WorldWideScience

Sample records for microbial energy transduction

  1. Mechanism of active transport: free energy dissipation and free energy transduction.

    OpenAIRE

    Tanford, C

    1982-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic ...

  2. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  3. Efficiency of Energy Transduction in a Molecular Chemical Engine

    OpenAIRE

    Sasaki, Kazuo; Kanada, Ryo; Amari, Satoshi

    2006-01-01

    A simple model of the two-state ratchet type is proposed for molecular chemical engines that convert chemical free energy into mechanical work and vice versa. The engine works by catalyzing a chemical reaction and turning a rotor. Analytical expressions are obtained for the dependences of rotation and reaction rates on the concentrations of reactant and product molecules, from which the performance of the engine is analyzed. In particular, the efficiency of energy transduction is discussed in...

  4. Subsumed complexity: abiogenesis as a by-product of complex energy transduction

    Science.gov (United States)

    Adam, Z. R.; Zubarev, D.; Aono, M.; Cleaves, H. James

    2017-11-01

    The origins of life bring into stark relief the inadequacy of our current synthesis of thermodynamic, chemical, physical and information theory to predict the conditions under which complex, living states of organic matter can arise. Origins research has traditionally proceeded under an array of implicit or explicit guiding principles in lieu of a universal formalism for abiogenesis. Within the framework of a new guiding principle for prebiotic chemistry called subsumed complexity, organic compounds are viewed as by-products of energy transduction phenomena at different scales (subatomic, atomic, molecular and polymeric) that retain energy in the form of bonds that inhibit energy from reaching the ground state. There is evidence for an emergent level of complexity that is overlooked in most conceptualizations of abiogenesis that arises from populations of compounds formed from atomic energy input. We posit that different forms of energy input can exhibit different degrees of dissipation complexity within an identical chemical medium. By extension, the maximum capacity for organic chemical complexification across molecular and macromolecular scales subsumes, rather than emerges from, the underlying complexity of energy transduction processes that drive their production and modification. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  5. Structure-function relationships of Na+, K+, ATP, or Mg2+ binding and energy transduction in Na,K-ATPase

    DEFF Research Database (Denmark)

    Jorgensen, Peter L.; Pedersen, Per Amstrup

    2000-01-01

    Na,K-ATPase; Mutagenesis; Na+ binding; K+ binding; Tl+ binding; Mg2+ binding; ATP binding; Cation binding site; Energy transduction......Na,K-ATPase; Mutagenesis; Na+ binding; K+ binding; Tl+ binding; Mg2+ binding; ATP binding; Cation binding site; Energy transduction...

  6. Physical aspects of sensory transduction on seeing, hearing and smelling.

    Science.gov (United States)

    Yoshioka, Tohru; Sakakibara, Manabu

    2013-01-01

    What is the general principle of sensory transduction? Sensory transduction is defined as energy transformation from the external world to the internal world. The energy of the external world, such as thermal energy (heat), electro-magnetic energy (light), mechanical energy (sound) and the energy from molecules (chemicals), is converted into electrochemical events in the animal nervous system. The following five classes of special sense receptors are utilized for energy conversion: vision (photo); audition (sound); taste and smell (chemo); and tactile (mechano). There are also other special sense receptors, including thermo and noxious receptors. The focus of this study is on photoreceptors, sound-receptors and odorant-receptors because the transduction mechanisms of these receptors are explained biochemically and understood by a common physical principle; these biochemical models are well known in neuroscience. The following notable problems are inherent in these biochemical models: the cGMP ionophore model of the vertebrate photoreceptor cannot explain the fast photo-response (∼msec); the tip links connection model of stereocilia in the basilar membrane for opening the K(+) channel on the tip of a hair has difficulty explaining the high frequency vibration of hair cells without a damping of the oscillation, and the odorant shape-specific receptor model for olfactory transduction has difficulty in discriminating the minute differences among similar fragrant smells of essential oils with different molecular shapes. These difficulties might arise from a lack of the physical sense when the transduction models were proposed. This article will reconsider these problems and propose rational models for visual, olfactory and auditory transduction.

  7. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  8. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  9. A composite approach boosts transduction coefficients of piezoceramics for energy harvesting

    Science.gov (United States)

    Yu, Xiaole; Hou, Yudong; Zheng, Mupeng; Zhao, Haiyan; Zhu, Mankang

    2018-03-01

    Piezoelectric energy harvesting is a hotspot in the field of new energy, the core goal of which is to prepare piezoceramics with a high transduction coefficient (d33×g33). The traditional solid-solution design strategy usually causes the same variation trend of d33 and ɛr, resulting in a low d33×g33 value. In this work, a composite design strategy was proposed that uses PZN-PZT/ZnAl2O4 as an example. By introducing ZnAl2O4, which is nonferroelectric with low ɛr, to the PZN-PZT piezoelectric matrix, ɛr decreased rapidly while d33 remained relatively stable. This behavior was ascribed to the increase of Q33 caused by an interfacial effect facilitating the formation of micro-domain structure.

  10. A composite approach boosts transduction coefficients of piezoceramics for energy harvesting

    Directory of Open Access Journals (Sweden)

    Xiaole Yu

    2018-03-01

    Full Text Available Piezoelectric energy harvesting is a hotspot in the field of new energy, the core goal of which is to prepare piezoceramics with a high transduction coefficient (d33×g33. The traditional solid–solution design strategy usually causes the same variation trend of d33 and εr, resulting in a low d33×g33 value. In this work, a composite design strategy was proposed that uses PZN–PZT/ZnAl2O4 as an example. By introducing ZnAl2O4, which is nonferroelectric with low εr, to the PZN–PZT piezoelectric matrix, εr decreased rapidly while d33 remained relatively stable. This behavior was ascribed to the increase of Q33 caused by an interfacial effect facilitating the formation of micro-domain structure.

  11. Energy, ecology and the distribution of microbial life.

    Science.gov (United States)

    Macalady, Jennifer L; Hamilton, Trinity L; Grettenberger, Christen L; Jones, Daniel S; Tsao, Leah E; Burgos, William D

    2013-07-19

    Mechanisms that govern the coexistence of multiple biological species have been studied intensively by ecologists since the turn of the nineteenth century. Microbial ecologists in the meantime have faced many fundamental challenges, such as the lack of an ecologically coherent species definition, lack of adequate methods for evaluating population sizes and community composition in nature, and enormous taxonomic and functional diversity. The accessibility of powerful, culture-independent molecular microbiology methods offers an opportunity to close the gap between microbial science and the main stream of ecological theory, with the promise of new insights and tools needed to meet the grand challenges humans face as planetary engineers and galactic explorers. We focus specifically on resources related to energy metabolism because of their direct links to elemental cycling in the Earth's history, engineering applications and astrobiology. To what extent does the availability of energy resources structure microbial communities in nature? Our recent work on sulfur- and iron-oxidizing autotrophs suggests that apparently subtle variations in the concentration ratios of external electron donors and acceptors select for different microbial populations. We show that quantitative knowledge of microbial energy niches (population-specific patterns of energy resource use) can be used to predict variations in the abundance of specific taxa in microbial communities. Furthermore, we propose that resource ratio theory applied to micro-organisms will provide a useful framework for identifying how environmental communities are organized in space and time.

  12. Structural basis for energy transduction by respiratory alternative complex III.

    Science.gov (United States)

    Sousa, Joana S; Calisto, Filipa; Langer, Julian D; Mills, Deryck J; Refojo, Patrícia N; Teixeira, Miguel; Kühlbrandt, Werner; Vonck, Janet; Pereira, Manuela M

    2018-04-30

    Electron transfer in respiratory chains generates the electrochemical potential that serves as energy source for the cell. Prokaryotes can use a wide range of electron donors and acceptors and may have alternative complexes performing the same catalytic reactions as the mitochondrial complexes. This is the case for the alternative complex III (ACIII), a quinol:cytochrome c/HiPIP oxidoreductase. In order to understand the catalytic mechanism of this respiratory enzyme, we determined the structure of ACIII from Rhodothermus marinus at 3.9 Å resolution by single-particle cryo-electron microscopy. ACIII presents a so-far unique structure, for which we establish the arrangement of the cofactors (four iron-sulfur clusters and six c-type hemes) and propose the location of the quinol-binding site and the presence of two putative proton pathways in the membrane. Altogether, this structure provides insights into a mechanism for energy transduction and introduces ACIII as a redox-driven proton pump.

  13. Solar energy powered microbial fuel cell with a reversible bioelectrode.

    Science.gov (United States)

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  14. Solar energy powered microbial fuel cell with a reversible bioelectrode

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel

  15. Understanding the role of nonlinearities in the transduction of vibratory energy harvesters

    Science.gov (United States)

    Masana, Ravindra Shiva Charan

    The last two decades have witnessed several advances in micro-fabrication technologies and electronics, leading to the development of small, low-power devices for wireless sensing, data transmission, actuation, and medical implants. Unfortunately, the actual implementation of such devices in their respective environment has been hindered by the lack of scalable energy sources that are necessary to power and maintain them. Batteries, which remain the most commonly used power source, have not kept pace with the demands of these devices, especially in terms of energy density. In light of this challenge, the concept of vibratory energy harvesting has flourished in recent years as a possible alternative to power and maintain low-power electronics. While linear vibratory energy harvesters have received the majority of the literature's attention, a significant body of the current research activity is focused on the concept of purposeful inclusion of nonlinearities for broadband transduction. When compared to their linear resonant counterparts, nonlinear energy harvesters have a wider steady-state frequency bandwidth, leading to the common belief that they can be utilized to improve performance especially in random and non-stationary vibratory environments. This dissertation aims to critically investigate this belief by drawing a clearer picture of the role of nonlinearities in the transduction of energy harvesters and by defining the conditions under which nonlinearities can be used to enhance performance. To achieve this goal, the Thesis is divided into three parts. The first part investigates the performance of mono- and bi-stable energy harvesters under harmonic excitations and carries a detailed analysis of their relative performance. The second part investigates their response to broadband and narrowband random excitations and again analyzes their relative behavior. The third part exploits the super-harmonic resonance bands of bi-stable energy harvesters for the

  16. Direct fed microbial supplementation repartitions host energy to the immune system.

    Science.gov (United States)

    Qiu, R; Croom, J; Ali, R A; Ballou, A L; Smith, C D; Ashwell, C M; Hassan, H M; Chiang, C-C; Koci, M D

    2012-08-01

    Direct fed microbials and probiotics are used to promote health in livestock and poultry; however, their mechanism of action is still poorly understood. We previously reported that direct fed microbial supplementation in young broilers reduced ileal respiration without changing whole-body energy expenditure. The current studies were conducted to further investigate the effects of a direct fed microbial on energy metabolism in different tissues of broilers. One hundred ninety-two 1-d-old broiler chicks (16 chicks/pen) were randomly assigned to 2 dietary groups: standard control starter diet (CSD) and CSD plus direct fed microbial (DFMD; 0.3%) with 6 pens/treatment. Body weight, feed consumption, whole-body energy expenditure, organ mass, tissue respiration rates, and peripheral blood mononuclear cell (PBMC) ATP concentrations were measured to estimate changes in energy metabolism. No differences in whole body energy expenditure or BW gain were observed; however, decreased ileal O(2) respiration (P energy consumption by PBMC corresponded with an altered immune response, broilers were immunized with sheep red blood cells (SRBC) and assayed for differences in their humoral response. The DFMD-fed broilers had a faster rate of antigen specific IgG production (P direct fed microbial used in this study resulted in energy re-partitioning to the immune system and an increase in antibody production independent of changes in whole body metabolism or growth performance.

  17. Microbial desalination cells for energy production and desalination

    KAUST Repository

    Kim, Younggy; Logan, Bruce E.

    2013-01-01

    Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving

  18. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-06-01

    Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater

  19. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.

  20. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.

    Science.gov (United States)

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-07-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition.

  1. Microbial Communities Are Well Adapted to Disturbances in Energy Input.

    Science.gov (United States)

    Fernandez-Gonzalez, Nuria; Huber, Julie A; Vallino, Joseph J

    2016-01-01

    Although microbial systems are well suited for studying concepts in ecological theory, little is known about how microbial communities respond to long-term periodic perturbations beyond diel oscillations. Taking advantage of an ongoing microcosm experiment, we studied how methanotrophic microbial communities adapted to disturbances in energy input over a 20-day cycle period. Sequencing of bacterial 16S rRNA genes together with quantification of microbial abundance and ecosystem function were used to explore the long-term dynamics (510 days) of methanotrophic communities under continuous versus cyclic chemical energy supply. We observed that microbial communities appeared inherently well adapted to disturbances in energy input and that changes in community structure in both treatments were more dependent on internal dynamics than on external forcing. The results also showed that the rare biosphere was critical to seeding the internal community dynamics, perhaps due to cross-feeding or other strategies. We conclude that in our experimental system, internal feedbacks were more important than external drivers in shaping the community dynamics over time, suggesting that ecosystems can maintain their function despite inherently unstable community dynamics. IMPORTANCE Within the broader ecological context, biological communities are often viewed as stable and as only experiencing succession or replacement when subject to external perturbations, such as changes in food availability or the introduction of exotic species. Our findings indicate that microbial communities can exhibit strong internal dynamics that may be more important in shaping community succession than external drivers. Dynamic "unstable" communities may be important for ecosystem functional stability, with rare organisms playing an important role in community restructuring. Understanding the mechanisms responsible for internal community dynamics will certainly be required for understanding and manipulating

  2. Microbial photosynthesis in the harnessing of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Pirt, S J

    1982-01-01

    The shortage of fossil fuels restricts the world supply of reduced carbon compounds and energy sources. Biotechnology offers the most feasible route to renewing the supplies of reduced carbon compounds. This involves recycling of CO/sub 2/ through photosynthesis. Conventional agriculture has little or no potential for supplying biomass and its derivatives on sufficient scale to offer an alternative to the fossil fuels. The agricultural wastes, on the whole, are intractable to conversion into useful carbon and energy sources and in any case are not available in amounts to provide a significant alternative to the fossil fuels. In contrast, microbial photosynthesis, optimised in photobioreactors, has vast potential to provide organic matter on a scale to match the consumption of fossil fuels. The quantative study of microbial photosynthesis as a biotechnological route to biomass has been neglected. As a result there is a chaos of conflicting data on fundamental parameters, for example, the photosynthetic efficiency of biomass production. New photosynthetic biotechnology with fully controlled continuous-culture systems is providing unequivocal values for the parameters. For the scale-up of microbial photosynthesis a tubular-loop reactor is proposed. (Refs. 14).

  3. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community.

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Zhou, Xiangtong; Feng, Yujie

    2015-11-01

    A continuous stirred microbial electrochemical reactor (CSMER) was developed by integrating anaerobic digestion (AD) and microbial electrochemical system (MES). The system was capable of treating high strength artificial wastewater and simultaneously recovering electric and methane energy. Maximum power density of 583±9, 562±7, 533±10 and 572±6 mW m(-2) were obtained by each cell in a four-independent circuit mode operation at an OLR of 12 kg COD m(-3) d(-1). COD removal and energy recovery efficiency were 87.1% and 32.1%, which were 1.6 and 2.5 times higher than that of a continuous stirred tank reactor (CSTR). Larger amount of Deltaproteobacteria (5.3%) and hydrogenotrophic methanogens (47%) can account for the better performance of CSMER, since syntrophic associations among them provided more degradation pathways compared to the CSTR. Results demonstrate the CSMER holds great promise for efficient wastewater treatment and energy recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Application of microbial photosynthesis to energy production and CO2 fixation

    International Nuclear Information System (INIS)

    Asada, Y.; Miyake, J.

    1994-01-01

    This paper presents different applications of microbial photosynthesis for energy production and carbon dioxide fixation. The authors discuss about energetic aspects of photosynthesis and features of biological way for solar energy conversion. (TEC). 4 figs., 12 refs

  5. Metformin selectively targets redox control of complex I energy transduction

    Directory of Open Access Journals (Sweden)

    Amy R. Cameron

    2018-04-01

    Full Text Available Many guanide-containing drugs are antihyperglycaemic but most exhibit toxicity, to the extent that only the biguanide metformin has enjoyed sustained clinical use. Here, we have isolated unique mitochondrial redox control properties of metformin that are likely to account for this difference. In primary hepatocytes and H4IIE hepatoma cells we found that antihyperglycaemic diguanides DG5-DG10 and the biguanide phenformin were up to 1000-fold more potent than metformin on cell signalling responses, gluconeogenic promoter expression and hepatocyte glucose production. Each drug inhibited cellular oxygen consumption similarly but there were marked differences in other respects. All diguanides and phenformin but not metformin inhibited NADH oxidation in submitochondrial particles, indicative of complex I inhibition, which also corresponded closely with dehydrogenase activity in living cells measured by WST-1. Consistent with these findings, in isolated mitochondria, DG8 but not metformin caused the NADH/NAD+ couple to become more reduced over time and mitochondrial deterioration ensued, suggesting direct inhibition of complex I and mitochondrial toxicity of DG8. In contrast, metformin exerted a selective oxidation of the mitochondrial NADH/NAD+ couple, without triggering mitochondrial deterioration. Together, our results suggest that metformin suppresses energy transduction by selectively inducing a state in complex I where redox and proton transfer domains are no longer efficiently coupled. Keywords: Diabetes, Metformin, Mitochondria, NADH, NAD+

  6. Microbial battery for efficient energy recovery.

    Science.gov (United States)

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.

  7. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.; Curtis, Tom P.; Logan, Bruce E.

    2009-01-01

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  8. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.

    2009-08-15

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  9. The dynamic basis of energy transduction in enzymes.

    Science.gov (United States)

    Somogyi, B; Welch, G R; Damjanovich, S

    1984-09-06

    The most important idea underlying our treatment herein is the unity of the enzyme molecule and the medium. Appreciation of this relationship is vital, if enzymology is to graduate from its present reductionistic status to a more holistic posture. Enzymes are biological entities firstly, and isolated objects of physicochemical analysis secondly. Perhaps the most crucial 'biological lesson', particularly apropos of enzymes in intermediary metabolism, concerns the 'cytosociology' of enzyme action in vivo [94,128]. The natural habitat of many enzymes in the living cell is far different from that in bulk aqueous solution in vitro. In order to obtain a real grasp of the nature of enzyme function, one must ultimately couch enzymology in concepts emerging from contemporary cell biology [95]. Notwithstanding, analysis precedes synthesis; and one must needs begin with the individual enzyme molecule. The trenchant efforts of the physical chemist and the organic chemist have produced a wealth of information on the nature of the binding and catalytic events at the enzyme active site. While it is not yet possible to explain precisely the complete sequence of events in the catalytic process, nevertheless, the basic mechanisms by which enzymes effect catalysis (i.e., reduce activation energy) now seem apparent [81,129]. The new frontier is to be found, in exploring the dynamic role of the protein matrix [17]. Not only does the protein provide the 3-D scaffolding for active-site processes, but, more importantly, it serves as the local solvent for the bound chemical subsystem. Thus, the dynamical aspects of enzyme catalysis (for thermally based systems) must arise from the fluctuational properties of the protein molecule. This notion is the common denominator in all of the models in subsection IIC. It is the anisotropic nature of this fluctuational behavior, which would characterize the energy-transduction phenomenon leading to localized catalytic events at the active-site. In

  10. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Cusick, Roland D.; Kiely, Patrick D.; Logan, Bruce E. [Department of Civil and Environmental Engineering, H2E Center, Penn State University, University Park, PA 16802 (United States)

    2010-09-15

    Microbial fuel (MFCs) and electrolysis cells (MECs) can be used to recover energy directly as electricity or hydrogen from organic matter. Organic removal efficiencies and values of the different energy products were compared for MFCs and MECs fed winery or domestic wastewater. TCOD removal (%) and energy recoveries (kWh/kg-COD) were higher for MFCs than MECs with both wastewaters. At a cost of 4.51/kg-H{sub 2} for winery wastewater and 3.01/kg-H{sub 2} for domestic wastewater, the hydrogen produced using MECs cost less than the estimated merchant value of hydrogen (6/kg-H{sub 2}). 16S rRNA clone libraries indicated the predominance of Geobacter species in anodic microbial communities in MECs for both wastewaters, suggesting low current densities were the result of substrate limitations. The results of this study show that energy recovery and organic removal from wastewater are more effective with MFCs than MECs, but that hydrogen production from wastewater fed MECs can be cost effective. (author)

  11. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge

    OpenAIRE

    Dahle, H?kon; ?kland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-01-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent f...

  12. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2009-01-06

    Fluorescence resonance energy transfer (FRET) using immobilized quantum dots (QDs) as energy donors was explored as a transduction method for the detection of nucleic acid hybridization at an interface. This research was motivated by the success of the QD-FRET-based transduction of nucleic acid hybridization in solution-phase assays. This new work represents a fundamental step toward the assembly of a biosensor, where immobilization of the selective chemistry on a surface is desired. After immobilizing QD-probe oligonucleotide conjugates on optical fibers, a demonstration of the retention of selectivity was achieved by the introduction of acceptor (Cy3)-labeled single-stranded target oligonucleotides. Hybridization generated the proximity required for FRET, and the resulting fluorescence spectra provided an analytical signal proportional to the amount of target. This research provides an important framework for the future development of nucleic acid biosensors based on QDs and FRET. The most important findings of this work are that (1) a QD-FRET solid-phase hybridization assay is viable and (2) a passivating layer of denatured bovine serum albumin alleviates nonspecific adsorption, ultimately resulting in (3) the potential for a reusable assay format and mismatch discrimination. In this, the first incarnation of a solid-phase QD-FRET hybridization assay, the limit of detection was found to be 5 nM, and the dynamic range was almost 2 orders of magnitude. Selective discrimination of the target was shown using a three-base-pairs mismatch from a fully complementary sequence. Despite a gradual loss of signal, reuse of the optical fibers over multiple cycles of hybridization and dehybridization was possible. Directions for further improvement of the analytical performance by optimizing the design of the QD-probe oligonucleotide interface are identified.

  13. A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion

    International Nuclear Information System (INIS)

    Fu, Hailing; Yeatman, Eric M.

    2017-01-01

    Energy harvesting from vibration for low-power electronics has been investigated intensively in recent years, but rotational energy harvesting is less investigated and still has some challenges. In this paper, a methodology for low-speed rotational energy harvesting using piezoelectric transduction and frequency up-conversion is analysed. The system consists of a piezoelectric cantilever beam with a tip magnet and a rotating magnet on a revolving host. The angular kinetic energy of the host is transferred to the vibration energy of the piezoelectric beam via magnetic coupling between the magnets. Frequency up-conversion is achieved by magnetic plucking, converting low frequency rotation into high frequency vibration of the piezoelectric beam. A distributed-parameter theoretical model is presented to analyse the electromechanical behaviour of the rotational energy harvester. Different configurations and design parameters were investigated to improve the output power of the device. Experimental studies were conducted to validate the theoretical estimation. The results illustrate that the proposed method is a feasible solution to collecting low-speed rotational energy from ambient hosts, such as vehicle tires, micro-turbines and wristwatches. - Highlights: • A topology to harvest low-frequency broad-band rotational energy is studied. • Different configurations were considered; arrangement (a)-repulsive was the best. • Theoretical analysis shows the harvester has a wide bandwidth at low frequency. • The ripples of output power are related to the beam's natural frequency. • Experimental results show a good performance (over 20 μW) from 15 Hz to 35 Hz.

  14. Architectures and representations for string transduction

    NARCIS (Netherlands)

    Chrupala, Grzegorz

    2015-01-01

    String transduction problems are ubiquitous in natural language processing: they include transliteration, grapheme-to-phoneme conversion, text normalization and translation. String transduction can be reduced to the simpler problems of sequence labeling by expressing the target string as a sequence

  15. Efficient, Broadband and Wide-Angle Hot-Electron Transduction using Metal-Semiconductor Hyperbolic Metamaterials

    KAUST Repository

    Sakhdari, Maryam; Hajizadegan, Mehdi; Farhat, Mohamed; Chen, Pai-Yen

    2016-01-01

    Hot-electron devices are emerging as promising candidates for the transduction of optical radiation into electrical current, as they enable photodetection and solar/infrared energy harvesting at sub-bandgap wavelengths. Nevertheless, poor

  16. Synergistic microbial consortium for bioenergy generation from complex natural energy sources.

    Science.gov (United States)

    Wang, Victor Bochuan; Yam, Joey Kuok Hoong; Chua, Song-Lin; Zhang, Qichun; Cao, Bin; Chye, Joachim Loo Say; Yang, Liang

    2014-01-01

    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1:9 (v:v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs.

  17. Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions

    Science.gov (United States)

    Robador, Alberto; LaRowe, Douglas E.; Finkel, Steven E.; Amend, Jan P.; Nealson, Kenneth H.

    2018-01-01

    Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems. PMID:29449836

  18. Energy harvesting from organic liquids in micro-sized microbial fuel cells

    KAUST Repository

    Mink, J.E.; Qaisi, R.M.; Logan, B.E.; Hussain, Muhammad Mustafa

    2014-01-01

    Micro-sized microbial fuel cells (MFCs) are miniature energy harvesters that use bacteria to convert biomass from liquids into usable power. The key challenge is transitioning laboratory test beds into devices capable of producing high power using

  19. Energy Harvesting From River Sediment Using a Microbial Fuel Cell: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Philippe Namour

    2014-05-01

    Full Text Available We have built a sedimentary fuel cell or Sediment Microbial Fuel Cell (SMFC. The device works on the principle of microbial fuel cells by exploiting directly the energy contained in sedimentary organic matter. It converts in electricity the sediment potential, thanks to microorganisms able to waste electrons from their metabolism directly to a solid anode instead of their natural electron acceptors, such as oxygen or nitrate. The sediment microbial fuel cell was made of a non-corrodible anode (graphite buried in anoxic sediments layer and connected via an electrical circuit to a cathode installed in surface water. We present the first results of laboratory sedimentary fuel cell and a prototype installed in the river.

  20. Effect of power shape on energy extraction from microbial fuel cell

    Science.gov (United States)

    Alaraj, Muhannad; Feng, Shuo; Roane, Timberley M.; Park, Jae-Do

    2017-10-01

    Microbial fuel cells (MFCs) generate renewable energy in the form of direct current (DC) power. Harvesting energy from MFCs started with passive components such as resistors and capacitors, then charge pumps were introduced with some more advantages. Power electronics converters were later preferred due to their higher efficiency and controllability; however, they introduce high frequency current ripple due to their high frequency switching. In this paper, the effect of shape of power extraction on MFC performance was investigated using three types of current shapes: continuous, square-wave, and triangular-wave. Simultaneously, chemical parameters, such as pH, dissolved oxygen, electrical conductivity, and redox potential, in the anode chamber were monitored to see how these parameters change with the shape of the electrical power extraction. Results showed that the shape of the extracted current did not have a substantial effect on the MFC life span, output power, and energy extraction, nor on the chemical parameters. The outcome of this study provided insight for the electrical impact by power electronics converters on some microbial and chemical aspects of an MFC system.

  1. Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems

    Science.gov (United States)

    Kracke, Frauke; Vassilev, Igor; Krömer, Jens O.

    2015-01-01

    Microbial electrochemical techniques describe a variety of emerging technologies that use electrode–bacteria interactions for biotechnology applications including the production of electricity, waste and wastewater treatment, bioremediation and the production of valuable products. Central in each application is the ability of the microbial catalyst to interact with external electron acceptors and/or donors and its metabolic properties that enable the combination of electron transport and carbon metabolism. And here also lies the key challenge. A wide range of microbes has been discovered to be able to exchange electrons with solid surfaces or mediators but only a few have been studied in depth. Especially electron transfer mechanisms from cathodes towards the microbial organism are poorly understood but are essential for many applications such as microbial electrosynthesis. We analyze the different electron transport chains that nature offers for organisms such as metal respiring bacteria and acetogens, but also standard biotechnological organisms currently used in bio-production. Special focus lies on the essential connection of redox and energy metabolism, which is often ignored when studying bioelectrochemical systems. The possibility of extracellular electron exchange at different points in each organism is discussed regarding required redox potentials and effect on cellular redox and energy levels. Key compounds such as electron carriers (e.g., cytochromes, ferredoxin, quinones, flavins) are identified and analyzed regarding their possible role in electrode–microbe interactions. This work summarizes our current knowledge on electron transport processes and uses a theoretical approach to predict the impact of different modes of transfer on the energy metabolism. As such it adds an important piece of fundamental understanding of microbial electron transport possibilities to the research community and will help to optimize and advance bioelectrochemical

  2. Microbial bio-fuels: a solution to carbon emissions and energy crisis.

    Science.gov (United States)

    Kumar, Arun; Kaushal, Sumit; Saraf, Shubhini A; Singh, Jay Shankar

    2018-06-01

    Increasing energy demand, limited fossil fuel resources and climate change have prompted development of alternative sustainable and economical fuel resources such as crop-based bio-ethanol and bio-diesel. However, there is concern over use of arable land that is used for food agriculture for creation of biofuel. Thus, there is a renewed interest in the use of microbes particularly microalgae for bio-fuel production. Microbes such as micro-algae and cyanobacteria that are used for biofuel production also produce other bioactive compounds under stressed conditions. Microbial agents used for biofuel production also produce bioactive compounds with antimicrobial, antiviral, anticoagulant, antioxidant, antifungal, anti-inflammatory and anticancer activity. Because of importance of such high-value compounds in aquaculture and bioremediation, and the potential to reduce carbon emissions and energy security, the biofuels produced by microbial biotechnology might substitute the crop-based bio-ethanol and bio-diesel production.

  3. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long-te...

  4. Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging

    OpenAIRE

    Walter, X. A.; Stinchcombe, A.; Greenman, J.; Ieropoulos, I.

    2017-01-01

    This study reports for the first time the full charging of a state-of-the-art mobile smartphone, using Microbial Fuel Cells fed with urine. This was possible by employing a new design of MFC that allowed scaling-up without power density losses. Although it was demonstrated in the past that a basic mobile phone could be charged by MFCs, the present study goes beyond this to show how, simply using urine, charges a modern-day smartphone. Several energy-harvesting systems have been tested and res...

  5. FY1995 transduction method and CAD database systems for integrated design; 1995 nendo transduction ho to CAD database togo sekkei shien system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Transduction method developed by the research coordinator and Prof. Muroga is one of the most popular methods to design large-scale integrated circuits, and thus used by major design tool companies in USA and Japan. The major objectives of the research is to improve capability and utilize its reusable property by combining with CAD databases. Major results of the project is as follows, (1) Improvement of Transduction method : Efficiency, capability and the maximum circuit size are improved. Error compensation method is also improved. (2) Applications to new logic elements : Transduction method is modified to cope with wired logic and FPGAs. (3) CAD databases : One of the major advantages of Transduction methods is 'reusability' of already designed circuits. It is suitable to combine with CAD databases. We design CAD databases suitable for cooperative design using Transduction method. (4) Program development : Programs for Windows95 and developed for distribution. (NEDO)

  6. FY1995 transduction method and CAD database systems for integrated design; 1995 nendo transduction ho to CAD database togo sekkei shien system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Transduction method developed by the research coordinator and Prof. Muroga is one of the most popular methods to design large-scale integrated circuits, and thus used by major design tool companies in USA and Japan. The major objectives of the research is to improve capability and utilize its reusable property by combining with CAD databases. Major results of the project is as follows, (1) Improvement of Transduction method : Efficiency, capability and the maximum circuit size are improved. Error compensation method is also improved. (2) Applications to new logic elements : Transduction method is modified to cope with wired logic and FPGAs. (3) CAD databases : One of the major advantages of Transduction methods is 'reusability' of already designed circuits. It is suitable to combine with CAD databases. We design CAD databases suitable for cooperative design using Transduction method. (4) Program development : Programs for Windows95 and developed for distribution. (NEDO)

  7. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  8. Integrated Electromechanical Transduction Schemes for Polymer MEMS Sensors

    Directory of Open Access Journals (Sweden)

    Damien Thuau

    2018-04-01

    Full Text Available Polymer Micro ElectroMechanical Systems (MEMS have the potential to constitute a powerful alternative to silicon-based MEMS devices for sensing applications. Although the use of commercial photoresists as structural material in polymer MEMS has been widely reported, the integration of functional polymer materials as electromechanical transducers has not yet received the same amount of interest. In this context, we report on the design and fabrication of different electromechanical schemes based on polymeric materials ensuring different transduction functions. Piezoresistive transduction made of carbon nanotube-based nanocomposites with a gauge factor of 200 was embedded within U-shaped polymeric cantilevers operating either in static or dynamic modes. Flexible resonators with integrated piezoelectric transduction were also realized and used as efficient viscosity sensors. Finally, piezoelectric-based organic field effect transistor (OFET electromechanical transduction exhibiting a record sensitivity of over 600 was integrated into polymer cantilevers and used as highly sensitive strain and humidity sensors. Such advances in integrated electromechanical transduction schemes should favor the development of novel all-polymer MEMS devices for flexible and wearable applications in the future.

  9. Flow of light energy in benthic photosynthetic microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Al-Najjar, Mohammad Ahmad A.

    2010-12-15

    The work in this thesis demonstrates the assessment of the energy budget inside microbial mat ecosystems, and the factors affecting light utilization efficiency. It presents the first balanced light energy budget for benthic microbial mat ecosystems, and shows how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (Jabs). The energy budget was dominated by heat dissipation on the expense of photosynthesis. The maximum efficiency of photosynthesis was at light limiting conditions When comparing three different marine benthic photosynthetic ecosystems (originated from Abu-Dhabi, Arctic, and Exmouth Gulf in Western Australia), differences in the efficiencies were calculated. The results demonstrated that the maximum efficiency depended on mat characteristics affecting light absorption and scattering; such as, photopigments ratio and distribution, and the structural organization of the photosynthetic organisms relative to other absorbing components of the ecosystem (i.e., EPS, mineral particles, detritus, etc.). The maximum efficiency decreased with increasing light penetration depth, and increased with increasing the accessory pigments (phycocyanin and fucoxanthin)/chlorophyll ratio. Spatial heterogeneity in photosynthetic efficiency, pigment distribution, as well as light acclimation in microbial mats originating from different geographical locations was investigated. We used a combined pigment imaging approach (variable chlorophyll fluorescence and hyperspectral imaging), and fingerprinting approach. For each mat, the photosynthetic activity was proportional to the local pigment concentration in the photic zone, but not for the deeper layers and between different mats. In each mat, yield of PSII and E1/2 (light acclimation) generally decreased in parallel with depth, but the gradients in both parameters varied greatly between samples. This mismatch between pigments concentration

  10. Mechanical transduction via a single soft polymer

    Science.gov (United States)

    Hou, Ruizheng; Wang, Nan; Bao, Weizhu; Wang, Zhisong

    2018-04-01

    Molecular machines from biology and nanotechnology often depend on soft structures to perform mechanical functions, but the underlying mechanisms and advantages or disadvantages over rigid structures are not fully understood. We report here a rigorous study of mechanical transduction along a single soft polymer based on exact solutions to the realistic three-dimensional wormlike-chain model and augmented with analytical relations derived from simpler polymer models. The results reveal surprisingly that a soft polymer with vanishingly small persistence length below a single chemical bond still transduces biased displacement and mechanical work up to practically significant amounts. This "soft" approach possesses unique advantages over the conventional wisdom of rigidity-based transduction, and potentially leads to a unified mechanism for effective allosterylike transduction and relay of mechanical actions, information, control, and molecules from one position to another in molecular devices and motors. This study also identifies an entropy limit unique to the soft transduction, and thereby suggests a possibility of detecting higher efficiency for kinesin motor and mutants in future experiments.

  11. Energy sustainability of Microbial Fuel Cell (MFC): A case study

    Science.gov (United States)

    Tommasi, Tonia; Lombardelli, Giorgia

    2017-07-01

    Energy sustainability analysis and durability of Microbial Fuel Cells (MFCs) as energy source are necessary in order to move from the laboratory scale to full-scale application. This paper focus on these two aspects by considering the energy performances of an original experimental test with MFC conducted for six months under an external load of 1000 Ω. Energy sustainability is quantified using Energy Payback Time, the time necessary to produce the energy already spent to construct the MFC device. The results of experiment reveal that the energy sustainability of this specific MFC is never reached due to energy expenditure (i.e. for pumping) and to the low amount of energy produced. Hence, different MFC materials and architectures were analysed to find guidelines for future MFC development. Among these, only sedimentary fuel cells (Benthic MFCs) seem sustainable from an energetic point of view, with a minimum duration of 2.7 years. An energy balance approach highlights the importance of energy calculation. However, this is very often not taken into account in literature. This study outlines promising methodology for the design of an alternative layout of energy sustainable MFC and wastewater management systems.

  12. Mineral solubility and free energy controls on microbial reaction kinetics: Application to contaminant transport in the subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Inst. of Technology, Atlanta, GA (United States); Van Cappellen, Philippe [Univ. of Waterloo, ON (Canada)

    2016-11-14

    Recent developments in the theoretical treatment of geomicrobial reaction processes have resulted in the formulation of kinetic models that directly link the rates of microbial respiration and growth to the corresponding thermodynamic driving forces. The overall objective of this project was to verify and calibrate these kinetic models for the microbial reduction of uranium(VI) in geochemical conditions that mimic as much as possible field conditions. The approach combined modeling of bacterial processes using new bioenergetic rate laws, laboratory experiments to determine the bioavailability of uranium during uranium bioreduction, evaluation of microbial growth yield under energy-limited conditions using bioreactor experiments, competition experiments between metabolic processes in environmentally relevant conditions, and model applications at the field scale. The new kinetic descriptions of microbial U(VI) and Fe(III) reduction should replace those currently used in reactive transport models that couple catabolic energy generation and growth of microbial populations to the rates of biogeochemical redox processes. The above work was carried out in collaboration between the groups of Taillefert (batch reactor experiments and reaction modeling) at Georgia Tech and Van Cappellen (retentostat experiments and reactive transport modeling) at University of Waterloo (Canada).

  13. Research of radiation-resistant microbial organisms

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongho; Lim, Sangyong; Joe, Minho; Park, Haejoon; Song, Hyunpa; Im, Seunghun; Kim, Haram; Kim, Whajung; Choi, Jinsu; Park, Jongchun

    2012-01-15

    Many extremophiles including radiation-resistant bacteria Deinococcus radiodurans have special characteristics such as novel enzymes and physiological active substances different from known biological materials and are being in the spotlight of biotechnology science. In this research, basic technologies for the production of new genetic resources and microbial strains by a series of studies in radiation-resistant microbial organisms were investigated and developed. Mechanisms required for radiation-resistant in Deinococcus radiodurans were partly defined by analyzing the function of dinB, pprI, recG, DRA{sub 0}279, pprM, and two-component signal transduction systems. To apply genetic resource and functional materials from Deinococcus species, omics analysis in response to cadmium, construction of macroscopic biosensor, and characterization of carotenoids and chaperon protein were performed. Additionally, potential use of D. geothermalis in monosaccharide production from non-biodegradable plant materials was evaluated. Novel radiation resistant yeasts and bacteria were isolated and identified from environmental samples to obtain microbial and genomic resources. An optimal radiation mutant breeding method was set up for efficient and rapid isolation of target microbial mutants. Furthermore, an efficient ethanol producing mutant strain with high production yield and productivity was constructed using the breeding method in collaboration with Korea Research Institute of Bioscience and Biotechnology. Three Deinococcal bioindicators for radiation dosage confirmation after radiation sterilization process were developed. These results provide a comprehensive information for novel functional genetic elements, enzymes, and physiological active substances production or application. Eventually, industrial microbial cell factories based on radiation resistant microbial genomes can be developed and the technologies can be diffused to bioindustry continuously by this project.

  14. Research of radiation-resistant microbial organisms

    International Nuclear Information System (INIS)

    Kim, Dongho; Lim, Sangyong; Joe, Minho; Park, Haejoon; Song, Hyunpa; Im, Seunghun; Kim, Haram; Kim, Whajung; Choi, Jinsu; Park, Jongchun

    2012-01-01

    Many extremophiles including radiation-resistant bacteria Deinococcus radiodurans have special characteristics such as novel enzymes and physiological active substances different from known biological materials and are being in the spotlight of biotechnology science. In this research, basic technologies for the production of new genetic resources and microbial strains by a series of studies in radiation-resistant microbial organisms were investigated and developed. Mechanisms required for radiation-resistant in Deinococcus radiodurans were partly defined by analyzing the function of dinB, pprI, recG, DRA 0 279, pprM, and two-component signal transduction systems. To apply genetic resource and functional materials from Deinococcus species, omics analysis in response to cadmium, construction of macroscopic biosensor, and characterization of carotenoids and chaperon protein were performed. Additionally, potential use of D. geothermalis in monosaccharide production from non-biodegradable plant materials was evaluated. Novel radiation resistant yeasts and bacteria were isolated and identified from environmental samples to obtain microbial and genomic resources. An optimal radiation mutant breeding method was set up for efficient and rapid isolation of target microbial mutants. Furthermore, an efficient ethanol producing mutant strain with high production yield and productivity was constructed using the breeding method in collaboration with Korea Research Institute of Bioscience and Biotechnology. Three Deinococcal bioindicators for radiation dosage confirmation after radiation sterilization process were developed. These results provide a comprehensive information for novel functional genetic elements, enzymes, and physiological active substances production or application. Eventually, industrial microbial cell factories based on radiation resistant microbial genomes can be developed and the technologies can be diffused to bioindustry continuously by this project

  15. Signal transduction in the footsteps of goethe and schiller.

    Science.gov (United States)

    Friedrich, Karlheinz; Lindquist, Jonathan A; Entschladen, Frank; Serfling, Edgar; Thiel, Gerald; Kieser, Arnd; Giehl, Klaudia; Ehrhardt, Christina; Feller, Stephan M; Ullrich, Oliver; Schaper, Fred; Janssen, Ottmar; Hass, Ralf

    2009-02-04

    The historical town of Weimar in Thuringia, the "green heart of Germany" was the sphere of Goethe and Schiller, the two most famous representatives of German literature's classic era. Not yet entirely as influential as those two cultural icons, the Signal Transduction Society (STS) has nevertheless in the last decade established within the walls of Weimar an annual interdisciplinary Meeting on "Signal Transduction - Receptors, Mediators and Genes", which is well recognized as a most attractive opportunity to exchange results and ideas in the field.The 12th STS Meeting was held from October 28 to 31 and provided a state-of-the-art overview of various areas of signal transduction research in which progress is fast and discussion lively. This report is intended to share with the readers of CCS some highlights of the Meeting Workshops devoted to specific aspects of signal transduction.

  16. The high energy multicharged particle exposure of the microbial ecology evaluation device on board the Apollo 16 spacecraft

    Science.gov (United States)

    Benton, E. V.; Henke, R. P.

    1973-01-01

    The high energy multicharged cosmic-ray-particle exposure of the Microbial Ecology Evaluation Device package on board the Apollo 16 spacecraft was monitored using cellulose nitrate, Lexan polycarbonate, nuclear emulsion, and silver chloride crystal nuclear-track detectors. The results of the analysis of these detectors include the measured particle fluences, the linear energy transfer spectra, and the integral atomic number spectrum of stopping particle density. The linear energy transfer spectrum is used to compute the fractional cell loss in human kidney (T1) cells caused by heavy particles. Because the Microbial Ecology Evaluation Device was better shielded, the high-energy multicharged particle exposure was less than that measured on the crew passive dosimeters.

  17. Responses to microbial challenges by SLAMF receptors

    Directory of Open Access Journals (Sweden)

    Boaz Job Van Driel

    2016-01-01

    Full Text Available The SLAMF Family (SLAMF of cell surface glycoproteins is comprised of nine glycoproteins and whilst SLAMF1, 3, 5, 6, 7, 8, 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development and, T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SAP and EAT-2 regulate innate and adaptive immune responses to microbes.

  18. Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells

    KAUST Repository

    Cusick, R. D.

    2012-03-01

    Reverse electrodialysis allows for the capture of energy from salinity gradients between salt and fresh waters, but potential applications are currently limited to coastal areas and the need for a large number of membrane pairs. Using salt solutions that could be continuously regenerated with waste heat (≥40°C) and conventional technologies would allow much wider applications of salinity-gradient power production. We used reverse electrodialysis ion-exchange membrane stacks in microbial reverse- electrodialysis cells to efficiently capture salinity-gradient energy from ammonium bicarbonate salt solutions. The maximum power density using acetate reached 5.6 watts per square meter of cathode surface area, which was five times that produced without the dialysis stack, and 3.0 ± 0.05 watts per square meter with domestic wastewater. Maximum energy recovery with acetate reached 30 ± 0.5%.

  19. Influence of diet and microbial activity in the digestive tract on digestibility, and nitrogen and energy metabolism in rats and pigs

    DEFF Research Database (Denmark)

    Eggum, B O; Thorbek, G; Beames, R M

    1982-01-01

    -55 kg. Measurements were made on the influence of microbial activity in the digestive tract on digestibility and nitrogen and energy metabolism. Dietary inclusion of the antibiotic Nebacitin was the method used to reduce the microbial population. 2. The microbial activity in the hind-gut (mumol ATP....../g air-dry contents) of antibiotic-treated rats was reduced to approximately one-tenth of that of untreated rats. 3. Live-weight gain was not significantly affected in either species by a reduction in the microbial activity, in spite of a reduction in dry matter digestibility in animals with reduced...... microflora. 4. For rats on low-crude-fibre diets, a reduction in microflora reduced digestibility of all nutrients and energy and metabolizability of digestible energy by approximately 5.4%. All differences were highly significant. On high-crude-fibre diets the decrease was approximately 5.9%. In pigs...

  20. Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production.

    Science.gov (United States)

    Kokabian, Bahareh; Gude, Veera Gnaneswar

    2013-12-01

    Current microbial desalination cell (MDC) performances are evaluated with chemical catalysts such as ferricyanide, platinum catalyzed air-cathodes or aerated cathodes. All of these methods improve power generation potential in MDCs, however, they are not preferable for large scale applications due to cost, energy and environmental toxicity issues. In this study, performance of microbial desalination cells with an air cathode and an algae biocathode (Photosynthetic MDC - PMDC) were evaluated, both under passive conditions (no mechanical aeration or mixing). The results indicate that passive algae biocathodes perform better than air cathodes and enhance COD removal and utilize treated wastewater as the growth medium to obtain valuable biomass for high value bioproducts. Maximum power densities of 84 mW m(-3) (anode volume) or 151 mW m(-3) (biocathode volume) and a desalination rate of 40% were measured with 0.9 : 1 : 0.5 volumetric ratios of anode, desalination and algae biocathode chambers respectively. This first proof-of-concept study proves that the passive mechanisms can be beneficial in enhancing the sustainability of microbial desalination cells.

  1. Polyploidization without mitosis improves in vivo liver transduction with lentiviral vectors.

    Science.gov (United States)

    Pichard, Virginie; Couton, Dominique; Desdouets, Chantal; Ferry, Nicolas

    2013-02-01

    Lentiviral vectors are efficient gene delivery vehicles for therapeutic and research applications. In contrast to oncoretroviral vectors, they are able to infect most nonproliferating cells. In the liver, induction of cell proliferation dramatically improved hepatocyte transduction using all types of retroviral vectors. However, the precise relationship between hepatocyte division and transduction efficiency has not been determined yet. Here we compared gene transfer efficiency in the liver after in vivo injection of recombinant lentiviral or Moloney murine leukemia viral (MoMuLV) vectors in hepatectomized rats treated or not with retrorsine, an alkaloid that blocks hepatocyte division and induces megalocytosis. Partial hepatectomy alone resulted in a similar increase in hepatocyte transduction using either vector. In retrorsine-treated and partially hepatectomized rats, transduction with MoMuLV vectors dropped dramatically. In contrast, we observed that retrorsine treatment combined with partial hepatectomy increased lentiviral transduction to higher levels than hepatectomy alone. Analysis of nuclear ploidy in single cells showed that a high level of transduction was associated with polyploidization. In conclusion, endoreplication could be exploited to improve the efficiency of liver-directed lentiviral gene therapy.

  2. Microfluidic Transduction Harnesses Mass Transport Principles to Enhance Gene Transfer Efficiency.

    Science.gov (United States)

    Tran, Reginald; Myers, David R; Denning, Gabriela; Shields, Jordan E; Lytle, Allison M; Alrowais, Hommood; Qiu, Yongzhi; Sakurai, Yumiko; Li, William C; Brand, Oliver; Le Doux, Joseph M; Spencer, H Trent; Doering, Christopher B; Lam, Wilbur A

    2017-10-04

    Ex vivo gene therapy using lentiviral vectors (LVs) is a proven approach to treat and potentially cure many hematologic disorders and malignancies but remains stymied by cumbersome, cost-prohibitive, and scale-limited production processes that cannot meet the demands of current clinical protocols for widespread clinical utilization. However, limitations in LV manufacture coupled with inefficient transduction protocols requiring significant excess amounts of vector currently limit widespread implementation. Herein, we describe a microfluidic, mass transport-based approach that overcomes the diffusion limitations of current transduction platforms to enhance LV gene transfer kinetics and efficiency. This novel ex vivo LV transduction platform is flexible in design, easy to use, scalable, and compatible with standard cell transduction reagents and LV preparations. Using hematopoietic cell lines, primary human T cells, primary hematopoietic stem and progenitor cells (HSPCs) of both murine (Sca-1 + ) and human (CD34 + ) origin, microfluidic transduction using clinically processed LVs occurs up to 5-fold faster and requires as little as one-twentieth of LV. As an in vivo validation of the microfluidic-based transduction technology, HSPC gene therapy was performed in hemophilia A mice using limiting amounts of LV. Compared to the standard static well-based transduction protocols, only animals transplanted with microfluidic-transduced cells displayed clotting levels restored to normal. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Microbial interactions: ecology in a molecular perspective.

    Science.gov (United States)

    Braga, Raíssa Mesquita; Dourado, Manuella Nóbrega; Araújo, Welington Luiz

    2016-12-01

    The microorganism-microorganism or microorganism-host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial-host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Purinergic mechanosensory transduction and visceral pain

    Directory of Open Access Journals (Sweden)

    Burnstock Geoffrey

    2009-11-01

    Full Text Available Abstract In this review, evidence is presented to support the hypothesis that mechanosensory transduction occurs in tubes and sacs and can initiate visceral pain. Experimental evidence for this mechanism in urinary bladder, ureter, gut, lung, uterus, tooth-pulp and tongue is reviewed. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by agents that interfere with mechanosensory transduction in the organs considered, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that inhibit or enhance ATP release and breakdown.

  5. Development of biologically modified anodes for energy harvesting using microbial fuel cells

    Science.gov (United States)

    Sumner, James J.; Ganguli, Rahul; Chmelka, Brad

    2012-06-01

    Biological fuel cells hold promise as an alternative energy source to batteries for unattended ground sensor applications due to the fact that they can be extremely long lived. This lifetime can be extended over batteries by scavenging fuel from the deployed environment. Microbial fuel cells (MFC) are one class of such sources that produce usable energy from small organic compounds (i.e. sugars, alcohols, organic acids, and biopolymers) which can be easily containerized or scavenged from the environment. The use of microorganisms as the anodic catalysts is what makes these systems unique from other biofuel cell designs. One of the main drawbacks of engineering a sensor system powered by an MFC is that power densities and current flux are extremely low in currently reported systems. The power density is limited by the mass transfer of the fuel source to the catalyst, the metabolism of the microbial catalysts and the electron transfer from the organism to the anode. This presentation will focus on the development of a new style of microbially-modified anodes which will increase power density to a level where a practical power source can be engineered. This is being achieved by developing a three dimensional matrix as an artificial, conductive biofilm. These artificial biofilms will allow the capture of a consortium of microbes designed for efficient metabolism of the available fuel source. Also it will keep the microbes close to the electrode allowing ready access by fuel and providing a low resistance passage of the liberated electrons from fuel oxidation.

