WorldWideScience

Sample records for microbial ecology meeting

  1. Meeting report: GSC M5 roundtable at the 13th International Society for Microbial Ecology meeting in Seattle, WA, USA August 22-27, 2010

    Science.gov (United States)

    Gilbert, Jack A.; Meyer, Folker; Knight, Rob; Field, Dawn; Kyrpides, Nikos; Yilmaz, Pelin; Wooley, John

    2010-01-01

    This report summarizes the proceedings of the Metagenomics, Metadata, Metaanalysis, Models and Metainfrastructure (M5) Roundtable at the 13th International Society for Microbial Ecology Meeting in Seattle, WA, USA August 22-27, 2010. The Genomic Standards Consortium (GSC) hosted this meeting as a community engagement exercise to describe the GSC to the microbial ecology community during this important international meeting. The roundtable included five talks given by members of the GSC, and was followed by audience participation in the form of a roundtable discussion. This report summarizes this event. Further information on the GSC and its range of activities can be found at http://www.gensc.org. PMID:21304725

  2. Meeting report: GSC M5 roundtable at the 13th International Society for Microbial Ecology meeting in Seattle, WA, USA August 22-27, 2010.

    Science.gov (United States)

    Gilbert, Jack A; Meyer, Folker; Knight, Rob; Field, Dawn; Kyrpides, Nikos; Yilmaz, Pelin; Wooley, John

    2010-12-15

    This report summarizes the proceedings of the Metagenomics, Metadata, Metaanalysis, Models and Metainfrastructure (M5) Roundtable at the 13th International Society for Microbial Ecology Meeting in Seattle, WA, USA August 22-27, 2010. The Genomic Standards Consortium (GSC) hosted this meeting as a community engagement exercise to describe the GSC to the microbial ecology community during this important international meeting. The roundtable included five talks given by members of the GSC, and was followed by audience participation in the form of a roundtable discussion. This report summarizes this event. Further information on the GSC and its range of activities can be found at http://www.gensc.org.

  3. The role of ecological theory in microbial ecology.

    Science.gov (United States)

    Prosser, James I; Bohannan, Brendan J M; Curtis, Tom P; Ellis, Richard J; Firestone, Mary K; Freckleton, Rob P; Green, Jessica L; Green, Laura E; Killham, Ken; Lennon, Jack J; Osborn, A Mark; Solan, Martin; van der Gast, Christopher J; Young, J Peter W

    2007-05-01

    Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.

  4. Synthetic microbial ecology and the dynamic interplay between microbial genotypes.

    Science.gov (United States)

    Dolinšek, Jan; Goldschmidt, Felix; Johnson, David R

    2016-11-01

    Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.

  5. Statistical Physics Approaches to Microbial Ecology

    Science.gov (United States)

    Mehta, Pankaj

    The unprecedented ability to quantitatively measure and probe complex microbial communities has renewed interest in identifying the fundamental ecological principles governing community ecology in microbial ecosystems. Here, we present work from our group and others showing how ideas from statistical physics can help us uncover these ecological principles. Two major lessons emerge from this work. First, large, ecosystems with many species often display new, emergent ecological behaviors that are absent in small ecosystems with just a few species. To paraphrase Nobel laureate Phil Anderson, ''More is Different'', especially in community ecology. Second, the lack of trophic layer separation in microbial ecology fundamentally distinguishes microbial ecology from classical paradigms of community ecology and leads to qualitative different rules for community assembly in microbes. I illustrate these ideas using both theoretical modeling and novel new experiments on large microbial ecosystems performed by our collaborators (Joshua Goldford and Alvaro Sanchez). Work supported by Simons Investigator in MMLS and NIH R35 R35 GM119461.

  6. Microbial ecology-based engineering of Microbial Electrochemical Technologies.

    Science.gov (United States)

    Koch, Christin; Korth, Benjamin; Harnisch, Falk

    2018-01-01

    Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Molecular microbial ecology manual

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Bruijn, de F.J.; Head, I.M.; Akkermans, A.D.L.

    2004-01-01

    The field of microbial ecology has been revolutionized in the past two decades by the introduction of molecular methods into the toolbox of the microbial ecologist. This molecular arsenal has helped to unveil the enormity of microbial diversity across the breadth of the earth's ecosystems, and has

  8. Energy, ecology and the distribution of microbial life.

    Science.gov (United States)

    Macalady, Jennifer L; Hamilton, Trinity L; Grettenberger, Christen L; Jones, Daniel S; Tsao, Leah E; Burgos, William D

    2013-07-19

    Mechanisms that govern the coexistence of multiple biological species have been studied intensively by ecologists since the turn of the nineteenth century. Microbial ecologists in the meantime have faced many fundamental challenges, such as the lack of an ecologically coherent species definition, lack of adequate methods for evaluating population sizes and community composition in nature, and enormous taxonomic and functional diversity. The accessibility of powerful, culture-independent molecular microbiology methods offers an opportunity to close the gap between microbial science and the main stream of ecological theory, with the promise of new insights and tools needed to meet the grand challenges humans face as planetary engineers and galactic explorers. We focus specifically on resources related to energy metabolism because of their direct links to elemental cycling in the Earth's history, engineering applications and astrobiology. To what extent does the availability of energy resources structure microbial communities in nature? Our recent work on sulfur- and iron-oxidizing autotrophs suggests that apparently subtle variations in the concentration ratios of external electron donors and acceptors select for different microbial populations. We show that quantitative knowledge of microbial energy niches (population-specific patterns of energy resource use) can be used to predict variations in the abundance of specific taxa in microbial communities. Furthermore, we propose that resource ratio theory applied to micro-organisms will provide a useful framework for identifying how environmental communities are organized in space and time.

  9. The microbial ecology of permafrost

    DEFF Research Database (Denmark)

    Jansson, Janet; Tas, Neslihan

    2014-01-01

    Permafrost constitutes a major portion of the terrestrial cryosphere of the Earth and is a unique ecological niche for cold-adapted microorganisms. There is a relatively high microbial diversity in permafrost, although there is some variation in community composition across different permafrost......-gas emissions. This Review describes new data on the microbial ecology of permafrost and provides a platform for understanding microbial life strategies in frozen soil as well as the impact of climate change on permafrost microorganisms and their functional roles....

  10. Fifty important research questions in microbial ecology.

    Science.gov (United States)

    Antwis, Rachael E; Griffiths, Sarah M; Harrison, Xavier A; Aranega-Bou, Paz; Arce, Andres; Bettridge, Aimee S; Brailsford, Francesca L; de Menezes, Alexandre; Devaynes, Andrew; Forbes, Kristian M; Fry, Ellen L; Goodhead, Ian; Haskell, Erin; Heys, Chloe; James, Chloe; Johnston, Sarah R; Lewis, Gillian R; Lewis, Zenobia; Macey, Michael C; McCarthy, Alan; McDonald, James E; Mejia-Florez, Nasmille L; O'Brien, David; Orland, Chloé; Pautasso, Marco; Reid, William D K; Robinson, Heather A; Wilson, Kenneth; Sutherland, William J

    2017-05-01

    Microbial ecology provides insights into the ecological and evolutionary dynamics of microbial communities underpinning every ecosystem on Earth. Microbial communities can now be investigated in unprecedented detail, although there is still a wealth of open questions to be tackled. Here we identify 50 research questions of fundamental importance to the science or application of microbial ecology, with the intention of summarising the field and bringing focus to new research avenues. Questions are categorised into seven themes: host-microbiome interactions; health and infectious diseases; human health and food security; microbial ecology in a changing world; environmental processes; functional diversity; and evolutionary processes. Many questions recognise that microbes provide an extraordinary array of functional diversity that can be harnessed to solve real-world problems. Our limited knowledge of spatial and temporal variation in microbial diversity and function is also reflected, as is the need to integrate micro- and macro-ecological concepts, and knowledge derived from studies with humans and other diverse organisms. Although not exhaustive, the questions presented are intended to stimulate discussion and provide focus for researchers, funders and policy makers, informing the future research agenda in microbial ecology. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Proceedings of the 8. International Symposium on Microbial Ecology : microbial biosystems : new frontiers

    International Nuclear Information System (INIS)

    Bell, C.R.; Brylinsky, M.; Johnson-Green, P.

    2000-01-01

    A wide range of disciplines were presented at this conference which reflected the importance of microbial ecology and provided an understanding of the factors that determine the growth and activities of microorganisms. The conference attracted 1444 delegates from 54 countries. The research emerging from the rapidly expanding frontier of microbial ecosystems was presented in 62 oral presentation and 817 poster presentations. The two volumes of these proceedings presented a total of 27 areas in microbial ecology, some of which included terrestrial biosystems, aquatic, estuarine, surface and subsurface microbial ecology. Other topics included bioremediation, microbial ecology in industry and microbial ecology of oil fields. Some of the papers highlighted the research that is underway to determine the feasibility of using microorganisms for enhanced oil recovery (EOR). Research has shown that microbial EOR can increase production at lower costs than conventional oil recovery. The use of bacteria has also proven to be a feasible treatment method in the biodegradation of hydrocarbons associated with oil spills. refs., tabs., figs

  12. Molecular ecology of microbial mats

    NARCIS (Netherlands)

    Bolhuis, H.; Cretoiu, M.S.; Stal, L.J.

    2014-01-01

    Phototrophic microbial mats are ideal model systems for ecological and evolutionary analysis of highly diverse microbial communities. Microbial mats are small-scale, nearly closed, and self-sustaining benthic ecosystems that comprise the major element cycles, trophic levels, and food webs. The steep

  13. Microbial ecology to manage processes in environmental biotechnology.

    Science.gov (United States)

    Rittmann, Bruce E

    2006-06-01

    Microbial ecology and environmental biotechnology are inherently tied to each other. The concepts and tools of microbial ecology are the basis for managing processes in environmental biotechnology; and these processes provide interesting ecosystems to advance the concepts and tools of microbial ecology. Revolutionary advancements in molecular tools to understand the structure and function of microbial communities are bolstering the power of microbial ecology. A push from advances in modern materials along with a pull from a societal need to become more sustainable is enabling environmental biotechnology to create novel processes. How do these two fields work together? Five principles illuminate the way: (i) aim for big benefits; (ii) develop and apply more powerful tools to understand microbial communities; (iii) follow the electrons; (iv) retain slow-growing biomass; and (v) integrate, integrate, integrate.

  14. The information science of microbial ecology.

    Science.gov (United States)

    Hahn, Aria S; Konwar, Kishori M; Louca, Stilianos; Hanson, Niels W; Hallam, Steven J

    2016-06-01

    A revolution is unfolding in microbial ecology where petabytes of 'multi-omics' data are produced using next generation sequencing and mass spectrometry platforms. This cornucopia of biological information has enormous potential to reveal the hidden metabolic powers of microbial communities in natural and engineered ecosystems. However, to realize this potential, the development of new technologies and interpretative frameworks grounded in ecological design principles are needed to overcome computational and analytical bottlenecks. Here we explore the relationship between microbial ecology and information science in the era of cloud-based computation. We consider microorganisms as individual information processing units implementing a distributed metabolic algorithm and describe developments in ecoinformatics and ubiquitous computing with the potential to eliminate bottlenecks and empower knowledge creation and translation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Science.gov (United States)

    Larsen, Peter; Gilbert, Jack

    2013-01-01

    In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm.) from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  16. The maturing of microbial ecology.

    Science.gov (United States)

    Schmidt, Thomas M

    2006-09-01

    A.J. Kluyver and C.B. van Niel introduced many scientists to the exceptional metabolic capacity of microbes and their remarkable ability to adapt to changing environments in The Microbe's Contribution to Biology. Beyond providing an overview of the physiology and adaptability of microbes, the book outlined many of the basic principles for the emerging discipline of microbial ecology. While the study of pure cultures was highlighted, provided a unifying framework for understanding the vast metabolic potential of microbes and their roles in the global cycling of elements, extrapolation from pure cultures to natural environments has often been overshadowed by microbiologists inability to culture many of the microbes seen in natural environments. A combination of genomic approaches is now providing a culture-independent view of the microbial world, revealing a more diverse and dynamic community of microbes than originally anticipated. As methods for determining the diversity of microbial communities become increasingly accessible, a major challenge to microbial ecologists is to link the structure of natural microbial communities with their functions. This article presents several examples from studies of aquatic and terrestrial microbial communities in which culture and culture-independent methods are providing an enhanced appreciation for the microbe's contribution to the evolution and maintenance of life on Earth, and offers some thoughts about the graduate-level educational programs needed to enhance the maturing field of microbial ecology.

  17. Stochastic Community Assembly: Does It Matter in Microbial Ecology?

    Science.gov (United States)

    Zhou, Jizhong; Ning, Daliang

    2017-12-01

    Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research. Copyright © 2017 American Society for Microbiology.

  18. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Directory of Open Access Journals (Sweden)

    Peter Larsen

    Full Text Available In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm. from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  19. Guiding bioprocess design by microbial ecology.

    Science.gov (United States)

    Volmer, Jan; Schmid, Andreas; Bühler, Bruno

    2015-06-01

    Industrial bioprocess development is driven by profitability and eco-efficiency. It profits from an early stage definition of process and biocatalyst design objectives. Microbial bioprocess environments can be considered as synthetic technical microbial ecosystems. Natural systems follow Darwinian evolution principles aiming at survival and reproduction. Technical systems objectives are eco-efficiency, productivity, and profitable production. Deciphering technical microbial ecology reveals differences and similarities of natural and technical systems objectives, which are discussed in this review in view of biocatalyst and process design and engineering strategies. Strategies for handling opposing objectives of natural and technical systems and for exploiting and engineering natural properties of microorganisms for technical systems are reviewed based on examples. This illustrates the relevance of considering microbial ecology for bioprocess design and the potential for exploitation by synthetic biology strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Microbial ecology and genomics: A crossroads of opportunity

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, David A. [University of Washington; Tiedje, James M. [Michigan State University

    2002-08-30

    Microbes have dominated life on Earth for most of its 4.5 billionyear history. They are the foundation of the biosphere, controlling the biogeochemical cycles and affecting geology, hydrology, and local and global climates. All life is completely dependent upon them. Humans cannot survive without the rich diversity of microbes, but most microbial species can survive without humans. Extraordinary advances in molecular technology have fostered an explosion of information in microbial biology. It is now known that microbial species in culture poorly represent their natural diversity—which dwarfs conventions established for the visible world. This was revealed over the last decade using newer molecular tools to explore environmental diversity and has sparked an explosive growth in microbial ecology and technologies that may profit from the bounty of natural biochemical diversity. Several colloquia and meetings have helped formulate policy recommendations to enable sustained research programs in these areas. One such colloquium organized by the American Academy of Microbiology (“The Microbial World: Foundation of the Biosphere,” 1997) made two key recommendations: (1) develop a more complete inventory of living organisms and the interagency cooperation needed to accomplish this goal, and (2) develop strategies to harvest this remarkable biological diversity for the benefit of science, technology, and society. Complete genome sequence information was identified as an essential part of strategy development, and the recommendation was made to sequence the genome of at least one species of each of the major divisions of microbial life.

  1. A great leap forward in microbial ecology.

    Science.gov (United States)

    Okabe, Satoshi; Oshiki, Mamoru; Kamagata, Yoichi; Yamaguchi, Nobuyasu; Toyofuku, Masanori; Yawata, Yutaka; Tashiro, Yosuke; Nomura, Nobuhiko; Ohta, Hiroyuki; Ohkuma, Moriya; Hiraishi, Akira; Minamisawa, Kiwamu

    2010-01-01

    Ribosomal RNA (rRNA) sequence-based molecular techniques emerged in the late 1980s, which completely changed our general view of microbial life. Coincidentally, the Japanese Society of Microbial Ecology (JSME) was founded, and its official journal "Microbes and Environments (M&E)" was launched, in 1985. Thus, the past 25 years have been an exciting and fruitful period for M&E readers and microbiologists as demonstrated by the numerous excellent papers published in M&E. In this minireview, recent progress made in microbial ecology and related fields is summarized, with a special emphasis on 8 landmark areas; the cultivation of uncultured microbes, in situ methods for the assessment of microorganisms and their activities, biofilms, plant microbiology, chemolithotrophic bacteria in early volcanic environments, symbionts of animals and their ecology, wastewater treatment microbiology, and the biodegradation of hazardous organic compounds.

  2. [Engineering issues of microbial ecology in space agriculture].

    Science.gov (United States)

    Yamashita, Masamichi; Ishikawa, Yoji; Oshima, Tairo

    2005-03-01

    Closure of the materials recycle loop for water-foods-oxygen is the primary purpose of space agriculture on Mars and Moon. A microbial ecological system takes a part of agriculture to process our metabolic excreta and inedible biomass and convert them to nutrients and soil substrate for cultivating plants. If we extend the purpose of space agriculture to the creation and control of a healthy and pleasant living environment, we should realize that our human body should not be sterilized but exposed to the appropriate microbial environment. We are proposing a use of hyper-thermophilic aerobic composting microbial ecology in space agriculture. Japan has a broad historical and cultural background on this subject. There had been agriculture that drove a closed loop of materials between consuming cities and farming villages in vicinity. Recent environmental problems regarding garbage collection and processing in towns have motivated home electronics companies to innovate "garbage composting" machines with bacterial technology. Based on those matured technology, together with new insights on microbiology and microbial ecology, we have been developing a conceptual design of space agriculture on Moon and Mars. There are several issues to be answered in order to prove effectiveness of the use of microbial systems in space. 1) Can the recycled nutrients, processed by the hyper-thermal aerobic composting microbial ecology, be formed in the physical and chemical state or configuration, with which plants can uptake those nutrients? A possibility of removing any major components of fertilizer from its recycle loop is another item to be evaluated. 2) What are the merits of forming soil microbial ecology around the root system of plants? This might be the most crucial question. Recent researches exhibit various mutually beneficial relationships among soil microbiota and plants, and symbiotic ecology in composting bacteria. It is essential to understand those features, and define

  3. Procedures For Microbial-Ecology Laboratory

    Science.gov (United States)

    Huff, Timothy L.

    1993-01-01

    Microbial Ecology Laboratory Procedures Manual provides concise and well-defined instructions on routine technical procedures to be followed in microbiological laboratory to ensure safety, analytical control, and validity of results.

  4. Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches

    Science.gov (United States)

    Hall, E.K.; Maixner, F.; Franklin, O.; Daims, H.; Richter, A.; Battin, T.

    2011-01-01

    Currently, one of the biggest challenges in microbial and ecosystem ecology is to develop conceptual models that organize the growing body of information on environmental microbiology into a clear mechanistic framework with a direct link to ecosystem processes. Doing so will enable development of testable hypotheses to better direct future research and increase understanding of key constraints on biogeochemical networks. Although the understanding of phenotypic and genotypic diversity of microorganisms in the environment is rapidly accumulating, how controls on microbial physiology ultimately affect biogeochemical fluxes remains poorly understood. We propose that insight into constraints on biogeochemical cycles can be achieved by a more rigorous evaluation of microbial community biomass composition within the context of ecological stoichiometry. Multiple recent studies have pointed to microbial biomass stoichiometry as an important determinant of when microorganisms retain or recycle mineral nutrients. We identify the relevant cellular components that most likely drive changes in microbial biomass stoichiometry by defining a conceptual model rooted in ecological stoichiometry. More importantly, we show how X-ray microanalysis (XRMA), nanoscale secondary ion mass spectroscopy (NanoSIMS), Raman microspectroscopy, and in situ hybridization techniques (for example, FISH) can be applied in concert to allow for direct empirical evaluation of the proposed conceptual framework. This approach links an important piece of the ecological literature, ecological stoichiometry, with the molecular front of the microbial revolution, in an attempt to provide new insight into how microbial physiology could constrain ecosystem processes.

  5. Microfluidics expanding the frontiers of microbial ecology.

    Science.gov (United States)

    Rusconi, Roberto; Garren, Melissa; Stocker, Roman

    2014-01-01

    Microfluidics has significantly contributed to the expansion of the frontiers of microbial ecology over the past decade by allowing researchers to observe the behaviors of microbes in highly controlled microenvironments, across scales from a single cell to mixed communities. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. In this article, we review applications of microfluidics that have resulted in insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control microbial processes such as biofilm formation and antibiotic resistance.

  6. What is microbial community ecology?

    Science.gov (United States)

    Konopka, Allan

    2009-11-01

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property.

  7. New directions in coral reef microbial ecology.

    Science.gov (United States)

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Marine Microbial Systems Ecology: Microbial Networks in the Sea

    NARCIS (Netherlands)

    Muijzer, G.; Stal, L.J.; Cretoiu, M.S.

    2016-01-01

    Next-generation sequencing of DNA has revolutionized microbial ecology. Using this technology, it became for the first time possible to analyze hundreds of samples simultaneously and in great detail. 16S rRNA amplicon sequencing, metagenomics and metatranscriptomics became available to determine the

  9. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances.

    Science.gov (United States)

    Xu, Jianping

    2006-06-01

    Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic

  10. Metagenomics and Bioinformatics in Microbial Ecology: Current Status and Beyond.

    Science.gov (United States)

    Hiraoka, Satoshi; Yang, Ching-Chia; Iwasaki, Wataru

    2016-09-29

    Metagenomic approaches are now commonly used in microbial ecology to study microbial communities in more detail, including many strains that cannot be cultivated in the laboratory. Bioinformatic analyses make it possible to mine huge metagenomic datasets and discover general patterns that govern microbial ecosystems. However, the findings of typical metagenomic and bioinformatic analyses still do not completely describe the ecology and evolution of microbes in their environments. Most analyses still depend on straightforward sequence similarity searches against reference databases. We herein review the current state of metagenomics and bioinformatics in microbial ecology and discuss future directions for the field. New techniques will allow us to go beyond routine analyses and broaden our knowledge of microbial ecosystems. We need to enrich reference databases, promote platforms that enable meta- or comprehensive analyses of diverse metagenomic datasets, devise methods that utilize long-read sequence information, and develop more powerful bioinformatic methods to analyze data from diverse perspectives.

  11. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials.

    Science.gov (United States)

    Somboonna, Naraporn; Wilantho, Alisa; Jankaew, Kruawun; Assawamakin, Anunchai; Sangsrakru, Duangjai; Tangphatsornruang, Sithichoke; Tongsima, Sissades

    2014-01-01

    The effects of tsunamis on microbial ecologies have been ill-defined, especially in Phang Nga province, Thailand. This ecosystem was catastrophically impacted by the 2004 Indian Ocean tsunami as well as the 600 year-old tsunami in Phra Thong island, Phang Nga province. No study has been conducted to elucidate their effects on microbial ecology. This study represents the first to elucidate their effects on microbial ecology. We utilized metagenomics with 16S and 18S rDNA-barcoded pyrosequencing to obtain prokaryotic and eukaryotic profiles for this terrestrial site, tsunami affected (S1), as well as a parallel unaffected terrestrial site, non-tsunami affected (S2). S1 demonstrated unique microbial community patterns than S2. The dendrogram constructed using the prokaryotic profiles supported the unique S1 microbial communities. S1 contained more proportions of archaea and bacteria domains, specifically species belonging to Bacteroidetes became more frequent, in replacing of the other typical floras like Proteobacteria, Acidobacteria and Basidiomycota. Pathogenic microbes, including Acinetobacter haemolyticus, Flavobacterium spp. and Photobacterium spp., were also found frequently in S1. Furthermore, different metabolic potentials highlighted this microbial community change could impact the functional ecology of the site. Moreover, the habitat prediction based on percent of species indicators for marine, brackish, freshwater and terrestrial niches pointed the S1 to largely comprise marine habitat indicating-species.

  12. [Effects of biochar on microbial ecology in agriculture soil: a review].

    Science.gov (United States)

    Ding, Yan-Li; Liu, Jie; Wang, Ying-Ying

    2013-11-01

    Biochar, as a new type of soil amendment, has been obtained considerable attention in the research field of environmental sciences worldwide. The studies on the effects of biochar in improving soil physical and chemical properties started quite earlier, and already covered the field of soil microbial ecology. However, most of the studies considered the soil physical and chemical properties and the microbial ecology separately, with less consideration of their interactions. This paper summarized and analyzed the interrelationships between the changes of soil physical and chemical properties and of soil microbial community after the addition of biochar. Biochar can not only improve soil pH value, strengthen soil water-holding capacity, increase soil organic matter content, but also affect soil microbial community structure, and alter the abundance of soil bacteria and fungi. After the addition of biochar, the soil environment and soil microorganisms are interacted each other, and promote the improvement of soil microbial ecological system together. This review was to provide a novel perspective for the in-depth studies of the effects of biochar on soil microbial ecology, and to promote the researches on the beneficial effects of biochar to the environment from ecological aspect. The methods to improve the effectiveness of biochar application were discussed, and the potential applications of biochar in soil bioremediation were further analyzed.

  13. Ecological restoration alters microbial communities in mine tailings profiles.

    Science.gov (United States)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-29

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  14. Ecological restoration alters microbial communities in mine tailings profiles

    Science.gov (United States)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  15. Microbial ecology of denitrification in biological wastewater treatment.

    Science.gov (United States)

    Lu, Huijie; Chandran, Kartik; Stensel, David

    2014-11-01

    Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Microbial Ecology and Evolution in the Acid Mine Drainage Model System.

    Science.gov (United States)

    Huang, Li-Nan; Kuang, Jia-Liang; Shu, Wen-Sheng

    2016-07-01

    Acid mine drainage (AMD) is a unique ecological niche for acid- and toxic-metals-adapted microorganisms. These low-complexity systems offer a special opportunity for the ecological and evolutionary analyses of natural microbial assemblages. The last decade has witnessed an unprecedented interest in the study of AMD communities using 16S rRNA high-throughput sequencing and community genomic and postgenomic methodologies, significantly advancing our understanding of microbial diversity, community function, and evolution in acidic environments. This review describes new data on AMD microbial ecology and evolution, especially dynamics of microbial diversity, community functions, and population genomes, and further identifies gaps in our current knowledge that future research, with integrated applications of meta-omics technologies, will fill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Application of multivariate statistical techniques in microbial ecology.

    Science.gov (United States)

    Paliy, O; Shankar, V

    2016-03-01

    Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large-scale ecological data sets. In particular, noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amount of data, powerful statistical techniques of multivariate analysis are well suited to analyse and interpret these data sets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular data set. In this review, we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and data set structure. © 2016 John Wiley & Sons Ltd.

  18. Central role of the cell in microbial ecology.

    Science.gov (United States)

    Zengler, Karsten

    2009-12-01

    Over the last few decades, advances in cultivation-independent methods have significantly contributed to our understanding of microbial diversity and community composition in the environment. At the same time, cultivation-dependent methods have thrived, and the growing number of organisms obtained thereby have allowed for detailed studies of their physiology and genetics. Still, most microorganisms are recalcitrant to cultivation. This review not only conveys current knowledge about different isolation and cultivation strategies but also discusses what implications can be drawn from pure culture work for studies in microbial ecology. Specifically, in the light of single-cell individuality and genome heterogeneity, it becomes important to evaluate population-wide measurements carefully. An overview of various approaches in microbial ecology is given, and the cell as a central unit for understanding processes on a community level is discussed.

  19. Dynamic Assessment of Microbial Ecology (DAME): A web app for interactive analysis and visualization of microbial sequencing data

    Science.gov (United States)

    Dynamic Assessment of Microbial Ecology (DAME) is a shiny-based web application for interactive analysis and visualization of microbial sequencing data. DAME provides researchers not familiar with R programming the ability to access the most current R functions utilized for ecology and gene sequenci...

  20. Marine and estuarine natural microbial biofilms: ecological and biogeochemical dimensions

    Directory of Open Access Journals (Sweden)

    O. Roger Anderson

    2016-08-01

    Full Text Available Marine and estuarine microbial biofilms are ubiquitously distributed worldwide and are increasingly of interest in basic and applied sciences because of their unique structural and functional features that make them remarkably different from the biota in the plankton. This is a review of some current scientific knowledge of naturally occurring microbial marine and estuarine biofilms including prokaryotic and microeukaryotic biota, but excluding research specifically on engineering and applied aspects of biofilms such as biofouling. Because the microbial communities including bacteria and protists are integral to the fundamental ecological and biogeochemical processes that support biofilm communities, particular attention is given to the structural and ecological aspects of microbial biofilm formation, succession, and maturation, as well as the dynamics of the interactions of the microbiota in biofilms. The intent is to highlight current state of scientific knowledge and possible avenues of future productive research, especially focusing on the ecological and biogeochemical dimensions.

  1. Microbial ecology and adaptation in cystic fibrosis airways

    DEFF Research Database (Denmark)

    Yang, Lei; Jelsbak, Lars; Molin, Søren

    2011-01-01

    Chronic infections in the respiratory tracts of cystic fibrosis (CF) patients are important to investigate, both from medical and from fundamental ecological points of view. Cystic fibrosis respiratory tracts can be described as natural environments harbouring persisting microbial communities...... constitute the selective forces that drive the evolution of the microbes after they migrate from the outer environment to human airways. Pseudomonas aeruginosa adapts to the new environment through genetic changes and exhibits a special lifestyle in chronic CF airways. Understanding the persistent...... colonization of microbial pathogens in CF patients in the context of ecology and evolution will expand our knowledge of the pathogenesis of chronic infections and improve therapeutic strategies....

  2. What can we learn from the microbial ecological interactions associated with polymicrobial diseases?

    Science.gov (United States)

    Antiabong, J F; Boardman, W; Ball, A S

    2014-03-15

    Periodontal diseases in humans and animals are model polymicrobial diseases which are associated with a shift in the microbial community structure and function; there is therefore a need to investigate these diseases from a microbial ecological perspective. This review highlights three important areas of microbial ecological investigation of polymicrobial diseases and the lessons that could be learnt: (1) identification of disease-associated microbes and the implications for choice of anti-infective treatment; (2) the implications associated with vaccine design and development and (3) application of the dynamics of microbial interaction in the discovery of novel anti-infective agents. This review emphasises the need to invigorate microbial ecological approaches to the study of periodontal diseases and other polymicrobial diseases for greater understanding of the ecological interactions between and within the biotic and abiotic factors of the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Next-generation approaches to the microbial ecology of food fermentations

    Directory of Open Access Journals (Sweden)

    Nicholas A. Bokulich1,2,3 & David A. Mills1,2,3*

    2012-07-01

    Full Text Available Food fermentations have enhanced human health since the dawnof time and remain a prevalent means of food processing andpreservation. Due to their cultural and nutritional importance,many of these foods have been studied in detail using moleculartools, leading to enhancements in quality and safety. Furthermore,recent advances in high-throughput sequencing technologyare revolutionizing the study of food microbial ecology,deepening insight into complex fermentation systems. Thisreview provides insight into novel applications of selectmolecular techniques, particularly next-generation sequencingtechnology, for analysis of microbial communities in fermentedfoods. We present a guideline for integrated molecular analysis offood microbial ecology and a starting point for implementingnext-generation analysis of food systems.

  4. 2007 Microbial Population Biology (July 22-26, 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Anthony M. Dean

    2008-04-01

    Microbial Population Biology covers a diverse range of cutting edge issues in the microbial sciences and beyond. Firmly founded in evolutionary biology and with a strongly integrative approach, past meetings have covered topics ranging from the dynamics and genetics of adaptation to the evolution of mutation rate, community ecology, evolutionary genomics, altruism, and epidemiology. This meeting is never dull: some of the most significant and contentious issues in biology have been thrashed out here. We anticipate the 2007 meeting being no exception. The final form of the 2007 meeting is yet to be decided, but the following topics are likely to be included: evolutionary emergence of infectious disease and antibiotic resistance, genetic architecture and implications for the evolution of microbial populations, ageing in bacteria, biogeography, evolution of symbioses, the role of microbes in ecosystem function, and ecological genomics.

  5. Homogeneous versus heterogeneous probes for microbial ecological microarrays.

    Science.gov (United States)

    Bae, Jin-Woo; Park, Yong-Ha

    2006-07-01

    Microbial ecological microarrays have been developed for investigating the composition and functions of microorganism communities in environmental niches. These arrays include microbial identification microarrays, which use oligonucleotides, gene fragments or microbial genomes as probes. In this article, the advantages and disadvantages of each type of probe are reviewed. Oligonucleotide probes are currently useful for probing uncultivated bacteria that are not amenable to gene fragment probing, whereas the functional gene fragments amplified randomly from microbial genomes require phylogenetic and hierarchical categorization before use as microbial identification probes, despite their high resolution for both specificity and sensitivity. Until more bacteria are sequenced and gene fragment probes are thoroughly validated, heterogeneous bacterial genome probes will provide a simple, sensitive and quantitative tool for exploring the ecosystem structure.

  6. Microbial Ecology: Where are we now?

    Science.gov (United States)

    Boughner, Lisa A; Singh, Pallavi

    2016-11-01

    Conventional microbiological methods have been readily taken over by newer molecular techniques due to the ease of use, reproducibility, sensitivity and speed of working with nucleic acids. These tools allow high throughput analysis of complex and diverse microbial communities, such as those in soil, freshwater, saltwater, or the microbiota living in collaboration with a host organism (plant, mouse, human, etc). For instance, these methods have been robustly used for characterizing the plant (rhizosphere), animal and human microbiome specifically the complex intestinal microbiota. The human body has been referred to as the Superorganism since microbial genes are more numerous than the number of human genes and are essential to the health of the host. In this review we provide an overview of the Next Generation tools currently available to study microbial ecology, along with their limitations and advantages.

  7. Aerobic Granular Sludge: Effect of Salt and Insights into Microbial Ecology

    KAUST Repository

    Wang, Zhongwei

    2017-01-01

    Like other artificial microbial ecosystems (e.g. CAS plant and anaerobic digester), a firm understanding of the microbial ecology of AGS system is essential for process design and optimization. The second part

  8. The microbial diversity, distribution, and ecology of permafrost in China: a review.

    Science.gov (United States)

    Hu, Weigang; Zhang, Qi; Tian, Tian; Cheng, Guodong; An, Lizhe; Feng, Huyuan

    2015-07-01

    Permafrost in China mainly located in high-altitude areas. It represents a unique and suitable ecological niche that can be colonized by abundant microbes. Permafrost microbial community varies across geographically separated locations in China, and some lineages are novel and possible endemic. Besides, Chinese permafrost is a reservoir of functional microbial groups involved in key biogeochemical cycling processes. In future, more work is necessary to determine if these phylogenetic groups detected by DNA-based methods are part of the viable microbial community, and their functional roles and how they potentially respond to climate change. This review summaries recent studies describing microbial biodiversity found in permafrost and associated environments in China, and provides a framework for better understanding the microbial ecology of permafrost.

  9. Stable isotopes and biomarkers in microbial ecology

    NARCIS (Netherlands)

    Boschker, H.T.S.; Middelburg, J.J.

    2002-01-01

    The use of biomarkers in combination with stable isotope analysis is a new approach in microbial ecology and a number of papers on a variety of subjects have appeared. We will first discuss the techniques for analysing stable isotopes in biomarkers, primarily gas chromatography-combustion-isotope

  10. Methods in gut microbial ecology for ruminants

    International Nuclear Information System (INIS)

    Makkar, H.P.S.; McSweeney, C.S.

    2005-01-01

    This book presents a comprehensive up-to-date account of the methodologies and protocols for conventional and modern molecular techniques that are currently in use for studying the gut microbial ecology of ruminants. Each chapter has been contributed by experts in the field and methods have been presented in a recipe-like format designed for direct practical use in the laboratory and also to provide insight into the most appropriate techniques, their applications and the type of information that could be expected. The techniques and procedures described are also relevant and adaptable to other gastrointestinal ecosystems and the microbiology of anaerobic environments in general. This manual will 'demystify' the methods in molecular microbial ecology for readers who are novice in the field but are excited by the prospects of this technology. It would also be invaluable for the experienced workers striving for giving new dimension to their research - expanding the work in other fields and initiating cross-cutting activities

  11. Location of Microbial Ecology Evaluation Device in Apollo Command Module

    Science.gov (United States)

    1971-01-01

    The location of the Microbial Ecology Evaluation Device (MEED) installed on the open hatch of the Apollo Command Module is illustrated in this photograph. The MEED, equipment of the Microbial Response in Space Environment experiment, will house a selection of microbial systems. The MEED will be deployed during the extravehicular activity on the transearth coast phase of the Aopllo 16 lunar landing mission. The purpose of the experiment will be to measure the effects of certain space environmental parameters on the microbial test systems.

  12. Microbial ecology of artisanal italian cheese: Molecular microbial characterization by culture-independent method

    International Nuclear Information System (INIS)

    Colombo, E.; Scarpellini, M.; Franzatti, L.; Dioguardi, L.

    2009-01-01

    Present study will treat the next topics: ecology of the natural and man made environments and functional diversity of bacteria. The microbial communities in artisanal goat cheeses produced in mountain pastures (typical farms) in Piemonte mountain (North of Italy) change a lot during precessing and ripening time. Moreover cheese microbial ecosystems are different in each small dairy because adventitious microflora can come from the environment and contamination the milk before the cheese making process and the product during manufacture and ripening. (Author)

  13. Microbial ecology of artisanal italian cheese: Molecular microbial characterization by culture-independent method

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, E.; Scarpellini, M.; Franzatti, L.; Dioguardi, L.

    2009-07-01

    Present study will treat the next topics: ecology of the natural and man made environments and functional diversity of bacteria. The microbial communities in artisanal goat cheeses produced in mountain pastures (typical farms) in Piemonte mountain (North of Italy) change a lot during precessing and ripening time. Moreover cheese microbial ecosystems are different in each small dairy because adventitious microflora can come from the environment and contamination the milk before the cheese making process and the product during manufacture and ripening. (Author)

  14. Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia.

    Science.gov (United States)

    Ben Said, Sami; Or, Dani

    2017-01-01

    The metabolic diversity present in microbial communities enables cooperation toward accomplishing more complex tasks than possible by a single organism. Members of a consortium communicate by exchanging metabolites or signals that allow them to coordinate their activity through division of labor. In contrast with monocultures, evidence suggests that microbial consortia self-organize to form spatial patterns, such as observed in biofilms or in soil aggregates, that enable them to respond to gradient, to improve resource interception and to exchange metabolites more effectively. Current biotechnological applications of microorganisms remain rudimentary, often relying on genetically engineered monocultures (e.g., pharmaceuticals) or mixed-cultures of partially known composition (e.g., wastewater treatment), yet the vast potential of "microbial ecological power" observed in most natural environments, remains largely underused. In line with the Unified Microbiome Initiative (UMI) which aims to "discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems," we propose in this concept paper to capitalize on ecological insights into the spatial and modular design of interlinked microbial consortia that would overcome limitations of natural systems and attempt to optimize the functionality of the members and the performance of the engineered consortium. The topology of the spatial connections linking the various members and the regulated fluxes of media between those modules, while representing a major engineering challenge, would allow the microbial species to interact. The modularity of such spatially linked microbial consortia (SLMC) could facilitate the design of scalable bioprocesses that can be incorporated as parts of a larger biochemical network. By reducing the need for a compatible growth environment for all species simultaneously, SLMC will dramatically expand the range of possible combinations of microorganisms and their

  15. A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling.

    Science.gov (United States)

    Wang, Gangsheng; Post, Wilfred M

    2012-09-01

    We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a theoretical reassessment. We provided a rigorous proof that the true growth yield coefficient (Y(G)) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert (μ(max,H)) is higher than those in the other two models (μ(max,P) and μ(max,C)), and the difference is the physiological maintenance factor (m(q) = a); and (3) the overall maintenance coefficient (m(T)) is more sensitive to m(q) than to the specific growth rate (μ(G)) and Y(G). Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models. © This article is a US government work and is in the public domain in the USA.

  16. Metagenomic analysis of an ecological wastewater treatment plant's microbial communities and their potential to metabolize pharmaceuticals.

    Science.gov (United States)

    Balcom, Ian N; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm.

  17. Applications Research of Microbial Ecological Preparation in Sea Cucumber Culture

    Science.gov (United States)

    Jiang, Jiahui; Wang, Guangyu

    2017-12-01

    At present, micro ecological preparation is widely applied in aquaculture with good effect. The application of micro ecological preparation in sea cucumber culture can effectively improve the economic benefits. The micro ecological preparation can play the role of inhibiting harmful bacteria, purifying water quality and saving culture cost in the process of sea cucumber culture. We should select appropriate bacteria, guarantee stable environment and use with long-term in the applications of microbial ecological preparation in sea cucumber culture to obtain good effects.

  18. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  19. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology.

    Science.gov (United States)

    Gibson, Molly K; Forsberg, Kevin J; Dantas, Gautam

    2015-01-01

    Antibiotic resistance is a dire clinical problem with important ecological dimensions. While antibiotic resistance in human pathogens continues to rise at alarming rates, the impact of environmental resistance on human health is still unclear. To investigate the relationship between human-associated and environmental resistomes, we analyzed functional metagenomic selections for resistance against 18 clinically relevant antibiotics from soil and human gut microbiota as well as a set of multidrug-resistant cultured soil isolates. These analyses were enabled by Resfams, a new curated database of protein families and associated highly precise and accurate profile hidden Markov models, confirmed for antibiotic resistance function and organized by ontology. We demonstrate that the antibiotic resistance functions that give rise to the resistance profiles observed in environmental and human-associated microbial communities significantly differ between ecologies. Antibiotic resistance functions that most discriminate between ecologies provide resistance to β-lactams and tetracyclines, two of the most widely used classes of antibiotics in the clinic and agriculture. We also analyzed the antibiotic resistance gene composition of over 6000 sequenced microbial genomes, revealing significant enrichment of resistance functions by both ecology and phylogeny. Together, our results indicate that environmental and human-associated microbial communities harbor distinct resistance genes, suggesting that antibiotic resistance functions are largely constrained by ecology.

  20. Microbial ecology of terrestrial Antarctica: Are microbial systems at risk from human activities?

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.

    1996-08-01

    Many of the ecological systems found in continental Antarctica are comprised entirely of microbial species. Concerns have arisen that these microbial systems might be at risk either directly through the actions of humans or indirectly through increased competition from introduced species. Although protection of native biota is covered by the Protocol on Environmental Protection to the Antarctic Treaty, strict measures for preventing the introduction on non-native species or for protecting microbial habitats may be impractical. This report summarizes the research conducted to date on microbial ecosystems in continental Antarctica and discusses the need for protecting these ecosystems. The focus is on communities inhabiting soil and rock surfaces in non-coastal areas of continental Antarctica. Although current polices regarding waste management and other operations in Antarctic research stations serve to reduce the introduction on non- native microbial species, importation cannot be eliminated entirely. Increased awareness of microbial habitats by field personnel and protection of certain unique habitats from physical destruction by humans may be necessary. At present, small-scale impacts from human activities are occurring in certain areas both in terms of introduced species and destruction of habitat. On a large scale, however, it is questionable whether the introduction of non-native microbial species to terrestrial Antarctica merits concern.

  1. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology.

    Science.gov (United States)

    von Bergen, Martin; Jehmlich, Nico; Taubert, Martin; Vogt, Carsten; Bastida, Felipe; Herbst, Florian-Alexander; Schmidt, Frank; Richnow, Hans-Hermann; Seifert, Jana

    2013-10-01

    The recent development of metaproteomics has enabled the direct identification and quantification of expressed proteins from microbial communities in situ, without the need for microbial enrichment. This became possible by (1) significant increases in quality and quantity of metagenome data and by improvements of (2) accuracy and (3) sensitivity of modern mass spectrometers (MS). The identification of physiologically relevant enzymes can help to understand the role of specific species within a community or an ecological niche. Beside identification, relative and absolute quantitation is also crucial. We will review label-free and label-based methods of quantitation in MS-based proteome analysis and the contribution of quantitative proteome data to microbial ecology. Additionally, approaches of protein-based stable isotope probing (protein-SIP) for deciphering community structures are reviewed. Information on the species-specific metabolic activity can be obtained when substrates or nutrients are labeled with stable isotopes in a protein-SIP approach. The stable isotopes ((13)C, (15)N, (36)S) are incorporated into proteins and the rate of incorporation can be used for assessing the metabolic activity of the corresponding species. We will focus on the relevance of the metabolic and phylogenetic information retrieved with protein-SIP studies and for detecting and quantifying the carbon flux within microbial consortia. Furthermore, the combination of protein-SIP with established tools in microbial ecology such as other stable isotope probing techniques are discussed.

  2. Microbial ecology of watery kimchi.

    Science.gov (United States)

    Kyung, Kyu Hang; Medina Pradas, Eduardo; Kim, Song Gun; Lee, Yong Jae; Kim, Kyong Ho; Choi, Jin Joo; Cho, Joo Hyong; Chung, Chang Ho; Barrangou, Rodolphe; Breidt, Frederick

    2015-05-01

    The biochemistry and microbial ecology of 2 similar types of watery (mul) kimchi, containing sliced and unsliced radish and vegetables (nabak and dongchimi, respectively), were investigated. Samples from kimchi were fermented at 4, 10, and 20 °C were analyzed by plating on differential and selective media, high-performance liquid chromatography, and high-throughput DNA sequencing of 16S rDNA. Nabak kimchi showed similar trends as dongchimi, with increasing lactic and acetic acids and decreasing pH for each temperature, but differences in microbiota were apparent. Interestingly, bacteria from the Proteobacterium phylum, including Enterobacteriaceae, decreased more rapidly during fermentation at 4 °C in nabak cabbage fermentations compared with dongchimi. Although changes for Proteobacterium and Enterobacteriaceae populations were similar during fermentation at 10 and 20 °C, the homolactic stage of fermentation did not develop for the 4 and 10 °C samples of both nabak and dongchimi during the experiment. These data show the differences in biochemistry and microbial ecology that can result from preparation method and fermentation conditions of the kimchi, which may impact safety (Enterobacteriaceae populations may include pathogenic bacteria) and quality (homolactic fermentation can be undesirable, if too much acid is produced) of the product. In addition, the data also illustrate the need for improved methods for identifying and differentiating closely related lactic acid bacteria species using high-throughput sequencing methods. © 2015 Institute of Food Technologists®. This article has been contributed by US Government employees and their work is in the public domain in the USA.

  3. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses.

    Science.gov (United States)

    Buttigieg, Pier Luigi; Ramette, Alban

    2014-12-01

    The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynamic, web-based resource providing accessible descriptions of numerous multivariate techniques relevant to microbial ecologists. A combination of interactive elements allows users to discover and navigate between methods relevant to their needs and examine how they have been used by others in the field. We have designed GUSTA ME to become a community-led and -curated service, which we hope will provide a common reference and forum to discuss and disseminate analytical techniques relevant to the microbial ecology community. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  4. Manipulatiaon of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  5. Manipulation of Biofilm Microbial Ecology

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  6. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses

    OpenAIRE

    Buttigieg, Pier Luigi; Ramette, Alban Nicolas

    2014-01-01

    The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynami...

  7. Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology.

    Science.gov (United States)

    Binga, Erik K; Lasken, Roger S; Neufeld, Josh D

    2008-03-01

    Microbial ecology is a field that applies molecular techniques to analyze genes and communities associated with a plethora of unique environments on this planet. In the past, low biomass and the predominance of a few abundant community members have impeded the application of techniques such as PCR, microarray analysis and metagenomics to complex microbial populations. In the absence of suitable cultivation methods, it was not possible to obtain DNA samples from individual microorganisms. Recently, a method called multiple displacement amplification (MDA) has been used to circumvent these limitations by amplifying DNA from microbial communities in low-biomass environments, individual cells from uncultivated microbial species and active organisms obtained through stable isotope probing incubations. This review describes the development and applications of MDA, discusses its strengths and limitations and highlights the impact of MDA on the field of microbial ecology. Whole genome amplification via MDA has increased access to the genomic DNA of uncultivated microorganisms and low-biomass environments and represents a 'power tool' in the molecular toolbox of microbial ecologists.

  8. The biofilm ecology of microbial biofouling, biocide resistance and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology]|[Oak Ridge National Lab., TN (United States). Environmental Science Div.; Kirkegaard, R.D.; Palmer, R.J. Jr.; Flemming, C.A.; Chen, G.; Leung, K.T.; Phiefer, C.B. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology; Arrage, A.A. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology]|[Microbial Insights, Inc., Rockford, TN (United States)

    1997-06-01

    In biotechnological or bioremediation processes it is often the aim to promote biofilm formation, and maintain active, high density biomass. In other situations, biofouling can seriously restrict effective heat transport, membrane processes, and potentate macrofouling with loss of transportation efficiency. In biotechnological or bioremediation processes it is often the aim to promote biofilm formation, and maintain active, high density biomass. In other situations, biofouling can seriously restrict effective heat transport, membrane processes, and potentate macrofouling with loss of transportation efficiency. Heterogeneous distribution of microbes and/or their metabolic activity can promote microbially influenced corrosion (MIC) which is a multibillion dollar problem. Consequently, it is important that biofilm microbial ecology be understood so it can be manipulated rationally. It is usually simple to select organisms that form biofilms by flowing a considerably dilute media over a substratum, and propagating the organisms that attach. To examine the biofilm most expeditiously, the biomass accumulation, desquamation, and metabolic activities need to be monitored on-line and non-destructively. This on-line monitoring becomes even more valuable if the activities can be locally mapped in time and space within the biofilm. Herein the authors describe quantitative measures of microbial biofouling, the ecology of pathogens in drinking water distributions systems, and localization of microbial biofilms and activities with localized MIC.

  9. Termite hindguts and the ecology of microbial communities in the sequencing age.

    Science.gov (United States)

    Tai, Vera; Keeling, Patrick J

    2013-01-01

    Advances in high-throughput nucleic acid sequencing have improved our understanding of microbial communities in a number of ways. Deeper sequence coverage provides the means to assess diversity at the resolution necessary to recover ecological and biogeographic patterns, and at the same time single-cell genomics provides detailed information about the interactions between members of a microbial community. Given the vastness and complexity of microbial ecosystems, such analyses remain challenging for most environments, so greater insight can also be drawn from analysing less dynamic ecosystems. Here, we outline the advantages of one such environment, the wood-digesting hindgut communities of termites and cockroaches, and how it is a model to examine and compare both protist and bacterial communities. Beyond the analysis of diversity, our understanding of protist community ecology will depend on using statistically sound sampling regimes at biologically relevant scales, transitioning from discovery-based to experimental ecology, incorporating single-cell microbiology and other data sources, and continued development of analytical tools. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  10. Board-invited review: Rumen microbiology: leading the way in microbial ecology.

    Science.gov (United States)

    Krause, D O; Nagaraja, T G; Wright, A D G; Callaway, T R

    2013-01-01

    Robert Hungate, considered the father of rumen microbiology, was the first to initiate a systematic exploration of the microbial ecosystem of the rumen, but he was not alone. The techniques he developed to isolate and identify cellulose-digesting bacteria from the rumen have had a major impact not only in delineating the complex ecosystem of the rumen but also in clinical microbiology and in the exploration of a number of other anaerobic ecosystems, including the human hindgut. Rumen microbiology has pioneered our understanding of much of microbial ecology and has broadened our knowledge of ecology in general, as well as improved the ability to feed ruminants more efficiently. The discovery of anaerobic fungi as a component of the ruminal flora disproved the central dogma in microbiology that all fungi are aerobic organisms. Further novel interactions between bacterial species such as nutrient cross feeding and interspecies H2 transfer were first described in ruminal microorganisms. The complexity and diversity present in the rumen make it an ideal testing ground for microbial theories (e.g., the effects of nutrient limitation and excess) and techniques (such as 16S rRNA), which have rewarded the investigators that have used this easily accessed ecosystem to understand larger truths. Our understanding of characteristics of the ruminal microbial population has opened new avenues of microbial ecology, such as the existence of hyperammonia-producing bacteria and how they can be used to improve N efficiency in ruminants. In this review, we examine some of the contributions to science that were first made in the rumen, which have not been recognized in a broader sense.

  11. Methodological approaches for studying the microbial ecology of drinking water distribution systems

    OpenAIRE

    Douterelo, Isabel; Boxall, Joby B.; Deines, Peter; Sekar, Raju; Fish, Katherine E.; Biggs, Catherine A.

    2014-01-01

    The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for chara...

  12. An Inquiry-Based Laboratory Design for Microbial Ecology

    Science.gov (United States)

    Tessier, Jack T.; Penniman, Clayton A.

    2006-01-01

    There is a collective need to increase the use of inquiry-based instruction at the college level. This paper provides of an example of how inquiry was successfully used in the laboratory component of an undergraduate course in microbial ecology. Students were offered a collection of field and laboratory methods to choose from, and they developed a…

  13. Microbial Ecology of Soil Aggregation in Agroecosystems

    Science.gov (United States)

    Hofmockel, K. S.; Bell, S.; Tfailly, M.; Thompson, A.; Callister, S.

