottles and compared to routine laboratory ID procedures. Overall, the correlation of ID on monomicrobial bottles was 83% (Gram-negative bacteria = 89%, Gram-positive bacteria = 79%, and yeast = 78%, demonstrating roughly equivalent performance between manual and automatized extraction methods. This prototype instrument exhibited a high level of performance regardless of bottle type or BacT/ALERT system. Furthermore, blood culture workflow could

  1. Use of starter cultures of lactic acid bacteria and yeasts as inoculum enrichment for the production of gowé, a sour beverage from Benin

    DEFF Research Database (Denmark)

    Vieira-Dalodé, G.; Madodé, Y.E.; Hounhouigan, J.

    2008-01-01

    Lactobacillus fermentum, Weissella confusa, Kluyveromyces marxianus and Pichia anomala, previously isolated during natural fermentation of traditional gowé, were tested as inoculum enrichment for controlled fermentation of gowé. The final product was subjected to chemical analysis and sensory eva...

  2. Investment into the future of microbial resources: culture collection funding models and BRC business plans for biological resource centres.

    Science.gov (United States)

    Smith, David; McCluskey, Kevin; Stackebrandt, Erko

    2014-01-01

    Through their long history of public service, diverse microbial Biological Resource Centres (mBRCs) have made myriad contributions to society and science. They have enabled the maintenance of specimens isolated before antibiotics, made available strains showing the development and change of pathogenicity toward animals, humans and plants, and have maintained and provided reference strains to ensure quality and reproducibility of science. However, this has not been achieved without considerable financial commitment. Different collections have unique histories and their support is often tied to their origins. However many collections have grown to serve large constituencies and need to develop novel funding mechanisms. Moreover, several international initiatives have described mBRCs as a factor in economic development and have led to the increased professionalism among mBRCs.

  3. Culture.

    Science.gov (United States)

    Smith, Timothy B; Rodríguez, Melanie Domenech; Bernal, Guillermo

    2011-02-01

    This article summarizes the definitions, means, and research of adapting psychotherapy to clients' cultural backgrounds. We begin by reviewing the prevailing definitions of cultural adaptation and providing a clinical example. We present an original meta-analysis of 65 experimental and quasi-experimental studies involving 8,620 participants. The omnibus effect size of d = .46 indicates that treatments specifically adapted for clients of color were moderately more effective with that clientele than traditional treatments. The most effective treatments tended to be those with greater numbers of cultural adaptations. Mental health services targeted to a specific cultural group were several times more effective than those provided to clients from a variety of cultural backgrounds. We recommend a series of research-supported therapeutic practices that account for clients' culture, with culture-specific treatments being more effective than generally culture-sensitive treatments. © 2010 Wiley Periodicals, Inc.

  4. A 3D-printed microbial cell culture platform with in situ PEGDA hydrogel barriers for differential substrate delivery.

    Science.gov (United States)

    Kadilak, Andrea L; Rehaag, Jessica C; Harrington, Cameron A; Shor, Leslie M

    2017-09-01

    Additive manufacturing, or 3D-printing techniques have recently begun to enable simpler, faster, and cheaper production of millifluidic devices at resolutions approaching 100-200  μ m. At this resolution, cell culture devices can be constructed that more accurately replicate natural environments compared with conventional culturing techniques. A number of microfluidics researchers have begun incorporating additive manufacturing into their work, using 3D-printed devices in a wide array of chemical, fluidic, and even some biological applications. Here, we describe a 3D-printed cell culture platform and demonstrate its use in culturing Pseudomonas putida KT2440 bacteria for 44 h under a differential substrate gradient. Polyethylene glycol diacrylate (PEGDA) hydrogel barriers are patterned in situ within a 3D-printed channel. Transport of the toluidine blue tracer dye through the hydrogel barriers is characterized. Nutrients and oxygen were delivered to cells in the culture region by diffusion through the PEGDA hydrogel barriers from adjacent media or saline perfusion channels. Expression of green fluorescent protein by P. putida KT2440 enabled real time visualization of cell density within the 3D-printed channel, and demonstrated cells were actively expressing protein over the course of the experiment. Cells were observed clustering near hydrogel barrier boundaries where fresh substrate and oxygen were being delivered via diffusive transport, but cells were unable to penetrate the barrier. The device described here provides a versatile and easy to implement platform for cell culture in readily controlled gradient microenvironments. By adjusting device geometry and hydrogel properties, this platform could be further customized for a wide variety of biological applications.

  5. Utilization of Alternate Chirality Enantiomers in Microbial Communities

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    Our previous study of chirality led to interesting findings for some anaerobic extremophiles: the ability to metabolize substrates with alternate chirality enantiomers of amino acids and sugars. We have subsequently found that not just separate microbial species or strains but entire microbial communities have this ability. The functional division within a microbial community on proteo- and sugarlytic links was also reflected in a microbial diet with L-sugars and D-amino acids. Several questions are addressed in this paper. Why and when was this feature developed in a microbial world? Was it a secondary de novo adaptation in a bacterial world? Or is this a piece of genetic information that has been left in modern genomes as an atavism? Is it limited exclusively to prokaryotes, or does this ability also occur in eukaryotes? In this article, we have used a broader approach to study this phenomenon using anaerobic extremophilic strains from our laboratory collection. A series of experiments were performed on physiologically different groups of extremophilic anaerobes (pure and enrichment cultures). The following characteristics were studied: 1) the ability to grow on alternate chirality enantiomers -- L-sugars and D- amino acids; 2) Growth-inhibitory effect of alternate chirality enantiomers; 3) Stickland reaction with alternate chirality amino acids. The results of this research are presented in this paper.

  6. Mixed culture models for predicting intestinal microbial interactions between Escherichia coli and Lactobacillus in the presence of probiotic Bacillus subtilis.

    Science.gov (United States)

    Yang, J J; Niu, C C; Guo, X H

    2015-01-01

    Bacillus has been proposed as a probiotic due to its in vivo effectiveness in the gastrointestinal tract through antimicrobial activities. The present study investigates the effects of Lactobacillus alone or in the presence of Bacillus subtilis MA139 on the inhibition of pathogenic Escherichia coli K88. Mixed cultures were used to predict the possible interactions among these bacteria within the intestinal tract of animals. B. subtilis MA139 was first assayed for its inhibition against E. coli K88 both under shaking and static culture conditions. A co-culture assay was employed under static conditions to test the inhibitory effects of Lactobacillus reuteri on E. coli K88, with or without addition of B. subtilis MA139. The results showed that B. subtilis MA139 had marked inhibition against E. coli K88 under shaking conditions and weak inhibition under static conditions. Lactobacillus alone as well as in combination with B. subtilis MA139 spores exerted strong inhibition against E. coli K88 under static conditions. However, the inhibition by Lactobacillus in combination with B. subilis spores was much higher than that by Lactobacillus alone (Psubtilis MA139 significantly decreased the pH and oxidation-reduction potential values of the co-culture broth compared to that of Lactobacillus alone (Psubtilis MA139 because of significantly higher Lactobacillus counts and lower pH values in the broth (PBacillus in the mixed culture models suggests that Bacillus may produce beneficial effects by increasing the viability of lactobacilli and subsequently inhibiting the growth of pathogenic E. coli. Therefore, the combination of Bacillus and Lactobacillus species as a probiotic is recommended.

  7. Methane- and Hydrogen-Influenced Microbial Communities in Hydrothermal Plumes above the Atlantis Massif, Mid Atlantic Ridge

    Science.gov (United States)

    Stewart, C. L.; Schrenk, M.

    2017-12-01

    Ultramafic-hosted hydrothermal systems associated with slow-spreading mid ocean ridges emit copious amounts of hydrogen and methane into the deep-sea, generated through a process known as serpentinization. Hydrothermal plumes carrying the reduced products of water-rock interaction dissipate and mix with deep seawater, and potentially harbor microbial communities adapted to these conditions. Methane and hydrogen enriched hydrothermal plumes were sampled from 3 sites near the Atlantis Massif (30°N, Mid Atlantic Ridge) during IODP Expedition 357 and used to initiate cultivation experiments targeting methanotrophic and hydrogenotrophic microorganisms. One set of experiments incubated the cultures at in situ hydrostatic pressures and gas concentrations resulting in the enrichment of gammaproteobacterial assemblages, including Marinobacter spp. That may be involved in hydrocarbon degradation. A second set of experiments pursued the anaerobic enrichment of microbial communities on solid media, resulting in the enrichment of alphaproteobacteria related to Ruegeria. The most prodigious growth in both case occurred in methane-enriched media, which may play a role as both an energy and carbon source. Ongoing work is evaluating the physiological characteristics of these isolates, including their metabolic outputs under different physical-chemical conditions. In addition to providing novel isolates from hydrothermal habitats near the Lost City Hydrothermal Field, these experiments will provide insight into the ecology of microbial communities from serpentinization influenced hydrothermal systems that may aid in future exploration of these sites.

  8. Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG)

    OpenAIRE

    Parkes, R John; Sellek, Gerard; Webster, Gordon; Martin, Derek; Anders, Erik; Weightman, Andrew J; Sass, Henrik

    2009-01-01

    Deep subseafloor sediments may contain depressurization-sensitive, anaerobic, piezophilic prokaryotes. To test this we developed the DeepIsoBUG system, which when coupled with the HYACINTH pressure-retaining drilling and core storage system and the PRESS core cutting and processing system, enables deep sediments to be handled without depressurization (up to 25 MPa) and anaerobic prokaryotic enrichments and isolation to be conducted up to 100 MPa. Here, we describe the system and its first use...

  9. Effects of Culture and 2-Hydroxy-4-(Methylthio-Butanoic Acid on Rumen Fermentation and Microbial Populations between Different Roughage Sources

    Directory of Open Access Journals (Sweden)

    H. Sun

    2014-09-01

    Full Text Available An in vitro experiment was conducted to evaluate the effects of Aspergillus oryzae culture (AOC and 2-hydroxy-4-(methylthio-butanoic acid (HMB on rumen fermentation and microbial populations between different roughage sources. Two roughage sources (Chinese wild rye [CWR] vs corn silage [CS] were assigned in a 2×3 factorial arrangement with HMB (0 or 15 mg and AOC (0, 3, or 6 mg. Gas production (GP, microbial protein (MCP and total volatile fatty acid (VFA were increased in response to addition of HMB and AOC (p<0.01 for the two roughages. The HMB and AOC showed inconsistent effects on ammonia-N with different substrates. For CWR, neither HMB nor AOC had significant effect on molar proportion of individual VFA. For CS, acetate was increased (p = 0.02 and butyrate was decreased (p<0.01 by adding HMB and AOC. Increase of propionate was only occurred with AOC (p<0.01. Populations of protozoa (p≤0.03 and fungi (p≤0.02 of CWR were differently influenced by HMB and AOC. Percentages of F. succinogenes, R. albus, and R. flavefaciens (p<0.01 increased when AOC was added to CWR. For CS, HMB decreased the protozoa population (p = 0.01 and increased the populations of F. succinogenes and R. albus (p≤0.03. Populations of fungi, F. succinogenes (p = 0.02 and R. flavefacien (p = 0.03 were increased by adding AOC. The HMB×AOC interactions were noted in MCP, fungi and R. flavefacien for CWR and GP, ammonia-N, MCP, total VFA, propionate, acetate/propionate (A/P and R. albus for CS. It is inferred that addition of HMB and AOC could influence rumen fermentation of forages by increasing the number of rumen microbes.

  10. Effects of Aspergillus Oryzae Culture and 2-Hydroxy-4-(Methylthio)-Butanoic Acid on In vitro Rumen Fermentation and Microbial Populations between Different Roughage Sources.

    Science.gov (United States)

    Sun, H; Wu, Y M; Wang, Y M; Liu, J X; Myung, K H

    2014-09-01

    An in vitro experiment was conducted to evaluate the effects of Aspergillus oryzae culture (AOC) and 2-hydroxy-4-(methylthio)-butanoic acid (HMB) on rumen fermentation and microbial populations between different roughage sources. Two roughage sources (Chinese wild rye [CWR] vs corn silage [CS]) were assigned in a 2×3 factorial arrangement with HMB (0 or 15 mg) and AOC (0, 3, or 6 mg). Gas production (GP), microbial protein (MCP) and total volatile fatty acid (VFA) were increased in response to addition of HMB and AOC (p<0.01) for the two roughages. The HMB and AOC showed inconsistent effects on ammonia-N with different substrates. For CWR, neither HMB nor AOC had significant effect on molar proportion of individual VFA. For CS, acetate was increased (p = 0.02) and butyrate was decreased (p<0.01) by adding HMB and AOC. Increase of propionate was only occurred with AOC (p<0.01). Populations of protozoa (p≤0.03) and fungi (p≤0.02) of CWR were differently influenced by HMB and AOC. Percentages of F. succinogenes, R. albus, and R. flavefaciens (p<0.01) increased when AOC was added to CWR. For CS, HMB decreased the protozoa population (p = 0.01) and increased the populations of F. succinogenes and R. albus (p≤0.03). Populations of fungi, F. succinogenes (p = 0.02) and R. flavefacien (p = 0.03) were increased by adding AOC. The HMB×AOC interactions were noted in MCP, fungi and R. flavefacien for CWR and GP, ammonia-N, MCP, total VFA, propionate, acetate/propionate (A/P) and R. albus for CS. It is inferred that addition of HMB and AOC could influence rumen fermentation of forages by increasing the number of rumen microbes.

  11. Culture-dependent and independent studies of microbial diversity in highly copper-contaminated Chilean marine sediments.