  6. Evidence that membrane transduction of oligoarginine does not require vesicle formation

    International Nuclear Information System (INIS)

    Zaro, Jennica L.; Shen Weichiang

    2005-01-01

    The involvement of vesicular formation processes in the membrane transduction and nuclear transport of oligoarginine is currently a subject of controversy. In this report, a novel quantitative method which allows for the selective measurement of membrane transduction excluding concurrent endocytosis was used to determine the effects of temperature, endosomal acidification, endosomolysis, and several known inhibitors of endocytic pathways on the internalization of oligoarginine. The results show that, unlike endocytosis, transduction of oligoarginine was not affected by incubation at 16 deg. C as compared to the 37 deg. C control, and was only partially inhibited at 4 deg. C incubation. Additionally, membrane transduction was not inhibited to the same extent as endocytosis following treatment with ammonium chloride, hypertonic medium, amiloride, or filipin. The endosomolytic activity of oligoarginine was investigated by examining the leakage of FITC-dextran into the cytosolic compartment, which was not higher in the presence of oligoarginine. Furthermore, ammonium chloride showed no effect on the nuclear transport of oligoarginine. The data presented in this report indicate that membrane transduction is likely to occur at the plasma membrane without the formation of membrane vesicles, and the nuclear localization involves membrane transduction, rather than endocytosis of oligoarginine

  7. VirSorter: mining viral signal from microbial genomic data

    Directory of Open Access Journals (Sweden)

    Simon Roux

    2015-05-01

    Full Text Available Viruses of microbes impact all ecosystems where microbes drive key energy and substrate transformations including the oceans, humans and industrial fermenters. However, despite this recognized importance, our understanding of viral diversity and impacts remains limited by too few model systems and reference genomes. One way to fill these gaps in our knowledge of viral diversity is through the detection of viral signal in microbial genomic data. While multiple approaches have been developed and applied for the detection of prophages (viral genomes integrated in a microbial genome, new types of microbial genomic data are emerging that are more fragmented and larger scale, such as Single-cell Amplified Genomes (SAGs of uncultivated organisms or genomic fragments assembled from metagenomic sequencing. Here, we present VirSorter, a tool designed to detect viral signal in these different types of microbial sequence data in both a reference-dependent and reference-independent manner, leveraging probabilistic models and extensive virome data to maximize detection of novel viruses. Performance testing shows that VirSorter’s prophage prediction capability compares to that of available prophage predictors for complete genomes, but is superior in predicting viral sequences outside of a host genome (i.e., from extrachromosomal prophages, lytic infections, or partially assembled prophages. Furthermore, VirSorter outperforms existing tools for fragmented genomic and metagenomic datasets, and can identify viral signal in assembled sequence (contigs as short as 3kb, while providing near-perfect identification (>95% Recall and 100% Precision on contigs of at least 10kb. Because VirSorter scales to large datasets, it can also be used in “reverse” to more confidently identify viral sequence in viral metagenomes by sorting away cellular DNA whether derived from gene transfer agents, generalized transduction or contamination. Finally, VirSorter is made

  8. VirSorter: mining viral signal from microbial genomic data

    Science.gov (United States)

    Roux, Simon; Enault, Francois; Hurwitz, Bonnie L.

    2015-01-01

    Viruses of microbes impact all ecosystems where microbes drive key energy and substrate transformations including the oceans, humans and industrial fermenters. However, despite this recognized importance, our understanding of viral diversity and impacts remains limited by too few model systems and reference genomes. One way to fill these gaps in our knowledge of viral diversity is through the detection of viral signal in microbial genomic data. While multiple approaches have been developed and applied for the detection of prophages (viral genomes integrated in a microbial genome), new types of microbial genomic data are emerging that are more fragmented and larger scale, such as Single-cell Amplified Genomes (SAGs) of uncultivated organisms or genomic fragments assembled from metagenomic sequencing. Here, we present VirSorter, a tool designed to detect viral signal in these different types of microbial sequence data in both a reference-dependent and reference-independent manner, leveraging probabilistic models and extensive virome data to maximize detection of novel viruses. Performance testing shows that VirSorter’s prophage prediction capability compares to that of available prophage predictors for complete genomes, but is superior in predicting viral sequences outside of a host genome (i.e., from extrachromosomal prophages, lytic infections, or partially assembled prophages). Furthermore, VirSorter outperforms existing tools for fragmented genomic and metagenomic datasets, and can identify viral signal in assembled sequence (contigs) as short as 3kb, while providing near-perfect identification (>95% Recall and 100% Precision) on contigs of at least 10kb. Because VirSorter scales to large datasets, it can also be used in “reverse” to more confidently identify viral sequence in viral metagenomes by sorting away cellular DNA whether derived from gene transfer agents, generalized transduction or contamination. Finally, VirSorter is made available through the i

  9. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment

    KAUST Repository

    Ivanov, Ivan; Ren, Lijiao; Siegert, Michael; Logan, Bruce E.

    2013-01-01

    Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment

  10. On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    Science.gov (United States)

    Tavares, Anthony J; Noor, M Omair; Vannoy, Charles H; Algar, W Russ; Krull, Ulrich J

    2012-01-03

    The glass surface of a glass-polydimethylsiloxane (PDMS) microfluidic channel was modified to develop a solid-phase assay for quantitative determination of nucleic acids. Electroosmotic flow (EOF) within channels was used to deliver and immobilize semiconductor quantum dots (QDs), and electrophoresis was used to decorate the QDs with oligonucleotide probe sequences. These processes took only minutes to complete. The QDs served as energy donors in fluorescence resonance energy transfer (FRET) for transduction of nucleic acid hybridization. Electrokinetic injection of fluorescent dye (Cy3) labeled oligonucleotide target into a microfluidic channel and subsequent hybridization (within minutes) provided the proximity for FRET, with emission from Cy3 being the analytical signal. The quantification of target concentration was achieved by measurement of the spatial length of coverage by target along a channel. Detection of femtomole quantities of target was possible with a dynamic range spanning an order of magnitude. The assay provided excellent resistance to nonspecific interactions of DNA. Further selectivity of the assay was achieved using 20% formamide, which allowed discrimination between a fully complementary target and a 3 base pair mismatch target at a contrast ratio of 4:1. © 2011 American Chemical Society

  11. Impacts of shallow geothermal energy production on redox processes and microbial communities.

    Science.gov (United States)

    Bonte, Matthijs; Röling, Wilfred F M; Zaura, Egija; van der Wielen, Paul W J J; Stuyfzand, Pieter J; van Breukelen, Boris M

    2013-12-17

    Shallow geothermal systems are increasingly being used to store or harvest thermal energy for heating or cooling purposes. This technology causes temperature perturbations exceeding the natural variations in aquifers, which may impact groundwater quality. Here, we report the results of laboratory experiments on the effect of temperature variations (5-80 °C) on redox processes and associated microbial communities in anoxic unconsolidated subsurface sediments. Both hydrochemical and microbiological data showed that a temperature increase from 11 °C (in situ) to 25 °C caused a shift from iron-reducing to sulfate-reducing and methanogenic conditions. Bioenergetic calculations could explain this shift. A further temperature increase (>45 °C) resulted in the emergence of a thermophilic microbial community specialized in fermentation and sulfate reduction. Two distinct maxima in sulfate reduction rates, of similar orders of magnitude (5 × 10(-10) M s(-1)), were observed at 40 and 70 °C. Thermophilic sulfate reduction, however, had a higher activation energy (100-160 kJ mol(-1)) than mesophilic sulfate reduction (30-60 kJ mol(-1)), which might be due to a trade-off between enzyme stability and activity with thermostable enzymes being less efficient catalysts that require higher activation energies. These results reveal that while sulfate-reducing functionality can withstand a substantial temperature rise, other key biochemical processes appear more temperature sensitive.

  12. Staurosporine Increases Lentiviral Vector Transduction Efficiency of Human Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Gretchen Lewis

    2018-06-01

    Full Text Available Lentiviral vector (LVV-mediated transduction of human CD34+ hematopoietic stem and progenitor cells (HSPCs holds tremendous promise for the treatment of monogenic hematological diseases. This approach requires the generation of a sufficient proportion of gene-modified cells. We identified staurosporine, a serine/threonine kinase inhibitor, as a small molecule that could be added to the transduction process to increase the proportion of genetically modified HSPCs by overcoming a LVV entry barrier. Staurosporine increased vector copy number (VCN approximately 2-fold when added to mobilized peripheral blood (mPB CD34+ cells prior to transduction. Limited staurosporine treatment did not affect viability of cells post-transduction, and there was no difference in in vitro colony formation compared to vehicle-treated cells. Xenotransplantation studies identified a statistically significant increase in VCN in engrafted human cells in mouse bone marrow at 4 months post-transplantation compared to vehicle-treated cells. Prostaglandin E2 (PGE2 is known to increase transduction efficiency of HSPCs through a different mechanism. Combining staurosporine and PGE2 resulted in further enhancement of transduction efficiency, particularly in short-term HSPCs. The combinatorial use of small molecules, such as staurosporine and PGE2, to enhance LVV transduction of human CD34+ cells is a promising method to improve transduction efficiency and subsequent potential therapeutic benefit of gene therapy drug products. Keywords: lentiviral, HSPC, transduction

  13. Microbial Communities and Their Predicted Metabolic Functions in Growth Laminae of a Unique Large Conical Mat from Lake Untersee, East Antarctica

    Directory of Open Access Journals (Sweden)

    Hyunmin Koo

    2017-08-01

    Full Text Available In this study, we report the distribution of microbial taxa and their predicted metabolic functions observed in the top (U1, middle (U2, and inner (U3 decadal growth laminae of a unique large conical microbial mat from perennially ice-covered Lake Untersee of East Antarctica, using NextGen sequencing of the 16S rRNA gene and bioinformatics tools. The results showed that the U1 lamina was dominated by cyanobacteria, specifically Phormidium sp., Leptolyngbya sp., and Pseudanabaena sp. The U2 and U3 laminae had high abundances of Actinobacteria, Verrucomicrobia, Proteobacteria, and Bacteroidetes. Closely related taxa within each abundant bacterial taxon found in each lamina were further differentiated at the highest taxonomic resolution using the oligotyping method. PICRUSt analysis, which determines predicted KEGG functional categories from the gene contents and abundances among microbial communities, revealed a high number of sequences belonging to carbon fixation, energy metabolism, cyanophycin, chlorophyll, and photosynthesis proteins in the U1 lamina. The functional predictions of the microbial communities in U2 and U3 represented signal transduction, membrane transport, zinc transport and amino acid-, carbohydrate-, and arsenic- metabolisms. The Nearest Sequenced Taxon Index (NSTI values processed through PICRUSt were 0.10, 0.13, and 0.11 for U1, U2, and U3 laminae, respectively. These values indicated a close correspondence with the reference microbial genome database, implying high confidence in the predicted metabolic functions of the microbial communities in each lamina. The distribution of microbial taxa observed in each lamina and their predicted metabolic functions provides additional insight into the complex microbial ecosystem at Lake Untersee, and lays the foundation for studies that will enhance our understanding of the mechanisms responsible for the formation of these unique mat structures and their evolutionary significance.

  14. Semi-Supervised Transductive Hot Spot Predictor Working on Multiple Assumptions

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-05-23

    Protein-protein interactions are critically dependent on just a few residues (“hot spots”) at the interfaces. Hot spots make a dominant contribution to the binding free energy and if mutated they can disrupt the interaction. As mutagenesis studies require significant experimental efforts, there exists a need for accurate and reliable computational hot spot prediction methods. Compared to the supervised hot spot prediction algorithms, the semi-supervised prediction methods can take into consideration both the labeled and unlabeled residues in the dataset during the prediction procedure. The transductive support vector machine has been utilized for this task and demonstrated a better prediction performance. To the best of our knowledge, however, none of the transductive semi-supervised algorithms takes all the three semisupervised assumptions, i.e., smoothness, cluster and manifold assumptions, together into account during learning. In this paper, we propose a novel semi-supervised method for hot spot residue prediction, by considering all the three semisupervised assumptions using nonlinear models. Our algorithm, IterPropMCS, works in an iterative manner. In each iteration, the algorithm first propagates the labels of the labeled residues to the unlabeled ones, along the shortest path between them on a graph, assuming that they lie on a nonlinear manifold. Then it selects the most confident residues as the labeled ones for the next iteration, according to the cluster and smoothness criteria, which is implemented by a nonlinear density estimator. Experiments on a benchmark dataset, using protein structure-based features, demonstrate that our approach is effective in predicting hot spots and compares favorably to other available methods. The results also show that our method outperforms the state-of-the-art transductive learning methods.

  15. Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction

    Science.gov (United States)

    Xiao, Ping-Jie; Mitchell, Angela M.; Huang, Lu; Li, Chengwen; Samulski, R. Jude

    2016-01-01

    Perinuclear retention of viral particles is a poorly understood phenomenon observed during many virus infections. In this study, we investigated whether perinuclear accumulation acts as a barrier to limit recombinant adeno-associated virus (rAAV) transduction. After nocodazole treatment to disrupt microtubules at microtubule-organization center (MT-MTOC) after virus entry, we observed higher rAAV transduction. To elucidate the role of MT-MTOC in rAAV infection and study its underlying mechanisms, we demonstrated that rAAV's perinuclear localization was retained by MT-MTOC with fluorescent analysis, and enhanced rAAV transduction from MT-MTOC disruption was dependent on the rAAV capsid's nuclear import signals. Interestingly, after knocking down RhoA or inhibiting its downstream effectors (ROCK and Actin), MT-MTOC disruption failed to increase rAAV transduction or nuclear entry. These data suggest that enhancement of rAAV transduction is the result of increased trafficking to the nucleus via the RhoA-ROCK-Actin pathway. Ten-fold higher rAAV transduction was also observed by disrupting MT-MTOC in brain, liver, and tumor in vivo. In summary, this study indicates that virus perinuclear accumulation at MT-MTOC is a barrier-limiting parameter for effective rAAV transduction and defines a novel defense mechanism by which host cells restrain viral invasion. PMID:26942476

  16. Understanding energy loss in parallelly connected microbial fuel cells: Non-Faradaic current.

    Science.gov (United States)

    An, Junyeong; Sim, Junyoung; Feng, Yujie; Lee, Hyung-Sool

    2016-03-01

    In this work, the mechanisms of energy loss in parallel connection of microbial fuel cells (MFCs) is explored using two MFC units producing different open circuit voltage (OCV) and current. In open circuit mode, non-Faradaic current flows in low OCV unit, implying energy loss caused by different OCVs in parallelly stacked MFCs. In a stacked MFC in parallel under close circuit mode, it is confirmed that energy loss occurs until the working voltage in high OCV unit becomes identical to the other unit having low OCV. This result indicates that different voltage between individual MFC units can cause energy loss due to both non-Faradic and Faradaic current that flow from high voltage unit to low voltage unit even in parallelly stacked MFCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Isolation of ionospheres from ion transport systems and their role in energy transduction

    Energy Technology Data Exchange (ETDEWEB)

    Shamoo, A E; Goldstein, D A

    1977-01-01

    In the past twenty-five years cell membrane transport has been studied from the point of view of kinetics and the biochemical correlation of enzyme function with that of transport. Artificial lipid bilayers have been used as a model for cell membrane transport. Antibiotics, such as valinomycin have also been studied as models of ion-transport mediators. Much effort has been invested on the study of model compounds as the possible molecular bases of transport. Information derived from the study of model systems throughout the years has been valuable and worthwhile. However, if the aim is to elucidate the mechanism of cell membrane transport, the time has come to merge the two lines of research into one and to shift emphasis from the study of model systems to the study of isolated transport machine components before and after reconstitution of its components into model membranes. These studies should be augmented at all times with the biochemical correlates of the transport proteins. A review is presented of the new avenues employed to elucidate the molecular mechanism of active transport. The new avenues are those of isolation of ion-transport mediators (ionophores) from membrane transport proteins. Reconstitution of ionophores and the various membrane transport proteins into artificial systems such as bilayers and vesicles presents a powerful tool to elucidate the molecular mechanism of active transport. More importantly, the new approach provides the first glimpse of evidence for a reasonable investigation of energy transduction from ATP hydrolysis to transport of an ion.

  18. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  19. Signal transduction, receptors, mediators and genes: younger than ever - the 13th meeting of the Signal Transduction Society focused on aging and immunology

    Directory of Open Access Journals (Sweden)

    Klotz Lars-Oliver

    2010-02-01

    Full Text Available Abstract The 13th meeting of the Signal Transduction Society was held in Weimar, from October 28 to 30, 2009. Special focus of the 2009 conference was "Aging and Senescence", which was co-organized by the SFB 728 "Environmentally-Induced Aging Processes" of the University of Düsseldorf and the study group 'Signal Transduction' of the German Society for Cell Biology (DGZ. In addition, several other areas of signal transduction research were covered and supported by different consortia associated with the Signal Transduction Society including the long-term associated study groups of the German Society for Immunology and the Society for Biochemistry and Molecular Biology, and for instance the SFB/Transregio 52 "Transcriptional Programming of Individual T Cell Subsets" located in Würzburg, Mainz and Berlin. The different research areas that were introduced by outstanding keynote speakers attracted more than 250 scientists, showing the timeliness and relevance of the interdisciplinary concept and exchange of knowledge during the three days of the scientific program. This report gives an overview of the presentations of the conference.

  20. Electromechanical Modeling of Piezoelectric Energy Harvesters

    OpenAIRE

    Erturk, Alper

    2009-01-01

    Vibration-based energy harvesting has been investigated by several researchers over the last decade. The ultimate goal in this research field is to power small electronic components (such as wireless sensors) by using the vibration energy available in their environment. Among the basic transduction mechanisms that can be used for vibration-to-electricity conversion, piezoelectric transduction has received the most attention in the literature. Piezoelectric materials are preferred in energy ha...

  1. Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.

    2012-09-15

    Microbial fuel cell (MFC)-based technologies are promising technologies for direct energy production from various wastewaters and waste streams. Beside electrical power production, more emphasis is recently devoted to alternative applications such as hydrogen production, bioremediation, seawater desalination, and biosensors. Although the technologies are promising, a number of hurdles need to be overcome before that field applications are economically feasible. The main purpose of this work was to improve the performance, reduce the construction cost, and expand the application scopes of MFC-based bio-electrochemical systems. To reduce the energy cost in nitrogen removal and during the same process achieve phosphorus elimination, a sediment-type photomicrobial fuel cell was developed based on the cooperation between microalgae (Chlorella vulgaris) and electrochemically active bacteria. The main removal mechanism of nitrogen and phosphorus was algae biomass uptake, while nitrification and denitrification process contributed to part of nitrogen removal. The key factors such as algae concentration, COD/N ratios and photoperiod were systemically studied. A self-powered submersible microbial electrolysis cell was developed for in situ biohydrogen production from anaerobic reactors. The hydrogen production increased along with acetate and buffer concentration. The hydrogen production rate of 32.2 mL/L/d and yield of 1.43 mol-H2/mol-acetate were achieved. Alternate exchanging the function between the two cell units was found to be an effective approach to inhibit methanogens. A sensor, based on a submersible microbial fuel cell, was developed for in situ monitoring of microbial activity and biochemical oxygen demand in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Temperature, pH, conductivity and inorganic solid content were significantly affecting the sensitivity of the sensor. The sensor showed

  2. Protein phosphorylation and its role in archaeal signal transduction

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  3. Microbial desalination cells for energy production and desalination

    KAUST Repository

    Kim, Younggy

    2013-01-01

    Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving ion transport through a series of ion-exchange membranes (IEMs). The specific MDC architecture and current conditions substantially affect the amount of wastewater needed to desalinate water. Other baseline conditions have varied among studies making comparisons of the effectiveness of different designs problematic. The extent of desalination is affected by water transport through IEMs by both osmosis and electroosmosis. Various methods have been used, such as electrolyte recirculation, to avoid low pH that can inhibit exoelectrogenic activity. The highest current density in an MDC to date is 8.4A/m2, which is lower than that produced in other bioelectrochemical systems. This implies that there is a room for substantial improvement in desalination rates and overall performance. We review here the state of the art in MDC design and performance, safety issues related to the use of MDCs with wastewater, and areas that need to be examined to achieve practical application of this new technology. © 2012 Elsevier B.V.

  4. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  5. In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study

    Directory of Open Access Journals (Sweden)

    Mallette Natasha

    2009-12-01

    Full Text Available Abstract Background Three methods were developed for the application of stoichiometry-based network analysis approaches including elementary mode analysis to the study of mass and energy flows in microbial communities. Each has distinct advantages and disadvantages suitable for analyzing systems with different degrees of complexity and a priori knowledge. These approaches were tested and compared using data from the thermophilic, phototrophic mat communities from Octopus and Mushroom Springs in Yellowstone National Park (USA. The models were based on three distinct microbial guilds: oxygenic phototrophs, filamentous anoxygenic phototrophs, and sulfate-reducing bacteria. Two phases, day and night, were modeled to account for differences in the sources of mass and energy and the routes available for their exchange. Results The in silico models were used to explore fundamental questions in ecology including the prediction of and explanation for measured relative abundances of primary producers in the mat, theoretical tradeoffs between overall productivity and the generation of toxic by-products, and the relative robustness of various guild interactions. Conclusion The three modeling approaches represent a flexible toolbox for creating cellular metabolic networks to study microbial communities on scales ranging from cells to ecosystems. A comparison of the three methods highlights considerations for selecting the one most appropriate for a given microbial system. For instance, communities represented only by metagenomic data can be modeled using the pooled method which analyzes a community's total metabolic potential without attempting to partition enzymes to different organisms. Systems with extensive a priori information on microbial guilds can be represented using the compartmentalized technique, employing distinct control volumes to separate guild-appropriate enzymes and metabolites. If the complexity of a compartmentalized network creates an

  6. Microenvironment Dependent Photobiomodulation on Function-Specific Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    Timon Cheng-Yi Liu

    2014-01-01

    Full Text Available Cellular photobiomodulation on a cellular function has been shown to be homeostatic. Its function-specific pathway mechanism would be further discussed in this paper. The signal transduction pathways maintaining a normal function in its function-specific homeostasis (FSH, resisting the activation of many other irrelative signal transduction pathways, are so sparse that it can be supposed that there may be normal function-specific signal transduction pathways (NSPs. A low level laser irradiation or monochromatic light may promote the activation of partially activated NSP and/or its redundant NSP so that it may induce the second-order phase transition of a function from its dysfunctional one far from its FSH to its normal one in a function-specific microenvironment and may also induce the first-order functional phase transition of the normal function from low level to high level.

  7. Efficient, Broadband and Wide-Angle Hot-Electron Transduction using Metal-Semiconductor Hyperbolic Metamaterials

    KAUST Repository

    Sakhdari, Maryam

    2016-05-20

    Hot-electron devices are emerging as promising candidates for the transduction of optical radiation into electrical current, as they enable photodetection and solar/infrared energy harvesting at sub-bandgap wavelengths. Nevertheless, poor photoconversion quantum yields and low bandwidth pose fundamental challenge to fascinating applications of hot-electron optoelectronics. Based on a novel hyperbolic metamaterial (HMM) structure, we theoretically propose a vertically-integrated hot-electron device that can efficiently couple plasmonic excitations into electron flows, with an external quantum efficiency approaching the physical limit. Further, this metamaterial-based device can have a broadband and omnidirectional response at infrared and visible wavelengths. We believe that these findings may shed some light on designing practical devices for energy-efficient photodetection and energy harvesting beyond the bandgap spectral limit.

  8. Microbial fuel cells for direct electrical energy recovery from urban wastewaters.

    Science.gov (United States)

    Capodaglio, A G; Molognoni, D; Dallago, E; Liberale, A; Cella, R; Longoni, P; Pantaleoni, L

    2013-01-01

    Application of microbial fuel cells (MFCs) to wastewater treatment for direct recovery of electric energy appears to provide a potentially attractive alternative to traditional treatment processes, in an optic of costs reduction, and tapping of sustainable energy sources that characterizes current trends in technology. This work focuses on a laboratory-scale, air-cathode, and single-chamber MFC, with internal volume of 6.9 L, operating in batch mode. The MFC was fed with different types of substrates. This study evaluates the MFC behaviour, in terms of organic matter removal efficiency, which reached 86% (on average) with a hydraulic retention time of 150 hours. The MFC produced an average power density of 13.2 mW/m(3), with a Coulombic efficiency ranging from 0.8 to 1.9%. The amount of data collected allowed an accurate analysis of the repeatability of MFC electrochemical behaviour, with regards to both COD removal kinetics and electric energy production.

  9. Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC)

    Science.gov (United States)

    Li, Yan; Styczynski, Jordyn; Huang, Yuankai; Xu, Zhiheng; McCutcheon, Jeffrey; Li, Baikun

    2017-07-01

    Simultaneous removal of nitrogen in municipal wastewater, metal in industrial wastewater and saline in seawater was achieved in an integrated microbial desalination cell-microbial electrolysis cell (MDC-MEC) system. Batch tests showed that more than 95.1% of nitrogen was oxidized by nitrification in the cathode of MDC and reduced by heterotrophic denitrification in the anode of MDC within 48 h, leading to the total nitrogen removal rate of 4.07 mg L-1 h-1. Combining of nitrogen removal and desalination in MDC effectively solved the problem of pH fluctuation in anode and cathode, and led to 63.7% of desalination. Power generation of MDC (293.7 mW m-2) was 2.9 times higher than the one without salt solution. The electric power of MDC was harvested by a capacitor circuit to supply metal reduction in a MEC, and 99.5% of lead (II) was removed within 48 h. A kinetic MDC model was developed to elucidate the correlation of voltage output and desalination efficiency. Ratio of wastewater and sea water was calculated for MDC optimal operation. Energy balance of nutrient removal, metal removal and desalination in the MDC-MEC system was positive (0.0267 kW h m-3), demonstrating the promise of utilizing low power output of MDCs.

  10. Graph Regularized Meta-path Based Transductive Regression in Heterogeneous Information Network.

    Science.gov (United States)

    Wan, Mengting; Ouyang, Yunbo; Kaplan, Lance; Han, Jiawei

    2015-01-01

    A number of real-world networks are heterogeneous information networks, which are composed of different types of nodes and links. Numerical prediction in heterogeneous information networks is a challenging but significant area because network based information for unlabeled objects is usually limited to make precise estimations. In this paper, we consider a graph regularized meta-path based transductive regression model ( Grempt ), which combines the principal philosophies of typical graph-based transductive classification methods and transductive regression models designed for homogeneous networks. The computation of our method is time and space efficient and the precision of our model can be verified by numerical experiments.

  11. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  12. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy- Efficient Wood-Plastic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Emerick, Robert W.; England, Alfred B.; Flanders, James P.; Loge, Frank J.; Wiedeman, Katherine A.; Wolcott, Michael P.

    2010-03-31

    In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic composite products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systems—without cell debris removal—is a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of

  13. Olfactory transduction pathways in the Senegalese sole Solea senegalensis.

    Science.gov (United States)

    Velez, Z; Hubbard, P C; Barata, E N; Canário, A V M

    2013-09-01

    This study tested whether differences in sensitivity between the upper and lower olfactory epithelia of Solea senegalensis are associated with different odorant receptors and transduction pathways, using the electro-olfactogram. Receptor mechanisms were assessed by cross-adaptation with amino acids (L-cysteine, L-phenylalanine and 1-methyl-L-tryptophan) and bile acids (taurocholic acid and cholic acid). This suggested that relatively specific receptors exist for 1-methyl-L-tryptophan and L-phenylalanine (food-related odorants) in the lower epithelium, and for taurocholic acid (conspecific-derived odorant) in the upper. Inhibition by U73122 [a phospholipase C (PLC) inhibitor] suggested that olfactory responses to amino acids were mediated mostly, but not entirely, by PLC-mediated transduction (IC50 ; 15-55 nM), whereas bile acid responses were mediated by both PLC and adenylate cyclase-cyclic adenosine monophosphate (AC-cAMP) (using SQ-22536; an AC inhibitor). Simultaneous application of both drugs rarely inhibited responses completely, suggesting possible involvement of non-PLC and non-AC mediated mechanisms. For aromatic amino acids and bile acids, there were differences in the contribution of each transduction pathway (PLC, AC and non-PLC and non-AC) between the two epithelia. These results suggest that differences in sensitivity of the two epithelia are associated with differences in odorant receptors and transduction mechanisms. © 2013 The Fisheries Society of the British Isles.

  14. Phenomenally High Transduction Air/gas Transducers for Practical Non-Contact Ultrasonic Applications

    Science.gov (United States)

    Bhardwaj, Mahesh C.

    2009-03-01

    Based on novel acoustic impedance matching layers and high coupling piezoelectric materials this paper describes exceptionally high air/gas transduction ultrasonic transducers. By providing applications oriented performance of these transducers we also usher in the era of much desired Non-Contact Ultrasound (NCU) testing and analysis of a wide range of materials including early stage formation of materials such as uncured composite prepregs, green ceramics and powder metals, plastics, elastomers, porous, hygroscopic, chemically bonded and other materials. Besides quality control, ultimately NCU offers timely opportunities for cost-effective materials production, energy savings, and environment protection.

  15. Protein Transduction Based Therapies for Breast Cancer

    National Research Council Canada - National Science Library

    Robbins, Paul D

    2004-01-01

    We have demonstrated that certain transduction peptides such as 12 lysines and 12 arginines can facilitate internalization into breast tumor lines with higher efficiency than smaller polymers of cationic amino acids...

  16. Protein Transduction Based Therapies for Breast Cancer

    National Research Council Canada - National Science Library

    Robbins, Paul D

    2005-01-01

    We have demonstrated that certain transduction peptides such as 12 lysines and 12 arginines can facilitate internalization into breast tumor lines with higher efficiency than smaller polymers of cationic amino acids...

  17. Rapid lentiviral transduction preserves the engraftment potential of Fanca(-/-) hematopoietic stem cells.

    Science.gov (United States)

    Müller, Lars U W; Milsom, Michael D; Kim, Mi-Ok; Schambach, Axel; Schuesler, Todd; Williams, David A

    2008-06-01

    Fanconi anemia (FA) is a rare recessive syndrome, characterized by congenital anomalies, bone marrow failure, and predisposition to cancer. Two earlier clinical trials utilizing gamma-retroviral vectors for the transduction of autologous FA hematopoietic stem cells (HSCs) required extensive in vitro manipulation and failed to achieve detectable long-term engraftment of transduced HSCs. As a strategy for minimizing ex vivo manipulation, we investigated the use of a "rapid" lentiviral transduction protocol in a murine Fanca(-/-) model. Importantly, while this and most murine models of FA fail to completely mimic the human hematopoietic phenotype, we observed a high incidence of HSC transplant engraftment failure and low donor chimerism after conventional transduction (CT) of Fanca(-/-) donor cells. In contrast, rapid transduction (RT) of Fanca(-/-) HSCs preserved engraftment to the level achieved in wild-type cells, resulting in long-term multilineage engraftment of gene-modified cells. We also demonstrate the correction of the characteristic hypersensitivity of FA cells against the cross-linking agent mitomycin C (MMC), and provide evidence for the advantage of using pharmacoselection as a means of further increasing gene-modified cells after RT. Collectively, these data support the use of rapid lentiviral transduction for gene therapy in FA.

  18. Exploring Transduction Mechanisms of Protein Transduction Domains (PTDs in Living Cells Utilizing Single-Quantum Dot Tracking (SQT Technology

    Directory of Open Access Journals (Sweden)

    Yasuhiro Suzuki

    2012-01-01

    Full Text Available Specific protein domains known as protein transduction domains (PTDs can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs, we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT, to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency.

  19. Polymerase chain reaction-based detection of myc transduction in feline leukemia virus-infected cats.

    Science.gov (United States)

    Sumi, Ryosuke; Miyake, Ariko; Endo, Taiji; Ohsato, Yoshiharu; Ngo, Minh Ha; Nishigaki, Kazuo

    2018-04-01

    Feline lymphomas are associated with the transduction and activation of cellular proto-oncogenes, such as c-myc, by feline leukemia virus (FeLV). We describe a polymerase chain reaction assay for detection of myc transduction usable in clinical diagnosis. The assay targets c-myc exons 2 and 3, which together result in a FeLV-specific fusion gene following c-myc transduction. When this assay was conducted on FeLV-infected feline tissues submitted for clinical diagnosis of tumors, myc transduction was detected in 14% of T-cell lymphoma/leukemias. This newly established system could become a useful diagnostic tool in veterinary medicine.

  20. Information Thermodynamics of the Cell Signal Transduction as a Szilard Engine

    Directory of Open Access Journals (Sweden)

    Tatsuaki Tsuruyama

    2018-03-01

    Full Text Available A cell signaling system is in a non-equilibrium state, and it includes multistep biochemical signaling cascades (BSCs, which involve phosphorylation of signaling molecules, such as mitogen-activated protein kinase (MAPK pathways. In this study, the author considered signal transduction description using information thermodynamic theory. The ideal BSCs can be considered one type of the Szilard engine, and the presumed feedback controller, Maxwell’s demon, can extract the work during signal transduction. In this model, the mutual entropy and chemical potential of the signal molecules can be redefined by the extracted chemical work in a mechanicochemical model, Szilard engine, of BSC. In conclusion, signal transduction is computable using the information thermodynamic method.

  1. [Transduction peptides, the useful face of a new signaling mechanism].

    Science.gov (United States)

    Joliot, Alain; Prochiantz, Alain

    2005-03-01

    Transduction peptides that cross the plasma membrane of live cells are commonly used for the in vitro and in vivo targeting of hydrophilic drugs into the cell interior. Although this family of peptides has recently increased and will probably continue to do so, the two mainly used peptides are derived from transcription factors. Indeed, TAT is a 12 amino acid long arginine-rich peptide present in the HIV transcription factor, and penetratin - or its variants - corresponds to 16 amino acids that define the highly conserved third helix of the DNA-binding domain (homeodomain) of homeoprotein transcription factors. In this review, we shall recall the different steps that have led to the discovery of transduction peptides and present the most likely hypotheses concerning the mechanisms involved in their internalization. At the risk of being incomplete or, even, biased, we shall concentrate on penetratins and TAT. The reason is that these peptides have been studied for over ten years leading to the edification of robust knowledge regarding their properties. This attitude will not preclude comparisons with other peptides, if necessary. Our goal is to describe the mode of action of these transduction peptides, their range of activity in term of cell types that accept them and cargoes that they can transport, and, also, some of the limitations that one can encounter in their use. Finally, based on the idea that peptide transduction is the technological face of a physiological property of some transcription factors, we shall discuss the putative physiological function of homeoprotein transduction, and, as a consequence, the possibility to use these factors as therapeutic proteins.

  2. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  3. Falsification of the ionic channel theory of hair cell transduction.

    Science.gov (United States)

    Rossetto, Michelangelo

    2013-11-01

    The hair cell provides the transduction of mechanical vibrations in the balance and acoustic sense of all vertebrates that swim, walk, or fly. The current theory places hair cell transduction in a mechanically controlled ion channel. Although the theory of a mechanical input modulating the flow of ions through an ion pore has been a useful tool, it is falsified by experimental data in the literature and can be definitively falsified by a proposed experiment.

  4. Ready or Not: Microbial Adaptive Responses in Dynamic Symbiosis Environments.

    Science.gov (United States)

    Cao, Mengyi; Goodrich-Blair, Heidi

    2017-08-01

    In mutually beneficial and pathogenic symbiotic associations, microbes must adapt to the host environment for optimal fitness. Both within an individual host and during transmission between hosts, microbes are exposed to temporal and spatial variation in environmental conditions. The phenomenon of phenotypic variation, in which different subpopulations of cells express distinctive and potentially adaptive characteristics, can contribute to microbial adaptation to a lifestyle that includes rapidly changing environments. The environments experienced by a symbiotic microbe during its life history can be erratic or predictable, and each can impact the evolution of adaptive responses. In particular, the predictability of a rhythmic or cyclical series of environments may promote the evolution of signal transduction cascades that allow preadaptive responses to environments that are likely to be encountered in the future, a phenomenon known as adaptive prediction. In this review, we summarize environmental variations known to occur in some well-studied models of symbiosis and how these may contribute to the evolution of microbial population heterogeneity and anticipatory behavior. We provide details about the symbiosis between Xenorhabdus bacteria and Steinernema nematodes as a model to investigate the concept of environmental adaptation and adaptive prediction in a microbial symbiosis. Copyright © 2017 American Society for Microbiology.

  5. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  6. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T; Zachary, Ian C; Tomlinson, Darren C; Harrison, Michael A; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2016-05-15

    Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. © 2016. Published by The Company of Biologists Ltd.

  7. Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies

    DEFF Research Database (Denmark)

    Zhang, Yifeng

    to the sediment. The proposed approach may broad the application of sediment MFC technology. A novel submersible microbial desalination cell was developed as an in situ and non-invasive approach for nitrate removal from groundwater. The system performance in terms of power generation and nitrate removal...... efficiency were investigated. The effects of hydraulic retention time, external resistance, other ionic species in the groundwater and external nitrification on the system performance were also elucidated. Over 90% of nitrate was removed from groundwater without energy input, water pressure, draw solution......-based bio-electrochemical systems. To reduce the energy cost in nitrogen removal and during the same process achieve phosphorus elimination, a sediment-type photomicrobial fuel cell was developed based on the cooperation between microalgae (Chlorella vulgaris) and electrochemically active bacteria. The main...

  8. Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut.

    Science.gov (United States)

    Yin, Jinbao; Zhang, Xu-Xiang; Wu, Bing; Xian, Qiming

    2015-12-01

    Antibiotics have been widely used for disease prevention and treatment of the human and animals, and for growth promotion in animal husbandry. Antibiotics can disturb the intestinal microbial community, which play a fundamental role in animals' health. Misuse or overuse of antibiotics can result in increase and spread of microbial antibiotic resistance, threatening human health and ecological safety. In this study, we used Illumina Hiseq sequencing, (1)H nuclear magnetic resonance spectroscopy and metagenomics approaches to investigate intestinal microbial community shift and antibiotic resistance alteration of the mice drinking the water containing tetracycline hydrochloride (TET). Two-week TET administration caused reduction of gut microbial diversity (from 194 to 89 genera), increase in Firmicutes abundance (from 24.9 to 39.8%) and decrease in Bacteroidetes abundance (from 69.8 to 51.2%). Metagenomic analysis showed that TET treatment affected the intestinal microbial functions of carbohydrate, ribosomal, cell wall/membrane/envelope and signal transduction, which is evidenced by the alteration in the metabolites of mouse serum. Meanwhile, in the mouse intestinal microbiota, TET treatment enhanced the abundance of antibiotic resistance genes (ARGs) (from 307.3 to 1492.7 ppm), plasmids (from 425.4 to 3235.1 ppm) and integrons (from 0.8 to 179.6 ppm) in mouse gut. Our results indicated that TET administration can disturb gut microbial community and physiological metabolism of mice, and increase the opportunity of ARGs and mobile genetic elements entering into the environment with feces discharge.

  9. Prenatal Alcohol Exposure Damages Brain Signal Transduction Systems

    National Research Council Canada - National Science Library

    Caldwell, Kevin

    2001-01-01

    .... One and twenty-four hours following fear conditioning this learning deficit is associated with altered brain signal transduction mechanisms that are dependent on an enzyme termed phosphatidylinositol...

  10. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.-S. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Vojinovic, V. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Patino, R. [Cinvestav-Merida, Departamento de Fisica Aplicada, Km. 6 carretera antigua a Progreso, AP 73 Cordemex, 97310 Merida, Yucatan (Mexico); Maskow, Th. [UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, D-04318 Leipzig (Germany); Stockar, U. von [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland)]. E-mail: urs.vonStockar@epfl.ch

    2007-06-25

    Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol{sup -1} of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure.

  11. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields

    International Nuclear Information System (INIS)

    Liu, J.-S.; Vojinovic, V.; Patino, R.; Maskow, Th.; Stockar, U. von

    2007-01-01

    Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol -1 of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure

  12. Signal Transduction Pathways of TNAP: Molecular Network Analyses.

    Science.gov (United States)

    Négyessy, László; Györffy, Balázs; Hanics, János; Bányai, Mihály; Fonta, Caroline; Bazsó, Fülöp

    2015-01-01

    Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.

  13. State–time spectrum of signal transduction logic models

    International Nuclear Information System (INIS)

    MacNamara, Aidan; Terfve, Camille; Henriques, David; Bernabé, Beatriz Peñalver; Saez-Rodriguez, Julio

    2012-01-01

    Despite the current wealth of high-throughput data, our understanding of signal transduction is still incomplete. Mathematical modeling can be a tool to gain an insight into such processes. Detailed biochemical modeling provides deep understanding, but does not scale well above relatively a few proteins. In contrast, logic modeling can be used where the biochemical knowledge of the system is sparse and, because it is parameter free (or, at most, uses relatively a few parameters), it scales well to large networks that can be derived by manual curation or retrieved from public databases. Here, we present an overview of logic modeling formalisms in the context of training logic models to data, and specifically the different approaches to modeling qualitative to quantitative data (state) and dynamics (time) of signal transduction. We use a toy model of signal transduction to illustrate how different logic formalisms (Boolean, fuzzy logic and differential equations) treat state and time. Different formalisms allow for different features of the data to be captured, at the cost of extra requirements in terms of computational power and data quality and quantity. Through this demonstration, the assumptions behind each formalism are discussed, as well as their advantages and disadvantages and possible future developments. (paper)

  14. Macro-Fiber Composite Based Transduction

    Science.gov (United States)

    2016-03-01

    substrate Material properties of single crystal macro fiber composite actuators for active twist rotor blades Park, Jae-Sang (Seoul National...Passive Smart Structures and Integrated Systems 2007 Material properties of single crystal macro fiber composite actuators for active twist rotor ...19b. TELEPHONE NUMBER (Include area code) 10-03-20 16 Final Report 01 Jan 2013 - 31 Dec 2015 Macro-Fiber Composite Based Transduction N000-14-13-1-0212

  15. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Science.gov (United States)

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  16. Notch2 transduction by feline leukemia virus in a naturally infected cat.

    Science.gov (United States)

    Watanabe, Shinya; Ito, Jumpei; Baba, Takuya; Hiratsuka, Takahiro; Kuse, Kyohei; Ochi, Haruyo; Anai, Yukari; Hisasue, Masaharu; Tsujimoto, Hajime; Nishigaki, Kazuo

    2014-04-01

    Feline leukemia virus (FeLV) induces neoplastic and nonneoplastic diseases in cats. The transduction of cellular genes by FeLV is sometimes observed and associated with neoplastic diseases including lymphoma and sarcoma. Here, we report the first natural case of feline Notch2 transduction by FeLV in an infected cat with multicentric lymphoma and hypercalcemia. We cloned recombinant FeLVs harboring Notch2 in the env gene. Notch2 was able to activate expression of a reporter gene, similar to what was previously reported in cats with experimental FeLV-induced thymic lymphoma. Our findings suggest that the transduction of Notch2 strongly correlates with FeLV-induced lymphoma.

  17. Cavity opto-electromechanical system combining strong electrical actuation with ultrasensitive transduction

    OpenAIRE

    McRae, Terry G.; Lee, Kwan H.; Harris, Glen I.; Knittel, Joachim; Bowen, Warwick P.

    2010-01-01

    A cavity opto-electromechanical system is reported which combines the ultrasensitive transduction of cavity optomechanical systems with the electrical actuation of nanoelectromechanical systems. Ultrasensitive mechanical transduction is achieved via opto-mechanical coupling. Electrical gradient forces as large as 0.40 $\\mu$N are realized, facilitating strong actuation with ultralow dissipation. A scanning probe microscope is implemented, capable of characterizing the mechanical modes. The int...

  18. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction

    Energy Technology Data Exchange (ETDEWEB)

    Algar, W. Russ; Tavares, Anthony J. [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6 (Canada)

    2010-07-12

    A comprehensive review of the development of assays, bioprobes, and biosensors using quantum dots (QDs) as integrated components is presented. In contrast to a QD that is selectively introduced as a label, an integrated QD is one that is present in a system throughout a bioanalysis, and simultaneously has a role in transduction and as a scaffold for biorecognition. Through a diverse array of coatings and bioconjugation strategies, it is possible to use QDs as a scaffold for biorecognition events. The modulation of QD luminescence provides the opportunity for the transduction of these events via fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), charge transfer quenching, and electrochemiluminescence (ECL). An overview of the basic concepts and principles underlying the use of QDs with each of these transduction methods is provided, along with many examples of their application in biological sensing. The latter include: the detection of small molecules using enzyme-linked methods, or using aptamers as affinity probes; the detection of proteins via immunoassays or aptamers; nucleic acid hybridization assays; and assays for protease or nuclease activity. Strategies for multiplexed detection are highlighted among these examples. Although the majority of developments to date have been in vitro, QD-based methods for ex vivo biological sensing are emerging. Some special attention is given to the development of solid-phase assays, which offer certain advantages over their solution-phase counterparts.

  19. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1998-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway...

  20. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1999-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway. C...

  1. Microbial Photoelectrosynthesis for Self-Sustaining Hydrogen Generation.

    Science.gov (United States)

    Lu, Lu; Williams, Nicholas B; Turner, John A; Maness, Pin-Ching; Gu, Jing; Ren, Zhiyong Jason

    2017-11-21

    Current artificial photosynthesis (APS) systems are promising for the storage of solar energy via transportable and storable fuels, but the anodic half-reaction of water oxidation is an energy intensive process which in many cases poorly couples with the cathodic half-reaction. Here we demonstrate a self-sustaining microbial photoelectrosynthesis (MPES) system that pairs microbial electrochemical oxidation with photoelectrochemical water reduction for energy efficient H 2 generation. MPES reduces the overall energy requirements thereby greatly expanding the range of semiconductors that can be utilized in APS. Due to the recovery of chemical energy from waste organics by the mild microbial process and utilization of cost-effective and stable catalyst/electrode materials, our MPES system produced a stable current of 0.4 mA/cm 2 for 24 h without any external bias and ∼10 mA/cm 2 with a modest bias under one sun illumination. This system also showed other merits, such as creating benefits of wastewater treatment and facile preparation and scalability.

  2. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein

    International Nuclear Information System (INIS)

    Sohn, Eun Jeong; Kim, Dae Won; Kim, Young Nam; Kim, So Mi; Lim, Soon Sung; Kang, Tae-Cheon; Kwon, Hyeok Yil; Kim, Duk-Soo; Cho, Sung-Woo; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Hwang, Hyun Sook; Choi, Soo Young

    2011-01-01

    Research highlights: → We studied effects of pergolide mesylate (PM) on in vitro and in vivo transduction of PEP-1-catalase. → PEP-1-catatase inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. → PM enhanced the transduction of PEP-1-catalase into HaCaT cells and skin tissue. → PM increased anti-inflammatory activity of PEP-1-catalase. → PM stimulated therapeutic action of anti-oxidant enzyme catalase in oxidative-related diseases. -- Abstract: The low transduction efficiency of various proteins is an obstacle to their therapeutic application. However, protein transduction domains (PTDs) are well-known for a highly effective tool for exogenous protein delivery to cells. We examined the effects of pergolide mesylate (PM) on the transduction of PEP-1-catalase into HaCaT human keratinocytes and mice skin and on the anti-inflammatory activity of PEP-1-catatase against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation using Western blot and histological analysis. PM enhanced the time- and dose-dependent transduction of PEP-1-catalase into HaCaT cells without affecting the cellular toxicity. In a mouse edema model, PEP-1-catalase inhibited the increased expressions of inflammatory mediators and cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1β, and tumor necrosis factor-α induced by TPA. On the other hand, PM alone failed to exert any significant anti-inflammatory effects. However, the anti-inflammatory effect of co-treatment with PEP-1-catalase and PM was more potent than that of PEP-1-catalase alone. Our results indicate that PM may enhance the delivery of PTDs fusion therapeutic proteins to target cells and tissues and has potential to increase their therapeutic effects of such drugs against various diseases.

  3. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Eun Jeong; Kim, Dae Won; Kim, Young Nam; Kim, So Mi [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Lim, Soon Sung [Department of Food Science and Nutrition and RIC Center, Hallym University, Chunchon 200-702 (Korea, Republic of); Kang, Tae-Cheon [Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Kwon, Hyeok Yil [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Kim, Duk-Soo [Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 330-090 (Korea, Republic of); Cho, Sung-Woo [Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Hwang, Hyun Sook, E-mail: wazzup@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2011-03-18

    Research highlights: {yields} We studied effects of pergolide mesylate (PM) on in vitro and in vivo transduction of PEP-1-catalase. {yields} PEP-1-catatase inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. {yields} PM enhanced the transduction of PEP-1-catalase into HaCaT cells and skin tissue. {yields} PM increased anti-inflammatory activity of PEP-1-catalase. {yields} PM stimulated therapeutic action of anti-oxidant enzyme catalase in oxidative-related diseases. -- Abstract: The low transduction efficiency of various proteins is an obstacle to their therapeutic application. However, protein transduction domains (PTDs) are well-known for a highly effective tool for exogenous protein delivery to cells. We examined the effects of pergolide mesylate (PM) on the transduction of PEP-1-catalase into HaCaT human keratinocytes and mice skin and on the anti-inflammatory activity of PEP-1-catatase against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation using Western blot and histological analysis. PM enhanced the time- and dose-dependent transduction of PEP-1-catalase into HaCaT cells without affecting the cellular toxicity. In a mouse edema model, PEP-1-catalase inhibited the increased expressions of inflammatory mediators and cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1{beta}, and tumor necrosis factor-{alpha} induced by TPA. On the other hand, PM alone failed to exert any significant anti-inflammatory effects. However, the anti-inflammatory effect of co-treatment with PEP-1-catalase and PM was more potent than that of PEP-1-catalase alone. Our results indicate that PM may enhance the delivery of PTDs fusion therapeutic proteins to target cells and tissues and has potential to increase their therapeutic effects of such drugs against various diseases.

  4. Signal transduction pathways involved in mechanotransduction in bone cells

    International Nuclear Information System (INIS)

    Liedert, Astrid; Kaspar, Daniela; Blakytny, Robert; Claes, Lutz; Ignatius, Anita

    2006-01-01

    Several in vivo and in vitro studies with different loading regimens showed that mechanical stimuli have an influence on proliferation and differentiation of bone cells. Prerequisite for this influence is the transduction of mechanical signals into the cell, a phenomenon that is termed mechanotransduction, which is essential for the maintenance of skeletal homeostasis in adults. Mechanoreceptors, such as the integrins, cadherins, and stretch-activated Ca 2+ channels, together with various signal transduction pathways, are involved in the mechanotransduction process that ultimately regulates gene expression in the nucleus. Mechanotransduction itself is considered to be regulated by hormones, the extracellular matrix of the osteoblastic cells and the mode of the mechanical stimulus

  5. Microbial bioenergetics of coral-algal interactions

    Directory of Open Access Journals (Sweden)

    Ty N.F. Roach

    2017-06-01

    Full Text Available Human impacts are causing ecosystem phase shifts from coral- to algal-dominated reef systems on a global scale. As these ecosystems undergo transition, there is an increased incidence of coral-macroalgal interactions. Mounting evidence indicates that the outcome of these interaction events is, in part, governed by microbially mediated dynamics. The allocation of available energy through different trophic levels, including the microbial food web, determines the outcome of these interactions and ultimately shapes the benthic community structure. However, little is known about the underlying thermodynamic mechanisms involved in these trophic energy transfers. This study utilizes a novel combination of methods including calorimetry, flow cytometry, and optical oxygen measurements, to provide a bioenergetic analysis of coral-macroalgal interactions in a controlled aquarium setting. We demonstrate that the energetic demands of microbial communities at the coral-algal interaction interface are higher than in the communities associated with either of the macroorganisms alone. This was evident through higher microbial power output (energy use per unit time and lower oxygen concentrations at interaction zones compared to areas distal from the interface. Increases in microbial power output and lower oxygen concentrations were significantly correlated with the ratio of heterotrophic to autotrophic microbes but not the total microbial abundance. These results suggest that coral-algal interfaces harbor higher proportions of heterotrophic microbes that are optimizing maximal power output, as opposed to yield. This yield to power shift offers a possible thermodynamic mechanism underlying the transition from coral- to algal-dominated reef ecosystems currently being observed worldwide. As changes in the power output of an ecosystem are a significant indicator of the current state of the system, this analysis provides a novel and insightful means to quantify

  6. Powering microbial electrolysis cells by capacitor circuits charged using microbial fuel cell

    KAUST Repository

    Hatzell, Marta C.