    2017-12-01

    Crop selection and soil texture influence the physicochemical attributes of the soil, which structures microbial communities and influences soil C cycling storage. At the molecular scale, microbial metabolites and necromass alter the soil environment, which creates feedbacks that influence ecosystem functions, including soil C accumulation. By integrating lab to field studies we aim to identify the molecules, organisms and metabolic pathways that control carbon cycling and stabilization in bioenergy soils. We investigated the relative influence of plants, microbes, and minerals on soil aggregate ecology at the Great Lakes Bioenergy Research experiment. Sites in WI and MI, USA have been in corn and switchgrass cropping systems for a decade. By comparing soil aggregate ecology across sites and cropping systems we are able to test the relative importance of plant, microbe, mineral influences on soil aggregate dynamics. Soil microbial communities (16S) differ in diversity and phylogeny among sites and cropping systems. FT-ICR MS revealed differences in the molecular composition of water-soluble fraction of soil organic matter for cropping systems and soil origin for both relative abundance of assigned formulas and biogeochemical classes of compounds. We found the degree of aggregation, measured by mean weighted diameter of aggregate fractions, is influenced by plant-soil interactions. Similarly, the proportion of soil aggregate fractions varied by both soil and plant factors. Differences in aggregation were reflected in differences in bacterial, but not fungal community composition across aggregate fractions, within each soil. Scanning electron microscopy revealed stark differences in mineral-organic interactions that influence the microbial niche and the accessibility of substrates within the soil. The clay soils show greater surface heterogeneity, enabling interactions with organic fraction of the soil. This is consistent with molecular data that reveal differences

  14. Influence of microbial community diversity and function on pollutant removal in ecological wastewater treatment.

    Science.gov (United States)

    Bai, Yaohui; Huo, Yang; Liao, Kailingli; Qu, Jiuhui

    2017-10-01

    Traditional wastewater treatments based on activated sludge often encounter the problems of bulking and foaming, as well as malodor. To solve these problems, new treatment technologies have emerged in recent decades, including the ecological wastewater treatment process, which introduces selected local plants into the treatment system. With a focus on the underlying mechanisms of the ecological treatment process, we explored the microbial community biomass, composition, and function in the treatment system to understand the microbial growth in this system and its role in pollutant removal. Flow cytometry analysis revealed that ecological treatment significantly decreased influent bacterial quantity, with around 80% removal. 16S rRNA gene sequencing showed that the ecological treatment also altered the bacterial community structure of the wastewater, leading to a significant change in Comamonadaceae in the effluent. In the internal ecological system, because most of microbes aggregate in the plant rhizosphere and the sludge under plant roots, we selected two plant species (Nerium oleander and Arundo donax) to study the characteristics of rhizosphere and sludge microbes. Metagenomic results showed that the microbial community composition and function differed between the two species, and the microbial communities of A. donax were more sensitive to seasonal effects. Combined with their greater biomass and abundance of metabolic genes, microbes associated with N. oleander showed a greater contribution to pollutant removal. Further, the biodegradation pathways of some micropollutants, e.g., atrazine, were estimated.

  15. Microbial ecology of coal mine refuse

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R. E.; Miller, R. M.

    1977-01-01

    Baseline microbial and ecological studies of samples obtained from two abandoned coal mine refuse sites in the State of Illinois indicate that the unfavorable nature of refuse materials can be a very limiting factor for survival and growth of organisms. Despite the ''foothold'' obtained by some microorganisms, especially acidophilic fungi and some acidotolerant algae, the refuse materials should be amended or ameliorated to raise the pH, provide needed nutrients, especially nitrogen, and provide biodegradable organic matter, both for physical and biological purposes. Finally, the role of microbial populations, responses, and interactions in acid mine wastes must be put into larger perspective. Acid mine drainage amounts to over 4 million tons per year of acidity from active and abandoned mines. Microorganisms appear to be significantly responsible for this problem, but they also can play a beneficial and significant role in the amelioration or alleviation of this detrimental effect as abandoned mines are reclaimed and returned to useful productivity.

  16. Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories

    DEFF Research Database (Denmark)

    Wigneswaran, Vinoth; Amador Hierro, Cristina Isabel; Jelsbak, Lotte

    2016-01-01

    Microbial activities are most often shaped by interactions between co-existing microbes within mixed-species communities. Dissection of the molecular mechanisms of species interactions within communities is a central issue in microbial ecology, and our ability to engineer and control microbial co...

  17. Aerobic Granular Sludge: Effect of Salt and Insights into Microbial Ecology

    KAUST Repository

    Wang, Zhongwei

    2017-12-01

    Aerobic granular sludge (AGS) technology is a next-generation technology for the biological treatment of wastewater. The advantages of AGS in terms of small footprint, low operation and capital cost and high effluent quality makes it a strong candidate for replacing conventional biological wastewater treatment based on activated sludge (CAS) process, and potentially become the standard for biological wastewater treatment in the future. Saline wastewater is generated from many industrial processes as well as from the use of sea water as a secondary quality water for non-potable use such as toilet flushing to mitigate shortage of fresh water in some coastal cities. Salt is known to inhibit biological wastewater treatment processes in terms of organic and nutrient removal. In the first part of my dissertation, I conducted three lab-scale experiments to 1) evaluate the effect of salt on granulation and nutrient removal in AGS (330 days); 2) develop engineering strategies to mitigate the adverse effect of salt on nutrient removal of AGS (164 days); and 3) compare the effect of salt on the stoichiometry and kinetics of different phosphate accumulating organisms (PAO) clades (PAOI and PAOII) and to determine the effect of potassium and sodium ions on the activities of different PAO clades (225 days). Like other artificial microbial ecosystems (e.g. CAS plant and anaerobic digester), a firm understanding of the microbial ecology of AGS system is essential for process design and optimization. The second part of my dissertation reported the first microbial ecology study of a full-scale AGS plant with the aim of addressing the role of regional (i.e. immigration) versus local factors in shaping the microbial community assembly of different-sized microbial aggregates in AGS. The microbial communities in a full-scale AGS plant in Garmerwolde, The Netherlands, was characterized periodically over 180 days using Illumina sequencing of 16S ribosomal RNA amplicons of the V3-V4

  18. The microbial ecology of wine grape berries.

    Science.gov (United States)

    Barata, A; Malfeito-Ferreira, M; Loureiro, V

    2012-02-15

    Grapes have a complex microbial ecology including filamentous fungi, yeasts and bacteria with different physiological characteristics and effects upon wine production. Some species are only found in grapes, such as parasitic fungi and environmental bacteria, while others have the ability to survive and grow in wines, constituting the wine microbial consortium. This consortium covers yeast species, lactic acid bacteria and acetic acid bacteria. The proportion of these microorganisms depends on the grape ripening stage and on the availability of nutrients. Grape berries are susceptible to fungal parasites until véraison after which the microbiota of truly intact berries is similar to that of plant leaves, which is dominated by basidiomycetous yeasts (e.g. Cryptococcus spp., Rhodotorula spp. Sporobolomyces spp.) and the yeast-like fungus Aureobasidium pullulans. The cuticle of visually intact berries may bear microfissures and softens with ripening, increasing nutrient availability and explaining the possible dominance by the oxidative or weakly fermentative ascomycetous populations (e.g. Candida spp., Hanseniaspora spp., Metschnikowia spp., Pichia spp.) approaching harvest time. When grape skin is clearly damaged, the availability of high sugar concentrations on the berry surface favours the increase of ascomycetes with higher fermentative activity like Pichia spp. and Zygoascus hellenicus, including dangerous wine spoilage yeasts (e.g. Zygosaccharomyces spp., Torulaspora spp.), and of acetic acid bacteria (e.g. Gluconobacter spp., Acetobacter spp.). The sugar fermenting species Saccharomyces cerevisiae is rarely found on unblemished berries, being favoured by grape damage. Lactic acid bacteria are minor partners of grape microbiota and while being the typical agent of malolactic fermentation, Oenococcus oeni has been seldom isolated from grapes in the vineyard. Environmental ubiquitous bacteria of the genus Enterobacter spp., Enterococcus spp., Bacillus spp

  19. Our microbial selves: what ecology can teach us

    Science.gov (United States)

    Gonzalez, Antonio; Clemente, Jose C; Shade, Ashley; Metcalf, Jessica L; Song, Sejin; Prithiviraj, Bharath; Palmer, Brent E; Knight, Rob

    2011-01-01

    Advances in DNA sequencing have allowed us to characterize microbial communities—including those associated with the human body—at a broader range of spatial and temporal scales than ever before. We can now answer fundamental questions that were previously inaccessible and use well-tested ecological theories to gain insight into changes in the microbiome that are associated with normal development and human disease. Perhaps unsurprisingly, the ecosystems associated with our body follow trends identified in communities at other sites and scales, and thus studies of the microbiome benefit from ecological insight. Here, we assess human microbiome research in the context of ecological principles and models, focusing on diversity, biological drivers of community structure, spatial patterning and temporal dynamics, and suggest key directions for future research that will bring us closer to the goal of building predictive models for personalized medicine. PMID:21720391

  20. Comparing microarrays and next-generation sequencing technologies for microbial ecology research.

    Science.gov (United States)

    Roh, Seong Woon; Abell, Guy C J; Kim, Kyoung-Ho; Nam, Young-Do; Bae, Jin-Woo

    2010-06-01

    Recent advances in molecular biology have resulted in the application of DNA microarrays and next-generation sequencing (NGS) technologies to the field of microbial ecology. This review aims to examine the strengths and weaknesses of each of the methodologies, including depth and ease of analysis, throughput and cost-effectiveness. It also intends to highlight the optimal application of each of the individual technologies toward the study of a particular environment and identify potential synergies between the two main technologies, whereby both sample number and coverage can be maximized. We suggest that the efficient use of microarray and NGS technologies will allow researchers to advance the field of microbial ecology, and importantly, improve our understanding of the role of microorganisms in their various environments.

  1. Microbial interactions: ecology in a molecular perspective.

    Science.gov (United States)

    Braga, Raíssa Mesquita; Dourado, Manuella Nóbrega; Araújo, Welington Luiz

    2016-12-01

    The microorganism-microorganism or microorganism-host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial-host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Microbial ecology laboratory procedures manual NASA/MSFC

    Science.gov (United States)

    Huff, Timothy L.

    1990-01-01

    An essential part of the efficient operation of any microbiology laboratory involved in sample analysis is a standard procedures manual. The purpose of this manual is to provide concise and well defined instructions on routine technical procedures involving sample analysis and methods for monitoring and maintaining quality control within the laboratory. Of equal importance is the safe operation of the laboratory. This manual outlines detailed procedures to be followed in the microbial ecology laboratory to assure safety, analytical control, and validity of results.

  3. Microbial interactions involving sulfur bacteria : implications for the ecology and evolution of bacterial communities

    NARCIS (Netherlands)

    Overmann, J; van Gemerden, H

    2000-01-01

    A major goal of microbial ecology is the identification and characterization of those microorganisms which govern transformations in natural ecosystems. This review summarizes our present knowledge of microbial interactions in the natural sulfur cycle. Central to the discussion is the recent

  4. Deciphering the microbial ecology in bio- gas reactors for optimizing the anaerobic digestion process

    DEFF Research Database (Denmark)

    Zhu, Xinyu

    of the basic microbial metabolism and ecology, methanogenic microbial communities were enriched in a lab-scale continuous stirred-tank reactor (CSTR) fed with synthetic feedstocks. In the experiment, the substrates used were stepwise simplified (i.e. polysaccharide, monosaccharide, short chain fatty acids...

  5. Theoretical microbial ecology without species

    Science.gov (United States)

    Tikhonov, Mikhail

    2017-09-01

    Ecosystems are commonly conceptualized as networks of interacting species. However, partitioning natural diversity of organisms into discrete units is notoriously problematic and mounting experimental evidence raises the intriguing question whether this perspective is appropriate for the microbial world. Here an alternative formalism is proposed that does not require postulating the existence of species as fundamental ecological variables and provides a naturally hierarchical description of community dynamics. This formalism allows approaching the species problem from the opposite direction. While the classical models treat a world of imperfectly clustered organism types as a perturbation around well-clustered species, the presented approach allows gradually adding structure to a fully disordered background. The relevance of this theoretical construct for describing highly diverse natural ecosystems is discussed.

  6. Calibration and analysis of genome-based models for microbial ecology.

    Science.gov (United States)

    Louca, Stilianos; Doebeli, Michael

    2015-10-16

    Microbial ecosystem modeling is complicated by the large number of unknown parameters and the lack of appropriate calibration tools. Here we present a novel computational framework for modeling microbial ecosystems, which combines genome-based model construction with statistical analysis and calibration to experimental data. Using this framework, we examined the dynamics of a community of Escherichia coli strains that emerged in laboratory evolution experiments, during which an ancestral strain diversified into two coexisting ecotypes. We constructed a microbial community model comprising the ancestral and the evolved strains, which we calibrated using separate monoculture experiments. Simulations reproduced the successional dynamics in the evolution experiments, and pathway activation patterns observed in microarray transcript profiles. Our approach yielded detailed insights into the metabolic processes that drove bacterial diversification, involving acetate cross-feeding and competition for organic carbon and oxygen. Our framework provides a missing link towards a data-driven mechanistic microbial ecology.

  7. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.

    Science.gov (United States)

    Smith, Cindy J; Osborn, A Mark

    2009-01-01

    Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.

  8. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus)

    Science.gov (United States)

    Oszust, Karolina; Frąc, Magdalena; Gryta, Agata; Bilińska, Nina

    2014-01-01

    The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions) significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential). Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a) ecological based on the use of probiotic preparations and organic fertilization (b) conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA) was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP) of PCR ammonia monooxygenase α-subunit (amoA) gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application. PMID:24897025

  9. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus

    Directory of Open Access Journals (Sweden)

    Karolina Oszust

    2014-06-01

    Full Text Available The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential. Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a ecological based on the use of probiotic preparations and organic fertilization (b conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP of PCR ammonia monooxygenase α-subunit (amoA gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application.

  10. The life sulfuric: microbial ecology of sulfur cycling in marine sediments.

    Science.gov (United States)

    Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander

    2017-08-01

    Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. An Open-Ended Investigative Microbial Ecology Laboratory for Introductory Biology

    Science.gov (United States)

    Jones-Held, Susan; Paoletti, Robert; Glick, David; Held, Michael E.

    2010-01-01

    In this article we describe a multi-week investigative laboratory in microbial ecology/diversity and nitrogen cycling that we have used in our introductory biology course. This module encourages active student involvement in experimental design, using the scientific literature and quantitative analysis of large data sets. Students analyze soil…

  12. Mapping the ecological networks of microbial communities.

    Science.gov (United States)

    Xiao, Yandong; Angulo, Marco Tulio; Friedman, Jonathan; Waldor, Matthew K; Weiss, Scott T; Liu, Yang-Yu

    2017-12-11

    Mapping the ecological networks of microbial communities is a necessary step toward understanding their assembly rules and predicting their temporal behavior. However, existing methods require assuming a particular population dynamics model, which is not known a priori. Moreover, those methods require fitting longitudinal abundance data, which are often not informative enough for reliable inference. To overcome these limitations, here we develop a new method based on steady-state abundance data. Our method can infer the network topology and inter-taxa interaction types without assuming any particular population dynamics model. Additionally, when the population dynamics is assumed to follow the classic Generalized Lotka-Volterra model, our method can infer the inter-taxa interaction strengths and intrinsic growth rates. We systematically validate our method using simulated data, and then apply it to four experimental data sets. Our method represents a key step towards reliable modeling of complex, real-world microbial communities, such as the human gut microbiota.

  13. REVIEW OF INTERNATIONAL PROJECTS IN А FIELD OF HUMAN MICROBIAL ECOLOGY AND CONSTRUCTION OF PROBIOTICS

    Directory of Open Access Journals (Sweden)

    S. A. Starovoitova

    2013-06-01

    Full Text Available Modern huge and world-wide known projects concerning studying of human microbial ecology and construction of probiotics, particularly: Society for Microbial Ecology and Disease, Probiotics & Health Targeted Initiative of International Science and Technology Center (TI PROBIO ISTC, Human Microbiome Project of National Institutes of Health, MetaHIT Project (Metagenomics of the Human Intestinal Tract of European Commission, Human Metabolome Project of Canadian University of Alberta and some more else were characterized in the article. Brief historical information and reference to official sites of every discussed project were given. Main goals and tasks of every project were described. Short characteristic of discussed projects and also modern accessible results of researches were given. Importance of every examined project for widening scientific knowledge in the field of human microbial ecology and also for improvement and/or for construction of modern effective probiotics on basis of human normal intestinal microflora were paid attention. Close interaction of scientific data received by realization of every discussed project was shown.

  14. Community cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource.

    Science.gov (United States)

    Sun, Shulei; Chen, Jing; Li, Weizhong; Altintas, Ilkay; Lin, Abel; Peltier, Steve; Stocks, Karen; Allen, Eric E; Ellisman, Mark; Grethe, Jeffrey; Wooley, John

    2011-01-01

    The Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA, http://camera.calit2.net/) is a database and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with annotation in a semantically-aware environment allowing users to write expressive semantic queries against the database. To meet the needs of the research community, users are able to query metadata categories such as habitat, sample type, time, location and other environmental physicochemical parameters. CAMERA is compliant with the standards promulgated by the Genomic Standards Consortium (GSC), and sustains a role within the GSC in extending standards for content and format of the metagenomic data and metadata and its submission to the CAMERA repository. To ensure wide, ready access to data and annotation, CAMERA also provides data submission tools to allow researchers to share and forward data to other metagenomics sites and community data archives such as GenBank. It has multiple interfaces for easy submission of large or complex data sets, and supports pre-registration of samples for sequencing. CAMERA integrates a growing list of tools and viewers for querying, analyzing, annotating and comparing metagenome and genome data.

  15. Earth's Earliest Ecosystems in the C: The Use of Microbial Mats to Demonstrate General Principles of Scientific Inquiry and Microbial Ecology

    Science.gov (United States)

    Bebout, Brad M.; Bucaria, Robin

    2006-01-01

    Microbial mats are living examples of the most ancient biological communities on Earth. As Earth's earliest ecosystems, they are centrally important to understanding the history of life on our planet and are useful models for the search for life elsewhere. As relatively compact (but complete) ecosystems, microbial mats are also extremely useful for educational activities. Mats may be used to demonstrate a wide variety of concepts in general and microbial ecology, including the biogeochemical cycling of elements, photosynthesis and respiration, and the origin of the Earth's present oxygen containing atmosphere. Microbial mats can be found in a number of common environments accessible to teachers, and laboratory microbial mats can be constructed using materials purchased from biological supply houses. With funding from NASA's Exobiology program, we have developed curriculum and web-based activities centered on the use of microbial mats as tools for demonstrating general principles in ecology, and the scientific process. Our web site (http://microbes.arc.nasa.gov) includes reference materials, lesson plans, and a "Web Lab", featuring living mats maintained in a mini-aquarium. The site also provides information as to how research on microbial mats supports NASA's goals, and various NASA missions. A photo gallery contains images of mats, microscopic views of the organisms that form them, and our own research activities. An animated educational video on the web site uses computer graphic and video microscopy to take students on a journey into a microbial mat. These activities are targeted to a middle school audience and are aligned with the National Science Standards.

  16. Patterns of Early-Life Gut Microbial Colonization during Human Immune Development: An Ecological Perspective

    Directory of Open Access Journals (Sweden)

    Isabelle Laforest-Lapointe

    2017-07-01

    Full Text Available Alterations in gut microbial colonization during early life have been reported in infants that later developed asthma, allergies, type 1 diabetes, as well as in inflammatory bowel disease patients, previous to disease flares. Mechanistic studies in animal models have established that microbial alterations influence disease pathogenesis via changes in immune system maturation. Strong evidence points to the presence of a window of opportunity in early life, during which changes in gut microbial colonization can result in immune dysregulation that predisposes susceptible hosts to disease. Although the ecological patterns of microbial succession in the first year of life have been partly defined in specific human cohorts, the taxonomic and functional features, and diversity thresholds that characterize these microbial alterations are, for the most part, unknown. In this review, we summarize the most important links between the temporal mosaics of gut microbial colonization and the age-dependent immune functions that rely on them. We also highlight the importance of applying ecology theory to design studies that explore the interactions between this complex ecosystem and the host immune system. Focusing research efforts on understanding the importance of temporally structured patterns of diversity, keystone groups, and inter-kingdom microbial interactions for ecosystem functions has great potential to enable the development of biologically sound interventions aimed at maintaining and/or improving immune system development and preventing disease.

  17. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes

    Directory of Open Access Journals (Sweden)

    Yuting eLiang

    2016-02-01

    Full Text Available With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001. Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential keystone genes, defined as either hubs or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.

  18. Dynamic assessment of microbial ecology (DAME): a web app for interactive analysis and visualization of microbial sequencing data.

    Science.gov (United States)

    Piccolo, Brian D; Wankhade, Umesh D; Chintapalli, Sree V; Bhattacharyya, Sudeepa; Chunqiao, Luo; Shankar, Kartik

    2018-03-15

    Dynamic assessment of microbial ecology (DAME) is a Shiny-based web application for interactive analysis and visualization of microbial sequencing data. DAME provides researchers not familiar with R programming the ability to access the most current R functions utilized for ecology and gene sequencing data analyses. Currently, DAME supports group comparisons of several ecological estimates of α-diversity and β-diversity, along with differential abundance analysis of individual taxa. Using the Shiny framework, the user has complete control of all aspects of the data analysis, including sample/experimental group selection and filtering, estimate selection, statistical methods and visualization parameters. Furthermore, graphical and tabular outputs are supported by R packages using D3.js and are fully interactive. DAME was implemented in R but can be modified by Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript. It is freely available on the web at https://acnc-shinyapps.shinyapps.io/DAME/. Local installation and source code are available through Github (https://github.com/bdpiccolo/ACNC-DAME). Any system with R can launch DAME locally provided the shiny package is installed. bdpiccolo@uams.edu.

  19. The influence of e-waste recycling on the molecular ecological network of soil microbial communities in Pakistan and China.

    Science.gov (United States)

    Jiang, Longfei; Cheng, Zhineng; Zhang, Dayi; Song, Mengke; Wang, Yujie; Luo, Chunling; Yin, Hua; Li, Jun; Zhang, Gan

    2017-12-01

    Primitive electronic waste (e-waste) recycling releases large amounts of organic pollutants and heavy metals into the environment. As crucial moderators of geochemical cycling processes and pollutant remediation, soil microbes may be affected by these contaminants. We collected soil samples heavily contaminated by e-waste recycling in China and Pakistan, and analyzed the indigenous microbial communities. The results of this work revealed that the microbial community composition and diversity, at both whole and core community levels, were affected significantly by polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and heavy metals (e.g., Cu, Zn, and Pb). The geographical distance showed limited impacts on microbial communities compared with geochemical factors. The constructed ecological network of soil microbial communities illustrated microbial co-occurrence, competition and antagonism across soils, revealing the response of microbes to soil properties and pollutants. Two of the three main modules constructed with core operational taxonomic units (OTUs) were sensitive to nutrition (total organic carbon and total nitrogen) and pollutants. Five key OTUs assigned to Acidobacteria, Proteobacteria, and Nitrospirae in ecological network were identified. This is the first study to report the effects of e-waste pollutants on soil microbial network, providing a deeper understanding of the ecological influence of crude e-waste recycling activities on soil ecological functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    Science.gov (United States)

    Mueller, Ryan S.; Denef, Vincent J.; Kalnejais, Linda H.; Suttle, K. Blake; Thomas, Brian C.; Wilmes, Paul; Smith, Richard L.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Shah, Menesh B.; VerBekmoes, Nathan C.; Hettich, Robert L.; Banfield, Jillian F.

    2010-01-01

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems. We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism's metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ.

  1. Methodological approaches for studying the microbial ecology of drinking water distribution systems.

    Science.gov (United States)

    Douterelo, Isabel; Boxall, Joby B; Deines, Peter; Sekar, Raju; Fish, Katherine E; Biggs, Catherine A

    2014-11-15

    The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Molecular musings in microbial ecology and evolution.

    Science.gov (United States)

    Case, Rebecca J; Boucher, Yan

    2011-11-10

    A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology.The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?" For evolutionists, the tree was a tool to understand the past of known (cultured) organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured) organisms, without much knowledge of their physiology.The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?" In evolutionary microbiology, frequent lateral gene transfer (LGT) made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution) and in the other to achieve its goals despite that phenomenon (ecology).The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough resolution to uncover what lies

  3. A review of gastrointestinal microbiology with special emphasis on molecular microbial ecology approaches

    International Nuclear Information System (INIS)

    Mackie, R.I.; Cann, I.K.O.

    2005-01-01

    All animals, including humans, are adapted to life in a microbial world. Large populations of micro-organisms inhabit the gastrointestinal tract of all animals and form a closely integrated ecological unit with the host. This complex, mixed, microbial culture can be considered the most metabolically adaptable and rapidly renewable organ of the body, which plays a vital role in the normal nutritional, physiological, immunological and protective functions of the host animal. Bacteria have traditionally been classified mainly on the basis of phenotypic properties. Despite the vast amount of knowledge generated for ruminal and other intestinal ecosystems using traditional techniques, the basic requisites for ecological studies, namely, enumeration and identification of all community members, have limitations. The two major problems faced by microbial ecologists are bias introduced by culture-based enumeration and characterization techniques, and the lack of a phylogenetically-based classification scheme. Modem molecular ecology techniques based on sequence comparisons of nucleic acids (DNA or RNA) can be used to provide molecular characterization while at the same time providing a classification scheme that predicts natural evolutionary relationships. These molecular methods provide results that are independent of growth conditions and media used. Also, using these techniques, bacteria can be classified and identified before they can be grown in pure culture. These nucleic acid-based techniques will enable gut microbiologists to answer the most difficult question in microbial ecology: namely, describing the exact role or function a specific bacterium plays in its natural environment and its quantitative contribution to the whole. However, rather than replacing the classical culture-based system, the new molecular-based techniques can be used in combination with the classical approach to improve cultivation, speciation and evaluation of diversity. The study of microbial

  4. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate.

    Science.gov (United States)

    Hotaling, Scott; Hood, Eran; Hamilton, Trinity L

    2017-08-01

    Glacier ecosystems are teeming with life on, beneath, and to a lesser degree, within their icy masses. This conclusion largely stems from polar research, with less attention paid to mountain glaciers that overlap environmentally and ecologically with their polar counterparts in some ways, but diverge in others. One difference lies in the susceptibility of mountain glaciers to the near-term threat of climate change, as they tend to be much smaller in both area and volume. Moreover, mountain glaciers are typically steeper, more dependent upon basal sliding for movement, and experience higher seasonal precipitation. Here, we provide a modern synthesis of the microbial ecology of mountain glacier ecosystems, and particularly those at low- to mid-latitudes. We focus on five ecological zones: the supraglacial surface, englacial interior, subglacial bedrock-ice interface, proglacial streams and glacier forefields. For each, we discuss the role of microbiota in biogeochemical cycling and outline ecological and hydrological connections among zones, underscoring the interconnected nature of these ecosystems. Collectively, we highlight the need to: better document the biodiversity and functional roles of mountain glacier microbiota; describe the ecological implications of rapid glacial retreat under climate change and resolve the relative contributions of ecological zones to broader ecosystem function. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Tales from the tomb: the microbial ecology of exposed rock surfaces.

    Science.gov (United States)

    Brewer, Tess E; Fierer, Noah

    2018-03-01

    Although a broad diversity of eukaryotic and bacterial taxa reside on rock surfaces where they can influence the weathering of rocks and minerals, these communities and their contributions to mineral weathering remain poorly resolved. To build a more comprehensive understanding of the diversity, ecology and potential functional attributes of microbial communities living on rock, we sampled 149 tombstones across three continents and analysed their bacterial and eukaryotic communities via marker gene and shotgun metagenomic sequencing. We found that geographic location and climate were important factors structuring the composition of these communities. Moreover, the tombstone-associated microbial communities varied as a function of rock type, with granite and limestone tombstones from the same cemeteries harbouring taxonomically distinct microbial communities. The granite and limestone-associated communities also had distinct functional attributes, with granite-associated bacteria having more genes linked to acid tolerance and chemotaxis, while bacteria on limestone were more likely to be lichen associated and have genes involved in photosynthesis and radiation resistance. Together these results indicate that rock-dwelling microbes exhibit adaptations to survive the stresses of the rock surface, differ based on location, climate and rock type, and seem pre-disposed to different ecological strategies (symbiotic versus free-living lifestyles) depending on the rock type. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution.

    Science.gov (United States)

    Ishii, Satoshi; Sadowsky, Michael J

    2009-04-01

    A large number of repetitive DNA sequences are found in multiple sites in the genomes of numerous bacteria, archaea and eukarya. While the functions of many of these repetitive sequence elements are unknown, they have proven to be useful as the basis of several powerful tools for use in molecular diagnostics, medical microbiology, epidemiological analyses and environmental microbiology. The repetitive sequence-based PCR or rep-PCR DNA fingerprint technique uses primers targeting several of these repetitive elements and PCR to generate unique DNA profiles or 'fingerprints' of individual microbial strains. Although this technique has been extensively used to examine diversity among variety of prokaryotic microorganisms, rep-PCR DNA fingerprinting can also be applied to microbial ecology and microbial evolution studies since it has the power to distinguish microbes at the strain or isolate level. Recent advancement in rep-PCR methodology has resulted in increased accuracy, reproducibility and throughput. In this minireview, we summarize recent improvements in rep-PCR DNA fingerprinting methodology, and discuss its applications to address fundamentally important questions in microbial ecology and evolution.

  7. Estimating and mapping ecological processes influencing microbial community assembly.

    Science.gov (United States)

    Stegen, James C; Lin, Xueju; Fredrickson, Jim K; Konopka, Allan E

    2015-01-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.

  8. Estimating and Mapping Ecological Processes Influencing Microbial Community Assembly

    Directory of Open Access Journals (Sweden)

    James C Stegen

    2015-05-01

    Full Text Available Ecological community assembly is governed by a combination of (i selection resulting from among-taxa differences in performance; (ii dispersal resulting from organismal movement; and (iii ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.

  9. Microbial ecology of two hot springs of Sikkim: Predominate population and geochemistry.

    Science.gov (United States)

    Najar, Ishfaq Nabi; Sherpa, Mingma Thundu; Das, Sayak; Das, Saurav; Thakur, Nagendra

    2018-10-01

    Northeastern regions of India are known for their floral and faunal biodiversity. Especially the state of Sikkim lies in the eastern Himalayan ecological hotspot region. The state harbors many sulfur rich hot springs which have therapeutic and spiritual values. However, these hot springs are yet to be explored for their microbial ecology. The development of neo generation techniques such as metagenomics has provided an opportunity for inclusive study of microbial community of different environment. The present study describes the microbial diversity in two hot springs of Sikkim that is Polok and Borong with the assist of culture dependent and culture independent approaches. The culture independent techniques used in this study were next generation sequencing (NGS) and Phospholipid Fatty Acid Analysis (PLFA). Having relatively distinct geochemistry both the hot springs are thermophilic environments with the temperature range of 50-77 °C and pH range of 5-8. Metagenomic data revealed the dominance of bacteria over archaea. The most abundant phyla were Proteobacteria and Bacteroidetes although other phyla were also present such as Acidobacteria, Nitrospirae, Firmicutes, Proteobacteria, Parcubacteria and Spirochaetes. The PLFA studies have shown the abundance of Gram Positive bacteria followed by Gram negative bacteria. The culture dependent technique was correlative with PLFA studies. Most abundant bacteria as isolated and identified were Gram-positive genus Geobacillus and Anoxybacillus. The genus Geobacillus has been reported for the first time in North-Eastern states of India. The Geobacillus species obtained from the concerned hot springs were Geobacillus toebii, Geobacillus lituanicus, Geobacillus Kaustophillus and the Anoxybacillus species includes Anoxybacillus gonensis and Anoxybacillus Caldiproteolyticus. The distribution of major genera and their statistical correlation analyses with the geochemistry of the springs predicted that the temperature, p

  10. Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function.

    Science.gov (United States)

    Cabrol, Lea; Marone, Antonella; Tapia-Venegas, Estela; Steyer, Jean-Philippe; Ruiz-Filippi, Gonzalo; Trably, Eric

    2017-03-01

    One of the most important biotechnological challenges is to develop environment friendly technologies to produce new sources of energy. Microbial production of biohydrogen through dark fermentation, by conversion of residual biomass, is an attractive solution for short-term development of bioH2 producing processes. Efficient biohydrogen production relies on complex mixed communities working in tight interaction. Species composition and functional traits are of crucial importance to maintain the ecosystem service. The analysis of microbial community revealed a wide phylogenetic diversity that contributes in different-and still mostly unclear-ways to hydrogen production. Bridging this gap of knowledge between microbial ecology features and ecosystem functionality is essential to optimize the bioprocess and develop strategies toward a maximization of the efficiency and stability of substrate conversion. The aim of this review is to provide a comprehensive overview of the most up-to-date biodata available and discuss the main microbial community features of biohydrogen engineered ecosystems, with a special emphasis on the crucial role of interactions and the relationships between species composition and ecosystem service. The elucidation of intricate relationships between community structure and ecosystem function would make possible to drive ecosystems toward an improved functionality on the basis of microbial ecology principles. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Recent advances in dental biofilm: impacts of microbial interactions on the biofilm ecology and pathogenesis

    Directory of Open Access Journals (Sweden)

    Yung-Hua Li

    2017-05-01

    Full Text Available The human oral cavity is a complex ecosystem harboring hundreds species of microbes that are largely living on the tooth surfaces as dental biofilms. Most microbes in dental biofilms promote oral health by stimulating the immune system or by preventing invasion of pathogens. Species diversity, high cell density and close proximity of cells are typical of life in dental biofilms, where microbes interact with each other and develop complex interactions that can be either competitive or cooperative. Competition between species is a well-recognized ecological force to drive microbial metabolism, species diversity and evolution. However, it was not until recently that microbial cooperative activities are also recognized to play important roles in microbial physiology and ecology. Importantly, these interactions profoundly affect the overall biomass, function, diversity and the pathogenesis in dental biofilms. It is now recognized that every human body contains a personalized oral microbiome that is essential to maintaining the oral health. Remarkably, the indigenous species in dental biofilms often maintain a relatively stable and harmless relationship with the host, despite regular exposure to environmental perturbations and the host defense factors. Such stability or homeostasis results from a dynamic balance of microbial-microbial and microbial-host interactions. Under certain circumstances, however, the homeostasis may breakdown, predisposing a site to diseases. In this review, we describe several examples of microbial interactions and their impacts on the homeostasis and pathogenesis of dental biofilms. We hope to encourage research on microbial interactions in the regulation of the homeostasis in biofilms.

  12. Microorganisms with a taste of Vanilla; Microbial ecology of traditional Indonesian vanilla curing.

    NARCIS (Netherlands)

    Roling, W.F.M.; Kerler, J.; Braster, M.; Apriyantono, A.; Stam, H.; van Verseveld, H.W.

    2001-01-01

    The microbial ecology of traditional postharvesting processing of vanilla beans (curing) was examined using a polyphasic approach consisting of conventional cultivation, substrate utilization-based and molecular identification of isolates, and cultivation-independent community profiling by 16S

  13. Revisiting life strategy concepts in environmental microbial ecology.

    Science.gov (United States)

    Ho, Adrian; Di Lonardo, D Paolo; Bodelier, Paul L E

    2017-03-01

    Microorganisms are physiologically diverse, possessing disparate genomic features and mechanisms for adaptation (functional traits), which reflect on their associated life strategies and determine at least to some extent their prevalence and distribution in the environment. Unlike animals and plants, there is an unprecedented diversity and intractable metabolic versatility among bacteria, making classification or grouping these microorganisms based on their functional traits as has been done in animal and plant ecology challenging. Nevertheless, based on representative pure cultures, microbial traits distinguishing different life strategies had been proposed, and had been the focus of previous reviews. In the environment, however, the vast majority of naturally occurring microorganisms have yet to be isolated, restricting the association of life strategies to broad phylogenetic groups and/or physiological characteristics. Here, we reviewed the literature to determine how microbial life strategy concepts (i.e. copio- and oligotrophic strategists, and competitor-stress tolerator-ruderals framework) are applied in complex microbial communities. Because of the scarcity of direct empirical evidence elucidating the associated life strategies in complex communities, we rely heavily on observational studies determining the response of microorganisms to (a)biotic cues (e.g. resource availability) to infer microbial life strategies. Although our focus is on the life strategies of bacteria, parallels were drawn from the fungal community. Our literature search showed inconsistency in the community response of proposed copiotrophic- and oligotrophic-associated microorganisms (phyla level) to changing environmental conditions. This suggests that tracking microorganisms at finer phylogenetic and taxonomic resolution (e.g. family level or lower) may be more effective to capture changes in community response and/or that edaphic factors exert a stronger effect in community response

  14. Description of the microbial ecology evaluation device, flight equipment, and ground transporter

    Science.gov (United States)

    Chassay, C. E.; Taylor, G. R.

    1973-01-01

    Exposure of test systems in space required the fabrication of specialized hardware termed a Microbial Ecology Evaluation Device that had individual test chambers and a complex optical filter system. The characteristics of this device and the manner in which it was deployed in space are described.

  15. Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories.

    Science.gov (United States)

    Wigneswaran, Vinoth; Amador, Cristina Isabel; Jelsbak, Lotte; Sternberg, Claus; Jelsbak, Lars

    2016-01-01

    Microbial activities are most often shaped by interactions between co-existing microbes within mixed-species communities. Dissection of the molecular mechanisms of species interactions within communities is a central issue in microbial ecology, and our ability to engineer and control microbial communities depends, to a large extent, on our knowledge of these interactions. This review highlights the recent advances regarding molecular characterization of microbe-microbe interactions that modulate community structure, activity, and stability, and aims to illustrate how these findings have helped us reach an engineering-level understanding of microbial communities in relation to both human health and industrial biotechnology.

  16. Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents.

    Science.gov (United States)

    Anderson, Rika E; Sogin, Mitchell L; Baross, John A

    2015-01-01

    Environmental gradients generate countless ecological niches in deep-sea hydrothermal vent systems, which foster diverse microbial communities. The majority of distinct microbial lineages in these communities occur in very low abundance. However, the ecological role and distribution of rare and abundant lineages, particularly in deep, hot subsurface environments, remain unclear. Here, we use 16S rRNA tag sequencing to describe biogeographic patterning and microbial community structure of both rare and abundant archaea and bacteria in hydrothermal vent systems. We show that while rare archaeal lineages and almost all bacterial lineages displayed geographically restricted community structuring patterns, the abundant lineages of archaeal communities displayed a much more cosmopolitan distribution. Finally, analysis of one high-volume, high-temperature fluid sample representative of the deep hot biosphere described a unique microbial community that differed from microbial populations in diffuse flow fluid or sulfide samples, yet the rare thermophilic archaeal groups showed similarities to those that occur in sulfides. These results suggest that while most archaeal and bacterial lineages in vents are rare and display a highly regional distribution, a small percentage of lineages, particularly within the archaeal domain, are successful at widespread dispersal and colonization. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Microbial ecology of the Agaricus bisporus mushroom cropping process.

    Science.gov (United States)

    McGee, Conor F

    2018-02-01

    Agaricus bisporus is the most widely cultivated mushroom species in the world. Cultivation is commenced by inoculating beds of semi-pasteurised composted organic substrate with a pure spawn of A. bisporus. The A. bisporus mycelium subsequently colonises the composted substrate by degrading the organic material to release nutrients. A layer of peat, often called "casing soil", is laid upon the surface of the composted substrate to induce the development of the mushroom crop and maintain compost environmental conditions. Extensive research has been conducted investigating the biochemistry and genetics of A. bisporus throughout the cultivation process; however, little is currently known about the wider microbial ecology that co-inhabits the composted substrate and casing layers. The compost and casing microbial communities are known to play important roles in the mushroom production process. Microbial species present in the compost and casing are known for (1) being an important source of nitrogen for the A. bisporus mycelium, (2) releasing sugar residues through the degradation of the wheat straw in the composted substrate, (3) playing a critical role in inducing development of the A. bisporus fruiting bodies and (4) acting as pathogens by parasitising the mushroom mycelium/crop. Despite a long history of research into the mushroom cropping process, an extensive review of the microbial communities present in the compost and casing has not as of yet been undertaken. The aim of this review is to provide a comprehensive summary of the literature investigating the compost and casing microbial communities throughout cultivation of the A. bisporus mushroom crop.

  18. The use of microarrays in microbial ecology

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, G.L.; He, Z.; DeSantis, T.Z.; Brodie, E.L.; Zhou, J.

    2009-09-15

    Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogenetic microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer

  19. The role of hyperparasitism in microbial pathogen ecology and evolution.

    Science.gov (United States)

    Parratt, Steven R; Laine, Anna-Liisa

    2016-08-01

    Many micro-organisms employ a parasitic lifestyle and, through their antagonistic interactions with host populations, have major impacts on human, agricultural and natural ecosystems. Most pathogens are likely to host parasites of their own, that is, hyperparasites, but how nested chains of parasites impact on disease dynamics is grossly neglected in the ecological and evolutionary literature. In this minireview we argue that the diversity and dynamics of micro-hyperparasites are an important component of natural host-pathogen systems. We use the current literature from a handful of key systems to show that observed patterns of pathogen virulence and disease dynamics may well be influenced by hyperparasites. Exploring these factors will shed light on many aspects of microbial ecology and disease biology, including resistance-virulence evolution, apparent competition, epidemiology and ecosystem stability. Considering the importance of hyperparasites in natural populations will have applied consequences for the field of biological control and therapeutic science, where hyperparastism is employed as a control mechanism but not necessarily ecologically understood.

  20. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology.

    Science.gov (United States)

    Stegen, James C; Johnson, Tim; Fredrickson, James K; Wilkins, Michael J; Konopka, Allan E; Nelson, William C; Arntzen, Evan V; Chrisler, William B; Chu, Rosalie K; Fansler, Sarah J; Graham, Emily B; Kennedy, David W; Resch, Charles T; Tfaily, Malak; Zachara, John

    2018-02-08

    The hyporheic corridor (HC) encompasses the river-groundwater continuum, where the mixing of groundwater (GW) with river water (RW) in the HC can stimulate biogeochemical activity. Here we propose a novel thermodynamic mechanism underlying this phenomenon and reveal broader impacts on dissolved organic carbon (DOC) and microbial ecology. We show that thermodynamically favorable DOC accumulates in GW despite lower DOC concentration, and that RW contains thermodynamically less-favorable DOC, but at higher concentrations. This indicates that GW DOC is protected from microbial oxidation by low total energy within the DOC pool, whereas RW DOC is protected by lower thermodynamic favorability of carbon species. We propose that GW-RW mixing overcomes these protections and stimulates respiration. Mixing models coupled with geophysical and molecular analyses further reveal tipping points in spatiotemporal dynamics of DOC and indicate important hydrology-biochemistry-microbial feedbacks. Previously unrecognized thermodynamic mechanisms regulated by GW-RW mixing may therefore strongly influence biogeochemical and microbial dynamics in riverine ecosystems.

  1. Microbial Interactions and the Ecology and Evolution of Hawaiian Drosophilidae

    Directory of Open Access Journals (Sweden)

    Timothy eO'Connor

    2014-12-01

    Full Text Available Adaptive radiations are characterized by an increased rate of speciation and expanded range of habitats and ecological niches exploited by those species. The Hawaiian Drosophilidae is a classic adaptive radiation; a single ancestral species colonized Hawaii approximately 25 million years ago and gave rise to two monophyletic lineages, the Hawaiian Drosophila and the genus Scaptomyza. The Hawaiian Drosophila are largely saprophagous and rely on approximately 40 endemic plant families and their associated microbes to complete development. Scaptomyza are even more diverse in host breadth. While many species of Scaptomyza utilize decomposing plant substrates, some species have evolved to become herbivores, parasites on spider egg masses, and exploit microbes on living plant tissue. Understanding the origin of the ecological diversity encompassed by these nearly 700 described species has been a challenge. The central role of microbes in drosophilid ecology suggests bacterial and fungal associates may have played a role in the diversification of the Hawaiian Drosophilidae. Here we synthesize recent ecological and microbial community data from the Hawaiian Drosophilidae to examine the forces that may have led to this adaptive radiation. We propose that the evolutionary success of the Hawaiian Drosophilidae is due to a combination of factors, including adaptation to novel ecological niches facilitated by microbes.

  2. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    OpenAIRE

    Speth, D.R.; Zandt, M.H. in 't; Guerrero Cruz, S.; Dutilh, B.E.; Jetten, M.S.M.

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete d...

  3. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement.

    Science.gov (United States)

    Wu, Qing; Hu, Yue; Li, Shuqun; Peng, Sen; Zhao, Huabing

    2016-07-01

    Enhanced ecological floating beds were implemented to reduce nutrient quantity and improve the water quality of a eutrophic lake. The results showed that average removal efficiencies of CODCr, total nitrogen, NH3-N and total phosphorus for Canna indica L. set-up were 23.1%, 15.3%, 18.1% and 19.4% higher, respectively, than that of the setup with only substrate, and 14.2%, 12.8%, 7.9% and 11.9% higher than Iris pseudacorus L. ecological floating bed. The microbial community structure had obvious differences between devices and low similarity; bacteria were mainly attached on the fiber filling. The microbial population was abundant at the start and end of the experiment. Shannon index of samples selected ranged from 0.85 to 1.05. The sequencing results showed that fiber filling collected most uncultured bacteria species and the majority of bacteria on the plant roots were β-Proteobacteria and α-Proteobacteria. The co-dominant species attaching to the filling and plant was Nitrosomonadaceae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology

    KAUST Repository

    Rashid, Mamoon; Stingl, Ulrich

    2015-01-01

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70–80% of microbial diversity – recently called the “microbial dark matter” – remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology.

  5. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology.

    Science.gov (United States)

    Rashid, Mamoon; Stingl, Ulrich

    2015-12-01

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70-80% of microbial diversity - recently called the "microbial dark matter" - remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology

    KAUST Repository

    Rashid, Mamoon

    2015-09-25

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70–80% of microbial diversity – recently called the “microbial dark matter” – remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology.

  7. Formation of higher plant component microbial community in closed ecological system

    Science.gov (United States)

    Tirranen, L. S.

    2001-07-01

    Closed ecological systems (CES) place at the disposal of a researcher unique possibilities to study the role of microbial communities in individual components and of the entire system. The microbial community of the higher plant component has been found to form depending on specific conditions of the closed ecosystem: length of time the solution is reused, introduction of intrasystem waste water into the nutrient medium, effect of other component of the system, and system closure in terms of gas exchange. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of wheat. The composition of the components' microflora changed, species diversity decreased, individual species of bacteria and fungi whose numbers were not so great before the closure prevailed. Special attention should be paid to phytopathogenic and conditionally pathogenic species of microorganisms potentially hazardous to man or plants and the least controlled in CES. This situation can endanger creation of CES and make conjectural existence of preplanned components, man, specifically, and consequently, of CES as it is.

  8. Challenges in microbial ecology: Building predictive understanding of community function and dynamics

    DEFF Research Database (Denmark)

    Widder, Stefanie; Allen, Rosalind J.; Pfeiffer, Thomas

    2016-01-01

    The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly...... complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development...... is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved....

  9. Marine microbial ecology in a molecular world: what does the future hold?

    Directory of Open Access Journals (Sweden)

    David A. Caron

    2005-06-01

    Full Text Available Advances in genetic and immunological approaches during the last few decades have transformed medicine and biomedical research. The human genome and the genomes of numerous model organisms are now fully sequenced. Initial exploitation of this wealth of genetic information has begun to revolutionize research on these species, and the applications derived from it. Progress in understanding the ecology of microorganisms (including marine taxa has followed closely on the heels of these advances, owing to the tremendous benefit afforded by major technological advances in biomedicine. Through the application of these novel approaches and new technologies, marine microbial ecology has moved from a minor footnote within marine biology and biological oceanography during the 1950s and ‘60s to the focus of much of our present interest in the ocean. During the intervening half-century we have learned a great deal regarding the overall abundances, distributions and activities of microorganisms in the sea. Recognition of the extraordinary diversity of marine microbes, the predominant role that they play in global biogeochemical processes, and the potential for natural or engineered microbial products to benefit humankind, has placed marine microbes in the spotlight of both scientific and popular attention. Our fascination with these minute denizens of the ocean is not likely to wane anytime soon. Recent studies have indicated that we still know relatively little about the breadth of microbial diversity in marine ecosystems. In addition, many (most? of the predominant marine microbial forms in nature have not yet been brought into laboratory culture. Thus, our knowledge is still rudimentary with respect to the spectra of biochemical, physiological and behavioral abilities of these species, and the study of marine microbes will remain a major focus of investigations in marine science well into the foreseeable future. As a large cadre of researchers moves

  10. Adaptive long-term monitoring of soil health in metal phytostabilization: ecological attributes and ecosystem services based on soil microbial parameters.

    Science.gov (United States)

    Epelde, Lur; Becerril, José M; Alkorta, Itziar; Garbisu, Carlos

    2014-01-01

    Phytostabilization is a promising option for the remediation of metal contaminated soils which requires the implementation of long-term monitoring programs. We here propose to incorporate the paradigm of "adaptive monitoring", which enables monitoring programs to evolve iteratively as new information emerges and research questions change, to metal phytostabilization. Posing good questions that cover the chemical, toxicological and ecological concerns associated to metal contaminated soils is critical for an efficient long-term phytostabilization monitoring program. Regarding the ecological concerns, soil microbial parameters are most valuable indicators of the effectiveness of metal phytostabilization processes in terms of recovery of soil health. We suggest to group soil microbial parameters in higher-level categories such as "ecological attributes" (vigor, organization, stability) or "ecosystem services" in order to facilitate interpretation and, most importantly, to provide long-term phytostabilization monitoring programs with the required stability through time against changes in techniques, methods, interests, etc. that will inevitably occur during the monitoring program. Finally, a Phytostabilization Monitoring Card, based on both ecological attributes and ecosystem services, for soil microbial properties is provided.

  11. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Science.gov (United States)

    Baron, Julianne L; Vikram, Amit; Duda, Scott; Stout, Janet E; Bibby, Kyle

    2014-01-01

    Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  12. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Directory of Open Access Journals (Sweden)

    Julianne L Baron

    Full Text Available Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  13. Ecological Insights into the Dynamics of Plant Biomass-Degrading Microbial Consortia.

    Science.gov (United States)

    Jiménez, Diego Javier; Dini-Andreote, Francisco; DeAngelis, Kristen M; Singer, Steven W; Salles, Joana Falcão; van Elsas, Jan Dirk

    2017-10-01

    Plant biomass (PB) is an important resource for biofuel production. However, the frequent lack of efficiency of PB saccharification is still an industrial bottleneck. The use of enzyme cocktails produced from PB-degrading microbial consortia (PB-dmc) is a promising approach to optimize this process. Nevertheless, the proper use and manipulation of PB-dmc depends on a sound understanding of the ecological processes and mechanisms that exist in these communities. This Opinion article provides an overview of arguments as to how spatiotemporal nutritional fluxes influence the successional dynamics and ecological interactions (synergism versus competition) between populations in PB-dmc. The themes of niche occupancy, 'sugar cheaters', minimal effective consortium, and the Black Queen Hypothesis are raised as key subjects that foster our appraisal of such systems. Here we provide a conceptual framework that describes the critical topics underpinning the ecological basis of PB-dmc, giving a solid foundation upon which further prospective experimentation can be developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Suppressive composts: microbial ecology links between abiotic environments and healthy plants.

    Science.gov (United States)

    Hadar, Yitzhak; Papadopoulou, Kalliope K

    2012-01-01

    Suppressive compost provides an environment in which plant disease development is reduced, even in the presence of a pathogen and a susceptible host. Despite the numerous positive reports, its practical application is still limited. The main reason for this is the lack of reliable prediction and quality control tools for evaluation of the level and specificity of the suppression effect. Plant disease suppression is the direct result of the activity of consortia of antagonistic microorganisms that naturally recolonize the compost during the cooling phase of the process. Thus, it is imperative to increase the level of understanding of compost microbial ecology and population dynamics. This may lead to the development of an ecological theory for complex ecosystems as well as favor the establishment of hypothesis-driven studies.

  15. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    NARCIS (Netherlands)

    Speth, D.R.; Zandt, M.H. in 't; Guerrero Cruz, S.; Dutilh, B.E.; Jetten, M.S.M.

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is

  16. Microbial and plant ecology of a long-term TNT-contaminated site

    International Nuclear Information System (INIS)

    Travis, Emma R.; Bruce, Neil C.; Rosser, Susan J.

    2008-01-01

    The contamination of the environment with explosive residues presents a serious ecological problem at sites across the world, with the highly toxic compound trinitrotoluene (TNT) the most widespread contaminant. This study examines the soil microbial community composition across a long-term TNT-contaminated site. It also investigates the extent of nitroaromatic contamination and its effect on vegetation. Concentrations of TNT and its metabolites varied across the site and this was observed to dramatically impact on the extent and diversity of the vegetation, with the most heavily contaminated area completely devoid of vegetation. Bryophytes were seen to be particularly sensitive to TNT contamination. The microbial population experienced both a reduction in culturable bacterial numbers and a shift in composition at the high concentrations of TNT. DGGE and community-level physiological profiling (CLPP) revealed a clear change in both the genetic and functional diversity of the soil when soil was contaminated with TNT. - Long-term contamination of soil with TNT reduces the extent and diversity of vegetation, decreases culturable bacterial numbers and shifts the microbial community composition

  17. Earth's Earliest Ecosystems in the Classroom: The Use of Microbial Mats to Teach General Principles in Microbial Ecology, and Scientific Inquiry

    Science.gov (United States)

    Beboutl, Brad M.; Bucaria, Robin

    2004-01-01

    Microbial mats are living examples of the most ancient biological communities on earth, and may also be useful models for the search for life elsewhere. They are centrally important to Astrobiology. In this lecture, we will present an introduction to microbial mats, as well as an introduction to our web-based educational module on the subject of microbial ecology, featuring living mats maintained in a mini "Web Lab" complete with remotely-operable instrumentation. We have partnered with a number of outreach specialists in order to produce an informative and educational web-based presentation, aspects of which will be exported to museum exhibits reaching a wide audience. On our web site, we will conduct regularly scheduled experimental manipulations, linking the experiments to our research activities, and demonstrating fundamental principles of scientific research.

  18. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system.

    Science.gov (United States)

    Speth, Daan R; In 't Zandt, Michiel H; Guerrero-Cruz, Simon; Dutilh, Bas E; Jetten, Mike S M

    2016-03-31

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete draft genomes that together represent the majority of the microbial community. We assign these genomes to distinct anaerobic and aerobic microbial communities. In the aerobic community, nitrifying organisms and heterotrophs predominate. In the anaerobic community, widespread potential for partial denitrification suggests a nitrite loop increases treatment efficiency. Of our genomes, 19 have no previously cultivated or sequenced close relatives and six belong to bacterial phyla without any cultivated members, including the most complete Omnitrophica (formerly OP3) genome to date.