    Science.gov (United States)

    Besaury, Ludovic; Marty, Florence; Buquet, Sylvaine; Mesnage, Valérie; Muyzer, Gerard; Quillet, Laurent

    2013-02-01

    Cultivation and molecular-based approaches were used to study microbial diversity in two Chilean marine sediments contaminated with high (835 ppm) and very high concentrations of copper (1,533 ppm). The diversity of cultivable bacteria resistant to copper was studied at oxic and anoxic conditions, focusing on sulfate-, thiosulfate-, and iron-reducing bacteria. For both sediments, the cultivable bacteria isolated at oxic conditions were mostly affiliated to the genus Bacillus, while at anoxic conditions the majority of the cultivable bacteria found were closely related to members of the genera Desulfovibrio, Sphingomonas, and Virgibacillus. Copper resistance was between 100 and 400 ppm, with the exception of a strain affiliated to members of the genus Desulfuromonas, which was resistant up to 1,000 ppm of copper. In parallel, cloning and sequencing of 16S rRNA was performed to study the total bacterial diversity in the sediments. A weak correlation was observed between the isolated strains and the 16S rRNA operational taxonomic units detected. The presence of copper resistance genes (copA, cusA, and pcoA) was tested for all the strains isolated; only copA was detected in a few isolates, suggesting that other copper resistance mechanisms could be used by the bacteria in those highly copper-contaminated sediments.

  12. Quantitative comparisons of select cultured and uncultured microbial populations in the rumen of cattle fed different diets

    Directory of Open Access Journals (Sweden)

    Kim Minseok

    2012-09-01

    Full Text Available Abstract Background The number and diversity of uncultured ruminal bacterial and archaeal species revealed by 16S rRNA gene (rrs sequences greatly exceeds that of cultured bacteria and archaea. However, the significance of uncultured microbes remains undetermined. The objective of this study was to assess the numeric importance of select uncultured bacteria and cultured bacteria and the impact of diets and microenvironments within cow rumen in a comparative manner. Results Liquid and adherent fractions were obtained from the rumen of Jersey cattle fed hay alone and Holstein cattle fed hay plus grain. The populations of cultured and uncultured bacteria present in each fraction were quantified using specific real-time PCR assays. The population of total bacteria was similar between fractions or diets, while total archaea was numerically higher in the hay-fed Jersey cattle than in the hay-grain-fed Holstein cattle. The population of the genus Prevotella was about one log smaller than that of total bacteria. The populations of Fibrobacter succinogenes, Ruminococcus flavefaciens, the genus Butyrivibrio, and R. albus was at least one log smaller than that of genus Prevotella. Four of the six uncultured bacteria quantified were as abundant as F. succinogenes, R. flavefaciens and the genus Butyrivibrio. In addition, the populations of several uncultured bacteria were significantly higher in the adherent fractions than in the liquid fractions. These uncultured bacteria may be associated with fiber degradation. Conclusions Some uncultured bacteria are as abundant as those of major cultured bacteria in the rumen. Uncultured bacteria may have important contribution to ruminal fermentation. Population dynamic studies of uncultured bacteria in a comparative manner can help reveal their ecological features and importance to rumen functions.

  13. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms

    Directory of Open Access Journals (Sweden)

    Emanuele eZonaro

    2015-06-01

    Full Text Available The present study deals with Se0- and Te0-based nanoparticles bio-synthesized by two selenite- and tellurite-reducing bacterial strains, namely Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1, isolated from polluted sites. We discovered that, by regulating culture conditions and exposure time to the selenite and tellurite oxyanions, differently sized zero-valent Se and Te nanoparticles were produced. The results revealed that these Se0 and Te0 nanoparticles possess antimicrobial and biofilm eradication activity against E. coli JM109, P. aeruginosa PAO1, and S. aureus ATCC 25923. In particular, Se0 nanoparticles exhibited antimicrobial activity at quite low concentrations, below that of selenite. Toxic effects of both Se0 and Te0 nanoparticles can be related to the production of reactive oxygen species upon exposure of the bacterial cultures. Evidence so far achieved suggests that the antimicrobial activity seems to be strictly linked to the dimensions of the nanoparticles: indeed, the highest activity was shown by nanoparticles of smaller sizes. In particular, it is worth noting how the bacteria tested in biofilm mode responded to the treatment by Se0 and Te0 nanoparticles with a susceptibility similar to that observed in planktonic cultures. This suggests a possible exploitation of both Se0 and Te0 nanoparticles as efficacious antimicrobial agents with a remarkable biofilm eradication capacity.

  14. Microbial diversity in European alpine permafrost and active layers.

    Science.gov (United States)

    Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin

    2016-03-01

    Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park

    Science.gov (United States)

    Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.

    2014-12-01

    Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a

  16. Using Pure Cultures to Define the Site Preference of Nitrous Oxide Produced by Microbial Nitrification and Denitrification

    Science.gov (United States)

    Sutka, R. L.; Breznak, J. A.; Ostrom, N. E.; Ostrom, P. H.; Gandhi, H.

    2004-12-01

    Defining the site preference of nitrous oxide (N2O) produced in pure culture studies is crucial to interpreting field data. We have previously demonstrated that the intramolecular distribution of nitrogen isotopes (isotopomers) can be used to differentiate N2O produced by nitrifier denitrification and nitrification in cultures of Nitrosomonas europaea. Here, we have expanded on our initial results and evaluated the isotopomeric composition of N2O produced during nitrification and nitrifier denitrification with cultures of Nitrosospira multiformis. In addition, we have analyzed N2O produced during methanotrophic nitrification, denitrification, and fungal denitrification. To evaluate N2O production during nitrification and nitrifier denitrification, we compared the site preference of N2O formed as a result of nitrite reduction and hydroxylamine oxidation with Nitrosomonas europaea and Nitrosospira multiformis. The average site preference of N2O produced by hydroxylamine oxidation was similar for Nitrosomonas europaea (33.0 ± 3.5 ‰ ) and Nitrosospira multiformis (33.1 ± 4.2 ‰ ). Nitrous oxide produced by nitrifier-denitrification by Nitrosomonas europaea and Nitrosospira multiformis had a similar site preference of - 1.4 ± 4.4 ‰ and - 1.1 ± 2.6 ‰ respectively. The results indicate that it is possible to differentiate between N2O produced by nitrite reduction and hydroxylamine oxidation by ammonia oxidizing bacteria. Methanotrophic nitrification was evaluated by analyzing the N2O produced during hydroxylamine oxidation in concentrated cell suspensions of two methane oxidizing bacteria. The site preference of N2O produced by the two methane oxidizers, Methylococcus capsulatus Bath and Methylosinus trichosporium was 31.8 ± 4.7 ‰ and 33.0 ± 4.5 ‰ respectively. The results indicate that a site preference of 33 ‰ is applicable for nitrification regardless of whether a methane oxidizer or ammonia oxidizer is involved in the reaction. To determine the site

  17. The maturing of microbial ecology.

    Science.gov (United States)

    Schmidt, Thomas M

    2006-09-01

    A.J. Kluyver and C.B. van Niel introduced many scientists to the exceptional metabolic capacity of microbes and their remarkable ability to adapt to changing environments in The Microbe's Contribution to Biology. Beyond providing an overview of the physiology and adaptability of microbes, the book outlined many of the basic principles for the emerging discipline of microbial ecology. While the study of pure cultures was highlighted, provided a unifying framework for understanding the vast metabolic potential of microbes and their roles in the global cycling of elements, extrapolation from pure cultures to natural environments has often been overshadowed by microbiologists inability to culture many of the microbes seen in natural environments. A combination of genomic approaches is now providing a culture-independent view of the microbial world, revealing a more diverse and dynamic community of microbes than originally anticipated. As methods for determining the diversity of microbial communities become increasingly accessible, a major challenge to microbial ecologists is to link the structure of natural microbial communities with their functions. This article presents several examples from studies of aquatic and terrestrial microbial communities in which culture and culture-independent methods are providing an enhanced appreciation for the microbe's contribution to the evolution and maintenance of life on Earth, and offers some thoughts about the graduate-level educational programs needed to enhance the maturing field of microbial ecology.

  18. Investigation of the rumen microbial community responsible for degradation of a putative toxin in Acacia angustissima

    International Nuclear Information System (INIS)

    Collins, E.M.C.; Blackall, L.L.; Mcsweeney, C.S.; Krause, D.O.

    2005-01-01

    Acacia angustissima has been proposed as a protein supplement in countries where availability of high quality fodder for grazing animals is a problem due to extreme, dry climates. While A. angustissima thrives in harsh environments and provides valuable nutrients required by ruminants, it has also been found to contain anti-nutritive factors that currently preclude its widespread application. A number of non-protein amino acids have been identified in the leaves of A. angustissima and in the past these have been linked to toxicity in ruminants. The non-protein amino acid 4-n-acetyl-2,4-diaminobutyric acid (ADAB) had been determined to be the major non-protein amino acid in the leaves of A. angustissima. Thus, in this study, the aim was to identify microorganisms from the rumen environment capable of degrading ADAB. Using an ADAB-containing plant extract, a mixed enrichment culture was obtained that exhibited substantial ADAB-degrading ability. Attempts to isolate an ADAB-degrading micro-organism were carried out, but no isolates were able to degrade ADAB in pure culture. The mixed microbial community of the ADAB-degrading enrichment culture was further examined through the use of pure-culture-independent techniques. Fluorescence in situ hybridization (FISH) was employed to investigate the diversity within this sample. In addition two bacterial 16S rDNA clone libraries were constructed in an attempt to further elucidate the members of the microbial population. The clone libraries were constructed from serial dilutions of the enrichment culture, a 10 -5 dilution where complete degradation of ADAB occurred, and a 10 -7 dilution where ADAB degradation did not occur. Through the comparison of these two libraries it was hypothesized that clones belonging to the Firmicutes phylum were involved in ADAB degradation. A FISH probe, ADAB1268, was then designed to target these clones and was applied to the enrichment cultures to investigate their relative abundance within the

  19. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems.

    Science.gov (United States)

    An, Y-J; Joo, Y-H; Hong, I-Y; Ryu, H-W; Cho, K-S

    2004-10-01

    The degradation characteristics of toluene coupled to nitrate reduction were investigated in enrichment culture and the microbial communities of toluene-degrading denitrifying consortia were characterized by denaturing gradient gel electrophoresis (DGGE) technique. Anaerobic nitrate-reducing bacteria were enriched from oil-contaminated soil samples collected from terrestrial (rice field) and marine (tidal flat) ecosystems. Enriched consortia degraded toluene in the presence of nitrate as a terminal electron acceptor. The degradation rate of toluene was affected by the initial substrate concentration and co-existence of other hydrocarbons. The types of toluene-degrading denitrifying consortia depended on the type of ecosystem. The clone RS-7 obtained from the enriched consortium of the rice field was most closely related to a toluene-degrading and denitrifying bacterium, Azoarcus denitrificians (A. tolulyticus sp. nov.). The clone TS-11 detected in the tidal flat enriched consortium was affiliated to Thauera sp. strain S2 (T. aminoaromatica sp. nov.) that was able to degrade toluene under denitrifying conditions. This indicates that environmental factors greatly influence microbial communities obtained from terrestrial (rice field) and marine (tidal flat) ecosystems.

  20. Detoxification Treatments of Free Gossypol in Cottonseed Meal by Microbial Treatment of Mixed Cultures and Biochemical Evaluation on Rabbits

    International Nuclear Information System (INIS)

    Atia, A.I.; Abdel- Rahim, G.A.

    2009-01-01

    Detoxification of ti-ee gossypol (FG) in cottonseed meal (CSM) by Saccharomyces cerevisiae and Aspergillus niger, as a mixed culture, was carried out in solid state fermentation (SSF). Experiments were adopted to optimize the fermentation conditions. Maximum detoxification efficiency (90.2%) occurred after 48 h of incubation at 30 degree C in a 250 ml conical flask containing 15 g of CSM supplemented with 1 % (w/w) (NH 4 ) 2 SO 4 at the optimal conditions including the initial moisture content 55% (w/w) and inoculum level at 5% (v/w). The detoxification of FG was a growth-associated process, which was highly correlated with the dry matter weight loss. Moreover, high activities of hydrolytic enzymes were also produced in solid state fermentation, which enhanced the nutritive value of the detoxified cottonseed powder. A total number of 48 white New Zealand male rabbits were used to biologically examine the feeding of treated (detoxified) CSM without any adverse effects. Hematological and biochemical relevant parameters of white New Zealand male rabbits as affected by feeding treated meal were in the normal physiological range without no obvious change. No significant changes in liver and kidney functions of the rabbits weight gain, feed conversion and efficiency did not significantly change among experimental groups. The study showed that the feeding of the detoxified CSM by S. cerevisiae and A. niger as a mixed culture in this research without any adverse effects on rabbits

  1. Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation.

    Science.gov (United States)

    Zhang, Yang; Lv, Tao; Carvalho, Pedro N; Arias, Carlos A; Chen, Zhanghe; Brix, Hans

    2016-02-01

    We aimed at assessing the effects of four wetland plant species commonly used in constructed wetland systems: Typha, Phragmites, Iris and Juncus for removing ibuprofen (IBU) and iohexol (IOH) from spiked culture solution and exploring the mechanisms responsible for the removal. IBU was nearly completely removed by all plant species during the 24-day experiment, whereas the IOH removal varied between 13 and 80 %. Typha and Phragmites were the most efficient in removing IBU and IOH, respectively, with first-order removal rate constants of 0.38 and 0.06 day(-1), respectively. The pharmaceuticals were taken up by the roots and translocated to the aerial tissues. However, at the end of the experiment, plant accumulation constituted only up to 1.1 and 5.7 % of the amount of IBU and IOH spiked initially. The data suggest that the plants mainly function by facilitating pharmaceutical degradation in the rhizosphere through release of root exudates.