    2013-05-01

    A microbial electrolysis cell (MEC) was powered by a capacitor based energy storage circuit using energy from a microbial fuel cell (MFC) to increase MEC hydrogen production rates compared to that possible by the MFC alone. To prevent voltage reversal, MFCs charged the capacitors in a parallel configuration, and then the capacitors were discharged in series to boost the voltage that was used to power the MECs. The optimal capacitance for charging was found to be ∼0.01 F for each MFC. The use of the capacitor charging system increased energy recoveries from 9 to 13%, and hydrogen production rates increased from 0.31 to 0.72 m3 m-3-day-1, compared to coupled systems without capacitors. The circuit efficiency (the ratio of the energy that was discharged to the MEC to the energy provided to the capacitor from the MFCs) was ∼90%. These results provide an improved method for linking MFCs to MECs for renewable hydrogen gas production. © 2012 Elsevier B.V. All rights reserved.

  7. Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil.

    Science.gov (United States)

    Ridl, Jakub; Kolar, Michal; Strejcek, Michal; Strnad, Hynek; Stursa, Petr; Paces, Jan; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas.

  8. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  9. Assessing coral reefs on a Pacific-wide scale using the microbialization score.

    Directory of Open Access Journals (Sweden)

    Tracey McDole

    Full Text Available The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change have been identified, the mechanism(s of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.

  10. Assessing coral reefs on a Pacific-wide scale using the microbialization score.

    Science.gov (United States)

    McDole, Tracey; Nulton, James; Barott, Katie L; Felts, Ben; Hand, Carol; Hatay, Mark; Lee, Hochul; Nadon, Marc O; Nosrat, Bahador; Salamon, Peter; Bailey, Barbara; Sandin, Stuart A; Vargas-Angel, Bernardo; Youle, Merry; Zgliczynski, Brian J; Brainard, Russell E; Rohwer, Forest

    2012-01-01

    The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.

  11. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts.

    Science.gov (United States)

    Galperin, Michael Y

    2005-06-14

    Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. This paper presents results of a comprehensive census of signal transduction proteins--histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases--encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set) can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the highest IQ, including the current leader Wolinella succinogenes

  12. A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts

    Directory of Open Access Journals (Sweden)

    Galperin Michael Y

    2005-06-01

    Full Text Available Abstract Background Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. Results This paper presents results of a comprehensive census of signal transduction proteins – histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases – encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. Conclusion The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the

  13. Single Amino Acid Modification of Adeno-Associated Virus Capsid Changes Transduction and Humoral Immune Profiles

    Science.gov (United States)

    Diprimio, Nina; Bowles, Dawn E.; Hirsch, Matthew L.; Monahan, Paul E.; Asokan, Aravind; Rabinowitz, Joseph; Agbandje-McKenna, Mavis

    2012-01-01

    Adeno-associated virus (AAV) vectors have the potential to promote long-term gene expression. Unfortunately, humoral immunity restricts patient treatment and in addition provides an obstacle to the potential option of vector readministration. In this study, we describe a comprehensive characterization of the neutralizing antibody (NAb) response to AAV type 1 (AAV1) through AAV5 both in vitro and in vivo. These results demonstrated that NAbs generated from one AAV type are unable to neutralize the transduction of other types. We extended this observation by demonstrating that a rationally engineered, muscle-tropic AAV2 mutant containing 5 amino acid substitutions from AAV1 displayed a NAb profile different from those of parental AAV2 and AAV1. Here we found that a single insertion of Thr from AAV1 into AAV2 capsid at residue 265 preserved high muscle transduction, while also changing the immune profile. To better understand the role of Thr insertion at position 265, we replaced all 20 amino acids and evaluated both muscle transduction and the NAb response. Of these variants, 8 mutants induced higher muscle transduction than AAV2. Additionally, three classes of capsid NAb immune profile were defined based on the ability to inhibit transduction from AAV2 or mutants. While no relationship was found between transduction, amino acid properties, and NAb titer or its cross-reactivity, these studies map a critical capsid motif involved in all steps of AAV infectivity. Our results suggest that AAV types can be utilized not only as templates to generate mutants with enhanced transduction efficiency but also as substrates for repeat administration. PMID:22593151

  14. New and traditional energy resources from microbial activities in the agroindustrial system

    Directory of Open Access Journals (Sweden)

    Massimo i Vincenzin

    2011-02-01

    Full Text Available Microbial processes leading to the production of energy from vegetable biomasses and from residues of the agroindustry make possible the exploitation of widely available and renewable energy sources which can be considered at zero balance with regard to CO2 fixation and emission. These processes show a different level of technological maturity: some of them, like the production of bioethanol or biogas, are well established and diffused processes, while others, like hydrogen production, are in the phase of advanced research. Considering the future prospects, the latter process is the most promising owing to the high calorific value of hydrogen and the absence of polluting emissions when H2 is used for combustions or for the production of electricity with fuel cells. In this review, the research activities carried out, in the field of biogas and hydrogen production, by research groups belonging to the Italian Society for Agricultural, Environmental and Food Microbiology (SIMTREA are presented.

  15. New and traditional energy resources from microbial activities in the agroindustrial system

    Directory of Open Access Journals (Sweden)

    Roberto De Philippis

    Full Text Available Microbial processes leading to the production of energy from vegetable biomasses and from residues of the agroindustry make possible the exploitation of widely available and renewable energy sources which can be considered at zero balance with regard to CO2 fixation and emission. These processes show a different level of technological maturity: some of them, like the production of bioethanol or biogas, are well established and diffused processes, while others, like hydrogen production, are in the phase of advanced research. Considering the future prospects, the latter process is the most promising owing to the high calorific value of hydrogen and the absence of polluting emissions when H2 is used for combustions or for the production of electricity with fuel cells. In this review, the research activities carried out, in the field of biogas and hydrogen production, by research groups belonging to the Italian Society for Agricultural, Environmental and Food Microbiology (SIMTREA are presented.

  16. Graphene-Based Flexible Micrometer-Sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.; Qaisi, Ramy M.; Hussain, Muhammad Mustafa

    2013-01-01

    Microbial fuel cells harvest electrical energy produced by bacteria during the natural decomposition of organic matter. We report a micrometer-sized microbial fuel cell that is able to generate nanowatt-scale power from microliters of liquids

  17. Adeno-associated virus vector-mediated transduction in the cat brain.

    Science.gov (United States)

    Vite, Charles H; Passini, Marco A; Haskins, Mark E; Wolfe, John H

    2003-10-01

    Adeno-associated virus (AAV) vectors are capable of delivering a therapeutic gene to the mouse brain that can result in long-term and widespread protein production. However, the human infant brain is more than 1000 times larger than the mouse brain, which will make the treatment of global neurometabolic disorders in children more difficult. In this study, we evaluated the ability of three AAV serotypes (1,2, and 5) to transduce cells in the cat brain as a model of a large mammalian brain. The human lysosomal enzyme beta-glucuronidase (GUSB) was used as a reporter gene, because it can be distinguished from feline GUSB by heat stability. The vectors were injected into the cerebral cortex, caudate nucleus, thalamus, corona radiata, internal capsule, and centrum semiovale of 8-week-old cats. The brains were evaluated for gene expression using in situ hybridization and enzyme histochemistry 10 weeks after surgery. The AAV2 vector was capable of transducing cells in the gray matter, while the AAV1 vector resulted in greater transduction of the gray matter than AAV2 as well as transduction of the white matter. AAV5 did not result in detectable transduction in the cat brain.

  18. An energy balance concept for habitability.

    Science.gov (United States)

    Hoehler, Tori M

    2007-12-01

    Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.

  19. Cell biology symposium: Membrane trafficking and signal transduction

    Science.gov (United States)

    In general, membrane trafficking is a broad group of processes where proteins and other large molecules are distributed throughout the cell as well as adjacent extracellular spaces. Whereas signal transduction is a process where signals are transmitted through a series of chemical or molecular event...

  20. Gene Ontology Terms and Automated Annotation for Energy-Related Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Biswarup [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Tyler, Brett M. [Oregon State Univ., Corvallis, OR (United States); Setubal, Joao [Univ. of Sao Paulo (Brazil); Murali, T. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-11-03

    Gene Ontology (GO) is one of the more widely used functional ontologies for describing gene functions at various levels. The project developed 660 GO terms for describing energy-related microbial processes and filled the known gaps in this area of the GO system, and then used these terms to describe functions of 179 genes to showcase the utilities of the new resources. It hosted a series of workshops and made presentations at key meetings to inform and train scientific community members on these terms and to receive inputs from them for the GO term generation efforts. The project has developed a website for storing and displaying the resources (http://www.mengo.biochem.vt.edu/). The outcome of the project was further disseminated through peer-reviewed publications and poster and seminar presentations.

  1. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  2. Effects of the TAT peptide orientation and relative location on the protein transduction efficiency.

    Science.gov (United States)

    Guo, Qingguo; Zhao, Guojie; Hao, Fengjin; Guan, Yifu

    2012-05-01

    To understand the protein transduction domain (PTD)-mediated protein transduction behavior and to explore its potential in delivering biopharmaceutic drugs, we prepared four TAT-EGFP conjugates: TAT(+)-EGFP, TAT(-)-EGFP, EGFP-TAT(+) and EGFP-TAT(-), where TAT(+) and TAT(-) represent the original and the reversed TAT sequence, respectively. These four TAT-EGFP conjugates were incubated with HeLa and PC12 cells for in vitro study as well as injected intraperitoneally to mice for in vivo study. Flow cytometric results showed that four TAT-EGFP conjugates were able to traverse HeLa and PC12 cells with almost equal transduction efficiency. The in vivo study showed that the TAT-EGFP conjugates could be delivered into different organs of mice with different transduction capabilities. Bioinformatic analyses and CD spectroscopic data revealed that the TAT peptide has no defined secondary structure, and conjugating the TAT peptide to the EGFP cargo protein would not alter the native structure and the function of the EGFP protein. These results conclude that the sequence orientation, the spatial structure, and the relative location of the TAT peptide have much less effect on the TAT-mediated protein transduction. Thus, the TAT-fused conjugates could be constructed in more convenient and flexible formats for a wide range of biopharmaceutical applications. © 2011 John Wiley & Sons A/S.

  3. Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data

    Directory of Open Access Journals (Sweden)

    Yachie Nozomu

    2010-05-01

    Full Text Available Abstract Background Phosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing as a result of recent mass spectrometry-based approaches. Results We analyzed time-course phosphoproteome data obtained previously by liquid chromatography mass spectrometry with the stable isotope labeling using amino acids in cell culture (SILAC method. This provides the relative phosphorylation activities of digested peptides at each of five time points after stimulating HeLa cells with epidermal growth factor (EGF. We initially calculated the correlations between the phosphorylation dynamics patterns of every pair of peptides and connected the strongly correlated pairs to construct a network. We found that peptides extracted from the same intracellular fraction (nucleus vs. cytoplasm tended to be close together within this phosphorylation dynamics-based network. The network was then analyzed using graph theory and compared with five known signal-transduction pathways. The dynamics-based network was correlated with known signaling pathways in the NetPath and Phospho.ELM databases, and especially with the EGF receptor (EGFR signaling pathway. Although the phosphorylation patterns of many proteins were drastically changed by the EGF stimulation, our results suggest that only EGFR signaling transduction was both strongly activated and precisely controlled. Conclusions The construction of a phosphorylation dynamics-based network provides a useful overview of condition-specific intracellular signal transduction using quantitative time-course phosphoproteome data under specific experimental conditions. Detailed prediction of signal transduction based on phosphoproteome dynamics remains challenging. However, since the phosphorylation profiles of kinase-substrate pairs on the specific pathway were localized in the dynamics

  4. Modeling of mitochondria bioenergetics using a composable chemiosmotic energy transduction rate law: theory and experimental validation.

    Directory of Open Access Journals (Sweden)

    Ivan Chang

    Full Text Available Mitochondrial bioenergetic processes are central to the production of cellular energy, and a decrease in the expression or activity of enzyme complexes responsible for these processes can result in energetic deficit that correlates with many metabolic diseases and aging. Unfortunately, existing computational models of mitochondrial bioenergetics either lack relevant kinetic descriptions of the enzyme complexes, or incorporate mechanisms too specific to a particular mitochondrial system and are thus incapable of capturing the heterogeneity associated with these complexes across different systems and system states. Here we introduce a new composable rate equation, the chemiosmotic rate law, that expresses the flux of a prototypical energy transduction complex as a function of: the saturation kinetics of the electron donor and acceptor substrates; the redox transfer potential between the complex and the substrates; and the steady-state thermodynamic force-to-flux relationship of the overall electro-chemical reaction. Modeling of bioenergetics with this rate law has several advantages: (1 it minimizes the use of arbitrary free parameters while featuring biochemically relevant parameters that can be obtained through progress curves of common enzyme kinetics protocols; (2 it is modular and can adapt to various enzyme complex arrangements for both in vivo and in vitro systems via transformation of its rate and equilibrium constants; (3 it provides a clear association between the sensitivity of the parameters of the individual complexes and the sensitivity of the system's steady-state. To validate our approach, we conduct in vitro measurements of ETC complex I, III, and IV activities using rat heart homogenates, and construct an estimation procedure for the parameter values directly from these measurements. In addition, we show the theoretical connections of our approach to the existing models, and compare the predictive accuracy of the rate law with

  5. Modeling of mitochondria bioenergetics using a composable chemiosmotic energy transduction rate law: theory and experimental validation.

    Science.gov (United States)

    Chang, Ivan; Heiske, Margit; Letellier, Thierry; Wallace, Douglas; Baldi, Pierre

    2011-01-01

    Mitochondrial bioenergetic processes are central to the production of cellular energy, and a decrease in the expression or activity of enzyme complexes responsible for these processes can result in energetic deficit that correlates with many metabolic diseases and aging. Unfortunately, existing computational models of mitochondrial bioenergetics either lack relevant kinetic descriptions of the enzyme complexes, or incorporate mechanisms too specific to a particular mitochondrial system and are thus incapable of capturing the heterogeneity associated with these complexes across different systems and system states. Here we introduce a new composable rate equation, the chemiosmotic rate law, that expresses the flux of a prototypical energy transduction complex as a function of: the saturation kinetics of the electron donor and acceptor substrates; the redox transfer potential between the complex and the substrates; and the steady-state thermodynamic force-to-flux relationship of the overall electro-chemical reaction. Modeling of bioenergetics with this rate law has several advantages: (1) it minimizes the use of arbitrary free parameters while featuring biochemically relevant parameters that can be obtained through progress curves of common enzyme kinetics protocols; (2) it is modular and can adapt to various enzyme complex arrangements for both in vivo and in vitro systems via transformation of its rate and equilibrium constants; (3) it provides a clear association between the sensitivity of the parameters of the individual complexes and the sensitivity of the system's steady-state. To validate our approach, we conduct in vitro measurements of ETC complex I, III, and IV activities using rat heart homogenates, and construct an estimation procedure for the parameter values directly from these measurements. In addition, we show the theoretical connections of our approach to the existing models, and compare the predictive accuracy of the rate law with our experimentally

  6. Genetic analysis of gravity signal transduction in roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Baldwin, Katherine

    To grow downward into the soil, roots use gravity as a guide. Specialized cells, named stato-cytes, enable this directional growth response by perceiving gravity. Located in the columella region of the cap, these cells sense a reorientation of the root within the gravity field through the sedimentation of, and/or tension/pressure exerted by, dense amyloplasts. This process trig-gers a gravity signal transduction pathway that leads to a fast alkalinization of the cytoplasm and a change in the distribution of the plasma membrane-associated auxin-efflux carrier PIN3. The latter protein is uniformly distributed within the plasma membrane on all sides of the cell in vertically oriented roots. However, it quickly accumulates at the bottom side upon gravis-timulation. This process correlates with a preferential transport of auxin to the bottom side of the root cap, resulting in a lateral gradient across the tip. This gradient is then transported to the elongation zone where it promotes differential cellular elongation, resulting in downward curvature. We isolated mutations that affect gravity signal transduction at a step that pre-cedes cytoplasmic alkalinization and/or PIN3 relocalization and lateral auxin transport across the cap. arg1 and arl2 mutations identify a common genetic pathway that is needed for all three gravity-induced processes in the cap statocytes, indicating these genes function early in the pathway. On the other hand, adk1 affects gravity-induced PIN3 relocalization and lateral auxin transport, but it does not interfere with cytoplasmic alkalinization. ARG1 and ARL2 encode J-domain proteins that are associated with membranes of the vesicular trafficking path-way whereas ADK1 encodes adenosine kinase, an enzyme that converts adenosine derived from nucleic acid metabolism and the AdoMet cycle into AMP, thereby alleviating feedback inhibi-tion of this important methyl-donor cycle. Because mutations in ARG1 (and ARL2) do not completely eliminate

  7. Towards a clinically relevant lentiviral transduction protocol for primary human CD34 hematopoietic stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Michelle Millington

    2009-07-01

    Full Text Available Hematopoietic stem cells (HSC, in particular mobilized peripheral blood stem cells, represent an attractive target for cell and gene therapy. Efficient gene delivery into these target cells without compromising self-renewal and multi-potency is crucial for the success of gene therapy. We investigated factors involved in the ex vivo transduction of CD34(+ HSCs in order to develop a clinically relevant transduction protocol for gene delivery. Specifically sought was a protocol that allows for efficient transduction with minimal ex vivo manipulation without serum or other reagents of animal origin.Using commercially available G-CSF mobilized peripheral blood (PB CD34(+ cells as the most clinically relevant target, we systematically examined factors including the use of serum, cytokine combinations, pre-stimulation time, multiplicity of infection (MOI, transduction duration and the use of spinoculation and/or retronectin. A self-inactivating lentiviral vector (SIN-LV carrying enhanced green fluorescent protein (GFP was used as the gene delivery vehicle. HSCs were monitored for transduction efficiency, surface marker expression and cellular function. We were able to demonstrate that efficient gene transduction can be achieved with minimal ex vivo manipulation while maintaining the cellular function of transduced HSCs without serum or other reagents of animal origin.This study helps to better define factors relevant towards developing a standard clinical protocol for the delivery of SIN-LV into CD34(+ cells.

  8. Molecular methods for the study of signal transduction in plants

    KAUST Repository

    Irving, Helen R.

    2013-09-03

    Novel and improved analytical methods have led to a rapid increase in our understanding of the molecular mechanism underlying plant signal transduction. Progress has been made both at the level of single-component analysis and in vivo imaging as well as at the systems level where transcriptomics and particularly phosphoproteomics afford a window into complex biological responses. Here we review the role of the cyclic nucleotides cAMP and cGMP in plant signal transduction as well as the discovery and biochemical and biological characterization of an increasing number of complex multi-domain nucleotide cyclases that catalyze the synthesis of cAMP and cGMP from ATP and GTP, respectively. © Springer Science+Business Media New York 2013.

  9. Copper removal and microbial community analysis in single-chamber microbial fuel cell.

    Science.gov (United States)

    Wu, Yining; Zhao, Xin; Jin, Min; Li, Yan; Li, Shuai; Kong, Fanying; Nan, Jun; Wang, Aijie

    2018-04-01

    In this study, copper removal and electricity generation were investigated in a single-chamber microbial fuel cell (MFC). Result showed that copper was efficiently removed in the membrane-less MFC with removal efficiency of 98.3% at the tolerable Cu 2+ concentration of 12.5 mg L -1 , the corresponding open circuit voltage and maximum power density were 0.78 V and 10.2 W m -3 , respectively. The mechanism analysis demonstrated that microbial electrochemical reduction contributed to the copper removal with the products of Cu and Cu 2 O deposited at biocathode. Moreover, the microbial community analysis indicated that microbial communities changed with different copper concentrations. The dominant phyla were Proteobacteria and Bacteroidetes which could play key roles in electricity generation, while Actinobacteria and Acidobacteria were also observed which were responsible for Cu-resistant and copper removal. It will be of important guiding significance for the recovery of copper from low concentration wastewater through single-chamber MFC with simultaneous energy recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Studies about behavior of microbial degradation of organic compounds

    International Nuclear Information System (INIS)

    Ohtsuka, Makiko

    2003-02-01

    Some of TRU waste include organic compounds, thus these organic compounds might be nutrients for microbial growth at disposal site. This disposal system might be exposed to high alkali condition by cement compounds as engineering barrier material. In the former experimental studies, it has been supposed that microbial exist under pH = 12 and the microbial activity acclimated to high alkali condition are able to degrade asphalt under anaerobic condition. Microbes are called extremophile that exist in cruel habitat as high alkali or reductive condition. We know less information about the activity of extremophile, though any recent studies reveal them. In this study, the first investigation is metabolic pathway as microbial activity, the second is microbial degradation of aromatic compounds in anaerobic condition, and the third is microbial activity under high alkali. Microbial metabolic pathway consist of two systems that fulfill their function each other. One system is to generate energy for microbial activities and the other is to convert substances for syntheses of organisms' structure materials. As these systems are based on redox reaction between substances, it is made chart of the microbial activity region using pH, Eh, and depth as parameter, There is much report that microbe is able to degrade aromatic compounds under aerobic or molecular O 2 utilizing condition. For degradation of aromatic compounds in anaerobic condition, supplying electron acceptor is required. Co-metabolism and microbial consortia has important role, too. Alcalophile has individual transporting system depending Na + and acidic compounds contained in cell wall. Generating energy is key for survival and growth under high alkali condition. Co-metabolism and microbial consortia are effective for microbial degradation of aromatic compounds under high alkali and reductive condition, and utilizable electron acceptor and degradable organic compounds are required for keeping microbial activity and

  11. New microbial resource: microbial diversity, function and dynamics in Chinese liquor starter.

    Science.gov (United States)

    Huang, Yuhong; Yi, Zhuolin; Jin, Yanling; Zhao, Yonggui; He, Kaize; Liu, Dayu; Zhao, Dong; He, Hui; Luo, Huibo; Zhang, Wenxue; Fang, Yang; Zhao, Hai

    2017-11-06

    Traditional Chinese liquor (Baijiu) solid state fermentation technology has lasted for several thousand years. The microbial communities that enrich in liquor starter are important for fermentation. However, the microbial communities are still under-characterized. In this study, 454 pyrosequencing technology was applied to comprehensively analyze the microbial diversity, function and dynamics of two most-consumed liquor starters (Jiang- and Nong-flavor) during production. In total, 315 and 83 bacterial genera and 72 and 47 fungal genera were identified in Jiang- and Nong-flavor liquor starter, respectively. The relatively high diversity was observed when the temperature increased to 70 and 62 °C for Jiang- and Nong-flavor liquor starter, respectively. Some thermophilic fungi have already been isolated. Microbial communities that might contribute to ethanol fermentation, saccharification and flavor development were identified and shown to be core communities in correlation-based network analysis. The predictively functional profile of bacterial communities showed significant difference in energy, carbohydrate and amino acid metabolism and the degradation of aromatic compounds between the two kinds of liquor starters. Here we report these liquor starters as a new functionally microbial resource, which can be used for discovering thermophilic and aerobic enzymes and for food and feed preservation.

  12. Biotechnological Processes in Microbial Amylase Production.

    Science.gov (United States)

    Gopinath, Subash C B; Anbu, Periasamy; Arshad, M K Md; Lakshmipriya, Thangavel; Voon, Chun Hong; Hashim, Uda; Chinni, Suresh V

    2017-01-01

    Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.

  13. What is microbial community ecology?

    Science.gov (United States)

    Konopka, Allan

    2009-11-01

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property.

  14. Expression of SMAD signal transduction molecules in the pancreas

    DEFF Research Database (Denmark)

    Brorson, Michael; Hougaard, D.; Nielsen, Jens Høiriis

    2001-01-01

    Members of the TGF-beta superfamily of cytokines have been implicated in pancreatic cancer, pancreatitis and in regulation and differentiation of pancreatic endocrine and exocrine cells. Different TGF-beta members signal through phosphorylation of different signal transduction proteins, which eve...

  15. Efficient biotechnological approach for lentiviral transduction of induced pluripotent stem cells.

    Science.gov (United States)

    Zare, Mehrak; Soleimani, Masoud; Mohammadian, Mozhdeh; Akbarzadeh, Abolfazl; Havasi, Parvaneh; Zarghami, Nosratollah

    2016-01-01

    Induced pluripotent stem (iPS) cells are generated from differentiated adult somatic cells by reprogramming them. Unlimited self-renewal, and the potential to differentiate into any cell type, make iPS cells very promising candidates for basic and clinical research. Furthermore, iPS cells can be genetically manipulated for use as therapeutic tools. DNA can be introduced into iPS cells, using lentiviral vectors, which represent a helpful choice for efficient transduction and stable integration of transgenes. In this study, we compare two methods of lentiviral transduction of iPS cells, namely, the suspension method and the hanging drop method. In contrast to the conventional suspension method, in the hanging drop method, embryoid body (EB) formation and transduction occur concurrently. The iPS cells were cultured to form EBs, and then transduced with lentiviruses, using the conventional suspension method and the hanging drop method, to express miR-128 and green fluorescent protein (GFP). The number of transduced cells were assessed by fluorescent microscopy and flow cytometry. MTT assay and real-time PCR were performed to determine the cell viability and transgene expression, respectively. Morphologically, GFP+ cells were more detectable in the hanging drop method, and this finding was quantified by flow cytometric analysis. According to the results of the MTT assay, cell viability was considerably higher in the hanging drop method, and real-time PCR represented a higher relative expression of miR-128 in the iPS cells introduced with lentiviruses in drops. Altogether, it seems that lentiviral transduction of challenging iPS cells using the hanging drop method offers a suitable and sufficient strategy in their gene transfer, with less toxicity than the conventional suspension method.

  16. Carbon and nitrogen assimilation in deep subseafloor microbial cells

    OpenAIRE

    Morono, Yuki; Terada, Takeshi; Nishizawa, Manabu; Ito, Motoo; Hillion, François; Takahata, Naoto; Sano, Yuji; Inagaki, Fumio

    2011-01-01

    Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale secondary ion MS to investigate the dynamics of carbon and nitrogen assimilation activities in individua...

  17. Enhancing biodegradation and energy generation via roughened surface graphite electrode in microbial desalination cell.

    Science.gov (United States)

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem

    2017-09-01

    The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.

  18. Integrated membrane and microbial fuel cell technologies for enabling energy-efficient effluent Re-use in power plants.

    Science.gov (United States)

    Shrestha, Namita; Chilkoor, Govinda; Xia, Lichao; Alvarado, Catalina; Kilduff, James E; Keating, John J; Belfort, Georges; Gadhamshetty, Venkataramana

    2017-06-15

    Municipal wastewater is an attractive alternative to freshwater sources to meet the cooling water needs of thermal power plants. Here we offer an energy-efficient integrated microbial fuel cell (MFC)/ultrafiltration (UF) process to purify primary clarifier effluent from a municipal wastewater treatment plant for use as cooling water. The microbial fuel cell was shown to significantly reduce chemical oxygen demand (COD) in the primary settled wastewater effluent upstream of the UF module, while eliminating the energy demand required to deliver dissolved oxygen in conventional aerobic treatment. We investigated surface modification of the UF membranes to control fouling. Two promising hydrophilic monomers were identified in a high-throughput search: zwitterion (2-(Methacryloyloxy)-ethyl-dimethyl-(3-sulfopropyl ammoniumhydroxide, abbreviated BET SO 3 - ), and amine (2-(Methacryloyloxy) ethyl trimethylammonium chloride, abbreviated N(CH 3 ) 3 + ). Monomers were grafted using UV-induced polymerization on commercial poly (ether sulfone) membranes. Filtration of MFC effluent by membranes modified with BET SO 3 - and N(CH 3 ) 3 + exhibited a lower rate of resistance increase and lower energy consumption than the commercially available membrane. The MFC/UF process produced high quality cooling water that meets the Electrical Power Research Institute (EPRI) recommendations for COD, a suite of metals (Fe, Al, Cu, Zn, Si, Mn, S, Ca and Mg), and offered extremely low corrosion rates (<0.05 mm/yr). A series of AC and DC diagnostic tests were used to evaluate the MFC performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of arsenate and arsenite on signal transduction pathways: an update

    Energy Technology Data Exchange (ETDEWEB)

    Druwe, Ingrid L.; Vaillancourt, Richard R. [The University of Arizona College of Pharmacy, Department of Pharmacology and Toxicology, Tucson, AZ (United States)

    2010-08-15

    Arsenic has been a recognized contaminant and toxicant, as well as a medicinal compound throughout human history. Populations throughout the world are exposed to arsenic and these exposures have been associated with a number of human cancers. Not much is known about the role of arsenic as a human carcinogen and more recently its role in non-cancerous diseases, such as cardiovascular disease, hypertension and diabetes mellitus have been uncovered. The health effects associated with arsenic are numerous and the association between arsenic exposure and human disease has intensified the search for molecular mechanisms that describe the biological activity of arsenic in humans and leads to the aforementioned disease states. Arsenic poses a human health risk due in part to the regulation of cellular signal transduction pathways and over the last few decades, some cellular mechanisms that account for arsenic toxicity, as well as, signal transduction pathways have been discovered. However, given the ubiquitous nature of arsenic in the environment, making sense of all the data remains a challenge. This review will focus on our knowledge of signal transduction pathways that are regulated by arsenic. (orig.)

  20. Potential Use of Microbial Electrolysis Cells in Domestic Wastewater Treatment Plants for Energy Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Escapa, Adrián; San-Martín, María Isabel; Morán, Antonio, E-mail: amorp@unileon.es [Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León, León (Spain)

    2014-06-06

    Globally, large amounts of electrical energy are spent every year for domestic wastewater (dWW) treatment. In the future, energy prices are expected to rise as the demand for energy resources increases and fossil fuel reserves become depleted. By using appropriate technologies, the potential chemical energy contained in the organic compounds present in dWWs might help to improve the energy and economic balance of dWW treatment plants. Bioelectrochemical systems (BESs) in general and microbial electrolysis cells (MECs) in particular represent an emerging technology capable of harvesting part of this energy. This study offers an overview of the potential of using MEC technology in domestic wastewater treatment plants (dWWTPs) to reduce the energy bill. It begins with a brief account of the basics of BESs, followed by an examination of how MECs can be integrated in dWWTPs, identifying scaling-up bottlenecks and estimating potential energy savings. A simplified analysis showed that the use of MEC technology may help to reduce up to ~20% the energy consumption in a conventional dWWTP. The study concludes with a discussion of the future perspectives of MEC technology for dWW treatment. The growing rates of municipal water and wastewater treatment markets in Europe offer excellent business prospects and it is expected that the first generation of MECs could be ready within 1–4 years. However, before MEC technology may achieve practical implementation in dWWTPs, it need not only to overcome important techno-economic challenges, but also to compete with other energy-producing technologies.

  1. Energy Equivalence of Information in the Mitochondrion and the Thermodynamic Efficiency of ATP Synthase.

    Science.gov (United States)

    Matta, Chérif F; Massa, Lou

    2015-09-01

    Half a century ago, Johnson and Knudsen resolved the puzzle of the apparent low efficiency of the kidney (∼ 0.5%) compared to most other bodily organs (∼ 40%) by taking into account the entropic cost of ion sorting, the principal function of this organ. Similarly, it is shown that the efficiency of energy transduction of the chemiosmotic proton-motive force by ATP synthase is closer to 90% instead of the oft-quoted textbook value of only 60% when information theoretic considerations are applied to the mitochondrion. This high efficiency is consistent with the mechanical energy transduction of ATP synthase known to be close to the 100% thermodynamic limit. It would have been wasteful for evolution to maximize the mechanical energy transduction to 100% while wasting 40% of the chemiosmotic free energy in the conversion of the proton-motive force into mechanical work before being captured as chemical energy in adenosine 5'-triphosphate.

  2. Signal transduction and chemotaxis in mast cells

    Czech Academy of Sciences Publication Activity Database

    Dráber, Petr; Hálová, Ivana; Polakovičová, Iva; Kawakami, T.

    2016-01-01

    Roč. 778, jaro (2016), s. 11-23 ISSN 0014-2999 R&D Projects: GA ČR(CZ) GA14-09807S; GA ČR(CZ) GBP302/12/G101; GA ČR(CZ) GA14-00703S Institutional support: RVO:68378050 Keywords : Mast cell * IgE receptor * KIT receptor * Signal transduction * Chemotaxis * Plasma membrane Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.896, year: 2016

  3. Cytoplasmic transduction peptide (CTP): New approach for the delivery of biomolecules into cytoplasm in vitro and in vivo

    International Nuclear Information System (INIS)

    Kim, Daeyou; Jeon, Choonju; Kim, Jeong-Hwan; Kim, Mi-Seon; Yoon, Cheol-Hee; Choi, In-Soo; Kim, Sung-Hoon; Bae, Yong-Soo

    2006-01-01

    The protein transduction domain (PTD) of HIV-1 TAT has been extensively documented with regard to its membrane transduction potential, as well as its efficient delivery of biomolecules in vivo. However, the majority of PTD and PTD-conjugated molecules translocate to the nucleus rather than to the cytoplasm after transduction, due to the functional nuclear localization sequence (NLS). Here, we report a cytoplasmic transduction peptide (CTP), which was deliberately designed to ensure the efficient cytoplasmic delivery of the CTP-fused biomolecules. In comparison with PTD, CTP and its fusion partners exhibited a clear preference for cytoplasmic localization, and also markedly enhanced membrane transduction potential. Unlike the mechanism underlying PTD-mediated transduction, CTP-mediated transduction occurs independently of the lipid raft-dependent macropinocytosis pathway. The CTP-conjugated Smac/DIABLO peptide (Smac-CTP) was also shown to be much more efficient than Smac-PTD in the blockage of the antiapoptotic properties of XIAP, suggesting that cytoplasmic functional molecules can be more efficiently targeted by CTP-mediated delivery. In in vivo trafficking studies, CTP-fused β-gal exhibited unique organ tropisms to the liver and lymph nodes when systemically injected into mice, whereas PTD-β-gal exhibited no such tropisms. Taken together, our findings implicate CTP as a novel delivery peptide appropriate for (i) molecular targeting to cytoplasmic compartments in vitro, (ii) the development of class I-associated CTL vaccines, and (iii) special drug delivery in vivo, without causing any untoward effects on nuclear genetic material

  4. Microbial Impacts to the Near-Field Environment Geochemistry (MING): A Model for Estimating Microbial Communities in Repository Drifts at Yucca Mountain

    International Nuclear Information System (INIS)

    Jolley, D.M.; Ehrhorn, T.F.; Horn, J.

    2002-01-01

    Geochemical and microbiological modeling was performed to evaluate the potential quantities and impact of microorganisms on the geochemistry of the area adjacent to and within nuclear waste packages in the proposed repository drifts at Yucca Mountain, Nevada. The microbial growth results from the introduction of water, ground support, and waste package materials into the deep unsaturated rock. The simulations, which spanned one million years, were accomplished using a newly developed computer code, Microbial Impacts to the Near-Field Environment Geochemistry (MING). MING uses environmental thresholds for limiting microbial growth to temperatures below 120 C and above relative humidities of 90 percent in repository drifts. Once these thresholds are met, MING expands upon a mass balance and thermodynamic approach proposed by McKinley and others (1997), by using kinetic rates to supply constituents from design materials and constituent fluxes including solubilized rock components into the drift, to perform two separate mass-balance calculations as a function of time. The first (nutrient limit) assesses the available nutrients (C, N, P and S) and calculates how many microorganisms can be produced based on a microorganism stoichiometry of C 160 (H 280 O 80 )N 30 P 2 S. The second (energy limit) calculates the energy available from optimally combined redox couples for the temperature, and pH at that time. This optimization maximizes those reactions that produce > 15kJ/mol (limit on useable energy) using an iterative linear optimization technique. The final available energy value is converted to microbial mass at a rate of 1 kg of biomass (dry weight) for every 64 MJ of energy. These two values (nutrient limit and energy limit) are then compared and the smaller value represents the number of microorganisms that can be produced over a specified time. MING can also be adapted to investigate other problems of interest as the model can be used in saturated and unsaturated

  5. Biotechnological Processes in Microbial Amylase Production

    Directory of Open Access Journals (Sweden)

    Subash C. B. Gopinath

    2017-01-01

    Full Text Available Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi amylase is discussed along with its production methods from the laboratory to industrial scales.

  6. Characterization of adenoviral transduction profile in prostate cancer cells and normal prostate tissue.

    Science.gov (United States)

    Ai, Jianzhong; Tai, Phillip W L; Lu, Yi; Li, Jia; Ma, Hong; Su, Qin; Wei, Qiang; Li, Hong; Gao, Guangping

    2017-09-01

    Prostate diseases are common in males worldwide with high morbidity. Gene therapy is an attractive therapeutic strategy for prostate diseases, however, it is currently underdeveloped. As well known, adeno virus (Ad) is the most widely used gene therapy vector. The aims of this study are to explore transduction efficiency of Ad in prostate cancer cells and normal prostate tissue, thus further providing guidance for future prostate pathophysiological studies and therapeutic development of prostate diseases. We produced Ad expressing enhanced green fluorescence protein (EGFP), and characterized the transduction efficiency of Ad in both human and mouse prostate cancer cell lines in vitro, as well as prostate tumor xenograft, and wild-type mouse prostate tissue in vivo. Ad transduction efficiency was determined by EGFP fluorescence using microscopy and flow cytometry. Cell type-specific transduction was examined by immunofluorescence staining of cell markers. Our data showed that Ad efficiently transduced human and mouse prostate cancer cells in vitro in a dose dependent manner. Following intratumoral and intraprostate injection, Ad could efficiently transduce prostate tumor xenograft and the major prostatic cell types in vivo, respectively. Our findings suggest that Ad can efficiently transduce prostate tumor cells in vitro as well as xenograft and normal prostate tissue in vivo, and further indicate that Ad could be a potentially powerful toolbox for future gene therapy of prostate diseases. © 2017 Wiley Periodicals, Inc.

  7. Intrapulmonary Versus Nasal Transduction of Murine Airways With GP64-pseudotyped Viral Vectors

    Directory of Open Access Journals (Sweden)

    Mayumi Oakland

    2013-01-01

    Full Text Available Persistent viral vector-mediated transgene expression in the airways requires delivery to cells with progenitor capacity and avoidance of immune responses. Previously, we observed that GP64-pseudotyped feline immunodeficiency virus (FIV-mediated gene transfer was more efficient in the nasal airways than the large airways of the murine lung. We hypothesized that in vivo gene transfer was limited by immunological and physiological barriers in the murine intrapulmonary airways. Here, we systematically investigate multiple potential barriers to lentiviral gene transfer in the airways of mice. We show that GP64-FIV vector transduced primary cultures of well-differentiated murine nasal epithelia with greater efficiency than primary cultures of murine tracheal epithelia. We further demonstrate that neutrophils, type I interferon (IFN responses, as well as T and B lymphocytes are not the major factors limiting the transduction of murine conducting airways. In addition, we observed better transduction of GP64-pseudotyped vesicular stomatitis virus (VSV in the nasal epithelia compared with the intrapulmonary airways in mice. VSVG glycoprotein pseudotyped VSV transduced intrapulmonary epithelia with similar efficiency as nasal epithelia. Our results suggest that the differential transduction efficiency of nasal versus intrapulmonary airways by FIV vector is not a result of immunological barriers or surface area, but rather differential expression of cellular factors specific for FIV vector transduction.

  8. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C),

  9. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Hrovat, David [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Moazami-Goudarzi, Maryam [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Espie, George S. [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada)

    2015-07-23

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  10. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    International Nuclear Information System (INIS)

    Noor, M. Omair; Hrovat, David; Moazami-Goudarzi, Maryam; Espie, George S.; Krull, Ulrich J.

    2015-01-01

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  11. Quantitative analysis of microbial biomass yield in aerobic bioreactor.

    Science.gov (United States)

    Watanabe, Osamu; Isoda, Satoru

    2013-12-01

    We have studied the integrated model of reaction rate equations with thermal energy balance in aerobic bioreactor for food waste decomposition and showed that the integrated model has the capability both of monitoring microbial activity in real time and of analyzing biodegradation kinetics and thermal-hydrodynamic properties. On the other hand, concerning microbial metabolism, it was known that balancing catabolic reactions with anabolic reactions in terms of energy and electron flow provides stoichiometric metabolic reactions and enables the estimation of microbial biomass yield (stoichiometric reaction model). We have studied a method for estimating real-time microbial biomass yield in the bioreactor during food waste decomposition by combining the integrated model with the stoichiometric reaction model. As a result, it was found that the time course of microbial biomass yield in the bioreactor during decomposition can be evaluated using the operational data of the bioreactor (weight of input food waste and bed temperature) by the combined model. The combined model can be applied to manage a food waste decomposition not only for controlling system operation to keep microbial activity stable, but also for producing value-added products such as compost on optimum condition. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk- and PI-3K/Akt-mediated signal transduction in anti-tumor human gammadelta T-cells.

    Directory of Open Access Journals (Sweden)

    Daniel V Correia

    Full Text Available BACKGROUND: The unique responsiveness of Vgamma9Vdelta2 T-cells, the major gammadelta subset of human peripheral blood, to non-peptidic prenyl pyrophosphate antigens constitutes the basis of current gammadelta T-cell-based cancer immunotherapy strategies. However, the molecular mechanisms responsible for phosphoantigen-mediated activation of human gammadelta T-cells remain unclear. In particular, previous reports have described a very slow kinetics of activation of T-cell receptor (TCR-associated signal transduction pathways by isopentenyl pyrophosphate and bromohydrin pyrophosphate, seemingly incompatible with direct binding of these antigens to the Vgamma9Vdelta2 TCR. Here we have studied the most potent natural phosphoantigen yet identified, (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, produced by Eubacteria and Protozoa, and examined its gammadelta T-cell activation and anti-tumor properties. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a comparative study between HMB-PP and the anti-CD3epsilon monoclonal antibody OKT3, used as a reference inducer of bona fide TCR signaling, and followed multiple cellular and molecular gammadelta T-cell activation events. We show that HMB-PP activates MEK/Erk and PI-3K/Akt pathways as rapidly as OKT3, and induces an almost identical transcriptional profile in Vgamma9(+ T-cells. Moreover, MEK/Erk and PI-3K/Akt activities are indispensable for the cellular effects of HMB-PP, including gammadelta T-cell activation, proliferation and anti-tumor cytotoxicity, which are also abolished upon antibody blockade of the Vgamma9(+ TCR Surprisingly, HMB-PP treatment does not induce down-modulation of surface TCR levels, and thereby sustains gammadelta T-cell activation upon re-stimulation. This ultimately translates in potent human gammadelta T-cell anti-tumor function both in vitro and in vivo upon transplantation of human leukemia cells into lymphopenic mice, CONCLUSIONS/SIGNIFICANCE: The development of

  13. Cloning of a two-component signal transduction system of Xanthomonas campestris pv. phaseoli var. fuscans strain BXPF65

    DEFF Research Database (Denmark)

    Chan, JWYF; Maynard, Scott; Goodwin, PH

    1998-01-01

    A putative two-component signal transduction system was amplified and cloned from the plant pathogenic bacterium Xanthomonas campestris pv. phaseoli var. fuscans isolate BXPF65. The 620 bp amplified fragment was sequenced and analyzed with the BLAST Enhanced Alignment Utility (BEAUTY). BEAUTY...... that the putative histidine kinase has homology with conserved “transmitter” domains of sensor proteins in two-component signal transduction systems. RFLP analysis using the putative signal transduction system showed polymorphisms among the strains....

  14. Semi-Supervised Transductive Hot Spot Predictor Working on Multiple Assumptions

    KAUST Repository

    Wang, Jim Jing-Yan; Almasri, Islam; Shi, Yuexiang; Gao, Xin

    2014-01-01

    of the transductive semi-supervised algorithms takes all the three semisupervised assumptions, i.e., smoothness, cluster and manifold assumptions, together into account during learning. In this paper, we propose a novel semi-supervised method for hot spot residue

  15. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...... rapidly towards 0% after day 8. The level of transgene expression in the GFP-positive population increased 4-fold over a 10,000 fold viral dose increase. This dose-response contrasted with the 200-fold increase observed in similarly transduced 293-cells, indicating a relatively restricted transgene...

  16. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    Science.gov (United States)

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (PMRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (PMRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (PMRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  17. Microbial electrosynthesis of biochemicals

    NARCIS (Netherlands)

    Bajracharya, S.

    2016-01-01

    Microbial electrosynthesis (MES) is an electricity-driven production of chemicals from low-value waste using microorganisms as biocatalysts. MES from CO2 comprises conversion of CO2 to multi-carbon compounds employing microbes at the cathode which use electricity as an energy source. This thesis

  18. Molecular methods for the study of signal transduction in plants

    KAUST Repository

    Irving, Helen R.; Gehring, Christoph A

    2013-01-01

    as well as at the systems level where transcriptomics and particularly phosphoproteomics afford a window into complex biological responses. Here we review the role of the cyclic nucleotides cAMP and cGMP in plant signal transduction as well

  19. Alterations in energy metabolism, neuroprotection and visual signal transduction in the retina of Parkinsonian, MPTP-treated monkeys.

    Directory of Open Access Journals (Sweden)

    Laura Campello

    Full Text Available Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ± 1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to

  20. Microbial diversity arising from thermodynamic constraints

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  1. Microbial diversity arising from thermodynamic constraints.

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-11-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments.

  2. POTENTIAL USE OF MICROBIAL ELECTROLYSIS CELLS (MECs IN DOMESTIC WASTEWATER TREATMENT PLANTS FOR ENERGY RECOVERY

    Directory of Open Access Journals (Sweden)

    Adrian eEscapa

    2014-06-01

    Full Text Available Globally, large amounts of electrical energy are spent every year for domestic wastewater (dWW treatment. In the future, energy prices are expected to rise as the demand for energy resources increases and fossil fuel reserves become depleted. By using appropriate technologies, the potential chemical energy contained in the organic compounds present in dWWs might help to improve the energy and economic balance of dWW treatment plants. Bioelectrochemical Systems (BESs in general and microbial electrolysis cells (MECs in particular represent an emerging technology capable of harvesting part of this energy. This study offers an overview of the potential of using MEC technology in dWW treatment plants (dWWTPs to reduce the energy bill. It begins with a brief account of the basics of BESs, followed by an examination of how MECs can be integrated in dWW treatment plants (dWWTPs, identifying scaling-up bottlenecks and estimating potential energy savings. A simplified analysis showed that the use of MEC technology may help to reduce up to ~20% the energy consumption in a conventional dWWTP. The study concludes with a discussion of the future perspectives of MEC technology for dWW treatment. The growing rates of municipal water and wastewater treatment markets in Europe offer excellent business prospects and it is expected that the first generation of MECs could be ready within 1-4 years. However, before MEC technology may achieve practical implementation in dWWTPs, it needs not only to overcome important techno-economic challenges, but also to compete with other energy-producing technologies.

  3. Ecological succession as an energy dispersal process.

    Science.gov (United States)

    Würtz, Peter; Annila, Arto

    2010-04-01

    Ecological succession is described by the 2nd law of thermodynamics. According to the universal law of the maximal energy dispersal, an ecosystem evolves toward a stationary state in its surroundings by consuming free energy via diverse mechanisms. Species are the mechanisms that conduct energy down along gradients between repositories of energy which consist of populations at various thermodynamic levels. The salient characteristics of succession, growing biomass production, increasing species richness and shifting distributions of species are found as consequences of the universal quest to diminish energy density differences in least time. The analysis reveals that during succession the ecosystem's energy transduction network, i.e., the food web organizes increasingly more effective in the free energy reduction by acquiring new, more effective and abandoning old, less effective species of energy transduction. The number of species does not necessarily peak at the climax state that corresponds to the maximum-entropy partition of species maximizing consumption of free energy. According to the theory of evolution by natural selection founded on statistical physics of open systems, ecological succession is one among many other evolutionary processes. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy. © 2015 AlphaMed Press.

  5. Microbial biotechnology and circular economy in wastewater treatment.

    Science.gov (United States)

    Nielsen, Per Halkjaer

    2017-09-01

    Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Microbial Impacts to the Near-Field Environment Geochemistry (MING): A Model for Estimating Microbial Communities in Repository Drifts at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley; T.F. Ehrhorn; J. Horn

    2002-03-19

    Geochemical and microbiological modeling was performed to evaluate the potential quantities and impact of microorganisms on the geochemistry of the area adjacent to and within nuclear waste packages in the proposed repository drifts at Yucca Mountain, Nevada. The microbial growth results from the introduction of water, ground support, and waste package materials into the deep unsaturated rock. The simulations, which spanned one million years, were accomplished using a newly developed computer code, Microbial Impacts to the Near-Field Environment Geochemistry (MING). MING uses environmental thresholds for limiting microbial growth to temperatures below 120 C and above relative humidities of 90 percent in repository drifts. Once these thresholds are met, MING expands upon a mass balance and thermodynamic approach proposed by McKinley and others (1997), by using kinetic rates to supply constituents from design materials and constituent fluxes including solubilized rock components into the drift, to perform two separate mass-balance calculations as a function of time. The first (nutrient limit) assesses the available nutrients (C, N, P and S) and calculates how many microorganisms can be produced based on a microorganism stoichiometry of C{sub 160}(H{sub 280}O{sub 80})N{sub 30}P{sub 2}S. The second (energy limit) calculates the energy available from optimally combined redox couples for the temperature, and pH at that time. This optimization maximizes those reactions that produce > 15kJ/mol (limit on useable energy) using an iterative linear optimization technique. The final available energy value is converted to microbial mass at a rate of 1 kg of biomass (dry weight) for every 64 MJ of energy. These two values (nutrient limit and energy limit) are then compared and the smaller value represents the number of microorganisms that can be produced over a specified time. MING can also be adapted to investigate other problems of interest as the model can be used in saturated

  7. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2015-08-18

    VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR-VEGF complexes with membrane trafficking along the endosome-lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR-VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. © 2015 Authors.

  8. Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials.

    Science.gov (United States)

    Zhou, Minghua; Yang, Jie; Wang, Hongyu; Jin, Tao; Xu, Dake; Gu, Tingyue

    2013-01-01

    Today's global energy crisis requires a multifaceted solution. Bioenergy is an important part of the solution. The microbial fuel cell (MFC) technology stands out as an attractive potential technology in bioenergy. MFCs can convert energy stored in organic matter directly into bioelectricity. MFCs can also be operated in the electrolysis mode as microbial electrolysis cells to produce bioproducts such as hydrogen and ethanol. Various wastewaters containing low-grade organic carbons that are otherwise unutilized can be used as feed streams for MFCs. Despite major advances in the past decade, further improvements in MFC power output and cost reduction are needed for MFCs to be practical. This paper analysed MFC operating principles using bioenergetics and bioelectrochemistry. Several major issues were explored to improve the MFC performance. An emphasis was placed on the use of catalytic materials for MFC electrodes. Recent advances in the production of various biomaterials using MFCs were also investigated.

  9. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  10. Quorum sensing alters the microbial community of electrode-respiring bacteria and hydrogen scavengers toward improving hydrogen yield in microbial electrolysis cells

    International Nuclear Information System (INIS)

    Cai, Weiwei; Zhang, Zhaojing; Ren, Ge; Shen, Qiuxuan; Hou, Yanan; Ma, Anzhou; Deng, Ye; Wang, Aijie; Liu, Wenzong

    2016-01-01

    Highlights: • Enhanced hydrogen yield has been achieved with addition of AHL. • AHL regulated exoelectrogens resulting in electrochemical activity enhancement. • Microbial community shift in cathodic biofilm inhibited hydrogen loss. - Abstract: Quorum sensing has been widely applied to enhance the energy recovery of bioelectrochemical system as a sustainable pathway to enhance communication between cells and electrodes. However, how signalling molecules (acyl-homoserine lactones, AHLs) regulate the microbial community to improve hydrogen generation in microbial electrolysis cells (MECs) is not well understood, especially the subsequent influence on interspecies relationships among not only electrode-respiring bacteria but also hydrogen scavengers. Understanding AHL regulation in a complicated and actual biofilm system will be valuable for future applications of microbial electrochemical technology. Herein, we added short-chain AHLs (3OC6) to regulate the biofilm community on bio-electrodes in MECs. As a result, hydrogen yields were enhanced with AHL addition, increasing by 5.57%, 38.68%, and 81.82% with varied external voltages (0.8 V, 0.6 V, and 0.4 V, respectively). Accordingly, overall reactor performance was enhanced, including coulombic efficiency, electron recovery efficiency, and energy efficiency. Based on an electrochemical impedance spectra analysis, the structured biofilm under simple nutrient conditions (acetate) showed a lower internal resistance with AHL addition, indicating that the microbial communities were altered to enhance electron transfer between the biofilm and electrode. The change in the cathodic microbial structure with more electrochemically active bacteria and fewer hydrogen scavengers could contribute to a higher electron recovery and hydrogen yield with AHL addition. The regulation of the microbial community structure by AHLs represents a potential strategy to enhance electron transfer and hydrogen generation in

  11. Quantum Transduction with Adaptive Control

    Science.gov (United States)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-01

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  12. Quantum Transduction with Adaptive Control.