  19. PhyloChip™ microarray comparison of sampling methods used for coral microbial ecology

    Science.gov (United States)

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Zawada, David G.; Andersen, Gary L.

    2012-01-01

    Interest in coral microbial ecology has been increasing steadily over the last decade, yet standardized methods of sample collection still have not been defined. Two methods were compared for their ability to sample coral-associated microbial communities: tissue punches and foam swabs, the latter being less invasive and preferred by reef managers. Four colonies of star coral, Montastraea annularis, were sampled in the Dry Tortugas National Park (two healthy and two with white plague disease). The PhyloChip™ G3 microarray was used to assess microbial community structure of amplified 16S rRNA gene sequences. Samples clustered based on methodology rather than coral colony. Punch samples from healthy and diseased corals were distinct. All swab samples clustered closely together with the seawater control and did not group according to the health state of the corals. Although more microbial taxa were detected by the swab method, there is a much larger overlap between the water control and swab samples than punch samples, suggesting some of the additional diversity is due to contamination from water absorbed by the swab. While swabs are useful for noninvasive studies of the coral surface mucus layer, these results show that they are not optimal for studies of coral disease.

  20. The high energy multicharged particle exposure of the microbial ecology evaluation device on board the Apollo 16 spacecraft

    Science.gov (United States)

    Benton, E. V.; Henke, R. P.

    1973-01-01

    The high energy multicharged cosmic-ray-particle exposure of the Microbial Ecology Evaluation Device package on board the Apollo 16 spacecraft was monitored using cellulose nitrate, Lexan polycarbonate, nuclear emulsion, and silver chloride crystal nuclear-track detectors. The results of the analysis of these detectors include the measured particle fluences, the linear energy transfer spectra, and the integral atomic number spectrum of stopping particle density. The linear energy transfer spectrum is used to compute the fractional cell loss in human kidney (T1) cells caused by heavy particles. Because the Microbial Ecology Evaluation Device was better shielded, the high-energy multicharged particle exposure was less than that measured on the crew passive dosimeters.

  1. Mess management in microbial ecology: Rhetorical processes of disciplinary integration

    Science.gov (United States)

    McCracken, Christopher W.

    As interdisciplinary work becomes more common in the sciences, research into the rhetorical processes mediating disciplinary integration becomes more vital. This dissertation, which takes as its subject the integration of microbiology and ecology, combines a postplural approach to rhetoric of science research with Victor Turner's "social drama" analysis and a third-generation activity theory methodological framework to identify conceptual and practical conflicts in interdisciplinary work and describe how, through visual and verbal communication, scientists negotiate these conflicts. First, to understand the conflicting disciplinary principles that might impede integration, the author conducts a Turnerian analysis of a disciplinary conflict that took place in the 1960s and 70s, during which American ecologists and biologists debated whether they should participate in the International Biological Program (IBP). Participation in the IBP ultimately contributed to the emergence of ecology as a discipline distinct from biology, and Turnerian social drama analysis of the debate surrounding participation lays bare the conflicting principles separating biology and ecology. Second, to answer the question of how these conflicting principles are negotiated in practice, the author reports on a yearlong qualitative study of scientists working in a microbial ecology laboratory. Focusing specifically on two case studies from this fieldwork that illustrate the key concept of textually mediated disciplinary integration, the author's analysis demonstrates how scientific objects emerge in differently situated practices, and how these objects manage to cohere despite their multiplicity through textually mediated rhetorical processes of calibration and alignment.

  2. A Novel Analysis Method for Paired-Sample Microbial Ecology Experiments.

    Science.gov (United States)

    Olesen, Scott W; Vora, Suhani; Techtmann, Stephen M; Fortney, Julian L; Bastidas-Oyanedel, Juan R; Rodríguez, Jorge; Hazen, Terry C; Alm, Eric J

    2016-01-01

    Many microbial ecology experiments use sequencing data to measure a community's response to an experimental treatment. In a common experimental design, two units, one control and one experimental, are sampled before and after the treatment is applied to the experimental unit. The four resulting samples contain information about the dynamics of organisms that respond to the treatment, but there are no analytical methods designed to extract exactly this type of information from this configuration of samples. Here we present an analytical method specifically designed to visualize and generate hypotheses about microbial community dynamics in experiments that have paired samples and few or no replicates. The method is based on the Poisson lognormal distribution, long studied in macroecology, which we found accurately models the abundance distribution of taxa counts from 16S rRNA surveys. To demonstrate the method's validity and potential, we analyzed an experiment that measured the effect of crude oil on ocean microbial communities in microcosm. Our method identified known oil degraders as well as two clades, Maricurvus and Rhodobacteraceae, that responded to amendment with oil but do not include known oil degraders. Our approach is sensitive to organisms that increased in abundance only in the experimental unit but less sensitive to organisms that increased in both control and experimental units, thus mitigating the role of "bottle effects".

  3. Silage review: Using molecular approaches to define the microbial ecology of silage.

    Science.gov (United States)

    McAllister, T A; Dunière, L; Drouin, P; Xu, S; Wang, Y; Munns, K; Zaheer, R

    2018-05-01

    can also lead to biases in the interpretation of sequence data. Bioinformatic analyses are reliant on the integrity and presence of sequence data within established databases and can be subject to low taxonomic resolution. Despite these limitations, advancements in molecular biology are poised to revolutionize our current understanding of the microbial ecology of silage. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. All rights reserved.

  4. Microbial ecology of phototrophic biofilms

    NARCIS (Netherlands)

    Roeselers, G.

    2007-01-01

    Biofilms are layered structures of microbial cells and an extracellular matrix of polymeric substances, associated with surfaces and interfaces. Biofilms trap nutrients for growth of the enclosed microbial community and help prevent detachment of cells from surfaces in flowing systems. Phototrophic

  5. Microorganisms with a Taste for Vanilla: Microbial Ecology of Traditional Indonesian Vanilla Curing

    Science.gov (United States)

    Röling, Wilfred F. M.; Kerler, Josef; Braster, Martin; Apriyantono, Anton; Stam, Hein; van Verseveld, Henk W.

    2001-01-01

    The microbial ecology of traditional postharvesting processing of vanilla beans (curing) was examined using a polyphasic approach consisting of conventional cultivation, substrate utilization-based and molecular identification of isolates, and cultivation-independent community profiling by 16S ribosomal DNA based PCR-denaturing gradient gel electrophoresis. At two different locations, a batch of curing beans was monitored. In both batches a major shift in microbial communities occurred after short-term scalding of the beans in hot water. Fungi and yeast disappeared, although regrowth of fungi occurred in one batch during a period in which process conditions were temporarily not optimal. Conventional plating showed that microbial communities consisting of thermophilic and thermotolerant bacilli (mainly closely related to Bacillus subtilis, B. licheniformis,, and B. smithii) developed under the high temperatures (up to 65°C) that were maintained for over a week after scalding. Only small changes in the communities of culturable bacteria occurred after this period. Molecular analysis revealed that a proportion of the microbial communities could not be cultured on conventional agar medium, especially during the high-temperature period. Large differences between both batches were observed in the numbers of microorganisms, in species composition, and in the enzymatic abilities of isolated bacteria. These large differences indicate that the effects of microbial activities on the development of vanilla flavor could be different for each batch of cured vanilla beans. PMID:11319073

  6. Ecological and soil hydraulic implications of microbial responses to stress - A modeling analysis

    Science.gov (United States)

    Brangarí, Albert C.; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier; Manzoni, Stefano

    2018-06-01

    A better understanding of microbial dynamics in porous media may lead to improvements in the design and management of a number of technological applications, ranging from the degradation of contaminants to the optimization of agricultural systems. To this aim, there is a recognized need for predicting the proliferation of soil microbial biomass (often organized in biofilms) under different environments and stresses. We present a general multi-compartment model to account for physiological responses that have been extensively reported in the literature. The model is used as an explorative tool to elucidate the ecological and soil hydraulic consequences of microbial responses, including the production of extracellular polymeric substances (EPS), the induction of cells into dormancy, and the allocation and reuse of resources between biofilm compartments. The mechanistic model is equipped with indicators allowing the microorganisms to monitor environmental and biological factors and react according to the current stress pressures. The feedbacks of biofilm accumulation on the soil water retention are also described. Model runs simulating different degrees of substrate and water shortage show that adaptive responses to the intensity and type of stress provide a clear benefit to microbial colonies. Results also demonstrate that the model may effectively predict qualitative patterns in microbial dynamics supported by empirical evidence, thereby improving our understanding of the effects of pore-scale physiological mechanisms on the soil macroscale phenomena.

  7. Defining Disturbance for Microbial Ecology.

    Science.gov (United States)

    Plante, Craig J

    2017-08-01

    Disturbance can profoundly modify the structure of natural communities. However, microbial ecologists' concept of "disturbance" has often deviated from conventional practice. Definitions (or implicit usage) have frequently included climate change and other forms of chronic environmental stress, which contradict the macrobiologist's notion of disturbance as a discrete event that removes biomass. Physical constraints and disparate biological characteristics were compared to ask whether disturbances fundamentally differ in microbial and macroorganismal communities. A definition of "disturbance" for microbial ecologists is proposed that distinguishes from "stress" and other competing terms, and that is in accord with definitions accepted by plant and animal ecologists.

  8. Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle's feed efficiency.

    Science.gov (United States)

    Guan, Le Luo; Nkrumah, Joshua D; Basarab, John A; Moore, Stephen S

    2008-11-01

    Linkage of rumen microbial structure to host phenotypical traits may enhance the understanding of host-microbial interactions in livestock species. This study used culture-independent PCR-denaturing gradient gel electrophoresis (PCR-DGGE) to investigate the microbial profiles in the rumen of cattle differing in feed efficiency. The analysis of detectable bacterial PCR-DGGE profiles showed that the profiles generated from efficient steers clustered together and were clearly separated from those obtained from inefficient steers, indicating that specific bacterial groups may only inhabit in efficient steers. In addition, the bacterial profiles were more likely clustered within a certain breed, suggesting that host genetics may play an important role in rumen microbial structure. The correlations between the concentrations of volatile fatty acids and feed efficiency traits were also observed. Significantly higher concentrations of butyrate (P < 0.001) and valerate (P = 0.006) were detected in the efficient steers. Our results revealed potential associations between the detectable rumen microbiota and its fermentation parameters with the feed efficiency of cattle.

  9. Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Vinoth Wigneswaran

    2016-03-01

    Full Text Available Microbial activities are most often shaped by interactions between co-existing microbes within mixed-species communities. Dissection of the molecular mechanisms of species interactions within communities is a central issue in microbial ecology, and our ability to engineer and control microbial communities depends, to a large extent, on our knowledge of these interactions. This review highlights the recent advances regarding molecular characterization of microbe-microbe interactions that modulate community structure, activity, and stability, and aims to illustrate how these findings have helped us reach an engineering-level understanding of microbial communities in relation to both human health and industrial biotechnology.

  10. Marine microbial ecology: Reminiscence of the status and some suggestions for the way forward

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    communities are central to all processes . From traditional cultivation based experiments to today's molecular analyses based on metagenomics, major strides have been made. Molecular ecology made significant impact by revealing the true scope... environmental parameters are recorded together with diversity data, it would be possible to assess the impact of space, time, on microbial communities and quantify interactions among factors. The integration of laboratory-developed microbiological sensors...

  11. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing.

    Science.gov (United States)

    Kim, Hyeun Bum; Isaacson, Richard E

    2015-06-12

    The importance of the gut microbiota of animals is widely acknowledged because of its pivotal roles in the health and well being of animals. The genetic diversity of the gut microbiota contributes to the overall development and metabolic needs of the animal, and provides the host with many beneficial functions including production of volatile fatty acids, re-cycling of bile salts, production of vitamin K, cellulose digestion, and development of immune system. Thus the intestinal microbiota of animals has been the subject of study for many decades. Although most of the older studies have used culture dependent methods, the recent advent of high throughput sequencing of 16S rRNA genes has facilitated in depth studies exploring microbial populations and their dynamics in the animal gut. These culture independent DNA based studies generate large amounts of data and as a result contribute to a more detailed understanding of the microbiota dynamics in the gut and the ecology of the microbial populations. Of equal importance, is being able to identify and quantify microbes that are difficult to grow or that have not been grown in the laboratory. Interpreting the data obtained from this type of study requires using basic principles of microbial diversity to understand importance of the composition of microbial populations. In this review, we summarize the literature on culture independent studies of the pig gut microbiota with an emphasis on its succession and alterations caused by diverse factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Microbial ecology of methanogenic crude oil biodegradation; from microbial consortia to heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Head, Ian M.; Maguire, Michael J.; Sherry, Angela; Grant, Russell; Gray, Neil D.; Aitken, Carolyn M.; Martin Jones, D.; Oldenburg, Thomas B.P.; Larter, Stephen R. [Petroleum Research Group, Geosciences, University of Calgary (Canada)

    2011-07-01

    This paper presents the microbial ecology of methanogenic crude oil biodegradation. Biodegraded petroleum reservoirs are one of the most dramatic indications of the deep biosphere. It is estimated that heavy oil and oil sands will account for a considerable amount of energy production in the future. Carbon, a major resource for deep subsurface microorganisms, and energy are contained in large quantities in petroleum reservoirs. The aerobic to anaerobic paradigm shift is explained. A key process for in-situ oil biodegradation in petroleum reservoirs is methanogenesis. New paradigms for in-reservoir crude oil biodegradation are discussed. Variations in anaerobic degradation of crude oil hydrocarbons are also discussed. A graph shows the different patterns of crude oil biodegradation under sulfate-reducing and methanogenic conditions. Alternative anaerobic alkane activation mechanisms are also shown. From the study, it can be concluded that methanogenic crude oil degradation is of global importance and led to the establishment of the world's enormous heavy oil deposits.

  13. Molecular ecological network analyses.

    Science.gov (United States)

    Deng, Ye; Jiang, Yi-Huei; Yang, Yunfeng; He, Zhili; Luo, Feng; Zhou, Jizhong

    2012-05-30

    Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open

  14. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods.

    Science.gov (United States)

    Coton, Monika; Pawtowski, Audrey; Taminiau, Bernard; Burgaud, Gaëtan; Deniel, Franck; Coulloumme-Labarthe, Laurent; Fall, Abdoulaye; Daube, Georges; Coton, Emmanuel

    2017-05-01

    Kombucha, historically an Asian tea-based fermented drink, has recently become trendy in Western countries. Producers claim it bears health-enhancing properties that may come from the tea or metabolites produced by its microbiome. Despite its long history of production, microbial richness and dynamics have not been fully unraveled, especially at an industrial scale. Moreover, the impact of tea type (green or black) on microbial ecology was not studied. Here, we compared microbial communities from industrial-scale black and green tea fermentations, still traditionally carried out by a microbial biofilm, using culture-dependent and metabarcoding approaches. Dominant bacterial species belonged to Acetobacteraceae and to a lesser extent Lactobacteriaceae, while the main identified yeasts corresponded to Dekkera, Hanseniaspora and Zygosaccharomyces during all fermentations. Species richness decreased over the 8-day fermentation. Among acetic acid bacteria, Gluconacetobacter europaeus, Gluconobacter oxydans, G. saccharivorans and Acetobacter peroxydans emerged as dominant species. The main lactic acid bacteria, Oenococcus oeni, was strongly associated with green tea fermentations. Tea type did not influence yeast community, with Dekkera bruxellensis, D. anomala, Zygosaccharomyces bailii and Hanseniaspora valbyensis as most dominant. This study unraveled a distinctive core microbial community which is essential for fermentation control and could lead to Kombucha quality standardization. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Competitive Traits Are More Important than Stress-Tolerance Traits in a Cadmium-Contaminated Rhizosphere: A Role for Trait Theory in Microbial Ecology.

    Science.gov (United States)

    Wood, Jennifer L; Tang, Caixian; Franks, Ashley E

    2018-01-01

    Understanding how biotic and abiotic factors govern the assembly of rhizosphere-microbial communities is a long-standing goal in microbial ecology. In phytoremediation research, where plants are used to remediate heavy metal-contaminated soils, a deeper understanding of rhizosphere-microbial ecology is needed to fully exploit the potential of microbial-assisted phytoremediation. This study investigated whether Grime's competitor/stress-tolerator/ruderal (CSR) theory could be used to describe the impact of cadmium (Cd) and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the assembly of soil-bacterial communities using Illumina 16S rRNA profiling and the predictive metagenomic-profiling program, PICRUSt. Using predictions based on CSR theory, we hypothesized that Cd and the presence of a rhizosphere would affect community assembly. We predicted that the additional resource availability in the rhizosphere would enrich for competitive life strategists, while the presence of Cd would select for stress-tolerators. Traits identified as competitive followed CSR predictions, discriminating between rhizosphere and bulk-soil communities whilst stress-tolerance traits increased with Cd dose, but only in bulk-soil communities. These findings suggest that a bacterium's competitive attributes are critical to its ability to occupy and proliferate in a Cd-contaminated rhizosphere. Ruderal traits, which relate to community re-colonization potential, were synergistically decreased by the presence of the rhizosphere and Cd dose. Taken together this microcosm study suggests that the CSR theory is broadly applicable to microbial communities. Further work toward developing a simplified and robust strategy for microbial CSR classification will provide an ecologically meaningful framework to interpret community-level changes across a range of biomes.

  16. The Microbiology of Subsurface, Salt-Based Nuclear Waste Repositories: Using Microbial Ecology, Bioenergetics, and Projected Conditions to Help Predict Microbial Effects on Repository Performance

    International Nuclear Information System (INIS)

    Swanson, Juliet S.; Cherkouk, Andrea; Arnold, Thuro; Meleshyn, Artur; Reed, Donald T.

    2016-01-01

    This report summarizes the potential role of microorganisms in salt-based nuclear waste repositories using available information on the microbial ecology of hypersaline environments, the bioenergetics of survival under high ionic strength conditions, and ''repository microbiology'' related studies. In areas where microbial activity is in question, there may be a need to shift the research focus toward feasibility studies rather than studies that generate actual input for performance assessments. In areas where activity is not necessary to affect performance (e.g., biocolloid transport), repository-relevant data should be generated. Both approaches will lend a realistic perspective to a safety case/performance scenario that will most likely underscore the conservative value of that case.

  17. The Microbiology of Subsurface, Salt-Based Nuclear Waste Repositories: Using Microbial Ecology, Bioenergetics, and Projected Conditions to Help Predict Microbial Effects on Repository Performance

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Juliet S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf (Germany); Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf (Germany); Meleshyn, Artur [Gesellschaft fur Anlagen und Reaktorsicherheit, Braunschweig (Germany); Reed, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    This report summarizes the potential role of microorganisms in salt-based nuclear waste repositories using available information on the microbial ecology of hypersaline environments, the bioenergetics of survival under high ionic strength conditions, and “repository microbiology” related studies. In areas where microbial activity is in question, there may be a need to shift the research focus toward feasibility studies rather than studies that generate actual input for performance assessments. In areas where activity is not necessary to affect performance (e.g., biocolloid transport), repository-relevant data should be generated. Both approaches will lend a realistic perspective to a safety case/performance scenario that will most likely underscore the conservative value of that case.

  18. Soil amendments improve microbial ecology parameters of "topsoil inoculum" used in post-mining restoration

    Science.gov (United States)

    Kumaresan, Deepak; Munoz-Rojas, Miriam; Moreira-Grez, Benjamin; Kariman, Khalil; Whiteley, Andrew

    2017-04-01

    Mine operations generate substantial volumes of waste substrates, which are crushed and/or chemically treated waste rock from which ores are extracted. Establishment of rehabilitated landforms using post-mining substrates (i.e. waste rocks, tailings) that typically exhibit extreme conditions (such as high pH, nutrient deficiency, excessive salinity and metal toxicity) can be a major environmental problem and a critical issue during mine closure operations. More importantly, mine sites are located predominantly in arid or semi-arid lands where our understanding of basic ecosystem processes and microbial interactions with native plants (e.g. Eucalyptus spp., Acacia spp., Grevillea spp. in Western Australia) are limited. Despite the wide acknowledgement on the impact of microbial functional diversity on overall soil and plant health, no detailed attention has been paid to understand the role of belowground microbial functional diversity in the context of mine rehabilitation strategies. In this research, we investigated the role of nitrogen-based and microbial consortia amendments on improving the microbial ecology parameters of "topsoil inoculum" and subsequently its cascading effect on seedling establishment and plant morphology of Acacia ancistrocarpa, a legume native to the Pilbara and other regions of Western Australia and commonly used in arid zone restoration. The study was conducted under controlled environmental conditions in potted plants using topsoil retrieved from previously stockpiled material as growth media. A morphological assessment was undertaken to measure shoot length, shoot weight, root length, root area and root weight. Soil chemical properties, e.g. carbon, nitrogen and trace metals concentrations were determined Microbial activity was measured with the 1-day CO2 test, which determines soil microbial respiration rate based on the measurement of the CO2 burst produced after moistening dry soil (Muñoz-Rojas et al., 2016). Bacterial and archaeal

  19. Soil ecology of a rock outcrop ecosystem: Abiotic stresses, soil respiration, and microbial community profiles in limestone cedar glades

    Science.gov (United States)

    Cartwright, Jennifer M.; Advised by Dzantor, E. Kudjo

    2015-01-01

    Limestone cedar glades are a type of rock outcrop ecosystem characterized by shallow soil and extreme hydrologic conditions—seasonally ranging from xeric to saturated—that support a number of plant species of conservation concern. Although a rich botanical literature exists on cedar glades, soil biochemical processes and the ecology of soil microbial communities in limestone cedar glades have largely been ignored. This investigation documents the abiotic stress regime of this ecosystem (shallow soil, extreme hydrologic fluctuations and seasonally high soil surface temperatures) as well as soil physical and chemical characteristics, and relates both types of information to ecological structures and functions including vegetation, soil respiration, and soil microbial community metabolic profiles and diversity. Methods used in this investigation include field observations and measurements of soil physical and chemical properties and processes, laboratory analyses, and microbiological assays of soil samples.

  20. Dietary marker effects on fecal microbial ecology, fecal VFA, nutrient digestibility coefficients, and growth performance in finishing pigs.

    Science.gov (United States)

    Kerr, B J; Weber, T E; Ziemer, C J

    2015-05-01

    Use of indigestible markers such as Cr2O3, Fe2O3, and TiO2 are commonly used in animal studies to evaluate digesta rate of passage and nutrient digestibility. Yet, the potential impact of indigestible markers on fecal microbial ecology and subsequent VFA generation is not known. Two experiments utilizing a total of 72 individually fed finishing pigs were conducted to describe the impact of dietary markers on fecal microbial ecology, fecal ammonia and VFA concentrations, nutrient digestibility, and pig performance. All pigs were fed a common diet with no marker or with 0.5% Cr2O3, Fe2O3, or TiO2. In Exp. 1, after 33 d of feeding, fresh fecal samples were collected for evaluation of microbial ecology, fecal ammonia and VFA concentrations, and nutrient digestibility, along with measures of animal performance. No differences were noted in total microbes or bacterial counts in pig feces obtained from pigs fed the different dietary markers while Archaea counts were decreased (P = 0.07) in feces obtained from pigs fed the diet containing Fe2O 3compared to pigs fed the control diet. Feeding Cr2O3, Fe2O3, or TiO2 increased fecal bacterial richness (P = 0.03, 0.01, and 0.10; respectively) when compared to pigs fed diets containing no marker, but no dietary marker effects were noted on fecal microbial evenness or the Shannon-Wiener index. Analysis of denaturing gradient gel electrophoresis gels did not reveal band pattern alterations due to inclusion of dietary markers in pig diets. There was no effect of dietary marker on fecal DM, ammonia, or VFA concentrations. Pigs fed diets containing Cr2O3 had greater Ca, Cu, Fe, and P (P ≤ 0.02), but lower Ti ( P= 0.08) digestibility compared to pigs fed the control diet. Pigs fed diets containing Fe2O3 had greater Ca (P = 0.08) but lower Ti (P = 0.01) digestibility compared to pigs fed the control diet. Pigs fed diets containing TiO2 had greater Fe and Zn (P ≤ 0.09), but lower Ti ( P= 0.01) digestibility compared to pigs fed the

  1. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.

    Science.gov (United States)

    Bibby, Kyle

    2014-02-01

    The recent rise in "omics"-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases-currently, only 0.001% of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.

  2. Microbial ecology-based methods to characterize the bacterial communities of non-model insects.

    Science.gov (United States)

    Prosdocimi, Erica M; Mapelli, Francesca; Gonella, Elena; Borin, Sara; Crotti, Elena

    2015-12-01

    Among the animals of the Kingdom Animalia, insects are unparalleled for their widespread diffusion, diversity and number of occupied ecological niches. In recent years they have raised researcher interest not only because of their importance as human and agricultural pests, disease vectors and as useful breeding species (e.g. honeybee and silkworm), but also because of their suitability as animal models. It is now fully recognized that microorganisms form symbiotic relationships with insects, influencing their survival, fitness, development, mating habits and the immune system and other aspects of the biology and ecology of the insect host. Thus, any research aimed at deepening the knowledge of any given insect species (perhaps species of applied interest or species emerging as novel pests or vectors) must consider the characterization of the associated microbiome. The present review critically examines the microbiology and molecular ecology techniques that can be applied to the taxonomical and functional analysis of the microbiome of non-model insects. Our goal is to provide an overview of current approaches and methods addressing the ecology and functions of microorganisms and microbiomes associated with insects. Our focus is on operational details, aiming to provide a concise guide to currently available advanced techniques, in an effort to extend insect microbiome research beyond simple descriptions of microbial communities. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Microbial ecology of deep-sea hypersaline anoxic basins

    KAUST Repository

    Merlino, Giuseppe

    2018-05-09

    Deep hypersaline anoxic basins (DHABs) are unique water bodies occurring within fractures at the bottom of the sea, where the dissolution of anciently buried evaporites created dense anoxic brines that are separated by a chemocline/pycnocline from the overlying oxygenated deep-seawater column. DHABs have been described in the Gulf of Mexico, the Mediterranean Sea, the Black Sea and the Red Sea. They are characterized by prolonged historical separation of the brines from the upper water column due to lack of mixing and by extreme conditions of salinity, anoxia, and relatively high hydrostatic pressure and temperatures. Due to these combined selection factors, unique microbial assemblages thrive in these polyextreme ecosystems. The topological localization of the different taxa in the brine-seawater transition zone coupled with the metabolic interactions and niche adaptations determine the metabolic functioning and biogeochemistry of DHABs. In particular, inherent metabolic strategies accompanied by genetic adaptations have provided insights on how prokaryotic communities can adapt to salt-saturated condition. Here, we review the current knowledge on the diversity, genomics, metabolisms and ecology of prokaryotes in DHABs.

  4. CMEIAS bioimage informatics that define the landscape ecology of immature microbial biofilms developed on plant rhizoplane surfaces

    Directory of Open Access Journals (Sweden)

    Frank B Dazzo

    2015-10-01

    Full Text Available Colonization of the rhizoplane habitat is an important activity that enables certain microorganisms to promote plant growth. Here we describe various types of computer-assisted microscopy that reveal important ecological insights of early microbial colonization behavior within biofilms on plant root surfaces grown in soil. Examples of the primary data are obtained by analysis of processed images of rhizoplane biofilm landscapes analyzed at single-cell resolution using the emerging technology of CMEIAS bioimage informatics software. Included are various quantitative analyses of the in situ biofilm landscape ecology of microbes during their pioneer colonization of white clover roots, and of a rhizobial biofertilizer strain colonized on rice roots where it significantly enhances the productivity of this important crop plant. The results show that spatial patterns of immature biofilms developed on rhizoplanes that interface rhizosphere soil are highly structured (rather than distributed randomly when analyzed at the appropriate spatial scale, indicating that regionalized microbial cell-cell interactions and the local environment can significantly affect their cooperative and competitive colonization behaviors.

  5. Ananke: temporal clustering reveals ecological dynamics of microbial communities

    Directory of Open Access Journals (Sweden)

    Michael W. Hall

    2017-09-01

    Full Text Available Taxonomic markers such as the 16S ribosomal RNA gene are widely used in microbial community analysis. A common first step in marker-gene analysis is grouping genes into clusters to reduce data sets to a more manageable size and potentially mitigate the effects of sequencing error. Instead of clustering based on sequence identity, marker-gene data sets collected over time can be clustered based on temporal correlation to reveal ecologically meaningful associations. We present Ananke, a free and open-source algorithm and software package that complements existing sequence-identity-based clustering approaches by clustering marker-gene data based on time-series profiles and provides interactive visualization of clusters, including highlighting of internal OTU inconsistencies. Ananke is able to cluster distinct temporal patterns from simulations of multiple ecological patterns, such as periodic seasonal dynamics and organism appearances/disappearances. We apply our algorithm to two longitudinal marker gene data sets: faecal communities from the human gut of an individual sampled over one year, and communities from a freshwater lake sampled over eleven years. Within the gut, the segregation of the bacterial community around a food-poisoning event was immediately clear. In the freshwater lake, we found that high sequence identity between marker genes does not guarantee similar temporal dynamics, and Ananke time-series clusters revealed patterns obscured by clustering based on sequence identity or taxonomy. Ananke is free and open-source software available at https://github.com/beiko-lab/ananke.

  6. 'Everything is everywhere: but the environment selects': ubiquitous distribution and ecological determinism in microbial biogeography.

    Science.gov (United States)

    O'Malley, Maureen A

    2008-09-01

    Recent discoveries of geographical patterns in microbial distribution are undermining microbiology's exclusively ecological explanations of biogeography and their fundamental assumption that 'everything is everywhere: but the environment selects'. This statement was generally promulgated by Dutch microbiologist Martinus Wilhelm Beijerinck early in the twentieth century and specifically articulated in 1934 by his compatriot, Lourens G. M. Baas Becking. The persistence of this precept throughout twentieth-century microbiology raises a number of issues in relation to its formulation and widespread acceptance. This paper will trace the conceptual history of Beijerinck's claim that 'everything is everywhere' in relation to a more general account of its theoretical, experimental and institutional context. His principle also needs to be situated in relationship to plant and animal biogeography, which, this paper will argue, forms a continuum of thought with microbial biogeography. Finally, a brief overview of the contemporary microbiological research challenging 'everything is everywhere' reveals that philosophical issues from Beijerinck's era of microbiology still provoke intense discussion in twenty-first century investigations of microbial biogeography.

  7. 'TIME': A Web Application for Obtaining Insights into Microbial Ecology Using Longitudinal Microbiome Data.

    Science.gov (United States)

    Baksi, Krishanu D; Kuntal, Bhusan K; Mande, Sharmila S

    2018-01-01

    Realization of the importance of microbiome studies, coupled with the decreasing sequencing cost, has led to the exponential growth of microbiome data. A number of these microbiome studies have focused on understanding changes in the microbial community over time. Such longitudinal microbiome studies have the potential to offer unique insights pertaining to the microbial social networks as well as their responses to perturbations. In this communication, we introduce a web based framework called 'TIME' (Temporal Insights into Microbial Ecology'), developed specifically to obtain meaningful insights from microbiome time series data. The TIME web-server is designed to accept a wide range of popular formats as input with options to preprocess and filter the data. Multiple samples, defined by a series of longitudinal time points along with their metadata information, can be compared in order to interactively visualize the temporal variations. In addition to standard microbiome data analytics, the web server implements popular time series analysis methods like Dynamic time warping, Granger causality and Dickey Fuller test to generate interactive layouts for facilitating easy biological inferences. Apart from this, a new metric for comparing metagenomic time series data has been introduced to effectively visualize the similarities/differences in the trends of the resident microbial groups. Augmenting the visualizations with the stationarity information pertaining to the microbial groups is utilized to predict the microbial competition as well as community structure. Additionally, the 'causality graph analysis' module incorporated in TIME allows predicting taxa that might have a higher influence on community structure in different conditions. TIME also allows users to easily identify potential taxonomic markers from a longitudinal microbiome analysis. We illustrate the utility of the web-server features on a few published time series microbiome data and demonstrate the

  8. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.

    Science.gov (United States)

    Larsson, Erik; Tremaroli, Valentina; Lee, Ying Shiuan; Koren, Omry; Nookaew, Intawat; Fricker, Ashwana; Nielsen, Jens; Ley, Ruth E; Bäckhed, Fredrik

    2012-08-01

    The gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.

  9. Microbiology Meets Archaeology: Soil Microbial Communities Reveal Different Human Activities at Archaic Monte Iato (Sixth Century BC).

    Science.gov (United States)

    Margesin, Rosa; Siles, José A; Cajthaml, Tomas; Öhlinger, Birgit; Kistler, Erich

    2017-05-01

    Microbial ecology has been recognized as useful in archaeological studies. At Archaic Monte Iato in Western Sicily, a native (indigenous) building was discovered. The objective of this study was the first examination of soil microbial communities related to this building. Soil samples were collected from archaeological layers at a ritual deposit (food waste disposal) in the main room and above the fireplace in the annex. Microbial soil characterization included abundance (cellular phospholipid fatty acids (PLFA), viable bacterial counts), activity (physiological profiles, enzyme activities of viable bacteria), diversity, and community structure (bacterial and fungal Illumina amplicon sequencing, identification of viable bacteria). PLFA-derived microbial abundance was lower in soils from the fireplace than in soils from the deposit; the opposite was observed with culturable bacteria. Microbial communities in soils from the fireplace had a higher ability to metabolize carboxylic and acetic acids, while those in soils from the deposit metabolized preferentially carbohydrates. The lower deposit layer was characterized by higher total microbial and bacterial abundance and bacterial richness and by a different carbohydrate metabolization profile compared to the upper deposit layer. Microbial community structures in the fireplace were similar and could be distinguished from those in the two deposit layers, which had different microbial communities. Our data confirmed our hypothesis that human consumption habits left traces on microbiota in the archaeological evidence; therefore, microbiological residues as part of the so-called ecofacts are, like artifacts, key indicators of consumer behavior in the past.

  10. Fine-scale distribution patterns of Synechococcus ecological diversity in the microbial mats of Mushroom Spring, Yellowstone National Park

    DEFF Research Database (Denmark)

    Becraft, E.; Cohan, F.; Kühl, Michael

    2011-01-01

    Past analyses of sequence diversity in high-resolution protein-encoding genes have identified putative ecological species of unicellular cyanobacteria in the genus Synechococcus, which are specialized to 60°C but not 65°C in Mushroom Spring microbial mats. Because these studies were limited to only...

  11. Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Min, Booki; Huang, L.

    2009-01-01

    Electricity generation from wheat straw hydrolysate and the microbial ecology of electricity producing microbial communities developed in two chamber microbial fuel cells (MFCs) were investigated. Power density reached 123 mW/m2 with an initial hydrolysate concentration of 1000 mg-COD/L while...

  12. Genome-resolved metagenomics reveals that sulfur metabolism dominates the microbial ecology of rising hydrothermal plumes

    Science.gov (United States)

    Anantharaman, K.; Breier, J. A., Jr.; Jain, S.; Reed, D. C.; Dick, G.

    2015-12-01

    Deep-sea hydrothermal plumes occur when hot fluids from hydrothermal vents replete with chemically reduced elements and compounds like sulfide, methane, hydrogen, ammonia, iron and manganese mix with cold, oxic seawater. Chemosynthetic microbes use these reduced chemicals to power primary production and are pervasive throughout the deep sea, even at sites far removed from hydrothermal vents. Although neutrally-buoyant hydrothermal plumes have been well-studied, rising hydrothermal plumes have received little attention even though they represent an important interface in the deep-sea where microbial metabolism and particle formation processes control the transformation of important elements and impact global biogeochemical cycles. In this study, we used genome-resolved metagenomic analyses and thermodynamic-bioenergetic modeling to study the microbial ecology of rising hydrothermal plumes at five different hydrothermal vents spanning a range of geochemical gradients at the Eastern Lau Spreading Center (ELSC) in the Western Pacific Ocean. Our analyses show that differences in the geochemistry of hydrothermal vents do not manifest in microbial diversity and community composition, both of which display only minor variance across ELSC hydrothermal plumes. Microbial metabolism is dominated by oxidation of reduced sulfur species and supports a diversity of bacteria, archaea and viruses that provide intriguing insights into metabolic plasticity and virus-mediated horizontal gene transfer in the microbial community. The manifestation of sulfur oxidation genes in hydrogen and methane oxidizing organisms hints at metabolic opportunism in deep-sea microbes that would enable them to respond to varying redox conditions in hydrothermal plumes. Finally, we infer that the abundance, diversity and metabolic versatility of microbes associated with sulfur oxidation impart functional redundancy that could allow it to persist in the dynamic settings of hydrothermal plumes.

  13. Application of Sequence-based Methods in Human MicrobialEcology

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Li; Rubin, Edward M.; Bristow, James

    2005-08-29

    Ecologists studying microbial life in the environment have recognized the enormous complexity of microbial diversity for many years, and the development of a variety of culture-independent methods, many of them coupled with high-throughput DNA sequencing, has allowed this diversity to be explored in ever greater detail. Despite the widespread application of these new techniques to the characterization of uncultivated microbes and microbial communities in the environment, their application to human health and disease has lagged behind. Because DNA based-techniques for defining uncultured microbes allow not only cataloging of microbial diversity, but also insight into microbial functions, investigators are beginning to apply these tools to the microbial communities that abound on and within us, in what has aptly been called the second Human Genome Project. In this review we discuss the sequence-based methods for microbial analysis that are currently available and their application to identify novel human pathogens, improve diagnosis of known infectious diseases, and to advance understanding of our relationship with microbial communities that normally reside in and on the human body.

  14. Targeting Unknowns Just Underfoot: Microbial Ecology and Community Genomics of C Cycling in Soil Informed and Enabled with DNA-SIP

    Science.gov (United States)

    Pepe-Ranney, C. P.; Campbell, A.; Buckley, D. H.

    2015-12-01

    Microorganisms drive biogeochemical cycles and because soil is a large global carbon (C) reservoir (soil contains more C than plants and the atmosphere combined), soil microorganisms are important players in the global C-cycle. Frustratingly, however, many soil microorganisms resist cultivation and soil communities are astoundingly complex. This makes soil microbiology difficult to study and without a solid understanding of soil microbial ecology, models of soil C feedbacks to climate change are under-informed. Stable isotope probing (SIP) is a useful approach for establishing identity-function connections in microbial communities but has been challenging to employ in soil due to the inadequate resolution of microbial community fingerprinting techniques. High throughput DNA sequencing improves SIP resolving power transforming it into a powerful tool for studying the soil C cycle. We conducted a DNA-SIP experiment to track flow of xylose-C, a labile component of plant biomass, and cellulose-C, the most abundant global biopolymer, through a soil microbial community. We could track 13C into microbial DNA even when added 13C amounted to less than 5% of native C and found Spartobacteria, Chloroflexi, and Planctomycetes taxa were among those that assimilated 13C cellulose. These lineages are cosmopolitan in soil but little is known of their ecophysiology. By profiling SSU rRNA genes across entire DNA-SIP density gradients, we assessed relative DNA atom % 13C per taxon in 13C treatments and found cellulose degraders exhibited signal consistent with a specialist lifestyle with respect to C preference. Further, DNA-SIP enriches DNA of targeted microorganisms (Verrucomicrobia cellulose degraders were enriched by nearly two orders of magnitude) and this enriched DNA can serve as template for community genomics. We produced draft genomes from soil cellulose degraders including microorganisms belonging to Verrucomicrobia, Chloroflexi, and Planctomycetes from SIP enriched DNA

  15. Microbial ecology and biogeochemistry of continental Antarctic soils.

    Science.gov (United States)

    Cowan, Don A; Makhalanyane, Thulani P; Dennis, Paul G; Hopkins, David W

    2014-01-01

    The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbor microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths) possess a genetic capacity for nitrogen and carbon cycling, polymer degradation, and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  16. Microbial Communities as Environmental Indicators of Ecological Disturbance in Restored Carbonate Fen-Results of 10 Years of Studies.

    Science.gov (United States)

    Mieczan, Tomasz; Tarkowska-Kukuryk, Monika

    2017-08-01

    Interactions between bacteria and protists are essential to the ecosystem ecology of fens. Until now, however, there has been almost no information on how restoration procedures in carbonate fens affect the functioning of microbial food webs. Changes in vegetation patterns resulting from restoration may take years to be observed, whereas microbial processes display effects even after short-term exposure to changes in environmental conditions caused by restoration. Therefore, microbial processes and patterns can be used as sensitive indicators of changes in environmental conditions. The present study attempts to verify the hypothesis that the species richness and abundance of microbial loop components would differ substantially before and after restoration. The effect of restoration processes on the functioning of the food web was investigated for a 10 years in a carbonate-rich fen, before and after restoration. The restoration procedure (particularly the improvement in hydrological conditions) distinctly modified the taxonomic composition and functioning of microbial food webs. This is reflected in the increased abundance and diversity of testate amoeba, i.e. top predators, within the microbial food web and in the pronounced increase in the abundance of bacteria. This study suggests potential use of microbial loop components as bio-indicators and bio-monitoring tools for hydrological status of fens and concentrations of nutrients. Better understanding of what regulates microbial populations and activity in fens and unravelling of these fundamental mechanisms are particularly critical in order to more accurately predict how fens will respond to global change or anthropogenic disturbances.

  17. Microbial ecology and biogeochemistry of continental Antarctic soils

    Directory of Open Access Journals (Sweden)

    Don A Cowan

    2014-04-01

    Full Text Available The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbour microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths possess a genetic capacity for nitrogen and carbon cycling, polymer degradation and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  18. CMEIAS color segmentation: an improved computing technology to process color images for quantitative microbial ecology studies at single-cell resolution.

    Science.gov (United States)

    Gross, Colin A; Reddy, Chandan K; Dazzo, Frank B

    2010-02-01

    Quantitative microscopy and digital image analysis are underutilized in microbial ecology largely because of the laborious task to segment foreground object pixels from background, especially in complex color micrographs of environmental samples. In this paper, we describe an improved computing technology developed to alleviate this limitation. The system's uniqueness is its ability to edit digital images accurately when presented with the difficult yet commonplace challenge of removing background pixels whose three-dimensional color space overlaps the range that defines foreground objects. Image segmentation is accomplished by utilizing algorithms that address color and spatial relationships of user-selected foreground object pixels. Performance of the color segmentation algorithm evaluated on 26 complex micrographs at single pixel resolution had an overall pixel classification accuracy of 99+%. Several applications illustrate how this improved computing technology can successfully resolve numerous challenges of complex color segmentation in order to produce images from which quantitative information can be accurately extracted, thereby gain new perspectives on the in situ ecology of microorganisms. Examples include improvements in the quantitative analysis of (1) microbial abundance and phylotype diversity of single cells classified by their discriminating color within heterogeneous communities, (2) cell viability, (3) spatial relationships and intensity of bacterial gene expression involved in cellular communication between individual cells within rhizoplane biofilms, and (4) biofilm ecophysiology based on ribotype-differentiated radioactive substrate utilization. The stand-alone executable file plus user manual and tutorial images for this color segmentation computing application are freely available at http://cme.msu.edu/cmeias/ . This improved computing technology opens new opportunities of imaging applications where discriminating colors really matter most

  19. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    OpenAIRE

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Usin...

  20. Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities.

    Science.gov (United States)

    Liu, Jun; He, Xiao-Xin; Lin, Xue-Rui; Chen, Wen-Ce; Zhou, Qi-Xing; Shu, Wen-Sheng; Huang, Li-Nan

    2015-06-02

    The crude processing of electronic waste (e-waste) has led to serious contamination in soils. While microorganisms may play a key role in remediation of the contaminated soils, the ecological effects of combined pollution (heavy metals, polychlorinated biphenyls, and polybrominated diphenyl ethers) on the composition and diversity of microbial communities remain unknown. In this study, a suite of e-waste contaminated soils were collected from Guiyu, China, and the indigenous microbial assemblages were profiled by 16S rRNA high-throughput sequencing and clone library analysis. Our data revealed significant differences in microbial taxonomic composition between the contaminated and the reference soils, with Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes dominating the e-waste-affected communities. Genera previously identified as organic pollutants-degrading bacteria, such as Acinetobacter, Pseudomonas, and Alcanivorax, were frequently detected. Canonical correspondence analysis revealed that approximately 70% of the observed variation in microbial assemblages in the contaminated soils was explained by eight environmental variables (including soil physiochemical parameters and organic pollutants) together, among which moisture content, decabromodiphenyl ether (BDE-209), and copper were the major factors. These results provide the first detailed phylogenetic look at the microbial communities in e-waste contaminated soils, demonstrating that the complex combined pollution resulting from improper e-waste recycling may significantly alter soil microbiota.

  1. Microbial ecology of hot desert edaphic systems.

    Science.gov (United States)

    Makhalanyane, Thulani P; Valverde, Angel; Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Cowan, Don A

    2015-03-01

    A significant proportion of the Earth's surface is desert or in the process of desertification. The extreme environmental conditions that characterize these areas result in a surface that is essentially barren, with a limited range of higher plants and animals. Microbial communities are probably the dominant drivers of these systems, mediating key ecosystem processes. In this review, we examine the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly. We also assess the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms. We conclude by discussing current gaps in our understanding of the microbiology of hot deserts and suggest fruitful avenues for future research. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The ecology and biogeochemistry of stream biofilms.

    Science.gov (United States)

    Battin, Tom J; Besemer, Katharina; Bengtsson, Mia M; Romani, Anna M; Packmann, Aaron I

    2016-04-01

    Streams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribute substantially to global biogeochemical fluxes. In turn, water flow and related deliveries of nutrients and organic matter to biofilms constitute major constraints on microbial life. In this Review, we describe the ecology and biogeochemistry of stream biofilms and highlight the influence of physical and ecological processes on their structure and function. Recent advances in the study of biofilm ecology may pave the way towards a mechanistic understanding of the effects of climate and environmental change on stream biofilms and the biogeochemistry of stream ecosystems.

  3. MUWS (Microbiology in Urban Water Systems – an interdisciplinary approach to study microbial communities in urban water systems

    Directory of Open Access Journals (Sweden)

    P. Deines

    2010-07-01

    Full Text Available Microbiology in Urban Water Systems (MUWS is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems and sewer networks are both large, highly interconnected, dynamic, subject to time and varying inputs and demands, and difficult to control. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance within urban water infrastructure systems is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we ultimately aim to link microbial community abundance, diversity and function to physical and engineering variables so that novel insights into the performance and management of both water distribution systems and sewer networks can be explored. By presenting the details and principals behind the molecular microbiological techniques that we use, this paper demonstrates the potential of an integrated approach to better understand how urban water system function, and so meet future challenges.

  4. Different Land Use Intensities in Grassland Ecosystems Drive Ecology of Microbial Communities Involved in Nitrogen Turnover in Soil

    OpenAIRE

    Meyer, Annabel; Focks, Andreas; Radl, Viviane; Keil, Daniel; Welzl, Gerhard; Sch?ning, Ingo; Boch, Steffen; Marhan, Sven; Kandeler, Ellen; Schloter, Michael

    2013-01-01

    Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions,...

  5. Microbial ecology of a crude oil contaminated aquifer

    Science.gov (United States)

    Bekins, B.A.; Cozzarelli, I.M.; Warren, E.; Godsy, E.M.

    2002-01-01

    Detailed microbial analyses of a glacial outwash aquifer contaminated by crude oil provide insights into the pattern of microbial succession from iron reducing to methanogenic in the anaerobic portion of the contaminant plume. We analysed sediments from this area for populations of aerobes, iron reducers, fermenters and methanogens, using the most probable number method. On the basis of the microbial data the anaerobic area can be divided into distinct physiological zones dominated by either iron-reducers or a consortium of fermenters and methanogens. Chemistry and permeability data show that methanogenic conditions develop first in areas of high hydrocarbon flux. Thus, we find methanogens both in high permeability horizons and also where separate-phase crude oil is present in either the saturated or unsaturated zone. Microbial numbers peak at the top of the separate-phase oil suggesting that growth is most rapid in locations with access to both hydrocarbons and nutrients infiltrating from the surface.

  6. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments.

    Science.gov (United States)

    Díaz-Muñoz, Samuel L

    2017-01-01

    Infection of more than one virus in a host, coinfection, is common across taxa and environments. Viral coinfection can enable genetic exchange, alter the dynamics of infections, and change the course of viral evolution. Yet, a systematic test of the factors explaining variation in viral coinfection across different taxa and environments awaits completion. Here I employ three microbial data sets of virus-host interactions covering cross-infectivity, culture coinfection, and single-cell coinfection (total: 6,564 microbial hosts, 13,103 viruses) to provide a broad, comprehensive picture of the ecological and biological factors shaping viral coinfection. I found evidence that ecology and virus-virus interactions are recurrent factors shaping coinfection patterns. Host ecology was a consistent and strong predictor of coinfection across all three data sets: cross-infectivity, culture coinfection, and single-cell coinfection. Host phylogeny or taxonomy was a less consistent predictor, being weak or absent in the cross-infectivity and single-cell coinfection models, yet it was the strongest predictor in the culture coinfection model. Virus-virus interactions strongly affected coinfection. In the largest test of superinfection exclusion to date, prophage sequences reduced culture coinfection by other prophages, with a weaker effect on extrachromosomal virus coinfection. At the single-cell level, prophage sequences eliminated coinfection. Virus-virus interactions also increased culture coinfection with ssDNA-dsDNA coinfections >2× more likely than ssDNA-only coinfections. The presence of CRISPR spacers was associated with a ∼50% reduction in single-cell coinfection in a marine bacteria, despite the absence of exact spacer matches in any active infection. Collectively, these results suggest the environment bacteria inhabit and the interactions among surrounding viruses are two factors consistently shaping viral coinfection patterns. These findings highlight the role of

  7. An assessment of the hypervariable domains of the 16S rRNA genes for their value in determining microbial community diversity: the paradox of traditional ecological indices.

    Science.gov (United States)

    Mills, DeEtta K; Entry, James A; Voss, Joshua D; Gillevet, Patrick M; Mathee, Kalai

    2006-09-01

    Amplicon length heterogeneity PCR (LH-PCR) was investigated for its ability to distinguish between microbial community patterns from the same soil type under different land management practices. Natural sagebrush and irrigated mouldboard-ploughed soils from Idaho were queried as to which hypervariable domains, or combinations of 16S rRNA gene domains, were the best molecular markers. Using standard ecological indices to measure richness, diversity and evenness, the combination of three domains, V1, V3 and V1+V2, or the combined V1 and V3 domains were the markers that could best distinguish the undisturbed natural sagebrush communities from the mouldboard-ploughed microbial communities. Bray-Curtis similarity and multidimensional scaling were found to be better metrics to ordinate and cluster the LH-PCR community profiling data. The use/misuse of traditional ecological indices such as diversity and evenness to study microbial community profiles will remain a major point to consider when performing metagenomic studies.

  8. 2009 MICROBIAL POPULATION BIOLOGY GORDON RESEARCH CONFERENCES JULY 19-24,2009

    Energy Technology Data Exchange (ETDEWEB)

    ANTHONY DEAN

    2009-07-24

    The 2009 Gordon Conference on Microbial Population Biology will cover a diverse range of cutting edge issues in the microbial sciences and beyond. Firmly founded in evolutionary biology and with a strongly integrative approach, past Conferences have covered a range of topics from the dynamics and genetics of adaptation to the evolution of mutation rate, community ecology, evolutionary genomics, altruism, and epidemiology. The 2009 Conference is no exception, and will include sessions on the evolution of infectious diseases, social evolution, the evolution of symbioses, experimental evolution, adaptive landscapes, community dynamics, and the evolution of protein structure and function. While genomic approaches continue to make inroads, broadening our knowledge and encompassing new questions, the conference will also emphasize the use of experimental approaches to test hypotheses decisively. As in the past, this Conference provides young scientists and graduate students opportunities to present their work in poster format and exchange ideas with leading investigators from a broad spectrum of disciplines. This meeting is never dull: some of the most significant and contentious issues in biology have been thrashed out here. The 2009 meeting will be no exception.

  9. Studies of effects of closed microbial ecology. Report of 180-day test period

    Science.gov (United States)

    Kenyon, A. J.

    1972-01-01

    Experiments were performed to determine the influence closed microbial ecologies have on modification or simplification of natural intestinal flora of ferrets in a closed environmental system. On the basis of previous tests in which certain species (Salmonella and Bacteroides) were decreased at 90 days of enclosure, a second trial was constructed for 180-day tests. In this trial there was little difference in the 8 major classes of intestinal flora between animals in the Open and Closed environmental groups except for the level of Lactobacillus. It is of extreme importance to note that when both Open and Closed groups contracted hemorrhagic gastritis, the interrelationship of this agent with other intestinal flora produced a more profound effect on animals from the Closed Group, particularly with reference to Lactobacillus levels.

  10. Reverse Ecology: from systems to environments and back.

    Science.gov (United States)

    Levy, Roie; Borenstein, Elhanan

    2012-01-01

    The structure of complex biological systems reflects not only their function but also the environments in which they evolved and are adapted to. Reverse Ecology-an emerging new frontier in Evolutionary Systems Biology-aims to extract this information and to obtain novel insights into an organism's ecology. The Reverse Ecology framework facilitates the translation of high-throughput genomic data into large-scale ecological data, and has the potential to transform ecology into a high-throughput field. In this chapter, we describe some of the pioneering work in Reverse Ecology, demonstrating how system-level analysis of complex biological networks can be used to predict the natural habitats of poorly characterized microbial species, their interactions with other species, and universal patterns governing the adaptation of organisms to their environments. We further present several studies that applied Reverse Ecology to elucidate various aspects of microbial ecology, and lay out exciting future directions and potential future applications in biotechnology, biomedicine, and ecological engineering.