  2. Microbial resistance and frequency of extended-spectrum beta-lactamase (ESBL in isolated from blood cultures

    Directory of Open Access Journals (Sweden)

    Ruan Carlos Gomes da Silva

    2014-12-01

    Full Text Available Introduction:The emergence and spread of isolated carriers of extended-spectrum beta-lactamase (ESBL have complicated the treatment of nosocomial infections, since its production is not easily identified by the sensitivity tests, routinely performed in clinical laboratories, leading to difficulties in the hospital control of resistant microorganisms and antibiotics misuse.Objective:The objective of this study was to analyze the resistance profile and the frequency of ESBL in Gram-negative bacteria isolated from blood cultures. A hundred bacterial samples from blood cultures of adult patients were analyzed, which were phenotypically identified by biochemical tests of carbohydrates fermentation and submitted to determination of the resistance profile by disc diffusion test and ESBL screening by disc approximation and disc replacement methods.Results:Among the bacterial samples tested, 30 were identified as Gram-negative bacteria, predominantly by Proteus mirabilis, Pantoea agglomerans, and Escherichia coli. Of these, 73.33% were positive for the detection of ESBL by phenotypic tests, and was found mainly in Pantoea agglomerans, Proteus mirabilis, and Enterobacter cloacae.Conclusion:The increase in the occurrence of ESBL in different Enterobacteriaceae shows the importance of the amplification of detection in other species than Escherichia coli or Klebsiella sp., so that the assistance to the patient is not restrained, since these resistant bacteria cannot be detected by the laboratories. Considering the frequency of ESBL in this study, we highlight the importance of its detection, aiming to its contribution to the development of improvements in the health care policies of hospitals.

  3. Juvenile psittacine environmental enrichment.

    Science.gov (United States)

    Simone-Freilicher, Elisabeth; Rupley, Agnes E

    2015-05-01

    Environmental enrichment is of great import to the emotional, intellectual, and physical development of the juvenile psittacine and their success in the human home environment. Five major types of enrichment include social, occupational, physical, sensory, and nutritional. Occupational enrichment includes exercise and psychological enrichment. Physical enrichment includes the cage and accessories and the external home environment. Sensory enrichment may be visual, auditory, tactile, olfactory, or taste oriented. Nutritional enrichment includes variations in appearance, type, and frequency of diet, and treats, novelty, and foraging. Two phases of the preadult period deserve special enrichment considerations: the development of autonomy and puberty. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effect of Feeding a Mixed Microbial Culture Fortified with Trace Minerals on the Performance and Carcass Characteristics of Late-fattening Hanwoo Steers: A Field Study

    Directory of Open Access Journals (Sweden)

    W. S. Kwak

    2015-11-01

    Full Text Available This study was conducted to determine the effects of feeding a trace minerals-fortified microbial culture (TMC on the performance and carcass characteristics of late-fattening Hanwoo steers. A mixture of microbes (0.6% [v/w] of Enterobacter sp., Bacillus sp., Lactobacillus sp., and Saccharomyces sp. was cultured with 99% feedstuff for ensiling and 0.4% trace minerals (zinc, selenium, copper, and cobalt. Sixteen late-fattening steers (mean age, 21.8 months were allocated to two diets: a control diet (concentrate mix and rice straw and a treated diet (control diet+3.3% TMC. At a mean age of 31.1 months, all the steers were slaughtered. The addition of TMC to the diet did not affect the average daily weight gain of the late fattening steers, compared with that of control steers. Moreover, consuming the TMC-supplemented diet did not affect cold carcass weight, yield traits such as back fat thickness, longissimus muscle area, yield index or yield grade, or quality traits such as meat color, fat color, texture, maturity, marbling score, or quality grade. However, consumption of a TMC-supplemented diet increased the concentrations of zinc, selenium, and sulfur (p<0.05 in the longissimus muscle. With respect to amino acids, animals consuming TMC showed increased (p<0.05 concentrations of lysine, leucine, and valine among essential amino acids and a decreased (p<0.05 concentration of proline among non-essential amino acids. In conclusion, the consumption of a TMC-supplemented diet during the late-fattening period elevated the concentrations of certain trace minerals and essential amino acids in the longissimus muscle, without any deleterious effects on performance and other carcass characteristics of Hanwoo steers.

  5. Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system.

    Science.gov (United States)

    Ntaikou, I; Valencia Peroni, C; Kourmentza, C; Ilieva, V I; Morelli, A; Chiellini, E; Lyberatos, G

    2014-10-20

    The operational efficiency of a two stage pilot scale system for polyhydroxyalkanoates (PHAs) production from three phase olive oil mill wastewater (OMW) was investigated in this study. A mixed anaerobic, acidogenic culture derived from a municipal wastewater treatment plant, was used in the first stage, aiming to the acidification of OMW. The effluent of the first bioreactor that was operated in continuous mode, was collected in a sedimentation tank in which partial removal of the suspended solids was taking place, and was then forwarded to an aerobic reactor, operated in sequential batch mode under nutrient limitation. In the second stage an enriched culture of Pseudomonas sp. was used as initial inoculum for the production of PHAs from the acidified waste. Clarification of the acidified waste, using aluminium sulphate which causes flocculation and precipitation of solids, was also performed, and its effect on the composition of the acidified waste as well as on the yields and properties of PHAs was investigated. It was shown that clarification had no significant qualitative or quantitative effect on the primary carbon sources, i.e. short chain fatty acids and residual sugars, but only on the values of total suspended solids and total chemical oxygen demand of the acidified waste. The type and thermal characteristics of the produced PHAs were also similar for both types of feed. However the clarification of the waste seemed to have a positive impact on final PHAs yield, measured as gPHAs/100g of VSS, which reached up to 25%. Analysis of the final products via nuclear magnetic resonance spectroscopy revealed the existence of 3-hydroxybutyrate (3HB) and 3-hydroxyoctanoate (HO) units, leading to the conclusion that the polymer could be either a blend of P3HB and P3HO homopolymers or/and the 3HB-co-3HO co-polymer, an unusual polymer occurring in nature with advanced properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches.

    Science.gov (United States)

    Nishiyama, Minako; Yamamoto, Shuichi; Kurosawa, Norio

    2013-08-01

    Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.

  7. Induction of peroxisomal beta-oxidation by a microbial catabolite of cholic acid in rat liver and cultured rat hepatocytes.

    Science.gov (United States)

    Nishimaki-Mogami, T; Takahashi, A; Toyoda, K; Hayashi, Y

    1993-01-01

    The capability of (4R)-4-(2,3,4,6,6a beta,7,8,9,9a alpha,9b beta-decahydro-6a beta-methyl-3-oxo-1H-cyclopental[f]quinolin-7 beta-yl)valeric acid (DCQVA), a catabolite of cholic acid produced by enterobacteria, to induce peroxisome proliferation in vivo and in vitro was studied. Rats given 0.3% DCQVA in the diet for 2 weeks showed marked increases in peroxisomal beta-oxidation, mitochondrial 2,4-dienoyl-CoA reductase and microsomal laurate omega-oxidation activities in the liver compared with control rats given the diet without DCQVA. Cultured rat hepatocytes treated with DCQVA for 72 h also exhibited greatly enhanced beta-oxidation activity. The increased activity was concentration-dependent and the effective concentrations were comparable with those of clofibric acid that produced the same degree of induction in the assay. The results demonstrate that DCQVA is a potent peroxisome proliferator that occurs naturally in rat intestine. PMID:8216219

  8. Non-cultured adipose-derived CD45(-) side population cells are enriched for progenitors that give rise to myofibres in vivo

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Schrøder, Henrik D; Jensen, Charlotte H

    2008-01-01

    Side population (SP) cells are highly able to exclude the Hoechst 33342 dye through membrane transporters, a feature associated with cell immaturity and therefore proposed as a marker of stem cells. Herein we demonstrate that the adipose tissue derived stromal vascular fraction (SVF) contains...... skeletal muscle repair mainly relies on the satellitecell, several reports have shown that vessel-associated cells may adopt a myogenic phenotype when exposed to a muscle environment. In accordance with these findings, we also observed invitro myogenic specification of SPCD45(-) cells when cocultured...... a novel population of non-haematopoietic "side population" (SPCD45(-)) cells. Simultaneous qRT-PCR of 64 genes revealed that the freshly isolated SPCD45(-) was highly enriched for cells expressing genes related to stem cells, the Notch pathway, and early vascular precursors. Notably, the expression...

  9. Hydrogen production profiles using furans in microbial electrolysis cells.

    Science.gov (United States)

    Catal, Tunc; Gover, Tansu; Yaman, Bugra; Droguetti, Jessica; Yilancioglu, Kaan

    2017-06-01

    Microbial electrochemical cells including microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) are novel biotechnological tools that can convert organic substances in wastewater or biomass into electricity or hydrogen. Electroactive microbial biofilms used in this technology have ability to transfer electrons from organic compounds to anodes. Evaluation of biofilm formation on anode is crucial for enhancing our understanding of hydrogen generation in terms of substrate utilization by microorganisms. In this study, furfural and hydroxymethylfurfural (HMF) were analyzed for hydrogen generation using single chamber membrane-free MECs (17 mL), and anode biofilms were also examined. MECs were inoculated with mixed bacterial culture enriched using chloroethane sulphonate. Hydrogen was succesfully produced in the presence of HMF, but not furfural. MECs generated similar current densities (5.9 and 6 mA/cm 2 furfural and HMF, respectively). Biofilm samples obtained on the 24th and 40th day of cultivation using aromatic compounds were evaluated by using epi-fluorescent microscope. Our results show a correlation between biofilm density and hydrogen generation in single chamber MECs.

  10. School Libraries Addressing the Needs of ELL Students: Enhancing Language Acquisition, Confidence, and Cultural Fluency in ELL Students by Developing a Targeted Collection and Enriching Your Makerspace

    Science.gov (United States)

    Murphy, Peggy Henderson

    2018-01-01

    English Language Learner (ELL) students are sometimes a small constituency. Many resources already in the library can be used to enhance their language acquisition, confidence, and cultural fluency--resources such as graphic novels, hi-lo books, and makerspace materials. This article discusses enhancing language acquisition, confidence, and…

  11. Other enrichment related contracts

    International Nuclear Information System (INIS)

    Hall, J.C.

    1978-01-01

    In addition to long-term enrichment contracts, DOE has other types of contracts: (1) short-term, fixed-commitment enrichment contract; (2) emergency sales agreement for enriched uranium; (3) feed material lease agreement; (4) enriched uranium storage agreement; and (5) feed material usage agreement

  12. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Alicia M. Barnett

    2016-05-01

    Full Text Available Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs. This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells and mucus-secreting goblet cells (HT29-MTX cells, that more closely simulate the cell proportions found in the small (90:10 and large intestine (75:25. Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER, in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  13. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium.

    Science.gov (United States)

    Barnett, Alicia M; Roy, Nicole C; McNabb, Warren C; Cookson, Adrian L

    2016-05-06

    Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  14. Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium.

    Science.gov (United States)

    He, Fang; Hu, Wenrong; Li, Yuezhong

    2004-10-01

    A microbial consortium consisting of a white-rot fungus 8-4* and a Pseudomonas 1-10 was isolated from wastewater treatment facilities of a local dyeing house by enrichment, using azo dye Direct Fast Scarlet 4BS as the sole source of carbon and energy, which had a high capacity for rapid decolorization of 4BS. To elucidate the decolorization mechanisms, decolorization of 4BS was compared between individual strains and the microbial consortium under different treatment processes. The microbial consortium showed a significant improvement on dye decolorization rates under either static or shaking culture, which might be attributed to the synergetic reaction of single strains. From the curve of COD values and the UV-visible spectra of 4BS solutions before and after decolorization cultivation with the microbial consortium, it was found that 4BS could be mineralized completely, and the results had been used for presuming the degrading pathway of 4BS. This study also examined the kinetics of 4BS decolorization by immobilized microbial consortium. The results demonstrated that the optimal decolorization activity was observed in pH range between four and 9, temperature range between 20 and 40 degrees C and the maximal specific decolorization rate occurred at 1,000 mg l(-1) of 4BS. The proliferation and distribution of microbial consortium were also microscopically observed, which further confirmed the decolorization mechanisms of 4BS.

  15. cultural

    Directory of Open Access Journals (Sweden)

    Irene Kreutz

    2006-01-01

    Full Text Available Es un estudio cualitativo que adoptó como referencial teorico-motodológico la antropología y la etnografía. Presenta las experiencias vivenciadas por mujeres de una comunidad en el proceso salud-enfermedad, con el objetivo de comprender los determinantes sócio-culturales e históricos de las prácticas de prevención y tratamiento adoptados por el grupo cultural por medio de la entrevista semi-estructurada. Los temas que emergieron fueron: la relación entre la alimentación y lo proceso salud-enfermedad, las relaciones con el sistema de salud oficial y el proceso salud-enfermedad y lo sobrenatural. Los dados revelaron que los moradores de la comunidad investigada tienen un modo particular de explicar sus procedimientos terapéuticos. Consideramos que es papel de los profesionales de la salud en sus prácticas, la adopción de abordajes o enfoques que consideren al individuo en su dimensión sócio-cultural e histórica, considerando la enorme diversidad cultural en nuestro país.

  16. Electrochemical and genomic analysis of novel electroactive isolates obtained via potentiostatic enrichment from tropical sediment

    Science.gov (United States)

    Doyle, Lucinda E.; Yung, Pui Yi; Mitra, Sumitra D.; Wuertz, Stefan; Williams, Rohan B. H.; Lauro, Federico M.; Marsili, Enrico

    2017-07-01

    Enrichment of electrochemically-active microorganisms (EAM) to date has mostly relied on microbial fuel cells fed with wastewater. This study aims to enrich novel EAM by exposing tropical sediment, not frequently reported in the literature, to sustained anodic potentials. Voltamperometric techniques and electrochemical impedance spectroscopy, performed over a wide range of potentials, characterise extracellular electron transfer (EET) over time. Applied potential is found to affect biofilm electrochemical signature. Geobacter metallireducens is heavily enriched on the electrodes, as determined by metagenomic and metatranscriptomic analysis, in the first report of the species in a lactate-fed system. Two novel isolates are grown in pure culture from the enrichment, identified by 16S rRNA gene sequencing as Aeromonas and Enterobacter, respectively. The names proposed are Aeromonas sp. CL-1 and Enterobacter sp. EA-1. Both isolates are capable of EET on carbon felt and screen-printed carbon electrodes without the addition of exogenous redox mediators. Enterobacter sp. EA-1 can also perform mediated electron transfer using the soluble redox mediator 2-hydroxy-1,4-naphthoquinone (HNQ). Both isolates are able to use acetate and lactate as electron donors. This work outlines a comprehensive methodology for characterising novel EAM from unconventional inocula.

  17. Agricultural by-products with bioactive effects: A multivariate approach to evaluate microbial and physicochemical changes in a fresh pork sausage enriched with phenolic compounds from olive vegetation water.