    Science.gov (United States)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-12

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  13. Cellular semiotics and signal transduction

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2007-01-01

    Semiosis, the processes of production, communication and interpretation of signs - coding and de-coding - takes place within and between organisms. The term "endosemiosis" refers to the processes of interpretation and sign transmission inside an organism (as opposed to "exosemiosis", which refers...... to the processes of sign interpretation and transmission between organisms of the same or different species). In Biosemiotics it is customary to recognise the cell as the most elementary integration unit for semiosis. Therefore intra and intercellular communication constitute the departure point for the study...... considering semiotic logic in order to construct our understanding of living phenomena. Given the central integrating role of signal transduction in physiological and ecological studies, this chapter outlines its semiotic implications. The multi-modality and modularity of signal molecules and relative...

  14. Reduced modeling of signal transduction – a modular approach

    Directory of Open Access Journals (Sweden)

    Ederer Michael

    2007-09-01

    Full Text Available Abstract Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good

  15. IGF-1 signaling mediated cell-specific skeletal mechano-transduction.

    Science.gov (United States)

    Tian, Faming; Wang, Yongmei; Bikle, Daniel D

    2018-02-01

    Mechanical loading preserves bone mass and stimulates bone formation, whereas skeletal unloading leads to bone loss. In addition to osteocytes, which are considered the primary sensor of mechanical load, osteoblasts, and bone specific mesenchymal stem cells also are involved. The skeletal response to mechanical signals is a complex process regulated by multiple signaling pathways including that of insulin-like growth factor-1 (IGF-1). Conditional osteocyte deletion of IGF-1 ablates the osteogenic response to mechanical loading. Similarly, osteocyte IGF-1 receptor (IGF-1R) expression is necessary for reloading-induced periosteal bone formation. Transgenic overexpression of IGF-1 in osteoblasts results in enhanced responsiveness to in vivo mechanical loading in mice, a response which is eliminated by osteoblastic conditional disruption of IGF-1 in vivo. Bone marrow derived stem cells (BMSC) from unloaded bone fail to respond to IGF-1 in vitro. IGF-1R is required for the transduction of a mechanical stimulus to downstream effectors, transduction which is lost when the IGF-1R is deleted. Although the molecular mechanisms are not yet fully elucidated, the IGF signaling pathway and its interactions with potentially interlinked signaling cascades involving integrins, the estrogen receptor, and wnt/β-catenin play an important role in regulating adaptive response of cancer bone cells to mechanical stimuli. In this review, we discuss recent advances investigating how IGF-1 and other interlinked molecules and signaling pathways regulate skeletal mechano-transduction involving different bone cells, providing an overview of the IGF-1 signaling mediated cell-specific response to mechanical stimuli. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:576-583, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Polybrene inhibits human mesenchymal stem cell proliferation during lentiviral transduction.

    Directory of Open Access Journals (Sweden)

    Paul Lin

    Full Text Available Human mesenchymal stem cells (hMSCs can be engineered to express specific genes, either for their use in cell-based therapies or to track them in vivo over long periods of time. To obtain long-term expression of these genes, a lentivirus- or retrovirus-mediated cell transduction is often used. However, given that the efficiency with these viruses is typically low in primary cells, additives such as polybrene are always used for efficient viral transduction. Unfortunately, as presented here, exposure to polybrene alone at commonly used concentratons (1-8 µg/mL negatively impacts hMSC proliferation in a dose-dependent manner as measured by CyQUANT, EdU incorporation, and cell cycle analysis. This inhibition of proliferation was observable in culture even 3 weeks after exposure. Culturing the cells in the presence of FGF-2, a potent mitogen, did not abrogate this negative effect of polybrene. In fact, the normally sharp increase in hMSC proliferation that occurs during the first days of exposure to FGF-2 was absent at 4 µg/mL or higher concentrations of polybrene. Similarly, the effect of stimulating cell proliferation under simulated hypoxic conditions was also decreased when cells were exposed to polybrene, though overall proliferation rates were higher. The negative influence of polybrene was, however, reduced when the cells were exposed to polybrene for a shorter period of time (6 hr vs 24 hr. Thus, careful evaluation should be done when using polybrene to aid in lentiviral transduction of human MSCs or other primary cells, especially when cell number is critical.

  17. TRANSDUCTION OF BACILLUS LICHENIFORMIS AND BACILLUS SUBTILIS BY EACH OF TWO PHAGES1

    Science.gov (United States)

    Taylor, Martha J.; Thorne, Curtis B.

    1963-01-01

    Taylor, Martha J. (U.S. Army Biological Laboratories, Fort Detrick, Frederick, Md.) and Curtis B. Thorne. Transduction of Bacillus licheniformis and Bacillus subtilis by each of two phages. J. Bacteriol. 86:452–461. 1963.—A second transducing bacteriophage, designated SP-15, was isolated from the same soil-sample culture filtrate that supplied the Bacillus subtilis transducing phage, SP-10, reported earlier from this laboratory. SP-10 and SP-15 differ serologically and in several other respects, but share the ability to propagate on B. subtilis W-23-Sr (streptomycin-resistant) and B. licheniformis ATCC 9945a, and to mediate general transduction in either species when propagated homologously. Attempts to transduce between the species have failed. SP-10 forms plaques readily on both W-23-Sr and 9945a; SP-15 forms minute plaques on W-23-Sr and has shown no evidence of any lytic activity on 9945a. Maximal recoveries of prototrophic colonies from mixtures of SP-10 with auxotrophs of either W-23-Sr or 9945a were obtained only when excess phage was neutralized by post-transduction treatment with specific phage antiserum. Such treatment was not necessary for maximal recovery of transductants effected by SP-15. Unlike SP-10, SP-15 propagated on W-23-Sr did not transduce B. subtilis 168 (indole−). SP-15 transduced B. licheniformis more efficiently than did SP-10. Neither phage was able to transduce B. licheniformis as efficiently as it transduced B. subtilis. The differing influences of multiplicity of infection were compared for the two phages in both species. PMID:14066421

  18. Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell

    Science.gov (United States)

    Sun, Dongya; Gao, Yifan; Hou, Dianxun; Zuo, Kuichang; Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Ren, Zhiyong Jason; Huang, Xia

    2018-04-01

    Recovery of nutrient resources from the wastewater is now an inevitable strategy to maintain the supply of both nutrient and water for our huge population. While the intensive energy consumption in conventional nutrient recovery technologies still remained as the bottleneck towards the sustainable nutrient recycle. This study proposed an enlarged microbial nutrient recovery cell (EMNRC) which was powered by the energy contained in wastewater and achieved multi-cycle nutrient recovery incorporated with in situ wastewater treatment. With the optimal recovery solution of 3 g/L NaCl and the optimal volume ratio of wastewater to recovery solution of 10:1, >89% of phosphorus and >62% of ammonium nitrogen were recovered into struvite. An extremely low water input ratio of water. It was proved the EMNRC system was a promising technology which could utilize the chemical energy contained in wastewater itself and energy-neutrally recover nutrient during the continuous wastewater purification process.

  19. Batteryless, wireless sensor powered by a sediment microbial fuel cell.

    Science.gov (United States)

    Donovan, Conrad; Dewan, Alim; Heo, Deukhyoun; Beyenal, Haluk

    2008-11-15

    Sediment microbial fuel cells (SMFCs) are considered to be an alternative renewable power source for remote monitoring. There are two main challenges to using SMFCs as power sources: 1) a SMFC produces a low potential at which most sensor electronics do not operate, and 2) a SMFC cannot provide continuous power, so energy from the SMFC must be stored and then used to repower sensor electronics intermittently. In this study, we developed a SMFC and a power management system (PMS) to power a batteryless, wireless sensor. A SMFC operating with a microbial anode and cathode, located in the Palouse River, Pullman, Washington, U.S.A., was used to demonstrate the utility of the developed system. The designed PMS stored microbial energy and then started powering the wireless sensor when the SMFC potential reached 320 mV. It continued powering until the SMFC potential dropped below 52 mV. The system was repowered when the SMFC potential increased to 320 mV, and this repowering continued as long as microbial reactions continued. We demonstrated that a microbial fuel cell with a microbial anode and cathode can be used as an effective renewable power source for remote monitoring using custom-designed electronics.

  20. Down Under – Aspects of Microbial Fuel Cell’s sewer implementation

    OpenAIRE

    Andrich, Jonas Maximilian Sven

    2017-01-01

    Increasing energy demand and simultaneous depletion of raw materials requires us to use existing resources more wisely. Microbial Fuel Cells (MFCs) recover energy from waste water while clearing it. The sewage system with its million-kilometer-length is a highly interesting field for its application. The present work is therefore dedicated to aspects of Microbial Fuel Cells’ sewer implementation. Firstly, the wastewater infrastructure was evaluated with respect to suitable implementation s...

  1. Organic acid production from starchy waste by rumen derived microbial communities

    OpenAIRE

    Ayudthaya, S. P. N.; Van De Weijer, Antonius H. P.; Van Gelder, Antonie H.; Stams, Alfons Johannes Maria; De Vos, Willem M.; Plugge, Caroline M.

    2017-01-01

    Microbiology Centennial Symposium 2017 - Exploring Microbes for the Quality of Life (Book of Abstracts) Converting organic waste to energy carriers and valuable products such as organic acids (OA) using microbial fermentation is one of the sustainable options of renewable energy. Substrate and inoculum are important factors in optimizing the fermentation. In this study, we investigated organic acid production and microbial composition shift during the fermentation of starchy (p...

  2. Effect of insulin resistance on intracellular signal transduction of vessels in diabetic

    International Nuclear Information System (INIS)

    Cen Rongguang; Wei Shaoying; Mo Xingju

    2003-01-01

    To investigate the relationship between the insulin resistance (IR) and the intracellular signal transduction of vessels, changes in fasting blood glucose (FBG), fasting insulin (FINS), triglyceride (TG), total cholesterol (TC), inositol triphosphate (IP 3 ), protein kinase C(PKC) and intracellular total calcium concentration in 31 diabetic patients were compared with those of 39 normal controls. The levels of FBG, FINS, TG and TC in diabetic patients were significantly higher than those of normal controls (P 3 and PKC in diabetic patients were significantly lower than those of normal controls (P<0.01). The results suggest that there is a causal relation between insulin resistance and abnormalities of cellular calcium metabolism and intracellular signal transduction of vessels

  3. Investigation of the charge effect on the electrochemical transduction in a quinone-based DNA sensor

    DEFF Research Database (Denmark)

    Reisberg, S.; Piro, B.; Noel, V.

    2008-01-01

    To elucidate the mechanism involved in the electrochemical transduction process of a conducting polymer-based DNA sensor, peptide nucleic acids (PNA) were used. PNA are DNA analogues having similar hybridization properties but are neutral. This allows to discriminate the electrostatic effect of D...... strands from the steric hindrance generated on the bioelectrode upon hybridization. It can be concluded that DNA conformational changes are determinant in the transduction process and that the electrostatic effect is negligible....

  4. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pathways media

  5. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  6. Lipid rafts generate digital-like signal transduction in cell plasma membranes.

    Science.gov (United States)

    Suzuki, Kenichi G N

    2012-06-01

    Lipid rafts are meso-scale (5-200 nm) cell membrane domains where signaling molecules assemble and function. However, due to their dynamic nature, it has been difficult to unravel the mechanism of signal transduction in lipid rafts. Recent advanced imaging techniques have revealed that signaling molecules are frequently, but transiently, recruited to rafts with the aid of protein-protein, protein-lipid, and/or lipid-lipid interactions. Individual signaling molecules within the raft are activated only for a short period of time. Immobilization of signaling molecules by cytoskeletal actin filaments and scaffold proteins may facilitate more efficient signal transmission from rafts. In this review, current opinions of how the transient nature of molecular interactions in rafts generates digital-like signal transduction in cell membranes, and the benefits this phenomenon provides, are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. PCB126 modulates fecal microbial fermentation of the dietary fiber inulin

    Science.gov (United States)

    Exposure to environmental pollutants can alter gut microbial populations. Short-chain fatty acids (SCFAs), produced from gut microbial fermentation of dietary fibers such as inulin, exert numerous effects on host energy metabolism. SCFAs are also linked to health promoting effects, including a red...

  8. Influence of a direct-fed microbial and xylanase enzyme on the dietary energy uptake efficiency and performance of broiler chickens.

    Science.gov (United States)

    Murugesan, Ganapathi Raj; Persia, Michael E

    2015-09-01

    Efficacy of a multi-strain direct-fed microbial product (PoultryStar(®) ME; PS) and a xylanase enzyme product on the dietary energy utilization efficiency and resulting performance in broiler chickens was evaluated. Apart from performance parameters, cecal and serum metabolites and activities of hepatic enzymes involved in energy metabolism were also determined. Ross 308 chicks were fed one of four experimental diets [control (CON), CON + PS, CON + xylanase and CON + PS + xylanase] using a 2 × 2 factorial arrangement from 1-21 days of age. Cecal proportions of propionate and butyrate, as well as total short-chain fatty acid concentration were increased (P energy uptake and hepatic energy retention. The combination additively increased the FCR, suggesting involvement of synergistic modes of actions. © 2014 Society of Chemical Industry.

  9. Comparison of Piezo-material based Energy Transduction Systems for Artificial Nanoswimmer

    Science.gov (United States)

    Nain, S.; Rathore, J. S.; Sharma, N. N.

    2018-04-01

    The energy harnessing is a process of obtaining energy from the surrounding environment and converting into electrical energy. In the last two decades, there has been a plenteous study in energy harnessing. Now a day, energy harnessing using piezoelectric materials has drawn attention of researchers due to low cost, flexibility and light weight. The benefits of piezoelectric material can be utilized by designing a self-powered device for artificial nanoswimmer. Some of the ceramics which displays the piezoelectric effect are lead-zirconate-titanate (PZT), lead-titanate (PbTiO2), lead-zirconate (PbZrO3) and Barium Titanate (BaTiO3). PZT is most extensively used piezoelectric material in the field of energy harnessing but it is brittle in nature. Lead based piezoelectric materials are toxic in nature and may not suitable for in-vivo biomedical applications. To eradicate this problem, researchers are interested in synthesizing lead free piezoelectric material such as Aluminium Nitride (AIN), Barium Titanate (BaTiO3) and Polyvinylidenefluoride (PVDF). The biocompatibility of PVDF makes it appropriate to be used for energy harnessing in human body for applications like on board powering of nanoswimmer for various disease detection and drug delivery. In this paper, a cantilever beam is being simulated in COMSOL to study electric potential generated on the surface of beam made of different piezoelectric materials such as AIN, PVDF and PZT due to fluidic pressure, which will be utilized as energy for actuation of artificial nanoswimmer. Piezo-based cantilever beams have been compared and maximum electric potential is being observed in PVDF based beam. PVDF seems most promising piezoelectric material for in-vivo biomedical application and it is readily available.

  10. CRISPR-cas-mediated phage resistance enhances horizontal gene transfer by transduction

    NARCIS (Netherlands)

    Watson, Bridget N.J.; Staals, Raymond H.J.; Fineran, Peter C.

    2018-01-01

    A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly

  11. Microbial fuel cell: A green technology

    International Nuclear Information System (INIS)

    Jong Bor Chyan; Liew Pauline Woan Ying; Muhamad Lebai Juri; Ahmad Zainuri Mohd Dzomir; Leo Kwee Wah; Mat Rasol Awang

    2010-01-01

    Microbial Fuel Cell (MFC) was developed which was able to generate bio energy continuously while consuming wastewater containing organic matters. Even though the bio energy generated is not as high as hydrogen fuel cell, the MFC demonstrated great potential in bio-treating wastewater while using it as fuel source. Thus far, the dual-ability of the MFC to generate bio energy and bio-treating organic wastewater has been examined successfully using synthetic acetate and POME wastewaters. (author)

  12. Final report for Assembling Microorganisms into Energy Converting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Ozgur

    2018-03-26

    The goal of this project was to integrate microorganisms capable of reversible energy transduction in response to changing relative humidity with non-biological materials to create hybrid energy conversion systems. While plants and many other biological organisms have developed structures that are extraordinarily effective in converting changes in relative humidity into mechanical energy, engineered energy transduction systems rarely take advantage of this powerful phenomenon. Rather than developing synthetic materials that can convert changes in relative humidity in to mechanical energy, we developed approaches to assemble bacterial spores into larger materials. These materials can convert energy from evaporation of water in dry atmospheric conditions, which we demonstrated by building energy harvesters from these materials. We have also developed experiments to investigate the interaction of water with the spore material, and to determine how this interaction imposes limits on energy conversion. In addition, we carried out theoretical calculations to investigate the limits imposed by the environmental conditions to the power available in the energy harvesting process. These calculations took into account heat and water vapor transfer in the atmosphere surrounding the spore based materials. Overall, our results suggest that biomolecular materials are promising candidates to convert energy from evaporation.

  13. Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells

    KAUST Repository

    Cusick, R. D.; Kim, Y.; Logan, B. E.

    2012-01-01

    that could be continuously regenerated with waste heat (≥40°C) and conventional technologies would allow much wider applications of salinity-gradient power production. We used reverse electrodialysis ion-exchange membrane stacks in microbial reverse

  14. Novel Microbial Electrochemical Technologies and Microorganisms for Power Generation and Desalination

    KAUST Repository

    Chehab, Noura A.

    2014-12-01

    Global increases in water demand and decreases in both the quantity and quality of fresh water resources have served as the major driving forces to develop sustainable use of water resources. One viable alternative is to explore non-traditional (impaired quality) water sources such as wastewater and seawater. The current paradigm for wastewater treatment is based on technologies that are energy intensive and fail to recover the potential resources (water and energy) in wastewater. Also, conventional desalination technologies like reverse osmosis (RO) are energy intensive. Therefore, there is a need for the development of sustainable wastewater treatment and desalination technologies for practical applications. Processes based on microbial electrochemical technologies (METs) such as microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs) hold promise for the treatment of wastewater with recovery of the inherent energy, and MDCs could be used for both desalination of seawater and energy recovery. METs use anaerobic bacteria, referred to as exoelectrogens, that are capable of transferring electrons exogenously to convert soluble organic matter present in the wastewater directly into an electrical current to produce electrical power (MFC and MDC) or biogas (MEC). In my dissertation, I investigated the three types of METs mentioned above to: 1) have a better insight on the effect of 4 oxygen intrusion on the microbial community structure and performance of air-cathode MFCs; 2) improve the desalination efficiency of air-cathode MDCs using ion exchange resins (IXRs); and 3) enrich for extremophilic exoelectrogens from the Red Sea brine pool using MECs. The findings from these studies can shape further research aimed at developing more efficient air-cathode MFCs for practical applications, a more efficient integrated IXRMDC configuration that can be used as a pre-treatment to RO, and exploring extreme environments as a

  15. Bioelectricity Production from Microalgae-Microbial Fuel Cell Technology (MMFC

    Directory of Open Access Journals (Sweden)

    da Costa Carlito

    2018-01-01

    Full Text Available Microbial fuel cell is an ecological innovative technology producing bioelectricity by utilizing microbes activity. Substituent energy is produced by changing the chemical energy to electrical energy through the catalytic reaction of microorganism. The research aims to find out the potency of bioelectricity produced by microalgae microbial fuel cell technology by utilizing the combination of tapioca wastewater and microalgae cultivation. This research is conducted through the ingredients preparation stage – microalgae culture, wastewater characterization, membrane and graphite activation, and the providing of other supporting equipment. The next stage is the MMFC arrangement, while the last one is bioelectricity measurement. The result of optimal bioelectricity production on the comparison of electrode 2 : 2, the power density is 44,33 mW/m2 on day 6, meanwhile, on that of 1 : 1, 20,18 mW/m2 power density on day 1 is obtained. It shows that bioelectricity can be produced from the combination of tapioca wastewater and microalgae culture through the microalgae-microbial fuel cell (MMFC technology.This research is expected to be a reference for the next research particularly the one that observes the utilizing of microalgae as the part of new and renewable energy sources.

  16. Effects of matrine on JAK-STAT signaling transduction pathways in ...

    African Journals Online (AJOL)

    The current study aims to investigate the effects of matrine on the JAK-STAT signaling transduction pathways in bleomycin (BLM)-induced pulmonary fibrosis (PF) and to explore its action mechanism. A total of 72 male C57BL/6 mice were randomized into the control, model, and treatment groups. PF models were ...

  17. The effect of the inner-hair-cell mediated transduction on the shape of neural tuning curves

    Science.gov (United States)

    Altoè, Alessandro; Pulkki, Ville; Verhulst, Sarah

    2018-05-01

    The inner hair cells of the mammalian cochlea transform the vibrations of their stereocilia into releases of neurotransmitter at the ribbon synapses, thereby controlling the activity of the afferent auditory fibers. The mechanical-to-neural transduction is a highly nonlinear process and it introduces differences between the frequency-tuning of the stereocilia and that of the afferent fibers. Using a computational model of the inner hair cell that is based on in vitro data, we estimated that smaller vibrations of the stereocilia are necessary to drive the afferent fibers above threshold at low (≤0.5 kHz) than at high (≥4 kHz) driving frequencies. In the base of the cochlea, the transduction process affects the low-frequency tails of neural tuning curves. In particular, it introduces differences between the frequency-tuning of the stereocilia and that of the auditory fibers resembling those between basilar membrane velocity and auditory fibers tuning curves in the chinchilla base. For units with a characteristic frequency between 1 and 4 kHz, the transduction process yields shallower neural than stereocilia tuning curves as the characteristic frequency decreases. This study proposes that transduction contributes to the progressive broadening of neural tuning curves from the base to the apex.

  18. FASEB summer research conference on signal transduction in plants. Final report, June 16, 1996--June 21, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, T.L.; Quatrano, R.S.

    1996-12-31

    This is the program from the second FASEB conference on Signal Transduction in Plants. Topic areas included the following: environmental signaling; perception and transduction of light signals; signaling in plant microbe interactions; signaling in plant pathogen interactions; cell, cell communication; cytoskeleton, plasma membrane, and cellwall continuum; signaling molecules in plant growth and development I and II. A list of participants is included.

  19. Regulation of autophagy by amino acids and MTOR-dependent signal transduction

    NARCIS (Netherlands)

    Meijer, Alfred J.; Lorin, Séverine; Blommaart, Edward F.; Codogno, Patrice

    2015-01-01

    Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins

  20. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction.

    Science.gov (United States)

    Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross

    2015-02-01

    The unique mechanoelectrochemical environment of cartilage has motivated researchers to investigate the effect of multiple biophysical cues, including mechanical, magnetic, and electrical stimulation, on chondrocyte biology. It is well established that biophysical stimuli promote chondrocyte proliferation, differentiation, and maturation within "biological windows" of defined dose parameters, including mode, frequency, magnitude, and duration of stimuli (see companion review Part I: Cellular Response). However, the underlying molecular mechanisms and signal transduction pathways activated in response to multiple biophysical stimuli remain to be elucidated. Understanding the mechanisms of biophysical signal transduction will deepen knowledge of tissue organogenesis, remodeling, and regeneration and aiding in the treatment of pathologies such as osteoarthritis. Further, this knowledge will provide the tissue engineer with a potent toolset to manipulate and control cell fate and subsequently develop functional replacement cartilage. The aim of this article is to review chondrocyte signal transduction pathways in response to mechanical, magnetic, and electrical cues. Signal transduction does not occur along a single pathway; rather a number of parallel pathways appear to be activated, with calcium signaling apparently common to all three types of stimuli, though there are different modes of activation. Current tissue engineering strategies, such as the development of "smart" functionalized biomaterials that enable the delivery of growth factors or integration of conjugated nanoparticles, may further benefit from targeting known signal transduction pathways in combination with external biophysical cues.

  1. Microbial Biotechnology 2020; microbiology of fossil fuel resources.

    Science.gov (United States)

    Head, Ian M; Gray, Neil D

    2016-09-01

    This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Discriminative clustering on manifold for adaptive transductive classification.

    Science.gov (United States)

    Zhang, Zhao; Jia, Lei; Zhang, Min; Li, Bing; Zhang, Li; Li, Fanzhang

    2017-10-01

    In this paper, we mainly propose a novel adaptive transductive label propagation approach by joint discriminative clustering on manifolds for representing and classifying high-dimensional data. Our framework seamlessly combines the unsupervised manifold learning, discriminative clustering and adaptive classification into a unified model. Also, our method incorporates the adaptive graph weight construction with label propagation. Specifically, our method is capable of propagating label information using adaptive weights over low-dimensional manifold features, which is different from most existing studies that usually predict the labels and construct the weights in the original Euclidean space. For transductive classification by our formulation, we first perform the joint discriminative K-means clustering and manifold learning to capture the low-dimensional nonlinear manifolds. Then, we construct the adaptive weights over the learnt manifold features, where the adaptive weights are calculated through performing the joint minimization of the reconstruction errors over features and soft labels so that the graph weights can be joint-optimal for data representation and classification. Using the adaptive weights, we can easily estimate the unknown labels of samples. After that, our method returns the updated weights for further updating the manifold features. Extensive simulations on image classification and segmentation show that our proposed algorithm can deliver the state-of-the-art performance on several public datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Expression of the synaptic exocytosis-regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction.

    Science.gov (United States)

    Kurokawa, Azusa; Narukawa, Masataka; Ohmoto, Makoto; Yoshimoto, Joto; Abe, Keiko; Misaka, Takumi

    2015-06-01

    Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.

  4. Second-chance signal transduction explains cooperative flagellar switching.

    Science.gov (United States)

    Zot, Henry G; Hasbun, Javier E; Minh, Nguyen Van

    2012-01-01

    The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii).

  5. Efficient transduction of neurons using Ross River glycoprotein-pseudotyped lentiviral vectors

    DEFF Research Database (Denmark)

    Jakobsson, J; Nielsen, T Tolstrup; Staflin, K

    2006-01-01

    , including the possibility to establish stable producer cell lines. After injection of RRV-LV expressing green fluorescent protein into different structures in the rat brain we found efficient transduction of both neurons and glial cells. By using two cell-type-specific promoters, neuron-specific enolase...

  6. A Biosensor for Urea from Succinimide-Modified Acrylic Microspheres Based on Reflectance Transduction

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2011-08-01

    Full Text Available New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294 for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97 with a limit of detection of 9.97 mM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5 with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods.

  7. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction.

    Science.gov (United States)

    Fisher-Adams, G; Wong, K K; Podsakoff, G; Forman, S J; Chatterjee, S

    1996-07-15

    Gene transfer vectors based on adeno-associated virus (AAV) appear promising because of their high transduction frequencies regardless of cell cycle status and ability to integrate into chromosomal DNA. We tested AAV-mediated gene transfer into a panel of human bone marrow or umbilical cord-derived CD34+ hematopoietic progenitor cells, using vectors encoding several transgenes under the control of viral and cellular promoters. Gene transfer was evaluated by (1) chromosomal integration of vector sequences and (2) analysis of transgene expression. Southern hybridization and fluorescence in situ hybridization analysis of transduced CD34 genomic DNA showed the presence of integrated vector sequences in chromosomal DNA in a portion of transduced cells and showed that integrated vector sequences were replicated along with cellular DNA during mitosis. Transgene expression in transduced CD34 cells in suspension cultures and in myeloid colonies differentiating in vitro from transduced CD34 cells approximated that predicted by the multiplicity of transduction. This was true in CD34 cells from different donors, regardless of the transgene or selective pressure. Comparisons of CD34 cell transduction either before or after cytokine stimulation showed similar gene transfer frequencies. Our findings suggest that AAV transduction of CD34+ hematopoietic progenitor cells is efficient, can lead to stable integration in a population of transduced cells, and may therefore provide the basis for safe and efficient ex vivo gene therapy of the hematopoietic system.

  8. [Oxidation of sulfur-containing substrates by aboriginal and experimentally designed microbial communities].

    Science.gov (United States)

    Pivovarova, T A; Bulaev, A G; Roshchupko, P V; Belyĭ, A V; Kondrat'eva, T F

    2012-01-01

    Aboriginal and experimental (constructed of pure microbial cultures) communities of acidophilic chemolithotrophs have been studied. The oxidation of elemental sulfur, sodium thiosulfate, and potassium tetrathionate as sole sources of energy has been monitored. The oxidation rate of the experimental community is higher as compared to the aboriginal community isolated from a flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore. The degree of oxidation of the mentioned S substrates amounts to 17.91, 68.30, and 93.94% for the experimental microbial community and to 10.71, 56.03, and 79.50% for the aboriginal community, respectively. The degree of oxidation of sulfur sulfide forms in the ore flotation concentrate is 59.15% by the aboriginal microbial community and 49.40% by the experimental microbial community. Despite a higher rate of oxidation of S substrates as a sole source of energy by the experimental microbial community, the aboriginal community oxidizes S substrates at a higher rate in the flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore, from which it was isolated. Bacterial-chemical oxidation of the flotation concentrate by the aboriginal microbial community allows for the extraction of an additional 32.3% of gold from sulfide minerals, which is by 5.7% larger compared to the yield obtained by the experimental microbial community.

  9. Microbial Communities Model Parameter Calculation for TSPA/SR

    International Nuclear Information System (INIS)

    D. Jolley

    2001-01-01

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed

  10. [The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation].

    Science.gov (United States)

    Xu, Xiao-liang; Dai, Ke-rong; Tang, Ting-ting

    2003-09-01

    To clarify the mechanisms of the signal transduction of bone morphogenetic proteins (BMPs) inducing bone formation and to provide theoretical basis for basic and applying research of BMPs. We looked up the literature of the role of Smads and related transcription factors in the signal transduction of BMPs inducing bone formation. The signal transduction processes of BMPs included: 1. BMPs combined with type II and type I receptors; 2. the type I receptor phosphorylated Smads; and 3. Smads entered the cell nucleus, interacted with transcription factors and influenced the transcription of related proteins. Smads could be divided into receptor-regulated Smads (R-Smads: Smad1, Smad2, Smad3, Smad5, Smad8 and Smad9), common-mediator Smad (co-Smad: Smad4), and inhibitory Smads (I-Smads: Smad6 and Smad7). Smad1, Smad5, Smad8, and probable Smad9 were involved in the signal transduction of BMPs. Multiple kinases, such as focal adhesion kinase (FAK), Ras-extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and Akt serine/threonine kinase were related to Smads signal transduction. Smad1 and Smad5 related with transcription factors included core binding factor A1 (CBFA1), smad-interacting protein 1 (SIP1), ornithine decarboxylase antizyme (OAZ), activating protein-1 (AP-1), xenopus ventralizing homeobox protein-2 (Xvent-2), sandostatin (Ski), antiproliferative proteins (Tob), and homeodomain-containing transcriptian factor-8 (Hoxc-8), et al. CBFA1 could interact with Smad1, Smad2, Smad3, and Smad5, so it was involved in TGF-beta and BMP-2 signal transduction, and played an important role in the bone formation. Cleidocranial dysplasia (CCD) was thought to be caused by heterozygous mutations in CBFA1. The CBFA1 knockout mice showed no osteogenesis and had maturational disturbance of chondrocytes. Smads and related transcription factors, especially Smad1, Smad5, Smad8 and CBFA1, play an important role in the signal transduction of BMPs inducing bone

  11. Frequency adjustable MEMS vibration energy harvester

    Science.gov (United States)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  12. Frequency adjustable MEMS vibration energy harvester

    International Nuclear Information System (INIS)

    Podder, P; Constantinou, P; Roy, S; Amann, A

    2016-01-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators. (paper)

  13. Graphene-Based Flexible Micrometer-Sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.

    2013-10-23

    Microbial fuel cells harvest electrical energy produced by bacteria during the natural decomposition of organic matter. We report a micrometer-sized microbial fuel cell that is able to generate nanowatt-scale power from microliters of liquids. The sustainable design is comprised of a graphene anode, an air cathode, and a polymer-based substrate platform for flexibility. The graphene layer was grown on a nickel thin film by using chemical vapor deposition at atmospheric pressure. Our demonstration provides a low-cost option to generate useful power for lab-on-chip applications and could be promising to rapidly screen and scale up microbial fuel cells for water purification without consuming excessive power (unlike other water treatment technologies).

  14. Microbial community functional change during vertebrate carrion decomposition.

    Directory of Open Access Journals (Sweden)

    Jennifer L Pechal

    Full Text Available Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects. Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition.

  15. Anaerobic microbial processes for energy conservation and biotransformation of pollutants

    NARCIS (Netherlands)

    Luz Ferreira Martins Paulo, da Lara

    2017-01-01

    Anaerobic microbial processes are commonly applied in the treatment of domestic and industrial wastewaters. Anaerobic digestion (AD) of wastewater has received a great deal of attention, but many aspects related to the complex interactions between microorganism, and how that is affected by the

  16. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna W.; Satyshur, Kenneth A.; Morales, Neydis Moreno; Forest, Katrina T. (UW)

    2016-02-01

    ABSTRACT

    Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacteriumRamlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, theR. tataouinensisbacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR fromAgrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems.

  17. Cancer classification through filtering progressive transductive support vector machine based on gene expression data

    Science.gov (United States)

    Lu, Xinguo; Chen, Dan

    2017-08-01

    Traditional supervised classifiers neglect a large amount of data which not have sufficient follow-up information, only work with labeled data. Consequently, the small sample size limits the advancement of design appropriate classifier. In this paper, a transductive learning method which combined with the filtering strategy in transductive framework and progressive labeling strategy is addressed. The progressive labeling strategy does not need to consider the distribution of labeled samples to evaluate the distribution of unlabeled samples, can effective solve the problem of evaluate the proportion of positive and negative samples in work set. Our experiment result demonstrate that the proposed technique have great potential in cancer prediction based on gene expression.

  18. Analysis and logical modeling of biological signaling transduction networks

    Science.gov (United States)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  19. Fetus Sound Stimulation: Cilia Memristor Effect of Signal Transduction

    Directory of Open Access Journals (Sweden)

    Svetlana Jankovic-Raznatovic

    2014-01-01

    Full Text Available Background. This experimental study evaluates fetal middle cerebral artery (MCA circulation after the defined prenatal acoustical stimulation (PAS and the role of cilia in hearing and memory and could explain signal transduction and memory according to cilia optical-acoustical properties. Methods. PAS was performed twice on 119 no-risk term pregnancies. We analyzed fetal MCA circulation before, after first and second PAS. Results. Analysis of the Pulsatility index basic (PIB and before PAS and Pulsatility index reactive after the first PAS (PIR 1 shows high statistical difference, representing high influence on the brain circulation. Analysis of PIB and Pulsatility index reactive after the second PAS (PIR 2 shows no statistical difference. Cilia as nanoscale structure possess magnetic flux linkage that depends on the amount of charge that has passed between two-terminal variable resistors of cilia. Microtubule resistance, as a function of the current through and voltage across the structure, leads to appearance of cilia memory with the “memristor” property. Conclusion. Acoustical and optical cilia properties play crucial role in hearing and memory processes. We suggest that fetuses are getting used to sound, developing a kind of memory patterns, considering acoustical and electromagnetically waves and involving cilia and microtubules and try to explain signal transduction.

  20. Tuning piezoresistive transduction in nanomechanical resonators by geometrical asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, J.; Sansa, M.; Lorenzoni, M.; Pérez-Murano, F., E-mail: francesc.perez@csic.es [Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Campus UAB, 08193 Bellaterra (Spain); Borrisé, X. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra Spain (Spain); San Paulo, A. [Instituto de Microelectrónica de Madrid (IMM-CSIC), 28760 Tres Cantos, Madrid (Spain)

    2015-08-17

    The effect of geometrical asymmetries on the piezoresistive transduction in suspended double clamped beam nanomechanical resonators is investigated. Tapered silicon nano-beams, fabricated using a fast and flexible prototyping method, are employed to determine how the asymmetry affects the transduced piezoresistive signal for different mechanical resonant modes. This effect is attributed to the modulation of the strain in pre-strained double clamped beams, and it is confirmed by means of finite element simulations.

  1. Microbial Electrochemistry and its Application to Energy and Environmental Issues

    Science.gov (United States)

    Hastings, Jason Thomas

    Microbial electrochemistry forms the basis of a wide range of topics from microbial fuel cells to fermentation of carbon food sources. The ability to harness microbial electron transfer processes can lead to a greener and cleaner future. This study focuses on microbial electron transfer for liquid fuel production, novel electrode materials, subsurface environments and removal of unwanted byproducts. In the first chapter, exocellular electron transfer through direct contact utilizing passive electrodes for the enhancement of bio-fuel production was tested. Through the application of microbial growth in a 2-cell apparatus on an electrode surface ethanol production was enhanced by 22.7% over traditional fermentation. Ethanol production efficiencies of close to 95% were achieved in a fraction of the time required by traditional fermentation. Also, in this chapter, the effect of exogenous electron shuttles, electrode material selection and resistance was investigated. Power generation was observed using the 2-cell passive electrode system. An encapsulation method, which would also utilize exocellular transfer of electrons through direct contact, was hypothesized for the suspension of viable cells in a conductive polymer substrate. This conductive polymer substrate could have applications in bio-fuel production. Carbon black was added to a polymer solution to test electrospun polymer conductivity and cell viability. Polymer morphology and cell viability were imaged using electron and optical microscopy. Through proper encapsulation, higher fuel production efficiencies would be achievable. Electron transfer through endogenous exocellular protein shuttles was observed in this study. Secretion of a soluble redox active exocellular protein by Clostridium sp. have been shown utilizing a 2-cell apparatus. Cyclic voltammetry and gel electrophoresis were used to show the presence of the protein. The exocellular protein is capable of reducing ferrous iron in a membrane separated

  2. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment

    KAUST Repository

    Ivanov, Ivan

    2013-10-01

    Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment for different wastewaters requires new approaches to quantify performance, and the establishment of specific procedures and parameters to characterize the outcome of fed-batch treatability tests. It is shown here that Coulombic efficiency can be used to directly calculate energy consumption relative to wastewater treatment in terms of COD removal, and that the average current, not maximum current, is a better metric to evaluate the rate of the bioelectrochemical reactions. The utility of these methods was demonstrated using simulated current profiles and actual wastewater tests. Industrial and domestic wastewaters were evaluated using small volume MECs, and different inoculation strategies. The energy needed for treatment was 2.17kWhkgCOD-1 for industrial wastewater and 2.59kWhkgCOD-1 for domestic wastewater. When these wastewaters were combined in equal amounts, the energy required was reduced to 0.63kWhkgCOD-1. Acclimation of the MEC to domestic wastewater, prior to tests with industrial wastewaters, was the easiest and most direct method to optimize MEC performance for industrial wastewater treatment. A pre-acclimated MEC accomplished the same removal (1847 ± 53 mg L-1) as reactor acclimated to only the industrial wastewater (1839 ± 57 mg L-1), but treatment was achieved in significantly less time (70 h versus 238 h). © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  3. Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion.

    Science.gov (United States)

    Xin, Xiaodong; Ma, Yingqun; Liu, Yu

    2018-05-01

    A food waste resourceful process was developed by integrating the ultra-fast hydrolysis and microbial fuel cells (MFCs) for energy and resource recovery. Food waste was first ultra-fast hydrolyzed by fungal mash rich in hydrolytic enzymes in-situ produced from food waste. After which, the separated solids were readily converted to biofertilizer, while the liquid was fed to MFCs for direct electricity generation with a conversion efficiency of 0.245 kWh/kg food waste. It was estimated that about 192.5 million kWh of electricity could be produced from the food waste annually generated in Singapore, together with 74,390 tonnes of dry biofertilizer. Compared to anaerobic digestion, the proposed approach was more environmentally friendly and economically viable in terms of both electricity conversion and process cost. It is expected that this study may lead to the paradigm shift in food waste management towards ultra-fast concurrent recovery of resource and electricity with zero-solid discharge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The third helix of the murine Hoxc8 homeodomain facilitates protein transduction in mammalian cells

    International Nuclear Information System (INIS)

    Kong, Kyoung-Ah; Gadi, Jogeswar; Park, Hyoung Woo; Bok, Jinwoong; Kim, Myoung Hee

    2008-01-01

    Previously, we have demonstrated that purified Hoxc8 homeoprotein has the ability to penetrate the cellular membrane and can be transduced efficiently into COS-7 cells. Moreover, the Hoxc8 protein is able to form a complex with DNA molecules in vitro and helps the DNA be delivered intracellularly, serving as a gene delivery vehicle. Here, we further analyzed the membrane transduction activity of Hoxc8 protein and provide the evidence that the 16 amino acid (a.a.191-206, 2.23 kDa) third helix of murine Hoxc8 protein is an efficient protein transduction domain (PTD). When the 16 amino acid peptide was fused at the carboxyl terminal of enhanced green fluorescence protein (EGFP), the fusion proteins were transduced efficiently into the primary pig fetal fibroblast cells. The transduction efficiency increased in a concentration-dependent manner up to 1 μM, and appeared to plateau above a concentration of 1 μM. When tandem multimers of PTD, EGFP-PTD(2), EGFP-PTD(3), EGFP-PTD(4), and EGFP-PTD(5), were analyzed at 500 nM of concentration, the penetrating efficiency increased in a dose-dependent manner. As the number of PTDs increased, the EGFP signal also increased, although the signal maintained plateau after EGFP-PTD(3). These results indicate that the 16 amino acid third helix is the key element responsible for the membrane transduction activity of Hoxc8 proteins, and further suggest that the small peptide could serve as a therapeutic delivery vehicle for large cargo proteins

  5. Design, Modeling, and Development of Microbial Cell Factories

    KAUST Repository

    Kodzius, Rimantas

    2014-03-26

    Using Metagenomic analysis, computational modeling, single cell and genome editing technologies, we will express desired microbial genes and their networks in suitable hosts for mass production of energy, food, and fine chemicals.

  6. Design, Modeling, and Development of Microbial Cell Factories

    KAUST Repository

    Kodzius, Rimantas; Behzad, H.; Archer, John A.C.; Bajic, Vladimir B.; Gojobori, Takashi

    2014-01-01

    Using Metagenomic analysis, computational modeling, single cell and genome editing technologies, we will express desired microbial genes and their networks in suitable hosts for mass production of energy, food, and fine chemicals.

  7. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    Science.gov (United States)

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  8. Thermodynamic and kinetic response of microbial reactions to high CO2

    Directory of Open Access Journals (Sweden)

    Qusheng Jin

    2016-11-01

    Full Text Available Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  9. Recombinant adeno-associated virus: efficient transduction of the rat VMH and clearance from blood.

    Directory of Open Access Journals (Sweden)

    Margriet A van Gestel

    Full Text Available To promote the efficient and safe application of adeno-associated virus (AAV vectors as a gene transfer tool in the central nervous system (CNS, transduction efficiency and clearance were studied for serotypes commonly used to transfect distinct areas of the brain. As AAV2 was shown to transduce only small volumes in several brain regions, this study compares the transduction efficiency of three AAV pseudotyped vectors, namely AAV2/1, AAV2/5 and AAV2/8, in the ventromedial nucleus of the hypothalamus (VMH. No difference was found between AAV2/1 and AAV2/5 in transduction efficiency. Both AAV2/1 and AAV2/5 achieved a higher transduction rate than AAV2/8. One hour after virus administration to the brain, no viral particles could be traced in blood, indicating that no or negligible numbers of virions crossed the blood-brain barrier. In order to investigate survival of AAV in blood, clearance was determined following systemic AAV administration. The half-life of AAV2/1, AAV2/2, AAV2/5 and AAV2/8 was calculated by determining virus clearance rates from blood after systemic injection. The half-life of AAV2/2 was 4.2 minutes, which was significantly lower than the half-lives of AAV2/1, AAV2/5 and AAV2/8. With a half-life of more than 11 hours, AAV2/8 particles remained detectable in blood significantly longer than AAV2/5. We conclude that application of AAV in the CNS is relatively safe as no AAV particles are detectable in blood after injection into the brain. With a half-life of 1.67 hours of AAV2/5, a systemic injection with 1×109 genomic copies of AAV would be fully cleared from blood after 2 days.

  10. Influence of energy concentration and source on the utilization of feed protein and NPN in lambs. 3. Allantoin excretion and microbial protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, M; Geissler, C; Bassuny, S M; Borowiec, F; Hoffmann, M

    1989-06-01

    In an N balance experiment with male crossbreeding lambs at an age of 3-4 months four different rations were given differing in energy concentration (high > 700 EFU/sub cattle//kg DM and low < 650 EFU/sub cattle//kg DM) and in the energy source (sugar, starch or crude fibre) with crude protein intake being almost equal. The rations contained 2% urea. Microbial protein synthesis in the rumen was assessed according to Roth and Kichgessner (1978) (1), Rys et al. (1975) (2) and Bickel-Baumann and Landis (1986) (3) on the basis of allantoin excretion in urine. The highest ruminal protein synthesis quotas were 868-921 mg protein N per kg LW/sup 0.75/ in (2). In (3) 723-766 mg protein N/kg LW /sup 0.75/ were synthesized. From the /sup 15/N labelling of the supplemented urea and the excreted allantoin it could be calculated that 26-40% of the microbial protein resulted from the urea-N of the ration. Despite a high crude protein content of the ration of between 16 and 17% in the DM and a relation of NPN: pure protein of 0.95 the utilization of the NPN in the ration was relatively high but slightly lower than the utilization of pure protein. The variants with higher energy concentration showed as a tendency higher allantoin excretion in spite of slightly lower dry matter intake and a slightly higher NPN utilization than the variants with lower energy concentration. (author).

  11. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    Science.gov (United States)

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Microbial mineral illization of montmorillonite in low-permeability oil reservoirs for microbial enhanced oil recovery.

    Science.gov (United States)

    Cui, Kai; Sun, Shanshan; Xiao, Meng; Liu, Tongjing; Xu, Quanshu; Dong, Honghong; Wang, Di; Gong, Yejing; Sha, Te; Hou, Jirui; Zhang, Zhongzhi; Fu, Pengcheng

    2018-05-11

    Microbial mineral illization has been investigated for its role in the extraction and recovery of metals from ores. Here we report our application of mineral bioillization for the microbial enhanced oil recovery in low-permeability oil reservoirs. It aimed to reveal the etching mechanism of the four Fe (III)-reducing microbial strains under anaerobic growth conditions on the Ca-montmorillonite. The mineralogical characterization of the Ca-montmorillonite was performed by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and energy dispersive spectrometer. Results showed that the microbial strains could efficiently reduce Fe (III) at an optimal rate of 71 %, and alter the crystal lattice structure of the lamella to promote the interlayer cation exchange, and to efficiently inhibit the Ca-montmorillonite swelling at an inhibitory rate of 48.9 %. Importance Microbial mineral illization is ubiquitous in the natural environment. Microbes in low-permeability reservoirs are able to enable the alteration of the structure and phase of the Fe-poor minerals by reducing Fe (III) and inhibiting clay swelling which is still poorly studied. This study aimed to reveal the interaction mechanism between Fe (III)-reducing bacterial strains and Ca-montmorillonite under anaerobic atmosphere, and to investigate the extent and rates of Fe (III) reduction and phase changes with their activities. Application of Fe (III)-reducing bacteria will provide a new way to inhibit clay swelling, to elevate reservoir permeability, and to reduce pore throat resistance after water flooding for enhanced oil recovery in low-permeability reservoirs. Copyright © 2018 American Society for Microbiology.

  13. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis

    International Nuclear Information System (INIS)

    Mol, J.; Jenkins, G.; Schäfer, E.; Weiss, D.

    1996-01-01

    Anthocyanin pigments provide fruits and flowers with their bright red and blue colors and are induced in vegetative tissues by various signals. The biosynthetic pathway probably represents one of the best‐studied examples of higher plant secondary metabolism. It has attracted much attention of plant geneticists because of the dispensable nature of the compounds it produces. Not unexpectedly, several excellent reviews on anthocyanin biosynthesis have been published over the last 5 years (Dooner et al., 1991; Martin and Gerats, 1993a, 1993b; Koes et al., 1994; Holton and Cornish, 1995). These reviews emphasize the late steps of pigment biosynthesis rather than the early and intermediate events of signal perception and transduction. This review is broader and not only covers the identification of components of the anthocyanin signal perception/transduction networks but also provides a description of our current understanding of how they evoke the responses that they do. Progress has derived from a combination of biochemical, molecular and genetic studies. We discuss a range of relevant research to highlight the different experimental approaches being used and the diverse biological systems under investigation. (author)

  14. Sensory cilia and integration of signal transduction in human health and disease

    DEFF Research Database (Denmark)

    Christensen, Søren T; Pedersen, Lotte B; Schneider, Linda

    2007-01-01

    The primary cilium is a hallmark of mammalian tissue cells. Recent research has shown that these organelles display unique sets of selected signal transduction modules including receptors, ion channels, effector proteins and transcription factors that relay chemical and physical stimuli from the ...

  15. Antimicrobial Materials for Advanced Microbial Control in Spacecraft Water Systems

    Science.gov (United States)

    Birmele, Michele; Caro, Janicce; Newsham, Gerard; Roberts, Michael; Morford, Megan; Wheeler, Ray

    2012-01-01

    Microbial detection, identification, and control are essential for the maintenance and preservation of spacecraft water systems. Requirements set by NASA put limitations on the energy, mass, materials, noise, cost, and crew time that can be devoted to microbial control. Efforts are being made to attain real-time detection and identification of microbial contamination in microgravity environments. Research for evaluating technologies for capability enhancement on-orbit is currently focused on the use of adenosine triphosphate (ATP) analysis for detection purposes and polymerase chain reaction (peR) for microbial identification. Additional research is being conducted on how to control for microbial contamination on a continual basis. Existing microbial control methods in spacecraft utilize iodine or ionic silver biocides, physical disinfection, and point-of-use sterilization filters. Although these methods are effective, they require re-dosing due to loss of efficacy, have low human toxicity thresholds, produce poor taste, and consume valuable mass and crew time. Thus, alternative methods for microbial control are needed. This project also explores ultraviolet light-emitting diodes (UV-LEDs), surface passivation methods for maintaining residual biocide levels, and several antimicrobial materials aimed at improving current microbial control techniques, as well as addressing other materials presently under analysis and future directions to be pursued.

  16. Synthetic microbial ecology and the dynamic interplay between microbial genotypes.

    Science.gov (United States)

    Dolinšek, Jan; Goldschmidt, Felix; Johnson, David R

    2016-11-01

    Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.

  17. The integrated microbial genome resource of analysis.

    Science.gov (United States)

    Checcucci, Alice; Mengoni, Alessio

    2015-01-01

    Integrated Microbial Genomes and Metagenomes (IMG) is a biocomputational system that allows to provide information and support for annotation and comparative analysis of microbial genomes and metagenomes. IMG has been developed by the US Department of Energy (DOE)-Joint Genome Institute (JGI). IMG platform contains both draft and complete genomes, sequenced by Joint Genome Institute and other public and available genomes. Genomes of strains belonging to Archaea, Bacteria, and Eukarya domains are present as well as those of viruses and plasmids. Here, we provide some essential features of IMG system and case study for pangenome analysis.

  18. Electricity production and microbial characterization of thermophilic microbial fuel cells.

    Science.gov (United States)

    Dai, Kun; Wen, Jun-Li; Zhang, Fang; Ma, Xi-Wen; Cui, Xiang-Yu; Zhang, Qi; Zhao, Ting-Jia; Zeng, Raymond J

    2017-11-01

    Thermophilic microbial fuel cell (TMFC) offers many benefits, but the investigations on the diversity of exoelectrogenic bacteria are scarce. In this study, a two-chamber TMFC was constructed using ethanol as an electron donor, and the microbial dynamics were analyzed by high-throughput sequencing and 16S rRNA clone-library sequencing. The open-circuit potential of TMFC was approximately 650mV, while the maximum voltage was around 550mV. The maximum power density was 437mW/m 2 , and the columbic efficiency in this work was 20.5±6.0%. The Firmicutes bacteria, related to the uncultured bacterium clone A55_D21_H_B_C01 with a similarity of 99%, accounted for 90.9% of all bacteria in the TMFC biofilm. This unknown bacterium has the potential to become a new thermophilic exoelectrogenic bacterium that is yet to be cultured. The development of TMFC-involved biotechnologies will be beneficial for the production of valuable chemicals and generation of energy in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Quantifying electron fluxes in methanogenic microbial communities

    NARCIS (Netherlands)

    Junicke, H.