  11. Lineage-specific responses of microbial communities to environmental change.

    Science.gov (United States)

    Youngblut, Nicholas D; Shade, Ashley; Read, Jordan S; McMahon, Katherine D; Whitaker, Rachel J

    2013-01-01

    A great challenge facing microbial ecology is how to define ecologically relevant taxonomic units. To address this challenge, we investigated how changing the definition of operational taxonomic units (OTUs) influences the perception of ecological patterns in microbial communities as they respond to a dramatic environmental change. We used pyrosequenced tags of the bacterial V2 16S rRNA region, as well as clone libraries constructed from the cytochrome oxidase C gene ccoN, to provide additional taxonomic resolution for the common freshwater genus Polynucleobacter. At the most highly resolved taxonomic scale, we show that distinct genotypes associated with the abundant Polynucleobacter lineages exhibit divergent spatial patterns and dramatic changes over time, while the also abundant Actinobacteria OTUs are highly coherent. This clearly demonstrates that different bacterial lineages demand different taxonomic definitions to capture ecological patterns. Based on the temporal distribution of highly resolved taxa in the hypolimnion, we demonstrate that change in the population structure of a single genotype can provide additional insight into the mechanisms of community-level responses. These results highlight the importance and feasibility of examining ecological change in microbial communities across taxonomic scales while also providing valuable insight into the ecological characteristics of ecologically coherent groups in this system.

  12. Nitrification inhibition by hexavalent chromium Cr(VI)--Microbial ecology, gene expression and off-gas emissions.

    Science.gov (United States)

    Kim, Young Mo; Park, Hongkeun; Chandran, Kartik

    2016-04-01

    The goal of this study was to investigate the responses in the physiology, microbial ecology and gene expression of nitrifying bacteria to imposition of and recovery from Cr(VI) loading in a lab-scale nitrification bioreactor. Exposure to Cr(VI) in the reactor strongly inhibited nitrification performance resulting in a parallel decrease in nitrate production and ammonia consumption. Cr(VI) exposure also led to an overall decrease in total bacterial concentrations in the reactor. However, the fraction of ammonia oxidizing bacteria (AOB) decreased to a greater extent than the fraction of nitrite oxidizing bacteria (NOB). In terms of functional gene expression, a rapid decrease in the transcript concentrations of amoA gene coding for ammonia oxidation in AOB was observed in response to the Cr(VI) shock. In contrast, transcript concentrations of the nxrA gene coding for nitrite oxidation in NOB were relatively unchanged compared to Cr(VI) pre-exposure levels. Therefore, Cr(VI) exposure selectively and directly inhibited activity of AOB, which indirectly resulted in substrate (nitrite) limitation to NOB. Significantly, trends in amoA expression preceded performance trends both during imposition of and recovery from inhibition. During recovery from the Cr(VI) shock, the high ammonia concentrations in the bioreactor resulted in an irreversible shift towards AOB populations, which are expected to be more competitive in high ammonia environments. An inadvertent impact during recovery was increased emission of nitrous oxide (N2O) and nitric oxide (NO), consistent with recent findings linking AOB activity and the production of these gases. Therefore, Cr(VI) exposure elicited multiple responses on the microbial ecology, gene expression and both aqueous and gaseous nitrogenous conversion in a nitrification process. A complementary interrogation of these multiple responses facilitated an understanding of both direct and indirect inhibitory impacts on nitrification. Copyright

  13. Microbial ecology of deep-water mid-Atlantic canyons

    Science.gov (United States)

    Kellogg, Christina A.

    2011-01-01

    The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.

  14. Population genetics meets ecological genomics and community ecology in Cornus Florida

    Science.gov (United States)

    Understanding evolutionary/ecological consequences of alien pests on native forests is important to conservation. Cornus florida L. subsp. florida is an ecologically important understory tree in forests of the eastern United States but faces heavy mortality from dogwood anthracnose. Understanding ge...

  15. Microbial population changes in tropical agricultural soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... Microbial degradation is known to be an efficient process in the in ..... exhibited a great impact on the ecology of the soil by causing drastic ... city of the soil (Dibble and Bartha, 1979). Hydrocarbon .... Atlas RM (1991). Microbial ...

  16. Fourteenth-Sixteenth Microbial Genomics Conference-2006-2008

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jeffrey H

    2011-04-18

    The concept of an annual meeting on the E. coli genome was formulated at the Banbury Center Conference on the Genome of E. coli in October, 1991. The first meeting was held on September 10-14, 1992 at the University of Wisconsin, and this was followed by a yearly series of meetings, and by an expansion to include The fourteenth meeting took place September 24-28, 2006 at Lake Arrowhead, CA, the fifteenth September 16-20, 2007 at the University of Maryland, College Park, MD, and the sixteenth September 14-18, 2008 at Lake Arrowhead. The full program for the 16th meeting is attached. There have been rapid and exciting advances in microbial genomics that now make possible comparing large data sets of sequences from a wide variety of microbial genomes, and from whole microbial communities. Examining the “microbiomes”, the living microbial communities in different host organisms opens up many possibilities for understanding the landscape presented to pathogenic microorganisms. For quite some time there has been a shifting emphasis from pure sequence data to trying to understand how to use that information to solve biological problems. Towards this end new technologies are being developed and improved. Using genetics, functional genomics, and proteomics has been the recent focus of many different laboratories. A key element is the integration of different aspects of microbiology, sequencing technology, analysis techniques, and bioinformatics. The goal of these conference is to provide a regular forum for these interactions to occur. While there have been a number of genome conferences, what distinguishes the Microbial Genomics Conference is its emphasis on bringing together biology and genetics with sequencing and bioinformatics. Also, this conference is the longest continuing meeting, now established as a major regular annual meeting. In addition to its coverage of microbial genomes and biodiversity, the meetings also highlight microbial communities and the use of

  17. Differentiation in the microbial ecology and activity of suspended and attached bacteria in a nitritation-anammox process.

    Science.gov (United States)

    Park, Hongkeun; Sundar, Suneethi; Ma, Yiwei; Chandran, Kartik

    2015-02-01

    A directed differentiation between the biofilm and suspension was observed in the molecular microbial ecology and gene expression of different bacteria in a biofilm nitritation-anammox process operated at varying hydraulic residence times (HRT) and nitrogen loading rates (NLR). The highest degree of enrichment observed in the biofilm was of anaerobic ammonia-oxidizing bacteria (AMX) followed by that of Nitrospira spp. related nitrite-oxidizing bacteria (NOB). For AMX, a major shift from Candidatus "Brocadia fulgida" to Candidatus "Kuenenia stuttgartiensis" in both suspension and biofilm was observed with progressively shorter HRT, using discriminatory biomarkers targeting the hydrazine synthase (hzsA) gene. In parallel, expression of the hydrazine oxidoreductase gene (hzo), a functional biomarker for AMX energy metabolism, became progressively prominent in the biofilm. A marginal but statistically significant enrichment in the biofilm was observed for Nitrosomonas europaea related ammonia-oxidizing bacteria (AOB). In direct contrast to AMX, the gene expression of ammonia monooxygenase subunit A (amoA), a functional biomarker for AOB energy metabolism, progressively increased in suspension. Using gene expression and biomass concentration measures in conjunction, it was determined that signatures of AOB metabolism were primarily present in the biofilm throughout the study. On the other hand, AMX metabolism gradually shifted from being uniformly distributed in both the biofilm and suspension to primarily the biofilm at shorter HRTs and higher NLRs. These results therefore highlight the complexity and key differences in the microbial ecology, gene expression and activity between the biofilm and suspension of a nitritation-anammox process and the biokinetic and metabolic drivers for such niche segregation. © 2014 Wiley Periodicals, Inc.

  18. Effects of heavy metals on soil microbial community

    Science.gov (United States)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  19. Microbial ecology of Vietnamese Tra fish (Pangasius hypophthalmus) fillets during processing.

    Science.gov (United States)

    Tong Thi, Anh Ngoc; Noseda, Bert; Samapundo, Simbarashe; Nguyen, Binh Ly; Broekaert, Katrien; Rasschaert, Geertrui; Heyndrickx, Marc; Devlieghere, Frank

    2013-10-15

    There are numerous factors that can have an impact on the microbial ecology and quality of frozen Pangasius hypophthalmus fillets during processing in Vietnam. The presence of spoilage bacteria along the processing line can shorten the shelf-life of thawed frozen fish products. Therefore, the spoilage microbiota throughout the processing chain of two companies (BC: large scale factory, chlorine-based process, BW: large scale factory, water-based process and SC: small scale factory, chlorine-based process) was identified by culture-dependent techniques and 16S rRNA gene sequencing. The microbiological counts were observed to be insignificantly different (p>0.05) between BC and BW. Surprisingly, chlorine treated fillets from the SC line were revealed to have significantly higher microbial counts than potable water treated fillets at BW line. This was determined to be a result of temperature abuse during processing at SC, with temperatures even greater than 10 °C being recorded from skinning onwards. On the contrary, the microbiota related to spoilage for BC and BW lines was determined by 16S rRNA gene sequencing to be more diverse than that on the SC line. A total of 174 isolates, 20 genera and 38 species were identified along the processing chains. The genera Aeromonas, Acinetobacter, Lactococcus and Enterococcus were prevalent at various processing steps on all the processing lines evaluated. A diverse range of isolates belonging to the Enterobacteriaceae such as Providencia, Shigella, Klebsiella, Enterobacter and Wautersiella were isolated from fillets sampled on the SC line whereas Serratia was only observed on fillets sampled on the BC and BW lines. The results can be used to improve Good Manufacturing Practices for processed Pangasius fillets and to select effective measures to prolong the shelf-life of thawed Vietnamese Pangasius fillets products. © 2013.

  20. Biostimulation of Iron Reduction and Uranium Immobilization: Microbial and Mineralogical Controls

    International Nuclear Information System (INIS)

    Joel E. Kostka

    2008-01-01

    This project represented a joint effort between Florida State University (FSU), Rutgers University (RU), and the University of Illinois (U of I). FSU served as the lead institution and Dr. J.E. Kostka was responsible for project coordination, integration, and deliverables. This project was designed to elucidate the microbial ecology and geochemistry of metal reduction in subsurface environments at the U.S. DOE-NABIR Field Research Center at Oak Ridge, Tennessee (ORFRC). Our objectives were to: (1) characterize the dominant iron minerals and related geochemical parameters likely to limit U(VI) speciation, (2) directly quantify reaction rates and pathways of microbial respiration (terminal-electron-accepting) processes which control subsurface sediment chemistry, and (3) identify and enumerate the organisms mediating U(VI) transformation. A total of 31 publications and 47 seminars or meeting presentations were completed under this project. One M.S. thesis (by Nadia North) and a Ph.D. dissertation (by Lainie Petrie-Edwards) were completed at FSU during fall of 2003 and spring of 2005, respectively. Ph.D. students, Denise Akob and Thomas Gihring have continued the student involvement in this research since fall of 2004. All of the above FSU graduate students were heavily involved in the research, as evidenced by their regular attendance at PI meetings and ORFRC workshops

  1. Genome-centric metatranscriptomes and ecological roles of the active microbial populations during cellulosic biomass anaerobic digestion.

    Science.gov (United States)

    Jia, Yangyang; Ng, Siu-Kin; Lu, Hongyuan; Cai, Mingwei; Lee, Patrick K H

    2018-01-01

    Although anaerobic digestion for biogas production is used worldwide in treatment processes to recover energy from carbon-rich waste such as cellulosic biomass, the activities and interactions among the microbial populations that perform anaerobic digestion deserve further investigations, especially at the population genome level. To understand the cellulosic biomass-degrading potentials in two full-scale digesters, this study examined five methanogenic enrichment cultures derived from the digesters that anaerobically digested cellulose or xylan for more than 2 years under 35 or 55 °C conditions. Metagenomics and metatranscriptomics were used to capture the active microbial populations in each enrichment culture and reconstruct their meta-metabolic network and ecological roles. 107 population genomes were reconstructed from the five enrichment cultures using a differential coverage binning approach, of which only a subset was highly transcribed in the metatranscriptomes. Phylogenetic and functional convergence of communities by enrichment condition and phase of fermentation was observed for the highly transcribed populations in the metatranscriptomes. In the 35 °C cultures grown on cellulose, Clostridium cellulolyticum -related and Ruminococcus -related bacteria were identified as major hydrolyzers and primary fermenters in the early growth phase, while Clostridium leptum -related bacteria were major secondary fermenters and potential fatty acid scavengers in the late growth phase. While the meta-metabolism and trophic roles of the cultures were similar, the bacterial populations performing each function were distinct between the enrichment conditions. Overall, a population genome-centric view of the meta-metabolism and functional roles of key active players in anaerobic digestion of cellulosic biomass was obtained. This study represents a major step forward towards understanding the microbial functions and interactions at population genome level during the

  2. Ecology and exploration of the rare biosphere.

    Science.gov (United States)

    Lynch, Michael D J; Neufeld, Josh D

    2015-04-01

    The profound influence of microorganisms on human life and global biogeochemical cycles underlines the value of studying the biogeography of microorganisms, exploring microbial genomes and expanding our understanding of most microbial species on Earth: that is, those present at low relative abundance. The detection and subsequent analysis of low-abundance microbial populations—the 'rare biosphere'—have demonstrated the persistence, population dynamics, dispersion and predation of these microbial species. We discuss the ecology of rare microbial populations, and highlight molecular and computational methods for targeting taxonomic 'blind spots' within the rare biosphere of complex microbial communities.

  3. Dynamics of culturable soil microbial communities during ...

    African Journals Online (AJOL)

    Ecological zones impacted significantly (P < 0.05) on bacterial proliferation, but not on fungal growth. Sampling period significantly (P < 0.05) affected microbial density and the semi-arid agroecozone was more supportive of microbial proliferation than the arid zone. A total of nine predominant fungal species belonging to ...

  4. 2010 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 18-23, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Ades

    2011-07-23

    The 2010 Gordon Research Conference on Microbial Stress Responses provides an open and exciting forum for the exchange of scientific discoveries on the remarkable mechanisms used by microbes to survive in nearly every niche on the planet. Understanding these stress responses is critical for our ability to control microbial survival, whether in the context of biotechnology, ecology, or pathogenesis. From its inception in 1994, this conference has traditionally employed a very broad definition of stress in microbial systems. Sessions will cover the major steps of stress responses from signal sensing to transcriptional regulation to the effectors that mediate responses. A wide range of stresses will be represented. Some examples include (but are not limited to) oxidative stress, protein quality control, antibiotic-induced stress and survival, envelope stress, DNA damage, and nutritional stress. The 2010 meeting will also focus on the role of stress responses in microbial communities, applied and environmental microbiology, and microbial development. This conference brings together researchers from both the biological and physical sciences investigating stress responses in medically- and environmentally relevant microbes, as well as model organisms, using cutting-edge techniques. Computational, systems-level, and biophysical approaches to exploring stress responsive circuits will be integrated throughout the sessions alongside the more traditional molecular, physiological, and genetic approaches. The broad range of excellent speakers and topics, together with the intimate and pleasant setting at Mount Holyoke College, provide a fertile ground for the exchange of new ideas and approaches.

  5. Metagenomic analysis of an ecological wastewater treatment plant?s microbial communities and their potential to metabolize pharmaceuticals

    OpenAIRE

    Balcom, Ian N.; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have ...

  6. Complex adaptive systems ecology

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2003-01-01

    In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies....... They are the result of acooperation between Søren Molin, professor in the group, and his brother, JanMolin, professor at Department of Organization and Industrial Sociology atCopenhagen Business School. The cooperation arises from the recognition that bothmicrobial ecology and sociology/organization theory works...

  7. Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens.

    Directory of Open Access Journals (Sweden)

    Damian Józefiak

    Full Text Available Due to antimicrobial properties, nisin is one of the most commonly used and investigated bacteriocins for food preservation. Surprisingly, nisin has had limited use in animal feed as well as there are only few reports on its influence on microbial ecology of the gastrointestinal tract (GIT. The present study therefore aimed at investigating effects of dietary nisin on broiler chicken GIT microbial ecology and performance in comparison to salinomycin, the widely used ionophore coccidiostat. In total, 720 one-day-old male Ross 308 chicks were randomly distributed to six experimental groups. The positive control (PC diet was supplemented with salinomycin (60 mg/kg. The nisin (NI diets were supplemented with increasing levels (100, 300, 900 and 2700 IU nisin/g, respectively of the bacteriocin. The negative control (NC diet contained no additives. At slaughter (35 days of age, activity of specific bacterial enzymes (α- and β-glucosidases, α-galactosidases and β-glucuronidase in crop, ileum and caeca were significantly higher (P<0.05 in the NC group, and nisin supplementation decreased the enzyme activities to levels observed for the PC group. A similar inhibitory influence on bacterial activity was reflected in the levels of short-chain fatty acids (SCFA and putrefactive SCFA (PSCFA in digesta from crop and ileum; no effect was observed in caeca. Counts of Bacteroides and Enterobacteriacae in ileum digesta were significantly (P<0.001 decreased by nisin and salinomycin, but no effects were observed on the counts of Clostridium perfringens, Lactobacillus/Enterococcus and total bacteria. Like salinomycin, nisin supplementation improved broiler growth performance in a dose-dependent manner; compared to the NC group, the body weight gain of the NI₉₀₀ and NI₂₇₀₀ groups was improved by 4.7 and 8.7%, respectively. Our findings suggest that dietary nisin exerts a mode of action similar to salinomycin and could be considered as a dietary

  8. Toward Understanding, Managing, and Protecting Microbial Ecosystems

    Science.gov (United States)

    Bodelier, Paul L. E.

    2011-01-01

    Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity–conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology. PMID:21747797

  9. Towards understanding, managing and protecting microbial ecosystems

    Directory of Open Access Journals (Sweden)

    Paul eBodelier

    2011-04-01

    Full Text Available Microbial communities are at the very basis of life on earth, catalysing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper indentifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology.

  10. Toward understanding, managing, and protecting microbial ecosystems.

    Science.gov (United States)

    Bodelier, Paul L E

    2011-01-01

    Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity-conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology.

  11. Metagenomics meets time series analysis: unraveling microbial community dynamics

    NARCIS (Netherlands)

    Faust, K.; Lahti, L.M.; Gonze, D.; Vos, de W.M.; Raes, J.

    2015-01-01

    The recent increase in the number of microbial time series studies offers new insights into the stability and dynamics of microbial communities, from the world's oceans to human microbiota. Dedicated time series analysis tools allow taking full advantage of these data. Such tools can reveal periodic

  12. Effects of shelter and enrichment on the ecology and nutrient cycling of microbial communities of subtidal carbonate sediments.

    Science.gov (United States)

    Forehead, Hugh I; Kendrick, Gary A; Thompson, Peter A

    2012-04-01

    The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10 days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Microbial ecology of acid strip mine lakes in southern Indiana

    International Nuclear Information System (INIS)

    Gyure, R.A.

    1986-01-01

    In this study, the author examined the limnology and microbial ecology of two acid strip mine lakes in the Greene-Sullivan State Forest near Dugger, Indiana. Reservoir 29 is a larger lake (225 ha) with water column pH of 2.7 and sediment pH of 3.8. Lake B, a smaller (20 ha) lake to the south of Reservoir 29, also has an acidic water column (pH 3.4) but more neutral sediments (pH 6.2). Both have very high sulfate concentrations: 20-30 mM in the water column and as high as 100 mM in the hypolimnion of Lake B. Low allochthonous carbon and nutrient input characterize these lakes as oligotrophic, although algal biomass is higher than would be expected for this trophic status. In both lakes, algal populations are not diverse, with a few species of single-celled Chlorophyta and euglenoids dominating. Algal biomass is concentrated in a thin 10 cm layer at the hypolimnion/metalimnion interface, although light intensity at this depth is low and severely limits productivity. Bacterial activity based on 14 C-glucose incorporation is highest in the hypolimnion of both lakes, and sulfate-reduction is a dominant process in the sediments. Rates of sulfate-reduction compare with those in other freshwater environments, but are not as high as rates measured in high sulfate systems like saltmarsh and marine sediments

  14. Changes in mouse gastrointestinal microbial ecology with ingestion of kale.

    Science.gov (United States)

    Uyeno, Y; Katayama, S; Nakamura, S

    2014-09-01

    Kale, a cultivar of Brassica oleracea, has attracted a great deal of attention because of its health-promoting effects, which are thought to be exerted through modulation of the intestinal microbiota. The present study was performed to investigate the effects of kale ingestion on the gastrointestinal microbial ecology of mice. 21 male C57BL/6J mice were divided into three groups and housed in a specific pathogen-free facility. The animals were fed either a control diet or experimental diets supplemented with different commercial kale products for 12 weeks. Contents of the caecum and colon of the mice were processed for the determination of active bacterial populations by a bacterial rRNA-based quantification method and short-chain fatty acids by HPLC. rRNAs of Bacteroides-Prevotella, the Clostridium coccoides-Eubacterium rectale group, and Clostridium leptum subgroup constituted the major fraction of microbiota regardless of the composition of the diet. The ratio of Firmicutes to Bacteroidetes was higher in the colon samples of one of the kale diet groups than in the control. The colonic butyrate level was also higher with the kale-supplemented diet. Overall, the ingestion of kale tended to either increase or decrease the activity of specific bacterial groups in the mouse gastrointestinal tract, however, the effect might vary depending on the nutritional composition.

  15. Multivariate analyses in soil microbial ecology : a new paradigm

    OpenAIRE

    Thioulouse, J.; Prin, Y.; Duponnois, Robin

    2012-01-01

    Mycorrhizal symbiosis is a key component of a sustainable soil-plant system, governing the cycles of major plant nutrients and vegetation cover. The mycorrhizosphere includes plants roots, the mycorrhizal fungi, and a complex microbial compartment. A large number of methods have been used to characterize the genetic and functional diversity of these soil microbial communities. We present here a review of the multivariate data analysis methods that have been used in 16 research articles publis...

  16. Fractal Hypothesis of the Pelagic Microbial Ecosystem—Can Simple Ecological Principles Lead to Self-Similar Complexity in the Pelagic Microbial Food Web?

    Science.gov (United States)

    Våge, Selina; Thingstad, T. Frede

    2015-01-01

    Trophic interactions are highly complex and modern sequencing techniques reveal enormous biodiversity across multiple scales in marine microbial communities. Within the chemically and physically relatively homogeneous pelagic environment, this calls for an explanation beyond spatial and temporal heterogeneity. Based on observations of simple parasite-host and predator-prey interactions occurring at different trophic levels and levels of phylogenetic resolution, we present a theoretical perspective on this enormous biodiversity, discussing in particular self-similar aspects of pelagic microbial food web organization. Fractal methods have been used to describe a variety of natural phenomena, with studies of habitat structures being an application in ecology. In contrast to mathematical fractals where pattern generating rules are readily known, however, identifying mechanisms that lead to natural fractals is not straight-forward. Here we put forward the hypothesis that trophic interactions between pelagic microbes may be organized in a fractal-like manner, with the emergent network resembling the structure of the Sierpinski triangle. We discuss a mechanism that could be underlying the formation of repeated patterns at different trophic levels and discuss how this may help understand characteristic biomass size-spectra that hint at scale-invariant properties of the pelagic environment. If the idea of simple underlying principles leading to a fractal-like organization of the pelagic food web could be formalized, this would extend an ecologists mindset on how biological complexity could be accounted for. It may furthermore benefit ecosystem modeling by facilitating adequate model resolution across multiple scales. PMID:26648929

  17. Effects of Microbial and Heavy Metal Contaminants on Environmental/Ecological Health and Revitalization of Coastal Ecosystems in Delaware Bay

    Directory of Open Access Journals (Sweden)

    Gulnihal Ozbay

    2017-06-01

    Full Text Available The presence of heavy metals, excess nutrients, and microbial contaminants in aquatic systems of coastal Delaware has become a public concern as human population increases and land development continues. Delaware's coastal lagoons have been subjected to problems commonly shared by other coastal Mid-Atlantic states: turbidity, sedimentation, eutrophication, periodic hypoxic/anoxic conditions, toxic substances, and high bacterial levels. The cumulative impact of pollutants from run-off and point sources has degraded water quality, reduced the diversity and abundance of various fish species, invertebrates, and submerged aquatic vegetation. The effects are especially pronounced within the manmade dead end canal systems. In this article, we present selected case studies conducted in the Delaware Inland Bays. Due to the ecological services provided by bivalves, our studies in Delaware Inland Bays are geared toward oysters with special focus on the microbial loads followed by the water quality assessments of the bay. The relationships between oysters (Crassostrea virginica, microbial loads and nutrient levels in the water were investigated. The heavy metal levels monitored further away from the waste water treatment plant in the inland bays are marginally higher than the recommended EPA limits. Also, our studies confirmed that aerobic bacteria and Vibrionaceae levels are salinity dependent. Total bacteria in oysters increased when nitrate and total suspended solids increased in the waters. Studies such as these are important because every year millions of Americans consume raw oysters. Data collected over the last 10 years from our studies may be used to build a predictive index of conditions that are favorable for the proliferation of human pathogenic bacteria. Results from this study will benefit the local community by helping them understand the importance of oyster aquaculture and safe consumption of oysters while making them appreciate their

  18. Exploring the dynamic links between microbial ecology and redox state of the hyporheic zone: insight from flume experiments

    Science.gov (United States)

    Kaufman, M.; Cardenas, M. B.; Stegen, J.; Graham, E.; Cook, P. L. M.; Kessler, A. J.

    2017-12-01

    The hyporheic zone (HZ) provides key ecosystem services such as heavy metal sequestration, nutrient uptake and consumption, and habitat for a diverse collection of ecologically and commercially important species. Microbes are responsible for many of the chemical transformations in the HZ. These microbe populations are intimately linked to redox conditions, and recent work has shown that redox conditions in the HZ can be highly dynamic. Here we investigate the dynamic coupling between surface flow conditions, hyporheic redox conditions, and the hyporheic microbiome. Our window into this world is a large experimental flume (5m x 0.7m x 0.3m), prepared and incubated in a way that is relatively common to hyporheic zone research, without a strong attempt to impose a specific microbial community structure. We use computer-controlled flow combined with sand bedforms within the flume to generate a pattern of oxic and anoxic sediment zones, from which we collected sediment and water samples. Dissolved oxygen was mapped with a large planar optode. The samples were analyzed for microbial community composition through 16S rRNA gene sequencing. We compare the population structure between oxic and anoxic zones, showing that the presence of oxygen in the HZ is a strong predictor of microbial composition. Additionally, we compare both the oxic and anoxic community structure from the flume to those of samples taken from natural environments, showing both interesting similarities and differences. In the future, we plan to use time-series sampling to observe the response times of microbial communities subjected to dynamic surface channel flow and redox conditions. This work will yield greater understanding of the role that dynamic rivers play in microbe-provided ecosystem services.

  19. Microbial interactions in drinking water biofilms

    OpenAIRE

    Simões, Lúcia C.; Simões, M.; Vieira, M. J.

    2007-01-01

    Drinking water distribution networks may be viewed as a large reactor where a number of chemical and microbiological processes are taking place. Control of microbial growth in drinking water distribution systems (DWDS) often achieved through the addition of disinfectants, is essential to limit the spread of waterborne pathogens. However, microorganisms can resist disinfection through protection within biofilms and resistant host cells. Recent studies into the microbial ecology ...

  20. Microbial ecology and starter culture technology in coffee processing.

    Science.gov (United States)

    Vinícius de Melo Pereira, Gilberto; Soccol, Vanete Thomaz; Brar, Satinder Kaur; Neto, Ensei; Soccol, Carlos Ricardo

    2017-09-02

    Coffee has been for decades the most commercialized food product and most widely consumed beverage in the world, with over 600 billion cups served per year. Before coffee cherries can be traded and processed into a final industrial product, they have to undergo postharvest processing on farms, which have a direct impact on the cost and quality of a coffee. Three different methods can be used for transforming the coffee cherries into beans, known as wet, dry, and semi-dry methods. In all these processing methods, a spontaneous fermentation is carried out in order to eliminate any mucilage still stuck to the beans and helps improve beverage flavor by microbial metabolites. The microorganisms responsible for the fermentation (e.g., yeasts and lactic acid bacteria) can play a number of roles, such as degradation of mucilage (pectinolytic activity), inhibition of mycotoxin-producing fungi growth, and production of flavor-active components. The use of starter cultures (mainly yeast strains) has emerged in recent years as a promising alternative to control the fermentation process and to promote quality development of coffee product. However, scarce information is still available about the effects of controlled starter cultures in coffee fermentation performance and bean quality, making it impossible to use this technology in actual field conditions. A broader knowledge about the ecology, biochemistry, and molecular biology could facilitate the understanding and application of starter cultures for coffee fermentation process. This review provides a comprehensive coverage of these issues, while pointing out new directions for exploiting starter cultures in coffee processing.

  1. North American International Society for Microbial Electrochemical Technologies Meeting (Abstracts)

    Science.gov (United States)

    2016-04-18

    electrode interface in Shewanella oneidensis MR-1 Catarina Paquete1, Bruno Fonseca1, Ricardo O. Louro1 1 Instituto de Tecnologia Química e Biológica...response to anodic pH variation in a dual chamber microbial fuel cell Valentina Margaria, Instituto Italiano di Tecnologia , Italy 2-15 Microbial...SnO2 nanostructured composite for cathode oxygen reduction reaction in microbial fuel cells Adriano Sacco, Instituto Italiano di Tecnologia , Italy 2

  2. Microbial ecology of four coral atolls in the Northern Line Islands.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Dinsdale

    Full Text Available Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp. and heterotrophs. In contrast, Kiritimati, a large and populated ( approximately 5500 people atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1 oceaonographic and/or hydrographic conditions or 2 human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation

  3. Microbial Ecology of Four Coral Atolls in the Northern Line Islands

    Science.gov (United States)

    Smriga, Steven; Edwards, Robert A.; Angly, Florent; Wegley, Linda; Hatay, Mark; Hall, Dana; Brown, Elysa; Haynes, Matthew; Krause, Lutz; Sala, Enric; Sandin, Stuart A.; Thurber, Rebecca Vega; Willis, Bette L.; Azam, Farooq; Knowlton, Nancy; Rohwer, Forest

    2008-01-01

    Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated (∼5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems

  4. Microbial ecology of halo-alkaliphilic sulfur bacteria

    NARCIS (Netherlands)

    Foti, M.J.

    2007-01-01

    The research of this thesis focussed on the investigation of the microbial diversity in soda lakes, giving a special attention to the micro-organisms involved in the sulphur cycle. The present PhD was part of a bigger project aiming to develop a biological process for the removal of hydrogen

  5. Biodiversity in Benthic Ecology

    DEFF Research Database (Denmark)

    Friberg, Nikolai; Carl, J. D.

    Foreword: This proceeding is based on a set of papers presented at the second Nordic Benthological Meeting held in Silkeborg, November 13-14, 1997. The main theme of the meeting was biodiversity in benthic ecology and the majority of contributions touch on this subject. In addition, the proceeding...... contains papers which cover other themes thus continuing with the spirit of the meetings in the Nordic Benthological Society (NORBS) by being an open forum for exchanging knowledge on all aspects of benthic ecology. Overall, we feel the proceeding contains a wide selection of very interesting papers...... representing the state-of-the-art of benthic ecology research within, and to a lesser degree, outside the Nordic countries. We wish to thank all the authors for their inspirational contributions to the proceeding, but we feel that a special thanks is due to the invited speakers for their readiness to produce...

  6. Gastrointestinal microbial ecology and its health benefits in Dogs

    Directory of Open Access Journals (Sweden)

    K.B. Kore

    2010-06-01

    Full Text Available Gastrointestinal microbial balance is the most important prerequisite for normal functions of digestive system, physiological and immunological homeostasis in dogs as well as in other animals. It helps in prevention of pathogenic colonization, provides energy through SCFA by nutrient breakdown, and improves mineral-vitamin supply to host, augment host immune status. Hence, it is imperative to explore the potential means to improve the gastrointestinal microbial diversity which in turns boost up dog health. [Vet. World 2010; 3(3.000: 140-141

  7. A resurgence in field research is essential to better understand the diversity, ecology, and evolution of microbial eukaryotes.

    Science.gov (United States)

    Heger, Thierry J; Edgcomb, Virginia P; Kim, Eunsoo; Lukeš, Julius; Leander, Brian S; Yubuki, Naoji

    2014-01-01

    The discovery and characterization of protist communities from diverse environments are crucial for understanding the overall evolutionary history of life on earth. However, major questions about the diversity, ecology, and evolutionary history of protists remain unanswered, notably because data obtained from natural protist communities, especially of heterotrophic species, remain limited. In this review, we discuss the challenges associated with "field protistology", defined here as the exploration, characterization, and interpretation of microbial eukaryotic diversity within the context of natural environments or field experiments, and provide suggestions to help fill this important gap in knowledge. We also argue that increased efforts in field studies that combine molecular and microscopical methods offer the most promising path toward (1) the discovery of new lineages that expand the tree of eukaryotes; (2) the recognition of novel evolutionary patterns and processes; (3) the untangling of ecological interactions and functions, and their roles in larger ecosystem processes; and (4) the evaluation of protist adaptations to a changing climate. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  8. Defining the Core Microbiome in Corals' Microbial Soup.

    Science.gov (United States)

    Hernandez-Agreda, Alejandra; Gates, Ruth D; Ainsworth, Tracy D

    2017-02-01

    Corals are considered one of the most complex microbial biospheres studied to date, hosting thousands of bacterial phylotypes in species-specific associations. There are, however, substantial knowledge gaps and challenges in understanding the functional significance of bacterial communities and bacterial symbioses of corals. The ubiquitous nature of some bacterial interactions has only recently been investigated and an accurate differentiation between the healthy (symbiotic) and unhealthy (dysbiotic) microbial state has not yet been determined. Here we review the complexity of the coral holobiont, coral microbiome diversity, and recently proposed bacterial symbioses of corals. We provide insight into coupling the core microbiome framework with community ecology principals, and draw on the theoretical insights from other complex systems, to build a framework to aid in deciphering ecologically significant microbes within a corals' microbial soup. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Microbial ecology of deep-sea hypersaline anoxic basins

    KAUST Repository

    Merlino, Giuseppe; Barozzi, Alan; Michoud, Gregoire; Ngugi, David; Daffonchio, Daniele

    2018-01-01

    of mixing and by extreme conditions of salinity, anoxia, and relatively high hydrostatic pressure and temperatures. Due to these combined selection factors, unique microbial assemblages thrive in these polyextreme ecosystems. The topological localization

  10. The Gut Microbiota: Ecology and Function

    Energy Technology Data Exchange (ETDEWEB)

    Willing, B.P.; Jansson, J.K.

    2010-06-01

    The gastrointestinal (GI) tract is teeming with an extremely abundant and diverse microbial community. The members of this community have coevolved along with their hosts over millennia. Until recently, the gut ecosystem was viewed as black box with little knowledge of who or what was there or their specific functions. Over the past decade, however, this ecosystem has become one of fastest growing research areas of focus in microbial ecology and human and animal physiology. This increased interest is largely in response to studies tying microbes in the gut to important diseases afflicting modern society, including obesity, allergies, inflammatory bowel diseases, and diabetes. Although the importance of a resident community of microorganisms in health was first hypothesized by Pasteur over a century ago (Sears, 2005), the multiplicity of physiological changes induced by commensal bacteria has only recently been recognized (Hooper et al., 2001). The term 'ecological development' was recently coined to support the idea that development of the GI tract is a product of the genetics of the host and the host's interactions with resident microbes (Hooper, 2004). The search for new therapeutic targets and disease biomarkers has escalated the need to understand the identities and functions of the microorganisms inhabiting the gut. Recent studies have revealed new insights into the membership of the gut microbial community, interactions within that community, as well as mechanisms of interaction with the host. This chapter focuses on the microbial ecology of the gut, with an emphasis on information gleaned from recent molecular studies.

  11. Conference Proceedings: Seed Ecology III - The Third International Society for Seed Science Meeting on Seeds and the Environment - "Seeds and Change"; June 20-June 24, 2010; Salt Lake City, Utah, USA

    Science.gov (United States)

    Rosemary Pendleton; Susan Meyer; Bitsy Schultz

    2010-01-01

    Seed Ecology III was held in Salt Lake City, Utah in June 2010, sharing the latest research on all aspects of seed ecology. Our meeting was organized around the theme "Seeds and Change." We welcomed contributions in any area of seed ecology. Our agenda also aimed to create bridges between seed ecology and plant conservation, restoration ecology, and global...

  12. Microbial Profiling Of Cyanobacteria From VIT Lake

    Directory of Open Access Journals (Sweden)

    Swati Singh

    2015-08-01

    Full Text Available The application of molecular biological methods to study the diversity and ecology of micro-organisms in natural environments has been practice in mid-1980. The aim of our research is to access the diversity composition and functioning of complex microbial community found in VIT Lake. Molecular ecology is a new field in which microbes can be recognized and their function can be understood at the DNA or RNA level which is useful for constructing genetically modified microbes by recombinant DNA technology for reputed use in the environment. In this research first we will isolate cyanobacteria in lab using conventional methods like broth culture and spread plate method then we will analyze their morphology using various staining methods and DNA and protein composition using electrophoresis method. The applications of community profiling approaches will advance our understanding of the functional role of microbial diversity in VIT Lake controls on microbial community composition.

  13. Leveraging ecological theory to guide natural product discovery.

    Science.gov (United States)

    Smanski, Michael J; Schlatter, Daniel C; Kinkel, Linda L

    2016-03-01

    Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare. Armed with this knowledge, random 'fishing expeditions' for new NPs are increasingly harder to justify. Understanding the ecological and evolutionary pressures that drive the non-uniform distribution of NP biosynthesis provides a rational framework for the targeted isolation of strains enriched in new NP potential. Additionally, ecological theory leads to testable hypotheses regarding the roles of NPs in shaping ecosystems. Here we review several recent strain prioritization practices and discuss the ecological and evolutionary underpinnings for each. Finally, we offer perspectives on leveraging microbial ecology and evolutionary biology for future NP discovery.

  14. Microbial Surface Colonization and Biofilm Development in Marine Environments

    Science.gov (United States)

    2015-01-01

    SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. PMID:26700108

  15. Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose-peptone and starch-peptone

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiue-Lin; Chao, Yu-Chieh; Wang, Yu-Hsuan; Hsiao, Chia-Jung; Bai, Ming-Der [Department of Environmental Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Whang, Liang-Ming; Wang, Yung-Fu; Cheng, Sheng-Shung [Department of Environmental Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Sustainable Environment Research Center (SERC), National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Tseng, I.-Cheng [Sustainable Environment Research Center (SERC), National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Department of Life Science, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China)

    2010-01-15

    This study evaluated anaerobic hydrogenation performance and microbial ecology in bioreactors operated at different hydraulic retention time (HRT) conditions and fed with glucose-peptone (GP) and starch-peptone (SP). The maximum hydrogen production rates for GP- and SP-fed bioreactors were found to be 1247 and 412 mmol-H{sub 2}/L/d at HRT of 2 and 3 h, respectively. At HRT > 8 h, hydrogen consumption due to peptone fermentation could occur and thus reduced hydrogen yield from carbohydrate fermentation. Results of cloning/sequencing and denaturant gradient gel electrophoresis (DGGE) indicated that Clostridium sporogenes and Clostridium celerecrescens were dominant hydrogen-producing bacteria in the GP-fed bioreactor, presumably due to their capability on protein hydrolysis. In the SP-fed bioreactor, Lactobacillus plantarum, Propionispira arboris, and Clostridium butyricum were found to be dominant populations, but the presence of P. arboris at HRT > 3 h might be responsible for a lower hydrogen yield from starch fermentation. As a result, optimizing HRT operation for bioreactors was considered an important asset in order to minimize hydrogen-consuming activities and thus maximize net hydrogen production. The limitation of simple parameters such as butyrate to acetate ratio (B/A ratio) in predicting hydrogen production was recognized in this study for bioreactors fed with multiple substrates. It is suggested that microbial ecology analysis, in addition to chemical analysis, should be performed when complex substrates and mixed cultures are used in hydrogen-producing bioreactors. (author)

  16. 16S rRNA targeted DGGE fingerprinting of microbial communities

    NARCIS (Netherlands)

    Tzeneva, V.A.; Heilig, G.H.J.; Vliet, van W.M.; Akkermans, A.D.L.; Vos, de W.M.; Smidt, H.

    2008-01-01

    The past decades have seen the staggering development of molecular microbial ecology as a discipline that uses the detection of so-called biomarkers to monitor microbial communities in environment samples. A variety of molecules can be used as biomarkers, including cell-wall components, proteins,

  17. Nuclear based technologies for estimating microbial protein supply in ruminant livestock. Proceedings of the second research co-ordination meeting of a co-ordinated research project (phase 1)

    International Nuclear Information System (INIS)

    1999-06-01

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture through its Co-ordinated Research Projects (CRPs), has been assisting national agricultural research systems in Member States to develop and apply nuclear and related techniques for improving livestock productivity. The programmes have focused on animal nutrition, animal reproduction and more recently on animal nutrition/reproduction interactions with emphasis on smallholder farming systems. The measurement of microbial protein supply to ruminant livestock has been an important area of research in ruminant nutrition. An estimate of microbial protein contribution to the intestinal protein flow is important for estimating the protein requirement of ruminant animals. Understanding the process of microbial protein synthesis has been difficult however, and due to the lack of simple and accurate methods for measuring microbial protein production in vivo, the methods used are based on complex microbial markers which require surgically prepared animals. As a result of a consultants meeting held in May 1995 to advise the Joint FAO/IAEA Division on the feasibility of using nuclear and related techniques for the development and validation of techniques for measuring microbial protein supply in ruminant animals, an FAO/IAEA Co-ordinated Research Project on Development, Standardization and Validation of Nuclear Based Technologies for Measuring Microbial Protein Supply in Ruminant Livestock for Improving Productivity was initiated in 1996, with a view to validating and adapting this technology for use in developing countries. To assist scientists participating in the CRP, a laboratory manual containing experimental protocols and methodologies for standardization and validation of the urine purine derivative technique and the development of models to suit local conditions, was published as IAEA-TECDOC-945. The present publication contains the final reports from participants in Phase 1 of the project

  18. Nuclear based technologies for estimating microbial protein supply in ruminant livestock. Proceedings of the second research co-ordination meeting of a co-ordinated research project (phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture through its Co-ordinated Research Projects (CRPs), has been assisting national agricultural research systems in Member States to develop and apply nuclear and related techniques for improving livestock productivity. The programmes have focused on animal nutrition, animal reproduction and more recently on animal nutrition/reproduction interactions with emphasis on smallholder farming systems. The measurement of microbial protein supply to ruminant livestock has been an important area of research in ruminant nutrition. An estimate of microbial protein contribution to the intestinal protein flow is important for estimating the protein requirement of ruminant animals. Understanding the process of microbial protein synthesis has been difficult however, and due to the lack of simple and accurate methods for measuring microbial protein production in vivo, the methods used are based on complex microbial markers which require surgically prepared animals. As a result of a consultants meeting held in May 1995 to advise the Joint FAO/IAEA Division on the feasibility of using nuclear and related techniques for the development and validation of techniques for measuring microbial protein supply in ruminant animals, an FAO/IAEA Co-ordinated Research Project on Development, Standardization and Validation of Nuclear Based Technologies for Measuring Microbial Protein Supply in Ruminant Livestock for Improving Productivity was initiated in 1996, with a view to validating and adapting this technology for use in developing countries. To assist scientists participating in the CRP, a laboratory manual containing experimental protocols and methodologies for standardization and validation of the urine purine derivative technique and the development of models to suit local conditions, was published as IAEA-TECDOC-945. The present publication contains the final reports from participants in Phase 1 of the project

  19. Microbial processes in coastal pollution

    International Nuclear Information System (INIS)

    Capone, D.G.; Bauer, J.E.

    1992-01-01

    In this chapter, the authors describe the nature and range of some of the interactions that can occur between the microbiota and environmental contaminants in coastal areas. The implications of such interactions are also discussed. Pollutant types include inorganic nutrients, heavy metals, bulk organics, organic contaminants, pathogenic microorganisms and microbial pollutants. Both the effects of pollutants such as petroleum hydrocarbons on natural microbial populations and the mitigation of contaminant effects by complexation and biodegradation are considered. Finally, several areas of emerging concerns are presented that involve a confluence of biogeochemistry, microbial ecology and applied and public health microbiology. These concerns range in relevance from local/regional to oceanic/global scales. 308 ref

  20. Molecular microbial ecology of lignocellulose mobilisation as a ...

    African Journals Online (AJOL)

    The community structure of complex microbial consortia which develop in lignocellulose packed passive treatment systems for acid mine drainage remediation were investigated. An understanding of interactions between these populations is important in determining mechanisms by which such systems operate.

  1. Microbial electrolysis cells as innovative technology for hydrogen production

    International Nuclear Information System (INIS)

    Chorbadzhiyska, Elitsa; Hristov, Georgi; Mitov, Mario; Hubenova, Yolina

    2011-01-01

    Hydrogen production is becoming increasingly important in view of using hydrogen in fuel cells. However, most of the production of hydrogen so far comes from the combustion of fossil fuels and water electrolysis. Microbial Electrolysis Cell (MEC), also known as Bioelectrochemically Assisted Microbial Reactor, is an ecologically clean, renewable and innovative technology for hydrogen production. Microbial electrolysis cells produce hydrogen mainly from waste biomass assisted by various bacteria strains. The principle of MECs and their constructional elements are reviewed and discussed. Keywords: microbial Electrolysis Cells, hydrogen production, waste biomass purification

  2. Microbial Influence on the Performance of Subsurface, Salt-Based Radioactive Waste Repositories. An Evaluation Based on Microbial Ecology, Bioenergetics and Projected Repository Conditions

    International Nuclear Information System (INIS)

    Swanson, J.S.; Reed, D.T.; Cherkouk, A.; Arnold, T.; Meleshyn, A.; Patterson, Russ

    2018-01-01

    For the past several decades, the Nuclear Energy Agency Salt Club has been supporting and overseeing the characterisation of rock salt as a potential host rock for deep geological repositories. This extensive evaluation of deep geological settings is aimed at determining - through a multidisciplinary approach - whether specific sites are suitable for radioactive waste disposal. Studying the microbiology of granite, basalt, tuff, and clay formations in both Europe and the United States has been an important part of this investigation, and much has been learnt about the potential influence of microorganisms on repository performance, as well as about deep subsurface microbiology in general. Some uncertainty remains, however, around the effects of microorganisms on salt-based repository performance. Using available information on the microbial ecology of hyper-saline environments, the bioenergetics of survival under high ionic strength conditions and studies related to repository microbiology, this report summarises the potential role of microorganisms in salt-based radioactive waste repositories

  3. Microscale Insight into Microbial Seed Banks.

    Science.gov (United States)

    Locey, Kenneth J; Fisk, Melany C; Lennon, J T

    2016-01-01

    Microbial dormancy leads to the emergence of seed banks in environmental, engineered, and host-associated ecosystems. These seed banks act as reservoirs of diversity that allow microbes to persist under adverse conditions, including extreme limitation of resources. While microbial seed banks may be influenced by macroscale factors, such as the supply of resources, the importance of microscale encounters between organisms and resource particles is often overlooked. We hypothesized that dimensions of spatial, trophic, and resource complexity determine rates of encounter, which in turn, drive the abundance, productivity, and size of seed banks. We tested this using >10,000 stochastic individual based models (IBMs) that simulated energetic, physiological, and ecological processes across combinations of resource, spatial, and trophic complexity. These IBMs allowed realistic dynamics and the emergence of seed banks from ecological selection on random variation in species traits. Macroscale factors like the supply and concentration of resources had little effect on resource encounter rates. In contrast, encounter rates were strongly influenced by interactions between dispersal mode and spatial structure, and also by the recalcitrance of resources. In turn, encounter rates drove abundance, productivity, and seed bank dynamics. Time series revealed that energetically costly traits can lead to large seed banks and that recalcitrant resources can lead to greater stability through the formation of seed banks and the slow consumption of resources. Our findings suggest that microbial seed banks emerge from microscale dimensions of ecological complexity and their influence on resource limitation and energetic costs.

  4. Mobilifilum chasei: morphology and ecology of a spirochete from an intertidal stratified microbial mat community

    Science.gov (United States)

    Margulis, L.; Hinkle, G.; Stolz, J.; Craft, F.; Esteve, I.; Guerrero, R.

    1990-01-01

    Spirochetes were found in the lower anoxiphototrophic layer of a stratified microbial mat (North Pond, Laguna Figueroa, Baja California, Mexico). Ultra-structural analysis of thin sections of field samples revealed spirochetes approximately 0.25 micrometer in diameter with 10 or more periplasmic flagella, leading to the interpretation that these spirochetes bear 10 flagellar insertions on each end. Morphometric study showed these free-living spirochetes greatly resemble certain symbiotic ones, i.e., Borrelia and certain termite spirochetes, the transverse sections of which are presented here. The ultrastructure of this spirochete also resembles Hollandina and Diplocalyx (spirochetes symbiotic in arthropods) more than it does Spirochaeta, the well known genus of mud-dwelling spirochetes. The new spirochete was detected in mat material collected both in 1985 and in 1987. Unique morphology (i.e., conspicuous outer coat of inner membrane, large number of periplasmic flagella) and ecology prompt us to name a new free-living spirochete.

  5. Microbial diversity and metabolic networks in acid mine drainage habitats

    Directory of Open Access Journals (Sweden)

    Celia eMendez-Garcia

    2015-05-01

    Full Text Available Acid mine drainage (AMD emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics technologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and ultra-micro-archaea demand their inclusion in the microbial characterisation of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including ultra-micro-archaeal and eukaryotic diversity in these ecosystems and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.

  6. The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins

    Directory of Open Access Journals (Sweden)

    Kevin D. Kohl

    2016-07-01

    Full Text Available The microbial communities inhabiting the alimentary tracts of mammals, particularly those of herbivores, are estimated to be one of the densest microbial reservoirs on Earth. The significance of these gut microbes in influencing the physiology, ecology and evolution of their hosts is only beginning to be realized. To understand the microbiome of herbivores with a focus on nutritional ecology, while evaluating the roles of host evolution and environment in sculpting microbial diversity, we have developed an experimental system consisting of the microbial communities of several species of herbivorous woodrats (genus Neotoma that naturally feed on a variety of dietary toxins. We designed this system to investigate the long-standing, but experimentally neglected hypothesis that ingestion of toxic diets by herbivores is facilitated by the gut microbiota. Like several other rodent species, the woodrat stomach has a sacculated, nongastric foregut portion. We have documented a dense and diverse community of microbes in the woodrat foregut, with several genera potentially capable of degrading dietary toxins and/or playing a role in stimulating hepatic detoxification enzymes of the host. The biodiversity of these gut microbes appears to be a function of host evolution, ecological experience and diet, such that dietary toxins increase microbial diversity in hosts with experience with these toxins while novel toxins depress microbial diversity. These microbial communities are critical to the ingestion of a toxic diet as reducing the microbial community with antibiotics impairs the host’s ability to feed on dietary toxins. Furthermore, the detoxification capacity of gut microbes can be transferred from Neotoma both intra and interspecifically to naïve animals that lack ecological and evolutionary history with these toxins. In addition to advancing our knowledge of complex host-microbes interactions, this system holds promise for identifying microbes that

  7. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning.

    Science.gov (United States)

    He, Zhili; Zhang, Ping; Wu, Linwei; Rocha, Andrea M; Tu, Qichao; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Elias, Dwayne A; Watson, David B; Adams, Michael W W; Fields, Matthew W; Alm, Eric J; Hazen, Terry C; Adams, Paul D; Arkin, Adam P; Zhou, Jizhong

    2018-02-20

    Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly ( P contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as

  8. Microbial characteristics of soils on a latitudinal transect in Siberia

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Bird, M. I.; Kalaschnikov, Y. N.; Grund, M.; Elhottová, Dana; Šimek, Miloslav; Grigoryev, S.; Gleixner, G.; Arneth, A.; Schulze, E.D.; Lloyd, J.

    2003-01-01

    Roč. 9, - (2003), s. 1106-1117 ISSN 1354-1013 R&D Projects: GA ČR GA526/99/P033 Institutional research plan: CEZ:AV0Z6066911 Keywords : latitudial transect * microbial net growth rate * soil microbial activity Subject RIV: EH - Ecology, Behaviour Impact factor: 4.152, year: 2003

  9. Significance of Microbial Communities and Interactions in Safeguarding Reactive Mine Tailings by Ecological Engineering▿†

    Science.gov (United States)

    N̆ancucheo, Ivan; Johnson, D. Barrie

    2011-01-01

    Pyritic mine tailings (mineral waste generated by metal mining) pose significant risk to the environment as point sources of acidic, metal-rich effluents (acid mine drainage [AMD]). While the accelerated oxidative dissolution of pyrite and other sulfide minerals in tailings by acidophilic chemolithotrophic prokaryotes has been widely reported, other acidophiles (heterotrophic bacteria that catalyze the dissimilatory reduction of iron and sulfur) can reverse the reactions involved in AMD genesis, and these have been implicated in the “natural attenuation” of mine waters. We have investigated whether by manipulating microbial communities in tailings (inoculating with iron- and sulfur-reducing acidophilic bacteria and phototrophic acidophilic microalgae) it is possible to mitigate the impact of the acid-generating and metal-mobilizing chemolithotrophic prokaryotes that are indigenous to tailing deposits. Sixty tailings mesocosms were set up, using five different microbial inoculation variants, and analyzed at regular intervals for changes in physicochemical and microbiological parameters for up to 1 year. Differences between treatment protocols were most apparent between tailings that had been inoculated with acidophilic algae in addition to aerobic and anaerobic heterotrophic bacteria and those that had been inoculated with only pyrite-oxidizing chemolithotrophs; these differences included higher pH values, lower redox potentials, and smaller concentrations of soluble copper and zinc. The results suggest that empirical ecological engineering of tailing lagoons to promote the growth and activities of iron- and sulfate-reducing bacteria could minimize their risk of AMD production and that the heterotrophic populations could be sustained by facilitating the growth of microalgae to provide continuous inputs of organic carbon. PMID:21965397

  10. Microbial biotechnology and circular economy in wastewater treatment.

    Science.gov (United States)

    Nielsen, Per Halkjaer

    2017-09-01

    Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens.