    Science.gov (United States)

    Fasolato, Luca; Carraro, Lisa; Facco, Pierantonio; Cardazzo, Barbara; Balzan, Stefania; Taticchi, Agnese; Andreani, Nadia Andrea; Montemurro, Filomena; Martino, Maria Elena; Di Lecce, Giuseppe; Toschi, Tullia Gallina; Novelli, Enrico

    2016-07-02

    The use of phenolic compounds derived from agricultural by-products could be considered as an eco-friendly strategy for food preservation. In this study a purified phenol extract from olive vegetation water (PEOVW) was explored as a potential bioactive ingredient for meat products using Italian fresh sausage as food model. The research was developed in two steps: first, an in vitro delineation of the extract antimicrobial activities was performed, then, the PEOVW was tested in the food model to investigate the possible application in food manufacturing. The in vitro tests showed that PEOVW clearly inhibits the growth of food-borne pathogens such as Listeria monocytogenes and Staphylococcus aureus. The major part of Gram-positive strains was inhibited at the low concentrations (0.375-3mg/mL). In the production of raw sausages, two concentrates of PEOVW (L1: 0.075% and L2: 0.15%) were used taking into account both organoleptic traits and the bactericidal effects. A multivariate statistical approach allowed the definition of the microbial and physicochemical changes of sausages during the shelf life (14days). In general, the inclusion of the L2 concentration reduced the growth of several microbial targets, especially Staphylococcus spp. and LABs (2log10CFU/g reduction), while the increasing the growth of yeasts was observed. The reduction of microbial growth could be involved in the reduced lipolysis of raw sausages supplemented with PEOVW as highlighted by the lower amount of diacylglycerols. Moisture and aw had a significant effect on the variability of microbiological features, while food matrix (the sausages' environment) can mask the effects of PEOVW on other targets (e.g. Pseudomonas). Moreover, the molecular identification of the main representative taxa collected during the experimentation allowed the evaluation of the effects of phenols on the selection of bacteria. Genetic data suggested a possible strain selection based on storage time and the addition of

  18. Effect of CO2 enrichment and high photosynthetic photon flux densities (PPFD) on rubisco and PEP-case activities of in vitro cultured strawberry plants

    International Nuclear Information System (INIS)

    Desjardins, Y.; Beeson, R.; Gosselin, A.

    1989-01-01

    Standard growing conditions in vitro (low light and CO 2 ) are not conducive to autotrophy. An experiment was conducted to improve photosynthesis in vitro in the hope of increasing survival in acclimatization. A factorial experiment was elaborated where CO 2 and PPFD were supplied to in vitro cultured strawberry plants in the rooting stage. Activities of carboxylating enzymes were determined after 4 weeks of culture. The activities of non-activated and activated rubisco and PEP-Case were measured after extraction of the enzymes and a reaction with NaH 14 CO 3 followed by scintillation counting spectroscopy. High CO 2 concentration significantly increased net assimilation rates (NAR) by 165% over the control for both 1650 and 3000 ppm CO 2 . High PPFD only increased NAR by 12 and 35% for 150 and 250 μmol·m -2 ·s -1 respectively over the control. Plants grown at 3000 ppm CO 2 had the highest level of chlorophyll/g FW with 97% more than the control. The activity of PEP-Case was the highest at high light levels and high CO 2 with rates of 1.65 for 1650 ppm versus 1.22 mmol CO 2 mg -1 chl. h -1 at 250 μmol·m -2 ·s -1 . There was no difference in PEP activity at low light levels. The rubisco activity was lower at 1650 and 3000 ppm CO 2 . Increases in NAR correlate more closely to the PEP-Case than to Rubisco activity. Physiological significance of high activity of PEP-Case over rubisco will be discussed

  19. Enriching Metal-Oxidizing Microbes from Marine Sediment on Cathodic Currents

    Science.gov (United States)

    Rowe, A. R.; Nealson, K. H.

    2013-12-01

    The ability of organisms to transfer electrons to and from substrates outside the cell is reshaping the way we look at microbial respiration. While this process, termed extracellular electron transport (EET), has been described in a number of metal reducing organisms, current evidence suggests that this process is widespread in nature and across physiologies. Additionally, it has been speculated that these previously overlooked electrochemical interactions may play an important role in global biogeochemical cycles. Requirements for EET could play a role in why the ';uncultured majority' have so far been resistant to culturing. As such, we are currently developing culturing techniques to target microbes capable of utilizing insoluble electron acceptors utilizing electrochemical techniques. Microbe-electrode interactions are analogous to the reactions that occur between microbes and minerals and may provide an apt way to mimic the environmental conditions (i.e., insoluble electron donor/acceptor at specific redox potentials) required for culturing specialized or EET dependent metabolisms. It has been previously demonstrated that aquatic sediments are capable of utilizing anodes as electron acceptors, thereby generating a current. While, it is known that microbes utilize electrons from a cathode for the reduction of different metals and oxygen in microbial fuel cells, currently there are no reports of environmental enrichments of microbes using cathodes. Replicate microcosms from marine sediments (sampled from Catalina Harbor, California) were incubated with ITO plated glass electrodes. Negative current production at -400mV (vs. Ag/AgCl reference electrodes) potentials was sustained for four weeks. Secondary enrichments were then constructed using the cathode as the primary electron source and a variety of anaerobic terminal electron acceptors--Nitrate, Fe3+, and SO42-. Positive current was maintained in enrichment cultures (compared to abiotic control containing

  20. Derived enriched uranium market

    International Nuclear Information System (INIS)

    Rutkowski, E.

    1996-01-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market

  1. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Thomas, D.C.; Gagne, R.W.

    1978-01-01

    The following topics are covered: the status of the Government's existing uranium enrichment services contracts, natural uranium requirements based on the latest contract information, uncertainty in predicting natural uranium requirements based on uranium enrichment contracts, and domestic and foreign demand assumed in enrichment planning

  2. Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment.

    Science.gov (United States)

    Hsu, Tiffany; Joice, Regina; Vallarino, Jose; Abu-Ali, Galeb; Hartmann, Erica M; Shafquat, Afrah; DuLong, Casey; Baranowski, Catherine; Gevers, Dirk; Green, Jessica L; Morgan, Xochitl C; Spengler, John D; Huttenhower, Curtis

    2016-01-01

    Public transit systems are ideal for studying the urban microbiome and interindividual community transfer. In this study, we used 16S amplicon and shotgun metagenomic sequencing to profile microbial communities on multiple transit surfaces across train lines and stations in the Boston metropolitan transit system. The greatest determinant of microbial community structure was the transit surface type. In contrast, little variation was observed between geographically distinct train lines and stations serving different demographics. All surfaces were dominated by human skin and oral commensals such as Propionibacterium , Corynebacterium , Staphylococcus , and Streptococcus . The detected taxa not associated with humans included generalists from alphaproteobacteria, which were especially abundant on outdoor touchscreens. Shotgun metagenomics further identified viral and eukaryotic microbes, including Propionibacterium phage and Malassezia globosa . Functional profiling showed that Propionibacterium acnes pathways such as propionate production and porphyrin synthesis were enriched on train holding surfaces (holds), while electron transport chain components for aerobic respiration were enriched on touchscreens and seats. Lastly, the transit environment was not found to be a reservoir of antimicrobial resistance and virulence genes. Our results suggest that microbial communities on transit surfaces are maintained from a metapopulation of human skin commensals and environmental generalists, with enrichments corresponding to local interactions with the human body and environmental exposures. IMPORTANCE Mass transit environments, specifically, urban subways, are distinct microbial environments with high occupant densities, diversities, and turnovers, and they are thus especially relevant to public health. Despite this, only three culture-independent subway studies have been performed, all since 2013 and all with widely differing designs and conclusions. In this study, we

  3. Uranium Enrichment, an overview

    International Nuclear Information System (INIS)

    Coates, J.H.

    1994-01-01

    This general presentation on uranium enrichment will be followed by lectures on more specific topics including descriptions of enrichment processes and assessments of the prevailing commercial and industrial situations. I shall therefore avoid as much as possible duplications with these other lectures, and rather dwell on: some theoretical aspects of enrichment in general, underlying the differences between statistical and selective processes, a review and comparison between enrichment processes, remarks of general order regarding applications, the proliferation potential of enrichment. It is noteworthy that enrichment: may occur twice in the LWR fuel cycle: first by enriching natural uranium, second by reenriching uranium recovered from reprocessing, must meet LWR requirements, and in particular higher assays required by high burn up fuel elements, bears on the structure of the entire front part of the fuel cycle, namely in the conversion/reconversion steps only involving UF 6 for the moment. (author). tabs., figs., 4 refs

  4. In situ electrochemical enrichment and isolation of a magnetite-reducing bacterium from a high pH serpentinizing spring.

    Science.gov (United States)

    Rowe, Annette R; Yoshimura, Miho; LaRowe, Doug E; Bird, Lina J; Amend, Jan P; Hashimoto, Kazuhito; Nealson, Kenneth H; Okamoto, Akihiro

    2017-06-01

    Serpentinization is a geologic process that produces highly reduced, hydrogen-rich fluids that support microbial communities under high pH conditions. We investigated the activity of microbes capable of extracellular electron transfer in a terrestrial serpentinizing system known as 'The Cedars'. Measuring current generation with an on-site two-electrode system, we observed daily oscillations in current with the current maxima and minima occurring during daylight hours. Distinct members of the microbial community were enriched. Current generation in lab-scale electrochemical reactors did not oscillate, but was correlated with carbohydrate amendment in Cedars-specific minimal media. Gammaproteobacteria and Firmicutes were consistently enriched from lab electrochemical systems on δ-MnO 2 and amorphous Fe(OH) 3 at pH 11. However, isolation of an electrogenic strain proved difficult as transfer cultures failed to grow after multiple rounds of media transfer. Lowering the bulk pH in the media allowed us to isolate a Firmicutes strain (Paenibacillus sp.). This strain was capable of electrode and mineral reduction (including magnetite) at pH 9. This report provides evidence of the in situ activity of microbes using extracellular substrates as sinks for electrons at The Cedars, but also highlights the potential importance of community dynamics for supporting microbial life through either carbon fixation, and/or moderating pH stress. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Cultivation and irradiation of human fibroblasts in a medium enriched with platelet lysate for obtaining feeder layer in epidermal cell culture; Cultivo e irradiacao de fibroblastos humanos em meio enriquecido com lisado de plaquetas para obtencao de camada de sustentacao em culturas de celulas da epiderme

    Energy Technology Data Exchange (ETDEWEB)

    Yoshito, Daniele

    2011-07-01

    For over 30 years, the use of culture medium, enriched with bovine serum, and murines fibroblasts, with the rate of proliferation controlled by irradiation or by share anticarcinogenic drugs, has been playing successfully its role in assisting in the development of keratinocytes in culture, for clinical purposes. However, currently there is a growing concern about the possibility of transmitting prions and animals viruses to transplanted patients. Taking into account this concern, the present work aims to cultivate human fibroblasts in a medium enriched with human platelets lysate and determine the irradiation dose of these cells, for obtaining feeder layer in epidermal cell culture. For carrying out the proposed objective, platelets lysis has standardized, this lysate was used for human fibroblasts cultivation and the irradiation dose enough to inhibit its duplication was evaluated. Human keratinocytes were cultivated in these feeder layers, in culture medium enriched with the lysate. With these results we conclude that the 10% platelets lysate promoted a better adhesion and proliferation of human fibroblasts and in all dose levels tested (60 to 300 Gy), these had their mitotic activity inactivated by ionizing irradiation, being that the feeder layers obtained with doses from 70 to 150 Gy were those that provided the best development of keratinocytes in medium containing 2.5% of human platelet lysate. Therefore, it was possible to standardize both the cultivation of human fibroblasts as its inactivation for use as feeder layer in culture of keratinocytes, so as to eliminate xenobiotics components. (author)

  6. Microbial Degradation of a Recalcitrant Pesticide: Chlordecone

    Science.gov (United States)

    Chaussonnerie, Sébastien; Saaidi, Pierre-Loïc; Ugarte, Edgardo; Barbance, Agnès; Fossey, Aurélie; Barbe, Valérie; Gyapay, Gabor; Brüls, Thomas; Chevallier, Marion; Couturat, Loïc; Fouteau, Stéphanie; Muselet, Delphine; Pateau, Emilie; Cohen, Georges N.; Fonknechten, Nuria; Weissenbach, Jean; Le Paslier, Denis

    2016-01-01

    Chlordecone (Kepone®) is a synthetic organochlorine insecticide (C10Cl10O) used worldwide mostly during the 1970 and 1980s. Its intensive application in the French West Indies to control the banana black weevil Cosmopolites sordidus led to a massive environmental pollution. Persistence of chlordecone in soils and water for numerous decades even centuries causes global public health and socio-economic concerns. In order to investigate the biodegradability of chlordecone, microbial enrichment cultures from soils contaminated by chlordecone or other organochlorines and from sludge of a wastewater treatment plant have been conducted. Different experimental procedures including original microcosms were carried out anaerobically over long periods of time. GC-MS monitoring resulted in the detection of chlorinated derivatives in several cultures, consistent with chlordecone biotransformation. More interestingly, disappearance of chlordecone (50 μg/mL) in two bacterial consortia was concomitant with the accumulation of a major metabolite of formula C9Cl5H3 (named B1) as well as two minor metabolites C10Cl9HO (named A1) and C9Cl4H4 (named B3). Finally, we report the isolation and the complete genomic sequences of two new Citrobacter isolates, closely related to Citrobacter amalonaticus, and that were capable of reproducing chlordecone transformation. Further characterization of these Citrobacter strains should yield deeper insights into the mechanisms involved in this transformation process. PMID:28066351

  7. Microbial degradation of a recalcitrant pesticide: chlordecone.

    Directory of Open Access Journals (Sweden)

    Sébastien Chaussonnerie

    2016-12-01

    Full Text Available Chlordecone (Kepone® is a synthetic organochlorine insecticide (C10Cl10O used worldwide mostly during the 1970s and 1980s. Its intensive application in the French West Indies to control the banana black weevil Cosmopolites sordidus led to a massive environmental pollution. Persistence of chlordecone in soils and water for numerous decades even centuries causes global public health and socio-economic concerns. In order to investigate the biodegradability of chlordecone, microbial enrichment cultures from soils contaminated by chlordecone or other organochlorines and from sludge of a wastewater treatment plant have been conducted. Different experimental procedures including original microcosms were carried out anaerobically over long periods of time. GC-MS monitoring resulted in the detection of chlorinated derivatives in several cultures, consistent with chlordecone biotransformation. More interestingly, disappearance of chlordecone (50 µg/mL in two bacterial consortia was concomitant with the accumulation of a major metabolite of formula C9Cl5H3 (named B1 as well as two minor metabolites C10Cl9HO (named A1 and C9Cl4H4 (named B3. Finally, we report the isolation and the complete genomic sequences of two new Citrobacter isolates, closely related to Citrobacter amalonaticus, and that were capable of reproducing chlordecone transformation. Further characterization of these Citrobacter strains should yield deeper insights into the mechanisms involved in this transformation process.

  8. Microbial Degradation of a Recalcitrant Pesticide: Chlordecone.

    Science.gov (United States)

    Chaussonnerie, Sébastien; Saaidi, Pierre-Loïc; Ugarte, Edgardo; Barbance, Agnès; Fossey, Aurélie; Barbe, Valérie; Gyapay, Gabor; Brüls, Thomas; Chevallier, Marion; Couturat, Loïc; Fouteau, Stéphanie; Muselet, Delphine; Pateau, Emilie; Cohen, Georges N; Fonknechten, Nuria; Weissenbach, Jean; Le Paslier, Denis

    2016-01-01

    Chlordecone (Kepone®) is a synthetic organochlorine insecticide (C 10 Cl 10 O) used worldwide mostly during the 1970 and 1980s. Its intensive application in the French West Indies to control the banana black weevil Cosmopolites sordidus led to a massive environmental pollution. Persistence of chlordecone in soils and water for numerous decades even centuries causes global public health and socio-economic concerns. In order to investigate the biodegradability of chlordecone, microbial enrichment cultures from soils contaminated by chlordecone or other organochlorines and from sludge of a wastewater treatment plant have been conducted. Different experimental procedures including original microcosms were carried out anaerobically over long periods of time. GC-MS monitoring resulted in the detection of chlorinated derivatives in several cultures, consistent with chlordecone biotransformation. More interestingly, disappearance of chlordecone (50 μg/mL) in two bacterial consortia was concomitant with the accumulation of a major metabolite of formula C 9 Cl 5 H 3 (named B1) as well as two minor metabolites C 10 Cl 9 HO (named A1) and C 9 Cl 4 H 4 (named B3). Finally, we report the isolation and the complete genomic sequences of two new Citrobacter isolates, closely related to Citrobacter amalonaticus , and that were capable of reproducing chlordecone transformation. Further characterization of these Citrobacter strains should yield deeper insights into the mechanisms involved in this transformation process.

  9. Microbial biosensors

    International Nuclear Information System (INIS)

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  10. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  11. Advanced enrichment techniques

    International Nuclear Information System (INIS)

    Johnson, A.

    1988-01-01

    BNFL is in a unique position in that it has commercial experience of diffusion enrichment, and of centrifuge enrichment through its associate company Urenco. In addition BNFL is developing laser enrichment techniques as part of a UK development programme in this area. The paper describes the development programme which led to the introduction of competitive centrifuge enrichment technology by Urenco and discusses the areas where improvements have and will continue to be made in the centrifuge process. It also describes the laser development programme currently being undertaken in the UK. The paper concludes by discussing the relative merits of the various methods of uranium enrichment, with particular reference to the enrichment market likely to obtain over the rest of the century

  12. Advanced enrichment techniques

    International Nuclear Information System (INIS)

    Johnson, A.

    1987-01-01

    BNFL is in a unique position in that it has commercial experience of diffusion enrichment, and of centrifuge enrichment through its associate company Urenco. In addition BNFL is developing laser enrichment techniques as part of a UK development programme in this area. The paper describes the development programme which led to the introduction of competitive centrifuge enrichment technology by Urenco and discusses the areas where improvements have and will continue to be made in the centrifuge process. It also describes the laser development programme currently being undertaken in the UK. The paper concludes by discussing the relative merits of the various methods of uranium enrichment, with particular reference to the enrichment market likely to obtain over the rest of the century. (author)

  13. Uranium enrichment: an overview

    International Nuclear Information System (INIS)

    Cazalet, J.

    1995-01-01

    This paper is a general presentation of uranium enrichment processes and assessments of the prevailing commercial and industrial situations. It gives first some theoretical aspects of enrichment in general and explains the differences between statistical and selective processes in particular. Then a review of the different processes is made with a comparison between them. Finally, some general remarks concerning applications are given and the risks of proliferation related to enrichment are mentioned. (J.S.). 4 refs., 5 figs., 8 tabs

  14. The enrichment secondary market

    International Nuclear Information System (INIS)

    Einbund, D.R.

    1986-01-01

    This paper will addresses two topics: the background to the present status of the enrichment secondary market and the future outlook of the secondary market in enrichment services, and the viability of the nuclear fuel brokerage industry. These two topics are inevitably connected, as most secondary market activity, not only in enrichment but also in natural uranium, has traditionally been conducted with the participation of brokers. Therefore, the author interrelates these topics

  15. Microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Martin; Beckmaann, Sabrina; Siegert, Michael; Grundger, Friederike; Richnow, Hans [Geomicrobiology Group, Federal Institute for Geosciences and Natural Resources (Germany)

    2011-07-01

    In recent years, oil production has increased enormously but almost half of the oil now remaining is heavy/biodegraded and cannot be put into production. There is therefore a need for new technology and for diversification of energy sources. This paper discusses the microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs. The objective of the study is to identify microbial and geochemical controls on methanogenesis in reservoirs. A graph shows the utilization of methane for various purposes in Germany from 1998 to 2007. A degradation process to convert coal to methane is shown using a flow chart. The process for converting oil to methane is also given. Controlling factors include elements such as Fe, nitrogen and sulfur. Atmospheric temperature and reservoir pressure and temperature also play an important role. From the study it can be concluded that isotopes of methane provide exploration tools for reservoir selection and alkanes and aromatic compounds provide enrichment cultures.

  16. Microbial diversity and dynamics throughout manufacturing and ripening of surface ripened semi-hard Danish Danbo cheeses investigated by culture-independent techniques

    DEFF Research Database (Denmark)

    Ryssel, Mia; Johansen, Pernille; Abu Al-Soud, Waleed

    2015-01-01

    ) and pyrosequencing, using amplicons of 16S and 26S rRNA genes for prokaryotes and eukaryotes, respectively. With minor exceptions, the results from the culture-independent analyses correlated to the culture-dependent plating results. Even though the predominant microorganisms detected with the two culture...

  17. Unique Microbial Diversity and Metabolic Pathway Features of Fermented Vegetables From Hainan, China

    Science.gov (United States)

    Peng, Qiannan; Jiang, Shuaiming; Chen, Jieling; Ma, Chenchen; Huo, Dongxue; Shao, Yuyu; Zhang, Jiachao

    2018-01-01

    Fermented vegetables are typically traditional foods made of fresh vegetables and their juices, which are fermented by beneficial microorganisms. Herein, we applied high-throughput sequencing and culture-dependent technology to describe the diversities of microbiota and identify core microbiota in fermented vegetables from different areas of Hainan Province, and abundant metabolic pathways in the fermented vegetables were simultaneously predicted. At the genus level, Lactobacillus bacteria were the most abundant. Lactobacillus plantarum was the most abundant species, followed by Lactobacillus fermentum, Lactobacillus pentosaceus, and Weissella cibaria. These species were present in each sample with average absolute content values greater than 1% and were thus defined as core microbiota. Analysis results based on the alpha and beta diversities of the microbial communities showed that the microbial profiles of the fermented vegetables differed significantly based on the regions and raw materials used, and the species of the vegetables had a greater effect on the microbial community structure than the region from where they were harvested. Regarding microbial functional metabolism, we observed an enrichment of metabolic pathways, including membrane transport, replication and repair and translation, which implied that the microbial metabolism in the fermented vegetables tended to be vigorous. In addition, Lactobacillus plantarum and Lactobacillus fermentum were calculated to be major metabolic pathway contributors. Finally, we constructed a network to better explain correlations among the core microbiota and metabolic pathways. This study facilitates an understanding of the differences in microbial profiles and fermentation pathways involved in the production of fermented vegetables, establishes a basis for optimally selecting microorganisms to manufacture high-quality fermented vegetable products, and lays the foundation for better utilizing tropical microbial

  18. Unique Microbial Diversity and Metabolic Pathway Features of Fermented Vegetables From Hainan, China

    Directory of Open Access Journals (Sweden)

    Qiannan Peng

    2018-03-01

    Full Text Available Fermented vegetables are typically traditional foods made of fresh vegetables and their juices, which are fermented by beneficial microorganisms. Herein, we applied high-throughput sequencing and culture-dependent technology to describe the diversities of microbiota and identify core microbiota in fermented vegetables from different areas of Hainan Province, and abundant metabolic pathways in the fermented vegetables were simultaneously predicted. At the genus level, Lactobacillus bacteria were the most abundant. Lactobacillus plantarum was the most abundant species, followed by Lactobacillus fermentum, Lactobacillus pentosaceus, and Weissella cibaria. These species were present in each sample with average absolute content values greater than 1% and were thus defined as core microbiota. Analysis results based on the alpha and beta diversities of the microbial communities showed that the microbial profiles of the fermented vegetables differed significantly based on the regions and raw materials used, and the species of the vegetables had a greater effect on the microbial community structure than the region from where they were harvested. Regarding microbial functional metabolism, we observed an enrichment of metabolic pathways, including membrane transport, replication and repair and translation, which implied that the microbial metabolism in the fermented vegetables tended to be vigorous. In addition, Lactobacillus plantarum and Lactobacillus fermentum were calculated to be major metabolic pathway contributors. Finally, we constructed a network to better explain correlations among the core microbiota and metabolic pathways. This study facilitates an understanding of the differences in microbial profiles and fermentation pathways involved in the production of fermented vegetables, establishes a basis for optimally selecting microorganisms to manufacture high-quality fermented vegetable products, and lays the foundation for better utilizing

  19. Detection of Listeria monocytogenes from selective enrichment broth using MALDI-TOF Mass Spectrometry.

    Science.gov (United States)

    Jadhav, Snehal; Sevior, Danielle; Bhave, Mrinal; Palombo, Enzo A

    2014-01-31

    Conventional methods used for primary detection of Listeria monocytogenes from foods and subsequent confirmation of presumptive positive samples involve prolonged incubation and biochemical testing which generally require four to five days to obtain a result. In the current study, a simple and rapid proteomics-based MALDI-TOF MS approach was developed to detect L. monocytogenes directly from selective enrichment broths. Milk samples spiked with single species and multiple species cultures were incubated in a selective enrichment broth for 24h, followed by an additional 6h secondary enrichment. As few as 1 colony-forming unit (cfu) of L. monocytogenes per mL of initial selective broth culture could be detected within 30h. On applying the same approach to solid foods previously implicated in listeriosis, namely chicken pâté, cantaloupe and Camembert cheese, detection was achieved within the same time interval at inoculation levels of 10cfu/mL. Unlike the routine application of MALDI-TOF MS for identification of bacteria from solid media, this study proposes a cost-effective and time-saving detection scheme for direct identification of L. monocytogenes from broth cultures.This article is part of a Special Issue entitled: Trends in Microbial Proteomics. Globally, foodborne diseases are major causes of illness and fatalities in humans. Hence, there is a continual need for reliable and rapid means for pathogen detection from food samples. Recent applications of MALDI-TOF MS for diagnostic microbiology focused on detection of microbes from clinical specimens. However, the current study has emphasized its use as a tool for detecting the major foodborne pathogen, Listeria monocytogenes, directly from selective enrichment broths. This proof-of-concept study proposes a detection scheme that is more rapid and simple compared to conventional methods of Listeria detection. Very low levels of the pathogen could be identified from different food samples post-enrichment in

  20. Culture-Independent Identification of Manganese-Oxidizing Genes from Deep-Sea Hydrothermal Vent Chemoautotrophic Ferromanganese Microbial Communities Using a Metagenomic Approach

    Science.gov (United States)

    Davis, R.; Tebo, B. M.

    2013-12-01

    Microbial activity has long been recognized as being important to the fate of manganese (Mn) in hydrothermal systems, yet we know very little about the organisms that catalyze Mn oxidation, the mechanisms by which Mn is oxidized or the physiological function that Mn oxidation serves in these hydrothermal systems. Hydrothermal vents with thick ferromanganese microbial mats and Mn oxide-coated rocks observed throughout the Pacific Ring of Fire are ideal models to study the mechanisms of microbial Mn oxidation, as well as primary productivity in these metal-cycling ecosystems. We sampled ferromanganese microbial mats from Vai Lili Vent Field (Tmax=43°C) located on the Eastern Lau Spreading Center and Mn oxide-encrusted rhyolytic pumice (4°C) from Niua South Seamount on the Tonga Volcanic Arc. Metagenomic libraries were constructed and assembled from these samples and key genes known to be involved in Mn oxidation and carbon fixation pathways were identified in the reconstructed genomes. The Vai Lili metagenome assembled to form 121,157 contiguous sequences (contigs) greater than 1000bp in length, with an N50 of 8,261bp and a total metagenome size of 593 Mbp. Contigs were binned using an emergent self-organizing map of tetranucleotide frequencies. Putative homologs of the multicopper Mn-oxidase MnxG were found in the metagenome that were related to both the Pseudomonas-like and Bacillus-like forms of the enzyme. The bins containing the Pseudomonas-like mnxG genes are most closely related to uncultured Deltaproteobacteria and Chloroflexi. The Deltaproteobacteria bin appears to be an obligate anaerobe with possible chemoautotrophic metabolisms, while the Chloroflexi appears to be a heterotrophic organism. The metagenome from the Mn-stained pumice was assembled into 122,092 contigs greater than 1000bp in length with an N50 of 7635 and a metagenome size of 385 Mbp. Both forms of mnxG genes are present in this metagenome as well as the genes encoding the putative Mn

  1. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Gagne, R.W.; Thomas, D.C.

    1977-01-01

    The status of existing uranium enrichment contracts in the US is reviewed and expected natural uranium requirements for existing domestic uranium enrichment contracts are evaluated. Uncertainty in natural uranium requirements associated with requirements-type and fixed-commitment type contracts is discussed along with implementation of variable tails assay

  2. Characterization of indigenous oil field microorganisms for microbially enhanced oil recovery (MEOR)

    Energy Technology Data Exchange (ETDEWEB)

    Sitte, J.; Krueger, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Biegel, E.; Herold, A. [BASF SE, Ludwigshafen (Germany); Alkan, H. [Wintershall Holding GmbH, Kassel (Germany)

    2013-08-01

    Microbial activities and their resulting metabolites became a focus of attention for enhanced oil recovery (MEOR, microbial enhanced oil recovery) in the recent years. In order to develop a strategy for a MEOR application in a German oil field operated by Wintershall experiments were performed to investigate different sampling strategies and the microbial communities found in these samples. The objectives of this study were (1) to characterize the indigenous microbial communities, (2) to investigate the dependency of microbial activity/diversity on the different sampling strategies, and (3) to study the influence of the in situ pressure on bacterial growth and metabolite production. Fluids were sampled at the well head (surface) and in situ in approx. 785 m depth to collect uncontaminated production water directly from the reservoir horizon and under the in situ pressure of 31 bar (subsurface). In the lab the pressure was either released quickly or slowly to assess the sensitivity of microorganisms to rapid pressure changes. Quantitative PCR resulted in higher microbial cell numbers in the subsurface than in the surface sample. Biogenic CO{sub 2} and CH{sub 4} formation rates were determined under atmospheric and high pressure conditions in the original fluids, with highest rates found in the surface fluid. Interestingly, no methane was formed in the native fluid samples. While nitrate reduction was exclusively detected in the surface samples, sulfide formation also occurred in the subsurface fluids. Increased CO{sub 2} formation was measured after addition of a variety of substrates in the surface fluids, while only fructose and glucose showed a stimulating effect on CO{sub 2} production for the subsurface sample. Stable enrichment cultures were obtained in complex medium inoculated with the subsurface fluid, both under atmospheric and in situ pressure. Growth experiments with constant or changing pressure, and subsequent DGGE analysis of bacterial 16S rRNA genes

  3. Anaerobic 4-hydroxyproline utilization: Discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity.

    Science.gov (United States)

    Huang, Yolanda Y; Martínez-Del Campo, Ana; Balskus, Emily P

    2018-02-06

    The discovery of enzymes responsible for previously unappreciated microbial metabolic pathways furthers our understanding of host-microbe and microbe-microbe interactions. We recently identified and characterized a new gut microbial glycyl radical enzyme (GRE) responsible for anaerobic metabolism of trans-4-hydroxy-l-proline (Hyp). Hyp dehydratase (HypD) catalyzes the removal of water from Hyp to generate Δ 1 -pyrroline-5-carboxylate (P5C). This enzyme is encoded in the genomes of a diverse set of gut anaerobes and is prevalent and abundant in healthy human stool metagenomes. Here, we discuss the roles HypD may play in different microbial metabolic pathways as well as the potential implications of this activity for colonization resistance and pathogenesis within the human gut. Finally, we present evidence of anaerobic Hyp metabolism in sediments through enrichment culturing of Hyp-degrading bacteria, highlighting the wide distribution of this pathway in anoxic environments beyond the human gut.

  4. Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation.

    Science.gov (United States)

    Guerra, Alaine B; Oliveira, Jorge S; Silva-Portela, Rita C B; Araújo, Wydemberg; Carlos, Aline C; Vasconcelos, Ana Tereza R; Freitas, Ana Teresa; Domingos, Yldeney Silva; de Farias, Mirna Ferreira; Fernandes, Glauber José Turolla; Agnez-Lima, Lucymara F

    2018-04-01

    Drill cuttings leave behind thousands of tons of residues without adequate treatment, generating a large environmental liability. Therefore knowledge about the microbial community of drilling residue may be useful for developing bioremediation strategies. In this work, samples of drilling residue were enriched in different culture media in the presence of petroleum, aiming to select potentially oil-degrading bacteria and biosurfactant producers. Total DNA was extracted directly from the drill cutting samples and from two enriched consortia and sequenced using the Ion Torrent platform. Taxonomic analysis revealed the predominance of Proteobacteria in the metagenome from the drill cuttings, while Firmicutes was enriched in consortia samples. Functional analysis using the Biosurfactants and Biodegradation Database (BioSurfDB) revealed a similar pattern among the three samples regarding hydrocarbon degradation and biosurfactants production pathways. However, some statistical differences were observed between samples. Namely, the pathways related to the degradation of fatty acids, chloroalkanes, and chloroalkanes were enriched in consortia samples. The degradation colorimetric assay using dichlorophenolindophenol as an indicator was positive for several hydrocarbon substrates. The consortia were also able to produce biosurfactants, with biosynthesis of iturin, lichnysin, and surfactin among the more abundant pathways. A microcosms assay followed by gas chromatography analysis showed the efficacy of the consortia in degrading alkanes, as we observed a reduction of around 66% and 30% for each consortium in total alkanes. These data suggest the potential use of these consortia in the bioremediation of drilling residue based on autochthonous bioaugmentation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid.

    Science.gov (United States)

    Duncan, Sylvia H; Russell, Wendy R; Quartieri, Andrea; Rossi, Maddalena; Parkhill, Julian; Walker, Alan W; Flint, Harry J

    2016-07-01

    Cereal fibres such as wheat bran are considered to offer human health benefits via their impact on the intestinal microbiota. We show here by 16S rRNA gene-based community analysis that providing amylase-pretreated wheat bran as the sole added energy source to human intestinal microbial communities in anaerobic fermentors leads to the selective and progressive enrichment of a small number of bacterial species. In particular, OTUs corresponding to uncultured Lachnospiraceae (Firmicutes) related to Eubacterium xylanophilum and Butyrivibrio spp. were strongly enriched (by five to 160 fold) over 48 h in four independent experiments performed with different faecal inocula, while nine other Firmicutes OTUs showed > 5-fold enrichment in at least one experiment. Ferulic acid was released from the wheat bran during degradation but was rapidly converted to phenylpropionic acid derivatives via hydrogenation, demethylation and dehydroxylation to give metabolites that are detected in human faecal samples. Pure culture work using bacterial isolates related to the enriched OTUs, including several butyrate-producers, demonstrated that the strains caused substrate weight loss and released ferulic acid, but with limited further conversion. We conclude that breakdown of wheat bran involves specialist primary degraders while the conversion of released ferulic acid is likely to involve a multi-species pathway. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Books to Expand and Enrich Experiences.

    Science.gov (United States)

    Winfield, Evelyn T.

    1983-01-01

    Books are briefly described that parents can read and discuss with their children to enrich travel and cultural activities. Books on the nation's capital city, the Liberty Bell, the Statue of Liberty, architecture, zoos, dinosaurs, and other subjects are included. (PP)

  7. Developments in uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1995-01-01

    The enrichment services market is still characterized by overcapacities. While consumption worldwide will rise by some 15% to 39,000 t SWU/a over the next ten years, capacities amount to nearly 50,000 t SWU/a. The price for enrichment services probably has reached its all time low. Prices below U.S. $ 100/kg SWU are not likely to cover costs even of the economically most advanced enrichment processes. Urenco has prepared for the difficult enrichment business in the years to come by streamlining and cost cutting measures. The company intends to hold and increase its share of more than 10% in the world market. The uranium enrichment plant of Gronau will be expanded further. Expansion beyond 1000 t is subject to another permit being granted under the Atomic Energy Act, an application for which was filed in December 1994. Centrifuge technology is the superior enrichment technology, i.e., there is still considerable potential for further development. Construction of enrichment plants employing the centrifuge technology in the United States and in France is being pursued in various phases, from feasibility studies to licensing procedures. Before these plants could be implemented, however, considerable problems of organization would have to be solved, and the market would have to change greatly, respectively. The laser process, at the present time, does not seem to be able to develop into a major industrial competitor. (orig.) [de

  8. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with General Atomic's standard commercial warranty

  9. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium-zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  10. Microbial glycoproteomics

    DEFF Research Database (Denmark)

    Halim, Adnan; Anonsen, Jan Haug

    2017-01-01

    Mass spectrometry-based "-omics" technologies are important tools for global and detailed mapping of post-translational modifications. Protein glycosylation is an abundant and important post translational modification widespread throughout all domains of life. Characterization of glycoproteins...... and research in this area is rapidly accelerating. Here, we review recent developments in glycoproteomic technologies with a special focus on microbial protein glycosylation....

  11. Effects of commercial enrichment products on fatty acid components ...

    African Journals Online (AJOL)

    This study was undertaken to test the effects of enrichment products. Red pepper paste (ZA), AlgaMac 3050 (ZB) and Spresso (ZC) on fatty acid compositions in rotifers (Brachionus plicatilis) which were intensively cultured on a mixture of ω3 algae and ω3 yeast. Enriched rotifers were seen to have higher level of ...

  12. The biogeochemical fate of nickel during microbial ISA degradation; implications for nuclear waste disposal.

    Science.gov (United States)

    Kuippers, Gina; Boothman, Christopher; Bagshaw, Heath; Ward, Michael; Beard, Rebecca; Bryan, Nicholas; Lloyd, Jonathan R

    2018-06-08

    Intermediate level radioactive waste (ILW) generally contains a heterogeneous range of organic and inorganic materials, of which some are encapsulated in cement. Of particular concern are cellulosic waste items, which will chemically degrade under the conditions predicted during waste disposal, forming significant quantities of isosaccharinic acid (ISA), a strongly chelating ligand. ISA therefore has the potential to increase the mobility of a wide range of radionuclides via complex formation, including Ni-63 and Ni-59. Although ISA is known to be metabolized by anaerobic microorganisms, the biodegradation of metal-ISA complexes remains unexplored. This study investigates the fate of a Ni-ISA complex in Fe(III)-reducing enrichment cultures at neutral pH, representative of a microbial community in the subsurface. After initial sorption of Ni onto Fe(III)oxyhydroxides, microbial ISA biodegradation resulted in >90% removal of the remaining Ni from solution when present at 0.1 mM, whereas higher concentrations of Ni proved toxic. The microbial consortium associated with ISA degradation was dominated by close relatives to Clostridia and Geobacter species. Nickel was preferentially immobilized with trace amounts of biogenic amorphous iron sulfides. This study highlights the potential for microbial activity to help remove chelating agents and radionuclides from the groundwater in the subsurface geosphere surrounding a geodisposal facility.

  13. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles.

    Science.gov (United States)

    el Fantroussi, S; Verschuere, L; Verstraete, W; Top, E M

    1999-03-01

    The effect of three phenyl urea herbicides (diuron, linuron, and chlorotoluron) on soil microbial communities was studied by using soil samples with a 10-year history of treatment. Denaturing gradient gel electrophoresis (DGGE) was used for the analysis of 16S rRNA genes (16S rDNA). The degree of similarity between the 16S rDNA profiles of the communities was quantified by numerically analysing the DGGE band patterns. Similarity dendrograms showed that the microbial community structures of the herbicide-treated and nontreated soils were significantly different. Moreover, the bacterial diversity seemed to decrease in soils treated with urea herbicides, and sequence determination of several DGGE fragments showed that the most affected species in the soils treated with diuron and linuron belonged to an uncultivated bacterial group. As well as the 16S rDNA fingerprints, the substrate utilization patterns of the microbial communities were compared. Principal-component analysis performed on BIOLOG data showed that the functional abilities of the soil microbial communities were altered by the application of the herbicides. In addition, enrichment cultures of the different soils in medium with the urea herbicides as the sole carbon and nitrogen source showed that there was no difference between treated and nontreated soil in the rate of transformation of diuron and chlorotoluron but that there was a strong difference in the case of linuron. In the enrichment cultures with linuron-treated soil, linuron disappeared completely after 1 week whereas no significant transformation was observed in cultures inoculated with nontreated soil even after 4 weeks. In conclusion, this study showed that both the structure and metabolic potential of soil microbial communities were clearly affected by a long-term application of urea herbicides.

  14. Thermophilic anaerobic oxidation of methane by marine microbial consortia.

    Science.gov (United States)

    Holler, Thomas; Widdel, Friedrich; Knittel, Katrin; Amann, Rudolf; Kellermann, Matthias Y; Hinrichs, Kai-Uwe; Teske, Andreas; Boetius, Antje; Wegener, Gunter

    2011-12-01

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. AOM is performed by microbial consortia of archaea (ANME) associated with partners related to sulfate-reducing bacteria. In vitro enrichments of AOM were so far only successful at temperatures ≤25 °C; however, energy gain for growth by AOM with sulfate is in principle also possible at higher temperatures. Sequences of 16S rRNA genes and core lipids characteristic for ANME as well as hints of in situ AOM activity were indeed reported for geothermally heated marine environments, yet no direct evidence for thermophilic growth of marine ANME consortia was obtained to date. To study possible thermophilic AOM, we investigated hydrothermally influenced sediment from the Guaymas Basin. In vitro incubations showed activity of sulfate-dependent methane oxidation between 5 and 70 °C with an apparent optimum between 45 and 60 °C. AOM was absent at temperatures ≥75 °C. Long-term enrichment of AOM was fastest at 50 °C, yielding a 13-fold increase of methane-dependent sulfate reduction within 250 days, equivalent to an apparent doubling time of 68 days. The enrichments were dominated by novel ANME-1 consortia, mostly associated with bacterial partners of the deltaproteobacterial HotSeep-1 cluster, a deeply branching phylogenetic group previously found in a butane-amended 60 °C-enrichment culture of Guaymas sediments. The closest relatives (Desulfurella spp.; Hippea maritima) are moderately thermophilic sulfur reducers. Results indicate that AOM and ANME archaea could be of biogeochemical relevance not only in cold to moderate but also in hot marine habitats.

  15. Closed nutrient recycling via microbial catabolism in an eco-engineered self regenerating mixed anaerobic microbiome for hydrogenotrophic methanogenesis.

    Science.gov (United States)

    Savvas, Savvas; Donnelly, Joanne; Patterson, Tim P; Dinsdale, Richard; Esteves, Sandra R

    2017-03-01

    A novel eco-engineered mixed anaerobic culture was successfully demonstrated for the first time to be capable of continuous regeneration in nutrient limiting conditions. Microbial catabolism has been found to support a closed system of nutrients able to enrich a culture of lithotrophic methanogens and provide microbial cell recycling. After enrichment, the hydrogenotrophic species was the dominating methanogens while a bacterial substratum was responsible for the redistribution of nutrients. q-PCR results indicated that 7% of the total population was responsible for the direct conversion of the gases. The efficiency of H 2 /CO 2 conversion to CH 4 reached 100% at a gassing rate of above 60v/v/d. The pH of the culture media was effectively sustained at optimal levels (pH 7-8) through a buffering system created by the dissolved CO 2 . The novel approach can reduce the process nutrient/metal requirement and enhance the environmental and financial performance of hydrogenotrophic methanogenesis for renewable energy storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. [Hydroxylamine conversion by anammox enrichment].

    Science.gov (United States)

    Hu, Anhui; Zheng, Ping; Lu, Huifeng; Ding, Shuang; Wang, Caihua

    2010-04-01

    Hydroxylamine is an important intermediate product of anammox. This study was focused on the characteristics of hydroxylamine and nitrite conversions by anammox enrichment. The changes of nitrogenous substrates and related products with time were measured using batch tests with anammox enrichment as inoculum. Since hydroxylamine didn't react with nitrite in uninoculated control culture, these two compounds were chemically stable. Both of them decreased with time in anammox enrichment inoculated cultures, in which ammonia as intermediate product would be produced and converted with the maximum concentration being 0.338 mg/L. The total nitrogen concentration decreased from 4.694 mmol/L to 0.812 mmol/L with conversion rate 82.7% in the end. When hydroxylamine and nitrite concentrations were about 2.5 mmol/L respectively, the maximum specific sludge conversion rates of hydroxylamine was 0.535 mmol/(gVSS.h), which was 1.81 times bigger than that of ammonia in ammonia reaction system; the maximum specific sludge rate of total nitrogen was slightly higher than that in ammonia reaction system. When hydroxylamine concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 26.7% and 120.7% respectively; and the maximum ammonia accumulated was 1.810 mmol/L. When nitrite concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 6.9% and 9.0% respectively; and the maximum ammonia accumulated was 0.795 mmol/L. Anammox enrichment was capable of converting hydroxylamine and nitrite simultaneously and had the higher conversion rate of hydroxylamine than ammonia conversion rate. Hydroxylamine and nitrite conversion rates were less affected by increase in nitrite concentration, but more significantly influenced by increase in hydroxylamine. The maximum ammonia concentration accumulated would rise as the result of increasing both hydroxylamine and nitrite. The result of experiment was consistent with pathway

  17. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    Science.gov (United States)

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  18. A differential centrifugation protocol and validation criterion for enhancing mass spectrometry (MALDI-TOF) results in microbial identification using blood culture growth bottles.

    Science.gov (United States)

    March-Rosselló, G A; Muñoz-Moreno, M F; García-Loygorri-Jordán de Urriés, M C; Bratos-Pérez, M A

    2013-05-01

    Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF) is a widely used tool in clinical microbiology for rapidly identifying microorganisms. This technique can be applied directly on positive blood cultures without the need for its culturing, thereby, reducing the time required for microbiological diagnosis. The present study proposes an innovative identification protocol applied to positive blood culture bottles using MALDI-TOF. We have processed 100 positive blood culture bottles, of which 36 of 37 Gram-negative bacteria (97.3 %) were correctly identified directly with 100 % of Enterobacteriaceae and other Gram-negative rods and 87.5 % of non-fermenting Gram-negative rods. We also correctly identified directly 62 of 63 of Gram-positive bacteria (98.4 %) with 100 % of Streptococcus, Enterococcus, and Gram-positive bacilli and 98 % of Staphylococcus. Applying the differential centrifugation protocol at the moment the automatic blood culture incubation system gives a positive reading together with the proposed validation criterion offers 98 % sensitivity (95 % confidence interval: 95.2-100 %). The MALDI-TOF system, thus, provides a rapid and reliable system for identifying microorganisms from blood culture growth bottles.

  19. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from

  20. Microbially mediated barite dissolution in anoxic brines

    International Nuclear Information System (INIS)

    Ouyang, Bingjie; Akob, Denise M.; Dunlap, Darren; Renock, Devon

    2017-01-01

    Fluids injected into shale formations during hydraulic fracturing of black shale return with extraordinarily high total-dissolved-solids (TDS) and high concentrations of barium (Ba) and radium (Ra). Barite, BaSO_4, has been implicated as a possible source of Ba as well as a problematic mineral scale that forms on internal well surfaces, often in close association with radiobarite, (Ba,Ra)SO_4. The dissolution of barite by abiotic processes is well quantified. However, the identification of microbial communities in flowback and produced water necessitates the need to understand barite dissolution in the presence of bacteria. Therefore, we evaluated the rates and mechanisms of abiotic and microbially-mediated barite dissolution under anoxic and hypersaline conditions in the laboratory. Barite dissolution experiments were conducted with bacterial enrichment cultures established from produced water from Marcellus Shale wells located in northcentral Pennsylvania. These cultures were dominated by anaerobic halophilic bacteria from the genus Halanaerobium. Dissolved Ba was determined by ICP-OES and barite surfaces were investigated by SEM and AFM. Our results reveal that: 1) higher amounts of barium (up to ∼5 × ) are released from barite in the presence of Halanaerobium cultures compared to brine controls after 30 days of reaction, 2) etch pits that develop on the barite (001) surface in the presence of Halanaerobium exhibit a morphology that is distinct from those that form during control experiments without bacteria, 3) etch pits that develop in the presence of Halanaerobium exhibit a morphology that is similar to the morphology of etch pits formed in the presence of strong organic chelators, EDTA and DTPA, and 4) experiments using dialysis membranes to separate barite from bacteria suggest that direct contact between the two is not required in order to promote dissolution. These results suggest that Halanaerobium increase the rate of barite dissolution in anoxic

  1. Microbial xanthophylls.

    Science.gov (United States)

    Bhosale, Prakash; Bernstein, Paul S

    2005-09-01

    Xanthophylls are oxygenated carotenoids abundant in the human food supply. Lutein, zeaxanthin, and cryptoxanthin are major xanthophyll carotenoids in human plasma. The consumption of these xanthophylls is directly associated with reduction in the risk of cancers, cardiovascular disease, age-related macular degeneration, and cataract formation. Canthaxanthin and astaxanthin also have considerable importance in aquaculture for salmonid and crustacean pigmentation, and are of commercial interest for the pharmaceutical and food industries. Chemical synthesis is a major source for the heavy demand of xanthophylls in the consumer market; however, microbial producers also have potential as commercial sources. In this review, we discuss the biosynthesis, commercial utility, and major microbial sources of xanthophylls. We also present a critical review of current research and technologies involved in promoting microbes as potential commercial sources for mass production.

  2. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell

    Directory of Open Access Journals (Sweden)

    Hotta Yasuaki

    2008-01-01

    Full Text Available Abstract Background Microbial fuel cells (MFCs are devices that exploit microorganisms to generate electric power from organic matter. Despite the development of efficient MFC reactors, the microbiology of electricity generation remains to be sufficiently understood. Results A laboratory-scale two-chamber microbial fuel cell (MFC was inoculated with rice paddy field soil and fed cellulose as the carbon and energy source. Electricity-generating microorganisms were enriched by subculturing biofilms that attached onto anode electrodes. An electric current of 0.2 mA was generated from the first enrichment culture, and ratios of the major metabolites (e.g., electric current, methane and acetate became stable after the forth enrichment. In order to investigate the electrogenic microbial community in the anode biofilm, it was morphologically analyzed by electron microscopy, and community members were phylogenetically identified by 16S rRNA gene clone-library analyses. Electron microscopy revealed that filamentous cells and rod-shaped cells with prosthecae-like filamentous appendages were abundantly present in the biofilm. Filamentous cells and appendages were interconnected via thin filaments. The clone library analyses frequently detected phylotypes affiliated with Clostridiales, Chloroflexi, Rhizobiales and Methanobacterium. Fluorescence in-situ hybridization revealed that the Rhizobiales population represented rod-shaped cells with filamentous appendages and constituted over 30% of the total population. Conclusion Bacteria affiliated with the Rhizobiales constituted the major population in the cellulose-fed MFC and exhibited unique morphology with filamentous appendages. They are considered to play important roles in the cellulose-degrading electrogenic community.

  3. Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals

    Science.gov (United States)

    Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.

    2009-01-01

    Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.

  4. Methods for Detecting Microbial Methane Production and Consumption by Gas Chromatography.

    Science.gov (United States)

    Aldridge, Jared T; Catlett, Jennie L; Smith, Megan L; Buan, Nicole R

    2016-04-05

    Methane is an energy-dense fuel but is also a greenhouse gas 25 times more detrimental to the environment than CO 2 . Methane can be produced abiotically by serpentinization, chemically by Sabatier or Fisher-Tropsh chemistry, or biotically by microbes (Berndt et al. , 1996; Horita and Berndt, 1999; Dry, 2002; Wolfe, 1982; Thauer, 1998; Metcalf et al. , 2002). Methanogens are anaerobic archaea that grow by producing methane gas as a metabolic byproduct (Wolfe, 1982; Thauer, 1998). Our lab has developed and optimized three different gas chromatograph-utilizing assays to characterize methanogen metabolism (Catlett et al. , 2015). Here we describe the end point and kinetic assays that can be used to measure methane production by methanogens or methane consumption by methanotrophic microbes. The protocols can be used for measuring methane production or consumption by microbial pure cultures or by enrichment cultures.

  5. The competitive enrichment market

    International Nuclear Information System (INIS)

    Parks, J.W.; Huffman, F.C.

    1984-01-01

    With the enactment of the ''Private Ownership of Special Nuclear Materials Act'' in 1964, the U.S. Government made provisions to enter into the uranium enrichment services business. Since nuclear power was in its infancy and the Government was promoting its growth as well as trying to help U.S. industry sell reactors overseas, the initial contracts (Requirements Contracts) for enrichment services placed most of the risks associated with the supplying of the services on the Government. Projections of nuclear power additions continued to grow and in 1972 the Atomic Energy Commission (AEC) stopped contracting under Requirements Contracts in order to study which mode of contracting best suited the commercial development of the industry. In mid-1973, the AEC introduced the Long-Term Fixed Commitment (LTFC) contract which shifted the risk to the customer. By mid-1974, AEC had contracts which completely used the enrichment capacity of its complex and refused to accept requests for additional contracts. This action further convinced European nations that they should continue to develop their own enrichment capacity and resulted in the EURODIF and URENCO projects. Before this time the U.S. supplied 100% of the world market for enriching services

  6. Enrichment: Dealing with overcapacity

    International Nuclear Information System (INIS)

    Peterson, C.H.

    1989-01-01

    Today's surplus of enrichment capacity will continue until at least the end of this century. This will challenge the ingenuity of the separative work unit (SWU) suppliers as they attempt to keep market share and remain profitable in a very competitive marketplace. The utilities will be faced with attractive choices, but making the best choice will require careful analysis and increased attention to market factors. Current demand projections will probably prove too high to the extent that more reactors are canceled or delayed. The DOE has the vast majority of the unused capacity, so it will feel the most immediate impact of this large surplus in productive capacity. The DOE has responded to these market challenges by planning another reorganization of its enriching operations. Without a major agreement among the governments affected by the current surplus in enrichment capacity, the future will see lower prices, more competitive terms, and the gradual substitution of centrifuge or laser enrichment for the gaseous diffusion plants. The competition that is forcing the gaseous diffusion prices down to marginal cost will provide the long-term price basis for the enrichment industry

  7. The impact of yeast starter cultures on the microbial communities and volatile compounds in cocoa fermentation and the resulting sensory attributes of chocolate.

    Science.gov (United States)

    Batista, Nádia Nara; Ramos, Cíntia Lacerda; Dias, Disney Ribeiro; Pinheiro, Ana Carla Marques; Schwan, Rosane Freitas

    2016-02-01

    Theobroma cacao seeds are the main raw material for chocolate production. During their fermentation, a succession of microorganisms are responsible for the physicochemical changes occurring in the pulp and inside the beans. The aim of this study was to investigate the effects of yeast inoculation (Saccharomyces cerevisiae UFLA CA11, Pichia kluivery CCMA0237, and Hanseniaspora uvarum CCMA0236) on the profile of the volatile compounds and microbial communities in cocoa fermentation. The resulting chocolate was also evaluated by temporal dominance of sensations (TDS) analyses. The dominant microorganisms during spontaneous fermentation were S. cerevisiae, H. uvarum, H. guilliermondii, Lactobacillus fermentum, Pediococcus sp., and Acetobacter pasteurianus. Similarly, S. cerevisiae, P. kluyveri, Candida sp., Pediococcus sp., and A. pasteurianus were the predominant microorganisms assessed by Denaturing Gradient Gel Electrophoresis (DGGE) in inoculated fermentation. Sixty-seven volatile compounds were detected and quantified by gas chromatography/mass spectrometry (GC/MS) at the end of fermentation and chocolates. The main group of volatile compound found after the inoculated and spontaneous fermentations was esters (41 and 39 %, respectively). In the chocolates, the main group was acids (73 and 44 % from the inoculated and spontaneous fermentations, respectively). The TDS analyses showed a dominance of bitter and cocoa attributes in both chocolates. However, in the inoculated chocolate, lingering fruity notes were more intense, while the chocolate produced by spontaneous fermentation was more astringent. Thus, the inoculation of yeast influenced the microbial profile, which likely affected the volatile compounds that affect sensory characteristics, resulting in chocolate with dominant bitter, cocoa, and fruity attributes.

  8. Exploring Microbial Iron Oxidation in Wetland Soils

    Science.gov (United States)

    Wang, J.; Muyzer, G.; Bodelier, P. L. E.; den Oudsten, F.; Laanbroek, H. J.

    2009-04-01

    Iron is one of the most abundant elements on earth and is essential for life. Because of its importance, iron cycling and its interaction with other chemical and microbial processes has been the focus of many studies. Iron-oxidizing bacteria (FeOB) have been detected in a wide variety of environments. Among those is the rhizosphere of wetland plants roots which release oxygen into the soil creating suboxic conditions required by these organisms. It has been reported that in these rhizosphere microbial iron oxidation proceeds up to four orders of magnitude faster than strictly abiotic oxidation. On the roots of these wetland plants iron plaques are formed by microbial iron oxidation which are involved in the sequestering of heavy metals as well organic pollutants, which of great environmental significance.Despite their important role being catalysts of iron-cycling in wetland environments, little is known about the diversity and distribution of iron-oxidizing bacteria in various environments. This study aimed at developing a PCR-DGGE assay enabling the detection of iron oxidizers in wetland habitats. Gradient tubes were used to enrich iron-oxidizing bacteria. From these enrichments, a clone library was established based on the almost complete 16s rRNA gene using the universal bacterial primers 27f and 1492r. This clone library consisted of mainly α- and β-Proteobacteria, among which two major clusters were closely related to Gallionella spp. Specific probes and primers were developed on the basis of this 16S rRNA gene clone library. The newly designed Gallionella-specific 16S rRNA gene primer set 122f/998r was applied to community DNA obtained from three contrasting wetland environments, and the PCR products were used in denaturing gradient gel electrophoresis (DGGE) analysis. A second 16S rRNA gene clone library was constructed using the PCR products from one of our sampling sites amplified with the newly developed primer set 122f/998r. The cloned 16S rRNA gene

  9. Laser and gas centrifuge enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, Olli [Senior Fellow, Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, Massachusetts (United States)

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  10. Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide

    Science.gov (United States)

    Glass, Jennifer B.; Orphan, Victoria J.

    2011-01-01

    Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO2 cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH4), and nitrous oxide (N2O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH4 and N2O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH4 oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N2O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N2O reductase, the only known enzyme capable of microbial N2O conversion to N2, have only been found in classical denitrifiers. Accumulation of N2O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N2O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide

  11. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  12. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  13. Centrifuge enrichment program

    International Nuclear Information System (INIS)

    Astley, E.R.

    1976-01-01

    Exxon Nuclear has been active in privately funded research and development of centrifuge enrichment technology since 1972. In October of 1975, Exxon Nuclear submitted a proposal to design, construct, and operate a 3000-MT SWU/yr centrifuge enrichment plant, under the provisions of the proposed Nuclear Fuel Assurance Act of 1975. The U.S. Energy Research and Development Administration (ERDA) accepted the proposal as a basis for negotiation. It was proposed to build a 1000-MT SWU/yr demonstration increment to be operational in 1982; and after successful operation for about one year, expand the facilities into a 3000-MT SWU/yr plant. As part of the overall centrifuge enrichment plant, a dedicated centrifuge manufacturing plant would be constructed; sized to support the full 3000-MT SWU/yr plant. The selection of the centrifuge process by Exxon Nuclear was based on an extremely thorough evaluation of current and projected enrichment technology; results show that the technology is mature and the process will be cost effective. The substantial savings in energy (about 93%) from utilization of the centrifuge option rather than gaseous diffusion is a compelling argument. As part of this program, Exxon Nuclear has a large hardware R and D program, plus a prototype centrifuge manufacturing capability in Malta, New York. To provide a full-scale machine and limited cascade test capability, Exxon Nuclear is constructing a $4,000,000 Centrifuge Test Facility in Richland, Washington. This facility was to initiate operations in the Fall of 1976. Exxon Nuclear is convinced that the centrifuge enrichment process is the rational selection for emergence of a commercial enrichment industry

  14. US enrichment reduction studies

    International Nuclear Information System (INIS)

    1979-06-01

    A major national program, the Reduced Enrichment Research and Test Reactor (RERTR) Program, is currently under way in the U.S., centered at the Argonne National Laboratory (ANL), to reduce the potential of research and test reactor fuels for increasing the proliferation of nuclear explosive devices. The main objective of the program is to provide the technical means by which the uranium enrichment to be used in these reactors can be reduced to less than 20% without significant economic and performance penalties. The criteria, basis and goals of the program are consistent with the results of a number of case studies which have been performed as part of the program

  15. Advanced uranium enrichment processes

    International Nuclear Information System (INIS)

    Clerc, M.; Plurien, P.

    1986-01-01

    Three advanced Uranium enrichment processes are dealt with in the report: AVLIS (Atomic Vapour LASER Isotope Separation), MLIS (Molecular LASER Isotope Separation) and PSP (Plasma Separation Process). The description of the physical and technical features of the processes constitutes a major part of the report. If further presents comparisons with existing industrially used enrichment technologies, gives information on actual development programmes and budgets and ends with a chapter on perspectives and conclusions. An extensive bibliography of the relevant open literature is added to the different subjects discussed. The report was drawn up by the nuclear research Centre (CEA) Saclay on behalf of the Commission of the European Communities

  16. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  17. Microbial volatilization of inorganic selenium from landfill leachate; Mikrobiologische Volatilisierung von anorganischem Selen aus Deponiesickerwaessern bei umweltrelevanten Konzentrationen

    Energy Technology Data Exchange (ETDEWEB)

    Peitzsch, Mirko; Kremer, Daniel; Kersten, Michael [Mainz Univ. (Germany). Inst. fuer Geowissenschaften

    2010-04-15

    Background, aim, and scope: Determination of the rates of microbial alkylation are of interest with respect to natural attenuation of harmful selenium concentrations or selenium charges in contaminated ecosystems. Materials and methods: Landfill gas and the headspace of microbial microcosm incubation vessels were sampled in Tedlar {sup registered} bags. On-line hyphenation of an efficient enrichment method (cryotrapping-cryofocusing), a gaschromatographic separation technique, and the sensitive ICP-MS detection system was used for speciation of volatile organoselenium compounds. A detection limit at the ultra trace level (pg Se) was achieved with this CT-CF-GC-ICP-MS technique. Results: Incubation of landfill leachate with Alternata alternata as an active methylating organism showed a production of volatile selenium compounds (DMSe, DMDSe, EMDSe, DEDSe) over the whole range of applied inorganic selenium concentrations (10 {mu}gL{sup -1} to 10 mgL{sup -1}), with volatilization rates of up to 10 mg m{sup -3}d{sup -1}. For selenium concentrations of 1 mgL{sup -1} in the nutrient broth, up to 7 % of the inorganic selenium was volatilized after one week. The same volatile selenium compounds were observed in landfill gas. Discussion: The amount of volatilized selenium was comparable to that found in other studies with microbial pure cultures as well as isolates from waters or soils, but at much lower initial concentrations used in the incubations. Conclusions: The alkylation of selenium in the enriched mixed culture from landfill leachate at environmentally relevant concentrations indicates that the organoselenium compounds of same species composition and distribution determined in landfill gas are produced by microorganisms. Recommendations and perspectives: The microbial alkylation of toxic inorganic selenium species to less toxic or non-toxic, volatile compounds is an efficient method for bioremediation of contaminated sites even at relatively low Se concentrations.

  18. Metagenomic approach reveals microbial diversity and predictive microbial metabolic pathways in Yucha, a traditional Li fermented food.

    Science.gov (United States)

    Zhang, Jiachao; Wang, Xiaoru; Huo, Dongxue; Li, Wu; Hu, Qisong; Xu, Chuanbiao; Liu, Sixin; Li, Congfa

    2016-08-31

    Yucha is a typical traditional fermented food of the Li population in the Hainan province of China, and it is made up of cooked rice and fresh fish. In the present study, metagenomic approach and culture-dependent technology were applied to describe the diversity of microbiota and identify beneficial microbes in the Yucha. At the genus level, Lactobacillus was the most abundant genus (43.82% of the total reads), followed by Lactococcus, Enterococcus, Vibrio, Weissella, Pediococcus, Enterobacter, Salinivibrio, Acinetobacter, Macrococcus, Kluyvera and Clostridium; this result was confirmed by q-PCR. PCoA based on Weighted UniFrac distances showed an apparent clustering pattern for Yucha samples from different locations, and Lactobacillus sakei, Lactobacillus saniviri and Staphylococcus sciuri represented OTUs according to the major identified markers. At the microbial functional level, it was observed that there was an enrichment of metabolic functional features, including amino acid and carbohydrate metabolism, which implied that the microbial metabolism in the Yucha samples tended to be vigorous. Accordingly, we further investigated the correlation between the predominant microbes and metabolic functional features. Thirteen species of Lactobacillus (147 strains) were isolated, and Lactobacillus plantarum (60 isolates) and Lactobacillus pentosus (34 isolates) were isolated from every sample.

  19. Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light

    KAUST Repository

    Xing, Defeng

    2009-09-01

    Power densities produced by microbial fuel cells (MFCs) in natural systems are changed by exposure to light through the enrichment of photosynthetic microorganisms. When MFCs with brush anodes were exposed to light (4000 lx), power densities increased by 8-10% for glucose-fed reactors, and 34% for acetate-fed reactors. Denaturing gradient gel electrophoresis (DGGE) profiles based on the 16S rRNA gene showed that exposure to high light levels changed the microbial communities on the anodes. Based on 16S rRNA gene clone libraries of light-exposed systems the anode communities using glucose were also significantly different than those fed acetate. Dominant bacteria that are known exoelectrogens were identified in the anode biofilm, including a purple nonsulfur (PNS) photosynthetic bacterium, Rhodopseudomonas palustris, and a dissimilatory iron-reducing bacterium, Geobacter sulfurreducens. Pure culture tests confirmed that PNS photosynthetic bacteria increased power production when exposed to high light intensities (4000 lx). These results demonstrate that power production and community composition are affected by light conditions as well as electron donors in single-chamber air-cathode MFCs. © 2009 Elsevier B.V. All rights reserved.

  20. Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light

    KAUST Repository

    Xing, Defeng; Cheng, Shaoan; Regan, John M.; Logan, Bruce E.

    2009-01-01

    Power densities produced by microbial fuel cells (MFCs) in natural systems are changed by exposure to light through the enrichment of photosynthetic microorganisms. When MFCs with brush anodes were exposed to light (4000 lx), power densities increased by 8-10% for glucose-fed reactors, and 34% for acetate-fed reactors. Denaturing gradient gel electrophoresis (DGGE) profiles based on the 16S rRNA gene showed that exposure to high light levels changed the microbial communities on the anodes. Based on 16S rRNA gene clone libraries of light-exposed systems the anode communities using glucose were also significantly different than those fed acetate. Dominant bacteria that are known exoelectrogens were identified in the anode biofilm, including a purple nonsulfur (PNS) photosynthetic bacterium, Rhodopseudomonas palustris, and a dissimilatory iron-reducing bacterium, Geobacter sulfurreducens. Pure culture tests confirmed that PNS photosynthetic bacteria increased power production when exposed to high light intensities (4000 lx). These results demonstrate that power production and community composition are affected by light conditions as well as electron donors in single-chamber air-cathode MFCs. © 2009 Elsevier B.V. All rights reserved.

  1. Microbial enrichment to enhance the disease suppressive activity of compost

    NARCIS (Netherlands)

    Postma, J.; Montenari, M.; Boogert, van den P.H.J.F.

    2003-01-01

    Compost amended soil has been found to be suppressive against plant diseases in various cropping systems. The level and reproducibility of disease suppressive properties of compost might be increased by the addition of antagonists. In the present study, the establishment and suppressive activity of

  2. Microbial effects

    International Nuclear Information System (INIS)

    Sharpe, V.J.

    1985-10-01

    The long term safety and integrity of radioactive waste disposal sites proposed for use by Ontario Hydro may be affected by the release of radioactive gases. Microbes mediate the primary pathways of waste degradation and hence an assessment of their potential to produce gaseous end products from the breakdown of low level waste was performed. Due to a number of unknown variables, assumptions were made regarding environmental and waste conditions that controlled microbial activity; however, it was concluded that 14 C and 3 H would be produced, albeit over a long time scale of about 1500 years for 14 C in the worst case situation

  3. An Enriching Community.

    Science.gov (United States)

    Holland, Nancy A.; Burroughs, Jean

    2001-01-01

    Successful school-community partnerships in Volusia (Florida) Public Schools are the results of marketing creatively, meeting community members' needs, and bringing the right people together. The 3-year old program now offers students of all ages an expanding list of enrichment classes on many subjects for a nominal fee. (MLH)

  4. Uranium enrichment techniques

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    This article includes an introduction about the isotopes of natural uranium, their existence and the difficulty of the separation between them. Then it goes to the details of a number of methods used to enrich uranium: Gaseous Diffusion method, Electromagnetic method, Jet method, Centrifugal method, Chemical method, Laser method and Plasma method.

  5. Requirements for enrichment tools

    NARCIS (Netherlands)

    Boer, A.; Winkels, R.; Trompper, M.

    2016-01-01

    This report gives a high level overview of requirements for Enrichment tools in the Openlaws.eu project. Openlaws.eu aims to initiate a platform and develop a vision for Big Open Legal Data (BOLD): an open framework for legislation, case law, and legal literature from across Europe.

  6. Enriching the Catalog

    Science.gov (United States)

    Tennant, Roy

    2004-01-01

    After decades of costly and time-consuming effort, nearly all libraries have completed the retrospective conversion of their card catalogs to electronic form. However, bibliographic systems still are really not much more than card catalogs on wheels. Enriched content that Amazon.com takes for granted--such as digitized tables of contents, cover…

  7. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    Science.gov (United States)

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.

  8. Availability of enrichment services

    Internatio