    2015-01-01

    Anaerobic digestion is a widely applied process in which close interactions between different microbial groups result in the formation of renewable energy in the form of biogas. Nevertheless, the regulatory mechanisms of the electron transfer between acetogenic bacteria and methanogenic archaea in

  20. Molecular mechanisms of root gravity sensing and signal transduction.

    Science.gov (United States)

    Strohm, Allison K; Baldwin, Katherine L; Masson, Patrick H

    2012-01-01

    Plants use gravity as a guide to direct their roots down into the soil to anchor themselves and to find resources needed for growth and development. In higher plants, the columella cells of the root tip form the primary site of gravity sensing, and in these cells the sedimentation of dense, starch-filled plastids (amyloplasts) triggers gravity signal transduction. This generates an auxin gradient across the root cap that is transmitted to the elongation zone where it promotes differential cell elongation, allowing the root to direct itself downward. It is still not well understood how amyloplast sedimentation leads to auxin redistribution. Models have been proposed to explain how mechanosensitive ion channels or ligand-receptor interactions could connect these events. Although their roles are still unclear, possible second messengers in this process include protons, Ca(2+), and inositol 1,4,5-triphosphate. Upon gravistimulation, the auxin efflux facilitators PIN3 and PIN7 relocalize to the lower side of the columella cells and mediate auxin redistribution. However, evidence for an auxin-independent secondary mechanism of gravity sensing and signal transduction suggests that this physiological process is quite complex. Furthermore, plants must integrate a variety of environmental cues, resulting in multifaceted relationships between gravitropism and other directional growth responses such as hydro-, photo-, and thigmotropism. Copyright © 2011 Wiley Periodicals, Inc.

  1. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy.

    Science.gov (United States)

    Rittmann, Bruce E; Krajmalnik-Brown, Rosa; Halden, Rolf U

    2008-08-01

    Microorganisms can produce renewable energy in large quantities and without damaging the environment or disrupting food supply. The microbial communities must be robust and self-stabilizing, and their essential syntrophies must be managed. Pre-genomic, genomic and post-genomic tools can provide crucial information about the structure and function of these microbial communities. Applying these tools will help accelerate the rate at which microbial bioenergy processes move from intriguing science to real-world practice.

  2. Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies

    Science.gov (United States)

    Schievano, Andrea; Colombo, Alessandra; Grattieri, Matteo; Trasatti, Stefano P.; Liberale, Alessandro; Tremolada, Paolo; Pino, Claudio; Cristiani, Pierangela

    2017-02-01

    A new type of floating microbial fuel cell (fMFC) was developed for power supply of remote environmental sensors and data transmission. Ten operating fMFCs generated a cell potential in the range 100-800 mV depending on the external resistance applied. Power production peaked around 3-3.5 mW (power density of 22-28 mW m-2 cathode) after about 20-30 days of start-up period. The average of daily electrical energy harvested ranged between 10 and 35 mWh/d. Long-term performances were ensured in the presence of dense rice plants (Oryza Sativa). A power management system, based on a step-up DC/DC converter and a low-power data transmission system via SIGFOX™ technology, have been set up for the fMFCs. The tested fMFCs systems allowed to: i) harvest produced energy, ii) supply electronic devices (intermittent LED-light and a buzzer); iii) transmit remote data at low speed (three message of 12 bites each, in 6 s). Several 'floating garden' MFCs were set in the context of demonstrative events at EXPO2015 world exposition held in Milan between May-October 2015. Some of the 'floating garden' MFCs were operating for more than one year.

  3. FLT3 ligand preserves the uncommitted CD34+CD38- progenitor cells during cytokine prestimulation for retroviral transduction

    DEFF Research Database (Denmark)

    Nielsen, S D; Husemoen, L L; Sørensen, T U

    2000-01-01

    for transduction of CD34+ cells. The effect of cytokine prestimulation on transduction efficiency and the population of uncommitted CD34+CD38- cells was determined. CD34+ cells harvested from umbilical cord blood were kept in suspension cultures and stimulated with combinations of the cytokines stem cell factor......Before stem cell gene therapy can be considered for clinical applications, problems regarding cytokine prestimulation remain to be solved. In this study, a retroviral vector carrying the genes for the enhanced version of green fluorescent protein (EGFP) and neomycin resistance (neo(r)) was used...... in a higher percentage of cells than the EGFP gene, but there seemed to be a positive correlation between expression of the two genes. The effect of cytokine prestimulation was therefore monitored using EGFP as marker for transduction. When SCF was compared to SCF in combination with more potent cytokines...

  4. Statolith sedimentation kinetics and force transduction to the cortical endoplasmic reticulum in gravity-sensing Arabidopsis columella cells.

    Science.gov (United States)

    Leitz, Guenther; Kang, Byung-Ho; Schoenwaelder, Monica E A; Staehelin, L Andrew

    2009-03-01

    The starch statolith hypothesis of gravity sensing in plants postulates that the sedimentation of statoliths in specialized statocytes (columella cells) provides the means for converting the gravitational potential energy into a biochemical signal. We have analyzed the sedimentation kinetics of statoliths in the central S2 columella cells of Arabidopsis thaliana. The statoliths can form compact aggregates with gap sizes between statoliths approaching sedimentation phase, the statoliths tend to move at a distance to the cortical endoplasmic reticulum (ER) boundary and interact only transiently with the ER. Statoliths moved by laser tweezers against the ER boundary experience an elastic lift force upon release from the optical trap. High-resolution electron tomography analysis of statolith-to-ER contact sites indicate that the weight of statoliths is sufficient to locally deform the ER membranes that can potentially activate mechanosensitive ion channels. We suggest that in root columella cells, the transduction of the kinetic energy of sedimenting statoliths into a biochemical signal involves a combination of statolith-driven motion of the cytosol, statolith-induced deformation of the ER membranes, and a rapid release of kinetic energy from the ER during reorientation to activate mechanosensitive sites within the central columella cells.

  5. Performance of Microbial Fuel Cell for Wastewater Treatment and Electricity Generation

    Directory of Open Access Journals (Sweden)

    Z Yavari

    2013-06-01

    Full Text Available Renewable energy will have an important role as a resource of energy in the future. Microbial fuel cell (MFC is a promising method to obtain electricity from organic matter andwastewater treatment simultaneously. In a pilot study, use of microbial fuel cell for wastewater treatment and electricity generation investigated. The bacteria of ruminant used as inoculums. Synthetic wastewater used at different organic loading rate. Hydraulic retention time was aneffective factor in removal of soluble COD and more than 49% removed. Optimized HRT to achieve the maximum removal efficiency and sustainable operation could be regarded 1.5 and 2.5 hours. Columbic efficiency (CE affected by organic loading rate (OLR and by increasing OLR, CE reduced from 71% to 8%. Maximum voltage was 700mV. Since the microbial fuel cell reactor considered as an anaerobic process, it may be an appropriate alternative for wastewater treatment

  6. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    Science.gov (United States)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-10-21

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  7. Salinity-gradient energy driven microbial electrosynthesis of hydrogen peroxide

    DEFF Research Database (Denmark)

    Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng

    2017-01-01

    Hydrogen peroxide (H2O2) as a strong oxidant, is widely used in various chemical industries and environmental remediation processes. In this study, we developed an innovative method for cost-effective production of H2O2 by using a microbial reverse-electrodialysis electrolysis cell (MREC). In the......Hydrogen peroxide (H2O2) as a strong oxidant, is widely used in various chemical industries and environmental remediation processes. In this study, we developed an innovative method for cost-effective production of H2O2 by using a microbial reverse-electrodialysis electrolysis cell (MREC......). In the MREC, electrical potential generated by the exoelectrogens and the salinity-gradient between salt and fresh water were utilized to drive the high-rate H2O2 production. Operational parameters such as air flow rate, pH, cathodic potential, flow rate of salt and fresh water were investigated. The optimal...... H2O2 production was observed at salt and fresh water flow rate of 0.5 mL min−1, air flow rate of 12–20 mL min−1, cathode potential of −0.485 ± 0.025 V (vs Ag/AgCl). The maximum H2O2 accumulated concentration of 778 ± 11 mg L−1 was obtained at corresponding production rate of 11.5 ± 0.5 mg L−1 h−1...

  8. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  9. Simultaneous efficient removal of oxyfluorfen with electricity generation in a microbial fuel cell and its microbial community analysis.

    Science.gov (United States)

    Zhang, Qinghua; Zhang, Lei; Wang, Han; Jiang, Qinrui; Zhu, Xiaoyu

    2018-02-01

    The performance of a microbial fuel cell (MFC) to degrade oxyfluorfen was investigated. Approximately 77% of 50 mg/L oxyfluorfen was degraded within 24 h by anodic biofilm. The temperature, pH, and initial oxyfluorfen concentration had a significant effect on oxyfluorfen degrading, and a maximum degradation rate of 94.95% could theoretically be achieved at 31.96 °C, a pH of 7.65, and an initial oxyfluorfen concentration of 120.05 mg/L. Oxyfluorfen was further catabolized through various microbial metabolism pathways. Moreover, the anodic biofilm exhibited multiple catabolic capacities to 4-nitrophenol, chloramphenicol, pyraclostrobin, and sulfamethoxazole. Microbial community analysis indicated that functional bacteria Arcobacter, Acinetobacter, Azospirillum, Azonexus, and Comamonas were the predominant genera in the anodic biofilm. In terms of the efficient removal of various organic compounds and energy recovery, the MFC seemed to be a promising approach for the treatment of environmental contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. MEMS fabricated energy harvesting device with 2D resonant structure

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Wang, Fei; Triches, Marco

    This paper reports on a MEMS energy harvester able to generate power from two perpendicular ambient vibration directions. CYTOP polymer is used both as the electret material for electrostatic transduction and as a bonding interface for low-temperature wafer bonding. With final chip size of ~1 cm2......, an output power of 32.5 nW is reached with an external load of 17 MΩ, under a harmonic source motion with acceleration RMS amplitude 0.03 g (0.3 m/s2) and frequency 179 Hz.......This paper reports on a MEMS energy harvester able to generate power from two perpendicular ambient vibration directions. CYTOP polymer is used both as the electret material for electrostatic transduction and as a bonding interface for low-temperature wafer bonding. With final chip size of ~1 cm2...

  11. Microbial activity in bentonite buffers. Literature study

    Energy Technology Data Exchange (ETDEWEB)

    Ratto, M.; Itavaara, M.

    2012-07-01

    The proposed disposal concept for high-level radioactive wastes involves storing the wastes underground in copper-iron containers embedded in buffer material of compacted bentonite. Hydrogen sulphide production by sulphate-reducing prokaryotes is a potential mechanism that could cause corrosion of waste containers in repository conditions. The prevailing conditions in compacted bentonite buffer will be harsh. The swelling pressure is 7-8 MPa, the amount of free water is low and the average pore and pore throat diameters are small. This literature study aims to assess the potential of microbial activity in bentonite buffers. Literature on the environmental limits of microbial life in extreme conditions and the occurrence of sulphatereducing prokaryotes in extreme environments is reviewed briefly and the results of published studies characterizing microbes and microbial processes in repository conditions or in relevant subsurface environments are presented. The presence of bacteria, including SRBs, has been confirmed in deep groundwater and bentonite-based materials. Sulphate reducers have been detected in various high-pressure environments, and sulphate-reduction based on hydrogen as an energy source is considered a major microbial process in deep subsurface environments. In bentonite, microbial activity is strongly suppressed, mainly due to the low amount of free water and small pores, which limit the transport of microbes and nutrients. Spore-forming bacteria have been shown to survive in compacted bentonite as dormant spores, and they are able to resume a metabolically active state after decompaction. Thus, microbial sulphide production may increase in repository conditions if the dry density of the bentonite buffer is locally reduced. (orig.)

  12. Microbial electricity generation enhances decabromodiphenyl ether (BDE-209 degradation.

    Directory of Open Access Journals (Sweden)

    Yonggang Yang

    Full Text Available Due to environmental persistence and biotoxicity of polybrominated diphenyl ethers (PBDEs, it is urgent to develop potential technologies to remediate PBDEs. Introducing electrodes for microbial electricity generation to stimulate the anaerobic degradation of organic pollutants is highly promising for bioremediation. However, it is still not clear whether the degradation of PBDEs could be promoted by this strategy. In this study, we hypothesized that the degradation of PBDEs (e.g., BDE-209 would be enhanced under microbial electricity generation condition. The functional compositions and structures of microbial communities in closed-circuit microbial fuel cell (c-MFC and open-circuit microbial fuel cell (o-MFC systems for BDE-209 degradation were detected by a comprehensive functional gene array, GeoChip 4.0, and linked with PBDE degradations. The results indicated that distinctly different microbial community structures were formed between c-MFCs and o-MFCs, and that lower concentrations of BDE-209 and the resulting lower brominated PBDE products were detected in c-MFCs after 70-day performance. The diversity and abundance of a variety of functional genes in c-MFCs were significantly higher than those in o-MFCs. Most genes involved in chlorinated solvent reductive dechlorination, hydroxylation, methoxylation and aromatic hydrocarbon degradation were highly enriched in c-MFCs and significantly positively correlated with the removal of PBDEs. Various other microbial functional genes for carbon, nitrogen, phosphorus and sulfur cycling, as well as energy transformation process, were also significantly increased in c-MFCs. Together, these results suggest that PBDE degradation could be enhanced by introducing the electrodes for microbial electricity generation and by specifically stimulating microbial functional genes.

  13. Characterizing microbial diversity and damage in mural paintings.

    Science.gov (United States)

    Rosado, Tânia; Mirão, José; Candeias, António; Caldeira, Ana Teresa

    2015-02-01

    Mural paintings are some of the oldest and most important cultural expressions of mankind and play an important role for the understanding of societies and civilizations. These cultural assets have high economic and cultural value and therefore their degradation has social and economic impact. The present work presents a novel microanalytical approach to understand the damages caused by microbial communities in mural paintings. This comprises the characterization and identification of microbial diversity and evaluation of damage promoted by their biological activity. Culture-dependent methods and DNA-based approaches like denaturing gradient gel electrophoresis (DGGE) and pyrosequencing are important tools in the isolation and identification of the microbial communities allowing characterization of the biota involved in the biodeterioration phenomena. Raman microspectrometry, infrared spectrometry, and variable pressure scanning electron microscopy coupled with energy-dispersive X-ray spectrometry are also useful tools for evaluation of the presence of microbial contamination and detection of the alteration products resulting from metabolic activity of the microorganisms. This study shows that the degradation status of mural paintings can be correlated to the presence of metabolically active microorganisms.

  14. Microbial ecology-based engineering of Microbial Electrochemical Technologies.

    Science.gov (United States)

    Koch, Christin; Korth, Benjamin; Harnisch, Falk

    2018-01-01

    Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction

    Directory of Open Access Journals (Sweden)

    Kinnamon Sue C

    2001-04-01

    Full Text Available Abstract Background Taste receptor cells are responsible for transducing chemical stimuli into electrical signals that lead to the sense of taste. An important second messenger in taste transduction is IP3, which is involved in both bitter and sweet transduction pathways. Several components of the bitter transduction pathway have been identified, including the T2R/TRB taste receptors, phospholipase C β2, and the G protein subunits α-gustducin, β3, and γ13. However, the identity of the IP3 receptor subtype in this pathway is not known. In the present study we used immunocytochemistry on rodent taste tissue to identify the IP3 receptors expressed in taste cells and to examine taste bud expression patterns for IP3R3. Results Antibodies against Type I, II, and III IP3 receptors were tested on sections of rat and mouse circumvallate papillae. Robust cytoplasmic labeling for the Type III IP3 receptor (IP3R3 was found in a large subset of taste cells in both species. In contrast, little or no immunoreactivity was seen with antibodies against the Type I or Type II IP3 receptors. To investigate the potential role of IP3R3 in bitter taste transduction, we used double-label immunocytochemistry to determine whether IP3R3 is expressed in the same subset of cells expressing other bitter signaling components. IP3R3 immunoreactive taste cells were also immunoreactive for PLCβ2 and γ13. Alpha-gustducin immunoreactivity was present in a subset of IP3R3, PLCβ2, and γ13 positive cells. Conclusions IP3R3 is the dominant form of the IP3 receptor expressed in taste cells and our data suggest it plays an important role in bitter taste transduction.

  16. Improving the cathode of a microbial fuel cell for efficient electricity production

    NARCIS (Netherlands)

    Heijne, ter A.

    2010-01-01

    The worldwide demand for energy is increasing. At the same time, energy rich wastewaters are currently purified by oxygen supply, which costs a lot of energy. The Microbial Fuel Cell is a new technology that offers advantages in both directions: it produces electricity while purifying wastewaters.

  17. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation

    Science.gov (United States)

    2012-07-01

    Std. Z39.18 Victoria Seewaldt, M.D. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation Duke University Durham...attomole- zeptomole range. Internal dilution curves insure a high-dynamic calibration range. DU -26 8L DU -26 6L DU -29 5R DU -22 9.2 L DU...3: Nanobiosensor technology is translated to test for pathway deregulation in RPFNA cytology obtained from 10 high-risk women with cytological

  18. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Science.gov (United States)

    Larsen, Peter; Gilbert, Jack

    2013-01-01

    In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm.) from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  19. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction

    NARCIS (Netherlands)

    Green, J.; Nusse, R.; van Amerongen, R.

    2014-01-01

    Receptor tyrosine kinases of the Ryk and Ror families were initially classified as orphan receptors because their ligands were unknown. They are now known to contain functional extracellular Wnt-binding domains and are implicated in Wnt-signal transduction in multiple species. Although their

  20. The sugarcane signal transduction (SUCAST catalogue: prospecting signal transduction in sugarcane

    Directory of Open Access Journals (Sweden)

    Glaucia Mendes Souza

    2001-12-01

    Full Text Available EST sequencing has enabled the discovery of many new genes in a vast array of organisms, and the utility of this approach to the scientific community is greatly increased by the establishment of fully annotated databases. The present study aimed to identify sugarcane ESTs sequenced in the sugarcane expressed sequence tag (SUCEST project (http://sucest.lad.ic.unicamp.br that corresponded to signal transduction components. We also produced a sugarcane signal transduction (SUCAST catalogue (http://sucest.lad.ic.unicamp.br/private/mining-reports/QG/QG-mining.htm that covered the main categories and pathways. Expressed sequence tags (ESTs encoding enzymes for hormone (gibberellins, ethylene, auxins, abscisic acid and jasmonic acid biosynthetic pathways were found and tissue specificity was inferred from their relative frequency of occurrence in the different libraries. Whenever possible, transducers of hormones and plant peptide signaling were catalogued to the respective pathway. Over 100 receptors were found in sugarcane, which contains a large family of Ser/Thr kinase receptors and also photoreceptors, histidine kinase receptors and their response regulators. G-protein and small GTPases were analyzed and compared to known members of these families found in mammalian and plant systems. Major kinase and phosphatase pathways were mapped, with special attention being given to the MAP kinase and the inositol pathway, both of which are well known in plants.O sequenciamento de ESTs (etiquetas de sequencias transcritas tem possibilitado a descoberta de muitos novos genes em uma ampla variedade de organismos. Um aumento do aproveitamento desta informação pela comunidade científica tem sido possível graças ao desenvolvimento de base de dados contendo seqüências completamente anotadas. O trabalho aqui relatado teve como objetivo a identificação de ESTs de cana de açúcar seqüenciadas através do projeto SUCEST (http://sucest.lad.ic. unicamp.br que

  1. Gastrointestinal microbial ecology and its health benefits in Dogs

    Directory of Open Access Journals (Sweden)

    K.B. Kore

    2010-06-01

    Full Text Available Gastrointestinal microbial balance is the most important prerequisite for normal functions of digestive system, physiological and immunological homeostasis in dogs as well as in other animals. It helps in prevention of pathogenic colonization, provides energy through SCFA by nutrient breakdown, and improves mineral-vitamin supply to host, augment host immune status. Hence, it is imperative to explore the potential means to improve the gastrointestinal microbial diversity which in turns boost up dog health. [Vet. World 2010; 3(3.000: 140-141

  2. Decision Aggregation in Distributed Classification by a Transductive Extension of Maximum Entropy/Improved Iterative Scaling

    Directory of Open Access Journals (Sweden)

    George Kesidis

    2008-06-01

    Full Text Available In many ensemble classification paradigms, the function which combines local/base classifier decisions is learned in a supervised fashion. Such methods require common labeled training examples across the classifier ensemble. However, in some scenarios, where an ensemble solution is necessitated, common labeled data may not exist: (i legacy/proprietary classifiers, and (ii spatially distributed and/or multiple modality sensors. In such cases, it is standard to apply fixed (untrained decision aggregation such as voting, averaging, or naive Bayes rules. In recent work, an alternative transductive learning strategy was proposed. There, decisions on test samples were chosen aiming to satisfy constraints measured by each local classifier. This approach was shown to reliably correct for class prior mismatch and to robustly account for classifier dependencies. Significant gains in accuracy over fixed aggregation rules were demonstrated. There are two main limitations of that work. First, feasibility of the constraints was not guaranteed. Second, heuristic learning was applied. Here, we overcome these problems via a transductive extension of maximum entropy/improved iterative scaling for aggregation in distributed classification. This method is shown to achieve improved decision accuracy over the earlier transductive approach and fixed rules on a number of UC Irvine datasets.

  3. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Science.gov (United States)

    Graw, Michael F.; D'Angelo, Grace; Borchers, Matthew; Thurber, Andrew R.; Johnson, Joel E.; Zhang, Chuanlun; Liu, Haodong; Colwell, Frederick S.

    2018-01-01

    The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics. PMID:29696012

  4. A functional TOC complex contributes to gravity signal transduction in Arabidopsis.

    Science.gov (United States)

    Strohm, Allison K; Barrett-Wilt, Greg A; Masson, Patrick H

    2014-01-01

    Although plastid sedimentation has long been recognized as important for a plant's perception of gravity, it was recently shown that plastids play an additional function in gravitropism. The Translocon at the Outer envelope membrane of Chloroplasts (TOC) complex transports nuclear-encoded proteins into plastids, and a receptor of this complex, Toc132, was previously hypothesized to contribute to gravitropism either by directly functioning as a gravity signal transducer or by indirectly mediating the plastid localization of a gravity signal transducer. Here we show that mutations in multiple genes encoding TOC complex components affect gravitropism in a genetically sensitized background and that the cytoplasmic acidic domain of Toc132 is not required for its involvement in this process. Furthermore, mutations in TOC132 enhance the gravitropic defect of a mutant whose amyloplasts lack starch. Finally, we show that the levels of several nuclear-encoded root proteins are altered in toc132 mutants. These data suggest that the TOC complex indirectly mediates gravity signal transduction in Arabidopsis and support the idea that plastids are involved in gravitropism not only through their ability to sediment but also as part of the signal transduction mechanism.

  5. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    International Nuclear Information System (INIS)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M.

    2014-01-01

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8

  6. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  7. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability

    International Nuclear Information System (INIS)

    Li Huan; Jin Yiying; Mahar, Rasool Bux; Wang Zhiyu; Nie Yongfeng

    2009-01-01

    Ultrasonic treatment can disintegrate sludge, enhance microbial activity and improve sludge dewaterability at different energy inputs. To find their relationship, the three phenomena during ultrasonic treatment were investigated synchronously, and an experimental model was established to describe the process of ultrasonic sludge disintegration. Analysis results showed that the changes of sludge microbial activity and dewaterability were dependent on sludge disintegration degree during ultrasonic treatment. When sludge disintegration degree was lower than 20%, sludge flocs were disintegrated into micro-floc aggregates and the microbial activity increased over 20%. When sludge disintegration degree was over 40%, most cells were destroyed at different degree, and sludge activity decreased drastically. Only when sludge disintegration degree was 2-5%, sludge dewaterability was improved with the conditioning of FeCl 3 . It was also found that the sonication with low density and long duration was more efficient than sonication with high density and short duration at the same energy input for sludge disintegration, and a transmutative power function model can be used to describe the process of ultrasonic disintegration

  8. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability.

    Science.gov (United States)

    Huan, Li; Yiying, Jin; Mahar, Rasool Bux; Zhiyu, Wang; Yongfeng, Nie

    2009-01-30

    Ultrasonic treatment can disintegrate sludge, enhance microbial activity and improve sludge dewaterability at different energy inputs. To find their relationship, the three phenomena during ultrasonic treatment were investigated synchronously, and an experimental model was established to describe the process of ultrasonic sludge disintegration. Analysis results showed that the changes of sludge microbial activity and dewaterability were dependent on sludge disintegration degree during ultrasonic treatment. When sludge disintegration degree was lower than 20%, sludge flocs were disintegrated into micro-floc aggregates and the microbial activity increased over 20%. When sludge disintegration degree was over 40%, most cells were destroyed at different degree, and sludge activity decreased drastically. Only when sludge disintegration degree was 2-5%, sludge dewaterability was improved with the conditioning of FeCl(3). It was also found that the sonication with low density and long duration was more efficient than sonication with high density and short duration at the same energy input for sludge disintegration, and a transmutative power function model can be used to describe the process of ultrasonic disintegration.

  9. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Directory of Open Access Journals (Sweden)

    Peter Larsen

    Full Text Available In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm. from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  10. Unrestricted Hepatocyte Transduction with Adeno-Associated Virus Serotype 8 Vectors in Mice

    Science.gov (United States)

    Nakai, Hiroyuki; Fuess, Sally; Storm, Theresa A.; Muramatsu, Shin-ichi; Nara, Yuko; Kay, Mark A.

    2005-01-01

    Recombinant adeno-associated virus (rAAV) vectors can mediate long-term stable transduction in various target tissues. However, with rAAV serotype 2 (rAAV2) vectors, liver transduction is confined to only a small portion of hepatocytes even after administration of extremely high vector doses. In order to investigate whether rAAV vectors of other serotypes exhibit similar restricted liver transduction, we performed a dose-response study by injecting mice with β-galactosidase-expressing rAAV1 and rAAV8 vectors via the portal vein. The rAAV1 vector showed a blunted dose-response similar to that of rAAV2 at high doses, while the rAAV8 vector dose-response remained unchanged at any dose and ultimately could transduce all the hepatocytes at a dose of 7.2 × 1012 vector genomes/mouse without toxicity. This indicates that all hepatocytes have the ability to process incoming single-stranded vector genomes into duplex DNA. A single tail vein injection of the rAAV8 vector was as efficient as portal vein injection at any dose. In addition, intravascular administration of the rAAV8 vector at a high dose transduced all the skeletal muscles throughout the body, including the diaphragm, the entire cardiac muscle, and substantial numbers of cells in the pancreas, smooth muscles, and brain. Thus, rAAV8 is a robust vector for gene transfer to the liver and provides a promising research tool for delivering genes to various target organs. In addition, the rAAV8 vector may offer a potential therapeutic agent for various diseases affecting nonhepatic tissues, but great caution is required for vector spillover and tight control of tissue-specific gene expression. PMID:15596817

  11. Energy harvesting from organic liquids in micro-sized microbial fuel cells

    KAUST Repository

    Mink, J.E.

    2014-03-07

    Micro-sized microbial fuel cells (MFCs) are miniature energy harvesters that use bacteria to convert biomass from liquids into usable power. The key challenge is transitioning laboratory test beds into devices capable of producing high power using readily available fuel sources. Here, we present a pragmatic step toward advancing MFC applications through the fabrication of a uniquely mobile and inexpensive micro-sized device that can be fueled with human saliva. The 25-ll MFC was fabricated with graphene, a two-dimensional atomic crystal-structured material, as an anode for efficient current generation and with an air cathode for enabling the use of the oxygen present in air, making its operation completely mobile and free of the need for laboratory chemicals. With saliva as a fuel, the device produced higher current densities (1190 Am-3) than any previous aircathode micro-sized MFCs. The use of the graphene anode generated 40 times more power than that possible using a carbon cloth anode. Additional tests were performed using acetate, a conventional organic material, at high organic loadings that were comparable to those in saliva, and the results demonstrated a linear relationship between the organic loading and current. These findings open the door to saliva-powered applications of this fuel cell technology for Lab-on-a-Chip devices or portable point-of-care diagnostic devices. 2014 Nature Publishing Group All rights reserved 1884-4057/14.

  12. Microbial syntrophy: interaction for the common good.

    Science.gov (United States)

    Morris, Brandon E L; Henneberger, Ruth; Huber, Harald; Moissl-Eichinger, Christine

    2013-05-01

    Classical definitions of syntrophy focus on a process, performed through metabolic interaction between dependent microbial partners, such as the degradation of complex organic compounds under anoxic conditions. However, examples from past and current scientific discoveries suggest that a new, simple but wider definition is necessary to cover all aspects of microbial syntrophy. We suggest the term 'obligately mutualistic metabolism', which still focuses on microbial metabolic cooperation but also includes an ecological aspect: the benefit for both partners. By the combined metabolic activity of microorganisms, endergonic reactions can become exergonic through the efficient removal of products and therefore enable a microbial community to survive with minimal energy resources. Here, we explain the principles of classical and non-classical syntrophy and illustrate the concepts with various examples. We present biochemical fundamentals that allow microorganism to survive under a range of environmental conditions and to drive important biogeochemical processes. Novel technologies have contributed to the understanding of syntrophic relationships in cultured and uncultured systems. Recent research highlights that obligately mutualistic metabolism is not limited to certain metabolic pathways nor to certain environments or microorganisms. This beneficial microbial interaction is not restricted to the transfer of reducing agents such as hydrogen or formate, but can also involve the exchange of organic, sulfurous- and nitrogenous compounds or the removal of toxic compounds. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Directory of Open Access Journals (Sweden)

    Michael F. Graw

    2018-04-01

    Full Text Available The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics.

  14. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

    KAUST Repository

    Wang, Aijie

    2011-03-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25mL) connected in series to an MEC (72mL) produced a maximum of 0.43V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48m 3 H 2/m 3/d (based on the MEC volume), and a yield of 33.2mmol H 2/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3mmol H 2/g cellulose, with a total hydrogen production rate of 0.24m 3 H 2/m 3/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input. © 2010 Elsevier Ltd.

  15. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.

    Science.gov (United States)

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E

    2011-03-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m(3) H(2)/m(3)/d (based on the MEC volume), and a yield of 33.2 mmol H(2)/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H(2)/g cellulose, with a total hydrogen production rate of 0.24 m(3) H(2)/m(3)/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Two-Component Signal Transduction System SaeRS Positively Regulates Staphylococcus epidermidis Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Qiang Lou

    2014-01-01

    Full Text Available Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS. Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.

  17. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP.

    Science.gov (United States)

    Hu, W; Li, W; Chen, J

    2017-10-01

    Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future. © 2017 The Society for Applied Microbiology.

  18. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into

  19. Energy harvesting via thermo-piezoelectric transduction within a heated capillary

    Science.gov (United States)

    Monroe, J. G.; Bhandari, M.; Fairley, J.; Myers, O. J.; Shamsaei, N.; Thompson, S. M.

    2017-07-01

    Thermal-to-kinetic-to-electrical energy conversion is demonstrated through the use of a piezoelectric transducer (PZT) integrated within a section of an oscillating heat pipe (OHP) partially filled with water. The sealed PZT transducer was configured as a bow spring parallel to the dominant flow direction within the OHP. The bottom portion of the OHP was heated in increments of 50 W, while its top portion was actively cooled via water blocks. At ˜50 W, the internal fluid started to oscillate at ˜2-4 Hz due to the non-uniform vapor pressure generated in the OHP evaporator. Low-frequency fluid "pulses" were observed to occur across the flexed, in-line piezoelectric transducer, resulting in its deflection and measureable voltage spikes ranging between 24 and 63 mV. The OHP, while having its internal fluid enthalpy harvested, was found to still have an ultra-high thermal conductivity on-the-order of 10 kW/m K; however, its maximum operating heat load decreased due to the pressure drop introduced by the PZT material. The thermo-piezoelectric harvesting concept made possible via the thermally driven fluid oscillations within an OHP provides a passive method for combined energy harvesting and thermal management that is both scalable and portable.

  20. Dyslipidemia modulates Müller glial sensing and transduction of ambient information

    Directory of Open Access Journals (Sweden)

    Monika Lakk

    2018-01-01

    Full Text Available Unesterified cholesterol controls the fluidity, permeability and electrical properties of eukaryotic cell membranes. Consequently, cholesterol levels in the retina and the brain are tightly regulated whereas depletion or oversupply caused by diet or heredity contribute to neurodegenerative diseases and vision loss. Astroglia play a central role in the biosynthesis, uptake and transport of cholesterol and also drive inflammatory signaling under hypercholesterolemic conditions associated with high-fat diet (diabetes and neurodegenerative disease. A growing body of evidence shows that unesterified membrane cholesterol modulates the ability of glia to sense and transduce ambient information. Cholesterol-dependence of Müller glia - which function as retinal sentinels for metabolic, mechanical, osmotic and inflammatory signals - is mediated in part by transient receptor potential V4 (TRPV4 channels. Cholesterol supplementation facilitates, whereas depletion suppresses, TRPV4-mediated transduction of temperature and lipid agonists in Müller cells. Acute effects of cholesterol supplementation/depletion on plasma membrane ion channels and calcium homeostasis differ markedly from the effects of chronic dyslipidemia, possibly due to differential modulation of modality-dependent energy barriers associated with the functionality of polymodal channels embedded within lipid rafts. Understanding of cholesterol-dependence of TRP channels is thus providing insight into dyslipidemic pathologies associated with diabetic retinopathy, glaucoma and macular degeneration.

  1. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, A E; Skov, Svend; Bregenholt, S

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...... and functioning, MHC-I molecules might be of importance for the maintenance of cellular homeostasis not only within the immune system, but also in the interplay between the immune system and other organ systems....

  2. Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up.

    Science.gov (United States)

    Kitching, Michael; Butler, Robin; Marsili, Enrico

    2017-01-01

    Sustainable energy supplies are needed to supplement and eventually replace fossil fuels. Molecular hydrogen H 2 is a clean burning, high-energy fuel that is also used as reducing gas in industrial processes. H 2 is mainly synthesized by steam reforming of natural gas, a non-renewable fuel. There are biosynthetic strategies for H 2 production; however, they are associated with poor yield and have high cost. The application of an electrochemical driving force in a microbial electrolysis cell (MEC) improves the yield of biological reactions. The performance of the MEC is influenced by experimental parameters such as the electrode material, reactor design, microbial consortia and the substrate. In this review, factors that affect the performance of MECs are discussed and critically analysed. The potential for scale-up of H 2 bioelectrosynthesis is also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Laser engineering of microbial systems

    Science.gov (United States)

    Yusupov, V. I.; Gorlenko, M. V.; Cheptsov, V. S.; Minaev, N. V.; Churbanova, E. S.; Zhigarkov, V. S.; Chutko, E. A.; Evlashin, S. A.; Chichkov, B. N.; Bagratashvili, V. N.

    2018-06-01

    A technology of laser engineering of microbial systems (LEMS) based on the method of laser-induced transfer of heterogeneous mixtures containing microorganisms (laser bioprinting) is described. This technology involves laser printing of soil microparticles by focusing near-infrared laser pulses on a specially prepared gel/soil mixture spread onto a gold-coated glass plate. The optimal range of laser energies from the point of view of the formation of stable jets and droplets with minimal negative impact on living systems of giant accelerations, laser pulse irradiation, and Au nanoparticles was found. Microsamples of soil were printed on glucose-peptone-yeast agar plates to estimate the LEMS process influence on structural and morphological microbial diversity. The obtained results were compared with traditionally treated soil samples. It was shown that LEMS technology allows significantly increasing the biodiversity of printed organisms and is effective for isolating rare or unculturable microorganisms.

  4. Progestins alter photo-transduction cascade and circadian rhythm network in eyes of zebrafish (Danio rerio)

    Science.gov (United States)

    Zhao, Yanbin; Fent, Karl

    2016-02-01

    Environmental progestins are implicated in endocrine disruption in vertebrates. Additional targets that may be affected in organisms are poorly known. Here we report that progesterone (P4) and drospirenone (DRS) interfere with the photo-transduction cascade and circadian rhythm network in the eyes of zebrafish. Breeding pairs of adult zebrafish were exposed to P4 and DRS for 21 days with different measured concentrations of 7-742 ng/L and 99-13´650 ng/L, respectively. Of totally 10 key photo-transduction cascade genes analyzed, transcriptional levels of most were significantly up-regulated, or normal down-regulation was attenuated. Similarly, for some circadian rhythm genes, dose-dependent transcriptional alterations were also observed in the totally 33 genes analyzed. Significant alterations occurred even at environmental relevant levels of 7 ng/L P4. Different patterns were observed for these transcriptional alterations, of which, the nfil3 family displayed most significant changes. Furthermore, we demonstrate the importance of sampling time for the determination and interpretation of gene expression data, and put forward recommendations for sampling strategies to avoid false interpretations. Our results suggest that photo-transduction signals and circadian rhythm are potential targets for progestins. Further studies are required to assess alterations on the protein level, on physiology and behavior, as well as on implications in mammals.

  5. Microbial Metabolism in Serpentinite Fluids

    Science.gov (United States)

    Crespo-Medina, M.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Hoehler, T. M.; Schrenk, M. O.

    2013-12-01

    Serpentinization is the process in which ultramafic rocks, characteristic of the upper mantle, react with water liberating mantle carbon and reducing power to potenially support chemosynthetic microbial communities. These communities may be important mediators of carbon and energy exchange between the deep Earth and the surface biosphere. Our work focuses on the Coast Range Ophiolite Microbial Observatory (CROMO) in Northern California where subsurface fluids are accessible through a series of wells. Preliminary analyses indicate that the highly basic fluids (pH 9-12) have low microbial diversity, but there is limited knowledge about the metabolic capabilities of these communties. Metagenomic data from similar serpentine environments [1] have identified Betaproteobacteria belonging to the order Burkholderiales and Gram-positive bacteria from the order Clostridiales as key components of the serpentine microbiome. In an effort to better characterize the microbial community, metabolism, and geochemistry at CROMO, fluids from two representative wells (N08B and CSWold) were sampled during recent field campaigns. Geochemical characterization of the fluids includes measurements of dissolved gases (H2, CO, CH4), dissolved inorganic and organic carbon, volatile fatty acids, and nutrients. The wells selected can be differentiated in that N08B had higher pH (10-11), lower dissolved oxygen, and cell counts ranging from 105-106 cells mL-1 of fluid, with an abundance of the betaproteobacterium Hydrogenophaga. In contrast, fluids from CSWold have slightly lower pH (9-9.5), DO, and conductivity, as well as higher TDN and TDP. CSWold fluid is also characterized for having lower cell counts (~103 cells mL-1) and an abundance of Dethiobacter, a taxon within the phylum Clostridiales. Microcosm experiments were conducted with the purpose of monitoring carbon fixation, methanotrophy and metabolism of small organic compounds, such as acetate and formate, while tracing changes in fluid

  6. Key Concepts in Microbial Oceanography

    Science.gov (United States)

    Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence

  7. Modeling evolution of crosstalk in noisy signal transduction networks

    Science.gov (United States)

    Tareen, Ammar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-02-01

    Signal transduction networks can form highly interconnected systems within cells due to crosstalk between constituent pathways. To better understand the evolutionary design principles underlying such networks, we study the evolution of crosstalk for two parallel signaling pathways that arise via gene duplication. We use a sequence-based evolutionary algorithm and evolve the network based on two physically motivated fitness functions related to information transmission. We find that one fitness function leads to a high degree of crosstalk while the other leads to pathway specificity. Our results offer insights on the relationship between network architecture and information transmission for noisy biomolecular networks.

  8. Engineering microbial consortia for controllable outputs

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Stephen R.; Bernstein, Hans C.; Song, Hyun-Seob; Fredrickson, Jim K.; Fields, Matthew W.; Shou, Wenying; Johnson, David R.; Beliaev, Alexander S.

    2016-03-11

    Much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into resilient consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here, we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution global measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that when combined with appropriate modeling framework that predictive knowledge generates testable hypotheses and orthogonal synthetic biology tools, such understanding can dramatically improve our ability to control the fate and functioning of consortia. In this article, we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties.

  9. Microbial Rechargeable Battery

    NARCIS (Netherlands)

    Molenaar, Sam D.; Mol, Annemerel R.; Sleutels, Tom H.J.A.; Heijne, Ter Annemiek; Buisman, Cees J.N.

    2016-01-01

    Bioelectrochemical systems hold potential for both conversion of electricity into chemicals through microbial electrosynthesis (MES) and the provision of electrical power by oxidation of organics using microbial fuel cells (MFCs). This study provides a proof of concept for a microbial

  10. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function

    Directory of Open Access Journals (Sweden)

    Gina A. Smith

    2017-10-01

    Full Text Available Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A and vascular endothelial growth factor receptor 2 (VEGFR2 regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response.

  11. Simultaneous energy generation and UV quencher removal from landfill leachate using a microbial fuel cell.

    Science.gov (United States)

    Iskander, Syeed Md; Novak, John T; Brazil, Brian; He, Zhen

    2017-11-01

    The presence of UV quenching compounds in landfill leachate can negatively affect UV disinfection in a wastewater treatment plant when leachate is co-treated. Herein, a microbial fuel cell (MFC) was investigated to remove UV quenchers from a landfill leachate with simultaneous bioelectricity generation. The key operating parameters including hydraulic retention time (HRT), anolyte recirculation rate, and external resistance were systematically studied to maximize energy recovery and UV absorbance reduction. It was found that nearly 50% UV absorbance was reduced under a condition of HRT 40 days, continuous anolyte recirculation, and 10 Ω external resistance. Further analysis showed a total reduction of organics by 75.3%, including the reduction of humic acids, fulvic acids, and hydrophilic fraction concentration as TOC. The MFC consumed 0.056 kWh m -3 by its pump system for recirculation and oxygen supply. A reduced HRT of 20 days with periodical anode recirculation (1 hour in every 24 hours) and 39 Ω external resistance (equal to the internal resistance of the MFC) resulted in the highest net energy of 0.123 kWh m -3 . Granular activated carbon (GAC) was used as an effective post-treatment step and could achieve 89.1% UV absorbance reduction with 40 g L -1 . The combined MFC and GAC treatment could reduce 92.9% of the UV absorbance and remove 89.7% of the UV quenchers. The results of this study would encourage further exploration of using MFCs as an energy-efficient method for removing UV quenchers from landfill leachate.

  12. The fifth international conference on microbial enhanced oil recovery and related biotechnology for solving environmental problems: 1995 Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, R. [ed.

    1995-12-31

    This volume contains 41 papers covering the following topics: field trials of microbial enhanced recovery of oil; control and treatment of sour crudes and natural gas with microorganisms; bioremediation of hydrocarbon contamination in soils; microbial plugging processes; microbial waste water treatment; the use of microorganisms as biological indicators of oils; and characterization and behavior of microbial systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  13. Signaling transduction pathways involved in basophil adhesion and histamine release

    DEFF Research Database (Denmark)

    Sha, Quan; Poulsen, Lars K.; Gerwien, Jens

    2006-01-01

    Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles...... of beta1 and beta2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK) 1/2 in basophil adhesion and histamine release (HR)....

  14. Statolith Sedimentation Kinetics and Force Transduction to the Cortical Endoplasmic Reticulum in Gravity-Sensing Arabidopsis Columella Cells[W][OA

    Science.gov (United States)

    Leitz, Guenther; Kang, Byung-Ho; Schoenwaelder, Monica E.A.; Staehelin, L. Andrew

    2009-01-01

    The starch statolith hypothesis of gravity sensing in plants postulates that the sedimentation of statoliths in specialized statocytes (columella cells) provides the means for converting the gravitational potential energy into a biochemical signal. We have analyzed the sedimentation kinetics of statoliths in the central S2 columella cells of Arabidopsis thaliana. The statoliths can form compact aggregates with gap sizes between statoliths approaching sedimentation phase, the statoliths tend to move at a distance to the cortical endoplasmic reticulum (ER) boundary and interact only transiently with the ER. Statoliths moved by laser tweezers against the ER boundary experience an elastic lift force upon release from the optical trap. High-resolution electron tomography analysis of statolith-to-ER contact sites indicate that the weight of statoliths is sufficient to locally deform the ER membranes that can potentially activate mechanosensitive ion channels. We suggest that in root columella cells, the transduction of the kinetic energy of sedimenting statoliths into a biochemical signal involves a combination of statolith-driven motion of the cytosol, statolith-induced deformation of the ER membranes, and a rapid release of kinetic energy from the ER during reorientation to activate mechanosensitive sites within the central columella cells. PMID:19276442

  15. Relating Anaerobic Digestion Microbial Community and Process Function.

    Science.gov (United States)

    Venkiteshwaran, Kaushik; Bocher, Benjamin; Maki, James; Zitomer, Daniel

    2015-01-01

    Anaerobic digestion (AD) involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1) hydrolysis rate, (2) direct interspecies electron transfer to methanogens, (3) community structure-function relationships of methanogens, (4) methanogenesis via acetate oxidation, and (5) bioaugmentation to study community-activity relationships or improve engineered bioprocesses.

  16. Microbial biosensors

    International Nuclear Information System (INIS)

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  17. Childhood microbial keratitis

    Directory of Open Access Journals (Sweden)

    Abdullah G Al Otaibi

    2012-01-01

    Conclusion: Children with suspected microbial keratitis require comprehensive evaluation and management. Early recognition, identifying the predisposing factors and etiological microbial organisms, and instituting appropriate treatment measures have a crucial role in outcome. Ocular trauma was the leading cause of childhood microbial keratitis in our study.

  18. Electricity generation from the mud by using microbial fuel cell

    Directory of Open Access Journals (Sweden)

    Idris Sitinoor Adeib

    2016-01-01

    Full Text Available Microbial fuel cells (MFCs is a bio-electrochemical device that harnesses the power of respiring microbes to convert organic substrates directly into electrical energy. This is achieved when bacteria transfer electrons to an electrode rather than directly to an electron acceptor. Their technical feasibility has recently been proven and there is great enthusiasm in the scientific community that MFCs could provide a source of “green electricity”. Microbial fuel cells work by allowing bacteria to do what they do best, oxidize and reduce organic molecules. Bacterial respiration is basically one big redox reaction in which electrons are being moved around. The objective is to generate electricity throughout the biochemical process using chemical waste basically sludge, via microbial fuel cells. The methodology includes collecting sludge from different locations, set up microbial fuel cells with the aid of salt bridge and observing the results in voltage measurement. The microbial fuel cells consist of two chambers, iron electrodes, copper wire, air pump (to increase the efficiency of electron transfer, water, sludge and salt bridge. After several observations, it is seen that this MFC can achieve up until 202 milivolts (0.202volts with the presence of air pump. It is proven through the experiments that sludge from different locations gives different results in term of the voltage measurement. This is basically because in different locations of sludge contain different type and amount of nutrients to provide the growth of bacteria. Apart from that, salt bridge also play an important role in order to transport the proton from cathode to anode. A longer salt bridge will give a higher voltage compared to a short salt bridge. On the other hand, the limitations that this experiment facing is the voltage that being produced did not last long as the bacteria activity slows down gradually and the voltage produced are not really great in amount. Lastly to

  19. Theory of microbial genome evolution

    Science.gov (United States)

    Koonin, Eugene

    Bacteria and archaea have small genomes tightly packed with protein-coding genes. This compactness is commonly perceived as evidence of adaptive genome streamlining caused by strong purifying selection in large microbial populations. In such populations, even the small cost incurred by nonfunctional DNA because of extra energy and time expenditure is thought to be sufficient for this extra genetic material to be eliminated by selection. However, contrary to the predictions of this model, there exists a consistent, positive correlation between the strength of selection at the protein sequence level, measured as the ratio of nonsynonymous to synonymous substitution rates, and microbial genome size. By fitting the genome size distributions in multiple groups of prokaryotes to predictions of mathematical models of population evolution, we show that only models in which acquisition of additional genes is, on average, slightly beneficial yield a good fit to genomic data. Thus, the number of genes in prokaryotic genomes seems to reflect the equilibrium between the benefit of additional genes that diminishes as the genome grows and deletion bias. New genes acquired by microbial genomes, on average, appear to be adaptive. Evolution of bacterial and archaeal genomes involves extensive horizontal gene transfer and gene loss. Many microbes have open pangenomes, where each newly sequenced genome contains more than 10% `ORFans', genes without detectable homologues in other species. A simple, steady-state evolutionary model reveals two sharply distinct classes of microbial genes, one of which (ORFans) is characterized by effectively instantaneous gene replacement, whereas the other consists of genes with finite, distributed replacement rates. These findings imply a conservative estimate of at least a billion distinct genes in the prokaryotic genomic universe.

  20. The life sulfuric: microbial ecology of sulfur cycling in marine sediments.

    Science.gov (United States)

    Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander

    2017-08-01

    Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha

    2010-12-15

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  2. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha; Kiely, Patrick D.; Call, Douglas F.; Logan, Bruce. E.

    2010-01-01

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  3. Characterization of Cell Surface and EPS Remodeling of Azospirillum brasilense Chemotaxis-like 1 Signal Transduction Pathway mutants by Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Billings, Amanda N [ORNL; Siuti, Piro [ORNL; Bible, Amber [University of Tennessee, Knoxville (UTK); Alexandre, Gladys [University of Tennessee, Knoxville (UTK); Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain. Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.

  4. Microbial activity at Yucca Mountain

    International Nuclear Information System (INIS)

    Horn, J.M.; Meike, A.

    1995-01-01

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified

  5. Microbial activity at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Meike, A.

    1995-09-25

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified.

  6. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION.

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS, A.J.; DODGE, C.J.

    2006-11-16

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  7. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  8. The Use of Boron-doped Diamond Electrode on Yeast-based Microbial Fuel Cell for Electricity Production

    Science.gov (United States)

    Hanzhola, G.; Tribidasari, A. I.; Endang, S.

    2018-01-01

    The dependency of fossil energy in Indonesia caused the crude oil production to be drastically decreased since 2001, while energy consumption increased. In addition, The use of fossil energy can cause several environmental problems. Therefore, we need an alternative environment-friendly energy as solution for these problems. A microbial fuel cell is one of the prospective alternative source of an environment-friendly energy source to be developed. In this study, Boron-doped diamond electrode was used as working electrode and Candida fukuyamaensis as biocatalyst in microbial fuel cell. Different pH of anode compartment (pH 6.5-7.5) and mediator concentration (10-100 μM) was used to produce an optimal electricity. MFC was operated for 3 hours. During operation, the current and voltage density was measured with potensiostat. The maximum power and current density are 425,82 mW/m2 and 440 mA/m2, respectively, for MFC using pH 7.5 at anode compartment without addition of methylene blue. The addition of redox mediator is lowering the produced electricity because of its anti microbial properties that can kill the microbe.

  9. Microbiological Aspects of Geothermal Energy: Influence of Microbial Activity on Scaling and Clogging in a Cold Storage

    Science.gov (United States)

    Lerm, Stephanie; Alawi, Mashal; Miethling-Graff, Rona; Vieth, Andrea; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2010-05-01

    The development of strategies to substantially reduce emission of greenhouse gases to the atmosphere is one of the major challenges of the next decades. Therefore, the utilization of subsurface stored energy arouses increasing interest. Corrosion and scaling are major problems in geothermal operation which create significant maintenance and cleaning costs. In the scope of the research project AquiScreen the operational reliability of geothermal used aquifer systems was investigated under microbial, geochemical, mineralogical, and petrologic aspects (see also Alawi et al.; General Assembly EGU 2010). This presentation focuses on the investigation of a cold storage in Berlin (Reichstag building, depth 30-50 m). In order to evaluate the impact of microbial processes in the low saline aquifer (see also Vetter et al.; General Assembly EGU 2010), the microbial communities of fluid and filter samples were investigated by Fluorescent in situ hybridization (FISH) and DNA fingerprinting techniques based on PCR amplified partial 16S rRNA genes. Analyses of fluid samples revealed a bacterial community dominated by iron and sulfur oxidizing bacteria closely related to Siderooxidans lithoautotrophicus, Gallionella sp. and Thiotrix unzii. Scanning electron microscope analysis revealed iron hydroxide formation and precipitation in the filter of the top side facility and the well, corresponding to the abundance of iron oxidizing bacteria. Besides oxidizing bacteria sulfate reducing bacteria (SRB) were detected as well, indicating the formation of micro-habitats with divergent redox zones. After several years of operation and routine maintenance procedures the injectivity of the injection wells and the endurance of the top side facility filters were reduced drastically due to clogging. Mechanical cleaning and a disinfection treatment with hydrogen peroxide (H2O2) were successful to re-establish the injectivity of the wells. The results of the microbiological investigations prove

  10. Advances and bottlenecks in microbial hydrogen production.

    Science.gov (United States)

    Stephen, Alan J; Archer, Sophie A; Orozco, Rafael L; Macaskie, Lynne E

    2017-09-01

    Biological production of hydrogen is poised to become a significant player in the future energy mix. This review highlights recent advances and bottlenecks in various approaches to biohydrogen processes, often in concert with management of organic wastes or waste CO 2 . Some key bottlenecks are highlighted in terms of the overall energy balance of the process and highlighting the need for economic and environmental life cycle analyses with regard also to socio-economic and geographical issues. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Biogeochemical signals from deep microbial life in terrestrial crust.