    Science.gov (United States)

    Peltoniemi, Krista; Laiho, Raija; Juottonen, Heli; Kiikkilä, Oili; Mäkiranta, Päivi; Minkkinen, Kari; Pennanen, Taina; Penttilä, Timo; Sarjala, Tytti; Tuittila, Eeva-Stiina; Tuomivirta, Tero; Fritze, Hannu

    2015-07-01

    Impacts of warming with open-top chambers on microbial communities in wet conditions and in conditions resulting from moderate water-level drawdown (WLD) were studied across 0-50 cm depth in northern and southern boreal sedge fens. Warming alone decreased microbial biomass especially in the northern fen. Impact of warming on microbial PLFA and fungal ITS composition was more obvious in the northern fen and linked to moisture regime and sample depth. Fungal-specific PLFA increased in the surface peat in the drier regime and decreased in layers below 10 cm in the wet regime after warming. OTUs representing Tomentella and Lactarius were observed in drier regime and Mortierella in wet regime after warming in the northern fen. The ectomycorrhizal fungi responded only to WLD. Interestingly, warming together with WLD decreased archaeal 16S rRNA copy numbers in general, and fungal ITS copy numbers in the northern fen. Expectedly, many results indicated that microbial response on warming may be linked to the moisture regime. Results indicated that microbial community in the northern fen representing Arctic soils would be more sensitive to environmental changes. The response to future climate change clearly may vary even within a habitat type, exemplified here by boreal sedge fen. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Predicting taxonomic and functional structure of microbial communities in acid mine drainage.

    Science.gov (United States)

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-06-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  13. Biochemistry and Ecology of Novel Cytochromes Catalyzing Fe(II) Oxidation by an Acidophilic Microbial Community

    Science.gov (United States)

    Singer, S. W.; Jeans, C. J.; Thelen, M. P.; Verberkmoes, N. C.; Hettich, R. C.; Chan, C. S.; Banfield, J. F.

    2007-12-01

    An acidophilic microbial community found in the Richmond Mine at Iron Mountain, CA forms abundant biofilms in extremely acidic (pHindicated that several variants of Cyt579 were present in Leptospirillum strains. Intact protein MS analysis identified the dominant variants in each biofilm and documented multiple N-terminal cleavage sites for Cyt579. By combining biochemical, geochemical and microbiological data, we established that the sequence variation and N-terminal processing of Cyt579 are selected by ecological conditions. In addition to the soluble Cyt579, the second cytochrome appears as a much larger protein complex of ~210 kDa predominant in the biofilm membrane fraction, and has an alpha-band absorption at 572 nm. The 60 kDa cytochrome subunit, Cyt572, resides in the outer membrane of LeptoII, and readily oxidizes Fe(II) at low pH (0.95 - 3.0). Several genes encoding Cyt572 were localized within a recombination hotspot between two strains of LeptoII, causing a large range of variation in the sequences. Genomic sequencing and MS proteomic studies established that the variants were also selected by ecological conditions. A general mechanistic model for Fe(II) oxidation has been developed from these studies. Initial Fe(II) oxidation by Cyt572 occurs at the outer membrane. Cyt572 then transfers electrons to Cyt579, perhaps representing an initial step in energy flow to the biofilm community. Amino acid variations and post-translational modifications of these unique cytochromes may represent fine-tuning of function in response to local environmental conditions.

  14. Microbial ecology: new insights into the great wide-open culture independent sea

    Science.gov (United States)

    Microbial communities are the basis for most, if not all, biochemical or biogeochemical functions in the environment. These environments are vastly different with respect to matrix, function, and biodiversity, and as such, present minute to stark differences in their respective microbial communities...

  15. Deriving site-specific soil clean-up values for metals and metalloids: rationale for including protection of soil microbial processes.

    Science.gov (United States)

    Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen

    2014-07-01

    Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of

  16. Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?

    NARCIS (Netherlands)

    Xu, Jia; Verbrugghe, Adronie; Lourenço, Marta; Janssens, Geert P.J.; Liu, Daisy J.X.; Wiele, Van de Tom; Eeckhaut, Venessa; Immerseel, Van Filip; Maele, Van de Isabel; Niu, Yufeng; Bosch, Guido; Junius, Greet; Wuyts, Brigitte; Hesta, Myriam

    2016-01-01

    Background: Inflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear

  17. Microbial taxonomy in the post-genomic era: Rebuilding from scratch?

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Cristiane C. [Univ. of Rio de Janeiro (UFRJ) (Brazil); Amaral, Gilda R. [Univ. of Rio de Janeiro (UFRJ) (Brazil); Campeão, Mariana [Univ. of Rio de Janeiro (UFRJ) (Brazil); Edwards, Robert A. [Univ. of Rio de Janeiro (UFRJ) (Brazil); San Diego State Univ., CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Polz, Martin F. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dutilh, Bas E. [Univ. of Rio de Janeiro (UFRJ) (Brazil); Radbould Univ., Nijmegen (Netherlands); Ussery, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sawabe, Tomoo [Hokkaido Univ., Hakodate (Japan); Swings, Jean [Univ. of Rio de Janeiro (UFRJ) (Brazil); Ghent Univ. (Belgium); Thompson, Fabiano L. [Univ. of Rio de Janeiro (UFRJ) (Brazil); Advanced Systems Laboratory Production Management COPPE / UFRJ, Rio de Janeiro (Brazil)

    2014-12-23

    Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. We re-evaluated the prokaryote species twice. It is time to revisit polyphasic taxonomy, its principles, and its practice, including its underlying pragmatic species concept. We will be able to realize an old dream of our predecessor taxonomists and build a genomic-based microbial taxonomy, using standardized and automated curation of high-quality complete genome sequences as the new gold standard.

  18. The effect of soil habitat connectivity on microbial interactions, community structure and diversity: a microcosm-based approach

    NARCIS (Netherlands)

    Wolf, A.B.

    2014-01-01

    Soils contain tremendous microbial phylogenetic and functional diversity. Recent advances in the application of molecular methods into microbial ecology have provided a new appreciation of the extent of soil-borne microbial diversity, but our understanding of the forces that shape and maintain this

  19. Occurrence, composition and ecological restoration of organic pollutants in water environment of South Canal, China

    Science.gov (United States)

    Wang, Y. Z.; Lin, C.; Zhou, X. S.; Zhang, Y.; Han, C. G.

    2017-08-01

    Ecological restoration of polluted river water was carried out in South Canal by adding microbial water purifying agents and biological compound enzymes. The objective of present study was to investigate the ecological restoration effect of organic pollutants by this efficient immobilized microbial technologies, analysis the occurrence and composition of organic pollutants including fifteen persistent organochlorine pesticides (OCPs), seventeen polycyclic aromatic hydrocarbons (PAHs) and eighteen organophosphorus pesticides (OPPs) both in natural water environment and ecological restoration area of South Canal, China. Results showed that the total concentrations of OCPs ranged from 1.11 to 1.78 ng·L-1, PAHs from 52.76 to 60.28 ng·L-1, and OPPs from 6.51 to 17.50 ng·L-1. Microbial water purifying agents and biological compound enzymes essentially had no effects on biological degradation of OCPs and PAHs in the river, but could remove OPPs with degradation rates ranging from 19.6% to 62.8% (35.2% in average). Degradation mechanisms of microbial water purifying agents and biological compound enzymes on OCPs, PAHs and OPPs remained to be further studied. This technology has a certain value in practical ecological restoration of organic pollutants in rivers and lakes.

  20. Modular spectral imaging system for discrimination of pigments in cells and microbial communities.

    Science.gov (United States)

    Polerecky, Lubos; Bissett, Andrew; Al-Najjar, Mohammad; Faerber, Paul; Osmers, Harald; Suci, Peter A; Stoodley, Paul; de Beer, Dirk

    2009-02-01

    Here we describe a spectral imaging system for minimally invasive identification, localization, and relative quantification of pigments in cells and microbial communities. The modularity of the system allows pigment detection on spatial scales ranging from the single-cell level to regions whose areas are several tens of square centimeters. For pigment identification in vivo absorption and/or autofluorescence spectra are used as the analytical signals. Along with the hardware, which is easy to transport and simple to assemble and allows rapid measurement, we describe newly developed software that allows highly sensitive and pigment-specific analyses of the hyperspectral data. We also propose and describe a number of applications of the system for microbial ecology, including identification of pigments in living cells and high-spatial-resolution imaging of pigments and the associated phototrophic groups in complex microbial communities, such as photosynthetic endolithic biofilms, microbial mats, and intertidal sediments. This system provides new possibilities for studying the role of spatial organization of microorganisms in the ecological functioning of complex benthic microbial communities or for noninvasively monitoring changes in the spatial organization and/or composition of a microbial community in response to changing environmental factors.

  1. Deciphering microbial interactions and detecting keystone species with co-occurrence networks

    Directory of Open Access Journals (Sweden)

    David eBerry

    2014-05-01

    Full Text Available Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics, construct co-occurrence networks, and evaluate how well networks reveal the underlying interactions, and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets.

  2. Deciphering microbial interactions and detecting keystone species with co-occurrence networks.

    Science.gov (United States)

    Berry, David; Widder, Stefanie

    2014-01-01

    Co-occurrence networks produced from microbial survey sequencing data are frequently used to identify interactions between community members. While this approach has potential to reveal ecological processes, it has been insufficiently validated due to the technical limitations inherent in studying complex microbial ecosystems. Here, we simulate multi-species microbial communities with known interaction patterns using generalized Lotka-Volterra dynamics. We then construct co-occurrence networks and evaluate how well networks reveal the underlying interactions and how experimental and ecological parameters can affect network inference and interpretation. We find that co-occurrence networks can recapitulate interaction networks under certain conditions, but that they lose interpretability when the effects of habitat filtering become significant. We demonstrate that networks suffer from local hot spots of spurious correlation in the neighborhood of hub species that engage in many interactions. We also identify topological features associated with keystone species in co-occurrence networks. This study provides a substantiated framework to guide environmental microbiologists in the construction and interpretation of co-occurrence networks from microbial survey datasets.

  3. Microbial Forensics: A Scientific Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Keim, Paul

    2003-02-17

    procedures and training to meet these initial challenges so as minimize disturbance of the evidence. While epidemiology and forensics are similar sciences with similar goals when applied to biocrimes, forensics has additional and more stringent requirements. Maintaining a chain of custody on evidentiary samples is one example of an extra requirement imposed on an investigation of a biocrime. Another issue is the intent in microbial forensics to identify a bioattack organism in greatest detail. If possible, forensic investigations will strive to identify the precise strain and substrain, rather than just to the species level, which might be sufficient in an epidemiological investigation. Although multiple groups have developed lists of bioterrorism target pathogens, these lists are too narrow. An expansion of microorganisms relevant to food and water threats should be considered. Computerized networks should be established to track infectious disease outbreaks in real time. These systems could alert public health and agricultural officials to the existence of a potential bioattack earlier than simply waiting for a report of a suspicious cluster of similar patients. Once a biocrime is suspected, a wide variety of methods are available to identify the microorganism used in the bioattack and to analyze features that might lead to the source of the event. A multi-pronged approach to such an investigation may be preferable, using many available methods-ranging from genomics to sequencing to physiology to analysis of substances in the sample. Microbial forensics will be most effective if there is sufficient basic scientific information concerning microbial genetics, evolution, physiology, and ecology. Strain subtyping analysis will be difficult to interpret if we do not understand some of the basic evolutionary mechanisms and population diversity of pathogens. Phenotypic features associated with evidentiary pathogens also may provide investigative leads, but full exploitation of

  4. Design and construction of synthetic microbial consortia in China

    Directory of Open Access Journals (Sweden)

    Ming-Zhu Ding

    2016-12-01

    Full Text Available The rapid development of synthetic biology enables the design, construction and optimization of synthetic microbial consortia to achieve specific functions. In China, the “973” project-“Design and Construction of Microbial Consortia” was funded by the National Basic Research Program of China in January 2014. It was proposed to address the fundamental challenges in engineering natural microbial consortia and reconstructing microbial consortia to meet industrial demands. In this review, we will introduce this “973” project, including the significance of microbial consortia, the fundamental scientific issues, the recent research progresses, and some case studies about synthetic microbial consortia in the past two and a half years.

  5. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Science.gov (United States)

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  6. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Directory of Open Access Journals (Sweden)

    Molly C. Bletz

    2017-08-01

    Full Text Available Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae was enriched on aquatic frogs, and Agrobacterium

  7. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar.

    Science.gov (United States)

    Bletz, Molly C; Archer, Holly; Harris, Reid N; McKenzie, Valerie J; Rabemananjara, Falitiana C E; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  8. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    Science.gov (United States)

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  9. Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts

    Directory of Open Access Journals (Sweden)

    M. Kim

    2017-12-01

    Full Text Available Biological soil crusts (biocrusts are self-organised thin assemblies of microbes, lichens, and mosses that are ubiquitous in arid regions and serve as important ecological and biogeochemical hotspots. Biocrust ecological function is intricately shaped by strong gradients of water, light, oxygen, and dynamics in the abundance and spatial organisation of the microbial community within a few millimetres of the soil surface. We report a mechanistic model that links the biophysical and chemical processes that shape the functioning of biocrust representative microbial communities that interact trophically and respond dynamically to cycles of hydration, light, and temperature. The model captures key features of carbon and nitrogen cycling within biocrusts, such as microbial activity and distribution (during early stages of biocrust establishment under diurnal cycles and the associated dynamics of biogeochemical fluxes at different hydration conditions. The study offers new insights into the highly dynamic and localised processes performed by microbial communities within thin desert biocrusts.

  10. Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts

    Science.gov (United States)

    Kim, Minsu; Or, Dani

    2017-12-01

    Biological soil crusts (biocrusts) are self-organised thin assemblies of microbes, lichens, and mosses that are ubiquitous in arid regions and serve as important ecological and biogeochemical hotspots. Biocrust ecological function is intricately shaped by strong gradients of water, light, oxygen, and dynamics in the abundance and spatial organisation of the microbial community within a few millimetres of the soil surface. We report a mechanistic model that links the biophysical and chemical processes that shape the functioning of biocrust representative microbial communities that interact trophically and respond dynamically to cycles of hydration, light, and temperature. The model captures key features of carbon and nitrogen cycling within biocrusts, such as microbial activity and distribution (during early stages of biocrust establishment) under diurnal cycles and the associated dynamics of biogeochemical fluxes at different hydration conditions. The study offers new insights into the highly dynamic and localised processes performed by microbial communities within thin desert biocrusts.

  11. Ecological modeling for forest management in the Shawnee National Forest

    Science.gov (United States)

    Richard G. Thurau; J.F. Fralish; S. Hupe; B. Fitch; A.D. Carver

    2008-01-01

    Land managers of the Shawnee National Forest in southern Illinois are challenged to meet the needs of a diverse populace of stakeholders. By classifying National Forest holdings into management units, U.S. Forest Service personnel can spatially allocate resources and services to meet local management objectives. Ecological Classification Systems predict ecological site...

  12. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession

    NARCIS (Netherlands)

    Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan Dirk; Salles, Joana Falcao

    2015-01-01

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with

  13. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities.

    Science.gov (United States)

    Zomorrodi, Ali R; Segrè, Daniel

    2017-11-16

    Metabolite exchanges in microbial communities give rise to ecological interactions that govern ecosystem diversity and stability. It is unclear, however, how the rise of these interactions varies across metabolites and organisms. Here we address this question by integrating genome-scale models of metabolism with evolutionary game theory. Specifically, we use microbial fitness values estimated by metabolic models to infer evolutionarily stable interactions in multi-species microbial "games". We first validate our approach using a well-characterized yeast cheater-cooperator system. We next perform over 80,000 in silico experiments to infer how metabolic interdependencies mediated by amino acid leakage in Escherichia coli vary across 189 amino acid pairs. While most pairs display shared patterns of inter-species interactions, multiple deviations are caused by pleiotropy and epistasis in metabolism. Furthermore, simulated invasion experiments reveal possible paths to obligate cross-feeding. Our study provides genomically driven insight into the rise of ecological interactions, with implications for microbiome research and synthetic ecology.

  14. Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?

    OpenAIRE

    Xu, Jia; Verbrugghe, Adronie; Louren?o, Marta; Janssens, Geert P. J.; Liu, Daisy J. X.; Van de Wiele, Tom; Eeckhaut, Venessa; Van Immerseel, Filip; Van de Maele, Isabel; Niu, Yufeng; Bosch, Guido; Junius, Greet; Wuyts, Brigitte; Hesta, Myriam

    2016-01-01

    Background Inflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear if this microbial profile can alter the nutrient metabolism of the host. The aim of the present study was to characterize the faecal bacterial profile and functionality as well as to determine host me...

  15. Evaluation Characterization of Mechanisms Controlling Fate and Effects of Army Smokes. (Transport, Transformations, Fate and Terrestrial Ecological Effects of Brass Obscurants).

    Science.gov (United States)

    1990-08-29

    Ecological Dose of Brass Flake Causing 50% Inhibition (EcDso) of Microbial Activity ................... 3.70 FIGURE 3.10 Ecological Dose of Brass Flake...diversity was determined by the procedure of Atlas (1 984a) and Atlas and Bartha (1987). Total heterotrophic bacteria were counted on Dlfcoo nutrient...0.99) 2515 (0.99) 1451 (0.97) 1335 (0.97) (a) EcDs 0 , the ecological concentration of brass flake causing 50% Inhibition of microbial parameter, was

  16. A Single-Granule-Level Approach Reveals Ecological Heterogeneity in an Upflow Anaerobic Sludge Blanket Reactor.

    Directory of Open Access Journals (Sweden)

    Kyohei Kuroda

    Full Text Available Upflow anaerobic sludge blanket (UASB reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a "macro"-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA-degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. "Candidatus Aminicenantes" and Methanosaeta are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach.

  17. A Single-Granule-Level Approach Reveals Ecological Heterogeneity in an Upflow Anaerobic Sludge Blanket Reactor

    Science.gov (United States)

    Mei, Ran; Narihiro, Takashi; Bocher, Benjamin T. W.; Yamaguchi, Takashi; Liu, Wen-Tso

    2016-01-01

    Upflow anaerobic sludge blanket (UASB) reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA) wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a “macro”-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA–degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. “Candidatus Aminicenantes” and Methanosaeta) are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach. PMID:27936088

  18. Sustaining Rare Marine Microorganisms: Macroorganisms As Repositories and Dispersal Agents of Microbial Diversity.

    Science.gov (United States)

    Troussellier, Marc; Escalas, Arthur; Bouvier, Thierry; Mouillot, David

    2017-01-01

    Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism-microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares , which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members.

  19. Microbial ecology and nematode control in natural ecosystems

    NARCIS (Netherlands)

    Costa, S.R.; Van der Putten, W.H.; Kerry, B.R.

    2011-01-01

    Plant-parasitic nematodes have traditionally been studied in agricultural systems, where they can be pests of importance on a wide range of crops. Nevertheless, nematode ecology in natural ecosystems is receiving increasing interest because of the role of nematodes in soil food webs, nutrient

  20. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    International Nuclear Information System (INIS)

    Smith, M.H.

    1996-01-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory's research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL)

  1. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

  2. Disturbance Regimes Predictably Alter Diversity in an Ecologically Complex Bacterial System

    Directory of Open Access Journals (Sweden)

    Sean M. Gibbons

    2016-12-01

    Full Text Available Diversity is often associated with the functional stability of ecological communities from microbes to macroorganisms. Understanding how diversity responds to environmental perturbations and the consequences of this relationship for ecosystem function are thus central challenges in microbial ecology. Unimodal diversity-disturbance relationships, in which maximum diversity occurs at intermediate levels of disturbance, have been predicted for ecosystems where life history tradeoffs separate organisms along a disturbance gradient. However, empirical support for such peaked relationships in macrosystems is mixed, and few studies have explored these relationships in microbial systems. Here we use complex microbial microcosm communities to systematically determine diversity-disturbance relationships over a range of disturbance regimes. We observed a reproducible switch between community states, which gave rise to transient diversity maxima when community states were forced to mix. Communities showed reduced compositional stability when diversity was highest. To further explore these dynamics, we formulated a simple model that reveals specific regimes under which diversity maxima are stable. Together, our results show how both unimodal and non-unimodal diversity-disturbance relationships can be observed as a system switches between two distinct microbial community states; this process likely occurs across a wide range of spatially and temporally heterogeneous microbial ecosystems.

  3. The Microbial DNA Index System (MiDIS): A tool for microbial pathogen source identification

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-08-09

    The microbial DNA Index System (MiDIS) is a concept for a microbial forensic database and investigative decision support system that can be used to help investigators identify the sources of microbial agents that have been used in a criminal or terrorist incident. The heart of the proposed system is a rigorous method for calculating source probabilities by using certain fundamental sampling distributions associated with the propagation and mutation of microbes on disease transmission networks. This formalism has a close relationship to mitochondrial and Y-chromosomal human DNA forensics, and the proposed decision support system is somewhat analogous to the CODIS and SWGDAM mtDNA databases. The MiDIS concept does not involve the use of opportunistic collections of microbial isolates and phylogenetic tree building as a basis for inference. A staged approach can be used to build MiDIS as an enduring capability, beginning with a pilot demonstration program that must meet user expectations for performance and validation before evolving into a continuing effort. Because MiDIS requires input from a a broad array of expertise including outbreak surveillance, field microbial isolate collection, microbial genome sequencing, disease transmission networks, and laboratory mutation rate studies, it will be necessary to assemble a national multi-laboratory team to develop such a system. The MiDIS effort would lend direction and focus to the national microbial genetics research program for microbial forensics, and would provide an appropriate forensic framework for interfacing to future national and international disease surveillance efforts.

  4. The ecological economics: An ecological economics

    International Nuclear Information System (INIS)

    Castiblanco R, Carmenza

    2007-01-01

    Ecological Economics arise as a scientific discipline aimed to integrate concepts of economics, ecology, thermodynamics, ethic and other natural and social sciences in order to incorporate a biophysical and integrated perspective of the inter dependences between economies and environment, from a plural conception and a methodology beyond disciplines. Ecological Economics studies the black box of economic processes usually excluded of the traditional economics: thermodynamics and ecology. Although it is relatively a new field of study, it has been strengthening its theoretical framework with scientific basis and analytic principles that lead to its identification as a new discipline that show a whole new paradigm. The scope of this article is to show the conceptual and methodological bases, the main founders, approaches and central debates of this new discipline. This brief introduction is a preamble to the papers of the meeting Ecological Economics: a perspective for Colombia included in this number, that took place on September 22 - 27 of 2007, at the National University of Colombia at Bogota. During tree days national and international experts, professors, researchers, workers of environmental sector and people interested on environmental issues joined together to know the conceptual and methodological achievements reached of this discipline; as well as to analyse and evaluate the environmental problems of the country, from the systemic, interdisciplinary and general perspective that it promotes

  5. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.

    Science.gov (United States)

    Louis, Petra; Flint, Harry J

    2009-05-01

    Butyrate-producing bacteria play a key role in colonic health in humans. This review provides an overview of the current knowledge of the diversity, metabolism and microbial ecology of this functionally important group of bacteria. Human colonic butyrate producers are Gram-positive firmicutes, but are phylogenetically diverse, with the two most abundant groups related to Eubacterium rectale/Roseburia spp. and to Faecalibacterium prausnitzii. Five different arrangements have been identified for the genes of the central pathway involved in butyrate synthesis, while in most cases butyryl-CoA : acetate CoA-transferase, rather than butyrate kinase, appears to perform the final step in butyrate synthesis. Mechanisms have been proposed recently in non-gut Clostridium spp. whereby butyrate synthesis can result in energy generation via both substrate-level phosphorylation and proton gradients. Here we suggest that these mechanisms also apply to the majority of butyrate producers from the human colon. The roles of these bacteria in the gut community and their influence on health are now being uncovered, taking advantage of the availability of cultured isolates and molecular methodologies. Populations of F. prausnitzii are reported to be decreased in Crohn's disease, for example, while populations of Roseburia relatives appear to be particularly sensitive to the diet composition in human volunteer studies.

  6. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

    Science.gov (United States)

    Saleem, Muhammad; Moe, Luke A

    2014-10-01

    Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Can the black box be cracked? The augmentation of microbial ecology by high-resolution, automated sensing technologies.

    Science.gov (United States)

    Shade, Ashley; Carey, Cayelan C; Kara, Emily; Bertilsson, Stefan; McMahon, Katherine D; Smith, Matthew C

    2009-08-01

    Automated sensing technologies, 'ASTs,' are tools that can monitor environmental or microbial-related variables at increasingly high temporal resolution. Microbial ecologists are poised to use AST data to couple microbial structure, function and associated environmental observations on temporal scales pertinent to microbial processes. In the context of aquatic microbiology, we discuss three applications of ASTs: windows on the microbial world, adaptive sampling and adaptive management. We challenge microbial ecologists to push AST potential in helping to reveal relationships between microbial structure and function.

  8. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge

    OpenAIRE

    Dahle, H?kon; ?kland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-01-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent f...

  9. An Integrated Insight into the Relationship between Soil Microbial Community and Tobacco Bacterial Wilt Disease

    Science.gov (United States)

    Yang, Hongwu; Li, Juan; Xiao, Yunhua; Gu, Yabing; Liu, Hongwei; Liang, Yili; Liu, Xueduan; Hu, Jin; Meng, Delong; Yin, Huaqun

    2017-01-01

    The soil microbial communities play an important role in plant health, however, the relationship between the below-ground microbiome and above-ground plant health remains unclear. To reveal such a relationship, we analyzed soil microbial communities through sequencing of 16S rRNA gene amplicons from 15 different tobacco fields with different levels of wilt disease in the central south part of China. We found that plant health was related to the soil microbial diversity as plants may benefit from the diverse microbial communities. Also, those 15 fields were grouped into ‘healthy’ and ‘infected’ samples based upon soil microbial community composition analyses such as unweighted paired-group method with arithmetic means (UPGMA) and principle component analysis, and furthermore, molecular ecological network analysis indicated that some potential plant-beneficial microbial groups, e.g., Bacillus and Actinobacteria could act as network key taxa, thus reducing the chance of plant soil-borne pathogen invasion. In addition, we propose that a more complex soil ecology network may help suppress tobacco wilt, which was also consistent with highly diversity and composition with plant-beneficial microbial groups. This study provides new insights into our understanding the relationship between the soil microbiome and plant health. PMID:29163453

  10. Hydrodynamics of microbial filter feeding.

    Science.gov (United States)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia; Walther, Jens H; Kiørboe, Thomas; Andersen, Anders

    2017-08-29

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), something notoriously difficult to visualize but sporadically observed in the related choanocytes (sponges). A CFD model with a flagellar vane correctly predicts the filtration rate of D. grandis , and using a simple model we can account for the filtration rates of other microbial filter feeders. We finally predict how optimum filter mesh size increases with cell size in microbial filter feeders, a prediction that accords very well with observations. We expect our results to be of significance for small-scale biophysics and trait-based ecological modeling.

  11. Ecology of the North Sea: Problems, successes, failures, future needs

    Science.gov (United States)

    Kinne, O.

    1995-03-01

    After defining ‘ecology’, outlining the basic categories of ecological research and listing examples of modern ecological investigations, this introductory paper focusses on basic considerations; it is, in essence, a programmatic contribution. Research details on the ecology of the North Sea are the subject of the following papers. The problems of ecological North Sea research are formidable. Hydrological and biological fluctuations and variabilities are pronounced. Exchange patterns with the Atlantic are complex, and the inputs of rivers and rain defy exact measurement and prediction. Season, weather, climate—and as yet insufficiently known and controlled human-caused impacts—further complicate the situation. All this results in an unusually high degree of uncertainty. New questions and problems arise before the old ones can be answered or solved. Nevertheless, ecological North Sea research has achieved many successes. The North Sea is the most intensively investigated sea area on our planet. Generations of zoologists, botanists and hydrographers — and more recently microbiologists, meteorologists, climatologists, chemists, pathologists and toxicologists — have produced an impressive body of knowledge. Slowly we are beginning to understand the forces that govern energy budgets and balances, material fluxes, and the factors that control and direct ecosystem dynamics. Essential driving forces of ecosystem dynamics result from microbial, especially bacterial, activities. Ecological modelling has paved the way for new theories and insights, and holds promise for progress towards a predictive ecology. Failures and shortcomings include insufficient long-term research, inadequately designed experiments, and misconceptions in environmental protection. Net changes in ecological processes of an heterogeneous and intensely varying environment such as the North Sea can only be comprehended adequately against the background of sustained measurements over decades

  12. Fundamentals of ecology. Vol. 2. Grundlagen der Oekologie. Bd. 2. Standorte und Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Odum, E P

    1980-01-01

    The following topics are discussed: freshwater flora and fauna; marine ecosystems; shelf, krill, mangroves, and coral reefs; terrestrial biota and biogeographic regions; deciduous wood, grassland, desert; microbial-ecological perspectives: taxonomy, efficiency, turnover; aquaculture, agriculture, forestry; types, cost, and phases of environmental pollution; specific population ecology of humans.

  13. Rumen microbial genomics

    International Nuclear Information System (INIS)

    Morrison, M.; Nelson, K.E.

    2005-01-01

    Improving microbial degradation of plant cell wall polysaccharides remains one of the highest priority goals for all livestock enterprises, including the cattle herds and draught animals of developing countries. The North American Consortium for Genomics of Fibrolytic Ruminal Bacteria was created to promote the sequencing and comparative analysis of rumen microbial genomes, offering the potential to fully assess the genetic potential in a functional and comparative fashion. It has been found that the Fibrobacter succinogenes genome encodes many more endoglucanases and cellodextrinases than previously isolated, and several new processive endoglucanases have been identified by genome and proteomic analysis of Ruminococcus albus, in addition to a variety of strategies for its adhesion to fibre. The ramifications of acquiring genome sequence data for rumen microorganisms are profound, including the potential to elucidate and overcome the biochemical, ecological or physiological processes that are rate limiting for ruminal fibre degradation. (author)

  14. Contrasting microbial community assembly hypotheses: a reconciling tale from the Río Tinto.

    Science.gov (United States)

    Palacios, Carmen; Zettler, Erik; Amils, Ricardo; Amaral-Zettler, Linda

    2008-01-01

    The Río Tinto (RT) is distinguished from other acid mine drainage systems by its natural and ancient origins. Microbial life from all three domains flourishes in this ecosystem, but bacteria dominate metabolic processes that perpetuate environmental extremes. While the patchy geochemistry of the RT likely influences the dynamics of bacterial populations, demonstrating which environmental variables shape microbial diversity and unveiling the mechanisms underlying observed patterns, remain major challenges in microbial ecology whose answers rely upon detailed assessments of community structures coupled with fine-scale measurements of physico-chemical parameters. By using high-throughput environmental tag sequencing we achieved saturation of richness estimators for the first time in the RT. We found that environmental factors dictate the distribution of the most abundant taxa in this system, but stochastic niche differentiation processes, such as mutation and dispersal, also contribute to observed diversity patterns. We predict that studies providing clues to the evolutionary and ecological processes underlying microbial distributions will reconcile the ongoing debate between the Baas Becking vs. Hubbell community assembly hypotheses.

  15. Contrasting microbial community assembly hypotheses: a reconciling tale from the Río Tinto.

    Directory of Open Access Journals (Sweden)

    Carmen Palacios

    Full Text Available The Río Tinto (RT is distinguished from other acid mine drainage systems by its natural and ancient origins. Microbial life from all three domains flourishes in this ecosystem, but bacteria dominate metabolic processes that perpetuate environmental extremes. While the patchy geochemistry of the RT likely influences the dynamics of bacterial populations, demonstrating which environmental variables shape microbial diversity and unveiling the mechanisms underlying observed patterns, remain major challenges in microbial ecology whose answers rely upon detailed assessments of community structures coupled with fine-scale measurements of physico-chemical parameters.By using high-throughput environmental tag sequencing we achieved saturation of richness estimators for the first time in the RT. We found that environmental factors dictate the distribution of the most abundant taxa in this system, but stochastic niche differentiation processes, such as mutation and dispersal, also contribute to observed diversity patterns.We predict that studies providing clues to the evolutionary and ecological processes underlying microbial distributions will reconcile the ongoing debate between the Baas Becking vs. Hubbell community assembly hypotheses.

  16. Functional ecology of soil microbial communities along a glacier forefield in Tierra del Fuego (Chile).

    Science.gov (United States)

    Fernández-Martínez, Miguel A; Pointing, Stephen B; Pérez-Ortega, Sergio; Arróniz-Crespo, María; Green, T G Allan; Rozzi, Ricardo; Sancho, Leopoldo G; de Los Ríos, Asunción

    2016-09-01

    A previously established chronosequence from Pia Glacier forefield in Tierra del Fuego (Chile) containing soils of different ages (from bare soils to forest ones) is analyzed. We used this chronosequence as framework to postulate that microbial successional development would be accompanied by changes in functionality. To test this, the GeoChip functional microarray was used to identify diversity of genes involved in microbial carbon and nitrogen metabolism, as well as other genes related to microbial stress response and biotic interactions. Changes in putative functionality generally reflected succession-related taxonomic composition of soil microbiota. Major shifts in carbon fixation and catabolism were observed, as well as major changes in nitrogen metabolism. At initial microbial dominated succession stages, microorganisms could be mainly involved in pathways that help to increase nutrient availability, while more complex microbial transformations such as denitrification and methanogenesis, and later degradation of complex organic substrates, could be more prevalent at vegetated successional states. Shifts in virus populations broadly reflected changes in microbial diversity. Conversely, stress response pathways appeared relatively well conserved for communities along the entire chronosequence. We conclude that nutrient utilization is likely the major driver of microbial succession in these soils. [Int Microbiol 19(3):161-173 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  17. Microbial Species and Functional Diversity in Rice Rhizosphere of High-yield Special Ecological Areas

    Directory of Open Access Journals (Sweden)

    PAN Li-yuan

    2016-11-01

    Full Text Available Taoyuan, Yunnan Province is a special eco-site which keeps the highest yield records of rice cultivation in small planting areas. Soil microbial species and functional diversity were evaluated using cultivation method and BIOLOG ecoplates. The results showed that the microbial community of the high yield region was more abundant, and the total microbial population was 2 times of the control, furthermore, the areas belonged to the healthy "bacteria" soil, which was showed as bacteria > actinomycetes > fungi. Bacteria were the dominant populations in the rhizosphere of high yielding rice field, and the yield formation of rice was not correlated with the depth of soil layers. In order to obtain more species diversity information, Shannon diversity index H, Shannon evenness index E and Simpson index D were analyzed, and the results showed that microbial community diversity and evenness were not the main differences between the high and general yield areas. Then, the functional diversity of soil microbial community was investigated through the average well color development(AWCD and diversity index analyses. The results of AWCD analysis indicated that the metabolic activity of soil microbial community in high yield paddy soils were stronger than the control. Moreover, the difference range from large to small showed as tillering stage > harvest period > seedling period > rotation period, the stronger the rice growth, the greater the difference between the high yield region and the control. At tillering stage and harvest stage, due to the vigorous plant growth, the root exudates were rich, and the microbial communities of high yield paddy soils showed a strong metabolic activity and strong ability to use carbon sources. The results of Shannon, Simpson and McIntosh indices analysis indicated that common microbial species was not a key factor affecting the yield of rice. Tillering stage was a key period for the growth of high yield rice, and many

  18. Effect of different fertilizers on the microbial activity and productivity ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... randomized block design in four replications at the experimental field of the Biotechnical Faculty,. Podgorica in ..... (plants, animals and humans) through the food chain. In general, the ... Microbial ecology of the rhizosphere.

  19. Ecological suicide in microbes.

    Science.gov (United States)

    Ratzke, Christoph; Denk, Jonas; Gore, Jeff

    2018-05-01

    The growth and survival of organisms often depend on interactions between them. In many cases, these interactions are positive and caused by a cooperative modification of the environment. Examples are the cooperative breakdown of complex nutrients in microbes or the construction of elaborate architectures in social insects, in which the individual profits from the collective actions of her peers. However, organisms can similarly display negative interactions by changing the environment in ways that are detrimental for them, for example by resource depletion or the production of toxic byproducts. Here we find an extreme type of negative interactions, in which Paenibacillus sp. bacteria modify the environmental pH to such a degree that it leads to a rapid extinction of the whole population, a phenomenon that we call ecological suicide. Modification of the pH is more pronounced at higher population densities, and thus ecological suicide is more likely to occur with increasing bacterial density. Correspondingly, promoting bacterial growth can drive populations extinct whereas inhibiting bacterial growth by the addition of harmful substances-such as antibiotics-can rescue them. Moreover, ecological suicide can cause oscillatory dynamics, even in single-species populations. We found ecological suicide in a wide variety of microbes, suggesting that it could have an important role in microbial ecology and evolution.

  20. Soil microbial community of abandoned sand fields

    Czech Academy of Sciences Publication Activity Database

    Elhottová, Dana; Szili-Kovács, T.; Tříska, Jan

    2002-01-01

    Roč. 47, č. 4 (2002), s. 435-440 ISSN 0015-5632 R&D Projects: GA ČR GA526/99/P033 Grant - others:OTKA(HU) T25739 Institutional research plan: CEZ:AV0Z6066911 Keywords : microbial community * abandoned fields Subject RIV: EH - Ecology, Behaviour Impact factor: 0.979, year: 2002

  1. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  2. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities

    OpenAIRE

    BoonFei eTan; Charmaine Marie Ng; Jean Pierre Nshimyimana; Jean Pierre Nshimyimana; Lay-Leng eLoh; Lay-Leng eLoh; Karina Yew-Hoong Gin; Janelle Renee Thompson; Janelle Renee Thompson

    2015-01-01

    Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable reg...

  3. Sequence-based Methods in Human Microbial Ecology: A The 2nd HumanGenome Comes of Age

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Li; Rubin, Edward M.; Bristow, James

    2005-06-01

    Ecologists studying microbial life in the environment have recognized the enormous complexity of microbial diversity for more than a decade (Whitman et al. 1998). The development of a variety of culture-independent methods, many of them coupled with high-throughput DNA sequencing, has allowed this diversity to be explored in ever greater detail (Handelsman 2004; Harris et al. 2004; Hugenholtz et al. 1998; Moreira and Lopez-Garcia 2002; Rappe and Giovannoni 2003). Despite the widespread application of these new techniques to the characterization of uncultivated microbes and microbial communities in the environment, their application to human health and disease has lagged behind. Because these techniques now allow not only cataloging of microbial diversity, but also insight into microbial functions, it is time for clinical microbiologists to apply these tools to the microbial communities that abound on and within us, in what has been aptly called ''the second Human Genome Project'' (Relman and Falkow 2001). In this review we will discuss the sequence-based methods for microbial analysis that are currently available and their application to identify novel human pathogens, improve diagnosis and treatment of known infectious diseases, and finally to advance understanding of our relationship with microbial communities that normally reside in and on the human body.

  4. Diversity spurs diversification in ecological communities

    Science.gov (United States)

    Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice

    2017-06-01

    Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss.

  5. Diversity spurs diversification in ecological communities.

    Science.gov (United States)

    Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice

    2017-06-09

    Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss.

  6. Microbial co-occurrence relationships in the human microbiome.

    Directory of Open Access Journals (Sweden)

    Karoline Faust

    Full Text Available The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs to taxonomic marker (16S rRNA gene profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut often compete, while potential pathogens (e.g. Treponema and

  7. Microbial Co-occurrence Relationships in the Human Microbiome

    Science.gov (United States)

    Izard, Jacques; Segata, Nicola; Gevers, Dirk

    2012-01-01

    The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the

  8. From metabolism to ecology: cross-feeding interactions shape the balance between polymicrobial conflict and mutualism.

    Science.gov (United States)

    Estrela, Sylvie; Trisos, Christopher H; Brown, Sam P

    2012-11-01

    Polymicrobial interactions are widespread in nature and play a major role in maintaining human health and ecosystems. Whenever one organism uses metabolites produced by another organism as energy or nutrient sources, it is called cross-feeding. The ecological outcomes of cross-feeding interactions are poorly understood and potentially diverse: mutualism, competition, exploitation, or commensalism. A major reason for this uncertainty is the lack of theoretical approaches linking microbial metabolism to microbial ecology. To address this issue, we explore the dynamics of a one-way interspecific cross-feeding interaction in which food can be traded for a service (detoxification). Our results show that diverse ecological interactions (competition, mutualism, exploitation) can emerge from this simple cross-feeding interaction and can be predicted by the metabolic, demographic, and environmental parameters that govern the balance of the costs and benefits of association. In particular, our model predicts stronger mutualism for intermediate by-product toxicity because the resource-service exchange is constrained to the service being neither too vital (high toxicity impairs resource provision) nor dispensable (low toxicity reduces need for service). These results support the idea that bridging microbial ecology and metabolism is a critical step toward a better understanding of the factors governing the emergence and dynamics of polymicrobial interactions.

  9. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    Science.gov (United States)

    Siddharth, Jay; Holway, Nicholas; Parkinson, Scott J

    2013-01-01

    The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  10. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    Directory of Open Access Journals (Sweden)

    Jay Siddharth

    Full Text Available The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets correlating with formula (vs breast feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  11. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

    Science.gov (United States)

    Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão

    2015-03-17

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.

  12. Ecological drift and local exposures drive enteric bacterial community differences within species of Galápagos iguanas.

    Science.gov (United States)

    Lankau, Emily W; Hong, Pei-Ying; Mackie, Roderick I

    2012-04-01

    Diet strongly influences the intestinal microbial communities through species sorting. Alternatively, these communicates may differ because of chance variation in local microbial exposures or species losses among allopatric host populations (i.e. ecological drift). We investigated how these forces shape enteric communities of Galápagos marine and land iguanas. Geographically proximate populations shared more similar communities within a host ecotype, suggesting a role for ecological drift during host colonization of the islands. Additionally, evidence of taxa sharing between proximate heterospecific host populations suggests that contemporary local exposures also influence the gut community assembly. While selective forces such as host-bacterial interactions or dietary differences are dominant drivers of intestinal community differences among hosts, historical and contemporary processes of ecological drift may lead to differences in bacterial composition within a host species. Whether such differences in community structure translate into geographic variation in benefits derived from these intimate microbial communities remains to be explored. © 2012 Blackwell Publishing Ltd.

  13. Ecological aspects of microorganisms inhabiting uranium mill tailings

    Science.gov (United States)

    Miller, C.L.; Landa, E.R.; Updegraff, D.M.

    1987-01-01

    Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques. Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereas Bacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth. ?? 1987 Springer-Verlag New York Inc.

  14. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions.

    Science.gov (United States)

    Thompson, Janelle R; Rivera, Hanny E; Closek, Collin J; Medina, Mónica

    2014-01-01

    In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health-not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history. Herein, we review the current literature on coral-microbe interactions within the context of their role in evolution, development, and ecology. We ask the following questions, first posed by McFall-Ngai et al. (2013) in their review of animal evolution, with specific attention to how coral-microbial interactions may be affected under future environmental conditions: (1) How do corals and their microbiome affect each other's genomes? (2) How does coral development depend on microbial partners? (3) How is homeostasis maintained between corals and their microbial symbionts? (4) How can ecological approaches deepen our understanding of the multiple levels of coral-microbial interactions? Elucidating the role that microorganisms play in the structure and function of the holobiont is essential for understanding how corals maintain homeostasis and acclimate to changing environmental conditions.

  15. Responses of soil microbial biomass and bacterial community structure to closed-off management (an ecological natural restoration measures): A case study of Dongting Lake wetland, middle China.

    Science.gov (United States)

    Dai, Juan; Wu, Haipeng; Zhang, Chang; Zeng, Guangming; Liang, Jie; Guo, Shenglian; Li, Xiaodong; Huang, Lu; Lu, Lunhui; Yuan, Yujie

    2016-09-01

    Soil microbial biomass (SMB) and bacterial community structure, which are critical to global ecosystem and fundamental ecological processes, are sensitive to anthropogenic activities and environmental conditions. In this study, we examined the possible effects of closed-off management (an ecological natural restoration measures, ban on anthropogenic activity, widely employed for many important wetlands) on SMB, soil bacterial community structure and functional marker genes of nitrogen cycling in Dongting Lake wetland. Soil samples were collected from management area (MA) and contrast area (CA: human activities, such as hunting, fishing and draining, are permitted) in November 2013 and April 2014. Soil properties, microbial biomass carbon (MBC), and bacterial community structure were investigated. Comparison of the values of MA and CA showed that SMB and bacterial community diversity of the MA had a significant increase after 7 years closed-off management. The mean value of Shannon-Weiner diversity index of MA and CA respectively were 2.85 and 2.07. The gene copy numbers of 16S rRNA and nosZ of MA were significant higher than those of CA. the gene copy numbers of ammonia-oxidizing archaea (AOA) and nirK of MA were significant lower than those of CA. However, there was no significant change in the gene copy numbers of ammonia-oxidizing bacteria (AOB) and nirS. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Temporal and Spatial Distribution of the Microbial Community of Winogradsky Columns.

    Directory of Open Access Journals (Sweden)

    David J Esteban

    Full Text Available Winogradsky columns are model microbial ecosystems prepared by adding pond sediment to a clear cylinder with additional supplements and incubated with light. Environmental gradients develop within the column creating diverse niches that allow enrichment of specific bacteria. The enrichment culture can be used to study soil and sediment microbial community structure and function. In this study we used a 16S rRNA gene survey to characterize the microbial community dynamics during Winogradsky column development to determine the rate and extent of change from the source sediment community. Over a period of 60 days, the microbial community changed from the founding pond sediment population: Cyanobacteria, Chloroflexi, Nitrospirae, and Planctomycetes increased in relative abundance over time, while most Proteobacteria decreased in relative abundance. A unique, light-dependent surface biofilm community formed by 60 days that was less diverse and dominated by a few highly abundant bacteria. 67-72% of the surface community was comprised of highly enriched taxa that were rare in the source pond sediment, including the Cyanobacteria Anabaena, a member of the Gemmatimonadetes phylum, and a member of the Chloroflexi class Anaerolinea. This indicates that rare taxa can become abundant under appropriate environmental conditions and supports the hypothesis that rare taxa serve as a microbial seed bank. We also present preliminary findings that suggest that bacteriophages may be active in the Winogradsky community. The dynamics of certain taxa, most notably the Cyanobacteria, showed a bloom-and-decline pattern, consistent with bacteriophage predation as predicted in the kill-the-winner hypothesis. Time-lapse photography also supported the possibility of bacteriophage activity, revealing a pattern of colony clearance similar to formation of viral plaques. The Winogradsky column, a technique developed early in the history of microbial ecology to enrich soil

  17. A conceptual framework for invasion in microbial communities

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Dechesne, Arnaud; Proctor, Caitlin

    2016-01-01

    and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type...... in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion....... This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all...

  18. Microbial mitigation-exacerbation continuum: a novel framework for microbiome effects on hosts in the face of stress.

    Science.gov (United States)

    David, Aaron S; Thapa-Magar, Khum B; Afkhami, Michelle E

    2018-03-01

    A key challenge to understanding microbiomes and their role in ecological processes is contextualizing their effects on host organisms, particularly when faced with environmental stress. One influential theory, the Stress Gradient Hypothesis, might predict that the frequency of positive interactions increases with stressful conditions such that microbial taxa would mitigate harmful effects on host performance. Yet, equally plausible is that microbial taxa could exacerbate these effects. Here, we introduce the Mitigation-Exacerbation Continuum as a novel framework to conceptualize microbial mediation of stress. We (1) use this continuum to quantify microbial mediation of stress for six plant species and (2) test the association between these continuum values and natural species' abundance. We factorially manipulated a common stress (allelopathy) and the presence of soil microbes to quantify microbial effects in benign and stressed environments for two critical early life-history metrics, seed germination and seedling biomass. Although we found evidence of both mitigation and exacerbation among the six species, exacerbation was more common. Across species, the degree of microbial-mediated effects on germination explained >80% of the variation of natural field abundances. Our results suggest a critical role of soil microbes in mediating plant stress responses, and a potential microbial mechanism underlying species abundance. © 2018 by the Ecological Society of America.

  19. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems.

    Science.gov (United States)

    Brooks, John P; Adeli, Ardeshir; McLaughlin, Michael R

    2014-06-15

    The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vast changes to the microbial biota and ecological structure of both the pig and waste manure lagoon wastewater. While some of these changes may not be negative, it is possible that CAFOs can enrich antibiotic resistant bacteria or pathogens based on farm type, thereby influencing the impact imparted by the land application of its respective wastewater. The purpose of this study was to measure the microbial constituents of swine-sow, -nursery, and -finisher farm manure lagoon wastewater and determine the changes induced by farm management. A total of 37 farms were visited in the Mid-South USA and analyzed for the genes 16S rRNA, spaQ (Salmonella spp.), Camp-16S (Campylobacter spp.), tetA, tetB, ermF, ermA, mecA, and intI using quantitative PCR. Additionally, 16S rRNA sequence libraries were created. Overall, it appeared that finisher farms were significantly different from nursery and sow farms in nearly all genes measured and in 16S rRNA clone libraries. Nearly all antibiotic resistance genes were detected in all farms. Interestingly, the mecA resistance gene (e.g. methicillin resistant Staphylococcus aureus) was below detection limits on most farms, and decreased as the pigs aged. Finisher farms generally had fewer antibiotic resistance genes, which corroborated previous phenotypic data; additionally, finisher farms produced a less diverse 16S rRNA sequence library. Comparisons of Camp-16S and spaQ GU (genomic unit) values to previous culture data demonstrated ratios from 10 to 10,000:1 depending on farm type, indicating viable but not cultivatable bacteria were dominant. The current study indicated that swine farm management schemes positively and negatively affect microbial and antibiotic resistant populations in CAFO wastewater which has future "downstream" implications from both an environmental and public health perspective. Published by Elsevier Ltd.

  20. Ammonia-oxidizing bacteria: A model for molecular microbial ecology

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Stephen, J.R.

    2001-01-01

    The eutrophication of many ecosystems in recent decades has led to an increased interest in the ecology of nitrogen transformation. Chemolitho-autotrophic ammonia-oxidizing bacteria are responsible for the rate-limiting step of nitrification in a wide variety of environments, making them important

  1. An advanced concept that promises ecological and economic viability

    Science.gov (United States)

    Wright, B. R.; Sedgwick, T. A.; Urie, D. M.

    1976-01-01

    The actuality of supersonic commercial service being provided by Concorde is demonstrating to the world the advantages offered by supersonic travel for both business and recreation. Public acceptance will gradually and persistently stimulate interest to proceed with a second generation design that meets updated economic and ecological standards. It is estimated that this concept could operate profitably on world-wide routes with a revenue structure based upon economy fares. Airplanes will meet all present day ecological requirements regarding noise and emissions.

  2. Dynamic assessment of microbial ecology (DAME): A shiny app for analysis and visualization of microbial sequencing data

    Science.gov (United States)

    A new renaissance in knowledge about the role of commensal microbiota in health and disease is well underway facilitated by culture-independent sequencing technologies; however, microbial sequencing data poses new challenges (e.g., taxonomic hierarchy, overdispersion) not generally seen in more trad...