    Directory of Open Access Journals (Sweden)

    Yohey Suzuki

    Full Text Available In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan. A large sulfur isotopic fractionation of 20-60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰ is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM, H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes.

  12. Electricity production from microbial fuel cell by using yeast

    International Nuclear Information System (INIS)

    Vorasingha, A.; Souvakon, C.; Boonchom, K.

    2006-01-01

    The continuous search for methods to generate electricity from renewable sources such as water, solar energy, wind, nuclear or chemicals was discussed with particular focus on attaining the full power of the microbial fuel cell (MFC). Under ideal environmental conditions, the only byproducts of a biofuel cell would be water and carbon dioxide (CO 2 ). The production of energy from renewables such as biomass is important for sustainable development and reducing global emissions of CO 2 . Hydrogen can also be an important component of an energy infrastructure that reduces CO 2 emissions if the hydrogen is produced from renewable sources and used in fuel cells. Hydrogen gas can be biologically produced at high concentration from the fermentation of high sugar substrates such as glucose and sucrose. Some of the issues of MFC design were addressed, including the use of cheap substrates to derive microbial electricity. In the MFC, yeast donates electrons to a chemical electron mediator, which in turn transfers the electrons to an electrode, producing electricity. Experimental results showed that glucose yielded the highest peak voltage, but a semi-processed sugar and molasses were similar to glucose in the electricity production pattern. It was noted that this technology is only at the research stages, and more research is needed before household microbial fuel cells can be made available for producing power for prolonged periods of time. Future research efforts will focus on increasing the efficiency, finding alternatives to hazardous electron mediators and finding new microbes. 12 refs., 6 figs

  13. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies

    KAUST Repository

    Logan, B. E.

    2012-08-09

    Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy and chemical production technologies. We review the key advances that will enable the use of exoelectrogenic microorganisms to generate biofuels, hydrogen gas, methane, and other valuable inorganic and organic chemicals. Moreover, we examine the key challenges for implementing these systems and compare them to similar renewable energy technologies. Although commercial development is already underway in several different applications, ranging from wastewater treatment to industrial chemical production, further research is needed regarding efficiency, scalability, system lifetimes, and reliability.

  14. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.

    Science.gov (United States)

    Logan, Bruce E; Rabaey, Korneel

    2012-08-10

    Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy and chemical production technologies. We review the key advances that will enable the use of exoelectrogenic microorganisms to generate biofuels, hydrogen gas, methane, and other valuable inorganic and organic chemicals. Moreover, we examine the key challenges for implementing these systems and compare them to similar renewable energy technologies. Although commercial development is already underway in several different applications, ranging from wastewater treatment to industrial chemical production, further research is needed regarding efficiency, scalability, system lifetimes, and reliability.

  15. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.

    Science.gov (United States)

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian

    2016-12-01

    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Microbial fuel cells: a promising alternative for power generation and waste treatment

    International Nuclear Information System (INIS)

    Vazquez-Larios, A. L.; Solorza-Feria, O.; Rinderknecht-Seijas, N.; Poggi-Varaldo, H. M.

    2009-01-01

    The current energy crisis has launched a renewed interest on alternative energy sources and non-fossil fuels. One promising technology is the direct production of electricity from organic matter or wastes in microbial fuel cells (MFC). A MFC can be envisioned as an bio-electrochemical reactor that converts the chemical energy stored in chemical bonds into electrical energy via the catalytic activity of microorganisms under anoxic conditions. (Author)

  17. Division of Energy Biosciences annual report and summaries of FY 1996 activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The mission of the Division of Energy Biosciences is to support research that advances the fundamental knowledge necessary for the future development of biotechnologies related to the Department of Energy`s mission. The departmental civilian objectives include effective and efficient energy production, energy conservation, environmental restoration, and waste management. The Energy Biosciences program emphasizes research in the microbiological and plant sciences, as these understudied areas offer numerous scientific opportunities to dramatically influence environmentally sensible energy production and conservation. The research supported is focused on the basic mechanism affecting plant productivity, conversion of biomass and other organic materials into fuels and chemicals by microbial systems, and the ability of biological systems to replace energy-intensive or pollutant-producing processes. The Division also addresses the increasing number of new opportunities arising at the interface of biology with other basic energy-related sciences such as biosynthesis of novel materials and the influence of soil organisms on geological processes. This report gives summaries on 225 projects on photosynthesis, membrane or ion transport, plant metabolism and biosynthesis, carbohydrate metabolism lipid metabolism, plant growth and development, plant genetic regulation and genetic mechanisms, plant cell wall development, lignin-polysaccharide breakdown, nitrogen fixation and plant-microbial symbiosis, mechanism for plant adaptation, fermentative microbial metabolism, one and two carbon microbial metabolism, extremophilic microbes, microbial respiration, nutrition and metal metabolism, and materials biosynthesis.

  18. Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wan L

    2016-12-01

    coating could enhance adenoviral transduction of MSCs without detectable cytotoxicity or effects on differentiation. Our results argue in favor of the potentiality of the SP-coated Adv as a prototype vector for efficient and safe transduction of MSCs. Keywords: mesenchymal stem cells, adenovirus vectors, spermine-pullulan, polymer, gene transduction

  19. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  20. Specific cellular signal-transduction responses to in vivo combination therapy with ATRA, valproic acid and theophylline in acute myeloid leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Skavland, J; Jørgensen, K M [Hematology Section, Institute of Medicine, University of Bergen, Bergen (Norway); Hadziavdic, K [Department of Informatics, University of Bergen, Bergen (Norway); Hovland, R [Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen (Norway); Jonassen, I [Department of Informatics, University of Bergen, Bergen (Norway); Computational Biology Unit, Bergen Centre for Computational Science, University of Bergen, Bergen (Norway); Bruserud, Ø; Gjertsen, B T, E-mail: bjorn.gjertsen@med.uib.no [Hematology Section, Institute of Medicine, University of Bergen, Bergen (Norway); Hematology Section, Department of Medicine, Haukeland University Hospital, Bergen (Norway)

    2011-02-01

    Acute myeloid leukemia (AML) frequently comprises mutations in genes that cause perturbation in intracellular signaling pathways, thereby altering normal responses to growth factors and cytokines. Such oncogenic cellular signal transduction may be therapeutic if targeted directly or through epigenetic regulation. We treated 24 selected elderly AML patients with all-trans retinoic acid for 2 days before adding theophylline and the histone deacetylase inhibitor valproic acid (ClinicalTrials.gov NCT00175812; EudraCT no. 2004-001663-22), and sampled 11 patients for peripheral blood at day 0, 2 and 7 for single-cell analysis of basal level and signal-transduction responses to relevant myeloid growth factors (granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor, interleukin-3, Flt3L, stem cell factor, erythropoietin, CXCL-12) on 10 signaling molecules (CREB, STAT1/3/5, p38, Erk1/2, Akt, c-Cbl, ZAP70/Syk and rpS6). Pretreatment analysis by unsupervised clustering and principal component analysis divided the patients into three distinguishable signaling clusters (non-potentiated, potentiated basal and potentiated signaling). Signal-transduction pathways were modulated during therapy and patients moved between the clusters. Patients with multiple leukemic clones demonstrated distinct stimulation responses and therapy-induced modulation. Individual signaling profiles together with clinical and hematological information may be used to early identify AML patients in whom epigenetic and signal-transduction targeted therapy is beneficial.

  1. ProFITS of maize: a database of protein families involved in the transduction of signalling in the maize genome

    Directory of Open Access Journals (Sweden)

    Zhang Zhenhai

    2010-10-01

    Full Text Available Abstract Background Maize (Zea mays ssp. mays L. is an important model for plant basic and applied research. In 2009, the B73 maize genome sequencing made a great step forward, using clone by clone strategy; however, functional annotation and gene classification of the maize genome are still limited. Thus, a well-annotated datasets and informative database will be important for further research discoveries. Signal transduction is a fundamental biological process in living cells, and many protein families participate in this process in sensing, amplifying and responding to various extracellular or internal stimuli. Therefore, it is a good starting point to integrate information on the maize functional genes involved in signal transduction. Results Here we introduce a comprehensive database 'ProFITS' (Protein Families Involved in the Transduction of Signalling, which endeavours to identify and classify protein kinases/phosphatases, transcription factors and ubiquitin-proteasome-system related genes in the B73 maize genome. Users can explore gene models, corresponding transcripts and FLcDNAs using the three abovementioned protein hierarchical categories, and visualize them using an AJAX-based genome browser (JBrowse or Generic Genome Browser (GBrowse. Functional annotations such as GO annotation, protein signatures, protein best-hits in the Arabidopsis and rice genome are provided. In addition, pre-calculated transcription factor binding sites of each gene are generated and mutant information is incorporated into ProFITS. In short, ProFITS provides a user-friendly web interface for studies in signal transduction process in maize. Conclusion ProFITS, which utilizes both the B73 maize genome and full length cDNA (FLcDNA datasets, provides users a comprehensive platform of maize annotation with specific focus on the categorization of families involved in the signal transduction process. ProFITS is designed as a user-friendly web interface and it is

  2. Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Renata Toczyłowska-Mamińska

    2018-01-01

    Full Text Available The abundance of cellulosic wastes make them attractive source of energy for producing electricity in microbial fuel cells (MFCs. However, electricity production from cellulose requires obligate anaerobes that can degrade cellulose and transfer electrons to the electrode (exoelectrogens, and thus most previous MFC studies have been conducted using two-chamber systems to avoid oxygen contamination of the anode. Single-chamber, air-cathode MFCs typically produce higher power densities than aqueous catholyte MFCs and avoid energy input for the cathodic reaction. To better understand the bacterial communities that evolve in single-chamber air-cathode MFCs fed cellulose, we examined the changes in the bacterial consortium in an MFC fed cellulose over time. The most predominant bacteria shown to be capable electron generation was Firmicutes, with the fermenters decomposing cellulose Bacteroidetes. The main genera developed after extended operation of the cellulose-fed MFC were cellulolytic strains, fermenters and electrogens that included: Parabacteroides, Proteiniphilum, Catonella and Clostridium. These results demonstrate that different communities evolve in air-cathode MFCs fed cellulose than the previous two-chamber reactors.

  3. Establishment of a universal and rational gene detection strategy through three-way junction-based remote transduction.

    Science.gov (United States)

    Tang, Yidan; Lu, Baiyang; Zhu, Zhentong; Li, Bingling

    2018-01-21

    The polymerase chain reaction and many isothermal amplifications are able to achieve super gene amplification. Unfortunately, most commonly-used transduction methods, such as dye staining and Taqman-like probing, still suffer from shortcomings including false signals or difficult probe design, or are incompatible with multi-analysis. Here a universal and rational gene detection strategy has been established by translating isothermal amplicons to enzyme-free strand displacement circuits via three-way junction-based remote transduction. An assistant transduction probe was imported to form a partial hybrid with the target single-stranded nucleic acid. After systematic optimization the hybrid could serve as an associative trigger to activate a downstream circuit detector via a strand displacement reaction across the three-way junction. By doing so, the detection selectivity can be double-guaranteed through both amplicon-transducer recognition and the amplicon-circuit reaction. A well-optimized circuit can be immediately applied to a new target detection through simply displacing only 10-12 nt on only one component, according to the target. More importantly, this property for the first time enables multi-analysis and logic-analysis in a single reaction, sharing a single fluorescence reporter. In an applicable model, trace amounts of Cronobacter and Enterobacteria genes have been clearly distinguished from samples with no bacteria or one bacterium, with ultra-high sensitivity and selectivity.

  4. Efficient Generation of Functional Hepatocytes From Human Embryonic Stem Cells and Induced Pluripotent Stem Cells by HNF4α Transduction

    OpenAIRE

    Takayama, Kazuo; Inamura, Mitsuru; Kawabata, Kenji; Katayama, Kazufumi; Higuchi, Maiko; Tashiro, Katsuhisa; Nonaka, Aki; Sakurai, Fuminori; Hayakawa, Takao; Kusuda Furue, Miho; Mizuguchi, Hiroyuki

    2012-01-01

    Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is kn...

  5. Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2014-01-01

    A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.

  6. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Terlouw, H.; Hamelers, H.V.M.; Buisman, C.J.N.

    2008-01-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a

  7. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Abdul-Zani, Izma; Wheatcroft, Stephen B; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2017-10-15

    Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response. © 2017. Published by The Company of Biologists Ltd.

  8. Progression in sensing cardiac troponin biomarker charge transductions on semiconducting nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fathil, M.F.M., E-mail: faris.fathil@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Md Arshad, M.K., E-mail: mohd.khairuddin@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Ruslinda, A.R., E-mail: ruslinda@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Nuzaihan, M.N.M., E-mail: m.nuzaihan@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Gopinath, Subash C.B., E-mail: subash@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Adzhri, R., E-mail: adzhri@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Hashim, U., E-mail: uda@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia)

    2016-09-07

    A real-time ability to interpret the interaction between targeted biomolecules and the surface of semiconductors (metal transducers) into readable electrical signals, without biomolecular modification involving fluorescence dyes, redox enzymes, and radioactive labels, created by label-free biosensors has been extensively researched. Field-effect transistor (FET)- and capacitor-based biosensors are among the diverse electrical charge biosensing architectures that have drawn much attention for having charge transduction; thus, enabling the early and rapid diagnosis of the appropriate cardiac biomarkers at lower concentrations. These semiconducting material-based transducers are very suitable to be integrated with portable electronic devices for future online collection, transmission, reception, analysis, and reporting. This overview elucidates and clarifies two major electrical label-free systems (FET- and capacitor-based biosensors) with cardiac troponin (cTn) biomarker-mediated charge transduction for acute myocardial infarction (AMI) diagnosis. Advances in these systems are highlighted by their progression in bridging the laboratory and industry; the foremost technologies have made the transition from benchtop to bedside and beyond. - Highlights: • The progression of cardiac troponin detection from past to future are presented. • Electrical label-free biosensors for cardiac troponin are discussed. • The discussion focused on field-effect transistor-and capacitor-based devices. • Surface functionalization, sensitivity, and innovation of devices are highlighted. • They presented high sensitivity and specificity of real-time AMI determination.

  9. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    OpenAIRE

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) w...

  10. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    OpenAIRE

    Timmers, Ruud A.; Rothballer, Michael; Strik, David P. B. T. B.; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode–rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) w...

  11. Compost in plant microbial fuel cell for bioelectricity generation

    NARCIS (Netherlands)

    Moqsud, M.A.; Yoshitake, J.; Bushra, Q.S.; Hyodo, M.; Omine, K.; Strik, D.P.B.T.B.

    2015-01-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells

  12. Benefits of gene transduction of granulocyte macrophage colony-stimulating factor in cancer vaccine using genetically modified dendritic cells.

    Science.gov (United States)

    Ojima, Toshiyasu; Iwahashi, Makoto; Nakamura, Masaki; Matsuda, Kenji; Nakamori, Mikihito; Ueda, Kentaro; Naka, Teiji; Katsuda, Masahiro; Miyazawa, Motoki; Yamaue, Hiroki

    2007-10-01

    Granulocyte macrophage colony-stimulating factor (GM-CSF) is a key cytokine for the generation and stimulation of dendritic cells (DCs), and it may also play a pivotal role in promoting the survival of DCs. In this study, the feasibility of creating a cancer vaccine using DCs adenovirally transduced with the carcinoembryonic antigen (CEA) gene and the GM-CSF gene was examined. In addition, the effect of the co-transduction of GM-CSF gene on the lifespan of these genetically modified DCs was determined. A cytotoxic assay using peripheral blood mononuclear cell (PBMC)-derived cytotoxic T lymphocytes (CTLs) was performed in a 4-h 51Cr release assay. The apoptosis of DCs was examined by TdT-mediated dUTP-FITC nick end labeling (TUNEL) assay. CEA-specific CTLs were generated from PBMCs stimulated with genetically modified DCs expressing CEA. The cytotoxicity of these CTLs was augmented by co-transduction of DCs with the GM-CSF gene. Co-transduction of the GM-CSF gene into DCs inhibited apoptosis of these DCs themselves via up-regulation of Bcl-x(L) expression, leading to the extension of the lifespan of these DCs. Furthermore, the transduction of the GM-CSF gene into DCs also suppressed the incidence of apoptosis of DCs induced by transforming growth factor-beta1 (TGFbeta-1). Immunotherapy using these genetically modified DCs may therefore be useful with several advantages as follows: i) adenoviral toxicity to DCs can be reduced; ii) the lifespan of vaccinated DCs can be prolonged; and iii) GM-CSF may protect DCs from apoptosis induced by tumor-derived TGFbeta-1 in the regional lymph nodes.

  13. Experimental and theoretical investigation of an impact vibration harvester with triboelectric transduction

    Science.gov (United States)

    Ibrahim, Alwathiqbellah; Ramini, Abdallah; Towfighian, Shahrzad

    2018-03-01

    There has been remarkable interest in triboelectric mechanisms because of their high efficiency, wide availability, and low-cost generation of sustainable power. Using impact vibrations, we introduce piece-wise stiffness to the system to enlarge frequency bandwidth. The triboelectric layers consist of Aluminum, which also serves as an electrode, and Polydimethylsiloxane (PDMS) with micro semi-cylindrical patterns. At the bottom of the PDMS layer, there is another Al electrode. The layers are sandwiched between the center mass of a clamped-clamped beam and its base. The center mass enhances the impact force on the triboelectric layers subjected to external vibrations. Upon impact, alternating current, caused by the contact electrification and electrostatic induction, flows between the Al electrodes. Because of the impact, the equivalent stiffness of the structure increases and as a result, the frequency bandwidth gets wider. The output voltage and power reach as large as 5.5 V, 15 μW, respectively at 0.8 g vibrational amplitude. In addition, we report how the surface charge density increases with the excitation levels. The analysis delineates the interactions between impact vibrations and triboelectric transductions. The ability of the system to achieve wider bandwidth paves the way for efficient triboelectric vibrational energy harvesters.

  14. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  15. Diet simplification selects for high gut microbial diversity and strong fermenting ability in high-altitude pikas.

    Science.gov (United States)

    Li, Huan; Qu, Jiapeng; Li, Tongtong; Wirth, Stephan; Zhang, Yanming; Zhao, Xinquan; Li, Xiangzhen

    2018-06-03

    The gut microbiota in mammals plays a key role in host metabolism and adaptation. However, relatively little is known regarding to how the animals adapts to extreme environments through regulating gut microbial diversity and function. Here, we investigated the diet, gut microbiota, short-chain fatty acid (SCFA) profiles, and cellulolytic activity from two common pika (Ochotona spp.) species in China, including Plateau pika (Ochotona curzoniae) from the Qinghai-Tibet Plateau and Daurian pika (Ochotona daurica) from the Inner Mongolia Grassland. Despite a partial diet overlap, Plateau pikas harbored lower diet diversity than Daurian pikas. Some bacteria (e.g., Prevotella and Ruminococcus) associated with fiber degradation were enriched in Plateau pikas. They harbored higher gut microbial diversity, total SCFA concentration, and cellulolytic activity than Daurian pikas. Interestingly, cellulolytic activity was positively correlated with the gut microbial diversity and SCFAs. Gut microbial communities and SCFA profiles were segregated structurally between host species. PICRUSt metagenome predictions demonstrated that microbial genes involved in carbohydrate metabolism and energy metabolism were overrepresented in the gut microbiota of Plateau pikas. Our results demonstrate that Plateau pikas harbor a stronger fermenting ability for the plant-based diet than Daurian pikas via gut microbial fermentation. The enhanced ability for utilization of plant-based diets in Plateau pikas may be partly a kind of microbiota adaptation for more energy requirements in cold and hypoxic high-altitude environments.

  16. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters.

    Science.gov (United States)

    Amaral, Maria E; Barbuio, Raquel; Milanski, Marciane; Romanatto, Talita; Barbosa, Helena C; Nadruz, Wilson; Bertolo, Manoel B; Boschero, Antonio C; Saad, Mario J A; Franchini, Kleber G; Velloso, Licio A

    2006-07-01

    Tumor necrosis factor-alpha (TNF-alpha) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF-alpha in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF-alpha upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF-alpha activates canonical pro-inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin-1beta, interleukin-6, interleukin-10 and suppressor of cytokine signalling-3, respectively. In addition, TNF-alpha induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF-alpha may act directly in the hypothalamus inducing a pro-inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.

  17. The importance of anabolism in microbial control over soil carbon storage

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chao; Schimel, Joshua P.; Jastrow, Julie D.

    2017-07-25

    Studies of the decomposition, transformation and stabilization of soil organic matter (SOM) have dramatically increased in recent years owing to growing interest in studying the global carbon (C) cycle as it pertains to climate change. While it is readily accepted that the magnitude of the organic C reservoir in soils depends upon microbial involvement, as soil C dynamics are ultimately the consequence of microbial growth and activity, it remains largely unknown how these microorganism-mediated processes lead to soil C stabilization. Here, we define two pathways—ex vivo modification and in vivo turnover—which jointly explain soil C dynamics driven by microbial catabolism and/or anabolism. Accordingly, we use the conceptual framework of the soil ‘microbial carbon pump’ (MCP) to demonstrate how microorganisms are an active player in soil C storage. The MCP couples microbial production of a set of organic compounds to their further stabilization, which we define as the entombing effect. This integration captures the cumulative long-term legacy of microbial assimilation on SOM formation, with mechanisms (whether via physical protection or a lack of activation energy due to chemical composition) that ultimately enable the entombment of microbial-derived C in soils. We propose a need for increased efforts and seek to inspire new studies that utilize the soil MCP as a conceptual guideline for improving mechanistic understandings of the contributions of soil C dynamics to the responses of the terrestrial C cycle under global change.

  18. Transductive and matched-pair machine learning for difficult target detection problems

    Science.gov (United States)

    Theiler, James

    2014-06-01

    This paper will describe the application of two non-traditional kinds of machine learning (transductive machine learning and the more recently proposed matched-pair machine learning) to the target detection problem. The approach combines explicit domain knowledge to model the target signal with a more agnostic machine-learning approach to characterize the background. The concept is illustrated with simulated data from an elliptically-contoured background distribution, on which a subpixel target of known spectral signature but unknown spatial extent has been implanted.

  19. Nanocalorimetric characterization of microbial activity in deep subsurface oceanic crustal fluids

    Directory of Open Access Journals (Sweden)

    Alberto eRobador

    2016-04-01

    Full Text Available Although fluids within the upper oceanic basaltic crust harbor a substantial fraction of the total prokaryotic cells on Earth, the energy needs of this microbial population are unknown. In this study, a nanocalorimeter (sensitivity down to 4.3 x 10-3 mJ h-1 ml-1 was used to measure the enthalpy of microbially catalyzed reactions as a function of temperature in samples from two distinct crustal fluid aquifers. Microorganisms in unamended, warm (63 °C and geochemically altered anoxic fluids taken from 292 meters sub-basement (msb near the Juan de Fuca Ridge produced 267.3 mJ of heat over the course of 97 hours during a step-wise isothermal scan from 35.5 to 85.0 °C. Most of this heat signal likely stems from the germination of thermophilic endospores (6.66 x 104 cells ml-1FLUID and their subsequent metabolic activity at temperatures greater than 50 °C. The average cellular energy consumption (1.79 x 10-7 kJ h-1 cell-1 reveals the high metabolic potential of a dormant community transported by fluids circulating through the ocean crust. By contrast, samples taken from 293 msb from cooler (3.8 °C, relatively unaltered oxic fluids, produced 12.8 mJ of heat over the course of 14 hours as temperature ramped from 34.8 to 43.0 °C. Corresponding cell-specific energy turnover rates (0.18 pW cell-1 were converted to oxygen uptake rates of 24.5 nmol O2 ml-1FLUID d-1, validating previous model predictions of microbial activity in this environment. Given that the investigated fluids are characteristic of expansive areas of the upper oceanic crust, the measured metabolic heat rates can be used to constrain boundaries of habitability and microbial activity in the oceanic crust.

  20. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.

  1. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2013-01-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions

  2. Primary Cilia Modulate IHH Signal Transduction in Response to Hydrostatic Loading of Growth Plate Chondrocytes

    Science.gov (United States)

    Shao, Y, Yvonne Y.; Wang, Lai; Welter, J, Jean F.; Ballock, R. Tracy

    2011-01-01

    Indian Hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. PMID:21930256

  3. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain.

    Science.gov (United States)

    Matsuzaki, Yasunori; Konno, Ayumu; Mochizuki, Ryuta; Shinohara, Yoichiro; Nitta, Keisuke; Okada, Yukihiro; Hirai, Hirokazu

    2018-02-05

    Intravenous administration of adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV9 containing seven amino acid insertions, results in a greater permeability of the blood brain barrier (BBB) than standard AAV9 in mice, leading to highly efficient and global transduction of the central nervous system (CNS). The present study aimed to examine whether the enhanced BBB penetrance of AAV-PHP.B observed in mice also occurs in non-human primates. Thus, a young adult (age, 1.6 years) and an old adult (age, 7.2 years) marmoset received an intravenous injection of AAV-PHP.B expressing enhanced green fluorescent protein (EGFP) under the control of the constitutive CBh promoter (a hybrid of cytomegalovirus early enhancer and chicken β-actin promoter). Age-matched control marmosets were treated with standard AAV9-capsid vectors. The animals were sacrificed 6 weeks after the viral injection. Based on the results, only limited transduction of neurons (0-2%) and astrocytes (0.1-2.5%) was observed in both AAV-PHP.B- and AAV9-treated marmosets. One noticeable difference between AAV-PHP.B and AAV9 was the marked transduction of the peripheral dorsal root ganglia neurons. Indeed, the soma and axons in the projection from the spinal cord to the nucleus cuneatus in the medulla oblongata were strongly labeled with EGFP by AAV-PHP.B. Thus, except for the peripheral dorsal root ganglia neurons, the AAV-PHP.B transduction efficiency in the CNS of marmosets was comparable to that of AAV9 vectors. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Accounting for microbial habitats in modeling soil organic matter dynamics

    Science.gov (United States)

    Chenu, Claire; Garnier, Patricia; Nunan, Naoise; Pot, Valérie; Raynaud, Xavier; Vieublé, Laure; Otten, Wilfred; Falconer, Ruth; Monga, Olivier

    2017-04-01

    The extreme heterogeneity of soils constituents, architecture and inhabitants at the microscopic scale is increasingly recognized. Microbial communities exist and are active in a complex 3-D physical framework of mineral and organic particles defining pores of various sizes, more or less inter-connected. This results in a frequent spatial disconnection between soil carbon, energy sources and the decomposer organisms and a variety of microhabitats that are more or less suitable for microbial growth and activity. However, current biogeochemical models account for C dynamics at the macroscale (cm, m) and consider time- and spatially averaged relationships between microbial activity and soil characteristics. Different modelling approaches have intended to account for this microscale heterogeneity, based either on considering aggregates as surrogates for microbial habitats, or pores. Innovative modelling approaches are based on an explicit representation of soil structure at the fine scale, i.e. at µm to mm scales: pore architecture and their saturation with water, localization of organic resources and of microorganisms. Three recent models are presented here, that describe the heterotrophic activity of either bacteria or fungi and are based upon different strategies to represent the complex soil pore system (Mosaic, LBios and µFun). These models allow to hierarchize factors of microbial activity in soil's heterogeneous architecture. Present limits of these approaches and challenges are presented, regarding the extensive information required on soils at the microscale and to up-scale microbial functioning from the pore to the core scale.

  5. Understanding Microbial Contributions to Planetary Atmosphere

    Science.gov (United States)

    DesMarais, David J.

    2000-01-01

    Should our search of distant, extrasolar planetary atmospheres encounter evidence of life, that evidence will most likely be the gaseous products of microorganisms. Our biosphere was exclusively microbial for over 80 percent of its history and, even today, microbes strongly influence atmospheric composition. Life's greatest environmental impact arises from its capacity for harvesting energy and creating organic matter. Microorganisms catalyze the equilibration of C, S and transition metal species at temperatures where such reactions can be very slow in the absence of life. Sunlight has been harvested through photosynthesis to create enormous energy reservoirs that exist in the form of coexisting reservoirs of reduced, organic C and S stored in Earth's crust, and highly oxidized species (oxygen, sulfate and ferric iron) stored in the crust, oceans and atmosphere. Our civilization taps that storehouse of energy by burning fossil fuels. As astrobiologists, we identify the chemical consequences of distant biospheres as expressed in the atmospheres of their planets. Our approach must recognize that planets, biospheres and atmospheres evolve and change. For example, a tectonically more active early Earth hosted a thermophilic, non-photosynthetic biosphere and a mildly reducing, carbon dioxide-rich and oxygen-poor atmosphere. Microorganisms acquired energy by consuming hydrogen and sulfide and producing a broad array of reduced C and S gases, most notably, methane. Later, diverse types of bacterial photosynthesis developed that enhanced productivity but were incapable of splitting water to produce oxygen. Later, but still prior to 2.6 billion years ago, oxygenic photosynthesis developed. We can expect to encounter distant biospheres that represent various stages of evolution and that coexist with atmospheres ranging from mildly reducing to oxidizing compositions. Accordinaly, we must be prepared to interpret a broad range of atmospheric compositions, all containing

  6. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).

    Science.gov (United States)

    Strik, David P B T B; Terlouw, Hilde; Hamelers, Hubertus V M; Buisman, Cees J N

    2008-12-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products.

  7. Exocellular electron transfer in anaerobic microbial communities.

    Science.gov (United States)

    Stams, Alfons J M; de Bok, Frank A M; Plugge, Caroline M; van Eekert, Miriam H A; Dolfing, Jan; Schraa, Gosse

    2006-03-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory syntrophic consortia of proton-reducing acetogenic bacteria and hydrogen-consuming methanogenic archaea. Anaerobic microorganisms that use insoluble electron acceptors for growth, such as iron- and manganese-oxide as well as inert graphite electrodes in microbial fuel cells, also transfer electrons exocellularly. Soluble compounds, like humic substances, quinones, phenazines and riboflavin, can function as exocellular electron mediators enhancing this type of anaerobic respiration. However, direct electron transfer by cell-cell contact is important as well. This review addresses the mechanisms of exocellular electron transfer in anaerobic microbial communities. There are fundamental differences but also similarities between electron transfer to another microorganism or to an insoluble electron acceptor. The physical separation of the electron donor and electron acceptor metabolism allows energy conservation in compounds as methane and hydrogen or as electricity. Furthermore, this separation is essential in the donation or acceptance of electrons in some environmental technological processes, e.g. soil remediation, wastewater purification and corrosion.

  8. Biofilm and dental implant: The microbial link

    Directory of Open Access Journals (Sweden)

    Sangeeta Dhir

    2013-01-01

    Full Text Available Mouth provides a congenial environment for the growth of the microorganisms as compared to any other part of the human body by exhibiting an ideal nonshedding surface. Dental plaque happens to be a diverse community of the microorganisms found on the tooth surface. Periodontal disease and the peri-implant disease are specific infections that are originating from these resident microbial species when the balance between the host and the microbial pathogenicity gets disrupted. This review discusses the biofilms in relation to the peri-implant region, factors affecting its presence, and the associated treatment to manage this complex microbial colony. Search Methodology: Electronic search of the medline was done with the search words: Implants and biofilms/dental biofilm formation/microbiology at implant abutment interface/surface free energy/roughness and implant, periimplantitis/local drug delivery and dental implant. Hand search across the journals - clinical oral implant research, implant dentistry, journal of dental research, international journal of oral implantology, journal of prosthetic dentistry, perioodntology 2000, journal of periodontology were performed. The articles included in the review comprised of in vivo studies, in vivo (animal and human studies, abstracts, review articles.

  9. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage.

    Science.gov (United States)

    Chen, Lin-xing; Hu, Min; Huang, Li-nan; Hua, Zheng-shuang; Kuang, Jia-liang; Li, Sheng-jin; Shu, Wen-sheng

    2015-07-01

    The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments.

  10. Proceedings of the 8. International Symposium on Microbial Ecology : microbial biosystems : new frontiers

    International Nuclear Information System (INIS)

    Bell, C.R.; Brylinsky, M.; Johnson-Green, P.

    2000-01-01

    A wide range of disciplines were presented at this conference which reflected the importance of microbial ecology and provided an understanding of the factors that determine the growth and activities of microorganisms. The conference attracted 1444 delegates from 54 countries. The research emerging from the rapidly expanding frontier of microbial ecosystems was presented in 62 oral presentation and 817 poster presentations. The two volumes of these proceedings presented a total of 27 areas in microbial ecology, some of which included terrestrial biosystems, aquatic, estuarine, surface and subsurface microbial ecology. Other topics included bioremediation, microbial ecology in industry and microbial ecology of oil fields. Some of the papers highlighted the research that is underway to determine the feasibility of using microorganisms for enhanced oil recovery (EOR). Research has shown that microbial EOR can increase production at lower costs than conventional oil recovery. The use of bacteria has also proven to be a feasible treatment method in the biodegradation of hydrocarbons associated with oil spills. refs., tabs., figs

  11. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India.

    Science.gov (United States)

    Badhai, Jhasketan; Ghosh, Tarini S; Das, Subrata K

    2015-01-01

    This study describes microbial diversity in four tropical hot springs representing moderately thermophilic environments (temperature range: 40-58°C; pH: 7.2-7.4) with discrete geochemistry. Metagenome sequence data showed a dominance of Bacteria over Archaea; the most abundant phyla were Chloroflexi and Proteobacteria, although other phyla were also present, such as Acetothermia, Nitrospirae, Acidobacteria, Firmicutes, Deinococcus-Thermus, Bacteroidetes, Thermotogae, Euryarchaeota, Verrucomicrobia, Ignavibacteriae, Cyanobacteria, Actinobacteria, Planctomycetes, Spirochaetes, Armatimonadetes, Crenarchaeota, and Aquificae. The distribution of major genera and their statistical correlation analyses with the physicochemical parameters predicted that the temperature, aqueous concentrations of ions (such as sodium, chloride, sulfate, and bicarbonate), total hardness, dissolved solids and conductivity were the main environmental variables influencing microbial community composition and diversity. Despite the observed high taxonomic diversity, there were only little variations in the overall functional profiles of the microbial communities in the four springs. Genes involved in the metabolism of carbohydrates and carbon fixation were the most abundant functional class of genes present in these hot springs. The distribution of genes involved in carbon fixation predicted the presence of all the six known autotrophic pathways in the metagenomes. A high prevalence of genes involved in membrane transport, signal transduction, stress response, bacterial chemotaxis, and flagellar assembly were observed along with genes involved in the pathways of xenobiotic degradation and metabolism. The analysis of the metagenomic sequences affiliated to the candidate phylum Acetothermia from spring TB-3 provided new insight into the metabolism and physiology of yet-unknown members of this lineage of bacteria.

  12. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India

    Directory of Open Access Journals (Sweden)

    Subrata K Das

    2015-10-01

    Full Text Available This study describes microbial diversity in four tropical hot springs representing moderately thermophilic environments (temperature range: 40-58 °C; pH: 7.2-7.4 with discrete geochemistry. Metagenome sequence data showed a dominance of Bacteria over Archaea; the most abundant phyla were Chloroflexi and Proteobacteria, although other phyla were also present, such as Acetothermia, Nitrospirae, Acidobacteria, Firmicutes, Deinococcus-Thermus, Bacteroidetes, Thermotogae, Euryarchaeota, Verrucomicrobia, Ignavibacteriae, Cyanobacteria, Actinobacteria, Planctomycetes, Spirochaetes, Armatimonadetes, Crenarchaeota, and Aquificae. The distribution of major genera and their statistical correlation analyses with the physicochemical parameters predicted that the temperature, aqueous concentrations of ions (such as sodium, chloride, sulfate, and bicarbonate, total hardness, dissolved solids and conductivity were the main environmental variables influencing microbial community composition and diversity. Despite the observed high taxonomic diversity, there were only little variations in the overall functional profiles of the microbial communities in the four springs. Genes involved in the metabolism of carbohydrates and carbon fixation were the most abundant functional class of genes present in these hot springs. The distribution of genes involved in carbon fixation predicted the presence of all the six known autotrophic pathways in the metagenomes. A high prevalence of genes involved in membrane transport, signal transduction, stress response, bacterial chemotaxis and flagellar assembly were observed along with genes involved in the pathways of xenobiotic degradation and metabolism. The analysis of the metagenomic sequences affiliated to the candidate phylum Acetothermia from spring TB-3 provided new insight into the metabolism and physiology of yet-unknown members of this lineage of bacteria.

  13. Challenges and opportunities of microbial fuel cells (MFCs technology development in Indonesia

    Directory of Open Access Journals (Sweden)

    Surya Ramadan Bimastyaji

    2017-01-01

    Full Text Available Indonesian government has committed to realize the goals of sustainable development in the field of energy as stipulated in Government Regulation Number 79/2014 on national energy policy. A feasibility study of the utilization of alternative energy is important for developing countries like Indonesia. It is expected to reduce dependence on fossil fuel use and meet the energy needs on rural areas in Indonesia. Microbial fuel cells (MFCs is a potential source of electrical energy from waste that is rich in organic matter. Trends in research and development of Microbial Fuel Cells (MFCs technology are increasing every year due to great opportunity to address a wide range of issues related to renewable energy needs, restoration of contaminated environment, water treatment electricity generators in remote areas and many more. MFCs can be used to treat domestic waste, biomass, algae, landfill leachate, agricultural runoff, and industrial waste. MFCs technology is a technology solution for cheap, fast, simple. MFCs use of technical challenges including low electricity production, current instability, and high internal resistance. Many challenges must be address, including a more detailed analysis in energy production, consumption, and application, understanding the relationship between the amount of electricity and contaminant removal, promoting the elimination of nutrients and optimizing system configuration and operations.

  14. Influence of Unweighting on Insulin Signal Transduction in Muscle

    Science.gov (United States)

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  15. [Characterization and microbial community shifts of rice strawdegrading microbial consortia].

    Science.gov (United States)

    Wang, Chunfang; Ma, Shichun; Huang, Yan; Liu, Laiyan; Fan, Hui; Deng, Yu

    2016-12-04

    To study the relationship between microbial community and degradation rate of rice straw, we compared and analyzed cellulose-decomposing ability, microbial community structures and shifts of microbial consortia F1 and F2. We determined exoglucanase activity by 3, 5-dinitrosalicylic acid colorimetry. We determined content of cellulose, hemicellulose and lignin in rice straw by Van Soest method, and calculated degradation rates of rice straw by the weight changes before and after a 10-day incubation. We analyzed and compared the microbial communities and functional microbiology shifts by clone libraries, Miseq analysis and real time-PCR based on the 16S rRNA gene and cel48 genes. Total degradation rate, cellulose, and hemicellulose degradation rate of microbial consortia F1 were significantly higher than that of F2. The variation trend of exoglucanase activity in both microbial consortia F1 and F2 was consistent with that of cel48 gene copies. Microbial diversity of F1 was complex with aerobic bacteria as dominant species, whereas that of F2 was simple with a high proportion of anaerobic cellulose decomposing bacteria in the later stage of incubation. In the first 4 days, unclassified Bacillales and Bacillus were dominant in both F1 and F2. The dominant species and abundance became different after 4-day incubation, Bacteroidetes and Firmicutes were dominant phyla of F1 and F2, respectively. Although Petrimonas and Pusillimonas were common dominant species in F1 and F2, abundance of Petrimonas in F2 (38.30%) was significantly higher than that in F1 (9.47%), and the abundance of Clostridiales OPB54 in F2 increased to 14.85% after 8-day incubation. The abundance of cel48 gene related with cellulose degradation rate and exoglucanase activity, and cel48 gene has the potential as a molecular marker to monitor the process of cellulose degradation. Microbial community structure has a remarkable impact on the degradation efficiency of straw cellulose, and Petrimonas

  16. The alternative Medicago truncatula defense proteome of ROS – defective transgenic roots during early microbial infection

    Directory of Open Access Journals (Sweden)

    Leonard Muriithi Kiirika

    2014-07-01

    Full Text Available ROP-type GTPases of plants function as molecular switches within elementary signal transduction pathways such as the regulation of ROS synthesis via activation of NADPH oxidases (RBOH-respiratory burst oxidase homologue in plants. Previously, we reported that silencing of the Medicago truncatula GTPase MtROP9 led to reduced ROS production and suppressed induction of ROS-related enzymes in transgenic roots (MtROP9i infected with pathogenic (Aphanomyces euteiches and symbiotic microorganisms (Glomus intraradices, Sinorhizobium meliloti. While fungal infections were enhanced, S. meliloti infection was drastically impaired. In this study, we investigate the temporal proteome response of M. truncatula MtROP9i transgenic roots during the same microbial interactions under conditions of deprived potential to synthesize ROS. In comparison with control roots (Mtvector, we present a comprehensive proteomic analysis using sensitive MS protein identification. For four early infection time-points (1, 3, 5, 24 hpi, 733 spots were found to be different in abundance: 213 spots comprising 984 proteins (607 unique were identified after S. meliloti infection, 230 spots comprising 796 proteins (580 unique after G. intraradices infection, and 290 spots comprising 1240 proteins (828 unique after A. euteiches infection. Data evaluation by GelMap in combination with a heatmap tool allowed recognition of key proteome changes during microbial interactions under conditions of hampered ROS synthesis. Overall, the number of induced proteins in MtROP9i was low as compared with controls, indicating a dual function of ROS in defense signaling as well as alternative response patterns activated during microbial infection. Qualitative analysis of induced proteins showed that enzymes linked to ROS production and scavenging were highly induced in control roots, while in MtROP9i the majority of proteins were involved in alternative defense pathways such as cell wall and protein

  17. Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell

    KAUST Repository

    Werner, Craig M.

    2013-02-01

    A microbial osmotic fuel cell (MOFC) has a forward osmosis (FO) membrane situated between the electrodes that enable desalinated water recovery along with power generation. Previous designs have required aerating the cathode chamber water, offsetting the benefits of power generation by power consumption for aeration. An air-cathode MOFC design was developed here to improve energy recovery, and the performance of this new design was compared to conventional microbial fuel cells containing a cation (CEM) or anion exchange membrane (AEM). Internal resistance of the MOFC was reduced with the FO membrane compared to the ion exchange membranes, resulting in a higher maximum power production (43W/m3) than that obtained with an AEM (40W/m3) or CEM (23W/m3). Acetate (carbon source) removal reached 90% in the MOFC; however, a small amount of acetate crossed the membrane to the catholyte. The initial water flux declined by 28% from cycle 1 to cycle 3 of operation but stabilized at 4.1L/m2/h over the final three batch cycles. This decline in water flux was due to membrane fouling. Overall desalination of the draw (synthetic seawater) solution was 35%. These results substantially improve the prospects for simultaneous wastewater treatment and seawater desalination in the same reactor. © 2012 Elsevier B.V.

  18. Microbial carbon pump and its significance for carbon sequestration in soils

    Science.gov (United States)

    Liang, Chao

    2017-04-01

    Studies of the decomposition, transformation and stabilization of soil organic carbon have dramatically increased in recent years due to growing interest in studying the global carbon cycle as it pertains to climate change. While it is readily accepted that the magnitude of the organic carbon reservoir in soils depends upon microbial involvement because soil carbon dynamics are ultimately the consequence of microbial growth and activity, it remains largely unknown how these microbe-mediated processes lead to soil carbon stabilization. Here, two pathways, ex vivo modification and in vivo turnover, were defined to jointly explain soil carbon dynamics driven by microbial catabolism and/or anabolism. Accordingly, a conceptual framework consisting of the raised concept of the soil "microbial carbon pump" (MCP) was demonstrated to describe how microbes act as an active player in soil carbon storage. The hypothesis is that the long-term microbial assimilation process may facilitate the formation of a set of organic compounds that are stabilized (whether via protection by physical interactions or a reduction in activation energy due to chemical composition), ultimately leading to the sequestration of microbial-derived carbon in soils. The need for increased efforts was proposed to seek to inspire new studies that utilize the soil MCP as a conceptual guideline for improving mechanistic understandings of the contributions of soil carbon dynamics to the responses of the terrestrial carbon cycle under global change.

  19. Electrochemical energy: the green face of the salt-affected lands

    International Nuclear Information System (INIS)

    Ashraf, M.; Mahmood, K.; Waheed, A.

    2013-01-01

    A high soluble salt content make the salt-stressed terrestrial and the aquatic habitats electrically more active than the normal ecosystems. The salt-tolerant plants and the microbial populations adapted to the salt-stressed environments have developed special mechanisms to resist the ionic and the osmotic stresses. The study evaluated the bioelectricity or electrochemical energy potential of soil and bio-resources of a salt-affected land. The electrical conductivity and the charge resistance ability exhibited the various categories of salt-tolerant plants suitable for a range of salt-stressed conditions and the root activities including extrusion of proton (H+) in the rooting media. The microbial biofilms formed with plant roots, soil particles and the solid surface by exo-polysaccharides producing biofilm bacteria could regulate and monitor ion flux across the bio-membranes and the electrode surfaces. The ionic gradients thus created by plants and the microbial processes could be a continuous and uninterrupted valuable source of bio-energy of the salt-stressed and contaminated soil and water habitats. The bio-energy can be harnessed and utilized by especially designed microbial biofuel cells (MBFC). The biofilms developed on anode or cathode of MBFC could act as half cells for source and sink of the electrons released during oxidation reduction processes carried by microbial consortia while the exo-polysaccharides, the microbial biopolymer could support transfer of charge to the electrodes. The salt-affected soil and the soil organic matter constituents, microbial biopolymers and the brackish water, as a mediators and the cathode passivation inhibitors, thus could help enhance and increase the output intensity of the electrochemical energy and efficiency of the biofuel cells. The study suggested an enormous potential of the salt-affected lands for non-conventional renewable bio-energy source useful in the remote areas and for the small power requiring electrical

  20. Sediment microbial fuel cells for wastewater treatment: challenges and opportunities

    OpenAIRE

    Xu, Bojun; Ge, Zheng; He, Zhen

    2015-01-01

    Sediment microbial fuel cells (SMFCs) have been intensively investigated for the harvest of energy from natural sediment, but studies of their application for wastewater treatment mainly occurred in the past 2-3 years. SMFCs with simple structures can generate electrical energy while decontaminating wastewater. Most SMFCs used for wastewater treatment contain plants to mimic constructed wetlands. Both synthetic and real wastewaters have been used as substrates in SMFCs that achieved satisfact...

  1. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  2. The role of the Frank-Starling law in the transduction of cellular work to whole organ pump function: a computational modeling analysis.

    Directory of Open Access Journals (Sweden)

    Steven A Niederer

    2009-04-01

    Full Text Available We have developed a multi-scale biophysical electromechanics model of the rat left ventricle at room temperature. This model has been applied to investigate the relative roles of cellular scale length dependent regulators of tension generation on the transduction of work from the cell to whole organ pump function. Specifically, the role of the length dependent Ca(2+ sensitivity of tension (Ca(50, filament overlap tension dependence, velocity dependence of tension, and tension dependent binding of Ca(2+ to Troponin C on metrics of efficient transduction of work and stress and strain homogeneity were predicted by performing simulations in the absence of each of these feedback mechanisms. The length dependent Ca(50 and the filament overlap, which make up the Frank-Starling Law, were found to be the two dominant regulators of the efficient transduction of work. Analyzing the fiber velocity field in the absence of the Frank-Starling mechanisms showed that the decreased efficiency in the transduction of work in the absence of filament overlap effects was caused by increased post systolic shortening, whereas the decreased efficiency in the absence of length dependent Ca(50 was caused by an inversion in the regional distribution of strain.

  3. Microbial conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lau, P. [National Research Council of Canada, Ottawa, ON (Canada). Bioconversion and Sustainable Development

    2006-07-01

    Microbes are a biomass and an valuable resource. This presentation discussed microbial conversion technologies along with background information on microbial cells, their characteristics and microbial diversity. Untapped opportunities for microbial conversion were identified. Metagenomic and genome mining approaches were also discussed, as they can provide access to uncultivated or unculturable microorganisms in communal populations and are an unlimited resource for biocatalysts, novel genes and metabolites. Genome mining was seen as an economical approach. The presentation also emphasized that the development of microbial biorefineries would require significant insights into the relevant microorganisms and that biocatalysts were the ultimate in sustainability. In addition, the presentation discussed the natural fibres initiative for biochemicals and biomaterials. Anticipated outputs were identified and work in progress of a new enzyme-retting cocktail to provide diversity and/or consistency in fibre characteristics for various applications were also presented. It was concluded that it is necessary to leverage understanding of biological processes to produce bioproducts in a clean and sustainable manner. tabs., figs.

  4. Venezuela-MEM/USA-DOE Fossil Energy Report XIII-1, Supporting Technology for Enhanced Oil Recovery, Microbial EOR

    Energy Technology Data Exchange (ETDEWEB)

    Ziritt, Jose Luis

    1999-11-03

    The results from Annex XIII of the Cooperative Agreement between the United States Department of Energy (DOE) and the Ministry of Energy and Mines of the Republic of Venezuela (MEMV) have been documented and published with many researchers involved. Integrate comprehensive research programs in the area of Microbial Enhanced Oil Recovery (MEOR) ranged from feasibility laboratory studies to full-scale multi-well field pilots. The objective, to cooperate in a technical exchange of ideas and information was fully met throughout the life of the Annex. Information has been exchanged between the two countries through published reports and technical meetings between experts in both country's research communities. The meetings occurred every two years in locations coincident with the International MEOR conferences & workshops sponsored by DOE (June 1990, University of Oklahoma, September 1992, Brookhaven, September 1995, National Institute of Petroleum and Energy Research). Reports and publications produced during these years are listed in Appendix B. Several Annex managers have guided the exchange through the years. They included Luis Vierma, Jose Luis Zirritt, representing MEMV and E. B. Nuckols, Edith Allison, and Rhonda Lindsey, representing the U.S. DOE. Funding for this area of research remained steady for a few years but decreased in recent years. Because both countries have reduced research programs in this area, future exchanges on this topic will occur through ANNEX XV. Informal networks established between researchers through the years should continue to function between individuals in the two countries.

  5. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Kelly J Culhane

    2015-11-01

    Full Text Available Although family B G protein-coupled receptors (GPCRs contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.

  6. Presence of Ca2+-dependent K+ channels in chemosensory cilia support a role in odor transduction.

    Science.gov (United States)

    Delgado, Ricardo; Saavedra, M Veronica; Schmachtenberg, Oliver; Sierralta, Jimena; Bacigalupo, Juan

    2003-09-01

    Olfactory receptor neurons (ORNs) respond to odorants with changes in the action potential firing rate. Excitatory responses, consisting of firing increases, are mediated by a cyclic AMP cascade that leads to the activation of cationic nonselective cyclic nucleotide-gated (CNG) channels and Ca2+-dependent Cl- (ClCa) channels. This process takes place in the olfactory cilia, where all protein components of this cascade are confined. ORNs from various vertebrate species have also been shown to generate inhibitory odor responses, expressed as decreases in action potential discharges. Odor inhibition appears to rely on Ca2+-dependent K+ (KCa) channels, but the underlying transduction mechanism remains unknown. If these channels are involved in odor transduction, they are expected to be present in the olfactory cilia. We found that a specific antibody against a large conductance KCa recognized a protein of approximately 116 kDa in Western blots of purified rat olfactory ciliary membranes. Moreover, the antibody labeled ORN cilia in isolated ORNs from rat and toad (Caudiverbera caudiverbera). In addition, single-channel recordings from inside-out membrane patches excised from toad chemosensory cilia showed the presence of 4 different types of KCa channels, with unitary conductances of 210, 60, 12, and 29 and 60 pS, high K+-selectivity, and Ca2+ sensitivities in the low micromolar range. Our work demonstrates the presence of K+ channels in the ORN cilia and supports their participation in odor transduction.