  3. Microbial Communities Are Well Adapted to Disturbances in Energy Input.

    Science.gov (United States)

    Fernandez-Gonzalez, Nuria; Huber, Julie A; Vallino, Joseph J

    2016-01-01

    Although microbial systems are well suited for studying concepts in ecological theory, little is known about how microbial communities respond to long-term periodic perturbations beyond diel oscillations. Taking advantage of an ongoing microcosm experiment, we studied how methanotrophic microbial communities adapted to disturbances in energy input over a 20-day cycle period. Sequencing of bacterial 16S rRNA genes together with quantification of microbial abundance and ecosystem function were used to explore the long-term dynamics (510 days) of methanotrophic communities under continuous versus cyclic chemical energy supply. We observed that microbial communities appeared inherently well adapted to disturbances in energy input and that changes in community structure in both treatments were more dependent on internal dynamics than on external forcing. The results also showed that the rare biosphere was critical to seeding the internal community dynamics, perhaps due to cross-feeding or other strategies. We conclude that in our experimental system, internal feedbacks were more important than external drivers in shaping the community dynamics over time, suggesting that ecosystems can maintain their function despite inherently unstable community dynamics. IMPORTANCE Within the broader ecological context, biological communities are often viewed as stable and as only experiencing succession or replacement when subject to external perturbations, such as changes in food availability or the introduction of exotic species. Our findings indicate that microbial communities can exhibit strong internal dynamics that may be more important in shaping community succession than external drivers. Dynamic "unstable" communities may be important for ecosystem functional stability, with rare organisms playing an important role in community restructuring. Understanding the mechanisms responsible for internal community dynamics will certainly be required for understanding and manipulating

  4. Urban microbial ecology of a freshwater estuary of Lake Michigan.

    Science.gov (United States)

    Fisher, Jenny C; Newton, Ryan J; Dila, Deborah K; McLellan, Sandra L

    Freshwater estuaries throughout the Great Lakes region receive stormwater runoff and riverine inputs from heavily urbanized population centers. While human and animal feces contained in this runoff are often the focus of source tracking investigations, non-fecal bacterial loads from soil, aerosols, urban infrastructure, and other sources are also transported to estuaries and lakes. We quantified and characterized this non-fecal urban microbial component using bacterial 16S rRNA gene sequences from sewage, stormwater, rivers, harbor/estuary, and the lake surrounding Milwaukee, WI, USA. Bacterial communities from each of these environments had a distinctive composition, but some community members were shared among environments. We used a statistical biomarker discovery tool to identify the components of the microbial community that were most strongly associated with stormwater and sewage to describe an "urban microbial signature," and measured the presence and relative abundance of these organisms in the rivers, estuary, and lake. This urban signature increased in magnitude in the estuary and harbor with increasing rainfall levels, and was more apparent in lake samples with closest proximity to the Milwaukee estuary. The dominant bacterial taxa in the urban signature were Acinetobacter, Aeromonas , and Pseudomonas , which are organisms associated with pipe infrastructure and soil and not typically found in pelagic freshwater environments. These taxa were highly abundant in stormwater and sewage, but sewage also contained a high abundance of Arcobacter and Trichococcus that appeared in lower abundance in stormwater outfalls and in trace amounts in aquatic environments. Urban signature organisms comprised 1.7% of estuary and harbor communities under baseflow conditions, 3.5% after rain, and >10% after a combined sewer overflow. With predicted increases in urbanization across the Great Lakes, further alteration of freshwater communities is likely to occur with potential

  5. Urban microbial ecology of a freshwater estuary of Lake Michigan

    Directory of Open Access Journals (Sweden)

    Jenny C. Fisher

    2015-07-01

    Full Text Available Abstract Freshwater estuaries throughout the Great Lakes region receive stormwater runoff and riverine inputs from heavily urbanized population centers. While human and animal feces contained in this runoff are often the focus of source tracking investigations, non-fecal bacterial loads from soil, aerosols, urban infrastructure, and other sources are also transported to estuaries and lakes. We quantified and characterized this non-fecal urban microbial component using bacterial 16S rRNA gene sequences from sewage, stormwater, rivers, harbor/estuary, and the lake surrounding Milwaukee, WI, USA. Bacterial communities from each of these environments had a distinctive composition, but some community members were shared among environments. We used a statistical biomarker discovery tool to identify the components of the microbial community that were most strongly associated with stormwater and sewage to describe an “urban microbial signature,” and measured the presence and relative abundance of these organisms in the rivers, estuary, and lake. This urban signature increased in magnitude in the estuary and harbor with increasing rainfall levels, and was more apparent in lake samples with closest proximity to the Milwaukee estuary. The dominant bacterial taxa in the urban signature were Acinetobacter, Aeromonas, and Pseudomonas, which are organisms associated with pipe infrastructure and soil and not typically found in pelagic freshwater environments. These taxa were highly abundant in stormwater and sewage, but sewage also contained a high abundance of Arcobacter and Trichococcus that appeared in lower abundance in stormwater outfalls and in trace amounts in aquatic environments. Urban signature organisms comprised 1.7% of estuary and harbor communities under baseflow conditions, 3.5% after rain, and >10% after a combined sewer overflow. With predicted increases in urbanization across the Great Lakes, further alteration of freshwater communities is

  6. Urban microbial ecology of a freshwater estuary of Lake Michigan

    Science.gov (United States)

    Fisher, Jenny C.; Newton, Ryan J.; Dila, Deborah K.

    2015-01-01

    Freshwater estuaries throughout the Great Lakes region receive stormwater runoff and riverine inputs from heavily urbanized population centers. While human and animal feces contained in this runoff are often the focus of source tracking investigations, non-fecal bacterial loads from soil, aerosols, urban infrastructure, and other sources are also transported to estuaries and lakes. We quantified and characterized this non-fecal urban microbial component using bacterial 16S rRNA gene sequences from sewage, stormwater, rivers, harbor/estuary, and the lake surrounding Milwaukee, WI, USA. Bacterial communities from each of these environments had a distinctive composition, but some community members were shared among environments. We used a statistical biomarker discovery tool to identify the components of the microbial community that were most strongly associated with stormwater and sewage to describe an “urban microbial signature,” and measured the presence and relative abundance of these organisms in the rivers, estuary, and lake. This urban signature increased in magnitude in the estuary and harbor with increasing rainfall levels, and was more apparent in lake samples with closest proximity to the Milwaukee estuary. The dominant bacterial taxa in the urban signature were Acinetobacter, Aeromonas, and Pseudomonas, which are organisms associated with pipe infrastructure and soil and not typically found in pelagic freshwater environments. These taxa were highly abundant in stormwater and sewage, but sewage also contained a high abundance of Arcobacter and Trichococcus that appeared in lower abundance in stormwater outfalls and in trace amounts in aquatic environments. Urban signature organisms comprised 1.7% of estuary and harbor communities under baseflow conditions, 3.5% after rain, and >10% after a combined sewer overflow. With predicted increases in urbanization across the Great Lakes, further alteration of freshwater communities is likely to occur with

  7. Microbial ecology involved in the ripening of naturally fermented llama meat sausages. A focus on lactobacilli diversity.

    Science.gov (United States)

    Fontana, Cecilia; Bassi, Daniela; López, Constanza; Pisacane, Vincenza; Otero, Maria Claudia; Puglisi, Edoardo; Rebecchi, Annalisa; Cocconcelli, Pier Sandro; Vignolo, Graciela

    2016-11-07

    Llama represents for the Andean regions a valid alternative to bovine and pork meat and thanks to the high proteins and low fat content; it can constitute a good product for the novel food market. In this study, culture-dependent and independent methods were applied to investigate the microbial ecology of naturally fermented llama sausages produced in Northwest Argentina. Two different production technologies of llama sausage were investigated: a pilot-plant scale (P) and an artisanal one (A). Results obtained by High-Throughput Sequencing (HTS) of 16S rRNA amplicons showed that the production technologies influenced the development of microbial communities with a different composition throughout the entire fermentation process. Both sequencing and microbiological counts demonstrated that Lactic Acid Bacteria (LAB) contributed largely to the dominant microbiota. When a total of 230 isolates were approached by RAPD-PCR, presumptive LAB strains from P production exhibited an initial variability in RAPD fingerprints switching to a single profile at the final of ripening, while A production revealed a more heterogeneous RAPD pattern during the whole fermentation process. The constant presence of Lactobacillus sakei along the fermentation in both productions was revealed by HTS and confirmed by species-specific PCR from isolated strains. The technological characterization of Lb. sakei isolates evidenced their ability to grow at 15°C, pH4.5 and 5% NaCl (95%). Most strains hydrolyzed myofibrillar and sarcoplasmic proteins. Bacteriocins encoding genes and antimicrobial resistance were found in 35% and 42.5% of the strains, respectively. An appropriate choice of a combination of autochthonous strains in a starter formulation is fundamental to improve and standardize llama sausages safety and quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities.

    Science.gov (United States)

    Blackwood, Christopher B; Hudleston, Deborah; Zak, Donald R; Buyer, Jeffrey S

    2007-08-01

    Ecological diversity indices are frequently applied to molecular profiling methods, such as terminal restriction fragment length polymorphism (T-RFLP), in order to compare diversity among microbial communities. We performed simulations to determine whether diversity indices calculated from T-RFLP profiles could reflect the true diversity of the underlying communities despite potential analytical artifacts. These include multiple taxa generating the same terminal restriction fragment (TRF) and rare TRFs being excluded by a relative abundance (fluorescence) threshold. True community diversity was simulated using the lognormal species abundance distribution. Simulated T-RFLP profiles were generated by assigning each species a TRF size based on an empirical or modeled TRF size distribution. With a typical threshold (1%), the only consistently useful relationship was between Smith and Wilson evenness applied to T-RFLP data (TRF-E(var)) and true Shannon diversity (H'), with correlations between 0.71 and 0.81. TRF-H' and true H' were well correlated in the simulations using the lowest number of species, but this correlation declined substantially in simulations using greater numbers of species, to the point where TRF-H' cannot be considered a useful statistic. The relationships between TRF diversity indices and true indices were sensitive to the relative abundance threshold, with greatly improved correlations observed using a 0.1% threshold, which was investigated for comparative purposes but is not possible to consistently achieve with current technology. In general, the use of diversity indices on T-RFLP data provides inaccurate estimates of true diversity in microbial communities (with the possible exception of TRF-E(var)). We suggest that, where significant differences in T-RFLP diversity indices were found in previous work, these should be reinterpreted as a reflection of differences in community composition rather than a true difference in community diversity.

  9. Big questions, big science: meeting the challenges of global ecology.

    Science.gov (United States)

    Schimel, David; Keller, Michael

    2015-04-01

    Ecologists are increasingly tackling questions that require significant infrastucture, large experiments, networks of observations, and complex data and computation. Key hypotheses in ecology increasingly require more investment, and larger data sets to be tested than can be collected by a single investigator's or s group of investigator's labs, sustained for longer than a typical grant. Large-scale projects are expensive, so their scientific return on the investment has to justify the opportunity cost-the science foregone because resources were expended on a large project rather than supporting a number of individual projects. In addition, their management must be accountable and efficient in the use of significant resources, requiring the use of formal systems engineering and project management to mitigate risk of failure. Mapping the scientific method into formal project management requires both scientists able to work in the context, and a project implementation team sensitive to the unique requirements of ecology. Sponsoring agencies, under pressure from external and internal forces, experience many pressures that push them towards counterproductive project management but a scientific community aware and experienced in large project science can mitigate these tendencies. For big ecology to result in great science, ecologists must become informed, aware and engaged in the advocacy and governance of large ecological projects.

  10. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions.

    Science.gov (United States)

    Zhou, Jin; Lyu, Yihua; Richlen, Mindy; Anderson, Donald M; Cai, Zhonghua

    2016-01-01

    Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS.

  11. Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing

    Directory of Open Access Journals (Sweden)

    Luisa W. Hugerth

    2017-09-01

    Full Text Available Microbial ecology as a scientific field is fundamentally driven by technological advance. The past decade's revolution in DNA sequencing cost and throughput has made it possible for most research groups to map microbial community composition in environments of interest. However, the computational and statistical methodology required to analyse this kind of data is often not part of the biologist training. In this review, we give a historical perspective on the use of sequencing data in microbial ecology and restate the current need for this method; but also highlight the major caveats with standard practices for handling these data, from sample collection and library preparation to statistical analysis. Further, we outline the main new analytical tools that have been developed in the past few years to bypass these caveats, as well as highlight the major requirements of common statistical practices and the extent to which they are applicable to microbial data. Besides delving into the meaning of select alpha- and beta-diversity measures, we give special consideration to techniques for finding the main drivers of community dissimilarity and for interaction network construction. While every project design has specific needs, this review should serve as a starting point for considering what options are available.

  12. Microbial ecology of artisanal Italian Cheese: environment and working conditions

    International Nuclear Information System (INIS)

    Dioguardi, L.; Colombo, E.; Franzetti, L.

    2009-01-01

    In agro-food sector the structural features of working environments and consequently their hygienic conditions are of primary importance for a safe and quality food production and to ensure comfortable and ergonomic working conditions. In particular, as regards high-mountain dairy production, the environment is important because it can affect the development of typical microbial ecosystem. (Author)

  13. Microbial ecology of artisanal Italian Cheese: environment and working conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dioguardi, L.; Colombo, E.; Franzetti, L.

    2009-07-01

    In agro-food sector the structural features of working environments and consequently their hygienic conditions are of primary importance for a safe and quality food production and to ensure comfortable and ergonomic working conditions. In particular, as regards high-mountain dairy production, the environment is important because it can affect the development of typical microbial ecosystem. (Author)

  14. Planetary Biology and Microbial Ecology: Molecular Ecology and the Global Nitrogen cycle

    Science.gov (United States)

    Nealson, Molly Stone (Editor); Nealson, Kenneth H. (Editor)

    1993-01-01

    This report summarizes the results of the Planetary Biology and Molecular Ecology's summer 1991 program, which was held at the Marine Biological Laboratory in Woods Hole, Massachusetts. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The goals of the 1991 program were to examine several aspects of the biogeochemistry of the nitrogen cycle and to teach the application of modern methods of molecular genetics to field studies of organisms. Descriptions of the laboratory projects and protocols and abstracts and references of the lectures are presented.

  15. A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology.

    Science.gov (United States)

    Stoeck, Thorsten; Breiner, Hans-Werner; Filker, Sabine; Ostermaier, Veronika; Kammerlander, Barbara; Sonntag, Bettina

    2014-02-01

    Analyses of high-throughput environmental sequencing data have become the 'gold-standard' to address fundamental questions of microbial diversity, ecology and biogeography. Findings that emerged from sequencing are, e.g. the discovery of the extensive 'rare microbial biosphere' and its potential function as a seed-bank. Even though applied since several years, results from high-throughput environmental sequencing have hardly been validated. We assessed how well pyrosequenced amplicons [the hypervariable eukaryotic V4 region of the small subunit ribosomal RNA (SSU rRNA) gene] reflected morphotype ciliate plankton. Moreover, we assessed if amplicon sequencing had the potential to detect the annual ciliate plankton stock. In both cases, we identified significant quantitative and qualitative differences. Our study makes evident that taxon abundance distributions inferred from amplicon data are highly biased and do not mirror actual morphotype abundances at all. Potential reasons included cell losses after fixation, cryptic morphotypes, resting stages, insufficient sequence data availability of morphologically described species and the unsatisfying resolution of the V4 SSU rRNA fragment for accurate taxonomic assignments. The latter two underline the necessity of barcoding initiatives for eukaryotic microbes to better and fully exploit environmental amplicon data sets, which then will also allow studying the potential of seed-bank taxa as a buffer for environmental changes. © 2013 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context.

    Science.gov (United States)

    Terhorst, Casey P; Lennon, Jay T; Lau, Jennifer A

    2014-06-22

    Evolution can occur on ecological time-scales, affecting community and ecosystem processes. However, the importance of evolutionary change relative to ecological processes remains largely unknown. Here, we analyse data from a long-term experiment in which we allowed plant populations to evolve for three generations in dry or wet soils and used a reciprocal transplant to compare the ecological effect of drought and the effect of plant evolutionary responses to drought on soil microbial communities and nutrient availability. Plants that evolved under drought tended to support higher bacterial and fungal richness, and increased fungal : bacterial ratios in the soil. Overall, the magnitudes of ecological and evolutionary effects on microbial communities were similar; however, the strength and direction of these effects depended on the context in which they were measured. For example, plants that evolved in dry environments increased bacterial abundance in dry contemporary environments, but decreased bacterial abundance in wet contemporary environments. Our results suggest that interactions between recent evolutionary history and ecological context affect both the direction and magnitude of plant effects on soil microbes. Consequently, an eco-evolutionary perspective is required to fully understand plant-microbe interactions.

  17. The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters.

    Science.gov (United States)

    McDonald, James E; Houghton, James N I; Rooks, David J; Allison, Heather E; McCarthy, Alan J

    2012-04-01

    Cellulose is reputedly the most abundant organic polymer in the biosphere, yet despite the fundamental role of cellulolytic microorganisms in global carbon cycling and as potential sources of novel enzymes for biotechnology, their identity and ecology is not well established. Cellulose is a major component of landfill waste and its degradation is therefore a key feature of the anaerobic microbial decomposition process. Here, we targeted a number of taxa containing known cellulolytic anaerobes (members of the bacterial genus Fibrobacter, lineages of Clostridium clusters I, III, IV and XIV, and anaerobic fungi of the Neocallimastigales) in landfill leachate and colonized cellulose 'baits' via PCR and quantitative PCR (qPCR). Fibrobacter spp. and Clostridium clusters III, IV and XIV were detected in almost all leachate samples and cluster III and XIV clostridia were the most abundant (1-6% and 1-17% of total bacterial 16S rRNA gene copies respectively). Two landfill leachate microcosms were constructed to specifically assess those microbial communities that colonize and degrade cellulose substrates in situ. Scanning electron microscopy (SEM) of colonized cotton revealed extensive cellulose degradation in one microcosm, and Fibrobacter spp. and Clostridium cluster III represented 29% and 17%, respectively, of total bacterial 16S rRNA gene copies in the biofilm. Visible cellulose degradation was not observed in the second microcosm, and this correlated with negligible relative abundances of Clostridium cluster III and Fibrobacter spp. (≤ 0.1%), providing the first evidence that the novel fibrobacters recently detected in landfill sites and other non-gut environments colonize and degrade cellulose substrates in situ. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Measures of Microbial Biomass for Soil Carbon Decomposition Models

    Science.gov (United States)

    Mayes, M. A.; Dabbs, J.; Steinweg, J. M.; Schadt, C. W.; Kluber, L. A.; Wang, G.; Jagadamma, S.

    2014-12-01

    Explicit parameterization of the decomposition of plant inputs and soil organic matter by microbes is becoming more widely accepted in models of various complexity, ranging from detailed process models to global-scale earth system models. While there are multiple ways to measure microbial biomass, chloroform fumigation-extraction (CFE) is commonly used to parameterize models.. However CFE is labor- and time-intensive, requires toxic chemicals, and it provides no specific information about the composition or function of the microbial community. We investigated correlations between measures of: CFE; DNA extraction yield; QPCR base-gene copy numbers for Bacteria, Fungi and Archaea; phospholipid fatty acid analysis; and direct cell counts to determine the potential for use as proxies for microbial biomass. As our ultimate goal is to develop a reliable, more informative, and faster methods to predict microbial biomass for use in models, we also examined basic soil physiochemical characteristics including texture, organic matter content, pH, etc. to identify multi-factor predictive correlations with one or more measures of the microbial community. Our work will have application to both microbial ecology studies and the next generation of process and earth system models.

  19. Microbial-immune cross-talk and regulation of the immune system.

    Science.gov (United States)

    Cahenzli, Julia; Balmer, Maria L; McCoy, Kathy D

    2013-01-01

    We are all born germ-free. Following birth we enter into a lifelong relationship with microbes residing on our body's surfaces. The lower intestine is home to the highest microbial density in our body, which is also the highest microbial density known on Earth (up to 10(12) /g of luminal contents). With our indigenous microbial cells outnumbering our human cells by an order of magnitude our body is more microbial than human. Numerous immune adaptations confine these microbes within the mucosa, enabling most of us to live in peaceful homeostasis with our intestinal symbionts. Intestinal epithelial cells not only form a physical barrier between the bacteria-laden lumen and the rest of the body but also function as multi-tasking immune cells that sense the prevailing microbial (apical) and immune (basolateral) milieus, instruct the underlying immune cells, and adapt functionally. In the constant effort to ensure intestinal homeostasis, the immune system becomes educated to respond appropriately and in turn immune status can shape the microbial consortia. Here we review how the dynamic immune-microbial dialogue underlies maturation and regulation of the immune system and discuss recent findings on the impact of diet on both microbial ecology and immune function. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  20. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems.

    Science.gov (United States)

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems.

  1. A Western Diet Ecological Module Identified from the ‘Humanized’ Mouse Microbiota Predicts Diet in Adults and Formula Feeding in Children

    Science.gov (United States)

    Siddharth, Jay; Holway, Nicholas; Parkinson, Scott J.

    2013-01-01

    The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in ‘humanized’ mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and ‘low-fat’ diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits. PMID:24391809

  2. Resilience of Soil Microbial Communities to Metals and Additional Stressors: DNA-Based Approaches for Assessing “Stress-on-Stress” Responses

    NARCIS (Netherlands)

    Azarbad, H.; van Gestel, C.A.M.; Niklińska, M.; Laskowski, R.; Röling, W.F.M.; van Straalen, N.M.

    2016-01-01

    Many microbial ecology studies have demonstrated profound changes in community composition caused by environmental pollution, as well as adaptation processes allowing survival of microbes in polluted ecosystems. Soil microbial communities in polluted areas with a long-term history of contamination

  3. Introduction to special issue on the ecology of clonal plants

    Czech Academy of Sciences Publication Activity Database

    Gross, K. L.; Herben, T.; Klimešová, Jitka

    2017-01-01

    Roč. 52, 3-4 (2017), s. 265-267 ISSN 1211-9520 Institutional support: RVO:67985939 Keywords : Introduction to special issue * clonal plants * clonal meeting Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.017, year: 2016

  4. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere.

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Reith, Frank; Dennis, Paul G; Hamonts, Kelly; Powell, Jeff R; Young, Andrew; Singh, Brajesh K; Bissett, Andrew

    2018-03-01

    The ecological drivers of soil biodiversity in the Southern Hemisphere remain underexplored. Here, in a continental survey comprising 647 sites, across 58 degrees of latitude between tropical Australia and Antarctica, we evaluated the major ecological patterns in soil biodiversity and relative abundance of ecological clusters within a co-occurrence network of soil bacteria, archaea and eukaryotes. Six major ecological clusters (modules) of co-occurring soil taxa were identified. These clusters exhibited strong shifts in their relative abundances with increasing distance from the equator. Temperature was the major environmental driver of the relative abundance of ecological clusters when Australia and Antarctica are analyzed together. Temperature, aridity, soil properties and vegetation types were the major drivers of the relative abundance of different ecological clusters within Australia. Our data supports significant reductions in the diversity of bacteria, archaea and eukaryotes in Antarctica vs. Australia linked to strong reductions in temperature. However, we only detected small latitudinal variations in soil biodiversity within Australia. Different environmental drivers regulate the diversity of soil archaea (temperature and soil carbon), bacteria (aridity, vegetation attributes and pH) and eukaryotes (vegetation type and soil carbon) across Australia. Together, our findings provide new insights into the mechanisms driving soil biodiversity in the Southern Hemisphere. © 2018 by the Ecological Society of America.

  5. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Richard R Stein

    Full Text Available The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  6. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    Science.gov (United States)

    Stein, Richard R; Bucci, Vanni; Toussaint, Nora C; Buffie, Charlie G; Rätsch, Gunnar; Pamer, Eric G; Sander, Chris; Xavier, João B

    2013-01-01

    The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  7. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)

    Czech Academy of Sciences Publication Activity Database

    Kotas, P.; Šantrůčková, H.; Elster, Josef; Kaštovská, E.

    2018-01-01

    Roč. 15, č. 6 (2018), s. 1879-1894 ISSN 1726-4170 R&D Projects: GA MŠk(CZ) LM2015075 Grant - others:GA MŠk LM2010009 Institutional support: RVO:67985939 Keywords : ecosystem * High Arctic * soil microbial biomass Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.851, year: 2016

  8. Microbial ecology of corals, sponges, and algae in mesophotic coral environments

    Science.gov (United States)

    Olson, Julie B.; Kellogg, Christina A.

    2010-01-01

    Mesophotic coral ecosystems that occur at depths from 30 to 200 m have historically been understudied and yet appear to support a diverse biological community. The microbiology of these systems is particularly poorly understood, especially with regard to the communities associated with corals, sponges, and algae. This lack of information is partly due to the problems associated with gaining access to these environments and poor reproducibility across sampling methods. To summarize what is known about the microbiology of these ecosystems and to highlight areas where research is urgently needed, an overview of the current state of knowledge is presented. Emphasis is placed on the characterization of microbial populations, both prokaryotic and eukaryotic, associated with corals, sponges, and algae and the factors that influence microbial community structure. In topic areas where virtually nothing is known from mesophotic environments, the knowledge pertaining to shallow-water ecosystems is summarized to provide a starting point for a discussion on what might be expected in the mesophotic zone.

  9. Metabolic heterogeneity in clonal microbial populations.

    Science.gov (United States)

    Takhaveev, Vakil; Heinemann, Matthias

    2018-02-21

    In the past decades, numerous instances of phenotypic diversity were observed in clonal microbial populations, particularly, on the gene expression level. Much less is, however, known about phenotypic differences that occur on the level of metabolism. This is likely explained by the fact that experimental tools probing metabolism of single cells are still at an early stage of development. Here, we review recent exciting discoveries that point out different causes for metabolic heterogeneity within clonal microbial populations. These causes range from ecological factors and cell-inherent dynamics in constant environments to molecular noise in gene expression that propagates into metabolism. Furthermore, we provide an overview of current methods to quantify the levels of metabolites and biomass components in single cells. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Microbial bioremediation of Uranium: an overview

    International Nuclear Information System (INIS)

    Acharya, Celin

    2015-01-01

    Uranium contamination is a worldwide problem. Preventing uranium contamination in the environment is quite challenging and requires a thorough understanding of the microbiological, ecological and biogeochemical features of the contaminated sites. Bioremediation of uranium is largely dependent on reducing its bioavailability in the environment. In situ bioremediation of uranium by microbial processes has been shown to be effective for immobilizing uranium in contaminated sites. Such microbial processes are important components of biogeochemical cycles and regulate the mobility and fate of uranium in the environment. It is therefore vital to advance our understanding of the uranium-microbe interactions to develop suitable bioremediation strategies for uranium contaminated sites. This article focuses on the fundamental mechanisms adopted by various microbes to mitigate uranium toxicity which could be utilized for developing various approaches for uranium bioremediation. (author)

  11. Belief in increased market share for ecological products

    International Nuclear Information System (INIS)

    Bjerk, Jan

    2003-01-01

    In September 2003, Matvarehuset Ultra in Stovner, a city quarter in Oslo, Norway, became the first supermarket of that capital to be awarded the ''Svanemerket'' (the Swan eco label), which is the official Nordic eco label, introduced by the Nordic Council of Ministers. The supermarket chain Ultra has since long been the biggest one in Norway with respect to ecological food. A supermarket that has been awarded the Swan eco label, meets the most stringent environmental demands in the world for grocery products. In addition to stocking a broad range of ecologically and environmentally labelled products such supermarkets must meet a series of requirements with respect to energy consumption, packaging and waste management and transport. At present, 4.5 per cent of the total assortment is either ecological, suited for allergic subjects or Swan eco labelled. The energy consumption of the supermarket in Stovner is 40 per cent lower than the average for supermarkets in Norway. Further details discussed in this article are ecological meat products, waste management and cleaning. They also stock products carrying the EU Eco-label ''Flower''

  12. Microbial Signatures of Cadaver Gravesoil During Decomposition.

    Science.gov (United States)

    Finley, Sheree J; Pechal, Jennifer L; Benbow, M Eric; Robertson, B K; Javan, Gulnaz T

    2016-04-01

    Genomic studies have estimated there are approximately 10(3)-10(6) bacterial species per gram of soil. The microbial species found in soil associated with decomposing human remains (gravesoil) have been investigated and recognized as potential molecular determinants for estimates of time since death. The nascent era of high-throughput amplicon sequencing of the conserved 16S ribosomal RNA (rRNA) gene region of gravesoil microbes is allowing research to expand beyond more subjective empirical methods used in forensic microbiology. The goal of the present study was to evaluate microbial communities and identify taxonomic signatures associated with the gravesoil human cadavers. Using 16S rRNA gene amplicon-based sequencing, soil microbial communities were surveyed from 18 cadavers placed on the surface or buried that were allowed to decompose over a range of decomposition time periods (3-303 days). Surface soil microbial communities showed a decreasing trend in taxon richness, diversity, and evenness over decomposition, while buried cadaver-soil microbial communities demonstrated increasing taxon richness, consistent diversity, and decreasing evenness. The results show that ubiquitous Proteobacteria was confirmed as the most abundant phylum in all gravesoil samples. Surface cadaver-soil communities demonstrated a decrease in Acidobacteria and an increase in Firmicutes relative abundance over decomposition, while buried soil communities were consistent in their community composition throughout decomposition. Better understanding of microbial community structure and its shifts over time may be important for advancing general knowledge of decomposition soil ecology and its potential use during forensic investigations.

  13. Microbial contributions to climate change through carbon cycle feedbacks.

    Science.gov (United States)

    Bardgett, Richard D; Freeman, Chris; Ostle, Nicholas J

    2008-08-01

    There is considerable interest in understanding the biological mechanisms that regulate carbon exchanges between the land and atmosphere, and how these exchanges respond to climate change. An understanding of soil microbial ecology is central to our ability to assess terrestrial carbon cycle-climate feedbacks, but the complexity of the soil microbial community and the many ways that it can be affected by climate and other global changes hampers our ability to draw firm conclusions on this topic. In this paper, we argue that to understand the potential negative and positive contributions of soil microbes to land-atmosphere carbon exchange and global warming requires explicit consideration of both direct and indirect impacts of climate change on microorganisms. Moreover, we argue that this requires consideration of complex interactions and feedbacks that occur between microbes, plants and their physical environment in the context of climate change, and the influence of other global changes which have the capacity to amplify climate-driven effects on soil microbes. Overall, we emphasize the urgent need for greater understanding of how soil microbial ecology contributes to land-atmosphere carbon exchange in the context of climate change, and identify some challenges for the future. In particular, we highlight the need for a multifactor experimental approach to understand how soil microbes and their activities respond to climate change and consequences for carbon cycle feedbacks.

  14. Q&A: Friends (but sometimes foes) within: the complex evolutionary ecology of symbioses between host and microbes.

    Science.gov (United States)

    Gerardo, Nicole; Hurst, Gregory

    2017-12-27

    Over the past decade, there has been a pronounced shift in the study of host-microbe associations, with recognition that many of these associations are beneficial, and often critical, for a diverse array of hosts. There may also be pronounced benefits for the microbes, though this is less well empirically understood. Significant progress has been made in understanding how ecology and evolution shape simple associations between hosts and one or a few microbial species, and this work can serve as a foundation to study the ecology and evolution of host associations with their often complex microbial communities (microbiomes).

  15. Board-invited review: Rumen microbiology: Leading the way in microbial ecology

    Science.gov (United States)

    Robert Hungate, considered the father of rumen microbiology, was the first to initiate a systematic exploration of the microbial ecosystem of the rumen, but he was not alone. The techniques he developed to isolate and identify cellulose-digesting bacteria from the rumen have had a major impact not ...

  16. New ecological insights through the Global Lake Ecological Observatory Network (GLEON)

    Institute of Scientific and Technical Information of China (English)

    Paul C.Hanson

    2008-01-01

    Sensor networks are playing an increasingly important role in ecology.Continual advances in affordable sensors and wireless communication are making the development of automated sensing systems with remote communication (i.e.,sensor networks) affordable for many ecological research programs (Porter et al.2005)[1].These in situ instruments provide high-frequency data of key variables that previously were measured intermittently and by hand.A number of federal research organizations have realized the potential of environmental sensor networks, and large-scale initiatives are under development.Independent of these initiatives,small sensor networks have emerged to meet the needs of the individual or small teams of ecologists.Ecologists are entering (or already have entered,in some cases) an era in which high temporal and spatial resolution in situ measurements are generating data at unprecedented rates.The use of sensor networks will dramatically increase the volume of ecological data generated in the next decade.

  17. [Progress and prospects on evaluation of ecological restoration: a review of the 5th World Conference on Ecological Restoration].

    Science.gov (United States)

    Ding, Jing-Yi; Zhao, Wen-Wu

    2014-09-01

    The 5th World Conference on Ecological Restoration was held in Madison, Wisconsin, USA on October 6-11, 2013. About 1200 delegates from more than 50 countries attended the conference, and discussed the latest developments in different thematic areas of ecological restoration. Discussions on evaluation of ecological restoration were mainly from three aspects: The construction for evaluation indicator system of ecological restoration; the evaluation methods of ecological restoration; monitoring and dynamic evaluation of ecological restoration. The meeting stressed the importance of evaluation in the process of ecological restoration and concerned the challenges in evaluation of ecological restoration. The conference had the following enlightenments for China' s research on evaluation of ecological restoration: 1) Strengthening the construction of comprehensive evaluation indicators system and focusing on the multi-participation in the evaluation process. 2) Paying more attentions on scale effect and scale transformation in the evaluation process of ecological restoration. 3) Expanding the application of 3S technology in assessing the success of ecological restoration and promoting the dynamic monitoring of ecological restoration. 4) Carrying out international exchanges and cooperation actively, and promoting China's international influence in ecological restoration research.

  18. Going from Microbial Ecology to Genome Data and Back: Studies on a Haloalkaliphilic Bacterium Isolated from Soap Lake, Washington State

    Directory of Open Access Journals (Sweden)

    Melanie R. Mormile

    2014-11-01

    Full Text Available Soap Lake is a meromictic, alkaline (~pH 9.8 and saline (~14 to 140 g liter-1 lake located in the semiarid area of eastern Washington State. Of note is the length of time it has been meromictic (at least 2000 years and the extremely high sulfide level (~140 mM in its monimolimnion. As expected, the microbial ecology of this lake is greatly influenced by these conditions. A bacterium, Halanaerobium hydrogeniformans, was isolated from the mixolimnion region of this lake. H. hydrogeniformans is a haloalkaliphilic bacterium capable of forming hydrogen from 5- and 6-carbon sugars derived from hemicellulose and cellulose. Due to its ability to produce hydrogen under saline and alkaline conditions, in amounts that rival genetically modified organisms, its genome was sequenced. This sequence data provides an opportunity to explore the unique metabolic capabilities of this organism, including the mechanisms for tolerating the extreme conditions of both high salinity and alkalinity of its environment.

  19. Perspective for Aquaponic Systems: "Omic" Technologies for Microbial Community Analysis.

    Science.gov (United States)

    Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Torres-Pacheco, Irineo; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V; Garcia-Trejo, Juan F; Guevara-Gonzalez, Ramon G

    2015-01-01

    Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the "Omic" technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. "Omic" technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current "Omic" tools to characterize the microbial community in aquaponic systems.

  20. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    Science.gov (United States)

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms.

  1. Microbial community dynamics and transformation of vascular plant detritus in two wetland ecosystems

    International Nuclear Information System (INIS)

    Moran, M.A.

    1987-01-01

    The microbial ecology of two wetland ecosystems in southeastern Georgia, USA, was studied with respect to microbial community dynamics and microbially-mediated transformations of vascular plant detritus. In the Okefenokee Swamp, biomass of microorganisms in the water column and sediments was generally lower in winter months and higher during spring and summer. Biomass and activity (measured as 14 C-lignocellulose mineralization) differed significantly among five habitats within the Okefenokee, and also among locations within each habitat. Significant heterogeneity in the structure of Okefenokee microbial communities was found at scales from 30 cm to 150 m. In field and laboratory studies of vascular plant decomposition in the Okefenokee and a salt marsh on Sapelo Island, the mathematical model which best describes decomposition kinetics is the decaying coefficient model

  2. Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces

    OpenAIRE

    Tecon, Robin; Or, Dani

    2017-01-01

    Mounting evidence suggests that natural microbial communities exhibit a high level of spatial organization at the micrometric scale that facilitate ecological interactions and support biogeochemical cycles. Microbial patterns are difficult to study definitively in natural environments due to complex biodiversity, observability and variable physicochemical factors. Here, we examine how trophic dependencies give rise to self-organized spatial patterns of a well-defined bacterial consortium grow...

  3. The microbial community composition of anaerobic digesters is strongly influenced by immigration

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Kristensen, Jannie Munk

    Anaerobic digestion (AD) is globally applied for bioenergy production. Although its widespread application, improved understanding of the underlying microbial ecology is needed to provide solutions for optimised process performance. In this study, we investigated the impact of immigration on the ...

  4. ‘TIME’: A Web Application for Obtaining Insights into Microbial Ecology Using Longitudinal Microbiome Data

    Directory of Open Access Journals (Sweden)

    Krishanu D. Baksi

    2018-01-01

    Full Text Available Realization of the importance of microbiome studies, coupled with the decreasing sequencing cost, has led to the exponential growth of microbiome data. A number of these microbiome studies have focused on understanding changes in the microbial community over time. Such longitudinal microbiome studies have the potential to offer unique insights pertaining to the microbial social networks as well as their responses to perturbations. In this communication, we introduce a web based framework called ‘TIME’ (Temporal Insights into Microbial Ecology’, developed specifically to obtain meaningful insights from microbiome time series data. The TIME web-server is designed to accept a wide range of popular formats as input with options to preprocess and filter the data. Multiple samples, defined by a series of longitudinal time points along with their metadata information, can be compared in order to interactively visualize the temporal variations. In addition to standard microbiome data analytics, the web server implements popular time series analysis methods like Dynamic time warping, Granger causality and Dickey Fuller test to generate interactive layouts for facilitating easy biological inferences. Apart from this, a new metric for comparing metagenomic time series data has been introduced to effectively visualize the similarities/differences in the trends of the resident microbial groups. Augmenting the visualizations with the stationarity information pertaining to the microbial groups is utilized to predict the microbial competition as well as community structure. Additionally, the ‘causality graph analysis’ module incorporated in TIME allows predicting taxa that might have a higher influence on community structure in different conditions. TIME also allows users to easily identify potential taxonomic markers from a longitudinal microbiome analysis. We illustrate the utility of the web-server features on a few published time series microbiome

  5. Effect of ecosystems substitutions and CO2 increase of the atmosphere on the microbial ecosystems of forests

    International Nuclear Information System (INIS)

    Martin, F.

    2007-01-01

    Biological diversity is often exclusively considered at the level of plants and animals, whereas the bulk of global biodiversity is in fact at the microbial level. Although it is clear that the ecology of our planet is driven by microbial ecosystems, we are severely hampered by our limited understanding of the diversity and function of such microbial ecosystems. In the present project, teams in the disciplines of geochemistry, soil microbiology, genomics and ecosystem processes are assembled to study the relationship between environmental change, land use changes, biodiversity, and functioning of forest ecosystems. The network has a strong focus on developing and applying biochemical and genotyping methodologies to address key scientific issues in soil microbial ecology. These include assessing the impact of environmental- and land use changes on microbial diversity and function and exploring the evolutionary and mechanistic links between biological diversity and ecosystem function. In the present study, we have shown that: (1) The native mixed forest showed the highest microbial diversity (2) The mono specific plantations of tree species (e.g., oak, beech, pine, spruce) strikingly alter genetic and functional diversities of soil bacterial and fungal species. (3) Bacterial denitrification rates were dramatically modified by the planted species. Only by taking into account the impact of forest management on below-ground microbial diversity can one hope to get a full ecosystem-based understanding, and this must be addressed via modelling in order to provide relevant and useful information for conservation and policy making. (author)

  6. Microbial genome-enabled insights into plant-microorganism interactions.

    Science.gov (United States)

    Guttman, David S; McHardy, Alice C; Schulze-Lefert, Paul

    2014-12-01

    Advances in genome-based studies on plant-associated microorganisms have transformed our understanding of many plant pathogens and are beginning to greatly widen our knowledge of plant interactions with mutualistic and commensal microorganisms. Pathogenomics has revealed how pathogenic microorganisms adapt to particular hosts, subvert innate immune responses and change host range, as well as how new pathogen species emerge. Similarly, culture-independent community profiling methods, coupled with metagenomic and metatranscriptomic studies, have provided the first insights into the emerging field of research on plant-associated microbial communities. Together, these approaches have the potential to bridge the gap between plant microbial ecology and plant pathology, which have traditionally been two distinct research fields.

  7. CO2 leakage alters biogeochemical and ecological functions of submarine sands

    Science.gov (United States)

    Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje

    2018-01-01

    Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m−2 hour−1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (−80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (−90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2. PMID:29441359

  8. Planetary biology and microbial ecology. Biochemistry of carbon and early life

    Science.gov (United States)

    Margulis, L. (Editor); Nealson, K. H. (Editor); Taylor, I. (Editor)

    1983-01-01

    Experiments made with cyanobacteria, phototrophic bacteria, and methanogenic bacteria are detailed. Significant carbon isotope fractionation data is included. Taken from well documented extant microbial communities, this data provides a basis of comparison for isotope fractionation values measured in Archean and Proterozoic (preCambrian) rocks. Media, methods, and techniques used to acquire data are also described.

  9. Author contributions to ecological publications: What does it mean to be an author in modern ecological research?

    Directory of Open Access Journals (Sweden)

    John M Logan

    Full Text Available Authorship is a central element of scientific research carrying a variety of rewards and responsibilities, and while various guidelines exist, actual author contributions are often ambiguous. Inconsistent or limited contributions threaten to devalue authorship as intellectual currency and diminish authors' responsibility for published content. Researchers have assessed author contributions in the medical literature and other research fields, but similar data for the field of ecological research are lacking. Authorship practices in ecological research are broadly representative of a variety of fields due to the cross-disciplinary nature of collaborations in ecological studies. To better understand author contributions to current research, we distributed a survey regarding co-author contributions to a random selection of 996 lead authors of manuscripts published in ecological journals in 2010. We obtained useable responses from 45% of surveyed authors. Reported lead author contributions in ecological research studies consistently included conception of the project idea, data collection, analysis, and writing. Middle and last author contributions instead showed a high level of individual variability. Lead authorship in ecology is well defined while secondary authorship is more ambiguous. Nearly half (48% of all studies included in our survey had some level of non-compliance with Ecological Society of America (ESA authorship guidelines and the majority of studies (78% contained at least one co-author that did not meet International Committee of Medical Journal Editors (ICMJE requirements. Incidence of non-compliance varied with lead author occupation and author position. The probability of a study including an author that was non-compliant with ESA guidelines was lowest for professor-led studies and highest for graduate student and post doctoral researcher-led studies. Among studies with > two co-authors, all lead authors met ESA guidelines and only

  10. Bioinformatics Meets Virology: The European Virus Bioinformatics Center's Second Annual Meeting.

    Science.gov (United States)

    Ibrahim, Bashar; Arkhipova, Ksenia; Andeweg, Arno C; Posada-Céspedes, Susana; Enault, François; Gruber, Arthur; Koonin, Eugene V; Kupczok, Anne; Lemey, Philippe; McHardy, Alice C; McMahon, Dino P; Pickett, Brett E; Robertson, David L; Scheuermann, Richard H; Zhernakova, Alexandra; Zwart, Mark P; Schönhuth, Alexander; Dutilh, Bas E; Marz, Manja

    2018-05-14

    The Second Annual Meeting of the European Virus Bioinformatics Center (EVBC), held in Utrecht, Netherlands, focused on computational approaches in virology, with topics including (but not limited to) virus discovery, diagnostics, (meta-)genomics, modeling, epidemiology, molecular structure, evolution, and viral ecology. The goals of the Second Annual Meeting were threefold: (i) to bring together virologists and bioinformaticians from across the academic, industrial, professional, and training sectors to share best practice; (ii) to provide a meaningful and interactive scientific environment to promote discussion and collaboration between students, postdoctoral fellows, and both new and established investigators; (iii) to inspire and suggest new research directions and questions. Approximately 120 researchers from around the world attended the Second Annual Meeting of the EVBC this year, including 15 renowned international speakers. This report presents an overview of new developments and novel research findings that emerged during the meeting.

  11. Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers.

    Science.gov (United States)

    Kleinsteuber, Sabine; Schleinitz, Kathleen M; Vogt, Carsten

    2012-05-01

    Biodegradation of anthropogenic pollutants in shallow aquifers is an important microbial ecosystem service which is mainly brought about by indigenous anaerobic microorganisms. For the management of contaminated sites, risk assessment and control of natural attenuation, the assessment of in situ biodegradation and the underlying microbial processes is essential. The development of novel molecular methods, "omics" approaches, and high-throughput techniques has revealed new insight into complex microbial communities and their functions in anoxic environmental systems. This review summarizes recent advances in the application of molecular methods to study anaerobic microbial communities in contaminated terrestrial subsurface ecosystems. We focus on current approaches to analyze composition, dynamics, and functional diversity of subsurface communities, to link identity to activity and metabolic function, and to identify the ecophysiological role of not yet cultured microbes and syntrophic consortia. We discuss recent molecular surveys of contaminated sites from an ecological viewpoint regarding degrader ecotypes, abiotic factors shaping anaerobic communities, and biotic interactions underpinning the importance of microbial cooperation for microbial ecosystem services such as contaminant degradation.

  12. Dental biofilm: ecological interactions in health and disease.

    Science.gov (United States)

    Marsh, P D; Zaura, Egija

    2017-03-01

    The oral microbiome is diverse and exists as multispecies microbial communities on oral surfaces in structurally and functionally organized biofilms. To describe the network of microbial interactions (both synergistic and antagonistic) occurring within these biofilms and assess their role in oral health and dental disease. PubMed database was searched for studies on microbial ecological interactions in dental biofilms. The search results did not lend themselves to systematic review and have been summarized in a narrative review instead. Five hundred and forty-seven original research articles and 212 reviews were identified. The majority (86%) of research articles addressed bacterial-bacterial interactions, while inter-kingdom microbial interactions were the least studied. The interactions included physical and nutritional synergistic associations, antagonism, cell-to-cell communication and gene transfer. Oral microbial communities display emergent properties that cannot be inferred from studies of single species. Individual organisms grow in environments they would not tolerate in pure culture. The networks of multiple synergistic and antagonistic interactions generate microbial inter-dependencies and give biofilms a resilience to minor environmental perturbations, and this contributes to oral health. If key environmental pressures exceed thresholds associated with health, then the competitiveness among oral microorganisms is altered and dysbiosis can occur, increasing the risk of dental disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Linking Soil Microbial Ecology to Ecosystem Functioning in Integrated Crop-Livestock Systems

    Science.gov (United States)

    Enhanced soil stability, nutrient cycling and C sequestration potential are important ecosystem functions driven by soil microbial processes and are directly influenced by agricultural management. Integrated crop-livestock agroecosystems (ICL) can enhance these functions via high-residue returning c...

  14. Microbial biotechnology and circular economy in wastewater treatment

    OpenAIRE

    Nielsen, Per Halkjær

    2017-01-01

    Summary Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process‐critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs an...

  15. Health and ecological implications of radioactively contaminated environments

    International Nuclear Information System (INIS)

    Weinberg, A.

    1991-01-01

    This paper summarizes the 26th Annual Meeting of NCRP, which entails a strictly scientific meeting dealing with sources, doses, and derived health and ecological effects; and second, a quite different meeting that dealt with remedial measures. These measures, as many of the speakers suggested, often have little to do with human health, as revealed by scientific findings, but have much to do with the way a liberal democracy responds to technological hazard in this Age of Anxiety

  16. Microbial disease and the coral holobiont

    Science.gov (United States)

    Bourne, David G.; Garren, Melissa; Work, Thierry M.; Rosenberg, Eugene; Smith, Garriet W.; Harvell, C. Drew

    2009-01-01

    Tropical coral reefs harbour a reservoir of enormous biodiversity that is increasingly threatened by direct human activities and indirect global climate shifts. Emerging coral diseases are one serious threat implicated in extensive reef deterioration through disruption of the integrity of the coral holobiont – a complex symbiosis between the coral animal, endobiotic alga and an array of microorganisms. In this article, we review our current understanding of the role of microorganisms in coral health and disease, and highlight the pressing interdisciplinary research priorities required to elucidate the mechanisms of disease. We advocate an approach that applies knowledge gained from experiences in human and veterinary medicine, integrated into multidisciplinary studies that investigate the interactions between host, agent and environment of a given coral disease. These approaches include robust and precise disease diagnosis, standardised ecological methods and application of rapidly developing DNA, RNA and protein technologies, alongside established histological, microbial ecology and ecological expertise. Such approaches will allow a better understanding of the causes of coral mortality and coral reef declines and help assess potential management options to mitigate their effects in the longer term.

  17. Taxonomic and Functional Responses of Soil Microbial Communities to Annual Removal of Aboveground Plant Biomass

    Science.gov (United States)

    Guo, Xue; Zhou, Xishu; Hale, Lauren; Yuan, Mengting; Feng, Jiajie; Ning, Daliang; Shi, Zhou; Qin, Yujia; Liu, Feifei; Wu, Liyou; He, Zhili; Van Nostrand, Joy D.; Liu, Xueduan; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong

    2018-01-01

    Clipping, removal of aboveground plant biomass, is an important issue in grassland ecology. However, few studies have focused on the effect of clipping on belowground microbial communities. Using integrated metagenomic technologies, we examined the taxonomic and functional responses of soil microbial communities to annual clipping (2010–2014) in a grassland ecosystem of the Great Plains of North America. Our results indicated that clipping significantly (P microbial respiration rates. Annual temporal variation within the microbial communities was much greater than the significant changes introduced by clipping, but cumulative effects of clipping were still observed in the long-term scale. The abundances of some bacterial and fungal lineages including Actinobacteria and Bacteroidetes were significantly (P microbial communities were significantly correlated with soil respiration and plant productivity. Intriguingly, clipping effects on microbial function may be highly regulated by precipitation at the interannual scale. Altogether, our results illustrated the potential of soil microbial communities for increased soil organic matter decomposition under clipping land-use practices. PMID:29904372

  18. Influences of Coupled Hydrologic and Microbial Processes on River Corridor Biogeochemistry and Ecology

    Science.gov (United States)

    Scheibe, T. D.; Song, H. S.; Stegen, J.; Graham, E.; Bao, J.; Goldman, A.; Zhou, T.; Crump, A.; Hou, Z.; Hammond, G. E.; Chen, X.; Huang, M.; Zhang, X.; Nelson, W. C.; Garayburu-Caruso, V. A.

    2017-12-01

    The exchange of water between rivers and surrounding subsurface environments (hydrologic exchange flows or HEFs) is a vital aspect of river ecology and watershed function. HEFs play a key role in water quality, nutrient cycling, and ecosystem health, and they modulate water temperatures and enhance exchange of terrestrial and aquatic nutrients, which lead to elevated biogeochemical activity. However, these coupled hydrologic and microbiological processes are not well understood, particularly in the context of large managed river systems with highly variable discharge, and are poorly represented in system-scale quantitative models. Using the 75 km Hanford Reach of the Columbia River as the research domain, we apply high-resolution flow simulations supported by field observations to understand how variable river discharge interacts with hydromorphic and hydrogeologic structures to generate HEFs and distributions of subsurface residence times. We combine this understanding of hydrologic processes with microbiological activity measurements and reactive transport models to elucidate the holistic impacts of variable discharge on river corridor (surface and subsurface) ecosystems. In particular, our project seeks to develop and test new conceptual and numerical models that explicitly incorporate i) the character (chemical speciation and thermodynamics) of natural organic matter as it varies along flow paths and through mixing of groundwater and surface water, and ii) the history-dependent response of microbial communities to varying time scales of inundation associated with fluctuations in river discharge. The results of these high-resolution mechanistic models are guiding formulation and parameterization of reduced-order models applicable at reach to watershed scales. New understanding of coupled hydrology and microbiology in the river corridor will play a key role in reduction of uncertainties associated with major Earth system biogeochemical fluxes, improving

  19. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation in vitro

    Science.gov (United States)

    Cereal grains are often included in equine diets. Sugars and starch in grains can be digested and absorbed in the small intestine, but a high proportion of grain in the diet can allow starch to reach the hindgut, disturbing the microbial ecology. Streptococci and lactobacilli both catabolize starch ...

  20. Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis

    Directory of Open Access Journals (Sweden)

    Perla Munguia-Fragozo

    2015-01-01

    Full Text Available Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the “Omic” technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS. However, microbial community composition of aquaponics is still unknown. “Omic” technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current “Omic” tools to characterize the microbial community in aquaponic systems.

  1. Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis

    Science.gov (United States)

    Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V.; Garcia-Trejo, Juan F.; Guevara-Gonzalez, Ramon G.

    2015-01-01

    Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the “Omic” technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. “Omic” technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current “Omic” tools to characterize the microbial community in aquaponic systems. PMID:26509157

  2. Onshore Wind Speed Modulates Microbial Aerosols along an Urban Waterfront

    Directory of Open Access Journals (Sweden)

    M. Elias Dueker

    2017-11-01

    Full Text Available Wind blowing over aquatic and terrestrial surfaces produces aerosols, which include microbial aerosols. We studied the effect of onshore wind speeds on aerosol concentrations as well as total and culturable microbial aerosols (bacterial and viral at an urban waterfront (New York, NY, United States of America. We used two distinct methods to characterize microbial aerosol responses to wind speed: A culture-based exposure-plate method measuring viable bacterial deposition near-shore (CFU accumulation rate; and a culture-independent aerosol sampler-based method measuring total bacterial and viral aerosols (cells m−3 air. While ambient coarse (>2 µm and fine (0.3–2 µm aerosol particle number concentrations (regulated indicators of air quality decreased with increasing onshore wind speeds, total and depositing culturable bacterial aerosols and total viral aerosols increased. Taxonomic identification of the 16S rDNA of bacterial aerosol isolates suggested both terrestrial and aquatic sources. Wind appears to increase microbial aerosol number concentrations in the near-shore environment by onshore transport at low wind speeds (<4 m s−1, and increased local production and transport of new microbial aerosols from adjacent water surfaces at higher wind speeds (>4 m s−1. This study demonstrates a wind-modulated microbial connection between water and air in the coastal urban environment, with implications for public health management and urban microbial ecology.

  3. A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city.

    Science.gov (United States)

    Dorado-Morales, Pedro; Vilanova, Cristina; Peretó, Juli; Codoñer, Francisco M; Ramón, Daniel; Porcar, Manuel

    2016-07-05

    Microorganisms colonize a wide range of natural and artificial environments although there are hardly any data on the microbial ecology of one the most widespread man-made extreme structures: solar panels. Here we show that solar panels in a Mediterranean city (Valencia, Spain) harbor a highly diverse microbial community with more than 500 different species per panel, most of which belong to drought-, heat- and radiation-adapted bacterial genera, and sun-irradiation adapted epiphytic fungi. The taxonomic and functional profiles of this microbial community and the characterization of selected culturable bacteria reveal the existence of a diverse mesophilic microbial community on the panels' surface. This biocenosis proved to be more similar to the ones inhabiting deserts than to any human or urban microbial ecosystem. This unique microbial community shows different day/night proteomic profiles; it is dominated by reddish pigment- and sphingolipid-producers, and is adapted to withstand circadian cycles of high temperatures, desiccation and solar radiation.

  4. Operation optimization of a photo-sequencing batch reactor for wastewater treatment: Study on influencing factors and impact on symbiotic microbial ecology.

    Science.gov (United States)

    Ye, Jianfeng; Liang, Junyu; Wang, Liang; Markou, Giorgos; Jia, Qilong

    2018-03-01

    Wastewater treatment technology with better energy efficiency and recyclability is in urgent demand. Photo-Sequencing batch reactor (SBR), which introduces microalgae into conventional SBR, is considered to have more potential for resource recycling. In this study, a photo-SBR was evaluated through the manipulation of several key operational parameters, i.e., aeration strength, light supply intensity and time per cycle, and solid retention time (SRT). The algal-bacterial symbiotic system had the potential of removing COD, NH 4 + -N and TN with limited aeration, representing the advantage of energy-saving by low aeration requirement. Maintaining appropriate proportion of microalgae in the symbiotic system is critical for good system performance. Introducing microalgae into conventional SBR has obvious impact on the original microbial ecology. When the concentration of microalgae is too high (>4.60 mg Chl/L), the inhibition on certain phyla of bacteria, e.g., Bacteroidetes and Actinobacteria, would become prominent and not conducive to the stable operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. MI-Sim: A MATLAB package for the numerical analysis of microbial ecological interactions.