  7. D:L-AMINO Acids and the Turnover of Microbial Biomass

    Science.gov (United States)

    Lomstein, B. A.; Braun, S.; Mhatre, S. S.; Jørgensen, B. B.

    2015-12-01

    Decades of ocean drilling have demonstrated wide spread microbial life in deep sub-seafloor sediment, and surprisingly high microbial cell numbers. Despite the ubiquity of life in the deep biosphere, the large community sizes and the low energy fluxes in the vast buried ecosystem are still poorly understood. It is not know whether organisms of the deep biosphere are specifically adapted to extremely low energy fluxes or whether most of the observed cells are in a maintenance state. Recently we developed and applied a new culture independent approach - the D:L-amino acid model - to quantify the turnover times of living microbial biomass, microbial necromass and mean metabolic rates. This approach is based on the built-in molecular clock in amino acids that very slowly undergo chemical racemization until they reach an even mixture of L- and D- forms, unless microorganisms spend energy to keep them in the L-form that dominates in living organisms. The approach combines sensitive analyses of amino acids, the unique bacterial endospore marker (dipicolinic acid) with racemization dynamics of stereo-isomeric amino acids. Based on a heating experiment, we recently reported kinetic parameters for racemization of aspartic acid, glutamic acid, serine and alanine in bulk sediment from Aarhus Bay, Denmark. The obtained racemization rate constants were faster than the racemization rate constants of free amino acids, which we have previously applied in Holocene sediment from Aarhus Bay and in up to 10 mio yr old sediment from ODP Leg 201. Another important input parameter for the D:L-amino acid model is the cellular carbon content. It has recently been suggested that the cellular carbon content most likely is lower than previously thought. In recognition of these new findings, previously published data based on the D:L-amino acid model were recalculated and will be presented together with new data from an Arctic Holocene setting with constant sub-zero temperatures.

  8. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    Full Text Available We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of

  9. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology.

    Science.gov (United States)

    Stegen, James C; Johnson, Tim; Fredrickson, James K; Wilkins, Michael J; Konopka, Allan E; Nelson, William C; Arntzen, Evan V; Chrisler, William B; Chu, Rosalie K; Fansler, Sarah J; Graham, Emily B; Kennedy, David W; Resch, Charles T; Tfaily, Malak; Zachara, John

    2018-02-08

    The hyporheic corridor (HC) encompasses the river-groundwater continuum, where the mixing of groundwater (GW) with river water (RW) in the HC can stimulate biogeochemical activity. Here we propose a novel thermodynamic mechanism underlying this phenomenon and reveal broader impacts on dissolved organic carbon (DOC) and microbial ecology. We show that thermodynamically favorable DOC accumulates in GW despite lower DOC concentration, and that RW contains thermodynamically less-favorable DOC, but at higher concentrations. This indicates that GW DOC is protected from microbial oxidation by low total energy within the DOC pool, whereas RW DOC is protected by lower thermodynamic favorability of carbon species. We propose that GW-RW mixing overcomes these protections and stimulates respiration. Mixing models coupled with geophysical and molecular analyses further reveal tipping points in spatiotemporal dynamics of DOC and indicate important hydrology-biochemistry-microbial feedbacks. Previously unrecognized thermodynamic mechanisms regulated by GW-RW mixing may therefore strongly influence biogeochemical and microbial dynamics in riverine ecosystems.

  10. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases.

    Science.gov (United States)

    Cai, Yujia; Bak, Rasmus O; Mikkelsen, Jacob Giehm

    2014-04-24

    Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in 'all-in-one' lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases.DOI: http://dx.doi.org/10.7554/eLife.01911.001. Copyright © 2014, Cai et al.

  11. Repair of damage induced by ultraviolet radiation in mutator T-1 Escherichia coli transductants

    International Nuclear Information System (INIS)

    Sideropoulos, A.S.; Greenberg, J.; Warren, G.

    1975-01-01

    To ascertain whether a relationship commonly exists between azide resistance, ultraviolet (uv) resistance, and the mutator property (mut T-1), we performed uv survival and mutation frequency determinations with and without caffeine (2.571 mM) in nonmutator azide resistant (azi/sup r/) and phage mediated mut T-1 transductants of Escherichia coli K-12, B/r, B/r T-, Bs-1, and Bs-8. The strains constructed were assumed to be ''co-isogenic'' except for the mutator factor. The frequency of mutation to streptomycin resistance (str/sup r/) was relatively constant and approximated 2 x 10- 7 . Transductants carrying the azide marker with or without the mut T-1 gene had the same level of uv survival as the parent with the same mutator phenotype. Dark repair of the prelethal uv lesion is equally caffeine sensitive in the nonmutator and mutator HCR+ strains. Our results indicated that the mut T-1 strains possess an efficient dark repair system for uv damage and that the mechanism of mut T-1 action is independent of uv dark repair processes. (auth)

  12. Photosynthetic solar cell using nanostructured proton exchange membrane for microbial biofilm prevention.

    Science.gov (United States)

    Lee, Dong Hyun; Oh, Hwa Jin; Bai, Seoung Jae; Song, Young Seok

    2014-06-24

    Unwanted biofilm formation has a detrimental effect on bioelectrical energy harvesting in microbial cells. This issue still needs to be solved for higher power and longer durability and could be resolved with the help of nanoengineering in designing and manufacturing. Here, we demonstrate a photosynthetic solar cell (PSC) that contains a nanostructure to prevent the formation of biofilm by micro-organisms. Nanostructures were fabricated using nanoimprint lithography, where a film heater array system was introduced to precisely control the local wall temperature. To understand the heat and mass transfer phenomena behind the manufacturing and energy harvesting processes of PSC, we carried out a numerical simulation and experimental measurements. It revealed that the nanostructures developed on the proton exchange membrane enable PSC to produce enhanced output power due to the retarded microbial attachment on the Nafion membrane. We anticipate that this strategy can provide a pathway where PSC can ensure more renewable, sustainable, and efficient energy harvesting performance.

  13. Efficient transduction of equine adipose-derived mesenchymal stem cells by VSV-G pseudotyped lentiviral vectors.

    Science.gov (United States)

    Petersen, Gayle F; Hilbert, Bryan; Trope, Gareth; Kalle, Wouter; Strappe, Padraig

    2014-12-01

    Equine adipose-derived mesenchymal stem cells (EADMSC) provide a unique cell-based approach for treatment of a variety of equine musculoskeletal injuries, via regeneration of diseased or damaged tissue, or the secretion of immunomodulatory molecules. These capabilities can be further enhanced by genetic modification using lentiviral vectors, which provide a safe and efficient method of gene delivery. We investigated the suitability of lentiviral vector technology for gene delivery into EADMSC, using GFP expressing lentiviral vectors pseudotyped with the G glycoprotein from the vesicular stomatitis virus (V-GFP) or, for the first time, the baculovirus gp64 envelope protein (G-GFP). In this study, we produced similarly high titre V-GFP and G-GFP lentiviral vectors. Flow cytometric analysis showed efficient transduction using V-GFP; however G-GFP exhibited a poor ability to transduce EADMSC. Transduction resulted in sustained GFP expression over four passages, with minimal effects on cell viability and doubling time, and an unaltered chondrogenic differentiation potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Bulk Shear-Wave Transduction Experiments Using Magnetostrictive Transducers with a Thin Fe-Co Alloy Patch

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Ha; Cho, Seung Hyun; Ahn, Bong Young; Kwon, Hyu Sang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2010-08-15

    Recently, the results of many studies have clarified the successful performance of magnetostrictive transducers in which a ferromagnetic patch is used for the transduction of guided shear waves; this is because a thin ferromagnetic patch with strong magnetostriction is very useful for generating and detecting shear wave. This investigation deals with bulk shear wave transduction by means of magnetostriction; on the other hand, the existing studies have been focused on guided shear waves. A modular transducer was developed: this transducer comprised a coil, magnets, and a thin ferromagnetic patch that was made of Fe-Co alloy. Some experiments were conducted to verify the performance of the developed transducer. Radiation directivity pattern of the developed transducer was obtained, and a test to detect the damage on a side drill hole of a steel block specimen was carried out. From the results of these tests, the good performance of the transducer for nondestructive testing was verified on the basis of the signal-to-noise ratio and narrow beam directivity.

  15. New insights into the organization of plasma membrane and its role in signal transduction.

    Science.gov (United States)

    Suzuki, Kenichi G N

    2015-01-01

    Plasma membranes have heterogeneous structures for efficient signal transduction, required to perform cell functions. Recent evidence indicates that the heterogeneous structures are produced by (1) compartmentalization by actin-based membrane skeleton, (2) raft domains, (3) receptor-receptor interactions, and (4) the binding of receptors to cytoskeletal proteins. This chapter provides an overview of recent studies on diffusion, clustering, raft association, actin binding, and signal transduction of membrane receptors, especially glycosylphosphatidylinositol (GPI)-anchored receptors. Studies on diffusion of GPI-anchored receptors suggest that rafts may be small and/or short-lived in plasma membranes. In steady state conditions, GPI-anchored receptors form transient homodimers, which may represent the "standby state" for the stable homodimers and oligomers upon ligation. Furthermore, It is proposed that upon ligation, the binding of GPI-anchored receptor clusters to cytoskeletal actin filaments produces a platform for downstream signaling, and that the pulse-like signaling easily maintains the stability of the overall signaling activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes.

    Science.gov (United States)

    Shao, Yvonne Y; Wang, Lai; Welter, Jean F; Ballock, R Tracy

    2012-01-01

    Indian hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2014-01-01

    and achieve high-yield hydrogen production from wide range of organic matters at relatively mild conditions. This approach greatly reduces the electric energy cost for hydrogen production in contrast to direct water electrolysis. In addition to hydrogen production, MECs may also support several energetically......Microbial electrolysis cells (MECs) are an electricity-mediated microbial bioelectrochemical technology, which is originally developed for high-efficiency biological hydrogen production from waste streams. Compared to traditional biological technologies, MECs can overcome thermodynamic limitations...

  18. Phosphate recovery as struvite within a single chamber microbial electrolysis cell

    KAUST Repository

    Cusick, Roland D.; Logan, Bruce E.

    2012-01-01

    An energy efficient method of concurrent hydrogen gas and struvite (MgNH 4PO 4·6H 2O) production was investigated based on bioelectrochemically driven struvite crystallization at the cathode of a single chamber microbial electrolysis struvite

  19. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway.

    Science.gov (United States)

    Mimura, Manaki; Nagato, Yasuo; Itoh, Jun-Ichi

    2012-05-01

    Rice PLASTOCHRON 1 (PLA1) and PLA2 genes regulate leaf maturation and plastochron, and their loss-of-function mutants exhibit small organs and rapid leaf emergence. They encode a cytochrome P450 protein CYP78A11 and an RNA-binding protein, respectively. Their homologs in Arabidopsis and maize are also associated with plant development/organ size. Despite the importance of PLA genes in plant development, their molecular functions remain unknown. Here, we investigated how PLA1 and PLA2 genes are related to phytohormones. We found that gibberellin (GA) is the major phytohormone that promotes PLA1 and PLA2 expression. GA induced PLA1 and PLA2 expression, and conversely the GA-inhibitor uniconazole suppressed PLA1 and PLA2 expression. In pla1-4 and pla2-1 seedlings, expression levels of GA biosynthesis genes and the signal transduction gene were similar to those in wild-type seedlings. GA treatment slightly down-regulated the GA biosynthesis gene GA20ox2 and up-regulated the GA-catabolizing gene GA2ox4, whereas the GA biosynthesis inhibitor uniconazole up-regulated GA20ox2 and down-regulated GA2ox4 both in wild-type and pla mutants, suggesting that the GA feedback mechanism is not impaired in pla1 and pla2. To reveal how GA signal transduction affects the expression of PLA1 and PLA2, PLA expression in GA-signaling mutants was examined. In GA-insensitive mutant, gid1 and less-sensitive mutant, Slr1-d1, PLA1 and PLA2 expression was down-regulated. On the other hand, the expression levels of PLA1 and PLA2 were highly enhanced in a GA-constitutive-active mutant, slr1-1, causing ectopic overexpression. These results indicate that both PLA1 and PLA2 act downstream of the GA signal transduction pathway to regulate leaf development.

  20. Microbial activity in the marine deep biosphere: progress and prospects.

    Science.gov (United States)

    Orcutt, Beth N; Larowe, Douglas E; Biddle, Jennifer F; Colwell, Frederick S; Glazer, Brian T; Reese, Brandi Kiel; Kirkpatrick, John B; Lapham, Laura L; Mills, Heath J; Sylvan, Jason B; Wankel, Scott D; Wheat, C Geoff

    2013-01-01

    The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists-all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these "extreme" environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) "theme team" on microbial activity (www.darkenergybiosphere.org).

  1. Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review

    Directory of Open Access Journals (Sweden)

    Darine Trabelsi

    2013-01-01

    Full Text Available The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research.

  2. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells

    International Nuclear Information System (INIS)

    Christie, J.M.; Jenkins, G.I.

    1996-01-01

    UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the, effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species

  3. Molecular microbial ecology manual

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Bruijn, de F.J.; Head, I.M.; Akkermans, A.D.L.

    2004-01-01

    The field of microbial ecology has been revolutionized in the past two decades by the introduction of molecular methods into the toolbox of the microbial ecologist. This molecular arsenal has helped to unveil the enormity of microbial diversity across the breadth of the earth's ecosystems, and has

  4. Beacon Editor: Capturing Signal Transduction Pathways Using the Systems Biology Graphical Notation Activity Flow Language.

    Science.gov (United States)

    Elmarakeby, Haitham; Arefiyan, Mostafa; Myers, Elijah; Li, Song; Grene, Ruth; Heath, Lenwood S

    2017-12-01

    The Beacon Editor is a cross-platform desktop application for the creation and modification of signal transduction pathways using the Systems Biology Graphical Notation Activity Flow (SBGN-AF) language. Prompted by biologists' requests for enhancements, the Beacon Editor includes numerous powerful features for the benefit of creation and presentation.

  5. Invited review: Essential oils as modifiers of rumen microbial fermentation.

    Science.gov (United States)

    Calsamiglia, S; Busquet, M; Cardozo, P W; Castillejos, L; Ferret, A

    2007-06-01

    Microorganisms in the rumen degrade nutrients to produce volatile fatty acids and synthesize microbial protein as an energy and protein supply for the ruminant, respectively. However, this fermentation process has energy (losses of methane) and protein (losses of ammonia N) inefficiencies that may limit production performance and contribute to the release of pollutants to the environment. Antibiotic ionophores have been very successful in reducing these energy and protein losses in the rumen, but the use of antibiotics in animal feeds is facing reduced social acceptance, and their use has been banned in the European Union since January 2006. For this reason, scientists have become interested in evaluating other alternatives to control specific microbial populations to modulate rumen fermentation. Essential oils can interact with microbial cell membranes and inhibit the growth of some gram-positive and gram-negative bacteria. As a result of such inhibition, the addition of some plant extracts to the rumen results in an inhibition of deamination and methanogenesis, resulting in lower ammonia N, methane, and acetate, and in higher propionate and butyrate concentrations. Results have indicated that garlic oil, cinnamaldehyde (the main active component of cinnamon oil), eugenol (the main active component of the clove bud), capsaicin (the active component of hot peppers), and anise oil, among others, may increase propionate production, reduce acetate or methane production, and modify proteolysis, peptidolysis, or deamination in the rumen. However, the effects of some of these essential oils are pH and diet dependent, and their use may be beneficial only under specific conditions and production systems. For example, capsaicin appears to have small effects in high-forage diets, whereas the changes observed in high-concentrate diets (increases in dry matter intake and total VFA, and reduction in the acetateto-propionate ratio and ammonia N concentration) may be beneficial

  6. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks

    Directory of Open Access Journals (Sweden)

    Kirouac Daniel C

    2012-05-01

    Full Text Available Abstract Background Understanding the information-processing capabilities of signal transduction networks, how those networks are disrupted in disease, and rationally designing therapies to manipulate diseased states require systematic and accurate reconstruction of network topology. Data on networks central to human physiology, such as the inflammatory signalling networks analyzed here, are found in a multiplicity of on-line resources of pathway and interactome databases (Cancer CellMap, GeneGo, KEGG, NCI-Pathway Interactome Database (NCI-PID, PANTHER, Reactome, I2D, and STRING. We sought to determine whether these databases contain overlapping information and whether they can be used to construct high reliability prior knowledge networks for subsequent modeling of experimental data. Results We have assembled an ensemble network from multiple on-line sources representing a significant portion of all machine-readable and reconcilable human knowledge on proteins and protein interactions involved in inflammation. This ensemble network has many features expected of complex signalling networks assembled from high-throughput data: a power law distribution of both node degree and edge annotations, and topological features of a “bow tie” architecture in which diverse pathways converge on a highly conserved set of enzymatic cascades focused around PI3K/AKT, MAPK/ERK, JAK/STAT, NFκB, and apoptotic signaling. Individual pathways exhibit “fuzzy” modularity that is statistically significant but still involving a majority of “cross-talk” interactions. However, we find that the most widely used pathway databases are highly inconsistent with respect to the actual constituents and interactions in this network. Using a set of growth factor signalling networks as examples (epidermal growth factor, transforming growth factor-beta, tumor necrosis factor, and wingless, we find a multiplicity of network topologies in which receptors couple to downstream

  7. Potential for microbial oxidation of ferrous iron in basaltic glass.

    Science.gov (United States)

    Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E

    2015-05-01

    Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and

  8. Biogeography of serpentinite-hosted microbial ecosystems

    Science.gov (United States)

    Brazelton, W.; Cardace, D.; Fruh-Green, G.; Lang, S. Q.; Lilley, M. D.; Morrill, P. L.; Szponar, N.; Twing, K. I.; Schrenk, M. O.

    2012-12-01

    Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). To date, however, the "serpentinite microbiome" is poorly constrained- almost nothing is known about the microbial diversity endemic to rocks actively undergoing serpentinization. Through the Census of Deep Life, we have obtained 16S rRNA gene pyrotag sequences from fluids and rocks from serpentinizing ophiolites in California, Canada, and Italy. The samples include high pH serpentinite springs, presumably representative of deeper environments within the ophiolite complex, wells which directly access subsurface aquifers, and rocks obtained from drill cores into serpentinites. These data represent a unique opportunity to examine biogeographic patterns among a restricted set of microbial taxa that are adapted to similar environmental conditions and are inhabiting sites with related geological histories. In general, our results point to potentially H2-utilizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These general taxonomic and biogeochemical trends were also observed in seafloor Lost City hydrothermal chimneys, indicating that we are beginning to identify a core serpentinite microbial community that spans marine and continental settings.

  9. Microbial electrosynthetic cells

    Energy Technology Data Exchange (ETDEWEB)

    May, Harold D.; Marshall, Christopher W.; Labelle, Edward V.

    2018-01-30

    Methods are provided for microbial electrosynthesis of H.sub.2 and organic compounds such as methane and acetate. Method of producing mature electrosynthetic microbial populations by continuous culture is also provided. Microbial populations produced in accordance with the embodiments as shown to efficiently synthesize H.sub.2, methane and acetate in the presence of CO.sub.2 and a voltage potential. The production of biodegradable and renewable plastics from electricity and carbon dioxide is also disclosed.

  10. Micro thermal energy harvester design optimization

    International Nuclear Information System (INIS)

    Trioux, E; Basrour, S; Monfray, S

    2017-01-01

    This paper reports the recent progress of a new technology to scavenge thermal energy, implying a double-step transduction through the thermal buckling of a bilayer aluminum nitride/aluminum bridge and piezoelectric transduction. A completely new scavenger design is presented, with improved performance. The butterfly shape reduces the overall device mechanical rigidity, which leads to a decrease in buckling temperatures compared to previously studied rectangular plates. Firstly, an analytical model exposes the basic principle of the presented device. Then a numerical model completes the explanations by introducing a butterfly shaped structure. Finally the fabrication process is briefly described and both the rectangular and butterfly harvesters are characterized. We compare their performances with an equal thickness of Al and AlN. Secondly, with a thicker Al layer than AlN layer, we will characterize only the butterfly structure in terms of output power and buckling temperatures, and compare it to the previous stack. (paper)

  11. Cryptochromes and Hormone Signal Transduction under Near-Zero Magnetic Fields: New Clues to Magnetic Field Effects in a Rice Planthopper.

    Directory of Open Access Journals (Sweden)

    Gui-Jun Wan

    Full Text Available Although there are considerable reports of magnetic field effects (MFE on organisms, very little is known so far about the MFE-related signal transduction pathways. Here we establish a manipulative near-zero magnetic field (NZMF to investigate the potential signal transduction pathways involved in MFE. We show that exposure of migratory white-backed planthopper, Sogatella furcifera, to the NZMF results in delayed egg and nymphal development, increased frequency of brachypterous females, and reduced longevity of macropterous female adults. To understand the changes in gene expression underlying these phenotypes, we examined the temporal patterns of gene expression of (i CRY1 and CRY2 as putative magnetosensors, (ii JHAMT, FAMeT and JHEH in the juvenile hormone pathway, (iii CYP307A1 in the ecdysone pathway, and (iv reproduction-related Vitellogenin (Vg. The significantly altered gene expression of CRY1 and CRY2 under the NZMF suggest their developmental stage-specific patterns and potential upstream location in magnetic response. Gene expression patterns of JHAMT, JHEH and CYP307A1 were consistent with the NZMF-triggered delay in nymphal development, higher proportion of brachypterous female adults, and the shortened longevity of macropterous female adults, which show feasible links between hormone signal transduction and phenotypic MFE. By conducting manipulative NZMF experiments, our study suggests an important role of the geomagnetic field (GMF in modulating development and physiology of insects, provides new insights into the complexity of MFE-magnetosensitivity interactions, and represents an initial but crucial step forward in understanding the molecular basis of cryptochromes and hormone signal transduction involved in MFE.

  12. The potential for microbial life in a Canadian high-level nuclear fuel waste disposal vault

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.

    1989-12-01

    Recent studies have concluded that microbial contamination of a nuclear fuel waste disposal vault is inevitable. Factors that will affect the development of substantial population of micro-organisms include: physiological tolerance of microbes; fluid movement in a vault; availability of nutrients; and availability of energy sources. It is difficult to resolve whether microbial growth will either positively or negatively affect the performance of a vault. One of the necessary steps towards ultimately answering this question is to assess the potential for microbial growth in a disposal vault, based on a nutrient and energy budget. This report gives a quantitative (but conservative) inventory of nutrients and potential energy sources present in a Canadian nuclear fuel waste vault, which hypothetically could support the growth of micro-organisms. Maximum population densities are calculated based on these inventories and assuming that all conditions for microbial growth are optimal, although this will certainly not be the case. Laboratory studies under the vault-relevant conditions are being performed to put realistic boundaries on the calculated numbers. Initial results from these studies, combined with data from a natural analogue site indicate that the calculated population densities could be overestimated by four to five orders of magnitude. Limited data show no effect of the presence of microbes on the transport of Tc, I, and Sr in backfill sand columns. Additional work is needed to address transport effects on buffer and backfill clay columns

  13. Energy harvesting influences electrochemical performance of microbial fuel cells

    Science.gov (United States)

    Lobo, Fernanda Leite; Wang, Xin; Ren, Zhiyong Jason

    2017-07-01

    Microbial fuel cells (MFCs) can be effective power sources for remote sensing, wastewater treatment and environmental remediation, but their performance needs significant improvement. This study systematically analyzes how active harvesting using electrical circuits increased MFC system outputs as compared to passive resistors not only in the traditional maximal power point (MPP) but also in other desired operating points such as the maximum current point (MCP) and the maximum voltage point (MVP). Results show that active harvesting in MPP increased power output by 81-375% and active harvesting in MCP increased Coulombic efficiency by 207-805% compared with resisters operated at the same points. The cyclic voltammograms revealed redox potential shifts and supported the performance data. The findings demonstrate that active harvesting is a very effective approach to improve MFC performance across different operating points.

  14. Microbial bioinformatics 2020.

    Science.gov (United States)

    Pallen, Mark J

    2016-09-01

    Microbial bioinformatics in 2020 will remain a vibrant, creative discipline, adding value to the ever-growing flood of new sequence data, while embracing novel technologies and fresh approaches. Databases and search strategies will struggle to cope and manual curation will not be sustainable during the scale-up to the million-microbial-genome era. Microbial taxonomy will have to adapt to a situation in which most microorganisms are discovered and characterised through the analysis of sequences. Genome sequencing will become a routine approach in clinical and research laboratories, with fresh demands for interpretable user-friendly outputs. The "internet of things" will penetrate healthcare systems, so that even a piece of hospital plumbing might have its own IP address that can be integrated with pathogen genome sequences. Microbiome mania will continue, but the tide will turn from molecular barcoding towards metagenomics. Crowd-sourced analyses will collide with cloud computing, but eternal vigilance will be the price of preventing the misinterpretation and overselling of microbial sequence data. Output from hand-held sequencers will be analysed on mobile devices. Open-source training materials will address the need for the development of a skilled labour force. As we boldly go into the third decade of the twenty-first century, microbial sequence space will remain the final frontier! © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica

    Directory of Open Access Journals (Sweden)

    Bradley M. Tebo

    2015-03-01

    Full Text Available The Earth’s crust hosts a subsurface, dark, and oligotrophic biosphere that is poorly understood in terms of the energy supporting its biomass production and impact on food webs at the Earth’s surface. Dark oligotrophic volcanic ecosystems (DOVEs are good environments for investigations of life in the absence of sunlight as they are poor in organics, rich in chemical reactants and well known for chemical exchange with Earth’s surface systems. Ice caves near the summit of Mt. Erebus (Antarctica offer DOVEs in a polar alpine environment that is starved in organics and with oxygenated hydrothermal circulation in highly reducing host rock. We surveyed the microbial communities using PCR, cloning, sequencing and analysis of the small subunit (16S ribosomal and Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RubisCO genes in sediment samples from three different caves, two that are completely dark and one that receives snow-filtered sunlight seasonally. The microbial communities in all three caves are composed primarily of Bacteria and fungi; Archaea were not detected. The bacterial communities from these ice caves display low phylogenetic diversity, but with a remarkable diversity of RubisCO genes including new deeply branching Form I clades, implicating the Calvin-Benson-Bassham cycle as a pathway of CO2 fixation. The microbial communities in one of the dark caves, Warren Cave, which has a remarkably low phylogenetic diversity, were analyzed in more detail to gain a possible perspective on the energetic basis of the microbial ecosystem in the cave. Atmospheric carbon (CO2 and CO, including from volcanic emissions, likely supplies carbon and/or some of the energy requirements of chemoautotrophic microbial communities in Warren Cave and probably other Mt. Erebus ice caves. Our work casts a first glimpse at Mt. Erebus ice caves as natural laboratories for exploring carbon, energy and nutrient sources in the subsurface biosphere and the

  16. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Strik, David P.B.T.B.; Terlouw, Hilde; Hamelers, Hubertus V.M.; Buisman, Cees J.N. [Wageningen Univ. (Netherlands). Sub-Dept. of Environmental Technology

    2008-12-15

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m{sup 2} projected anode surface area and a maximum power production of 110 mW/m{sup 2} surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products. (orig.)

  17. Microbial Fuel Cell Possibilities on American Indian Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Kimberlynn [South Dakota School of Mines and Technology, Rapid City, SD (United States)

    2016-10-01

    The purpose of this paper is to present a brief background of tribal reservations, the process of how Microbial Fuel Cells (MFCs) work, and the potential benefits of using MFCs on tribal reservations to convert waste water to energy as a means to sustainably generate electricity. There have been no known studies conducted on tribal lands that would be able to add to the estimated percentage of all renewable energy resources identified. Not only does MFC technology provide a compelling, innovative solution, it could also address better management of wastewater, using it as a form of energy generation. Using wastewater for clean energy generation could provide a viable addition to community infrastructure systems improvements.

  18. Salinity stress induces the production of 2-(2-phenylethyl)chromones and regulates novel classes of responsive genes involved in signal transduction in Aquilaria sinensis calli.

    Science.gov (United States)

    Wang, Xiaohui; Gao, Bowen; Liu, Xiao; Dong, Xianjuan; Zhang, Zhongxiu; Fan, Huiyan; Zhang, Le; Wang, Juan; Shi, Shepo; Tu, Pengfei

    2016-05-26

    Agarwood, is a resinous portion derived from Aquilaria sinensis, has been widely used in traditional medicine and incense. 2-(2-phenylethyl)chromones are principal components responsible for the quality of agarwood. However, the molecular basis of 2-(2-phenylethyl)chromones biosynthesis and regulation remains almost unknown. Our research indicated that salt stress induced production of several of 2-(2-phenylethyl)chromones in A. sinensis calli. Transcriptome analysis of A. sinensis calli treated with NaCl is required to further facilitate the multiple signal pathways in response to salt stress and to understand the mechanism of 2-(2-phenylethyl)chromones biosynthesis. Forty one 2-(2-phenylethyl)chromones were identified from NaCl-treated A. sinensis calli. 93 041 unigenes with an average length of 1562 nt were generated from the control and salt-treated calli by Illmunina sequencing after assembly, and the unigenes were annotated by comparing with the public databases including NR, Swiss-Prot, KEGG, COG, and GO database. In total, 18 069 differentially expressed transcripts were identified by the transcriptome comparisons on the control calli and calli induced by 24 h or 120 h salinity stress. Numerous genes involved in signal transduction pathways including the genes responsible for hormone signal transduction, receptor-like kinases, MAPK cascades, Ca(2+) signal transduction, and transcription factors showed clear differences between the control calli and NaCl-treated calli. Furthermore, our data suggested that the genes annotated as chalcone synthases and O-methyltransferases may contribute to the biosynthesis of 2-(2-phenylethyl)chromones. Salinity stress could induce the production of 41 2-(2-phenylethyl)chromones in A. sinensis calli. We conducted the first deep-sequencing transcriptome profiling of A. sinensis under salt stress and observed a large number of differentially expressed genes in response to salinity stress. Moreover, salt stress induced

  19. HM-EH-RT: hybrid multimodal energy harvesting from rotational and translational motions

    OpenAIRE

    Miles Larkin; Yonas Tadesse

    2013-01-01

    This paper presents a novel hybrid multimodal energy harvesting device consisting of an unbalanced rotary disk that supports two transduction methods, piezoelectric and electromagnetic. The device generates electrical energy from oscillatory motion either orthogonal or parallel to the rotary axis to power electronic devices. Analytical models for the electromagnetic and piezoelectric systems were developed to describe the mechanical and electrical behavior of the device. From these models, nu...

  20. 11 Soil Microbial Biomass

    African Journals Online (AJOL)

    186–198. Insam H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil. Biol. Biochem. 22: 525–532. Insam H. D. and Domsch K. H. (1989). Influence of microclimate on soil microbial biomass. Soil Biol. Biochem. 21: 211–21. Jenkinson D. S. (1988). Determination of microbial.

  1. Capsid Mutated Adeno-Associated Virus Delivered to the Anterior Chamber Results in Efficient Transduction of Trabecular Meshwork in Mouse and Rat.

    Directory of Open Access Journals (Sweden)

    Barbara Bogner

    Full Text Available Adeno associated virus (AAV is well known for its ability to deliver transgenes to retina and to mediate improvements in animal models and patients with inherited retinal disease. Although the field is less advanced, there is growing interest in AAV's ability to target cells of the anterior segment. The purpose of our study was to fully articulate a reliable and reproducible method for injecting the anterior chamber (AC of mice and rats and to investigate the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-complementary (sc genomes in the anterior segment of the eye.AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux an air bubble was created in the AC. scAAVs expressing GFP were injected and transduction was evaluated by immunohistochemistry. Both parent serotype and capsid modifications affected expression. scAAV2- based vectors mediated efficient GFP-signal in the corneal endothelium, ciliary non-pigmented epithelium (NPE, iris and chamber angle including trabecular meshwork, with scAAV2(Y444F and scAAV2(triple being the most efficient.This is the first study to semi quantitatively evaluate transduction of anterior segment tissues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly enhanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations was not directly proportional to transduction efficiency, however, suggesting that proteosomal avoidance alone may not be sufficient. These results are applicable to the development of targeted, gene-based strategies to investigate pathological processes of the anterior segment and may be applied toward the development of gene

  2. Dynamics of Molecular Hydrogen in Hypersaline Microbial Mars

    Science.gov (United States)

    Hoehler, Tori M.; Bebout, Brad M.; Visscher, Pieter T.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Early Earth microbial communities that centered around the anaerobic decomposition of organic molecular hydrogen as a carrier of electrons, regulator of energy metabolism, and facilitator of syntroph'c microbial interactions. The advent of oxygenic photosynthetic organisms added a highly dynamic and potentially dominant term to the hydrogen economy of these communities. We have examined the daily variations of hydrogen concentrations in cyanobacteria-dominated microbial mats from hypersaline ponds in Baja California Sur, Mexico. These mats bring together phototrophic and anaerobic bacteria (along with virtually all other trophic groups) in a spatially ordered and chemically dynamic matrix that provides a good analog for early Earth microbial ecosystems. Hydrogen concentrations in the photic zone of the mat can be three orders of magnitude or more higher than in the photic zone, which are, in turn, an order of magnitude higher than in the unconsolidated sediments underlying the mat community. Within the photic zone, hydrogen concentrations can fluctuate dramatically during the diel (24 hour day-night) cycle, ranging from less than 0.001% during the day to nearly 10% at night. The resultant nighttime flux of hydrogen from the mat to the environment was up to 17% of the daytime oxygen flux. The daily pattern observed is highly dependent on cyanobacterial species composition within the mat, with Lyngbya-dominated systems having a much greater dynamic range than those dominated by Microcoleus; this may relate largely to differing degrees of nitrogen-fixing and fermentative activity in the two mats. The greatest H2 concentrations and fluxes were observed in the absence of oxygen, suggesting an important potential feedback control in the context of the evolution of atmospheric composition. The impact of adding this highly dynamic photosynthetic term to the hydrogen economy of early microbial ecosystems must have been substantial. From an evolutionary standpoint, the H2

  3. MBGD update 2013: the microbial genome database for exploring the diversity of microbial world.

    Science.gov (United States)

    Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu

    2013-01-01

    The microbial genome database for comparative analysis (MBGD, available at http://mbgd.genome.ad.jp/) is a platform for microbial genome comparison based on orthology analysis. As its unique feature, MBGD allows users to conduct orthology analysis among any specified set of organisms; this flexibility allows MBGD to adapt to a variety of microbial genomic study. Reflecting the huge diversity of microbial world, the number of microbial genome projects now becomes several thousands. To efficiently explore the diversity of the entire microbial genomic data, MBGD now provides summary pages for pre-calculated ortholog tables among various taxonomic groups. For some closely related taxa, MBGD also provides the conserved synteny information (core genome alignment) pre-calculated using the CoreAligner program. In addition, efficient incremental updating procedure can create extended ortholog table by adding additional genomes to the default ortholog table generated from the representative set of genomes. Combining with the functionalities of the dynamic orthology calculation of any specified set of organisms, MBGD is an efficient and flexible tool for exploring the microbial genome diversity.

  4. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.

    2015-07-30

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  5. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.; Wallack, Maxwell J; Kim, Kyoung-Yeol; He, Weihua; Feng, Yujie; Saikaly, Pascal

    2015-01-01

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  6. Microbial ecology of terrestrial Antarctica: Are microbial systems at risk from human activities?

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.

    1996-08-01

    Many of the ecological systems found in continental Antarctica are comprised entirely of microbial species. Concerns have arisen that these microbial systems might be at risk either directly through the actions of humans or indirectly through increased competition from introduced species. Although protection of native biota is covered by the Protocol on Environmental Protection to the Antarctic Treaty, strict measures for preventing the introduction on non-native species or for protecting microbial habitats may be impractical. This report summarizes the research conducted to date on microbial ecosystems in continental Antarctica and discusses the need for protecting these ecosystems. The focus is on communities inhabiting soil and rock surfaces in non-coastal areas of continental Antarctica. Although current polices regarding waste management and other operations in Antarctic research stations serve to reduce the introduction on non- native microbial species, importation cannot be eliminated entirely. Increased awareness of microbial habitats by field personnel and protection of certain unique habitats from physical destruction by humans may be necessary. At present, small-scale impacts from human activities are occurring in certain areas both in terms of introduced species and destruction of habitat. On a large scale, however, it is questionable whether the introduction of non-native microbial species to terrestrial Antarctica merits concern.

  7. Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs.

    Science.gov (United States)

    Tokmakov, Alexander A; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2010-05-01

    Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation. Hence, the signaling downstream of calcium mobilization has been successfully studied in the egg extracts. Moreover, despite disruption of membrane-associated signaling compartments and ordered compartmentalization during extract preparation, CSF-arrested extracts can be successfully used to study early signaling events, which occur upstream of calcium release during egg activation/fertilization. In combination with the CSF-arrested extracts, activated egg rafts can reproduce some events of egg activation, including PLCgamma activation, IP3 production, transient calcium release, MAPK inactivation, and meiotic exit. This becomes possible due to complementation of the sperm-induced egg activation signaling machinery present in the rafts with the components of signal transduction system localized in the extracts. Herein, we describe protocols for studying molecular mechanisms of egg fertilization/activation using cell-free extracts and membrane rafts prepared from metaphase-arrested Xenopus eggs.

  8. Microbial biotechnology and circular economy in wastewater treatment

    OpenAIRE

    Nielsen, Per Halkjær

    2017-01-01

    Summary Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process‐critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs an...

  9. Sindbis Virus-Pseudotyped Lentiviral Vectors Carrying VEGFR2-Specific Nanobody for Potential Transductional Targeting of Tumor Vasculature.

    Science.gov (United States)

    Ahani, Roshank; Roohvand, Farzin; Cohan, Reza Ahangari; Etemadzadeh, Mohammad Hossein; Mohajel, Nasir; Behdani, Mahdi; Shahosseini, Zahra; Madani, Navid; Azadmanesh, Kayhan

    2016-11-01

    Introduction of selectivity/specificity into viral-based gene delivery systems, such as lentiviral vectors (LVs), is crucial in their systemic administration for cancer gene therapy. The pivotal role of tumor-associated endothelial cells (TAECs) in tumor angiogenesis and overexpression of vascular endothelial growth factor receptor-2 (VEGFR2 or KDR) in TAECs makes them a potent target in cancer treatment. Herein, we report the development of VEGFR2-targeted LVs pseudotyped with chimeric sindbis virus E2 glycoprotein (cSVE2s). For this purpose, either sequence of a VEGFR2-specific nanobody or its natural ligand (VEGF 121 ) was inserted into the binding site of sindbis virus E2 glycoprotein. In silico modeling data suggested that the inserted targeting motifs were exposed in the context of cSVE2s. Western blot analysis of LVs indicated the incorporation of cSVE2s into viral particles. Capture ELISA demonstrated the specificity/functionality of the incorporated cSVE2s. Transduction of 293/KDR (expressing VEGFR2) or 293T cells (negative control) by constructed LVs followed by fluorescent microscopy and flow cytometric analyses indicated selective transduction of 293/KDR cells (30 %) by both targeting motifs compared to 293T control cells (1-2 %). These results implied similar targeting properties of VEGFR2-specific nanobody compared to the VEGF 121 and indicated the potential for transductional targeting of tumor vasculature by the nanobody displaying LVs.

  10. Molecular evidence of inefficient transduction of proliferating human B lymphocytes by VSV-pseudotyped HIV-1-derived lentivectors

    International Nuclear Information System (INIS)

    Serafini, M.; Naldini, L.; Introna, M.

    2004-01-01

    Lentiviral vectors are attractive tools to transduce dividing and nondividing cells. Human tonsillar B lymphocytes have been purified and induced to proliferate by the addition of anti-CD40 + IL-4 or anti-CD40 + anti-μ signals and transduced at high MOI with a VSV pseudotyped lentivector carrying the eGFP gene under the control of the PGK promoter. Parallel cultures of PHA-stimulated T lymphocytes containing a comparable amount of cycling cells during the infection reached over 70% eGFP transduction. By contrast, only less than 3% B lymphocytes became eGFP positive after 7 days from transduction. Molecular analysis of the viral life cycle shows that cytoplasmic retrotranscribed cDNA and nuclear 2LTR circles are detectable at lower levels and for a shorter period of time in proliferating B cells with respect to proliferating T lymphocytes. Moreover, FACS-sorted eGFP-positive and negative B cell populations were both positive for the presence of retrotranscribed cDNA and 2LTR circles nuclear forms. By contrast, nested Alu-LTR PCR allowed us to detect an integrated provirus in FACS-sorted eGFP-positive cells only. Together with the demonstration that infection in saturation conditions led to an increase in the percentage of transduced cells (reaching 9%), these findings suggest that in proliferating B lymphocytes, lentiviral transduction is an inefficient process blocked at the early steps of the viral life cycle possibly involving partially saturable restriction factors

  11. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy-Efficient Wood-Plastic Composites

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson, Robert W. Emerick, Alfred B. England, James P. Flanders, Frank J. Loge, Katherine A. Wiedeman, Michael P. Wolcott

    2010-04-08

    The forestry, wood and paper industries in the United States provide thousands of productive well-paying jobs; however, in the face of the recent economic downturn it faces significant challenges in remaining economically viable and competitive. To compete successfully on a global market that is increasingly driven by the need for sustainable products and practices, the industry must improve margins and diversify product lines while continuing to produce the staple products. One approach that can help to accomplish this goal sustainably is the forest biorefinery. In the forest biorefinery, traditional waste streams are utilized singly or in combination to manufacture additional products in a profitable and environmentally sustainable manner. In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. Renewable microbial polyesters are not currently used in WFRTCs primarily because their production costs are several times higher than those of conventional petrochemical-derived plastics, limiting their use to small specialty markets. The strategy for this project was to economically produce WFRTCs using microbial polyesters by reducing or eliminating the most costly steps in the bio-plastic production. This would be achieved by producing them in and from waste effluents from the municipal and forest products sectors, and by eliminating the costly purification steps. After production the plasticladen biosolids would be dried and used directly to replace petroleum

  12. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    OpenAIRE

    Speth, D.R.; Zandt, M.H. in 't; Guerrero Cruz, S.; Dutilh, B.E.; Jetten, M.S.M.

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete d...

  13. Venezuela-MEM/USA-DOE Fossil Energy Report XIII-1, Supporting Technology for Enhanced Oil Recovery, Microbial EOR; FINAL

    International Nuclear Information System (INIS)

    Ziritt, Jose Luis

    1999-01-01

    The results from Annex XIII of the Cooperative Agreement between the United States Department of Energy (DOE) and the Ministry of Energy and Mines of the Republic of Venezuela (MEMV) have been documented and published with many researchers involved. Integrate comprehensive research programs in the area of Microbial Enhanced Oil Recovery (MEOR) ranged from feasibility laboratory studies to full-scale multi-well field pilots. The objective, to cooperate in a technical exchange of ideas and information was fully met throughout the life of the Annex. Information has been exchanged between the two countries through published reports and technical meetings between experts in both country's research communities. The meetings occurred every two years in locations coincident with the International MEOR conferences and workshops sponsored by DOE (June 1990, University of Oklahoma, September 1992, Brookhaven, September 1995, National Institute of Petroleum and Energy Research). Reports and publications produced during these years are listed in Appendix B. Several Annex managers have guided the exchange through the years. They included Luis Vierma, Jose Luis Zirritt, representing MEMV and E. B. Nuckols, Edith Allison, and Rhonda Lindsey, representing the U.S. DOE. Funding for this area of research remained steady for a few years but decreased in recent years. Because both countries have reduced research programs in this area, future exchanges on this topic will occur through ANNEX XV. Informal networks established between researchers through the years should continue to function between individuals in the two countries

  14. Microbial biomass and necromass turnover times in the contrasting seafloor settings

    DEFF Research Database (Denmark)

    Mhatre, Snehit

    2017-01-01

    in the deep biosphere microbial community. His work therefore opens a new avenue in exploring the possible mechanisms involved in facilitating the long-term survival of microorganisms under energy-deprived conditions. The PhD degree was completed at the Center for Geomicrobiology, department of Bioscience...

  15. Microbial technology with major potentials for the urgent environmental needs of the next decades.

    Science.gov (United States)

    Verstraete, Willy; De Vrieze, Jo

    2017-09-01

    Several needs in the context of the water-energy-food nexus will become more prominent in the next decades. It is crucial to delineate these challenges and to find opportunities for innovative microbial technologies in the framework of sustainability and climate change. Here, we focus on four key issues, that is the imbalance in the nitrogen cycle, the diffuse emission of methane, the necessity for carbon capture and the deterioration of freshwater reserves. We suggest a set of microbial technologies to deal with each of these issues, such as (i) the production of microbial protein as food and feed, (ii) the control of methanogenic archaea and better use of methanotrophic consortia, (iii) the avoidance of nitrification and (iv) the upgrading of CO 2 to microbial bioproducts. The central message is that instead of using crude methods to exploit microorganisms for degradations, the potentials of the microbiomes should be used to create processes and products that fit the demands of the cyclic market economy. © 2017 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.

    Science.gov (United States)

    Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition. FEMS Microbiology Letters © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  17. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan.

    Science.gov (United States)

    Bacosa, Hernando P; Suto, Koichi; Inoue, Chihiro

    2013-01-01

    Mangroves constitute valuable coastal resources that are vulnerable to oil pollution. One of the major processes to remove oil from contaminated mangrove sediment is microbial degradation. A study on heavy oil- and hydrocarbon-degrading bacterial consortia from mangrove sediments in Okinawa, Japan was performed to evaluate their capacity to biodegrade and their microbial community composition. Surface sediment samples were obtained from mangrove sites in Okinawa (Teima, Oura, and Okukubi) and enriched with heavy oil as the sole carbon and energy source. The results revealed that all enriched microbial consortia degraded more than 20% of heavy oil in 21 days. The K1 consortium from Okukubi site showed the most extensive degradative capacity after 7 and 21 days. All consortia degraded more than 50% of hexadecane but had little ability to degrade polycyclic aromatic hydrocarbons (PAHs). The consortia were dominated by Pseudomonas or Burkholderia. When incubated in the presence of hydrocarbon compounds, the active bacterial community shifted to favor the dominance of Pseudomonas. The K1 consortium was a superior degrader, demonstrating the highest ability to degrade aliphatic and aromatic hydrocarbon compounds; it was even able to degrade heavy oil at a concentration of 15%(w/v). The dominance and turn-over of Pseudomonas and Burkholderia in the consortia suggest an important ecological role for and relationship between these two genera in the mangrove sediments of Okinawa.

  18. Effect of saw palmetto extract on PI3K cell signaling transduction in human glioma.

    Science.gov (United States)

    Yang, Yang; Hui, Lv; Yuqin, Che; Jie, Li; Shuai, Hou; Tiezhu, Zhou; Wei, Wang

    2014-08-01

    Saw palmetto extract can induce the apoptosis of prostate cancer cells. The aim of the present study was to investigate the effect of saw palmetto extract on the phosphatidylinositol 3-kinase (PI3K)/Akt signaling transduction pathway in human glioma U87 and U251 cell lines. Suspensions of U87 and U251 cells in a logarithmic growth phase were seeded into six-well plates at a density of 10 4 cells/well. In the experimental group, 1 μl/ml saw palmetto extract was added, while the control group was cultured without a drug for 24 h. The expression levels of PI3K, B-cell lymphoma-extra large (Bcl-xL) and p53 were evaluated through western blot analysis. In the experimental group, the U87 and U251 cells exhibited a lower expression level of PI3K protein as compared with the control group (t=6.849; Psaw palmetto extract induces glioma cell growth arrest and apoptosis via decreasing PI3K/Akt signal transduction.

  19. Microbial ecology of methanogenic crude oil biodegradation; from microbial consortia to heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Head, Ian M.; Maguire, Michael J.; Sherry, Angela; Grant, Russell; Gray, Neil D.; Aitken, Carolyn M.; Martin Jones, D.; Oldenburg, Thomas B.P.; Larter, Stephen R. [Petroleum Research Group, Geosciences, University of Calgary (Canada)

    2011-07-01

    This paper presents the microbial ecology of methanogenic crude oil biodegradation. Biodegraded petroleum reservoirs are one of the most dramatic indications of the deep biosphere. It is estimated that heavy oil and oil sands will account for a considerable amount of energy production in the future. Carbon, a major resource for deep subsurface microorganisms, and energy are contained in large quantities in petroleum reservoirs. The aerobic to anaerobic paradigm shift is explained. A key process for in-situ oil biodegradation in petroleum reservoirs is methanogenesis. New paradigms for in-reservoir crude oil biodegradation are discussed. Variations in anaerobic degradation of crude oil hydrocarbons are also discussed. A graph shows the different patterns of crude oil biodegradation under sulfate-reducing and methanogenic conditions. Alternative anaerobic alkane activation mechanisms are also shown. From the study, it can be concluded that methanogenic crude oil degradation is of global importance and led to the establishment of the world's enormous heavy oil deposits.

  20. The p75NTR mediates a bifurcated signal transduction cascade through the NFκB and JNK pathways to inhibit cell survival

    International Nuclear Information System (INIS)

    Allen, Jeffrey; Khwaja, Fatima; Byers, Stephen; Djakiew, Daniel

    2005-01-01

    p75 NTR is most abundantly expressed in the nervous system, but is also widely expressed in many other organs and tissues where it primarily functions as a negative regulator of cell survival. In the prostate, p75 NTR functions as an inhibitory protein capable of slowing proliferation and inducing apoptosis. It has been shown that p75 NTR is expressed in the normal prostate, progressively lost from malignant tumor cells in vivo, and largely absent from prostate cancer cell lines derived from metastases. Although the role of p75 NTR in prostate cancer has been well established, the signal transduction pathway that mediates its inhibitory activity has only been partially elucidated. This study demonstrates that exogenous expression of p75 NTR down-regulates, in a dose-dependent manner, a bifurcated signaling cascade that results in reduced expression of potent transcription effectors. This two-arm signal transduction cascade was directly linked to the upstream receptor by using dominant-negative deletion constructs of p75 NTR that rescued tumor cells from p75 NTR -induced loss of survival and promotion of apoptosis. Furthermore, the dominant negatives rescued alterations in the levels of signal transduction intermediates. Conversely, the use of kinase-inactive intermediates that are downstream of the receptor further reduced expression of involved transcription effectors and reduced survival of the cells. These results provide a definitive link between the proximate p75 NTR and signal transduction intermediates leading to the transcription effectors NFκB and JNK, with associated growth suppression and induction of apoptosis

  1. Microbial activity in the marine deep biosphere: Progress and prospects

    Directory of Open Access Journals (Sweden)

    Beth N Orcutt

    2013-07-01

    Full Text Available The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists – all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these "extreme" environments survive (or even thrive. Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI "theme team" on microbial activity (www.darkenergybiosphere.org.

  2. Microbial activity in the marine deep biosphere: progress and prospects

    Science.gov (United States)

    Orcutt, Beth N.; LaRowe, Douglas E.; Biddle, Jennifer F.; Colwell, Frederick S.; Glazer, Brian T.; Reese, Brandi Kiel; Kirkpatrick, John B.; Lapham, Laura L.; Mills, Heath J.; Sylvan, Jason B.; Wankel, Scott D.; Wheat, C. Geoff

    2013-01-01

    The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists—all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these “extreme” environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) “theme team” on microbial activity (www.darkenergybiosphere.org). PMID:23874326

  3. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film

    DEFF Research Database (Denmark)

    Smith, Cameron; Lind, Johan Ulrik; Christiansen, Mads Brøkner

    2011-01-01

    We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental...... in its application to other intracavity-based detection schemes to enable gas sensing. © 2011 Optical Society of America....

  4. How Specific Microbial Communities Benefit the Oil Industry: Case Study - Proof of Concept that Oil Entrained in Marginal Reservoirs Can Be Bioconverted to Methane Gas as a Green Energy Recovery Strategy

    Science.gov (United States)

    Gieg, Lisa

    Conventional oil recovery techniques such as water flooding typically remove only up to 40% of the oil present in reservoirs. Enhanced oil recovery (EOR) techniques are considered tertiary strategies that may be applied to recover a greater volume of oil. In particular, the use of microorganisms to aid in oil production (microbial-enhanced oil recovery or MEOR) is considered a green energy recovery strategy since microbial processes do not require large amounts of energy input and can potentially produce large amounts of useful byproducts from inexpensive and renewable resources (Youssef et al., 2008). These byproducts can include the generation of biosurfactants, emulsifiers, acids, alcohols, and/or gases that can serve as agents for oil recovery. Recent reviews have summarised MEOR efforts undertaken since the 1950's with varying degrees of success (e.g. Jack, 1993; Belyaev et al., 2004; McInerney et al., 2005; Youssef et al., 2008). In MEOR schemes, petroleum reservoirs may be either stimulated with nutrients or inoculated with microorganisms with known activity to achieve desired effects (Youssef et al., 2008).

  5. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell.

    Science.gov (United States)

    Chookaew, Teera; Prasertsan, Poonsuk; Ren, Zhiyong Jason

    2014-03-25

    Crude glycerol is a main byproduct of the biodiesel industry, and the beneficial use of waste glycerol has been a major challenge. This study characterises the conversion of crude glycerol into bioenergy such as H2 and electricity using a two-stage process linking dark fermentation with a microbial fuel cell (MFC) or microbial electrolysis cell (MEC). The results showed that fermentation achieved a maximum H2 rate of 332 mL/L and a yield of 0.55 mol H2/mol glycerol, accompanied by 20% of organic removal. Fed with the raw fermentation products with an initial COD of 7610 mg/L, a two-chamber MFC produced 92 mW/m(2) in power density and removed 50% of COD. The Columbic efficiency was 14%. When fed with 50% diluted fermentation product, a similar power output (90m W/m(2)) and COD removal (49%) were obtained, but the CE doubled to 27%. Similar substrates were used to produce H2 in two-chamber MECs, and the diluted influent had a higher performance, with the highest yield at 106 mL H2/g COD and a CE of 24%. These results demonstrate that dark fermentation linked with MFC/MEC can be a feasible option for conversion of waste glycerol into bioenergy. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface.

    Science.gov (United States)

    Mouser, Paula J; Borton, Mikayla; Darrah, Thomas H; Hartsock, Angela; Wrighton, Kelly C

    2016-11-01

    Horizontal drilling and hydraulic fracturing are increasingly used for recovering energy resources in black shales across the globe. Although newly drilled wells are providing access to rocks and fluids from kilometer depths to study the deep biosphere, we have much to learn about microbial ecology of shales before and after 'fracking'. Recent studies provide a framework for considering how engineering activities alter this rock-hosted ecosystem. We first provide data on the geochemical environment and microbial habitability in pristine shales. Next, we summarize data showing the same pattern across fractured shales: diverse assemblages of microbes are introduced into the subsurface, eventually converging to a low diversity, halotolerant, bacterial and archaeal community. Data we synthesized show that the shale microbial community predictably shifts in response to temporal changes in geochemistry, favoring conservation of key microorganisms regardless of inputs, shale location or operators. We identified factors that constrain diversity in the shale and inhibit biodegradation at the surface, including salinity, biocides, substrates and redox. Continued research in this engineered ecosystem is required to assess additive biodegradability, quantify infrastructure biocorrosion, treat wastewaters that return to the surface and potentially enhance energy production through in situ methanogenesis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. In situ uranium stabilization by microbial metabolites

    International Nuclear Information System (INIS)

    Turick, Charles E.; Knox, Anna S.; Leverette, Chad L.; Kritzas, Yianne G.

    2008-01-01

    Microbial melanin production by autochthonous bacteria was explored in this study as a means to increase U immobilization in U contaminated soil. This article demonstrates the application of bacterial physiology and soil ecology for enhanced U immobilization in order to develop an in situ, U bio-immobilization technology. We have demonstrated microbial production of a metal chelating biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of Energy (DOE), Savannah River Site (SRS), South Carolina, as a result of tyrosine amendments. Bacterial densities of pyomelanin producers were >10 6 cells per g wet soil. Pyomelanin demonstrated U complexing and mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in a field test demonstrated increased U sequestration capacity following pyomelanin production up to 13 months after tyrosine treatments

  8. A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling.

    Science.gov (United States)

    Wang, Gangsheng; Post, Wilfred M

    2012-09-01

    We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a theoretical reassessment. We provided a rigorous proof that the true growth yield coefficient (Y(G)) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert (μ(max,H)) is higher than those in the other two models (μ(max,P) and μ(max,C)), and the difference is the physiological maintenance factor (m(q) = a); and (3) the overall maintenance coefficient (m(T)) is more sensitive to m(q) than to the specific growth rate (μ(G)) and Y(G). Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models. © This article is a US government work and is in the public domain in the USA.

  9. The Microbial DNA Index System (MiDIS): A tool for microbial pathogen source identification

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-08-09

    The microbial DNA Index System (MiDIS) is a concept for a microbial forensic database and investigative decision support system that can be used to help investigators identify the sources of microbial agents that have been used in a criminal or terrorist incident. The heart of the proposed system is a rigorous method for calculating source probabilities by using certain fundamental sampling distributions associated with the propagation and mutation of microbes on disease transmission networks. This formalism has a close relationship to mitochondrial and Y-chromosomal human DNA forensics, and the proposed decision support system is somewhat analogous to the CODIS and SWGDAM mtDNA databases. The MiDIS concept does not involve the use of opportunistic collections of microbial isolates and phylogenetic tree building as a basis for inference. A staged approach can be used to build MiDIS as an enduring capability, beginning with a pilot demonstration program that must meet user expectations for performance and validation before evolving into a continuing effort. Because MiDIS requires input from a a broad array of expertise including outbreak surveillance, field microbial isolate collection, microbial genome sequencing, disease transmission networks, and laboratory mutation rate studies, it will be necessary to assemble a national multi-laboratory team to develop such a system. The MiDIS effort would lend direction and focus to the national microbial genetics research program for microbial forensics, and would provide an appropriate forensic framework for interfacing to future national and international disease surveillance efforts.

  10. Effects of Elevated Carbon Dioxide and Salinity on the Microbial Diversity in Lithifying Microbial Mats

    Directory of Open Access Journals (Sweden)

    Steven R. Ahrendt

    2014-03-01

    Full Text Available Atmospheric levels of carbon dioxide (CO2 are rising at an accelerated rate resulting in changes in the pH and carbonate chemistry of the world’s oceans. However, there is uncertainty regarding the impact these changing environmental conditions have on carbonate-depositing microbial communities. Here, we examine the effects of elevated CO2, three times that of current atmospheric levels, on the microbial diversity associated with lithifying microbial mats. Lithifying microbial mats are complex ecosystems that facilitate the trapping and binding of sediments, and/or the precipitation of calcium carbonate into organosedimentary structures known as microbialites. To examine the impact of rising CO2 and resulting shifts in pH on lithifying microbial mats, we constructed growth chambers that could continually manipulate and monitor the mat environment. The microbial diversity of the various treatments was compared using 16S rRNA gene pyrosequencing. The results indicated that elevated CO2 levels during the six month exposure did not profoundly alter the microbial diversity, community structure, or carbonate precipitation in the microbial mats; however some key taxa, such as the sulfate-reducing bacteria Deltasulfobacterales, were enriched. These results suggest that some carbonate depositing ecosystems, such as the microbialites, may be more resilient to anthropogenic-induced environmental change than previously thought.

  11. Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium.

    Science.gov (United States)

    He, Fang; Hu, Wenrong; Li, Yuezhong

    2004-10-01

    A microbial consortium consisting of a white-rot fungus 8-4* and a Pseudomonas 1-10 was isolated from wastewater treatment facilities of a local dyeing house by enrichment, using azo dye Direct Fast Scarlet 4BS as the sole source of carbon and energy, which had a high capacity for rapid decolorization of 4BS. To elucidate the decolorization mechanisms, decolorization of 4BS was compared between individual strains and the microbial consortium under different treatment processes. The microbial consortium showed a significant improvement on dye decolorization rates under either static or shaking culture, which might be attributed to the synergetic reaction of single strains. From the curve of COD values and the UV-visible spectra of 4BS solutions before and after decolorization cultivation with the microbial consortium, it was found that 4BS could be mineralized completely, and the results had been used for presuming the degrading pathway of 4BS. This study also examined the kinetics of 4BS decolorization by immobilized microbial consortium. The results demonstrated that the optimal decolorization activity was observed in pH range between four and 9, temperature range between 20 and 40 degrees C and the maximal specific decolorization rate occurred at 1,000 mg l(-1) of 4BS. The proliferation and distribution of microbial consortium were also microscopically observed, which further confirmed the decolorization mechanisms of 4BS.

  12. Molecular ecology of microbial mats

    NARCIS (Netherlands)

    Bolhuis, H.; Cretoiu, M.S.; Stal, L.J.

    2014-01-01

    Phototrophic microbial mats are ideal model systems for ecological and evolutionary analysis of highly diverse microbial communities. Microbial mats are small-scale, nearly closed, and self-sustaining benthic ecosystems that comprise the major element cycles, trophic levels, and food webs. The steep

  13. Phosphoproteomics-based systems analysis of signal transduction networks

    Directory of Open Access Journals (Sweden)

    Hiroko eKozuka-Hata

    2012-01-01

    Full Text Available Signal transduction systems coordinate complex cellular information to regulate biological events such as cell proliferation and differentiation. Although the accumulating evidence on widespread association of signaling molecules has revealed essential contribution of phosphorylation-dependent interaction networks to cellular regulation, their dynamic behavior is mostly yet to be analyzed. Recent technological advances regarding mass spectrometry-based quantitative proteomics have enabled us to describe the comprehensive status of phosphorylated molecules in a time-resolved manner. Computational analyses based on the phosphoproteome dynamics accelerate generation of novel methodologies for mathematical analysis of cellular signaling. Phosphoproteomics-based numerical modeling can be used to evaluate regulatory network elements from a statistical point of view. Integration with transcriptome dynamics also uncovers regulatory hubs at the transcriptional level. These omics-based computational methodologies, which have firstly been applied to representative signaling systems such as the epidermal growth factor receptor pathway, have now opened up a gate for systems analysis of signaling networks involved in immune response and cancer.

  14. Geochip-based analysis of microbial communities in alpine meadow soils in the Qinghai-Tibetan plateau.

    Science.gov (United States)

    Zhang, Yuguang; Lu, Zhenmei; Liu, Shanshan; Yang, Yunfeng; He, Zhili; Ren, Zuohua; Zhou, Jizhong; Li, Diqiang

    2013-03-29

    GeoChip 3.0, a microbial functional gene array, containing ~28,000 oligonucleotide probes and targeting ~57,000 sequences from 292 functional gene families, provided a powerful tool for researching microbial community structure in natural environments. The alpine meadow is a dominant plant community in the Qinghai-Tibetan plateau, hence it is important to profile the unique geographical flora and assess the response of the microbial communities to environmental variables. In this study, Geochip 3.0 was employed to understand the microbial functional gene diversity and structure, and metabolic potential and the major environmental factors in shaping microbial communities structure of alpine meadow soil in Qinghai-Tibetan Plateau. A total of 6143 microbial functional genes involved in carbon degradation, carbon fixation, methane oxidation and production, nitrogen cycling, phosphorus utilization, sulphur cycling, organic remediation, metal resistance, energy process and other category were detected in six soil samples and high diversity was observed. Interestingly, most of the detected genes associated with carbon degradation were derived from cultivated organisms. To identify major environmental factors in shaping microbial communities, Mantel test and CCA Statistical analyses were performed. The results indicated that altitude, C/N, pH and soil organic carbon were significantly (P the microbial functional structure and a total of 80.97% of the variation was significantly explained by altitude, C/N and pH. The C/N contributed 38.2% to microbial functional gene variation, which is in accordance with the hierarchical clustering of overall microbial functional genes. High overall functional genes and phylogenetic diversity of the alpine meadow soil microbial communities existed in the Qinghai-Tibetan Plateau. Most of the genes involved in carbon degradation were derived from characterized microbial groups. Microbial composition and structures variation were

  15. Diversity and function of the microbial community on anodes of sediment microbial fuel cells fueled by root exudates

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas da Rosa, Angela

    2010-11-26

    Anode microbial communities are essential for current production in microbial fuel cells. Anode reducing bacteria are capable of using the anode as final electron acceptor in their respiratory chain. The electrons delivered to the anode travel through a circuit to the cathode where they reduce oxygen to water generating an electric current. A novel type of sediment microbial fuel cell (SMFC) harvest energy from photosynthetically derived compounds released through the roots. Nothing is known about anode microbial communities of this type of microbial fuel cell. This work consists of three parts. The first part focuses on the study of bacterial and archaeal community compositions on anodes of SMFCs fueled by rice root exudates. By using terminal restriction fragment length polymorphism (T-RFLP), a profiling technique, and cloning / sequencing of 16S rRNA, we determined that the support type used for the plant (vermiculite, potting soil or rice field soil) is an important factor determining the composition of the microbial community. Finally, by comparing microbial communities of current producing anodes and non-current producing controls we determined that Desulfobulbus- and Geobacter-related populations were probably most important for current production in potting soil and rice field soil SMFCs, respectively. However, {delta}-proteobacterial Anaeromyxobacter spp., unclassified {delta}-proteobacteria and Anaerolineae were also part of the anode biofilm in rice field soil SMFCs and these populations might also play a role in current production. Moreover, distinct clusters of Geobacter and Anaeromyxobacter populations were stimulated by rice root exudates. Regarding Archaea, uncultured Euryarchaea were abundant on anodes of potting soil SMFCs indicating a potential role in current production. In both, rice field soil and potting soil SMFCs, a decrease of Methanosaeta, an acetotrophic methanogen, was detected on current producing anodes. In the second part we focused

  16. Living Dendrolitic Microbial Mats in Hamelin Pool, Shark Bay, Western Australia

    Directory of Open Access Journals (Sweden)

    Erica P. Suosaari

    2018-06-01

    Full Text Available Hamelin Pool, Shark Bay, Western Australia, is home to the largest and most diverse assemblage of living marine stromatolites, with shapes and sizes comparable to ancient structures. A recent field-intensive program revealed seasonally ephemeral occurrences of modern dendrolitic microbial mats forming in intertidal, low energy settings. Dominated by filamentous cyanobacteria, dendrolitic microbial mats are formed when filaments provide a supporting framework as a result of gliding mobility, to build a shrubby morphology. Dendrolites, known throughout the rock record, refer to macroscopic microbialites with mesostuctures composed of unlaminated arborescent structures called shrubs. In these modern examples, thick filaments of Lyngbya aestuarii form the “trunk” of the bush, with finer filaments of Lyngbya fragilis, Phormidium sp. and Schizothrix sp. forming the “branches” These biologically-influenced dendrolitic structures provide insight into the complex interplay of microbial communities and the environment, broadening our understanding of shrub and dendrolite formation throughout the rock record.

  17. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    International Nuclear Information System (INIS)

    Francis, A.J.

    1985-10-01

    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs

  18. Nutrient and energy recovery from urine

    NARCIS (Netherlands)

    Kuntke, P.

    2013-01-01

    Keywords: urine, urine treatment, nutrient recovery, microbial fuel cells, energy production from urine, membrane capacitive deionization.

    In conventional wastewater treatment plants large amounts of energy are required for the removal and recovery of nutrients (i.e. nitrogen and

  19. Microbial biosensors for environmental monitoring

    Directory of Open Access Journals (Sweden)

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  20. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system.

    Science.gov (United States)

    Speth, Daan R; In 't Zandt, Michiel H; Guerrero-Cruz, Simon; Dutilh, Bas E; Jetten, Mike S M

    2016-03-31

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete draft genomes that together represent the majority of the microbial community. We assign these genomes to distinct anaerobic and aerobic microbial communities. In the aerobic community, nitrifying organisms and heterotrophs predominate. In the anaerobic community, widespread potential for partial denitrification suggests a nitrite loop increases treatment efficiency. Of our genomes, 19 have no previously cultivated or sequenced close relatives and six belong to bacterial phyla without any cultivated members, including the most complete Omnitrophica (formerly OP3) genome to date.

  1. Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction.

    Science.gov (United States)

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Vázquez-Chávez, Elena; Lasserre, Rémi; Agüera-González, Sonia; Cuche, Céline; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2017-04-01

    The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation.

    Science.gov (United States)

    Klip, Amira; Sun, Yi; Chiu, Tim Ting; Foley, Kevin P

    2014-05-15

    Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner. Using the analogy of an integrated circuit to approach the intersection between signal transduction and vesicle mobilization, we identify signaling relays ("software") that engage structural/mechanical elements ("hardware") to enact the rapid mobilization and incorporation of GLUT4 into the cell surface. We emphasize how insulin signal transduction switches from tyrosine through lipid and serine phosphorylation down to activation of small G proteins of the Rab and Rho families, describe key negative regulation step of Rab GTPases through the GTPase-activating protein activity of the Akt substrate of 160 kDa (AS160), and focus on the mechanical effectors engaged by Rabs 8A and 10 (the molecular motor myosin Va), and the Rho GTPase Rac1 (actin filament branching and severing through Arp2/3 and cofilin). Finally, we illustrate how actin filaments interact with myosin 1c and α-Actinin4 to promote vesicle tethering as preamble to fusion with the membrane. Copyright © 2014 the American Physiological Society.

  3. Film forming microbial biopolymers for commercial applications--a review.

    Science.gov (United States)

    Vijayendra, S V N; Shamala, T R

    2014-12-01

    Microorganisms synthesize intracellular, structural and extracellular polymers also referred to as biopolymers for their function and survival. These biopolymers play specific roles as energy reserve materials, protective agents, aid in cell functioning, the establishment of symbiosis, osmotic adaptation and support the microbial genera to function, adapt, multiply and survive efficiently under changing environmental conditions. Viscosifying, gelling and film forming properties of these have been exploited for specific significant applications in food and allied industries. Intensive research activities and recent achievements in relevant and important research fields of global interest regarding film forming microbial biopolymers is the subject of this review. Microbial polymers such as pullulan, kefiran, bacterial cellulose (BC), gellan and levan are placed under the category of exopolysaccharides (EPS) and have several other functional properties including film formation, which can be used for various applications in food and allied industries. In addition to EPS, innumerable bacterial genera are found to synthesis carbon energy reserves in their cells known as polyhydroxyalkanoates (PHAs), microbial polyesters, which can be extruded into films with excellent moisture and oxygen barrier properties. Blow moldable biopolymers like PHA along with polylactic acid (PLA) synthesized chemically in vitro using lactic acid (LA), which is produced by LA bacteria through fermentation, are projected as biodegradable polymers of the future for packaging applications. Designing and creating of new property based on requirements through controlled synthesis can lead to improvement in properties of existing polysaccharides and create novel biopolymers of great commercial interest and value for wider applications. Incorporation of antimicrobials such as bacteriocins or silver and copper nanoparticles can enhance the functionality of polymer films especially in food packaging

  4. Extreme CO2 disturbance and the resilience of soil microbial communities

    Science.gov (United States)

    McFarland, Jack W.; Waldrop, Mark P.; Haw, Monica

    2013-01-01

    Carbon capture and storage (CSS) technology has the potential to inadvertently release large quantities of CO2 through geologic substrates and into surrounding soils and ecosystems. Such a disturbance has the potential to not only alter the structure and function of plant and animal communities, but also soils, soil microbial communities, and the biogeochemical processes they mediate. At Mammoth Mountain, we assessed the soil microbial community response to CO2 disturbance (derived from volcanic ‘cold’ CO2) that resulted in localized tree kill; soil CO2 concentrations in our study area ranged from 0.6% to 60%. Our objectives were to examine how microbial communities and their activities are restructured by extreme CO2 disturbance, and assess the response of major microbial taxa to the reintroduction of limited plant communities following an extensive period (15–20 years) with no plants. We found that CO2-induced tree kill reduced soil carbon (C) availability along our sampling transect. In response, soil microbial biomass decreased by an order of magnitude from healthy forest to impacted areas. Soil microorganisms were most sensitive to changes in soil organic C, which explained almost 60% of the variation for microbial biomass C (MBC) along the CO2gradient. We employed phospholipid fatty acid analysis and quantitative PCR (qPCR) to determine compositional changes among microbial communities in affected areas and found substantial reductions in microbial biomass linked to the loss of soil fungi. In contrast, archaeal populations responded positively to the CO2 disturbance, presumably due to reduced competition of bacteria and fungi, and perhaps unique adaptations to energy stress. Enzyme activities important in the cycling of soil C, nitrogen (N), and phosphorus (P) declined with increasing CO2, though specific activities (per unit MBC) remained stable or increased suggesting functional redundancy among restructured communities. We conclude that both the

  5. Molecular biology of microbial hydrogenases.

    Science.gov (United States)

    Vignais, P M; Colbeau, A

    2004-07-01

    Hydrogenases (H2ases) are metalloproteins. The great majority of them contain iron-sulfur clusters and two metal atoms at their active center, either a Ni and an Fe atom, the [NiFe]-H2ases, or two Fe atoms, the [FeFe]-H2ases. Enzymes of these two classes catalyze the reversible oxidation of hydrogen gas (H2 2 H+ + 2 e-) and play a central role in microbial energy metabolism; in addition to their role in fermentation and H2 respiration, H2ases may interact with membrane-bound electron transport systems in order to maintain redox poise, particularly in some photosynthetic microorganisms such as cyanobacteria. Recent work has revealed that some H2ases, by acting as H2-sensors, participate in the regulation of gene expression and that H2-evolving H2ases, thought to be involved in purely fermentative processes, play a role in membrane-linked energy conservation through the generation of a protonmotive force. The Hmd hydrogenases of some methanogenic archaea constitute a third class of H2ases, characterized by the absence of Fe-S cluster and the presence of an iron-containing cofactor with catalytic properties different from those of [NiFe]- and [FeFe]-H2ases. In this review, we emphasise recent advances that have greatly increased our knowledge of microbial H2ases, their diversity, the structure of their active site, how the metallocenters are synthesized and assembled, how they function, how the synthesis of these enzymes is controlled by external signals, and their potential use in biological H2 production.

  6. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn; Cusick, Roland D.; Kim, Younggy; Logan, Bruce E.

    2012-01-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown

  7. Hydrodynamics of microbial filter feeding

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia

    2017-01-01

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate......-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude......; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet...

  8. Molecular purging of multiple myeloma cells by ex-vivo culture and retroviral transduction of mobilized-blood CD34+ cells

    Directory of Open Access Journals (Sweden)

    Corneo Gianmarco

    2007-07-01

    Full Text Available Abstract Background Tumor cell contamination of the apheresis in multiple myeloma is likely to affect disease-free and overall survival after autografting. Objective To purge myeloma aphereses from tumor contaminants with a novel culture-based purging method. Methods We cultured myeloma-positive CD34+ PB samples in conditions that retained multipotency of hematopoietic stem cells, but were unfavourable to survival of plasma cells. Moreover, we exploited the resistance of myeloma plasma cells to retroviral transduction by targeting the hematopoietic CD34+ cell population with a retroviral vector carrying a selectable marker (the truncated form of the human receptor for nerve growth factor, ΔNGFR. We performed therefore a further myeloma purging step by selecting the transduced cells at the end of the culture. Results Overall recovery of CD34+ cells after culture was 128.5%; ΔNGFR transduction rate was 28.8% for CD34+ cells and 0% for CD138-selected primary myeloma cells, respectively. Recovery of CD34+ cells after ΔNGFR selection was 22.3%. By patient-specific Ig-gene rearrangements, we assessed a decrease of 0.7–1.4 logs in tumor load after the CD34+ cell selection, and up to 2.3 logs after culture and ΔNGFR selection. Conclusion We conclude that ex-vivo culture and retroviral-mediated transduction of myeloma leukaphereses provide an efficient tumor cell purging.

  9. Subretinal Fluid Levels of Signal-Transduction Proteins and Apoptosis Molecules in Macula-Off Retinal Detachment Undergoing Scleral Buckle Surgery.

    Science.gov (United States)

    Carpineto, Paolo; Aharrh-Gnama, Agbeanda; Ciciarelli, Vincenzo; Borrelli, Enrico; Petti, Francesco; Aloia, Raffaella; Lamolinara, Alessia; Di Nicola, Marta; Mastropasqua, Leonardo

    2016-12-01

    To evaluate signal transduction and early apoptosis protein levels in subretinal fluid collected during scleral buckling surgery for macula-off rhegmatogenous retinal detachment (RRD). Our aim was to assess both their relation with RRD features and their influence on the posttreatment outcome. Thirty-three eyes of 33 RRD patients scheduled for scleral buckle surgery were enrolled in the study. Undiluted subretinal fluid samples were collected during surgery and analyzed via magnetic bead-based immunoassay. All patients underwent a complete ophthalmologic evaluation at baseline and at each follow-up visit (months 1, 3, and 6). Moreover, both at baseline and at the postsurgery month 6 visit, the patients were tested by means of spectral-domain optical coherence tomography (SD-OCT) in order to evaluate the average ganglion cell-inner plexiform complex thickness, as well as the photoreceptor inner segment/outer segment junction status. Patients' clinical features (retinal detachment size, detachment duration, and occurrence of proliferative vitreoretinopathy) were associated with several early apoptotic factors (caspase-8, caspase-9, and B-cell lymphoma 2 [Bcl-2]-associated death promoter [BAD]). Furthermore, both early apoptosis factors (caspase-8, Bcl-2, and p53) and signal-transduction proteins (ERK 1/2) were found to influence the postsurgery month 3 OCT characteristics. Signal-transduction proteins and early apoptosis proteins are associated with different clinical features and postsurgery outcomes.

  10. Investigating Microbial Biofilm Formations on Crustal Rock Substrates

    Science.gov (United States)

    Weiser, M.; D'Angelo, T.; Carr, S. A.; Orcutt, B.

    2017-12-01

    Ocean crust hosts microbial life that, in some cases, alter the component rocks as a means of obtaining energy. Variations in crust lithology, included trace metal and mineral content, as well as the chemistry of the fluids circulating through them, provide substrates for some microbes to metabolize, leading to formation of biofilm community structures. Microbes have different parameters for the situations in which they will form biofilms, but they must have some source of energy in excess at the site of biofilm formation for them to become stationary and form the carbohydrate-rich structures connecting the cells to one another and the substrate. Generally, the requirements for microbes to form biofilms on crustal minerals are unclear. We designed two experiments to test (1) mineral preference and biofilm formation rates by natural seawater microbial communities, and (2) biofilm development as a function of phosphate availability for an organism isolated from subseafloor ocean crust. In Experiment 1, we observed that phyric basalt groundmass is preferentially colonized over aphyric basalt or metal sulfides in a shallow water and oxic seawater environment. In experiment 2, tests of the anaerobic heterotroph Thalassospira bacteria isolated from oceanic crustal fluids showed that they preferentially form biofilms, lose motility, and increase exponentially in number over time in higher-PO4 treatments (50 micromolar), including with phosphate-doped basalts, than in treatments with low phosphate concentrations (0.5 micromolar) often found in crustal fluids. These observations suggest phosphate as a main driver of biofilm formation in subsurface crust. Overall, these data suggest that the drivers of microbial biofilm formation on crustal substrates are selective to the substrate conditions, which has important implications for estimating the global biomass of life harbored in oceanic crust.

  11. Something new from something old? Fracking stimulated microbial processes

    Science.gov (United States)

    Wrighton, K. C.; Daly, R. A.; Hoyt, D.; Trexler, R.; McRae, J.; Wilkins, M.; Mouser, P. J.

    2015-12-01

    Hydraulic fracturing, colloquially known as "fracking", is employed for effective gas and oil recovery in deep shales. This process injects organisms and liquids from the surface into the deep subsurface (~2500 m), exposing microorganisms to high pressures, elevated temperatures, chemical additives, and brine-level salinities. Here we use assembly-based metagenomics to create a metabolic blueprint from an energy-producing Marcellus shale well over a 328-day period. Using this approach we ask the question: What abiotic and biotic factors drive microbial metabolism and thus biogeochemical cycling during natural gas extraction? We found that after 49 days, increased salinity in produced waters corresponded to a shift in the microbial community, with only organisms that encode salinity adaptations detected. We posit that organic compatible solutes, produced by organisms adapting to increased salinity, fuels a methylamine-driven ecosystem in fractured shale. This metabolic network ultimately results in biogenic methane production from members of Methanohalophilus and Methanolobus. Proton NMR validated these genomic hypotheses, with mono-methylamine being highest in the input material, but detected throughout the sampling. Beyond abiotic constraints, our genomic investigations revealed that viruses can be linked to key members of the microbial community, potentially releasing methylamine osmoprotectants and impacting bacterial strain variation. Collectively our results indicate that adaptation to high salinity, metabolism in the absence of oxidized electron acceptors, and viral predation are controlling factors mediating microbial community metabolism during hydraulic fracturing of the deep subsurface.

  12. Advances in microbial leaching processes for nickel extraction from lateritic minerals - A review

    International Nuclear Information System (INIS)

    Behra, Sunil Kumar; Mulaba-Bafubiandi, Antoine Floribert

    2015-01-01

    Lateritic nickel minerals constitute about 80% of nickel reserves in the world, but their contribution for nickel production is about 40%. The obstacles in extraction of nickel from lateritic minerals are attributed to their very complex mineralogy and low nickel content. Hence, the existing metallurgical techniques are not techno-economically feasible and environmentally sustainable for processing of such complex deposits. At this juncture, microbial mineral processing could be a benevolent approach for processing of lateritic minerals in favor of nickel extraction. The microbial mineral processing route offers many advantages over conventional metallurgical methods as the process is operated under ambient conditions and requires low energy input; thus these processes are relatively simple and environment friendly. Microbial processing of the lateritic deposits still needs improvement to make it industrially viable. Microorganisms play the pivotal role in mineral bio-processing as they catalyze the extraction of metals from minerals. So it is inevitable to explore the physiological and bio-molecular mechanisms involved in this microbe-mineral interaction. The present article offers comprehensive information about the advances in microbial processes for extraction of nickel from laterites.

  13. Advances in microbial leaching processes for nickel extraction from lateritic minerals - A review

    Energy Technology Data Exchange (ETDEWEB)

    Behra, Sunil Kumar; Mulaba-Bafubiandi, Antoine Floribert [Faculty of Engineering and the Built Environment, University of Johannesburg, (South Africa)

    2015-08-15

    Lateritic nickel minerals constitute about 80% of nickel reserves in the world, but their contribution for nickel production is about 40%. The obstacles in extraction of nickel from lateritic minerals are attributed to their very complex mineralogy and low nickel content. Hence, the existing metallurgical techniques are not techno-economically feasible and environmentally sustainable for processing of such complex deposits. At this juncture, microbial mineral processing could be a benevolent approach for processing of lateritic minerals in favor of nickel extraction. The microbial mineral processing route offers many advantages over conventional metallurgical methods as the process is operated under ambient conditions and requires low energy input; thus these processes are relatively simple and environment friendly. Microbial processing of the lateritic deposits still needs improvement to make it industrially viable. Microorganisms play the pivotal role in mineral bio-processing as they catalyze the extraction of metals from minerals. So it is inevitable to explore the physiological and bio-molecular mechanisms involved in this microbe-mineral interaction. The present article offers comprehensive information about the advances in microbial processes for extraction of nickel from laterites.

  14. Aporte de energia, composição e eficiência microbiana em bovinos alimentados com feno de capim-marandu e concentrado balanceados para diferentes ganhos de peso e potenciais de fermentação microbiana Energy aport, microbial composition and efficiency by bovines fed Brachiaria brizantha cv. Marandu hay and concentrate, balanced for different weight gains and potential of microbial fermentation

    Directory of Open Access Journals (Sweden)

    Rodolfo Marques de Brito

    2007-10-01

    Full Text Available Um experimento foi realizado com o objetivo de avaliar o aporte de energia, a composição de bactérias e a eficiência microbiana por tourinhos Santa Gertrudes canulados no rúmen e no duodeno alimentados com dietas compostas de feno de capim-marandu e concentrado. Empregou-se o delineamento em quadrado latino 4 ´ 4, no qual os tratamentos foram concentrados ajustados para ganho de peso corporal (GPC diário de 0,5 e 1 kg/animal e potencial de fermentação microbiana (y de 9,5 e 11 g de PB microbiana/MJ energia metabolizável fermentável. Houve diferença para as concentrações de nutrientes digestíveis totais (NDT e energia metabolizável fermentável (EMFe ingeridos e para a composição em matéria orgânica e mineral das bactérias ruminais para as dietas ajustadas para diferentes GPC. Houve interação significativa GPC ´ y para a ingestão de NDT como porcentagem do peso corporal e a composição em PB e carboidratos totais das bactérias ruminais. Não foram encontradas diferenças para os potenciais de fermentação microbiana. A eficiência de síntese microbiana também não diferiu entre as dietas e apresentou valores de 12,7 g PB microbiana/100 g NDT e 9,2 g PB microbiana/MJ EMFe. As diferenças encontradas não justificaram o balanceamento dos concentrados para os diferentes potenciais de fermentação microbiana avaliados.The experiment was carried out with the objective to evaluate the energy aport, microbial composition and efficiency of Santa Gertrudis young bulls, canulated in the rumen and duodenum, fed diets with palisadegrass hay and concentrates. A 4 x 4 latin square design was used, in which the treatments were composed by the concentrates adjusted for daily body weight gain (BWG of 0.5 and 1 kg/animal and potential microbial fermentation (y of 9.5 and 11 g microbial CP/MJ fermentable metabolizable energy. There were differences for the concentrations of total digestible nutrients (TDN and fermentable metabolizable

  15. Inquiry into Chemotherapy-Induced P53 Activation in Cancer Cells as a Model for Teaching Signal Transduction

    Science.gov (United States)

    Srougi, Melissa C.; Carson, Susan

    2013-01-01

    Intracellular and extracellular communication is conducted through an intricate and interwoven network of signal transduction pathways. The mechanisms for how cells speak with one another are of significant biological importance to both basic and industrial scientists from a number of different disciplines. We have therefore developed and…

  16. Microbial stratification and microbially catalyzed processes along a hypersaline chemocline

    Science.gov (United States)

    Hyde, A.; Joye, S. B.; Teske, A.

    2017-12-01

    Orca Basin is the largest deep hypersaline anoxic basin in the world, covering over 400 km2. Located at the bottom of the Gulf of Mexico, this body of water reaches depths of 200 meters and is 8 times denser (and more saline) than the overlying seawater. The sharp pycnocline prevents any significant vertical mixing and serves as a particle trap for sinking organic matter. These rapid changes in salinity, oxygen, organic matter, and other geochemical parameters present unique conditions for the microbial communities present. We collected samples in 10m intervals throughout the chemocline. After filtering the water, we used high-throughput bacterial and archaeal 16S rRNA gene sequencing to characterize the changing microbial community along the Orca Basin chemocline. The results reveal a dominance of microbial taxa whose biogeochemical function is entirely unknown. We then used metagenomic sequencing and reconstructed genomes for select samples, revealing the potential dominant metabolic processes in the Orca Basin chemocline. Understanding how these unique geochemical conditions shape microbial communities and metabolic capabilities will have implications for the ocean's biogeochemical cycles and the consequences of expanding oxygen minimum zones.

  17. Design of a microbial fuel cell and its transition to microbial electrolytic cell for hydrogen production by electrohydrogenesis.

    Science.gov (United States)

    Gupta, Pratima; Parkhey, Piyush; Joshi, Komal; Mahilkar, Anjali

    2013-10-01

    Anaerobic bacteria were isolated from industrial wastewater and soil samples and tested for exoelectrogenic activity by current production in double chambered microbial fuel cell (MFC), which was further transitioned into a single chambered microbial electrolytic cell to test hydrogen production by electrohydrogenesis. Of all the cultures, the isolate from industrial water sample showed the maximum values for current = 0.161 mA, current density = 108.57 mA/m2 and power density = 48.85 mW/m2 with graphite electrode. Maximum voltage across the cell, however, was reported by the isolate from sewage water sample (506 mv) with copper as electrode. Tap water with KMnO4 was the best cathodic electrolyte as the highest values for all the measured MFC parameters were reported with it. Once the exoelectrogenic activity of the isolates was confirmed by current production, these were tested for hydrogen production in a single chambered microbial electrolytic cell (MEC) modified from the MFC. Hydrogen production was reported positive from co-culture of isolates of both the water samples and co-culture of one soil and one water sample. The maximum rate and yield of hydrogen production was 0.18 m3H2/m3/d and 3.2 mol H2/mol glucose respectively with total hydrogen production of 42.4 mL and energy recovery of 57.4%. Cumulative hydrogen production for a five day cycle of MEC operation was 0.16 m3H2/m3/d.

  18. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  19. Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Zinc Oxide-Anti-Microbial Treatment

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2013-01-01

    Full Text Available Cotton fabrics are highly popular because of their excellent properties such as regeneration, bio-degradation, softness, affinity to skin and hygroscopic properties. When in contact with the human body, cotton fabrics offer an ideal environment for microbial growth due to their ability to retain oxygen, moisture and warmth, as well as nutrients from spillages and body sweat. Therefore, an anti-microbial coating formulation (Microfresh and Microban together with zinc oxide as catalyst was developed for cotton fabrics to improve treatment effectiveness. In addition, plasma technology was employed in the study which roughened the surface of the materials, improving the loading of zinc oxides on the surface. In this study, the low stress mechanical properties of plasma pre-treated and/or anti-microbial-treated cotton fabric were studied. The overall results show that the specimens had improved bending properties when zinc oxides were added in the anti-microbial coating recipe. Also, without plasma pre-treatment, anti-microbial-treatment of cotton fabric had a positive effect only on tensile resilience, shear stress at 0.5° and compressional energy, while plasma-treated specimens had better overall tensile properties even after anti-microbial treatment.

  20. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate

    DEFF Research Database (Denmark)

    Thygesen, Anders; Poulsen, Finn Willy; Angelidaki, Irini

    2011-01-01

    Electricity production from microbial fuel cells fueled with hydrolysate produced by hydrothermal treatment of wheat straw can achieve both energy production and domestic wastewater purification. The hydrolysate contained mainly xylan, carboxylic acids, and phenolic compounds. Power generation...... in 95% degradation of the xylan and glucan. The study demonstrates that lignocellulosic hydrolysate can be used for co-treatment with domestic wastewater for power generation in microbial fuel cells....... density with the hydrolysate was higher than the one with only xylan (120 mW m−2) and carboxylic acids as fuel. The higher power density can be caused by the presence of phenolic compounds in the hydrolysates, which could mediate electron transport. Electricity generation with the hydrolysate resulted...

  1. Lactose Bioelectricity on a Microbial Fuel Cell System Parallel Circuit Using Lactobacillus Bulgaricus

    OpenAIRE

    Putra, Adi; Nuryanto, Rahmad; Suyati, Linda

    2014-01-01

    Electrical energy needs in Indonesia is estimated to continue growing by 4.6% per year, and if there is nothing to be done to increase the production of electric energy, this figure will increase threefold by 2030. Microbial Fuel Cells (MFC) is one way to produce alternative electric energy by utilizing organic material as a substrate for bacterial metabolic activity that generate electricity. The aim of this study is to examine lactose bioelectricity in a parallel circuit MFC system using La...

  2. Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba

    Science.gov (United States)

    Valdespino-Castillo, Patricia M.; Hu, Ping; Merino-Ibarra, Martín; López-Gómez, Luz M.; Cerqueda-García, Daniel; González-De Zayas, Roberto; Pi-Puig, Teresa; Lestayo, Julio A.; Holman, Hoi-Ying; Falcón, Luisa I.

    2018-01-01

    Microbialites are modern analogs of ancient microbial consortia that date as far back as the Archaean Eon. Microbialites have contributed to the geochemical history of our planet through their diverse metabolic capacities that mediate mineral precipitation. These mineral-forming microbial assemblages accumulate major ions, trace elements and biomass from their ambient aquatic environments; their role in the resulting chemical structure of these lithifications needs clarification. We studied the biogeochemistry and microbial structure of microbialites collected from diverse locations in Mexico and in a previously undescribed microbialite in Cuba. We examined their structure, chemistry and mineralogy at different scales using an array of nested methods including 16S rRNA gene high-throughput sequencing, elemental analysis, X-Ray fluorescence (XRF), X-Ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transformed Infrared (FTIR) spectroscopy and Synchrotron Radiation-based Fourier Transformed Infrared (SR-FTIR) spectromicroscopy. The resulting data revealed high biological and chemical diversity among microbialites and specific microbe to chemical correlations. Regardless of the sampling site, Proteobacteria had the most significant correlations with biogeochemical parameters such as organic carbon (Corg), nitrogen and Corg:Ca ratio. Biogeochemically relevant bacterial groups (dominant phototrophs and heterotrophs) showed significant correlations with major ion composition, mineral type and transition element content, such as cadmium, cobalt, chromium, copper and nickel. Microbial-chemical relationships were discussed in reference to microbialite formation, microbial metabolic capacities and the role of transition elements as enzyme cofactors. This paper provides an analytical baseline to drive our understanding of the links between microbial diversity with the chemistry of their lithified precipitations. PMID

  3. [Engineering issues of microbial ecology in space agriculture].

    Science.gov (United States)

    Yamashita, Masamichi; Ishikawa, Yoji; Oshima, Tairo

    2005-03-01

    how to conduct preventive maintenance for keeping cultivating soil healthy and productive. 3) Does microbial ecology contribute to building sustainable and expandable human habitation by utilizing the on site extraterrestrial resources? We are assessing technical feasibility of converting regolith to farming soil and structural materials for space agriculture. In the case of Mars habitation, carbon dioxide and a trace amount of nitrogen in atmosphere, and potassium and phosphor in minerals are the sources we consider. Excess oxygen can be accumulated by woods cultivation and their use for lumber. 4) Is the operation of space agriculture robust and safe, if it adopts hyper-thermophilic aerobic microbial ecology? Any ecological system is complex and non-linear, and shows latency and memory effects in its response. It is highly important to understand those features to design and operate space agriculture without falling into the fatal failure. Assessment should be made on the microbial safety and preparation of the preventive measures to eliminate negative elements that would either retard agricultural production or harm the healthy environment. It is worth to mention that such space agriculture would be an effective engineering testbed to solve the global problem on energy and environment. Mars and Moon exploration itself is a good advocate of healthy curiosity expressed by the sustainable civilization of our humankind. We propose to work together towards Mars and Moon with microbial ecology to assure pleasant habitation there.

  4. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina

    2015-01-08

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  5. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina; Moitinho-Silva, Lucas; Brü mmer, Franz; Cannistraci, Carlo V.; Ravasi, Timothy; Hentschel, Ute

    2015-01-01

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  6. Systems Level Dissection of Anaerobic Methane Cycling: Quantitative Measurements of Single Cell Ecophysiology, Genetic Mechanisms, and Microbial Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Orphan, Victoria [California Inst. of Technology (CalTech), Pasadena, CA (United States); Tyson, Gene [University of Queensland, Brisbane Australia; Meile, Christof [University of Georgia, Athens, Georgia; McGlynn, Shawn [California Inst. of Technology (CalTech), Pasadena, CA (United States); Yu, Hang [California Inst. of Technology (CalTech), Pasadena, CA (United States); Chadwick, Grayson [California Inst. of Technology (CalTech), Pasadena, CA (United States); Marlow, Jeffrey [California Inst. of Technology (CalTech), Pasadena, CA (United States); Trembath-Reichert, Elizabeth [California Inst. of Technology (CalTech), Pasadena, CA (United States); Dekas, Anne [California Inst. of Technology (CalTech), Pasadena, CA (United States); Hettich, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pan, Chongle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellisman, Mark [University of California San Diego; Hatzenpichler, Roland [California Inst. of Technology (CalTech), Pasadena, CA (United States); Skennerton, Connor [California Inst. of Technology (CalTech), Pasadena, CA (United States); Scheller, Silvan [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2017-12-25

    The global biological CH4 cycle is largely controlled through coordinated and often intimate microbial interactions between archaea and bacteria, the majority of which are still unknown or have been only cursorily identified. Members of the methanotrophic archaea, aka ‘ANME’, are believed to play a major role in the cycling of methane in anoxic environments coupled to sulfate, nitrate, and possibly iron and manganese oxides, frequently forming diverse physical and metabolic partnerships with a range of bacteria. The thermodynamic challenges overcome by the ANME and their bacterial partners and corresponding slow rates of growth are common characteristics in anaerobic ecosystems, and, in stark contrast to most cultured microorganisms, this type of energy and resource limited microbial lifestyle is likely the norm in the environment. While we have gained an in-depth systems level understanding of fast-growing, energy-replete microorganisms, comparatively little is known about the dynamics of cell respiration, growth, protein turnover, gene expression, and energy storage in the slow-growing microbial majority. These fundamental properties, combined with the observed metabolic and symbiotic versatility of methanotrophic ANME, make these cooperative microbial systems a relevant (albeit challenging) system to study and for which to develop and optimize culture-independent methodologies, which enable a systems-level understanding of microbial interactions and metabolic networks. We used an integrative systems biology approach to study anaerobic sediment microcosms and methane-oxidizing bioreactors and expanded our understanding of the methanotrophic ANME archaea, their interactions with physically-associated bacteria, ecophysiological characteristics, and underlying genetic basis for cooperative microbial methane-oxidation linked with different terminal electron acceptors. Our approach is inherently multi-disciplinary and multi-scaled, combining transcriptional and

  7. Reply to 'Comment on kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' by J. Griffioen

    Science.gov (United States)

    Hunter, K. S.; Van Cappellen, P.

    2000-01-01

    Our paper, 'Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' (Hunter et al., 1998), presents a theoretical exploration of biogeochemical reaction networks and their importance to the biogeochemistry of groundwater systems. As with any other model, the kinetic reaction-transport model developed in our paper includes only a subset of all physically, biologically and chemically relevant processes in subsurface environments. It considers aquifer systems where the primary energy source driving microbial activity is the degradation of organic matter. In addition to the primary biodegradation pathways of organic matter (i.e. respiration and fermentation), the redox chemistry of groundwaters is also affected by reactions not directly involving organic matter oxidation. We refer to the latter as secondary reactions. By including secondary redox reactions which consume reduced reaction products (e.g., Mn2+, FeS, H2S), and in the process compete with microbial heterotrophic populations for available oxidants (i.e. O2, NO3-, Mn(IV), Fe(III), SO42-), we predict spatio-temporal distributions of microbial activity which differ significantly from those of models which consider only the biodegradation reactions. That is, the secondary reactions have a significant impact on the distributions of the rates of heterotrophic and chemolithotrophic metabolic pathways. We further show that secondary redox reactions, as well as non-redox reactions, significantly influence the acid-base chemistry of groundwaters. The distributions of dissolved inorganic redox species along flowpaths, however, are similar in simulations with and without secondary reactions (see Figs. 3(b) and 7(b) in Hunter et al., 1998), indicating that very different biogeochemical reaction dynamics may lead to essentially the same chemical redox zonation of a groundwater system.

  8. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  9. Analysis of Cell Signal Transduction Based on Kullback–Leibler Divergence: Channel Capacity and Conservation of Its Production Rate during Cascade

    Directory of Open Access Journals (Sweden)

    Tatsuaki Tsuruyama

    2018-06-01

    Full Text Available Kullback–Leibler divergence (KLD is a type of extended mutual entropy, which is used as a measure of information gain when transferring from a prior distribution to a posterior distribution. In this study, KLD is applied to the thermodynamic analysis of cell signal transduction cascade and serves an alternative to mutual entropy. When KLD is minimized, the divergence is given by the ratio of the prior selection probability of the signaling molecule to the posterior selection probability. Moreover, the information gain during the entire channel is shown to be adequately described by average KLD production rate. Thus, this approach provides a framework for the quantitative analysis of signal transduction. Moreover, the proposed approach can identify an effective cascade for a signaling network.

  10. From energy-rich phosphate compounds to warfare agents: A review on the chemistry of organic phosphate compounds

    Directory of Open Access Journals (Sweden)

    Luciano Albino Giusti

    2008-12-01

    Full Text Available The chemistry of the phosphorus-oxygen bond is widely used in biological systems in many processes, such as energy transduction and the storage, transmission and expression of genetic information, which are essential to living beings in relation to a wide variety of functions. Compounds containing this bond have been designed for many purposes, ranging from agricultural defense systems, in order to increase food production, to nerve agents, for complaining use in warfare. In this review, features related to the chemistry of organic phosphate compounds are discussed, with particular emphasis on the role of phosphate compounds in biochemical events and in nerve agents. To this aim, the energy-rich phosphate compounds are focused, particularly the mode of their use as energy currency in cells. Historical and recent studies carried out by research groups have tried to elucidate the mechanism of action of enzymes responsible for energy transduction through the use of biochemical studies, enzyme models, and artificial enzymes. Finally, recent studies on the detoxification of nerve agents based on phosphorous esters are presented, and on the utilization of chromogenic and fluorogenic chemosensors for the detection of these phosphate species.

  11. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2010-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treatment of sewage sludge and simultaneous generate electricity. Stable power generation (145±5 mW/m2) was produced continuously from raw sewage sludge for 5.5 days. The corresponding total chemical oxygen demand (TCOD) removal efficiency...... of an effective system to treatment of sewage sludge and simultaneous recover energy....

  12. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2011-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treat sewage sludge and simultaneously generate electricity. Stable power generation (145± 5 mW/m2, 470 Ω) was produced continuously from raw sewage sludge for 5.5 days. The maximum power density reached 190±5 mW/m2. The corresponding total...... system to treat sewage sludge and simultaneously recover energy....

  13. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Directory of Open Access Journals (Sweden)

    L. E. Pracht

    2018-03-01

    Full Text Available Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC. In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic

  14. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Science.gov (United States)

    Pracht, Lara E.; Tfaily, Malak M.; Ardissono, Robert J.; Neumann, Rebecca B.

    2018-03-01

    Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC) mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC) in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC) were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC). In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic favorability of

  15. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  16. The maturing of microbial ecology.

    Science.gov (United States)

    Schmidt, Thomas M

    2006-09-01

    A.J. Kluyver and C.B. van Niel introduced many scientists to the exceptional metabolic capacity of microbes and their remarkable ability to adapt to changing environments in The Microbe's Contribution to Biology. Beyond providing an overview of the physiology and adaptability of microbes, the book outlined many of the basic principles for the emerging discipline of microbial ecology. While the study of pure cultures was highlighted, provided a unifying framework for understanding the vast metabolic potential of microbes and their roles in the global cycling of elements, extrapolation from pure cultures to natural environments has often been overshadowed by microbiologists inability to culture many of the microbes seen in natural environments. A combination of genomic approaches is now providing a culture-independent view of the microbial world, revealing a more diverse and dynamic community of microbes than originally anticipated. As methods for determining the diversity of microbial communities become increasingly accessible, a major challenge to microbial ecologists is to link the structure of natural microbial communities with their functions. This article presents several examples from studies of aquatic and terrestrial microbial communities in which culture and culture-independent methods are providing an enhanced appreciation for the microbe's contribution to the evolution and maintenance of life on Earth, and offers some thoughts about the graduate-level educational programs needed to enhance the maturing field of microbial ecology.

  17. In-Drift Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.

  18. In-Drift Microbial Communities

    International Nuclear Information System (INIS)

    Jolley, D.

    2000-01-01

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses

  19. Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Min, Booki; Huang, L.

    2009-01-01

    Electricity generation from wheat straw hydrolysate and the microbial ecology of electricity producing microbial communities developed in two chamber microbial fuel cells (MFCs) were investigated. Power density reached 123 mW/m2 with an initial hydrolysate concentration of 1000 mg-COD/L while...

  20. Relating Anaerobic Digestion Microbial Community and Process Function : Supplementary Issue: Water Microbiology

    Directory of Open Access Journals (Sweden)

    Kaushik Venkiteshwaran

    2015-01-01

    Full Text Available Anaerobic digestion (AD involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1 hydrolysis rate, (2 direct interspecies electron transfer to methanogens, (3 community structure–function relationships of methanogens, (4 methanogenesis via acetate oxidation, and (5 bioaugmentation to study community–activity relationships or improve engineered bioprocesses.