    Directory of Open Access Journals (Sweden)

    Matthew J Wade

    Full Text Available Food-webs and other classes of ecological network motifs, are a means of describing feeding relationships between consumers and producers in an ecosystem. They have application across scales where they differ only in the underlying characteristics of the organisms and substrates describing the system. Mathematical modelling, using mechanistic approaches to describe the dynamic behaviour and properties of the system through sets of ordinary differential equations, has been used extensively in ecology. Models allow simulation of the dynamics of the various motifs and their numerical analysis provides a greater understanding of the interplay between the system components and their intrinsic properties. We have developed the MI-Sim software for use with MATLAB to allow a rigorous and rapid numerical analysis of several common ecological motifs. MI-Sim contains a series of the most commonly used motifs such as cooperation, competition and predation. It does not require detailed knowledge of mathematical analytical techniques and is offered as a single graphical user interface containing all input and output options. The tools available in the current version of MI-Sim include model simulation, steady-state existence and stability analysis, and basin of attraction analysis. The software includes seven ecological interaction motifs and seven growth function models. Unlike other system analysis tools, MI-Sim is designed as a simple and user-friendly tool specific to ecological population type models, allowing for rapid assessment of their dynamical and behavioural properties.

  6. MI-Sim: A MATLAB package for the numerical analysis of microbial ecological interactions.

    Science.gov (United States)

    Wade, Matthew J; Oakley, Jordan; Harbisher, Sophie; Parker, Nicholas G; Dolfing, Jan

    2017-01-01

    Food-webs and other classes of ecological network motifs, are a means of describing feeding relationships between consumers and producers in an ecosystem. They have application across scales where they differ only in the underlying characteristics of the organisms and substrates describing the system. Mathematical modelling, using mechanistic approaches to describe the dynamic behaviour and properties of the system through sets of ordinary differential equations, has been used extensively in ecology. Models allow simulation of the dynamics of the various motifs and their numerical analysis provides a greater understanding of the interplay between the system components and their intrinsic properties. We have developed the MI-Sim software for use with MATLAB to allow a rigorous and rapid numerical analysis of several common ecological motifs. MI-Sim contains a series of the most commonly used motifs such as cooperation, competition and predation. It does not require detailed knowledge of mathematical analytical techniques and is offered as a single graphical user interface containing all input and output options. The tools available in the current version of MI-Sim include model simulation, steady-state existence and stability analysis, and basin of attraction analysis. The software includes seven ecological interaction motifs and seven growth function models. Unlike other system analysis tools, MI-Sim is designed as a simple and user-friendly tool specific to ecological population type models, allowing for rapid assessment of their dynamical and behavioural properties.

  7. Modeling adaptation of carbon use efficiency in microbial communities

    Directory of Open Access Journals (Sweden)

    Steven D Allison

    2014-10-01

    Full Text Available In new microbial-biogeochemical models, microbial carbon use efficiency (CUE is often assumed to decline with increasing temperature. Under this assumption, soil carbon losses under warming are small because microbial biomass declines. Yet there is also empirical evidence that CUE may adapt (i.e. become less sensitive to warming, thereby mitigating negative effects on microbial biomass. To analyze potential mechanisms of CUE adaptation, I used two theoretical models to implement a tradeoff between microbial uptake rate and CUE. This rate-yield tradeoff is based on thermodynamic principles and suggests that microbes with greater investment in resource acquisition should have lower CUE. Microbial communities or individuals could adapt to warming by reducing investment in enzymes and uptake machinery. Consistent with this idea, a simple analytical model predicted that adaptation can offset 50% of the warming-induced decline in CUE. To assess the ecosystem implications of the rate-yield tradeoff, I quantified CUE adaptation in a spatially-structured simulation model with 100 microbial taxa and 12 soil carbon substrates. This model predicted much lower CUE adaptation, likely due to additional physiological and ecological constraints on microbes. In particular, specific resource acquisition traits are needed to maintain stoichiometric balance, and taxa with high CUE and low enzyme investment rely on low-yield, high-enzyme neighbors to catalyze substrate degradation. In contrast to published microbial models, simulations with greater CUE adaptation also showed greater carbon storage under warming. This pattern occurred because microbial communities with stronger CUE adaptation produced fewer degradative enzymes, despite increases in biomass. Thus the rate-yield tradeoff prevents CUE adaptation from driving ecosystem carbon loss under climate warming.

  8. Engineering microbial consortia for controllable outputs

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Stephen R.; Bernstein, Hans C.; Song, Hyun-Seob; Fredrickson, Jim K.; Fields, Matthew W.; Shou, Wenying; Johnson, David R.; Beliaev, Alexander S.

    2016-03-11

    Much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into resilient consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here, we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution global measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that when combined with appropriate modeling framework that predictive knowledge generates testable hypotheses and orthogonal synthetic biology tools, such understanding can dramatically improve our ability to control the fate and functioning of consortia. In this article, we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties.

  9. In Silico Gene-Level Evolution Explains Microbial Population Diversity through Differential Gene Mobility

    NARCIS (Netherlands)

    van Dijk, Bram; Hogeweg, P.

    2016-01-01

    Microbial communities can show astonishing ecological and phylogenetic diversity. What is the role of pervasive horizontal gene transfer (HGT) in shaping this diversity in the presence of clonally expanding "killer strains"? Does HGT of antibiotic production and resistance genes erase phylogenetic

  10. Microbial and geochemical investigations of dissolved organic carbon and microbial ecology of native waters from the Biscayne and Upper Floridan Aquifers

    Science.gov (United States)

    Lisle, John T.; Harvey, Ron W.; Aiken, George R.; Metge, David W.

    2010-01-01

    Groundwater resources in the United States are under ever-increasing demands for potable, irrigation, and recreational uses. Additionally, aquifer systems are being used or targeted for use as storage areas for treated surface waters and (or) groundwaters via injection (for example, aquifer storage and recovery). To date, the influence that the nutrients, including carbon, in the injected water have on native microbial communities and the biogeochemistry in the subsurface zones used for storage of the injectate has not been determined. In this report, we describe a series of experiments that establishes a baseline dataset for the quantity and quality of organic and inorganic carbon and nutrients in the Biscayne Aquifer (BA) and Upper Floridan Aquifer (UFA) in south Florida. The most significant differences between the BA (26 meters below surface) and UFA (366 meters below surface) are the average specific conductance (0.552 and 6.12 microsiemens per centimeter, respectively), dissolved oxygen (1.6 and 0 milligrams per liter, respectively), and oxidation-reduction potential (40.3 and -358 millivolts, respectively). The dissolved organic carbon from the BA is characterized by carbon originating from terrestrial sources and microbial activities, while the UFA has a distinctive microbial signature. Acetate and lactate are the dominant carbon constituents in both aquifers. Additionally, components of the dissolved organic carbon from the UFA have a total trihalomethane-formation potential that is approximately threefold greater than the maximum contaminat level of 80 micrograms per liter established by the U.S. Environmental Protection Agency. The average native bacterial abundances in the aquifers are similar with 4.69x10^4 cells per milliliter in the BA and 1.33x10^4 cells per milliliter in the UFA. The average bacteriophage abundances are also similar with 1.15x10^5 virus-like particles in the BA and 1.92x10^5 virus-like particles in the UFA. Interestingly, ciliated

  11. Microbial syntrophy: interaction for the common good.

    Science.gov (United States)

    Morris, Brandon E L; Henneberger, Ruth; Huber, Harald; Moissl-Eichinger, Christine

    2013-05-01

    Classical definitions of syntrophy focus on a process, performed through metabolic interaction between dependent microbial partners, such as the degradation of complex organic compounds under anoxic conditions. However, examples from past and current scientific discoveries suggest that a new, simple but wider definition is necessary to cover all aspects of microbial syntrophy. We suggest the term 'obligately mutualistic metabolism', which still focuses on microbial metabolic cooperation but also includes an ecological aspect: the benefit for both partners. By the combined metabolic activity of microorganisms, endergonic reactions can become exergonic through the efficient removal of products and therefore enable a microbial community to survive with minimal energy resources. Here, we explain the principles of classical and non-classical syntrophy and illustrate the concepts with various examples. We present biochemical fundamentals that allow microorganism to survive under a range of environmental conditions and to drive important biogeochemical processes. Novel technologies have contributed to the understanding of syntrophic relationships in cultured and uncultured systems. Recent research highlights that obligately mutualistic metabolism is not limited to certain metabolic pathways nor to certain environments or microorganisms. This beneficial microbial interaction is not restricted to the transfer of reducing agents such as hydrogen or formate, but can also involve the exchange of organic, sulfurous- and nitrogenous compounds or the removal of toxic compounds. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Bacterial - Fungal Interactions: ecology, mechanisms and challenges.

    Science.gov (United States)

    Deveau, A; Bonito, G; Uehling, J; Paoletti, M; Becker, M; Bindschedler, S; Hacquard, S; Hervé, V; Labbé, J; Lastovetsky, O A; Mieszkin, S; Millet, L J; Vajna, B; Junier, P; Bonfante, P; Krom, B P; Olsson, S; Elsas, J D van; Wick, L Y

    2018-02-19

    Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families are engaged in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to pathogenicity. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss most recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regards of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for researches in order to catalyse a synergy within the BFI research area and to resolve outstanding questions.

  13. Microbial utilisation of natural organic wastes

    Science.gov (United States)

    Ilyin, V. K.; Smirnov, I. A.; Soldatov, P. E.; Korniushenkova, I. N.; Grinin, A. S.; Lykov, I. N.; Safronova, S. A.

    2004-03-01

    The waste management strategy for the future should meet the benefits of humanity safety, respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. The biological treatment method is based upon the biodegradation of organic substances by various microorganisms. The advantage of the biodegradation waste management in general: it allows to diminish the volume of organic wastes, the biological hazard of the wastes is controlled and this system may be compatible with the other systems. The objectives of our study were: to evaluate effectiveness of microbial biodegradation of non-pretreated substrate, to construct phneumoautomatic digester for organic wastes biodegradation and to study microbial characteristics of active sludge samples used as inoculi in biodegradation experiment. The technology of vegetable wastes treatment was elaborated in IBMP and BMSTU. For this purpose the special unit was created where the degradation process is activated by enforced reinvention of portions of elaborated biogas into digester. This technology allows to save energy normally used for electromechanical agitation and to create optimal environment for anaerobic bacteria growth. The investigations were performed on waste simulator, which imitates physical and chemical content of food wastes calculated basing on the data on food wastes of moderate Russian city. The volume of created experimental sample of digester is 40 l. The basic system elements of device are digesters, gas receiver, remover of drops and valve monitoring and thermal control system. In our testing we used natural food wastes to measure basic parameters and time of biodegradation process. The diminution rate of organic gained 76% from initial mass taking part within 9 days of fermentation. The biogas production achieved 46 l per 1 kg of substrate

  14. Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes.

    Science.gov (United States)

    Pechal, Jennifer L; Benbow, M Eric

    2016-05-01

    Carrion decomposition is driven by complex relationships that affect necrobiome community (i.e. all organisms and their genes associated with a dead animal) interactions, such as insect species arrival time to carrion and microbial succession. Little is understood about how microbial communities interact with invertebrates at the aquatic-terrestrial habitat interface. The first objective of the study was to characterize internal microbial communities using high-throughput sequencing of 16S rRNA gene amplicons for aquatic insects (three mayfly species) in streams with salmon carcasses compared with those in streams without salmon carcasses. The second objective was to assess the epinecrotic microbial communities of decomposing salmon carcasses (Oncorhynchus keta) compared with those of terrestrial necrophagous insects (Calliphora terraenovae larvae and adults) associated with the carcasses. There was a significant difference in the internal microbiomes of mayflies collected in salmon carcass-bearing streams and in non-carcass streams, while the developmental stage of blow flies was the governing factor in structuring necrophagous insect internal microbiota. Furthermore, the necrophagous internal microbiome was influenced by the resource on which the larvae developed, and changes in the adult microbiome varied temporally. Overall, these carrion subsidy-driven networks respond to resource pulses with bottom-up effects on consumer microbial structure, as revealed by shifting communities over space and time. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Microbial diversity and structure are drivers of the biological barrier effect against Listeria monocytogenes in soil.

    Science.gov (United States)

    Vivant, Anne-Laure; Garmyn, Dominique; Maron, Pierre-Alain; Nowak, Virginie; Piveteau, Pascal

    2013-01-01

    Understanding the ecology of pathogenic organisms is important in order to monitor their transmission in the environment and the related health hazards. We investigated the relationship between soil microbial diversity and the barrier effect against Listeria monocytogenes invasion. By using a dilution-to-extinction approach, we analysed the consequence of eroding microbial diversity on L. monocytogenes population dynamics under standardised conditions of abiotic parameters and microbial abundance in soil microcosms. We demonstrated that highly diverse soil microbial communities act as a biological barrier against L. monocytogenes invasion and that phylogenetic composition of the community also has to be considered. This suggests that erosion of diversity may have damaging effects regarding circulation of pathogenic microorganisms in the environment.

  16. Introducing SONS, a Tool for Operational Taxonomic Unit-Based Comparisons of Microbial Community Memberships and Structures

    OpenAIRE

    Schloss, Patrick D.; Handelsman, Jo

    2006-01-01

    The recent advent of tools enabling statistical inferences to be drawn from comparisons of microbial communities has enabled the focus of microbial ecology to move from characterizing biodiversity to describing the distribution of that biodiversity. Although statistical tools have been developed to compare community structures across a phylogenetic tree, we lack tools to compare the memberships and structures of two communities at a particular operational taxonomic unit (OTU) definition. Furt...

  17. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms.

    Science.gov (United States)

    Sugio, Akiko; Dubreuil, Géraldine; Giron, David; Simon, Jean-Christophe

    2015-02-01

    Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  18. Conference on microbiological processes useful in enhanced oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    Six formal presentations were made at the meeting, followed by four workshops dealing with specific topics: bioengineering, reservoir ecology and environment, transformations, and bioproducts. All were related to microbial enhancement of oil recovery. (DLC)

  19. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations.

    Science.gov (United States)

    Kim, Jaai; Lim, Juntaek; Lee, Changsoo

    2013-12-01

    Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Functional and Structural Succession of Soil Microbial Communities below Decomposing Human Cadavers

    Science.gov (United States)

    Cobaugh, Kelly L.; Schaeffer, Sean M.; DeBruyn, Jennifer M.

    2015-01-01

    The ecological succession of microbes during cadaver decomposition has garnered interest in both basic and applied research contexts (e.g. community assembly and dynamics; forensic indicator of time since death). Yet current understanding of microbial ecology during decomposition is almost entirely based on plant litter. We know very little about microbes recycling carcass-derived organic matter despite the unique decomposition processes. Our objective was to quantify the taxonomic and functional succession of microbial populations in soils below decomposing cadavers, testing the hypotheses that a) periods of increased activity during decomposition are associated with particular taxa; and b) human-associated taxa are introduced to soils, but do not persist outside their host. We collected soils from beneath four cadavers throughout decomposition, and analyzed soil chemistry, microbial activity and bacterial community structure. As expected, decomposition resulted in pulses of soil C and nutrients (particularly ammonia) and stimulated microbial activity. There was no change in total bacterial abundances, however we observed distinct changes in both function and community composition. During active decay (7 - 12 days postmortem), respiration and biomass production rates were high: the community was dominated by Proteobacteria (increased from 15.0 to 26.1% relative abundance) and Firmicutes (increased from 1.0 to 29.0%), with reduced Acidobacteria abundances (decreased from 30.4 to 9.8%). Once decay rates slowed (10 - 23 d postmortem), respiration was elevated, but biomass production rates dropped dramatically; this community with low growth efficiency was dominated by Firmicutes (increased to 50.9%) and other anaerobic taxa. Human-associated bacteria, including the obligately anaerobic Bacteroides, were detected at high concentrations in soil throughout decomposition, up to 198 d postmortem. Our results revealed the pattern of functional and compositional succession

  1. Models of microbiome evolution incorporating host and microbial selection.

    Science.gov (United States)

    Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen

    2017-09-25

    Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong

  2. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession.

    Science.gov (United States)

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-06

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  3. Response of core microbial consortia to hydrocarbon contaminations in coastal sediment habitats

    Directory of Open Access Journals (Sweden)

    Mathilde Jeanbille

    2016-10-01

    Full Text Available Traditionally, microbial surveys investigating the effect of chronic anthropogenic pressure such as polyaromatic hydrocarbons (PAHs contaminations consider just the alpha and beta diversity and ignore the interactions among the different taxa forming the microbial community. Here, we investigated the ecological relationships between the three domains of life (i.e. Bacteria, Archaea and Eukarya using 454 pyrosequencing data of the 16S rRNA and 18S rRNA genes from chronically impacted and pristine sediments, along the coasts of the Mediterranean Sea (Gulf of Lion, Vermillion coast, Corsica, Bizerte lagoon and Lebanon and the French Atlantic Ocean (Bay of Biscay and English Channel. Our approach provided a robust ecological framework for the partition of the taxa abundance distribution into 859 core OTUs and 6629 satellite OTUs. OTUs forming the core microbial community showed the highest sensitivity to changes in environmental and contaminant variations, with salinity, latitude, temperature, particle size distribution, total organic carbon (TOC and PAH concentrations as main drivers of community assembly. The core communities were dominated by Gammaproteobacteria and Deltaproteobacteria for Bacteria, by Thaumarchaeota, Bathyarchaeota and Thermoplasmata for Archaea and Metazoa and Dinoflagellata for Eukarya. In order to find associations among microorganisms, we generated a co-occurrence network in which PAHs were found to impact significantly the potential predator – prey relationship in one microbial consortium composed of ciliates and Actinobacteria. Comparison of network topological properties between contaminated and non-contaminated samples showed substantial differences in the structure of the network and indicated a higher vulnerability to environmental perturbations in the contaminated sediments.

  4. A conceptual framework for invasion in microbial communities

    KAUST Repository

    Kinnunen, Marta; Dechesne, Arnaud; Proctor, Caitlin; Hammes, Frederik; Johnson, David; Quintela-Baluja, Marcos; Graham, David; Daffonchio, Daniele; Fodelianakis, Stylianos; Hahn, Nicole; Boon, Nico; Smets, Barth F

    2016-01-01

    There is a growing interest in controlling-promoting or avoiding-the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process.

  5. A conceptual framework for invasion in microbial communities

    Science.gov (United States)

    Kinnunen, Marta; Dechesne, Arnaud; Proctor, Caitlin; Hammes, Frederik; Johnson, David; Quintela-Baluja, Marcos; Graham, David; Daffonchio, Daniele; Fodelianakis, Stilianos; Hahn, Nicole; Boon, Nico; Smets, Barth F

    2016-01-01

    There is a growing interest in controlling—promoting or avoiding—the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process. PMID:27137125

  6. A conceptual framework for invasion in microbial communities

    KAUST Repository

    Kinnunen, Marta

    2016-05-03

    There is a growing interest in controlling-promoting or avoiding-the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process.

  7. Natural environments, ancestral diets, and microbial ecology: is there a modern "paleo-deficit disorder"? Part II.

    Science.gov (United States)

    Logan, Alan C; Katzman, Martin A; Balanzá-Martínez, Vicent

    2015-03-10

    Famed microbiologist René J. Dubos (1901-1982) was an early pioneer in the developmental origins of health and disease (DOHaD) construct. In the 1960s, he conducted groundbreaking research concerning the ways in which early-life experience with nutrition, microbiota, stress, and other environmental variables could influence later-life health outcomes. He recognized the co-evolutionary relationship between microbiota and the human host. Almost 2 decades before the hygiene hypothesis, he suggested that children in developed nations were becoming too sanitized (vs. our ancestral past) and that scientists should determine whether the childhood environment should be "dirtied up in a controlled manner." He also argued that oft-celebrated growth chart increases via changes in the global food supply and dietary patterns should not be equated to quality of life and mental health. Here in the second part of our review, we reflect the words of Dubos off contemporary research findings in the areas of diet, the gut-brain-axis (microbiota and anxiety and depression) and microbial ecology. Finally, we argue, as Dubos did 40 years ago, that researchers should more closely examine the relevancy of silo-sequestered, reductionist findings in the larger picture of human quality of life. In the context of global climate change and the epidemiological transition, an allergy epidemic and psychosocial stress, our review suggests that discussions of natural environments, urbanization, biodiversity, microbiota, nutrition, and mental health, are often one in the same.

  8. Can Microbial Ecology and Mycorrhizal Functioning Inform Climate Change Models?

    Energy Technology Data Exchange (ETDEWEB)

    Hofmockel, Kirsten; Hobbie, Erik

    2017-07-31

    Our funded research focused on soil organic matter dynamics and plant-microbe interactions by examining the role of belowground processes and mechanisms across scales, including decomposition of organic molecules, microbial interactions, and plant-microbe interactions associated with a changing climate. Research foci included mycorrhizal mediated priming of soil carbon turnover, organic N use and depolymerization by free-living microbes and mycorrhizal fungi, and the use of isotopes as additional constraints for improved modeling of belowground processes. This work complemented the DOE’s mandate to understand both the consequences of atmospheric and climatic change for key ecosystems and the feedbacks on C cycling.

  9. [Improving industrial microbial stress resistance by metabolic engineering: a review].

    Science.gov (United States)

    Fu, Ruiyan; Li, Yin

    2010-09-01

    Metabolic engineering is a technologic platform for industrial strain improvement and aims not only at modifying microbial metabolic fluxes, but also improving the physiological performance of industrial microbes. Microbes will meet multiple stresses in industrial processes. Consequently, elicited gene responses might result in a decrease in overall cell fitness and the efficiency of biotransformation. Thus, it is crucial to develop robust and productive microbial strains that can be integrated into industrial-scale bioprocesses. In this review, we focus on the progress of these novel methods and strategies for engineering stress-tolerance phenotypes referring to rational metabolic engineering and inverse metabolic engineering in recent years. In addition, we also address problems existing in this area and future research needs of microbial physiological functionality engineering.

  10. Analysis of Low-Biomass Microbial Communities in the Deep Biosphere.

    Science.gov (United States)

    Morono, Y; Inagaki, F

    2016-01-01

    Over the past few decades, the subseafloor biosphere has been explored by scientific ocean drilling to depths of about 2.5km below the seafloor. Although organic-rich anaerobic sedimentary habitats in the ocean margins harbor large numbers of microbial cells, microbial populations in ultraoligotrophic aerobic sedimentary habitats in the open ocean gyres are several orders of magnitude less abundant. Despite advances in cultivation-independent molecular ecological techniques, exploring the low-biomass environment remains technologically challenging, especially in the deep subseafloor biosphere. Reviewing the historical background of deep-biosphere analytical methods, the importance of obtaining clean samples and tracing contamination, as well as methods for detecting microbial life, technological aspects of molecular microbiology, and detecting subseafloor metabolic activity will be discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Dynamics in Microbial Composition and Functionality over a Season in Two Contrasting Estuarine Systems

    DEFF Research Database (Denmark)

    Traving, Sachia; Bentzon-Tilia, Mikkel; Mantikci, Mustafa

    2015-01-01

    In aquatic microbial ecology it remains unclear how bacterial community composition and dynamics are coupled to functionality, and whether this putative coupling varies over the season. In this study we address the questions if bacterial community composition can be linked to community function, ...

  12. Allee effect: the story behind the stabilization or extinction of microbial ecosystem.

    Science.gov (United States)

    Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun

    2017-03-01

    A population exhibiting Allee effect shows a positive correlation between population fitness and population size or density. Allee effect decides the extinction or conservation of a microbial population and thus appears to be an important criterion in population ecology. The underlying factor of Allee effect that decides the stabilization and extinction of a particular population density is the threshold or the critical density of their abundance. According to Allee, microbial populations exhibit a definite, critical or threshold density, beyond which the population fitness of a particular population increases with the rise in population density and below it, the population fitness goes down with the decrease in population density. In particular, microbial population displays advantageous traits such as biofilm formation, expression of virulence genes, spore formation and many more only at a high population density. It has also been observed that microorganisms exhibiting a lower population density undergo complete extinction from the residual microbial ecosystem. In reference to Allee effect, decrease in population density or size introduces deleterious mutations among the population density through genetic drift. Mutations are carried forward to successive generations resulting in its accumulation among the population density thus reducing its microbial fitness and thereby increasing the risk of extinction of a particular microbial population. However, when the microbial load is high, the chance of genetic drift is less, and through the process of biofilm formation, the cooperation existing among the microbial population increases that increases the microbial fitness. Thus, the high microbial population through the formation of microbial biofilm stabilizes the ecosystem by increasing fitness. Taken together, microbial fitness shows positive correlation with the ecosystem conservation and negative correlation with ecosystem extinction.

  13. Microbial biodiversity of Sardinian oleic ecosystems.

    Science.gov (United States)

    Santona, Mario; Sanna, Maria Lina; Multineddu, Chiara; Fancello, Francesco; de la Fuente, Sara Audije; Dettori, Sandro; Zara, Severino

    2018-04-01

    The olives are rich in microorganisms that, during the extraction process may persist in the oils and can influence their physicochemical and sensory characteristics. In this work, and for the first time, we isolated and identified microbial species, yeast and bacteria, present during the production process in four Sardinian (Italy) oleic ecosystems. Among these varieties, we found that Nera di Gonnos was associated to the highest microbial biodiversity, which was followed by Bosana, Nocellara del Belice and Semidana. Among the different microbial species isolated, some are specific of olive ecological niches, such as Cryptococcus spp and Serratia spp; and others to olive oils such as Candida spp and Saccharomyces. Some other species identified in this work were not found before in oleic ecosystems. The enzymatic analyses of yeast and bacteria showed that they have good β-glucosidase activity and yeast also showed good β-glucanase activity. The majority of bacteria presented lipolytic and catalase activities while in yeast were species-specific. Interestingly, yeast and bacteria isolates presented a high resistance to bile acid, and about 65% of the yeast were able to resist at pH 2.5 for 2 h. Finally, bacteria showed no biofilm activity compared to yeast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Build your own soil: exploring microfluidics to create microbial habitat structures

    Science.gov (United States)

    Aleklett, Kristin; Kiers, E Toby; Ohlsson, Pelle; Shimizu, Thomas S; Caldas, Victor EA; Hammer, Edith C

    2018-01-01

    Soil is likely the most complex ecosystem on earth. Despite the global importance and extraordinary diversity of soils, they have been notoriously challenging to study. We show how pioneering microfluidic techniques provide new ways of studying soil microbial ecology by allowing simulation and manipulation of chemical conditions and physical structures at the microscale in soil model habitats. PMID:29135971

  15. Physiology and microbial community structure in soil at extreme water content

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, Eva; Elhottová, Dana; Tříska, Jan; Šantrůčková, Hana

    2005-01-01

    Roč. 50, č. 2 (2005), s. 161-166 ISSN 0015-5632 R&D Projects: GA ČR(CZ) GA206/99/1410; GA ČR(CZ) GA526/99/P033 Institutional research plan: CEZ:AV0Z6066911 Keywords : microbial community structure * soils * extreme water content Subject RIV: EH - Ecology, Behaviour Impact factor: 0.918, year: 2005

  16. LINKING MICROBES TO CLIMATE: INCORPORATING MICROBIAL ACTIVITY INTO CLIMATE MODELS COLLOQUIUM

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, Edward; Harwood, Caroline; Reid, Ann

    2011-01-01

    This report explains the connection between microbes and climate, discusses in general terms what modeling is and how it applied to climate, and discusses the need for knowledge in microbial physiology, evolution, and ecology to contribute to the determination of fluxes and rates in climate models. It recommends with a multi-pronged approach to address the gaps.

  17. Towards improving the ethics of ecological research.

    Science.gov (United States)

    Crozier, G K D; Schulte-Hostedde, Albrecht I

    2015-06-01

    We argue that the ecological research community should develop a plan for improving the ethical consistency and moral robustness of the field. We propose a particular ethics strategy--specifically, an ongoing process of collective ethical reflection that the community of ecological researchers, with the cooperation of applied ethicists and philosophers of biology, can use to address the needs we identify. We suggest a particular set of conceptual (in the form of six core values--freedom, fairness, well being, replacement, reduction, and refinement) and analytic (in the forms of decision theoretic software, 1000Minds) tools that, we argue, collectively have the resources to provide an empirically grounded and conceptually complete foundation for an ethics strategy for ecological research. We illustrate our argument with information gathered from a survey of ecologists conducted at the 2013 meeting of the Canadian Society of Ecology and Evolution.

  18. Winter ecology of a subalpine grassland: Effects of snow removal on soil respiration, microbial structure and function.

    Science.gov (United States)

    Gavazov, Konstantin; Ingrisch, Johannes; Hasibeder, Roland; Mills, Robert T E; Buttler, Alexandre; Gleixner, Gerd; Pumpanen, Jukka; Bahn, Michael

    2017-07-15

    Seasonal snow cover provides essential insulation for mountain ecosystems, but expected changes in precipitation patterns and snow cover duration due to global warming can influence the activity of soil microbial communities. In turn, these changes have the potential to create new dynamics of soil organic matter cycling. To assess the effects of experimental snow removal and advanced spring conditions on soil carbon (C) and nitrogen (N) dynamics, and on the biomass and structure of soil microbial communities, we performed an in situ study in a subalpine grassland in the Austrian Alps, in conjunction with soil incubations under controlled conditions. We found substantial winter C-mineralisation and high accumulation of inorganic and organic N in the topsoil, peaking at snowmelt. Soil microbial biomass doubled under the snow, paralleled by a fivefold increase in its C:N ratio, but no apparent change in its bacteria-dominated community structure. Snow removal led to a series of mild freeze-thaw cycles, which had minor effects on in situ soil CO 2 production and N mineralisation. Incubated soil under advanced spring conditions, however, revealed an impaired microbial metabolism shortly after snow removal, characterised by a limited capacity for C-mineralisation of both fresh plant-derived substrates and existing soil organic matter (SOM), leading to reduced priming effects. This effect was transient and the observed recovery in microbial respiration and SOM priming towards the end of the winter season indicated microbial resilience to short-lived freeze-thaw disturbance under field conditions. Bacteria showed a higher potential for uptake of plant-derived C substrates during this recovery phase. The observed temporary loss in microbial C-mineralisation capacity and the promotion of bacteria over fungi can likely impede winter SOM cycling in mountain grasslands under recurrent winter climate change events, with plausible implications for soil nutrient availability and

  19. A pivotal role for ocean eddies in the distribution of microbial communities across the Antarctic Circumpolar Current.

    Directory of Open Access Journals (Sweden)

    Siddarthan Venkatachalam

    Full Text Available Mesoscale variability and associated eddy fluxes play crucial roles in ocean circulation dynamics and the ecology of the upper ocean. In doing so, these features are biologically important, providing a mechanism for the mixing and exchange of nutrients and biota within the ocean. Transient mesoscale eddies in the Southern Ocean are known to relocate zooplankton communities across the Antarctic Circumpolar Current (ACC and are important foraging grounds for marine top predators. In this study we investigated the role of cyclonic and anti-cyclonic eddies formed at the South-West Indian Ridge on the spatial variability and diversity of microbial communities. We focused on two contrasting adjacent eddies within the Antarctic Polar Frontal Zone to determine how these features may influence the microbial communities within this region. The water masses and microbiota of the two eddies, representative of a cyclonic cold core from the Antarctic zone and an anti-cyclonic warm-core from the Subantarctic zone, were compared. The data reveal that the two eddies entrain distinct microbial communities from their points of origin that are maintained for up to ten months. Our findings highlight the ecological impact that changes, brought by the translocation of eddies across the ACC, have on microbial diversity.

  20. Manipulating soil microbial communities in extensive green roof substrates.

    Science.gov (United States)

    Molineux, Chloe J; Connop, Stuart P; Gange, Alan C

    2014-09-15

    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated, we added mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs. There are complex relationships between depth and type of substrate and the biomass of different microbial groups, with no clear pattern being observed. Following the addition of inoculants, bacterial groups tended to increase in biomass in shallower substrates, whereas fungal biomass change was dependent on depth and type of substrate. Increased fungal biomass was found in shallow plots containing more crushed concrete and deeper plots containing more crushed brick where compost tea (a live mixture of beneficial bacteria) was added, perhaps due to the presence of helper bacteria for arbuscular mycorrhizal fungi (AMF). Often there was not an additive affect of the microbial inoculations but instead an antagonistic interaction between the added AM fungi and the compost tea. This suggests that some species of microbes may not be compatible with others, as competition for limited resources occurs within the various substrates. The overall results suggest that microbial inoculations of green roof habitats are sustainable. They need only be done once for increased biomass to be found in subsequent years, indicating that this is a novel and viable method of enhancing roof community composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng; Bougouffa, Salim; Wang, Yong; Lee, On On; Yang, Jiangke; Chan, Colin; Song, Xingyu; Qian, Pei-Yuan

    2014-01-01

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  2. Toward understanding the dynamics of microbial communities in an estuarine system.

    Directory of Open Access Journals (Sweden)

    Weipeng Zhang

    Full Text Available Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE. The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  3. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng

    2014-04-14

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  4. Desert Perennial Shrubs Shape the Microbial-Community Miscellany in Laimosphere and Phyllosphere Space.

    Science.gov (United States)

    Martirosyan, Varsik; Unc, Adrian; Miller, Gad; Doniger, Tirza; Wachtel, Chaim; Steinberger, Yosef

    2016-10-01

    Microbial function, composition, and distribution play a fundamental role in ecosystem ecology. The interaction between desert plants and their associated microbes is expected to greatly affect their response to changes in this harsh environment. Using comparative analyses, we studied the impact of three desert shrubs, Atriplex halimus (A), Artemisia herba-alba (AHA), and Hammada scoparia (HS), on soil- and leaf-associated microbial communities. DNA extracted from the leaf surface and soil samples collected beneath the shrubs were used to study associated microbial diversity using a sequencing survey of variable regions of bacterial 16S rRNA and fungal ribosomal internal transcribed spacer (ITS1). We found that the composition of bacterial and fungal orders is plant-type-specific, indicating that each plant type provides a suitable and unique microenvironment. The different adaptive ecophysiological properties of the three plant species and the differential effect on their associated microbial composition point to the role of adaptation in the shaping of microbial diversity. Overall, our findings suggest a link between plant ecophysiological adaptation as a "temporary host" and the biotic-community parameters in extreme xeric environments.

  5. Astrobiology and Microbial Diversity Websites at MBL

    Science.gov (United States)

    Bahr, M.; Bordenstein, S. R.

    2006-12-01

    The NASA Astrobiology Institute (NAI) mission is to study the origin, evolution and future of life in the Universe. The MBL Astrobiology team explores the evolution and interaction of genomes of diverse organisms that play significant roles in environmental biology over evolutionary time scales. Communication about our research includes the personal contact of teacher workshops, and the development of web-based resources. Microbial Life Educational Resources (MLER) provides an expanding internet resource about the ecology, diversity and evolution for students, K-12 teachers, university faculty, and the general public. MLER includes websites, PowerPoint presentations, teaching activities, data sets, and other useful materials for creating or enhancing courses related to astrobiology. Our second site, micro*scope (http://microscope.mbl.edu), has images of microbes, classification schemes, descriptions of organisms, talks and other educational resources to improve awareness of the biodiversity of our microbial partners.

  6. Ecological theory as a foundation to control pathogenic invasion in aquaculture

    Science.gov (United States)

    De Schryver, Peter; Vadstein, Olav

    2014-01-01

    Detrimental host–pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on ‘join them' and not the traditional ‘beat them' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host's resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture. PMID:24892581

  7. Impact of narasin on manure composition, microbial ecology, and gas emissions from finishing pigs fed either a corn-soybean meal or a corn-soybean meal-dried distillers grains with solubles diets.

    Science.gov (United States)

    Kerr, Brian J; Trabue, Steven L; van Weelden, Mark B; Andersen, Daniel S; Pepple, Laura M

    2018-04-14

    An experiment was conducted to determine the effect of feeding finishing pigs a corn-soybean (CSBM) diet or a CSBM diet supplemented with 30% dried distillers grains with solubles (DDGS), in combination with or without a growth-promoting ionophore (0 or 30 mg narasin/kg of diet), has on manure composition, microbial ecology, and gas emissions. Two separate groups of 24 gilts (initial BW = 145.1 kg, SD = 7.8 kg) were allotted to individual metabolism crates that allowed for total but separate collection of feces and urine during the 48-d collection period. After each of the twice-daily feedings, feces and urine from each crate was collected and added to its assigned enclosed manure storage tank. Each tank contained an individual fan system that pulled a constant stream of air over the manure surface for 2 wk prior to air (day 52) and manure sampling (day 53). After manure sampling, the manure in the tanks was dumped and the tanks cleaned for the second group of pigs. Except for total manure Ca and P output as a percent of intake and for manure methane product rate and biochemical methane potential (P ≤ 0.08), there were no interactions between diet composition and narasin supplementation. Narasin supplementation resulted in increased manure C (P = 0.05), increased manure DM, C, S, Ca, and phosphorus as a percent of animal intake (P ≤ 0.07), and increased manure volatile solids and foaming capacity (P ≤ 0.09). No effect of narasin supplementation was noted on manure VFA concentrations or any of the gas emission parameters measured (P ≥ 0.29). In contrast, feeding finishing pigs a diet containing DDGS dramatically affected manure composition as indicated by increased concentration of DM, C, ammonia, N, and total and volatile solids (P = 0.01), increased manure DM, N, and C as a percent of animal intake (P = 0.01), increased manure total VFA and phenols (P ≤ 0.05), decreased gas emissions of ammonia and volatile sulfur compounds (VSC; P = 0.01), increased

  8. Cancer: an emergent property of disturbed resource-rich environments? Ecology meets personalized medicine.

    Science.gov (United States)

    Ducasse, Hugo; Arnal, Audrey; Vittecoq, Marion; Daoust, Simon P; Ujvari, Beata; Jacqueline, Camille; Tissot, Tazzio; Ewald, Paul; Gatenby, Robert A; King, Kayla C; Bonhomme, François; Brodeur, Jacques; Renaud, François; Solary, Eric; Roche, Benjamin; Thomas, Frédéric

    2015-07-01

    For an increasing number of biologists, cancer is viewed as a dynamic system governed by evolutionary and ecological principles. Throughout most of human history, cancer was an uncommon cause of death and it is generally accepted that common components of modern culture, including increased physiological stresses and caloric intake, favor cancer development. However, the precise mechanisms for this linkage are not well understood. Here, we examine the roles of ecological and physiological disturbances and resource availability on the emergence of cancer in multicellular organisms. We argue that proliferation of 'profiteering phenotypes' is often an emergent property of disturbed, resource-rich environments at all scales of biological organization. We review the evidence for this phenomenon, explore it within the context of malignancy, and discuss how this ecological framework may offer a theoretical background for novel strategies of cancer prevention. This work provides a compelling argument that the traditional separation between medicine and evolutionary ecology remains a fundamental limitation that needs to be overcome if complex processes, such as oncogenesis, are to be completely understood.

  9. Molecular ecology of Frankia and other soil bacteria under natural and chlorobenzoate-stressed conditions

    NARCIS (Netherlands)

    Ramirez-Saad, H.C.

    1999-01-01

    Microbial Ecology studies aim to describe and assess the behavior and activity of microorganisms in their natural environments (Brock 1966). Nowadays it is clear that the large number of existing microorganisms has surpassed our capabilities to rapidly characterise them by traditional

  10. Microbial co-habitation and lateral gene transfer: what transposases can tell us

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Sean D.; Mavromatis, Konstantinos; Kyrpides, Nikos C.

    2009-03-01

    Determining the habitat range for various microbes is not a simple, straightforward matter, as habitats interlace, microbes move between habitats, and microbial communities change over time. In this study, we explore an approach using the history of lateral gene transfer recorded in microbial genomes to begin to answer two key questions: where have you been and who have you been with? All currently sequenced microbial genomes were surveyed to identify pairs of taxa that share a transposase that is likely to have been acquired through lateral gene transfer. A microbial interaction network including almost 800 organisms was then derived from these connections. Although the majority of the connections are between closely related organisms with the same or overlapping habitat assignments, numerous examples were found of cross-habitat and cross-phylum connections. We present a large-scale study of the distributions of transposases across phylogeny and habitat, and find a significant correlation between habitat and transposase connections. We observed cases where phylogenetic boundaries are traversed, especially when organisms share habitats; this suggests that the potential exists for genetic material to move laterally between diverse groups via bridging connections. The results presented here also suggest that the complex dynamics of microbial ecology may be traceable in the microbial genomes.

  11. Functional ecology of an Antarctic Dry Valley

    Science.gov (United States)

    Chan, Yuki; Van Nostrand, Joy D.; Zhou, Jizhong; Pointing, Stephen B.

    2013-01-01

    The McMurdo Dry Valleys are the largest ice-free region in Antarctica and are critically at risk from climate change. The terrestrial landscape is dominated by oligotrophic mineral soils and extensive exposed rocky surfaces where biota are largely restricted to microbial communities, although their ability to perform the majority of geobiological processes has remained largely uncharacterized. Here, we identified functional traits that drive microbial survival and community assembly, using a metagenomic approach with GeoChip-based functional gene arrays to establish metabolic capabilities in communities inhabiting soil and rock surface niches in McKelvey Valley. Major pathways in primary metabolism were identified, indicating significant plasticity in autotrophic, heterotrophic, and diazotrophic strategies supporting microbial communities. This represents a major advance beyond biodiversity surveys in that we have now identified how putative functional ecology drives microbial community assembly. Significant differences were apparent between open soil, hypolithic, chasmoendolithic, and cryptoendolithic communities. A suite of previously unappreciated Antarctic microbial stress response pathways, thermal, osmotic, and nutrient limitation responses were identified and related to environmental stressors, offering tangible clues to the mechanisms behind the enduring success of microorganisms in this seemingly inhospitable terrain. Rocky substrates exposed to larger fluctuations in environmental stress supported greater functional diversity in stress-response pathways than soils. Soils comprised a unique reservoir of genes involved in transformation of organic hydrocarbons and lignin-like degradative pathways. This has major implications for the evolutionary origin of the organisms, turnover of recalcitrant substrates in Antarctic soils, and predicting future responses to anthropogenic pollution. PMID:23671121

  12. Microbial biofilm formation and its consequences for the CELSS program

    Science.gov (United States)

    Mitchell, R.

    1994-01-01

    A major goal of the Controlled Ecology Life Support System (CELSS) program is to provide reliable and efficient life support systems for long-duration space flights. A principal focus of the program is on the growth of higher plants in growth chambers. These crops should be grown without the risk of damage from microbial contamination. While it is unlikely that plant pathogens will pose a risk, there are serious hazards associated with microorganisms carried in the nutrient delivery systems and in the atmosphere of the growth chamber. Our experience in surface microbiology showed that colonization of surfaces with microorganisms is extremely rapid even when the inoculum is small. After initial colonization extensive biofilms accumulate on moist surfaces. These microbial films metabolize actively and slough off continuously to the air and water. During plant growth in the CELSS program, microbial biofilms have the potential to foul sensors and to plug nutrient delivery systems. In addition both metabolic products of microbial growth and degradation products of materials being considered for use as nutrient reservoirs and for delivery are likely sources of chemicals known to adversly affect plant growth.

  13. Sediment Microbial Communities Influenced by Cool Hydrothermal Fluid Migration

    Directory of Open Access Journals (Sweden)

    Laura A. Zinke

    2018-06-01

    Full Text Available Cool hydrothermal systems (CHSs are prevalent across the seafloor and discharge fluid volumes that rival oceanic input from rivers, yet the microbial ecology of these systems are poorly constrained. The Dorado Outcrop on the ridge flank of the Cocos Plate in the northeastern tropical Pacific Ocean is the first confirmed CHS, discharging minimally altered <15°C fluid from the shallow lithosphere through diffuse venting and seepage. In this paper, we characterize the resident sediment microbial communities influenced by cool hydrothermal advection, which is evident from nitrate and oxygen concentrations. 16S rRNA gene sequencing revealed that Thaumarchaea, Proteobacteria, and Planctomycetes were the most abundant phyla in all sediments across the system regardless of influence from seepage. Members of the Thaumarchaeota (Marine Group I, Alphaproteobacteria (Rhodospirillales, Nitrospirae, Nitrospina, Acidobacteria, and Gemmatimonadetes were enriched in the sediments influenced by CHS advection. Of the various geochemical parameters investigated, nitrate concentrations correlated best with microbial community structure, indicating structuring based on seepage of nitrate-rich fluids. A comparison of microbial communities from hydrothermal sediments, seafloor basalts, and local seawater at Dorado Outcrop showed differences that highlight the distinct niche space in CHS. Sediment microbial communities from Dorado Outcrop differ from those at previously characterized, warmer CHS sediment, but are similar to deep-sea sediment habitats with surficial ferromanganese nodules, such as the Clarion Clipperton Zone. We conclude that cool hydrothermal venting at seafloor outcrops can alter the local sedimentary oxidation–reduction pathways, which in turn influences the microbial communities within the fluid discharge affected sediment.

  14. Ecological restoration should be redefined for the twenty-first century.

    Science.gov (United States)

    Martin, David M

    2017-09-24

    Forty years ago, ecological restoration was conceptualized through a natural science lens. Today, ecological restoration has evolved into a social and scientific concept. The duality of ecological restoration is acknowledged in guidance documents on the subject but is not apparent in its definition. Current definitions reflect our views about what ecological restoration does but not why we do it. This viewpoint does not give appropriate credit to contributions from social sciences, nor does it provide compelling goals for people with different motivating rationales to engage in or support restoration. In this study, I give a concise history of the conceptualization and definition of ecological restoration, and I propose an alternative definition and corresponding viewpoint on restoration goal-setting to meet twenty-first century scientific and public inquiry.

  15. Ecology of coarse wood decomposition by the saprotrophic fungus Fomes fomentarius

    Czech Academy of Sciences Publication Activity Database

    Větrovský, Tomáš; Voříšková, Jana; Šnajdr, Jaroslav; Gabriel, Jiří; Baldrian, Petr

    2011-01-01

    Roč. 22, č. 4 (2011), s. 709-718 ISSN 0923-9820 R&D Projects: GA MŠk OC 155; GA MŠk(CZ) ME10152; GA MŠk(CZ) LA10001 Institutional research plan: CEZ:AV0Z50200510 Keywords : Microbial ecology * Cellulose * Lignin Subject RIV: EE - Microbiology, Virology Impact factor: 2.017, year: 2011

  16. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities.

    Science.gov (United States)

    Abraham, Paul E; Giannone, Richard J; Xiong, Weili; Hettich, Robert L

    2014-06-17

    Contemporary microbial ecology studies usually employ one or more "omics" approaches to investigate the structure and function of microbial communities. Among these, metaproteomics aims to characterize the metabolic activities of the microbial membership, providing a direct link between the genetic potential and functional metabolism. The successful deployment of metaproteomics research depends on the integration of high-quality experimental and bioinformatic techniques for uncovering the metabolic activities of a microbial community in a way that is complementary to other "meta-omic" approaches. The essential, quality-defining informatics steps in metaproteomics investigations are: (1) construction of the metagenome, (2) functional annotation of predicted protein-coding genes, (3) protein database searching, (4) protein inference, and (5) extraction of metabolic information. In this article, we provide an overview of current bioinformatic approaches and software implementations in metaproteome studies in order to highlight the key considerations needed for successful implementation of this powerful community-biology tool. Copyright © 2014 John Wiley & Sons, Inc.

  17. Urease and Dental Plaque Microbial Profiles in Children.

    Science.gov (United States)

    Morou-Bermudez, Evangelia; Rodriguez, Selena; Bello, Angel S; Dominguez-Bello, Maria G

    2015-01-01

    Urease enzymes produced by oral bacteria generate ammonia, which can have a significant impact on the oral ecology and, consequently, on oral health. To evaluate the relationship of urease with dental plaque microbial profiles in children as it relates to dental caries, and to identify the main contributors to this activity. 82 supragingival plaque samples were collected from 44 children at baseline and one year later, as part of a longitudinal study on urease and caries in children. DNA was extracted; the V3-V5 region of the 16S rRNA gene was amplified and sequenced using 454 pyrosequencing. Urease activity was measured using a spectrophotometric assay. Data were analyzed with Qiime. Plaque urease activity was significantly associated with the composition of the microbial communities of the dental plaque (Baseline P = 0.027, One Year P = 0.012). The bacterial taxa whose proportion in dental plaque exhibited significant variation by plaque urease levels in both visits were the family Pasteurellaceae (Baseline Purease and positively associated with dental caries (Bonferroni Purease enzymes primarily from species in the family Pasteurellaceae can be an important ecological determinant in children's dental plaque. Further studies are needed to establish the role of urease-associated bacteria in the acid/base homeostasis of the dental plaque, and in the development and prediction of dental caries in children.

  18. Neither nature nor environment: Systemic operationalism and ecologism

    International Nuclear Information System (INIS)

    Gomez E, Luis F

    2009-01-01

    Nature is a complex concept that some critics have found as one of the roots of the current crisis of orthodox modernity. Because of this, we think ecologism should develop a theory where it does not play a pivotal role. Here, we propose systemic operationalism as a theoretical basis for ecologism since it seems to meet this requirement without having to replace it with terms such as environment which appears to keep some of the problems critics see in the concept of nature.

  19. Multimodal Student Interaction Online: An Ecological Perspective

    Science.gov (United States)

    Berglund, Therese Ornberg

    2009-01-01

    This article describes the influence of tool and task design on student interaction in language learning at a distance. Interaction in a multimodal desktop video conferencing environment, FlashMeeting, is analyzed from an ecological perspective with two main foci: participation rates and conversational feedback strategies. The quantitative…

  20. Manipulation of rumen ecology by dietary lemongrass (Cymbopogon citratus Stapf.) powder supplementation.

    Science.gov (United States)

    Wanapat, M; Cherdthong, A; Pakdee, P; Wanapat, S

    2008-12-01

    This experiment was conducted to investigate the effect of lemongrass [Cymbopogon citratus (DC.) Stapf.] powder (LGP) on rumen ecology, rumen microorganisms, and digestibility of nutrients. Four ruminally fistulated crossbred (Brahman native) beef cattle were randomly assigned according to a 4 x 4 Latin square design. The dietary treatments were LGP supplementation at 0, 100, 200, and 300 g/d with urea-treated rice straw (5%) fed to allow ad libitum intake. Digestibilities of DM, ether extract, and NDF were significantly different among treatments and were greatest at 100 g/d of supplementation. However, digestibility of CP was decreased with LGP supplementation (P 0.05). Total viable bacteria, amylolytic bacteria, and cellulolytic bacteria were significantly different among treatments and were greatest at 100 g/d of supplementation (4.7 x 10(9), 1.7 x 10(7), and 2.0 x 10(9) cfu/mL, respectively). Protozoal populations were significantly decreased by LGP supplementation. In addition, efficiency of rumen microbial N synthesis based on OM truly digested in the rumen was enriched by LGP supplementation, especially at 100 g/d (34.2 g of N/kg of OM truly digested in the rumen). Based on this study, it could be concluded that supplementation of LGP at 100 g/d improved digestibilities of nutrients, rumen microbial population, and microbial protein synthesis efficiency, thus improving rumen ecology in beef cattle.

  1. MICROBIAL CONSORTIA ENGINEERING FOR CELLULAR FACTORIES: IN VITRO TO IN SILICO SYSTEMS

    Directory of Open Access Journals (Sweden)

    Hans C Bernstein

    2012-10-01

    Full Text Available This mini-review discusses the current state of experimental and computational microbial consortia engineering with a focus on cellular factories. A discussion of promising ecological theories central to community resource usage is presented to facilitate interpretation of consortial designs. Recent case studies exemplifying different resource usage motifs and consortial assembly templates are presented. The review also highlights in silico approaches to design and to analyze consortia with an emphasis on stoichiometric modeling methods. The discipline of microbial consortia engineering possesses a widely accepted potential to generate highly novel and effective bio-catalysts for applications from biofuels to specialty chemicals to enhanced mineral recovery.

  2. Ecological approach in constructing residential areas

    Directory of Open Access Journals (Sweden)

    Bogdanović Ružica

    2004-01-01

    Full Text Available As a concept sustainable development has evolved over the past two decades from a concept closely associated with the biophysical environment to become much more complex, embracing social, cultural, economic political and esthetic phenomenon, which are invariably in mutual interaction, so they influence sustainability of natural environment. The very notion of "sustainable" we are meeting today in almost all significance areas of human activities. Contemporary planning, projecting and building techniques undoubtedly implied integration of goals of environmental prevention with goals of socio-economic development, all with respecting the esthetic standards. This paper represents experience from foreign praxis. Project defines and resolves objectives from social, economical, morphological and ecological aspects. Most important is aspect of Ecological Optimisation, which consists of main components: energy use optimization, water concept, exemplary waste management concept and ecological soil management.

  3. Microbial Regulation in Gorgonian Corals

    Directory of Open Access Journals (Sweden)

    Laura D. Mydlarz

    2012-06-01

    Full Text Available Gorgonian corals possess many novel natural products that could potentially mediate coral-bacterial interactions. Since many bacteria use quorum sensing (QS signals to facilitate colonization of host organisms, regulation of prokaryotic cell-to-cell communication may represent an important bacterial control mechanism. In the present study, we examined extracts of twelve species of Caribbean gorgonian corals, for mechanisms that regulate microbial colonization, such as antibacterial activity and QS regulatory activity. Ethanol extracts of gorgonians collected from Puerto Rico and the Florida Keys showed a range of both antibacterial and QS activities using a specific Pseudomonas aeruginosa QS reporter, sensitive to long chain AHLs and a short chain N-acylhomoserine lactones (AHL biosensor, Chromobacterium violaceium. Overall, the gorgonian corals had higher antimicrobial activity against non-marine strains when compared to marine strains. Pseudopterogorgia americana, Pseusopterogorgia acerosa, and Pseudoplexuara flexuosa had the highest QS inhibitory effect. Interestingly, Pseudoplexuara porosa extracts stimulated QS activity with a striking 17-fold increase in signal. The stimulation of QS by P. porosa or other elements of the holobiont may encourage colonization or recruitment of specific microbial species. Overall, these results suggest the presence of novel stimulatory QS, inhibitory QS and bactericidal compounds in gorgonian corals. A better understanding of these compounds may reveal insight into coral-microbial ecology and whether a therapeutic potential exists.

  4. Structure of pelagic microbial assemblages in European mountain lakes during ice-free season

    Czech Academy of Sciences Publication Activity Database

    Straškrábová, Viera; Bertoni, R.; Blažo, M.; Callieri, C.; Forsström, L.; Fott, J.; Kernan, M.; Macek, Miroslav; Stuchlík, E.; Tolotti, M.

    2009-01-01

    Roč. 62, - (2009), s. 19-53 ISSN 1612-166X Grant - others:EU MOLAR(CZ) ENV4-CT95-0007; EU EMERGE(CZ) EVK1-CT-1999-00032 Institutional research plan: CEZ:AV0Z60170517; CEZ:AV0Z6017912 Keywords : plankton * mountain lakes * microbial loop Subject RIV: EH - Ecology, Behaviour

  5. Model-Based Analysis of the Potential of Macroinvertebrates as Indicators for Microbial Pathogens in Rivers

    Directory of Open Access Journals (Sweden)

    Rubén Jerves-Cobo

    2018-03-01

    Full Text Available The quality of water prior to its use for drinking, farming or recreational purposes must comply with several physicochemical and microbiological standards to safeguard society and the environment. In order to satisfy these standards, expensive analyses and highly trained personnel in laboratories are required. Whereas macroinvertebrates have been used as ecological indicators to review the health of aquatic ecosystems. In this research, the relationship between microbial pathogens and macrobenthic invertebrate taxa was examined in the Machangara River located in the southern Andes of Ecuador, in which 33 sites, according to their land use, were chosen to collect physicochemical, microbiological and biological parameters. Decision tree models (DTMs were used to generate rules that link the presence and abundance of some benthic families to microbial pathogen standards. The aforementioned DTMs provide an indirect, approximate, and quick way of checking the fulfillment of Ecuadorian regulations for water use related to microbial pathogens. The models built and optimized with the WEKA package, were evaluated based on both statistical and ecological criteria to make them as clear and simple as possible. As a result, two different and reliable models were obtained, which could be used as proxy indicators in a preliminary assessment of pollution of microbial pathogens in rivers. The DTMs can be easily applied by staff with minimal training in the identification of the sensitive taxa selected by the models. The presence of selected macroinvertebrate taxa in conjunction with the decision trees can be used as a screening tool to evaluate sites that require additional follow up analyses to confirm whether microbial water quality standards are met.

  6. Microbial growth on C1 compounds: proceedings

    International Nuclear Information System (INIS)

    Crawford, R.L.; Hanson, R.S.

    1984-01-01

    This book contains individual papers prepared for the 4th International Symposium on Microbial Growth on One Carbon Compounds. Individual reports were abstracted and indexed for EDB. Topics presented were in the areas of the physiology and biochemistry of autotraps, physiology and biochemistry of methylotrophs and methanotrops, physiology and biochemistry of methanogens, genetics of microbes that use C 1 compounds, taxonomy and ecology of microbes tht grow on C 1 compounds, applied aspects of microbes that grow on C 1 compounds, and new directions in C 1 metabolism. (DT)

  7. Can you sequence ecology? Metagenomics of adaptive diversification.

    Science.gov (United States)

    Marx, Christopher J

    2013-01-01

    Few areas of science have benefited more from the expansion in sequencing capability than the study of microbial communities. Can sequence data, besides providing hypotheses of the functions the members possess, detect the evolutionary and ecological processes that are occurring? For example, can we determine if a species is adapting to one niche, or if it is diversifying into multiple specialists that inhabit distinct niches? Fortunately, adaptation of populations in the laboratory can serve as a model to test our ability to make such inferences about evolution and ecology from sequencing. Even adaptation to a single niche can give rise to complex temporal dynamics due to the transient presence of multiple competing lineages. If there are multiple niches, this complexity is augmented by segmentation of the population into multiple specialists that can each continue to evolve within their own niche. For a known example of parallel diversification that occurred in the laboratory, sequencing data gave surprisingly few obvious, unambiguous signs of the ecological complexity present. Whereas experimental systems are open to direct experimentation to test hypotheses of selection or ecological interaction, the difficulty in "seeing ecology" from sequencing for even such a simple system suggests translation to communities like the human microbiome will be quite challenging. This will require both improved empirical methods to enhance the depth and time resolution for the relevant polymorphisms and novel statistical approaches to rigorously examine time-series data for signs of various evolutionary and ecological phenomena within and between species.

  8. Soil microbial diversity, site conditions, shelter forest land, saline water drip-irrigation, drift desert.

    Science.gov (United States)

    Jin, Zhengzhong; Lei, Jiaqiang; Li, Shengyu; Xu, Xinwen

    2013-10-01

    Soil microbes in forest land are crucial to soil development in extreme areas. In this study, methods of conventional culture, PLFA and PCR-DGGE were utilized to analyze soil microbial quantity, fatty acids and microbial DNA segments of soils subjected to different site conditions in the Tarim Desert Highway forest land. The main results were as follows: the soil microbial amount, diversity indexes of fatty acid and DNA segment differed significantly among sites with different conditions (F 84%), followed by actinomycetes and then fungi (<0.05%). Vertical differences in the soil microbial diversity were insignificant at 0-35 cm. Correlation analysis indicated that the forest trees grew better as the soil microbial diversity index increased. Therefore, construction of the Tarim Desert Highway shelter-forest promoted soil biological development; however, for enhancing sand control efficiency and promoting sand development, we should consider the effects of site condition in the construction and regeneration of shelter-forest ecological projects. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Brazilian kefir: structure, microbial communities and chemical composition

    Directory of Open Access Journals (Sweden)

    Karina Teixeira Magalhães

    2011-06-01

    Full Text Available Microbial ecology and chemical composition of Brazilian kefir beverage was performed. The microorganisms associated with Brazilian kefir were investigated using a combination of phenotypic and genotypic methods. A total of 359 microbial isolates were identified. Lactic acid bacteria (60.5% were the major isolated group identified, followed by yeasts (30.6% and acetic acid bacteria (8.9%. Lactobacillus paracasei (89 isolates, Lactobacillus parabuchneri (41 isolates, Lactobacillus casei (32 isolates, Lactobacillus kefiri (31 isolates, Lactococcus lactis (24 isolates, Acetobacter lovaniensis (32 isolates, Kluyveromyces lactis (31 isolates, Kazachstania aerobia (23 isolates, Saccharomyces cerevisiae (41 isolates and Lachancea meyersii (15 isolates were the microbial species isolated. Scanning electron microscopy showed that the microbiota was dominated by bacilli (short and curved long cells growing in close association with lemon-shaped yeasts cells. During the 24 h of fermentation, the protein content increased, while lactose and fat content decreased. The concentration of lactic acid ranged from 1.4 to 17.4 mg/ml, and that of acetic acid increased from 2.1 to 2.73 mg/ml. The production of ethanol was limited, reaching a final mean value of 0.5 mg/ml.

  10. Brazilian kefir: structure, microbial communities and chemical composition

    Science.gov (United States)

    Magalhães, Karina Teixeira; de Melo Pereira, Gilberto Vinícius; Campos, Cássia Roberta; Dragone, Giuliano; Schwan, Rosane Freitas

    2011-01-01

    Microbial ecology and chemical composition of Brazilian kefir beverage was performed. The microorganisms associated with Brazilian kefir were investigated using a combination of phenotypic and genotypic methods. A total of 359 microbial isolates were identified. Lactic acid bacteria (60.5%) were the major isolated group identified, followed by yeasts (30.6%) and acetic acid bacteria (8.9%). Lactobacillus paracasei (89 isolates), Lactobacillus parabuchneri (41 isolates), Lactobacillus casei (32 isolates), Lactobacillus kefiri (31 isolates), Lactococcus lactis (24 isolates), Acetobacter lovaniensis (32 isolates), Kluyveromyces lactis (31 isolates), Kazachstania aerobia (23 isolates), Saccharomyces cerevisiae (41 isolates) and Lachancea meyersii (15 isolates) were the microbial species isolated. Scanning electron microscopy showed that the microbiota was dominated by bacilli (short and curved long) cells growing in close association with lemon-shaped yeasts cells. During the 24 h of fermentation, the protein content increased, while lactose and fat content decreased. The concentration of lactic acid ranged from 1.4 to 17.4 mg/ml, and that of acetic acid increased from 2.1 to 2.73 mg/ml. The production of ethanol was limited, reaching a final mean value of 0.5 mg/ml. PMID:24031681

  11. Modeling time-series data from microbial communities.

    Science.gov (United States)

    Ridenhour, Benjamin J; Brooker, Sarah L; Williams, Janet E; Van Leuven, James T; Miller, Aaron W; Dearing, M Denise; Remien, Christopher H

    2017-11-01

    As sequencing technologies have advanced, the amount of information regarding the composition of bacterial communities from various environments (for example, skin or soil) has grown exponentially. To date, most work has focused on cataloging taxa present in samples and determining whether the distribution of taxa shifts with exogenous covariates. However, important questions regarding how taxa interact with each other and their environment remain open thus preventing in-depth ecological understanding of microbiomes. Time-series data from 16S rDNA amplicon sequencing are becoming more common within microbial ecology, but methods to infer ecological interactions from these longitudinal data are limited. We address this gap by presenting a method of analysis using Poisson regression fit with an elastic-net penalty that (1) takes advantage of the fact that the data are time series; (2) constrains estimates to allow for the possibility of many more interactions than data; and (3) is scalable enough to handle data consisting of thousands of taxa. We test the method on gut microbiome data from white-throated woodrats (Neotoma albigula) that were fed varying amounts of the plant secondary compound oxalate over a period of 22 days to estimate interactions between OTUs and their environment.

  12. In situ uranium stabilization by microbial metabolites

    International Nuclear Information System (INIS)

    Turick, Charles E.; Knox, Anna S.; Leverette, Chad L.; Kritzas, Yianne G.

    2008-01-01

    Microbial melanin production by autochthonous bacteria was explored in this study as a means to increase U immobilization in U contaminated soil. This article demonstrates the application of bacterial physiology and soil ecology for enhanced U immobilization in order to develop an in situ, U bio-immobilization technology. We have demonstrated microbial production of a metal chelating biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of Energy (DOE), Savannah River Site (SRS), South Carolina, as a result of tyrosine amendments. Bacterial densities of pyomelanin producers were >10 6 cells per g wet soil. Pyomelanin demonstrated U complexing and mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in a field test demonstrated increased U sequestration capacity following pyomelanin production up to 13 months after tyrosine treatments

  13. Aplicação de genes marcadores em estudos de ecologia microbiana com ênfase no sistema GUS Applications of markers genes on ecologic microbial studies with enphasis on GUS system

    Directory of Open Access Journals (Sweden)

    Fábio Martins Mercante

    2000-06-01

    Full Text Available Muitos aspectos ecológicos envolvidos nas interações entre espécies leguminosas e estirpes de rizóbio têm sido facilmente entendidos com o emprego de técnicas que utilizam genes marcadores. A introdução de um gene marcador específico tem se mostrado altamente viável para análises dessas interações. Os genes marcadores são capazes de codificar para produtos que podem ser facilmente identificados ou medidos, especialmente, enzimas que podem atuar em diferentes substratos, fornecendo produtos coloridos ou fluorescentes facilmente detectáveis. De uma maneira geral, os genes marcadores têm sido utilizados em diferentes aspectos da ecologia microbiana, como nos estudos de competição entre estirpes de rizóbio, expressão de genes simbióticos, colonização da rizosfera e raízes, entre outros. Em todos esses estudos, os genes repórteres precisam ser introduzidos no genoma alvo através de um plasmídeo ou por inserção cromossomal. Nesta revisão, são enfatizados, principalmente, os diversos usos e aplicações de genes marcadores nos estudos de ecologia microbiana, com ênfase no sistema GUS (b-glucuronidase.Many of the ecological aspects involved with the interactions between legume species and rhizobia strains have been made easily to understood with the use of reporter gene techniques. The introduction of a specific reporter gene in an organism has shown to be highly efficient to analyze such interactions. These reporter genes generally code for products that can be easily identified or measured, mainly enzymes that can act on a variety of substrates, supplying colored or fluorescent detectable products. In general, the marker genes have been used in different aspects of microbial ecology, as in the competition studies among rhizobia strains, symbiotic gene expression, rhizosphere and root colonization, among others. In all studies, the marker genes need to be introduced into the genome by a plasmid or through a chromosomal

  14. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    Science.gov (United States)

    Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien

    2017-01-01

    Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.

  15. Studies on the restoration succession of PFU microbial communities in a pilot-scale microcosm.

    Science.gov (United States)

    Jiang, Jian-Guo; Shen, Yun-Fen

    2007-06-01

    In order to imitate the restoration succession process of natural water ecosystem, a laboratory microcosm system of constant-flow-restoration was designed and established. A eutrophycation lake, Lake Donghu, was selected as the subject investigated. Six sampling stations were set on the lake, among which the water of station IV was natural clean water, and others were polluted with different degrees. Polyurethane foam unit microbial communities, which had colonized in the stations for a month, were collected from these stations and placed in their respective microcosms, using clean water of station IV to gradually replace the water of these microcosms. In this process, the healthy community in clean water continuously replaced the damaged communities in polluted water, the restoration succession of the damaged communities was characterized by weekly determination of several functional and structural community parameters, including species number (S), diversity index (DI), community pollution value (CPV), heterotrophy index (HI), and similarity coefficient. Cluster analysis based on similarity coefficient was used to compare the succession discrepancies of these microbial communities from different stations. The ecological succession of microbial communities during restoration was investigated by the variable patterns of these parameters, and based on which, the restoration standards of these polluted stations were suggested in an ecological sense. That was, while being restored, the water of station 0 (supereutrophycation) should be substituted with natural clean water by 95%; station I (eutrophycation), more than 90%; station II (eutrophycation), more than 85%; station III (eutrophycation), about 85%; station V (mesoeutrophycation), less than 50%. The effects of the structural and functional parameters in monitoring and assessing ecological restoration are analyzed and compared.

  16. The Sphagnome Project: enabling ecological and evolutionary insights through a genus-level sequencing project.

    Science.gov (United States)

    Weston, David J; Turetsky, Merritt R; Johnson, Matthew G; Granath, Gustaf; Lindo, Zoë; Belyea, Lisa R; Rice, Steven K; Hanson, David T; Engelhardt, Katharina A M; Schmutz, Jeremy; Dorrepaal, Ellen; Euskirchen, Eugénie S; Stenøien, Hans K; Szövényi, Péter; Jackson, Michelle; Piatkowski, Bryan T; Muchero, Wellington; Norby, Richard J; Kostka, Joel E; Glass, Jennifer B; Rydin, Håkan; Limpens, Juul; Tuittila, Eeva-Stiina; Ullrich, Kristian K; Carrell, Alyssa; Benscoter, Brian W; Chen, Jin-Gui; Oke, Tobi A; Nilsson, Mats B; Ranjan, Priya; Jacobson, Daniel; Lilleskov, Erik A; Clymo, R S; Shaw, A Jonathan

    2018-01-01

    Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses. © 2017 UT-Battelle New Phytologist © 2017 New Phytologist Trust.

  17. Microbial hotspots and hot moments in soil

    Science.gov (United States)

    Kuzyakov, Yakov; Blagodatskaya, Evgenia

    2015-04-01

    increases in C stocks. Consequently, the intensification of fluxes is much stronger than the increase of pools. Maintenance of stoichiometric ratios by accelerated microbial growth in hotspots requires additional nutrients (e.g. N and P), causing their microbial mining from soil organic matter, i.e. priming effects. Consequently, priming effects are localized in microbial hotspots and are consequences of hot moments. Finally, we estimated the contribution of the hotspots to the whole soil profile and suggested that, irrespective of their volume, the hotspots are mainly responsible for the ecologically relevant processes in soil.

  18. Spatial Distribution of Viruses Associated with Planktonic and Attached Microbial Communities in Hydrothermal Environments

    Science.gov (United States)

    Nunoura, Takuro; Kazama, Hiromi; Noguchi, Takuroh; Inoue, Kazuhiro; Akashi, Hironori; Yamanaka, Toshiro; Toki, Tomohiro; Yamamoto, Masahiro; Furushima, Yasuo; Ueno, Yuichiro; Yamamoto, Hiroyuki; Takai, Ken

    2012-01-01

    Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments. PMID:22210205

  19. Nutrient limitation of soil microbial activity during the earliest stages of ecosystem development.

    Science.gov (United States)

    Castle, Sarah C; Sullivan, Benjamin W; Knelman, Joseph; Hood, Eran; Nemergut, Diana R; Schmidt, Steven K; Cleveland, Cory C

    2017-11-01

    A dominant paradigm in ecology is that plants are limited by nitrogen (N) during primary succession. Whether generalizable patterns of nutrient limitation are also applicable to metabolically and phylogenetically diverse soil microbial communities, however, is not well understood. We investigated if measures of N and phosphorus (P) pools inform our understanding of the nutrient(s) most limiting to soil microbial community activities during primary succession. We evaluated soil biogeochemical properties and microbial processes using two complementary methodological approaches-a nutrient addition microcosm experiment and extracellular enzyme assays-to assess microbial nutrient limitation across three actively retreating glacial chronosequences. Microbial respiratory responses in the microcosm experiment provided evidence for N, P and N/P co-limitation at Easton Glacier, Washington, USA, Puca Glacier, Peru, and Mendenhall Glacier, Alaska, USA, respectively, and patterns of nutrient limitation generally reflected site-level differences in soil nutrient availability. The activities of three key extracellular enzymes known to vary with soil N and P availability developed in broadly similar ways among sites, increasing with succession and consistently correlating with changes in soil total N pools. Together, our findings demonstrate that during the earliest stages of soil development, microbial nutrient limitation and activity generally reflect soil nutrient supply, a result that is broadly consistent with biogeochemical theory.

  20. A niche for cyanobacteria producing chlorophyll f within a microbial mat.

    Science.gov (United States)

    Ohkubo, Satoshi; Miyashita, Hideaki

    2017-10-01

    Acquisition of additional photosynthetic pigments enables photosynthetic organisms to survive in particular niches. To reveal the ecological significance of chlorophyll (Chl) f, we investigated the distribution of Chl and cyanobacteria within two microbial mats. In a 7-mm-thick microbial mat beneath the running water of the Nakabusa hot spring, Japan, Chl f was only distributed 4.0-6.5 mm below the surface, where the intensity of far-red light (FR) was higher than that of photosynthetically active radiation (PAR). In the same mat, two ecotypes of Synechococcus and two ecotypes of Chl f-producing Leptolyngbya were detected in the upper and deeper layers, respectively. Only the Leptolyngbya strains could grow when FR was the sole light source. These results suggest that the deeper layer of the microbial mat was a habitat for Chl f-producing cyanobacteria, and Chl f enabled them to survive in a habitat with little PAR.

  1. Interactions between plant and rhizosphere microbial communities in a metalliferous soil

    International Nuclear Information System (INIS)

    Epelde, Lur; Becerril, Jose M.; Barrutia, Oihana; Gonzalez-Oreja, Jose A.; Garbisu, Carlos

    2010-01-01

    In the present work, the relationships between plant consortia, consisting of 1-4 metallicolous pseudometallophytes with different metal-tolerance strategies (Thlaspi caerulescens: hyperaccumulator; Jasione montana: accumulator; Rumex acetosa: indicator; Festuca rubra: excluder), and their rhizosphere microbial communities were studied in a mine soil polluted with high levels of Cd, Pb and Zn. Physiological response and phytoremediation potential of the studied pseudometallophytes were also investigated. The studied metallicolous populations are tolerant to metal pollution and offer potential for the development of phytoextraction and phytostabilization technologies. T. caerulescens appears very tolerant to metal stress and most suitable for metal phytoextraction; the other three species enhance soil functionality. Soil microbial properties had a stronger effect on plant biomass rather than the other way around (35.2% versus 14.9%). An ecological understanding of how contaminants, ecosystem functions and biological communities interact in the long-term is needed for proper management of these fragile metalliferous ecosystems. - Rhizosphere microbial communities in highly polluted mine soils are determinant for the growth of pseudometallophytes.

  2. Interactions between plant and rhizosphere microbial communities in a metalliferous soil

    Energy Technology Data Exchange (ETDEWEB)

    Epelde, Lur [NEIKER-Tecnalia, Department of Ecosystems, c/Berreaga 1, E-48160 Derio (Spain); Becerril, Jose M.; Barrutia, Oihana [Department of Plant Biology and Ecology, University of the Basque Country, UPV/EHU, P.O. Box 644, E-48080 Bilbao (Spain); Gonzalez-Oreja, Jose A. [NEIKER-Tecnalia, Department of Ecosystems, c/Berreaga 1, E-48160 Derio (Spain); Garbisu, Carlos, E-mail: cgarbisu@neiker.ne [NEIKER-Tecnalia, Department of Ecosystems, c/Berreaga 1, E-48160 Derio (Spain)

    2010-05-15

    In the present work, the relationships between plant consortia, consisting of 1-4 metallicolous pseudometallophytes with different metal-tolerance strategies (Thlaspi caerulescens: hyperaccumulator; Jasione montana: accumulator; Rumex acetosa: indicator; Festuca rubra: excluder), and their rhizosphere microbial communities were studied in a mine soil polluted with high levels of Cd, Pb and Zn. Physiological response and phytoremediation potential of the studied pseudometallophytes were also investigated. The studied metallicolous populations are tolerant to metal pollution and offer potential for the development of phytoextraction and phytostabilization technologies. T. caerulescens appears very tolerant to metal stress and most suitable for metal phytoextraction; the other three species enhance soil functionality. Soil microbial properties had a stronger effect on plant biomass rather than the other way around (35.2% versus 14.9%). An ecological understanding of how contaminants, ecosystem functions and biological communities interact in the long-term is needed for proper management of these fragile metalliferous ecosystems. - Rhizosphere microbial communities in highly polluted mine soils are determinant for the growth of pseudometallophytes.

  3. Impacts of radiation exposure on the experimental microbial ecosystem: a particle-based model simulation approach

    International Nuclear Information System (INIS)

    Doi, M.; Tanaka, N.; Fuma, S.; Kawabata, Z.

    2004-01-01

    Well-designed experimental model ecosystem could be a simple reference of the actual environment and complex ecological systems. For ecological toxicity test of radiation and other environmental toxicants, we investigated and aquatic microbial ecosystem (closed microcosm) in the test tube with initial substrates,autotroph flagellate algae (Euglena, G.), heterotroph ciliate protozoa (Tetrahymena T.) and saprotroph bacteria (E, coli). These species organizes by itself to construct the ecological system, that keeps the sustainable population dynamics for more than 2 years after inoculation only by adding light diurnally and controlling temperature at 25 degree Celsius. Objective of the study is to develop the particle-based computer simulation by reviewing interactions among microbes and environment, and analyze the ecological toxicities of radiation on the microcosm by replicating experimental results in the computer simulation. (Author) 14 refs

  4. Study of the microbial ecology of wild and aquacultured Tunisian fresh fish.

    Science.gov (United States)

    Boulares, Mouna; Mejri, Lobna; Hassouna, Mnasser

    2011-10-01

    Eighty samples of fresh fish were collected in Tunisia and analyzed for microbial load. Quality and hygienic safety of the meat and intestines of wild and aquacultured fresh fish were determined. The mesophilic aerobic plate count and populations of psychrotrophic lactic acid bacteria (LAB) and other psychrotrophic bacteria ranged from 5.67 to 7.29, 4.51 to 6, and 5.07 to 6.21 log CFU/g, respectively. For all microbiological determinations, bacterial counts were lower in meat than in the intestines of fresh fish. For all samples lower microbial populations were found in most of the wild fish than in the aquacultured fish. No isolates of the pathogenic genera Salmonella and Listeria were detected in any sample. Among the 160 strains of biopreservative psychrotrophic LAB and the 150 strains of spoilage psychrotrophic gram-negative bacteria identified by biochemical and molecular methods, Lactobacillus (six species) and Pseudomonas (six species) predominated. Lactococcus, Leuconostoc, Carnobacterium (C. piscicola and C. divergens), Aeromonas, and Photobacterium were the most common genera, and Lactococcus lactis, Lactobacillus plantarum, Pseudomonas fluorescens, and Aeromonas hydrophila were the most common species. These findings indicate that the microbiological quality of fresh fish in Tunisia can be preserved by controlling pathogenic and psychrotrophic bacteria.

  5. Microbial Communities: Tracing Growth Processes from Antarctic Lakes to Early Earth to Other Planets

    Science.gov (United States)

    Sumner, D. Y.

    2014-12-01

    Life in the Universe is dominated by microbes: they are numerically the most abundant cells in our bodies and in Earth's biosphere, and they are the only life that might be present elsewhere in our solar system. Life beyond our solar system could include macroscopic organisms, but everything we understand about the origin of life suggests it must start with microbes. Thus, understanding microbial ecosystems, in the absence of macroscopic organisms, is critical to understanding early life on Earth and life elsewhere in the Universe - if it exists. But what are the general principles of microbial ecology in the absence of predation? What happens when each cell is a chemical factory that can swap among metabolic processes in response to environmental and emergent cues? Geobiologists and astrobiologists are addressing these questions in diverse ways using both Earth's modern biosphere and its fossil record. Modern microbial communities in shallow, ice-covered lakes, Antarctica (Fig.), provide a model for high productivity microbial ecosystems with no to low predation. In these lakes, photosynthetic communities create macroscopic pinnacles and domes, sometime lithified into stromatolites. They provide an ecological, geochemical and morphological model for Precambrian microbial communities in low sedimentation, low current environments. Insights from these communities include new growth processes for ancient mats, especially some that grew prior to the oxidation of Earth's atmosphere. The diversity of biosignatures created in these communities also provides context for models of life under ice elsewhere in our solar system such as paleolakes on Mars and on icy moons. Results from the Mars Science Laboratory (MSL) team document formerly habitable fluvial and lacustrine environments. Lacustrine environments, in particular, are favorable for preserving biosignatures, and continued investigations by MSL will provide a deeper understanding of the duration of habitable

  6. Identification / characterisation and authentication of microbial strains by MALDI-TOF ICMS

    OpenAIRE

    Santos, C.; Lima, Nelson

    2011-01-01

    The identification of species is an important goal in microbial taxonomy. Information about each microorganism (e.g. morphological description, physiological and biochemical properties, molecular biology sequencings, ecological roles, and societal risks or benefits) is key element in this process. Identifications can been a long and seemingly never-ended process with frequent revisions of the taxonomic schemes. The application of sound tolls to smooth the progress of identifica...

  7. Evidence for Ecological Flexibility in the Cosmopolitan Genus Curtobacterium

    OpenAIRE

    Chase, Alexander B.; Arevalo, Philip; Polz, Martin F.; Berlemont, Renaud; Martiny, Jennifer B. H.

    2016-01-01

    Assigning ecological roles to bacterial taxa remains imperative to understanding how microbial communities will respond to changing environmental conditions. Here we analyze the genus Curtobacterium as it was found to be the most abundant taxon in a leaf litter community in southern California. Traditional characterization of this taxon predominantly associates it as the causal pathogen in the agricultural crops of dry beans. Therefore, we seek to conduct a broad investigation into this genus...

  8. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes

    Science.gov (United States)

    Roux, Simon; Hallam, Steven J; Woyke, Tanja; Sullivan, Matthew B

    2015-01-01

    The ecological importance of viruses is now widely recognized, yet our limited knowledge of viral sequence space and virus–host interactions precludes accurate prediction of their roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including ecologically abundant phyla, and help taxonomically identify 7–38% of ‘unknown’ sequence space in viromes. Genome- and network-based classification was largely consistent with accepted viral taxonomy and suggested that (i) 264 new viral genera were identified (doubling known genera) and (ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico virus–host linkage predictions. Together these findings illustrate the value of mining viral signal from microbial genomes. DOI: http://dx.doi.org/10.7554/eLife.08490.001 PMID:26200428

  9. 76 FR 365 - Exposure Modeling Public Meeting

    Science.gov (United States)

    2011-01-04

    ... classification for ecological risk assessments using aerial photography and GIS data. Dermal contact, movement... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2009-0879; FRL-8860-5] Exposure Modeling Public Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: An Exposure Modeling...

  10. Seasonal Analysis of Microbial Communities in Precipitation in the Greater Tokyo Area, Japan

    Directory of Open Access Journals (Sweden)

    Satoshi Hiraoka

    2017-08-01

    Full Text Available The presence of microbes in the atmosphere and their transport over long distances across the Earth's surface was recently shown. Precipitation is likely a major path by which aerial microbes fall to the ground surface, affecting its microbial ecosystems and introducing pathogenic microbes. Understanding microbial communities in precipitation is of multidisciplinary interest from the perspectives of microbial ecology and public health; however, community-wide and seasonal analyses have not been conducted. Here, we carried out 16S rRNA amplicon sequencing of 30 precipitation samples that were aseptically collected over 1 year in the Greater Tokyo Area, Japan. The precipitation microbial communities were dominated by Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria and were overall consistent with those previously reported in atmospheric aerosols and cloud water. Seasonal variations in composition were observed; specifically, Proteobacteria abundance significantly decreased from summer to winter. Notably, estimated ordinary habitats of precipitation microbes were dominated by animal-associated, soil-related, and marine-related environments, and reasonably consistent with estimated air mass backward trajectories. To our knowledge, this is the first amplicon-sequencing study investigating precipitation microbial communities involving sampling over the duration of a year.

  11. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    OpenAIRE

    Sobolev, Konstantin

    2003-01-01

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecologi...

  12. Microbial decomposers not constrained by climate history along a Mediterranean climate gradient in southern California.

    Science.gov (United States)

    Baker, Nameer R; Khalili, Banafshe; Martiny, Jennifer B H; Allison, Steven D

    2018-06-01

    Microbial decomposers mediate the return of CO 2 to the atmosphere by producing extracellular enzymes to degrade complex plant polymers, making plant carbon available for metabolism. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. We analyzed mass loss, litter chemistry, microbial biomass, extracellular enzyme activities, and enzyme temperature sensitivities in grassland litter transplanted along a Mediterranean climate gradient in southern California. Microbial community composition was manipulated by caging litter within bags made of nylon membrane that prevent microbial immigration. To test whether grassland microbes were constrained by climate history, half of the bags were inoculated with local microbial communities native to each gradient site. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbial communities were not restricted in their ability to decompose litter under different climate conditions across the gradient, although microbial communities across our gradient may be restricted in their ability to degrade different types of litter. We did find some evidence that local microbial communities were optimized based on climate, but local microbial taxa that proliferated after inoculation into litterbags did not enhance litter decomposition. Our results suggest that microbial community composition does not constrain C-cycling rates under climate change in our system, but optimization to particular resource environments may act as more general constraints on microbial communities. © 2018 by the Ecological Society of America.

  13. 78 FR 22873 - FIFRA Scientific Advisory Panel; Notice of Public Meeting

    Science.gov (United States)

    2013-04-17

    ... data that you used. 5. If you estimate potential costs or burdens, explain how you arrived at your.... Seating at the meeting. Seating at the meeting will be open and on a first-come basis. 4. Request for... histopathology, morphometrics, quantitative ecology/biostatistics, systems biology, and Baysian statistics...

  14. Impact of drinking water conditions and copper materials on downstream biofilm microbial communities and legionella pneumophila colonization

    Science.gov (United States)

    Legionella pneumophila, the medically important species within the genus Legionella, is a concern in engineered water systems. Its ability to amplify within free-living amoebae is well documented, but its interactions/ecology within the microbial community of drinking water biofi...

  15. Ecology of root colonizing Massilia (Oxalobacteraceae.

    Directory of Open Access Journals (Sweden)

    Maya Ofek

    Full Text Available BACKGROUND: Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae, a major group of rhizosphere and root colonizing bacteria of many plant species. METHODOLOGY/PRINCIPAL FINDINGS: The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter and potential competitors. Massilia absolute abundance and relative abundance (dominance were positively related, and peaked (up to 85% at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. CONCLUSIONS: In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.

  16. Ecology of root colonizing Massilia (Oxalobacteraceae).

    Science.gov (United States)

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.

  17. High-resolution metagenomics targets major functional types in complex microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnaya, Marina G.; Lapidus, Alla; Ivanova, Natalia; Copeland, Alex C.; McHardy, Alice C.; Szeto, Ernest; Salamov, Asaf; Grigoriev, Igor V.; Suciu, Dominic; Levine, Samuel R.; Markowitz, Victor M.; Rigoutsos, Isidore; Tringe, Susannah G.; Bruce, David C.; Richardson, Paul M.; Lidstrom, Mary E.; Chistoserdova, Ludmila

    2009-08-01

    Most microbes in the biosphere remain uncultured and unknown. Whole genome shotgun (WGS) sequencing of environmental DNA (metagenomics) allows glimpses into genetic and metabolic potentials of natural microbial communities. However, in communities of high complexity metagenomics fail to link specific microbes to specific ecological functions. To overcome this limitation, we selectively targeted populations involved in oxidizing single-carbon (C{sub 1}) compounds in Lake Washington (Seattle, USA) by labeling their DNA via stable isotope probing (SIP), followed by WGS sequencing. Metagenome analysis demonstrated specific sequence enrichments in response to different C{sub 1} substrates, highlighting ecological roles of individual phylotypes. We further demonstrated the utility of our approach by extracting a nearly complete genome of a novel methylotroph Methylotenera mobilis, reconstructing its metabolism and conducting genome-wide analyses. This approach allowing high-resolution genomic analysis of ecologically relevant species has the potential to be applied to a wide variety of ecosystems.

  18. Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates.

    Science.gov (United States)

    Patel, Vrutika; Sharma, Anukriti; Lal, Rup; Al-Dhabi, Naif Abdullah; Madamwar, Datta

    2016-03-22

    Gauging the microbial community structures and functions become imperative to understand the ecological processes. To understand the impact of long-term oil contamination on microbial community structure soil samples were taken from oil fields located in different industrial regions across Kadi, near Ahmedabad, India. Soil collected was hence used for metagenomic DNA extraction to study the capabilities of intrinsic microbial community in tolerating the oil perturbation. Taxonomic profiling was carried out by two different complementary approaches i.e. 16S rDNA and lowest common ancestor. The community profiling revealed the enrichment of phylum "Proteobacteria" and genus "Chromobacterium," respectively for polluted soil sample. Our results indicated that soil microbial diversity (Shannon diversity index) decreased significantly with contamination. Further, assignment of obtained metagenome reads to Clusters of Orthologous Groups (COG) of protein and Kyoto Encyclopedia of Genes and Genomes (KEGG) hits revealed metabolic potential of indigenous microbial community. Enzymes were mapped on fatty acid biosynthesis pathway to elucidate their roles in possible catalytic reactions. To the best of our knowledge this is first study for influence of edible oil on soil microbial communities via shotgun sequencing. The results indicated that long-term oil contamination significantly affects soil microbial community structure by acting as an environmental filter to decrease the regional differences distinguishing soil microbial communities.

  19. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance.

    Science.gov (United States)

    Bokulich, Nicholas A; Bergsveinson, Jordyn; Ziola, Barry; Mills, David A

    2015-03-10

    Distinct microbial ecosystems have evolved to meet the challenges of indoor environments, shaping the microbial communities that interact most with modern human activities. Microbial transmission in food-processing facilities has an enormous impact on the qualities and healthfulness of foods, beneficially or detrimentally interacting with food products. To explore modes of microbial transmission and spoilage-gene frequency in a commercial food-production scenario, we profiled hop-resistance gene frequencies and bacterial and fungal communities in a brewery. We employed a Bayesian approach for predicting routes of contamination, revealing critical control points for microbial management. Physically mapping microbial populations over time illustrates patterns of dispersal and identifies potential contaminant reservoirs within this environment. Habitual exposure to beer is associated with increased abundance of spoilage genes, predicting greater contamination risk. Elucidating the genetic landscapes of indoor environments poses important practical implications for food-production systems and these concepts are translatable to other built environments.

  20. Ecological plasticity of Trichoderma fungi in leached chernozem

    Science.gov (United States)

    Svistova, I. D.; Senchakova, T. Yu.

    2010-03-01

    The autecological properties of Trichoderma fungi ecotypes isolated from the leached chernozem of the forest-steppe zone of the European part of Russia have been studied. We were the first who carried out the complex study of the synecological relations of micromycetes of such kinds in a system including the soil, microbial community, and plants, i.e., their relations with soil saprotrophic fungi, bacteria, actinomycetes, plants, and pathogenic fungi. It was shown that the ecological plasticity of the Trichoderma genus in the soil of this zone is determined by its growth rate, the optimum pH and temperature, the biosynthesis of extracellular hydrolytic enzymes, the biological action of mycotoxins, and the ability for parasitism. The efficiency of the introduction of Trichoderma species typical and atypical for the leached chernozem into this soil and their influence on the structure of the microbial community were evaluated. The T. pseudokoningii ecotype, which produces cellulolytic enzymes, is very promising for industrial biotechnology, and the T. harzianum ecotype can be used in soil biotechnology for the biocontrol of chernozem. The addition of a commercial trichodermin preparation into the chernozem damages the structure of its microbial community.

  1. Microbial diversity in Brazilian mangrove sediments – a mini review

    Science.gov (United States)

    Ghizelini, Angela Michelato; Mendonça-Hagler, Leda Cristina Santana; Macrae, Andrew

    2012-01-01

    The importance and protection of mangrove ecosystems has been recognized in Brazilian Federal law since 1965. Being protected in law, however, has not always guaranteed their protection in practice. Mangroves are found in coastal and estuarine locations, which are prime real estate for the growth of cities, ports and other economic activities important for Brazilian development. In this mini-review we introduce what mangroves are and why they are so important. We give a brief overview of the microbial diversity found in mangrove sediments and then focus on diversity studies from Brazilian mangroves. We highlight the breadth and depth of knowledge about mangrove microbial communities gained from studying Brazilian mangroves. We report on the exciting findings of molecular microbial ecology methods that have been very successfully applied to study bacterial communities. We note that there have been fewer studies that focus on fungal communities and that fungal diversity studies deserve more attention. The review ends with a look at how a combination of new molecular biology methods and isolation studies are being developed to monitor and conserve mangrove ecosystems and their associated microbial communities. These recent studies are having a global impact and we hope they will help to protect and re-establish mangrove ecosystems. PMID:24031949

  2. Life in the "plastisphere": microbial communities on plastic marine debris.

    Science.gov (United States)

    Zettler, Erik R; Mincer, Tracy J; Amaral-Zettler, Linda A

    2013-07-02

    Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic marine debris (PMD) collected at multiple locations in the North Atlantic was analyzed with scanning electron microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the "Plastisphere". Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit rRNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens (the authors, unpublished data) such as specific members of the genus Vibrio that dominated one of our plastic samples. Plastisphere communities are distinct from surrounding surface water, implying that plastic serves as a novel ecological habitat in the open ocean. Plastic has a longer half-life than most natural floating marine substrates, and a hydrophobic surface that promotes microbial colonization and biofilm formation, differing from autochthonous substrates in the upper layers of the ocean.

  3. Rotifer fecundity in relation to components of microbial food web in a eurotrophic reservoir

    Czech Academy of Sciences Publication Activity Database

    Devetter, Miloslav; Seďa, Jaromír

    2003-01-01

    Roč. 504, - (2003), s. 167-175 ISSN 0018-8158. [Reservoir Limnology and Water Quality /4./. České Budějovice, 12.08.2002-16.08.2002] Institutional research plan: CEZ:AV0Z6017912 Keywords : rotifers * microbial food web Subject RIV: EH - Ecology, Behaviour Impact factor: 0.720, year: 2003

  4. 75 FR 66089 - FIFRA Scientific Advisory Panel; Notice of Public Meeting

    Science.gov (United States)

    2010-10-27

    .... Describe any assumptions and provide any technical information and/or data that you used. 5. If you.... Seating at the meeting. Seating at the meeting will be open and on a first-come basis. 4. Request for... more of the following areas: Corn pest entomology (biology and ecology), population genetics, insect...

  5. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan.

    Science.gov (United States)

    Bacosa, Hernando P; Suto, Koichi; Inoue, Chihiro

    2013-01-01

    Mangroves constitute valuable coastal resources that are vulnerable to oil pollution. One of the major processes to remove oil from contaminated mangrove sediment is microbial degradation. A study on heavy oil- and hydrocarbon-degrading bacterial consortia from mangrove sediments in Okinawa, Japan was performed to evaluate their capacity to biodegrade and their microbial community composition. Surface sediment samples were obtained from mangrove sites in Okinawa (Teima, Oura, and Okukubi) and enriched with heavy oil as the sole carbon and energy source. The results revealed that all enriched microbial consortia degraded more than 20% of heavy oil in 21 days. The K1 consortium from Okukubi site showed the most extensive degradative capacity after 7 and 21 days. All consortia degraded more than 50% of hexadecane but had little ability to degrade polycyclic aromatic hydrocarbons (PAHs). The consortia were dominated by Pseudomonas or Burkholderia. When incubated in the presence of hydrocarbon compounds, the active bacterial community shifted to favor the dominance of Pseudomonas. The K1 consortium was a superior degrader, demonstrating the highest ability to degrade aliphatic and aromatic hydrocarbon compounds; it was even able to degrade heavy oil at a concentration of 15%(w/v). The dominance and turn-over of Pseudomonas and Burkholderia in the consortia suggest an important ecological role for and relationship between these two genera in the mangrove sediments of Okinawa.

  6. Response of Microbial Community Function to Fluctuating Geochemical Conditions within a Legacy Radioactive Waste Trench Environment.

    Science.gov (United States)

    Vázquez-Campos, Xabier; Kinsela, Andrew S; Bligh, Mark W; Harrison, Jennifer J; Payne, Timothy E; Waite, T David

    2017-09-01

    During the 1960s, small quantities of radioactive materials were codisposed with chemical waste at the Little Forest Legacy Site (Sydney, Australia) in 3-meter-deep, unlined trenches. Chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess the impact of changing water levels upon the microbial ecology and contaminant mobility. Collectively, results demonstrated that oxygen-laden rainwater rapidly altered the redox balance in the trench water, strongly impacting microbial functioning as well as the radiochemistry. Two contaminants of concern, plutonium and americium, were shown to transition from solid-iron-associated species immediately after the initial rainwater pulse to progressively more soluble moieties as reducing conditions were enhanced. Functional metagenomics revealed the potentially important role that the taxonomically diverse microbial community played in this transition. In particular, aerobes dominated in the first day, followed by an increase of facultative anaerobes/denitrifiers at day 4. Toward the mid-end of the sampling period, the functional and taxonomic profiles depicted an anaerobic community distinguished by a higher representation of dissimilatory sulfate reduction and methanogenesis pathways. Our results have important implications to similar near-surface environmental systems in which redox cycling occurs. IMPORTANCE The role of chemical and microbiological factors in mediating the biogeochemistry of groundwaters from trenches used to dispose of radioactive materials during the 1960s is examined in this study. Specifically, chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess how changing water levels influence microbial ecology and

  7. Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions.

    Science.gov (United States)

    Pourabedin, Mohsen; Xu, Zhengxin; Baurhoo, Bushansingh; Chevaux, Eric; Zhao, Xin

    2014-05-01

    There is an increasing movement against use of antibiotic growth promoters in animal feed. Prebiotic supplementation is a potential alternative to enhance the host's natural defense through modulation of gut microbiota. In the present study, the effect of mannan oligosaccharide (MOS) and virginiamycin (VIRG) on cecal microbial ecology and intestinal morphology of broiler chickens raised under suboptimal conditions was evaluated. MOS and VIRG induced different bacterial community structures, as revealed by denaturing gradient gel electrophoresis of 16S rDNA. The antibiotic treatment reduced cecal microbial diversity while the community equitability increased. A higher bacterial diversity was observed in the cecum of MOS-supplemented birds. Quantitative polymerase chain reaction results indicated that MOS changed the cecal microbiota in favor of the Firmicutes population but not the Bacteroidetes population. No difference was observed in total bacterial counts among treatments. MOS promoted the growth of Lactobacillus spp. and Bifidobacterium spp. in the cecum and increased villus height and goblet cell numbers in the ileum and jejunum. These results provide a deeper insight into the microbial ecological changes after supplementation of MOS prebiotic in poultry diets.

  8. Coexistence facilitates interspecific biofilm formation in complex microbial communities

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Røder, Henriette Lyng; Russel, Jakob

    2016-01-01

    Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However......, the underlying role of fundamental ecological factors, specifically coexistence and phylogenetic history, in biofilm formation remains unclear. This study examines how social interactions affect biofilm formation in multi-species co-cultures from five diverse environments. We found prevalence of increased...

  9. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.

    Science.gov (United States)

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-07-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition.

  10. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources

    Directory of Open Access Journals (Sweden)

    Maria eMooshammer

    2014-02-01

    Full Text Available Terrestrial microbial decomposer communities thrive on a wide range of organic matter types that rarely ever meet their elemental demands. In this review we synthesize the current state-of-the-art of microbial adaptations to resource stoichiometry, in order to gain a deeper understanding of the interactions between heterotrophic microbial communities and their chemical environment. The stoichiometric imbalance between microbial communities and their organic substrates generally decreases from wood to leaf litter and further to topsoil and subsoil organic matter. Microbial communities can respond to these imbalances in four ways: first, they adapt their biomass composition towards their resource in a non-homeostatic behaviour. Such changes are, however, only moderate, and occur mainly because of changes in microbial community structure and less so due to cellular storage of elements in excess. Second, microbial communities can mobilize resources that meet their elemental demand by producing specific extracellular enzymes, which, in turn, is restricted by the C and N requirement for enzyme production itself. Third, microbes can regulate their element use efficiencies (ratio of element invested in growth over total element uptake, such that they release elements in excess depending on their demand (e.g., respiration and N mineralization. Fourth, diazotrophic bacteria and saprotrophic fungi may trigger the input of external N and P to decomposer communities. Theoretical considerations show that adjustments in element use efficiencies may be the most important mechanism by which microbes regulate their biomass stoichiometry. This review summarizes different views on how microbes cope with imbalanced supply of C, N and P, thereby providing a framework for integrating and linking microbial adaptation to resource imbalances to ecosystem scale fluxes across scales and ecosystems.

  11. The United States Regional Association of the International Association for Landscape Ecology

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Abstracts are presented from a meeting on landscape ecology. Topics include: conservation, climatic change, forest management, aquatic, wetland, rural and urban landscapes, land use, and biodiversity.

  12. The United States Regional Association of the International Association for Landscape Ecology

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    Abstracts are presented from a meeting on landscape ecology. Topics include: conservation, climatic change, forest management, aquatic, wetland, rural and urban landscapes, land use, and biodiversity.

  13. Economics, Ethics, Ecology: Roots of Productive Conservation.

    Science.gov (United States)

    Jeske, Walter E., Ed.

    Forty-seven articles represent most of the papers presented at the annual meeting of the Soil Conservation Society of America. The conference addressed the facts and values from economics, ethics, and ecology as they pertain to critical issues in land and water conservation in North America. Part I includes discussions of economic realities,…

  14. DNA Sequencing as a Tool to Monitor Marine Ecological Status

    Directory of Open Access Journals (Sweden)

    Kelly D. Goodwin

    2017-05-01

    Full Text Available Many ocean policies mandate integrated, ecosystem-based approaches to marine monitoring, driving a global need for efficient, low-cost bioindicators of marine ecological quality. Most traditional methods to assess biological quality rely on specialized expertise to provide visual identification of a limited set of specific taxonomic groups, a time-consuming process that can provide a narrow view of ecological status. In addition, microbial assemblages drive food webs but are not amenable to visual inspection and thus are largely excluded from detailed inventory. Molecular-based assessments of biodiversity and ecosystem function offer advantages over traditional methods and are increasingly being generated for a suite of taxa using a “microbes to mammals” or “barcodes to biomes” approach. Progress in these efforts coupled with continued improvements in high-throughput sequencing and bioinformatics pave the way for sequence data to be employed in formal integrated ecosystem evaluation, including food web assessments, as called for in the European Union Marine Strategy Framework Directive. DNA sequencing of bioindicators, both traditional (e.g., benthic macroinvertebrates, ichthyoplankton and emerging (e.g., microbial assemblages, fish via eDNA, promises to improve assessment of marine biological quality by increasing the breadth, depth, and throughput of information and by reducing costs and reliance on specialized taxonomic expertise.

  15. Developing and using artificial soils to analyze soil microbial processes

    Science.gov (United States)

    Gao, X.; Cheng, H. Y.; Boynton, L.; Masiello, C. A.; Silberg, J. J.

    2017-12-01

    Microbial diversity and function in soils are governed by soil characteristics such as mineral composition, particles size and aggregations, soil organic matter (SOM), and availability of nutrients and H2O. The spatial and temporal heterogeneity of soils creates a range of niches (hotspots) differing in the availability of O2, H2O, and nutrients, which shapes microbial activities at scales ranging from nanometer to landscape. Synthetic biologists often examine microbial response trigged by their environment conditions in nutrient-rich aqueous media using single strain microbes. While these studies provided useful insight in the role of soil microbes in important soil biogeochemical processes (e.g., C cycling, N cycling, etc.), the results obtained from the over-simplified model systems are often not applicable natural soil systems. On the contrary, soil microbiologists examine microbial processes in natural soils using longer incubation time. However, due to its physical, chemical and biological complexity of natural soils, it is often difficult to examine soil characteristics independently and understand how each characteristic influences soil microbial activities and their corresponding soil functioning. Therefore, it is necessary to bridge the gap and develop a model matrix to exclude unpredictable influences from the environment while still reliably mimicking real environmental conditions. The objective of this study is to design a range of ecologically-relevant artificial soils with varying texture (particle size distribution), structure, mineralogy, SOM content, and nutrient heterogeneity. We thoroughly characterize the artificial soils for pH, active surface area and surface morphology, cation exchange capacity (CEC), and water retention curve. We demonstrate the effectiveness of the artificial soils as useful matrix for microbial processes, such as microbial growth and horizontal gene transfer (HGT), using the gas-reporting biosensors recently developed in

  16. Bioinformatic approaches reveal metagenomic characterization of soil microbial community.

    Directory of Open Access Journals (Sweden)

    Zhuofei Xu

    Full Text Available As is well known, soil is a complex ecosystem harboring the most prokaryotic biodiversity on the Earth. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated the progress of soil ecological studies. However, how to effectively understand the underlying biological features of large-scale sequencing data is a new challenge. In the present study, we used 33 publicly available metagenomes from diverse soil sites (i.e. grassland, forest soil, desert, Arctic soil, and mangrove sediment and integrated some state-of-the-art computational tools to explore the phylogenetic and functional characterizations of the microbial communities in soil. Microbial composition and metabolic potential in soils were comprehensively illustrated at the metagenomic level. A spectrum of metagenomic biomarkers containing 46 taxa and 33 metabolic modules were detected to be significantly differential that could be used as indicators to distinguish at least one of five soil communities. The co-occurrence associations between complex microbial compositions and functions were inferred by network-based approaches. Our results together with the established bioinformatic pipelines should provide a foundation for future research into the relation between soil biodiversity and ecosystem function.

  17. Microcomputer package for statistical analysis of microbial populations.

    Science.gov (United States)

    Lacroix, J M; Lavoie, M C

    1987-11-01

    We have developed a Pascal system to compare microbial populations from different ecological sites using microcomputers. The values calculated are: the coverage value and its standard error, the minimum similarity and the geometric similarity between two biological samples, and the Lambda test consisting of calculating the ratio of the mean similarity between two subsets by the mean similarity within subsets. This system is written for Apple II, IBM or compatible computers, but it can work for any computer which can use CP/M, if the programs are recompiled for such a system.

  18. Microbial ecology studies at two coal mine refuse sites in Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R. M.; Cameron, R. E.

    1978-01-01

    An investigation was made of the microflora associated with coal refuse at two abandoned mines in the midwestern United States. Information was gathered for both the edaphic and the biotic composition of the refuse material. Emphasis was placed on heterotrophic and autotrophic components as to numbers, kinds, and physiological groups. The presence of chemolithotrophs was also investigated. The relationship between abiotic and biotic components in regard to distribution of bacteria, fungi, and algae is discussed. Information presented in this report will be utilized in assessing trends and changes in microbial numbers and composition related to manipulations of the edaphic and biotic ecosystem components associated with reclamation of the refuse piles.

  19. CROSERF: Toward a standardization of oil spill cleanup agent ecological effects research

    International Nuclear Information System (INIS)

    Singer, M.; Tjeerdema, R.; Aurand, D.; Clark, J.; Sergy, G.

    1995-01-01

    The establishment in 1994 of the Chemical Response to Oil Spills Ecological Effects Research Forum (CROSERF) for the development of standardization of protocols used in ecological research of oil spills and remediation efforts was described. Background and the need for such an organization was discussed. Discussions at the two meetings of the forum to date (generation of scientific data for decision making in August 1994 at the University of California at Santa Cruz, and toxicity testing of the water-accommodated fraction of the oil in March 1995 at the Louisiana Oil Spill Coordinator's Office in Baton Rouge) were summarized. A list of the organizations represented at the meetings was given. 5 refs

  20. Key Concepts in Microbial Oceanography

    Science.gov (United States)

    Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence