WorldWideScience

Sample records for microbial defense systems

  1. DMPD: Toll-like receptors and the host defense against microbial pathogens: bringingspecificity to the innate-immune system. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15075354 Toll-like receptors and the host defense against microbial pathogens: brin...oc Biol. 2004 May;75(5):749-55. Epub 2004 Jan 14. (.png) (.svg) (.html) (.csml) Show Toll-like receptors and the host defense again...immune system. PubmedID 15075354 Title Toll-like receptors and the host defense against microbial pathogens:

  2. Microbial Genomics: The Expanding Universe of Bacterial Defense Systems.

    Science.gov (United States)

    Forsberg, Kevin J; Malik, Harmit S

    2018-04-23

    Bacteria protect themselves against infection using multiple defensive systems that move by horizontal gene transfer and accumulate in genomic 'defense islands'. A recent study exploited these features to uncover ten novel defense systems, substantially expanding the catalog of bacterial defense systems and predicting the discovery of many more. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes

    Directory of Open Access Journals (Sweden)

    Hannes Horn

    2016-11-01

    Full Text Available Many marine sponges are populated by dense and taxonomically diverse microbial consortia. We employed a metagenomics approach to unravel the differences in the functional gene repertoire among three Mediterranean sponge species, Petrosia ficiformis, Sarcotragus foetidus, Aplysina aerophoba and seawater. Different signatures were observed between sponge and seawater metagenomes with regard to microbial community composition, GC content, and estimated bacterial genome size. Our analysis showed further a pronounced repertoire for defense systems in sponge metagenomes. Specifically, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR, restriction modification, DNA phosphorothioation and phage growth limitation systems were enriched in sponge metagenomes. These data suggest that defense is an important functional trait for an existence within sponges that requires mechanisms to defend against foreign DNA from microorganisms and viruses. This study contributes to an understanding of the evolutionary arms race between viruses/phages and bacterial genomes and it sheds light on the bacterial defenses that have evolved in the context of the sponge holobiont.

  4. Missile Defense: Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities

    Science.gov (United States)

    2016-04-28

    Page 1 GAO-16-339R Ballistic Missile Defense 441 G St. N.W. Washington, DC 20548 April 28, 2016 Congressional Committees Missile Defense... Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities For over half a century, the Department of Defense (DOD) has been...funding efforts to develop a system to detect, track, and defeat enemy ballistic missiles. The current system—the Ballistic Missile Defense System

  5. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems.

    Science.gov (United States)

    Makarova, Kira S; Wolf, Yuri I; Snir, Sagi; Koonin, Eugene V

    2011-11-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.

  6. Sequestered Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio Provide Variable Protection from Microbial Pathogens.

    Science.gov (United States)

    Hovey, Kyle J; Seiter, Emily M; Johnson, Erin E; Saporito, Ralph A

    2018-03-01

    Most amphibians produce their own defensive chemicals; however, poison frogs sequester their alkaloid-based defenses from dietary arthropods. Alkaloids function as a defense against predators, and certain types appear to inhibit microbial growth. Alkaloid defenses vary considerably among populations of poison frogs, reflecting geographic differences in availability of dietary arthropods. Consequently, environmentally driven differences in frog defenses may have significant implications regarding their protection against pathogens. While natural alkaloid mixtures in dendrobatid poison frogs have recently been shown to inhibit growth of non-pathogenic microbes, no studies have examined the effectiveness of alkaloids against microbes that infect these frogs. Herein, we examined how alkaloid defenses in the dendrobatid poison frog, Oophaga pumilio, affect growth of the known anuran pathogens Aeromonas hydrophila and Klebsiella pneumoniae. Frogs were collected from five locations throughout Costa Rica that are known to vary in their alkaloid profiles. Alkaloids were isolated from individual skins, and extracts were assayed against both pathogens. Microbe subcultures were inoculated with extracted alkaloids to create dose-response curves. Subsequent spectrophotometry and cell counting assays were used to assess growth inhibition. GC-MS was used to characterize and quantify alkaloids in frog extracts, and our results suggest that variation in alkaloid defenses lead to differences in inhibition of these pathogens. The present study provides the first evidence that alkaloid variation in a dendrobatid poison frog is associated with differences in inhibition of anuran pathogens, and offers further support that alkaloid defenses in poison frogs confer protection against both pathogens and predators.

  7. Anti-microbial and anti-biofilm compounds from Indonesian medicinal plants

    NARCIS (Netherlands)

    Pratiwi, Sylvia U.T.

    2015-01-01

    Microbial biofilms causing elevated resistance to both most anti-microbial drugs and the host defense systems, which often results in persistent and difficult-to-treat infections. The discovery of anti-infective agents which are active against planktonic and biofilm microorganisms are therefore

  8. DEFENSE-ATTACK INTERACTION OVER OPTIMALLY DESIGNED DEFENSE SYSTEMS VIA GAMES AND RELIABILITY

    Directory of Open Access Journals (Sweden)

    Isis Didier Lins

    2014-05-01

    Full Text Available This paper analyzes defense systems taking into account the strategic interactions between two rational agents; one of them is interested in designing a defense system against purposeful attacks of the other. The interaction is characterized by a sequential game with perfect and complete information. Reliability plays a fundamental role in both defining agents' actions and in measuring performance of the defense system for which a series-parallel configuration is set up by the defender. The attacker, in turn, focuses on only one defense subsystem in order to maximize her efficiency in attacking. An algorithm involving backward induction is developed to determine the equilibrium paths of the game. Application examples are also provided.

  9. Defense Islands in Bacterial and Archaeal Genomes and Prediction of Novel Defense Systems ▿†‡

    Science.gov (United States)

    Makarova, Kira S.; Wolf, Yuri I.; Snir, Sagi; Koonin, Eugene V.

    2011-01-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic “sinks” that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands. PMID:21908672

  10. Hitting the Sweet Spot: Glycans as Targets of Fungal Defense Effector Proteins

    Directory of Open Access Journals (Sweden)

    Markus Künzler

    2015-05-01

    Full Text Available Organisms which rely solely on innate defense systems must combat a large number of antagonists with a comparatively low number of defense effector molecules. As one solution of this problem, these organisms have evolved effector molecules targeting epitopes that are conserved between different antagonists of a specific taxon or, if possible, even of different taxa. In order to restrict the activity of the defense effector molecules to physiologically relevant taxa, these target epitopes should, on the other hand, be taxon-specific and easily accessible. Glycans fulfill all these requirements and are therefore a preferred target of defense effector molecules, in particular defense proteins. Here, we review this defense strategy using the example of the defense system of multicellular (filamentous fungi against microbial competitors and animal predators.

  11. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov (United States)

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios ; Culture Work-Life Balance Special Programs Nuclear Weapons Defense Systems Global Security Energy Facebook

  12. REQUIREMENTS FOR SYSTEMS DEVELOPMENT LIFE CYCLE MODELS FOR LARGE-SCALE DEFENSE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kadir Alpaslan DEMIR

    2015-10-01

    Full Text Available TLarge-scale defense system projects are strategic for maintaining and increasing the national defense capability. Therefore, governments spend billions of dollars in the acquisition and development of large-scale defense systems. The scale of defense systems is always increasing and the costs to build them are skyrocketing. Today, defense systems are software intensive and they are either a system of systems or a part of it. Historically, the project performances observed in the development of these systems have been signifi cantly poor when compared to other types of projects. It is obvious that the currently used systems development life cycle models are insuffi cient to address today’s challenges of building these systems. Using a systems development life cycle model that is specifi cally designed for largescale defense system developments and is effective in dealing with today’s and near-future challenges will help to improve project performances. The fi rst step in the development a large-scale defense systems development life cycle model is the identifi cation of requirements for such a model. This paper contributes to the body of literature in the fi eld by providing a set of requirements for system development life cycle models for large-scale defense systems. Furthermore, a research agenda is proposed.

  13. The alternative Medicago truncatula defense proteome of ROS – defective transgenic roots during early microbial infection

    Directory of Open Access Journals (Sweden)

    Leonard Muriithi Kiirika

    2014-07-01

    Full Text Available ROP-type GTPases of plants function as molecular switches within elementary signal transduction pathways such as the regulation of ROS synthesis via activation of NADPH oxidases (RBOH-respiratory burst oxidase homologue in plants. Previously, we reported that silencing of the Medicago truncatula GTPase MtROP9 led to reduced ROS production and suppressed induction of ROS-related enzymes in transgenic roots (MtROP9i infected with pathogenic (Aphanomyces euteiches and symbiotic microorganisms (Glomus intraradices, Sinorhizobium meliloti. While fungal infections were enhanced, S. meliloti infection was drastically impaired. In this study, we investigate the temporal proteome response of M. truncatula MtROP9i transgenic roots during the same microbial interactions under conditions of deprived potential to synthesize ROS. In comparison with control roots (Mtvector, we present a comprehensive proteomic analysis using sensitive MS protein identification. For four early infection time-points (1, 3, 5, 24 hpi, 733 spots were found to be different in abundance: 213 spots comprising 984 proteins (607 unique were identified after S. meliloti infection, 230 spots comprising 796 proteins (580 unique after G. intraradices infection, and 290 spots comprising 1240 proteins (828 unique after A. euteiches infection. Data evaluation by GelMap in combination with a heatmap tool allowed recognition of key proteome changes during microbial interactions under conditions of hampered ROS synthesis. Overall, the number of induced proteins in MtROP9i was low as compared with controls, indicating a dual function of ROS in defense signaling as well as alternative response patterns activated during microbial infection. Qualitative analysis of induced proteins showed that enzymes linked to ROS production and scavenging were highly induced in control roots, while in MtROP9i the majority of proteins were involved in alternative defense pathways such as cell wall and protein

  14. 2015 Assessment of the Ballistic Missile Defense System (BMDS)

    Science.gov (United States)

    2016-04-01

    Director, Operational Test and Evaluation 2015 Assessment of the Ballistic Missile Defense System (BMDS...Evaluation (DOT&E) as they pertain to the Ballistic Missile Defense System (BMDS). Congress specified these requirements in the fiscal year 2002 (FY02...systems are the Ground-based Midcourse Defense (GMD), Aegis Ballistic Missile Defense (Aegis BMD), Terminal High-Altitude Area Defense (THAAD), and

  15. Redesigning the Structure of Republic Indonesian Defense System; An Analysis of Systems Thinking

    Directory of Open Access Journals (Sweden)

    Ade Muhammad

    2013-09-01

    Full Text Available The phenomenon of Shrinking Defense Capabilities is only the tip of the iceberg of Indonesian Defense System’s problem. The root of the problem that lies beneath and outside is keep untouched. This journal is the part of the efforts to reveal the phenomenon’s structure that binding as a system. The present structure is a cause of that phenomenon and the basis of the current organization responsible for Republic Indonesia Defense sector. With the Systems thinking analysis, the research has revealed the structure that become the problem cause and give a holistic solution trough redesigning new structure based on two theories namely the Strategic-Operational Management with Vision Dissemination of Prof. Dr. Jürgen Strohhecker and the Defense System Generic Dr. Ir. Muhammad Tasrif, M.Eng and Ir. Ade Muhammad, M.Han. The logical consequences would also changing of formation of Indonesian Defense Organization. Keywords : Design, Redesigning, Defense System, System, Defense, Holistic

  16. The worm has turned--microbial virulence modeled in Caenorhabditis elegans.

    Science.gov (United States)

    Sifri, Costi D; Begun, Jakob; Ausubel, Frederick M

    2005-03-01

    The nematode Caenorhabditis elegans is emerging as a facile and economical model host for the study of evolutionarily conserved mechanisms of microbial pathogenesis and innate immunity. A rapidly growing number of human and animal microbial pathogens have been shown to injure and kill nematodes. In many cases, microbial genes known to be important for full virulence in mammalian models have been shown to be similarly required for maximum pathogenicity in nematodes. C. elegans has been used in mutation-based screening systems to identify novel virulence-related microbial genes and immune-related host genes, many of which have been validated in mammalian models of disease. C. elegans-based pathogenesis systems hold the potential to simultaneously explore the molecular genetic determinants of both pathogen virulence and host defense.

  17. More JAZ in the orchestration of jasmonate-mediated plant defense

    NARCIS (Netherlands)

    Zhou, Meiliang

    2014-01-01

    Jasmonates (JAs) are plant hormones that regulate defense against microbial pathogens and insect herbivores via two antagonistic branches of the JAs signaling pathway leading to activation of distinct sets of defense genes. In Arabidopsis thaliana defense against herbivores is regulated by JAs alone

  18. Detection technique of targets for missile defense system

    Science.gov (United States)

    Guo, Hua-ling; Deng, Jia-hao; Cai, Ke-rong

    2009-11-01

    Ballistic missile defense system (BMDS) is a weapon system for intercepting enemy ballistic missiles. It includes ballistic-missile warning system, target discrimination system, anti-ballistic-missile guidance systems, and command-control communication system. Infrared imaging detection and laser imaging detection are widely used in BMDS for surveillance, target detection, target tracking, and target discrimination. Based on a comprehensive review of the application of target-detection techniques in the missile defense system, including infrared focal plane arrays (IRFPA), ground-based radar detection technology, 3-dimensional imaging laser radar with a photon counting avalanche photodiode (APD) arrays and microchip laser, this paper focuses on the infrared and laser imaging detection techniques in missile defense system, as well as the trends for their future development.

  19. Microbial biosensors

    International Nuclear Information System (INIS)

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  20. Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection.

    Science.gov (United States)

    Hickling, Duane R; Sun, Tung-Tien; Wu, Xue-Ru

    2015-08-01

    The urinary tract exits to a body surface area that is densely populated by a wide range of microbes. Yet, under most normal circumstances, it is typically considered sterile, i.e., devoid of microbes, a stark contrast to the gastrointestinal and upper respiratory tracts where many commensal and pathogenic microbes call home. Not surprisingly, infection of the urinary tract over a healthy person's lifetime is relatively infrequent, occurring once or twice or not at all for most people. For those who do experience an initial infection, the great majority (70% to 80%) thankfully do not go on to suffer from multiple episodes. This is a far cry from the upper respiratory tract infections, which can afflict an otherwise healthy individual countless times. The fact that urinary tract infections are hard to elicit in experimental animals except with inoculum 3-5 orders of magnitude greater than the colony counts that define an acute urinary infection in humans (105 cfu/ml), also speaks to the robustness of the urinary tract defense. How can the urinary tract be so effective in fending off harmful microbes despite its orifice in a close vicinity to that of the microbe-laden gastrointestinal tract? While a complete picture is still evolving, the general consensus is that the anatomical and physiological integrity of the urinary tract is of paramount importance in maintaining a healthy urinary tract. When this integrity is breached, however, the urinary tract can be at a heightened risk or even recurrent episodes of microbial infections. In fact, recurrent urinary tract infections are a significant cause of morbidity and time lost from work and a major challenge to manage clinically. Additionally, infections of the upper urinary tract often require hospitalization and prolonged antibiotic therapy. In this chapter, we provide an overview of the basic anatomy and physiology of the urinary tract with an emphasis on their specific roles in host defense. We also highlight the

  1. The Microbial DNA Index System (MiDIS): A tool for microbial pathogen source identification

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-08-09

    The microbial DNA Index System (MiDIS) is a concept for a microbial forensic database and investigative decision support system that can be used to help investigators identify the sources of microbial agents that have been used in a criminal or terrorist incident. The heart of the proposed system is a rigorous method for calculating source probabilities by using certain fundamental sampling distributions associated with the propagation and mutation of microbes on disease transmission networks. This formalism has a close relationship to mitochondrial and Y-chromosomal human DNA forensics, and the proposed decision support system is somewhat analogous to the CODIS and SWGDAM mtDNA databases. The MiDIS concept does not involve the use of opportunistic collections of microbial isolates and phylogenetic tree building as a basis for inference. A staged approach can be used to build MiDIS as an enduring capability, beginning with a pilot demonstration program that must meet user expectations for performance and validation before evolving into a continuing effort. Because MiDIS requires input from a a broad array of expertise including outbreak surveillance, field microbial isolate collection, microbial genome sequencing, disease transmission networks, and laboratory mutation rate studies, it will be necessary to assemble a national multi-laboratory team to develop such a system. The MiDIS effort would lend direction and focus to the national microbial genetics research program for microbial forensics, and would provide an appropriate forensic framework for interfacing to future national and international disease surveillance efforts.

  2. Deception used for Cyber Defense of Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wayne F. Boyer; Miles A. McQueen

    2009-05-01

    Control system cyber security defense mechanisms may employ deception to make it more difficult for attackers to plan and execute successful attacks. These deceptive defense mechanisms are organized and initially explored according to a specific deception taxonomy and the seven abstract dimensions of security previously proposed as a framework for the cyber security of control systems.

  3. Microbial ecology of terrestrial Antarctica: Are microbial systems at risk from human activities?

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.

    1996-08-01

    Many of the ecological systems found in continental Antarctica are comprised entirely of microbial species. Concerns have arisen that these microbial systems might be at risk either directly through the actions of humans or indirectly through increased competition from introduced species. Although protection of native biota is covered by the Protocol on Environmental Protection to the Antarctic Treaty, strict measures for preventing the introduction on non-native species or for protecting microbial habitats may be impractical. This report summarizes the research conducted to date on microbial ecosystems in continental Antarctica and discusses the need for protecting these ecosystems. The focus is on communities inhabiting soil and rock surfaces in non-coastal areas of continental Antarctica. Although current polices regarding waste management and other operations in Antarctic research stations serve to reduce the introduction on non- native microbial species, importation cannot be eliminated entirely. Increased awareness of microbial habitats by field personnel and protection of certain unique habitats from physical destruction by humans may be necessary. At present, small-scale impacts from human activities are occurring in certain areas both in terms of introduced species and destruction of habitat. On a large scale, however, it is questionable whether the introduction of non-native microbial species to terrestrial Antarctica merits concern.

  4. Selected General Controls Over the Defense Business Management System

    National Research Council Canada - National Science Library

    1996-01-01

    .... The Defense Business Management System performs appropriation accounting, cost accounting, personnel, payroll, manpower, and management information functions for the Navy, the Air Force, five Defense...

  5. Systems Biology of Microbial Exopolysaccharides Production.

    Science.gov (United States)

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran.

  6. Systems biology of microbial exopolysaccharides production

    Directory of Open Access Journals (Sweden)

    Ozlem eAtes

    2015-12-01

    Full Text Available Exopolysaccharides (EPS produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture and medicine. EPSs are mainly associated with high-value applications and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore a systems-based approach constitutes an important step towards understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan and dextran.

  7. Studies on the hepatic antioxidant defense system in &lambda ...

    African Journals Online (AJOL)

    Studies on the hepatic antioxidant defense system in λ cyhalothrin-induced ... Significant (P<0.05) elevation in the level of lipid peroxidation was observed in λ ... The results of the present investigation have indicated that the tissue antioxidant defense system is operating at a lower rate despite ... HOW TO USE AJOL.

  8. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  9. Microbial Heat Recovery Cell (MHRC) System Concept

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    This factsheet describes a project that aimed to develop a microbial heat recovery cell (MHRC) system that combines a microbial reverse electrodialysis technology with waste heat recovery to convert industrial effluents into electricity and hydrogen.

  10. Acquisition: Allegations to the Defense Hotline on the Management of the Defense Travel System

    National Research Council Canada - National Science Library

    2002-01-01

    .... The Defense Travel System was envisioned as a general support system designed to make business travel quicker, easier, and more efficient by providing automated commercial and Government travel...

  11. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  12. CHAOS: An SDN-Based Moving Target Defense System

    Directory of Open Access Journals (Sweden)

    Yuan Shi

    2017-01-01

    Full Text Available Moving target defense (MTD has provided a dynamic and proactive network defense to reduce or move the attack surface that is available for exploitation. However, traditional network is difficult to realize dynamic and active security defense effectively and comprehensively. Software-defined networking (SDN points out a brand-new path for building dynamic and proactive defense system. In this paper, we propose CHAOS, an SDN-based MTD system. Utilizing the programmability and flexibility of SDN, CHAOS obfuscates the attack surface including host mutation obfuscation, ports obfuscation, and obfuscation based on decoy servers, thereby enhancing the unpredictability of the networking environment. We propose the Chaos Tower Obfuscation (CTO method, which uses the Chaos Tower Structure (CTS to depict the hierarchy of all the hosts in an intranet and define expected connection and unexpected connection. Moreover, we develop fast CTO algorithms to achieve a different degree of obfuscation for the hosts in each layer. We design and implement CHAOS as an application of SDN controller. Our approach makes it very easy to realize moving target defense in networks. Our experimental results show that a network protected by CHAOS is capable of decreasing the percentage of information disclosure effectively to guarantee the normal flow of traffic.

  13. Acquisition: Allegations to the Defense Hotline on the Management of the Defense Travel System

    National Research Council Canada - National Science Library

    2002-01-01

    Who Should Read This Report and Why? This report concerns those managers who are specifically involved with managing the Defense Travel System, as well as those managing the development of information technology systems...

  14. Defense Enterprise Accounting and Management System-Increment 1 (DEAMS Inc 1)

    Science.gov (United States)

    2016-03-01

    information accurately and in conformance with Generally Accepted Accounting Principles , to comply with Congressional requirements of the Chief Financial ...2016 Major Automated Information System Annual Report Defense Enterprise Accounting and Management System-Increment 1 (DEAMS Inc 1) Defense...Phone: 937-257-2714 Fax: DSN Phone: 787-2714 DSN Fax: Date Assigned: August 17, 2015 Program Information Program Name Defense Enterprise Accounting

  15. Perspective for Aquaponic Systems: "Omic" Technologies for Microbial Community Analysis.

    Science.gov (United States)

    Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Torres-Pacheco, Irineo; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V; Garcia-Trejo, Juan F; Guevara-Gonzalez, Ramon G

    2015-01-01

    Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the "Omic" technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. "Omic" technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current "Omic" tools to characterize the microbial community in aquaponic systems.

  16. Readiness of the Defense Message System to Replace the Automatic Digital Network

    National Research Council Canada - National Science Library

    1998-01-01

    .... The Defense Information Systems Agency began developing the Defense Message System (DMS) in 1988 to replace messaging functions provided by AUTODIN and electronic mail systems. Audit Objectives...

  17. Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System.

    Science.gov (United States)

    Dong, Qian; Shi, Hanchang; Liu, Yanchen

    2017-01-01

    The undesired sulfur cycle derived by microbial population can ultimately causes the serious problems of sewerage systems. However, the microbial community characters under dynamic environment factors in actual sewerage system is still not enough. This current study aimed to character the distributions and compositions of microbial communities that participate in the sulfur cycle under the dynamic environmental conditions in a local sewerage system. To accomplish this, microbial community compositions were assessed using 454 high-throughput sequencing (16S rDNA) combined with dsrB gene-based denaturing gradient gel electrophoresis. The results indicated that a higher diversity of microbial species was present at locations in sewers with high concentrations of H 2 S. Actinobacteria and Proteobacteria were dominant in the sewerage system, while Actinobacteria alone were dominant in regions with high concentrations of H 2 S. Specifically, the unique operational taxonomic units could aid to characterize the distinct microbial communities within a sewerage manhole. The proportion of sulfate-reducing bacteria, each sulfur-oxidizing bacteria (SOB) were strongly correlated with the liquid parameters (DO, ORP, COD, Sulfide, NH 3 -N), while the Mycobacterium and Acidophilic SOB (M&A) was strongly correlated with gaseous factors within the sewer, such as H 2 S, CH 4 , and CO. Identifying the distributions and proportions of critical microbial communities within sewerage systems could provide insights into how the microbial sulfur cycle is affected by the dynamic environmental conditions that exist in sewers and might be useful for explaining the potential sewerage problems.

  18. Information Management Principles Applied to the Ballistic Missile Defense System

    National Research Council Canada - National Science Library

    Koehler, John M

    2007-01-01

    .... Similarly several military systems with the single mission of missile defense have evolved in service stovepipes, and are now being integrated into a national and global missile defense architecture...

  19. Soil Microbial Activity in Conventional and Organic Agricultural Systems

    Directory of Open Access Journals (Sweden)

    Romero F.V. Carneiro

    2009-06-01

    Full Text Available The aim of this study was to evaluate microbial activity in soils under conventional and organic agricultural system management regimes. Soil samples were collected from plots under conventional management (CNV, organic management (ORG and native vegetation (AVN. Soil microbial activity and biomass was significantly greater in ORG compared with CNV. Soil bulk density decreased three years after adoption of organic system. Soil organic carbon (SOC was higher in the ORG than in the CNV. The soil under organic agricultural system presents higher microbial activity and biomass and lower bulk density than the conventional agricultural system.

  20. 75 FR 65439 - Defense Federal Acquisition Regulation Supplement; Electronic Subcontracting Reporting System

    Science.gov (United States)

    2010-10-25

    ... Accounting Service or Missile Defense Agency. (2) For DoD, the authority to acknowledge receipt or reject... DEPARTMENT OF DEFENSE Defense Acquisition Regulations System 48 CFR Parts 219 and 252 [DFARS Case 2009-D002] Defense Federal Acquisition Regulation Supplement; Electronic Subcontracting Reporting...

  1. Manufacturing of recombinant therapeutic proteins in microbial systems.

    Science.gov (United States)

    Graumann, Klaus; Premstaller, Andreas

    2006-02-01

    Recombinant therapeutic proteins have gained enormous importance for clinical applications. The first recombinant products have been produced in E. coli more than 20 years ago. Although with the advent of antibody-based therapeutics mammalian expression systems have experienced a major boost, microbial expression systems continue to be widely used in industry. Their intrinsic advantages, such as rapid growth, high yields and ease of manipulation, make them the premier choice for expression of non-glycosylated peptides and proteins. Innovative product classes such as antibody fragments or alternative binding molecules will further expand the use of microbial systems. Even more, novel, engineered production hosts and integrated technology platforms hold enormous potential for future applications. This review summarizes current applications and trends for development, production and analytical characterization of recombinant therapeutic proteins in microbial systems.

  2. Flood risk and economically optimal safety targets for coastal flood defense systems

    NARCIS (Netherlands)

    Dupuits, E.J.C.; Schweckendiek, T.

    2015-01-01

    A front defense can improve the reliability of a rear defense in a coastal flood defense system. The influence of this interdependency on the accompanying economically optimal safety targets of both front and rear defense is investigated. The results preliminary suggest that the optimal safety level

  3. Systems biology of Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Navid, A; Ghim, C; Fenley, A; Yoon, S; Lee, S; Almaas, E

    2008-04-11

    Microbes exist naturally in a wide range of environments, spanning the extremes of high acidity and high temperature to soil and the ocean, in communities where their interactions are significant. We present a practical discussion of three different approaches for modeling microbial communities: rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with detailed examples. Each approach is best fit to different levels of system representation, and they have different needs for detailed biological input. Thus, this set of approaches is able to address the operation and function of microbial communities on a wide range of organizational levels.

  4. Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis

    Directory of Open Access Journals (Sweden)

    Perla Munguia-Fragozo

    2015-01-01

    Full Text Available Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the “Omic” technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS. However, microbial community composition of aquaponics is still unknown. “Omic” technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current “Omic” tools to characterize the microbial community in aquaponic systems.

  5. Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis

    Science.gov (United States)

    Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V.; Garcia-Trejo, Juan F.; Guevara-Gonzalez, Ramon G.

    2015-01-01

    Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the “Omic” technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. “Omic” technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current “Omic” tools to characterize the microbial community in aquaponic systems. PMID:26509157

  6. 75 FR 3178 - Defense Federal Acquisition Regulation Supplement; Lead System Integrators

    Science.gov (United States)

    2010-01-20

    ... Government procurement. Amy G. Williams, Editor, Defense Acquisition Regulations System. 0 Accordingly, the..., without change, an interim rule amending the Defense Federal Acquisition Regulation Supplement (DFARS) to... limitations on the award of new contracts for lead system integrator functions in the acquisition of major DoD...

  7. System justification and the defense of committed relationship ideology.

    Science.gov (United States)

    Day, Martin V; Kay, Aaron C; Holmes, John G; Napier, Jaime L

    2011-08-01

    A consequential ideology in Western society is the uncontested belief that a committed relationship is the most important adult relationship and that almost all people want to marry or seriously couple (DePaulo & Morris, 2005). In the present article, we investigated the extent to which the system justification motive may contribute to the adoption of this ideology. In Studies 1 and 2, we examined whether a heightened motive to maintain the status quo would increase defense of committed relationship values. In Study 3, we examined the reverse association, that is, whether a threat to committed relationship ideology would also affect sociopolitical system endorsement. As past research has found that the justification of political systems depends upon how much these systems are perceived as controlling, in Study 4 we tested whether the defense of the system of committed relationships would also increase when framed as controlling. Results from Studies 1-4 were consistent with our hypotheses, but only for men. In Study 5, using cross-cultural data, we sought to replicate these findings correlationally and probe for a cause of the gender effect. Results from more than 33,000 respondents indicated a relationship (for men) between defense of the sociopolitical system and defense of marriage in countries where the traditional advantages of men over women were most threatened. In Studies 6 and 7, we investigated when this gender difference disappears. Results revealed that when we measured (Study 6) or manipulated (Study 7) personal relationship identity rather than relationship ideology, effects also emerge for women.

  8. Study on combat effectiveness of air defense missile weapon system based on queuing theory

    Science.gov (United States)

    Zhao, Z. Q.; Hao, J. X.; Li, L. J.

    2017-01-01

    Queuing Theory is a method to analyze the combat effectiveness of air defense missile weapon system. The model of service probability based on the queuing theory was constructed, and applied to analyzing the combat effectiveness of "Sidewinder" and "Tor-M1" air defense missile weapon system. Finally aimed at different targets densities, the combat effectiveness of different combat units of two types' defense missile weapon system is calculated. This method can be used to analyze the usefulness of air defense missile weapon system.

  9. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  10. Microbial stress tolerance for biofuels. Systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zonglin Lewis (ed.) [National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL (United States)

    2012-07-01

    The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions. (orig.)

  11. The Inflammasome in Host Defense

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2009-12-01

    Full Text Available Nod-like receptors have emerged as an important family of sensors in host defense. These receptors are expressed in macrophages, dendritic cells and monocytes and play an important role in microbial immunity. Some Nod-like receptors form the inflammasome, a protein complex that activates caspase-1 in response to several stimuli. Caspase-1 activation leads to processing and secretion of pro-inflammatory cytokines such as interleukin (IL-1β and IL-18. Here, we discuss recent advances in the inflammasome field with an emphasis on host defense. We also compare differential requirements for inflammasome activation in dendritic cells, macrophages and monocytes.

  12. Drone Defense System Architecture for U.S. Navy Strategic Facilities

    Science.gov (United States)

    2017-09-01

    unlimited. DRONE DEFENSE SYSTEM ARCHITECTURE FOR U.S. NAVY STRATEGIC FACILITIES by David Arteche, Kenneth Chivers, Bryce Howard, Terrell Long, Walter...and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction...project report 4. TITLE AND SUBTITLE DRONE DEFENSE SYSTEM ARCHITECTURE FOR U.S. NAVY STRATEGIC FACILITIES 5. FUNDING NUMBERS 6. AUTHOR(S) David Arteche

  13. Microbial adhesion in flow displacement systems

    NARCIS (Netherlands)

    Busscher, HJ; van der Mei, HC

    Flow displacement systems are superior to many other (static) systems for studying microbial adhesion to surfaces because mass transport and prevailing shear conditions can be adequately controlled and notoriously ill-defined slight rinsing steps to remove so-called "loosely adhering organisms" can

  14. Defense Logistics Standard Systems Functional Requirements.

    Science.gov (United States)

    1987-03-01

    the design of retaillintermediate-level data bases to support end-user requisition control files. The wholesale system could then be restructured to... organza - Sale tions, the residual is sold Sales and merchandising responsibility rests Vitl the Defense Reutilization and Marketing Regions Those...File (DDF) advanced by ANSI Technical Committee X3L5 and ISO TC97/SC15 • The Data Extraction, Processing, and Restructuring System (EXPRESS) designed by

  15. Pathogen self defense: mechanisms to counteract microbial antagonism

    NARCIS (Netherlands)

    Duffy, B.K.; Schouten, A.; Raaijmakers, J.M.

    2003-01-01

    Natural and agricultural ecosystems harbor a wide variety of microorganisms that play an integral role in plant health, crop productivity, and preservation of multiple ecosystem functions. Interactions within and among microbial communities are numerous and range from synergistic and mutualistic to

  16. Strategic Framework for the Defense Acquisition System Understanding Defense Consolidation

    National Research Council Canada - National Science Library

    Potts, Anthony W

    2007-01-01

    ...% of defense product sales annually. Defense consolidation has diminished the flexibility required for surge capacity, diminished competitive innovations in products, and reduced competitive pricing based on multiple sources for products...

  17. Laser engineering of microbial systems

    Science.gov (United States)

    Yusupov, V. I.; Gorlenko, M. V.; Cheptsov, V. S.; Minaev, N. V.; Churbanova, E. S.; Zhigarkov, V. S.; Chutko, E. A.; Evlashin, S. A.; Chichkov, B. N.; Bagratashvili, V. N.

    2018-06-01

    A technology of laser engineering of microbial systems (LEMS) based on the method of laser-induced transfer of heterogeneous mixtures containing microorganisms (laser bioprinting) is described. This technology involves laser printing of soil microparticles by focusing near-infrared laser pulses on a specially prepared gel/soil mixture spread onto a gold-coated glass plate. The optimal range of laser energies from the point of view of the formation of stable jets and droplets with minimal negative impact on living systems of giant accelerations, laser pulse irradiation, and Au nanoparticles was found. Microsamples of soil were printed on glucose-peptone-yeast agar plates to estimate the LEMS process influence on structural and morphological microbial diversity. The obtained results were compared with traditionally treated soil samples. It was shown that LEMS technology allows significantly increasing the biodiversity of printed organisms and is effective for isolating rare or unculturable microorganisms.

  18. Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions.

    Science.gov (United States)

    Dörmann, Peter; Kim, Hyeran; Ott, Thomas; Schulze-Lefert, Paul; Trujillo, Marco; Wewer, Vera; Hückelhoven, Ralph

    2014-12-01

    Plant cells dynamically change their architecture and molecular composition following encounters with beneficial or parasitic microbes, a process referred to as host cell reprogramming. Cell-autonomous defense reactions are typically polarized to the plant cell periphery underneath microbial contact sites, including de novo cell wall biosynthesis. Alternatively, host cell reprogramming converges in the biogenesis of membrane-enveloped compartments for accommodation of beneficial bacteria or invasive infection structures of filamentous microbes. Recent advances have revealed that, in response to microbial encounters, plasma membrane symmetry is broken, membrane tethering and SNARE complexes are recruited, lipid composition changes and plasma membrane-to-cytoskeleton signaling is activated, either for pre-invasive defense or for microbial entry. We provide a critical appraisal on recent studies with a focus on how plant cells re-structure membranes and the associated cytoskeleton in interactions with microbial pathogens, nitrogen-fixing rhizobia and mycorrhiza fungi. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. Defense and attack of complex and dependent systems

    International Nuclear Information System (INIS)

    Hausken, Kjell

    2010-01-01

    A framework is constructed for how to analyze the strategic defense of an infrastructure subject to attack by a strategic attacker. Merging operations research, reliability theory, and game theory for optimal analytical impact, the optimization program for the defender and attacker is specified. Targets can be in parallel, series, combined series-parallel, complex, k-out-of-n redundancy, independent, interdependent, and dependent. The defender and attacker determine how much to invest in defending versus attacking each of multiple targets. A target can have economic, human, and symbolic values, subjectively assessed by the defender and attacker. A contest success function determines the probability of a successful attack on each target, dependent on the investments by the defender and attacker into each target, and on characteristics of the contest. The defender minimizes the expected damage plus the defense costs. The attacker maximizes the expected damage minus the attack costs. Each agent is concerned about how his investments vary across the targets, and the impact on his utilities. Interdependent systems are analyzed where the defense and attack on one target impacts all targets. Dependent systems are analyzed applying Markov analysis and repeated games where a successful attack on one target in the first period impacts the unit costs of defense and attack, and the contest intensity, for the other target in the second period.

  20. Defense and attack of complex and dependent systems

    Energy Technology Data Exchange (ETDEWEB)

    Hausken, Kjell, E-mail: kjell.hausken@uis.n [Faculty of Social Sciences, University of Stavanger, N-4036 Stavanger (Norway)

    2010-01-15

    A framework is constructed for how to analyze the strategic defense of an infrastructure subject to attack by a strategic attacker. Merging operations research, reliability theory, and game theory for optimal analytical impact, the optimization program for the defender and attacker is specified. Targets can be in parallel, series, combined series-parallel, complex, k-out-of-n redundancy, independent, interdependent, and dependent. The defender and attacker determine how much to invest in defending versus attacking each of multiple targets. A target can have economic, human, and symbolic values, subjectively assessed by the defender and attacker. A contest success function determines the probability of a successful attack on each target, dependent on the investments by the defender and attacker into each target, and on characteristics of the contest. The defender minimizes the expected damage plus the defense costs. The attacker maximizes the expected damage minus the attack costs. Each agent is concerned about how his investments vary across the targets, and the impact on his utilities. Interdependent systems are analyzed where the defense and attack on one target impacts all targets. Dependent systems are analyzed applying Markov analysis and repeated games where a successful attack on one target in the first period impacts the unit costs of defense and attack, and the contest intensity, for the other target in the second period.

  1. Defense against common-mode failures in protection system design

    International Nuclear Information System (INIS)

    Wyman, R.H.; Johnson, G.L.

    1998-01-01

    The introduction of digital instrumentation and control into reactor safety systems creates a heightened concern about common-mode failure. This paper discusses the concern and methods of cope with the concern. Common-mode failures have been a 'fact-of-life' in existing systems. The informal introduction of defense-in-depth and diversity (D-in-D and D) - coupled with the fact that hardware common-mode failures are often distributed in time - has allowed systems to deal with past common-mode failures. However, identical software operating in identical redundant systems presents the potential for simultaneous failure. Consequently, the use of digital systems raises the concern about common-mode failure to a new level. A more methodical approach to mitigating common-mode failure is needed to address these concerns. Purposeful introduction of D-in-D and D has been used as a defense against common-mode failure in reactor protection systems. At least two diverse systems are provided to mitigate any potential initiating event. Additionally, diverse displays and controls are provided to allow the operator to monitor plant status and manually initiate engineered safety features. A special form of common-mode failure analysis called 'defense-in-depth and diversity analysis' has been developed to identify possible common-mode failure vulnerabilities in digital systems. An overview of this analysis technique is provided. (author)

  2. Defense against common-mode failures in protection system design

    International Nuclear Information System (INIS)

    Wyman, R.H.; Johnson, G.L.

    1997-01-01

    The introduction of digital instrumentation and control into reactor safety systems creates a heightened concern about common-mode failure. This paper discusses the concern and methods to cope with the concern. Common-mode failures have been a ''fact-of-life'' in existing systems. The informal introduction of defense-in-depth and diversity (D-in-D ampersand D)-coupled with the fact that hardware common-mode failures are often distributed in time-has allowed systems to deal with past common-mode failures. However, identical software operating in identical redundant systems presents the potential for simultaneous failure. Consequently, the use of digital systems raises the concern about common-mode failure to a new level. A more methodical approach to mitigating common-mode failure is needed to address these concerns. Purposeful introduction of D-in-D ampersand D has been used as a defense against common-mode failure in reactor protection systems. At least two diverse systems are provided to mitigate any potential initiating event. Additionally, diverse displays and controls are provided to allow the operator to monitor plant status and manually initiate engineered safety features. A special form of conimon-mode failure analysis called ''defense-in-depth and diversity analysis'' has been developed to identify possible conimon-mode failure vulnerabilities in digital systems. An overview of this analysis technique is provided

  3. Strategic Framework for the Defense Acquisition System Understanding Defense Consolidation

    National Research Council Canada - National Science Library

    Potts, Anthony W

    2007-01-01

    The 1993 policy to promote the consolidation of the United States defense industry began a series of acquisitions and mergers that went beyond the intent of the policy and left the Department of Defense (DoD...

  4. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling.

    OpenAIRE

    Mazzoli, Roberto; Pessione, Enrica

    2016-01-01

    Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut-brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system also supports a commu...

  5. 75 FR 75549 - Defense Federal Acquisition Regulation Supplement; Business Systems-Definition and Administration...

    Science.gov (United States)

    2010-12-03

    ..., et al. Defense Federal Acquisition Regulation Supplement; Business Systems-- Definition and... Regulation Supplement; Business Systems--Definition and Administration (DFARS Case 2009-D038) AGENCY: Defense.... SUPPLEMENTARY INFORMATION: I. Background DoD published a proposed rule for Business Systems--Definition and...

  6. Defense IRM: Alternatives Should Be Considered in Developing the New Civilian Personnel System

    National Research Council Canada - National Science Library

    1999-01-01

    ... regional centers, and attempting to improve personnel management business processes. A key part of this initiative is Defense's development of a new information management system-the Defense Civilian Personnel Data System (DCPDs...

  7. Microbial-immune cross-talk and regulation of the immune system.

    Science.gov (United States)

    Cahenzli, Julia; Balmer, Maria L; McCoy, Kathy D

    2013-01-01

    We are all born germ-free. Following birth we enter into a lifelong relationship with microbes residing on our body's surfaces. The lower intestine is home to the highest microbial density in our body, which is also the highest microbial density known on Earth (up to 10(12) /g of luminal contents). With our indigenous microbial cells outnumbering our human cells by an order of magnitude our body is more microbial than human. Numerous immune adaptations confine these microbes within the mucosa, enabling most of us to live in peaceful homeostasis with our intestinal symbionts. Intestinal epithelial cells not only form a physical barrier between the bacteria-laden lumen and the rest of the body but also function as multi-tasking immune cells that sense the prevailing microbial (apical) and immune (basolateral) milieus, instruct the underlying immune cells, and adapt functionally. In the constant effort to ensure intestinal homeostasis, the immune system becomes educated to respond appropriately and in turn immune status can shape the microbial consortia. Here we review how the dynamic immune-microbial dialogue underlies maturation and regulation of the immune system and discuss recent findings on the impact of diet on both microbial ecology and immune function. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  8. Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)

    International Nuclear Information System (INIS)

    Durling, R L; Price, D E; Spero, K K

    2005-01-01

    For over ten years, the Counterproliferation Analysis and Planning System (CAPS) at Lawrence Livermore National Laboratory (LLNL) has been a planning tool used by U.S. combatant commands for mission support planning against foreign programs engaged in the manufacture of weapons of mass destruction (WMD). CAPS is endorsed by the Secretary of Defense as the preferred counterproliferation tool to be used by the nation's armed services. A sister system, the Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging CAPS expertise designed to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors, HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented

  9. A Microbial Assessment Scheme to measure microbial performance of Food Safety Management Systems.

    Science.gov (United States)

    Jacxsens, L; Kussaga, J; Luning, P A; Van der Spiegel, M; Devlieghere, F; Uyttendaele, M

    2009-08-31

    A Food Safety Management System (FSMS) implemented in a food processing industry is based on Good Hygienic Practices (GHP), Hazard Analysis Critical Control Point (HACCP) principles and should address both food safety control and assurance activities in order to guarantee food safety. One of the most emerging challenges is to assess the performance of a present FSMS. The objective of this work is to explain the development of a Microbial Assessment Scheme (MAS) as a tool for a systematic analysis of microbial counts in order to assess the current microbial performance of an implemented FSMS. It is assumed that low numbers of microorganisms and small variations in microbial counts indicate an effective FSMS. The MAS is a procedure that defines the identification of critical sampling locations, the selection of microbiological parameters, the assessment of sampling frequency, the selection of sampling method and method of analysis, and finally data processing and interpretation. Based on the MAS assessment, microbial safety level profiles can be derived, indicating which microorganisms and to what extent they contribute to food safety for a specific food processing company. The MAS concept is illustrated with a case study in the pork processing industry, where ready-to-eat meat products are produced (cured, cooked ham and cured, dried bacon).

  10. Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)

    International Nuclear Information System (INIS)

    Price, D E; Durling, R L

    2005-01-01

    The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors, HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented

  11. Performance Analysis and Optimal Allocation of Layered Defense M/M/N Queueing Systems

    Directory of Open Access Journals (Sweden)

    Longyue Li

    2016-01-01

    Full Text Available One important mission of strategic defense is to develop an integrated layered Ballistic Missile Defense System (BMDS. Motivated by the queueing theory, we presented a work for the representation, modeling, performance simulation, and channels optimal allocation of the layered BMDS M/M/N queueing systems. Firstly, in order to simulate the process of defense and to study the Defense Effectiveness (DE, we modeled and simulated the M/M/N queueing system of layered BMDS. Specifically, we proposed the M/M/N/N and M/M/N/C queueing model for short defense depth and long defense depth, respectively; single target channel and multiple target channels were distinguished in each model. Secondly, we considered the problem of assigning limited target channels to incoming targets, we illustrated how to allocate channels for achieving the best DE, and we also proposed a novel and robust search algorithm for obtaining the minimum channel requirements across a set of neighborhoods. Simultaneously, we presented examples of optimal allocation problems under different constraints. Thirdly, several simulation examples verified the effectiveness of the proposed queueing models. This work may help to understand the rules of queueing process and to provide optimal configuration suggestions for defense decision-making.

  12. Periodontitis: from microbial immune subversion to systemic inflammation

    Science.gov (United States)

    Hajishengallis, George

    2014-01-01

    Periodontitis is a dysbiotic inflammatory disease with an adverse impact on systemic health. Recent studies have provided insights into the emergence and persistence of dysbiotic oral microbial communities, which can mediate inflammatory pathology at local as well as distant sites. This Review discusses mechanisms of microbial immune subversion that tip the balance from homeostasis to disease in oral or extraoral sites. PMID:25534621

  13. A fermented meat model system for studies of microbial aroma formation

    DEFF Research Database (Denmark)

    Tjener, Karsten; Stahnke, Louise Heller; Andersen, L.

    2003-01-01

    A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starte......H, microbial growth and volatile profiles was similar to sausage production. Based on these findings, the model system was considered valid for studies of aroma formation of meat cultures for fermented sausage.......A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starter...... cultures Pediococcus pentosaceus and Staphylococcus xylosus. Volatiles were collected and analysed by dynamic headspace sampling and GC MS. The analysis was primarily focused on volatiles arising from amino acid degradation and a total of 24 compounds, of which 19 were quantified, were used...

  14. Sulforaphane Modifies Histone H3, Unpacks Chromatin, and Primes Defense.

    Science.gov (United States)

    Schillheim, Britta; Jansen, Irina; Baum, Stephani; Beesley, Alexander; Bolm, Carsten; Conrath, Uwe

    2018-03-01

    Modern crop production calls for agrochemicals that prime plants for enhanced defense. Reliable test systems for spotting priming-inducing chemistry, however, are rare. We developed an assay for the high-throughput search for compounds that prime microbial pattern-induced secretion of antimicrobial furanocoumarins (phytoalexins) in cultured parsley cells. The screen produced 1-isothiocyanato-4-methylsulfinylbutane (sulforaphane; SFN), a secondary metabolite in many crucifers, as a novel defense priming compound. While elucidating SFN's mode of action in defense priming, we found that in Arabidopsis ( Arabidopsis thaliana ) the isothiocyanate provokes covalent modification (K4me3, K9ac) of histone H3 in the promoter and promoter-proximal region of defense genes WRKY6 and PDF1 2 , but not PR1 SFN-triggered H3K4me3 and H3K9ac coincide with chromatin unpacking in the WRKY6 and PDF1 2 regulatory regions, primed WRKY6 expression, unprimed PDF1 2 activation, and reduced susceptibility to downy mildew disease ( Hyaloperonospora arabidopsidis ). Because SFN also directly inhibits H arabidopsidis and other plant pathogens, the isothiocyanate is promising for the development of a plant protectant with a dual mode of action. © 2018 American Society of Plant Biologists. All Rights Reserved.

  15. Year 2000 Reporting for Defense Finance and Accounting Service Cleveland Center Systems

    National Research Council Canada - National Science Library

    Lane, F

    1998-01-01

    .... For this report, we evaluated whether DFAS: entered all required data elements into the Defense Integration Support Tools for each system, and verified that information in the Defense Integration Support Tools database was consistent...

  16. Status of microbial diversity in agroforestry systems in Tamil Nadu, India.

    Science.gov (United States)

    Radhakrishnan, Srinivasan; Varadharajan, Mohan

    2016-06-01

    Soil is a complex and dynamic biological system. Agroforestry systems are considered to be an alternative land use option to help and prevent soil degradation, improve soil fertility, microbial diversity, and organic matter status. An increasing interest has emerged with respect to the importance of microbial diversity in soil habitats. The present study deals with the status of microbial diversity in agroforestry systems in Tamil Nadu. Eight soil samples were collected from different fields in agroforestry systems in Cuddalore, Villupuram, Tiruvanamalai, and Erode districts, Tamil Nadu. The number of microorganisms and physico-chemical parameters of soils were quantified. Among different microbial population, the bacterial population was recorded maximum (64%), followed by actinomycetes (23%) and fungi (13%) in different samples screened. It is interesting to note that the microbial population was positively correlated with the physico-chemical properties of different soil samples screened. Total bacterial count had positive correlation with soil organic carbon (C), moisture content, pH, nitrogen (N), and micronutrients such as Iron (Fe), copper (Cu), and zinc (Zn). Similarly, the total actinomycete count also showed positive correlations with bulk density, moisture content, pH, C, N, phosphorus (P), potassium (K), calcium (Ca), copper (Cu), magnesium (Mg), manganese (Mn), and zinc (Zn). It was also noticed that the soil organic matter, vegetation, and soil nutrients altered the microbial community under agroforestry systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evolution of System Safety at NASA as Related to Defense-in-Depth

    Science.gov (United States)

    Dezfuli, Homayoon

    2015-01-01

    Presentation given at the Defense-in-Depth Inter-Agency Workshop on August 26, 2015 in Rockville, MD by Homayoon Dezfuli. The presentation addresses the evolution of system safety at NASA as related to Defense-in-Depth.

  18. Using Organizational Systems Theory to Improve Defense Acquisition and Warfighter Requirements

    National Research Council Canada - National Science Library

    Alexander, Michael J

    2007-01-01

    .... Hence, this MBA study employed a systems approach to more credibly pinpoint improvement areas in the Defense Acquisition System through the use of systems theory and an organizational systems model...

  19. Soil microbial biomass in an agroforestry system of Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Rosane C. Rodrigues

    2015-01-01

    Full Text Available Agroforestry systems (AFS are considered alternative land use options to help prevent soil degradation and improve soil microbial biomass and organic C status. However, it is unclear how different densities of babassu palm [Attalea speciosa (syn. Orbignya phalerata], which is an important tree in Northeast Brazil, affect the soil microbial biomass. We investigated the soil microbial biomass C and activity under AFS with different densities of babassu palm associated with Brachiaria brizantha grass. Soil microbial biomass C (MBC, soil microbial biomass N (MBN, MBC:total organic C ratio, fluorescein diacetate hydrolysis and dehydrogenase activity showed highest values in plots with high density of babassu palm. On the other hand, the respiratory quotient (qCO2 was significantly greater in plots without babassu palm. Brachiaria brizantha in monoculture may promote C losses from the soil, but AFS with high density of babassu palm may increase the potential of soils to accumulate C.Keywords: Enzyme activity, tropical soil, babassu palm, silvopastoral system, soil quality.DOI: 10.17138/TGFT(341-48

  20. Microbial ecology of hot desert edaphic systems.

    Science.gov (United States)

    Makhalanyane, Thulani P; Valverde, Angel; Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Cowan, Don A

    2015-03-01

    A significant proportion of the Earth's surface is desert or in the process of desertification. The extreme environmental conditions that characterize these areas result in a surface that is essentially barren, with a limited range of higher plants and animals. Microbial communities are probably the dominant drivers of these systems, mediating key ecosystem processes. In this review, we examine the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly. We also assess the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms. We conclude by discussing current gaps in our understanding of the microbiology of hot deserts and suggest fruitful avenues for future research. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Jasmonic acid and salicylic acid activate a common defense system in rice.

    Science.gov (United States)

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-06-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice.

  2. Towards an integrated defense system for cyber security situation awareness experiment

    Science.gov (United States)

    Zhang, Hanlin; Wei, Sixiao; Ge, Linqiang; Shen, Dan; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    In this paper, an implemented defense system is demonstrated to carry out cyber security situation awareness. The developed system consists of distributed passive and active network sensors designed to effectively capture suspicious information associated with cyber threats, effective detection schemes to accurately distinguish attacks, and network actors to rapidly mitigate attacks. Based on the collected data from network sensors, image-based and signals-based detection schemes are implemented to detect attacks. To further mitigate attacks, deployed dynamic firewalls on hosts dynamically update detection information reported from the detection schemes and block attacks. The experimental results show the effectiveness of the proposed system. A future plan to design an effective defense system is also discussed based on system theory.

  3. Strategic Defense Initiative: Splendid Defense or Pipe Dream? Headline Series No. 275.

    Science.gov (United States)

    Armstrong, Scott; Grier, Peter

    This pamphlet presents a discussion of the various components of President Reagan's Strategic Defense Initiative (SDI) including the problem of pulling together various new technologies into an effective defensive system and the politics of the so-called "star wars" system. An important part of the defense initiative is the…

  4. A Novel Tool for Microbial Genome Editing Using the Restriction-Modification System.

    Science.gov (United States)

    Bai, Hua; Deng, Aihua; Liu, Shuwen; Cui, Di; Qiu, Qidi; Wang, Laiyou; Yang, Zhao; Wu, Jie; Shang, Xiuling; Zhang, Yun; Wen, Tingyi

    2018-01-19

    Scarless genetic manipulation of genomes is an essential tool for biological research. The restriction-modification (R-M) system is a defense system in bacteria that protects against invading genomes on the basis of its ability to distinguish foreign DNA from self DNA. Here, we designed an R-M system-mediated genome editing (RMGE) technique for scarless genetic manipulation in different microorganisms. For bacteria with Type IV REase, an RMGE technique using the inducible DNA methyltransferase gene, bceSIIM (RMGE-bceSIIM), as the counter-selection cassette was developed to edit the genome of Escherichia coli. For bacteria without Type IV REase, an RMGE technique based on a restriction endonuclease (RMGE-mcrA) was established in Bacillus subtilis. These techniques were successfully used for gene deletion and replacement with nearly 100% counter-selection efficiencies, which were higher and more stable compared to conventional methods. Furthermore, precise point mutation without limiting sites was achieved in E. coli using RMGE-bceSIIM to introduce a single base mutation of A128C into the rpsL gene. In addition, the RMGE-mcrA technique was applied to delete the CAN1 gene in Saccharomyces cerevisiae DAY414 with 100% counter-selection efficiency. The effectiveness of the RMGE technique in E. coli, B. subtilis, and S. cerevisiae suggests the potential universal usefulness of this technique for microbial genome manipulation.

  5. Chemical defense of early life stages of benthic marine invertebrates.

    Science.gov (United States)

    Lindquist, Niels

    2002-10-01

    Accurate knowledge of factors affecting the survival of early life stages of marine invertebrates is critically important for understanding their population dynamics and the evolution of their diverse reproductive and life-history characteristics. Chemical defense is an important determinant of survival for adult stages of many sessile benthic invertebrates, yet relatively little consideration has been given to chemical defenses at the early life stages. This review examines the taxonomic breadth of early life-stage chemical defense in relation to various life-history and reproductive characteristics, as well as possible constraints on the expression of chemical defense at certain life stages. Data on the localization of defensive secondary metabolites in larvae and the fitness-related consequences of consuming even a small amount of toxic secondary metabolites underpin proposals regarding the potential for Müllerian and Batesian mimicry to occur among marine larvae. The involvement of microbial symbionts in the chemical defense of early life stages illustrates its complexity for some species. As our knowledge of chemical defenses in early life stages grows, we will be able to more rigorously examine connections among phylogeny, chemical defenses, and the evolution of reproductive and life-history characteristics among marine invertebrates.

  6. Management of Contract Waivers and Deviations for Defense Systems

    National Research Council Canada - National Science Library

    1998-01-01

    This report is the fourth and final in a series of reports resulting from our audit of management of contract waivers and deviations for Defense systems and summarizes our overall evaluation. Report...

  7. Multiple operating system rotation environment moving target defense

    Science.gov (United States)

    Evans, Nathaniel; Thompson, Michael

    2016-03-22

    Systems and methods for providing a multiple operating system rotation environment ("MORE") moving target defense ("MTD") computing system are described. The MORE-MTD system provides enhanced computer system security through a rotation of multiple operating systems. The MORE-MTD system increases attacker uncertainty, increases the cost of attacking the system, reduces the likelihood of an attacker locating a vulnerability, and reduces the exposure time of any located vulnerability. The MORE-MTD environment is effectuated by rotation of the operating systems at a given interval. The rotating operating systems create a consistently changing attack surface for remote attackers.

  8. Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation

    DEFF Research Database (Denmark)

    Liu, Wenzong; He, Zhangwei; Yang, Chunxue

    2016-01-01

    in an integrated system of microbial electrolysis cell (MEC) and anaerobic digestion (AD) for waste activated sludge (WAS). Microbial communities in integrated system would build a thorough energetic and metabolic interaction network regarding fermentation communities and electrode respiring communities...... to Firmicutes (Acetoanaerobium, Acetobacterium, and Fusibacter) showed synergistic relationship with exoelectrogensin the degradation of complex organic matter or recycling of MEC products (H2). High protein and polysaccharide but low fatty acid content led to the dominance of Proteiniclasticum...... biofilm. The overall performance of WAS cascade utilization was substantially related to the microbial community structures, which in turn depended on the initial pretreatment to enhance WAS fermentation. It is worth noting that species in AD and MEC communities are able to build complex networks...

  9. Critical control points for the management of microbial growth in HVAC systems

    NARCIS (Netherlands)

    Gommers, S; Franchimon, F.; Bronswijk, van J.E.M.H.; Strøm-Tejsen, P; Olesen, BW; Wargocki, P; Zukowska, D; Toftum, J

    2008-01-01

    Office buildings with HVAC systems consistently report Sick Building Symptoms that are derived from microbial growth. We used the HACCP methodology to find the main critical control points (CCPs) for microbial management of HVAC systems in temperate climates. Desk research revealed relative humidity

  10. Allowable residual contamination levels: transuranic advanced disposal systems for defense waste

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1982-01-01

    An evaluation of advanced disposal systems for defense transuranic (TRU) wastes is being conducted using the Allowable Residual Contamination Level (ARCL) method. The ARCL method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. For defense TRU wastes at the Hanford Site near Richland, Washington, various advanced disposal techniques are being studied to determine their potential for application. This paper presents a discussion of the results of the first stage of the TRU advanced disposal systems project

  11. MLDS: Multi-Layer Defense System for Preventing Advanced Persistent Threats

    Directory of Open Access Journals (Sweden)

    Daesung Moon

    2014-12-01

    Full Text Available Here we report on the issue of Advanced Persistent Threats (APT, which use malware for the purpose of leaking the data of large corporations and government agencies. APT attacks target systems continuously by utilizing intelligent and complex technologies. To overthrow the elaborate security network of target systems, it conducts an attack after undergoing a pre-reconnaissance phase. An APT attack causes financial loss, information leakage, etc. They can easily bypass the antivirus system of a target system. In this paper, we propose a Multi-Layer Defense System (MLDS that can defend against APT. This system applies a reinforced defense system by collecting and analyzing log information and various information from devices, by installing the agent on the network appliance, server and end-user. It also discusses how to detect an APT attack when one cannot block the initial intrusion while continuing to conduct other activities. Thus, this system is able to minimize the possibility of initial intrusion and damages of the system by promptly responding through rapid detection of an attack when the target system is attacked.

  12. Modular spectral imaging system for discrimination of pigments in cells and microbial communities.

    Science.gov (United States)

    Polerecky, Lubos; Bissett, Andrew; Al-Najjar, Mohammad; Faerber, Paul; Osmers, Harald; Suci, Peter A; Stoodley, Paul; de Beer, Dirk

    2009-02-01

    Here we describe a spectral imaging system for minimally invasive identification, localization, and relative quantification of pigments in cells and microbial communities. The modularity of the system allows pigment detection on spatial scales ranging from the single-cell level to regions whose areas are several tens of square centimeters. For pigment identification in vivo absorption and/or autofluorescence spectra are used as the analytical signals. Along with the hardware, which is easy to transport and simple to assemble and allows rapid measurement, we describe newly developed software that allows highly sensitive and pigment-specific analyses of the hyperspectral data. We also propose and describe a number of applications of the system for microbial ecology, including identification of pigments in living cells and high-spatial-resolution imaging of pigments and the associated phototrophic groups in complex microbial communities, such as photosynthetic endolithic biofilms, microbial mats, and intertidal sediments. This system provides new possibilities for studying the role of spatial organization of microorganisms in the ecological functioning of complex benthic microbial communities or for noninvasively monitoring changes in the spatial organization and/or composition of a microbial community in response to changing environmental factors.

  13. Antimicrobial Materials for Advanced Microbial Control in Spacecraft Water Systems

    Science.gov (United States)

    Birmele, Michele; Caro, Janicce; Newsham, Gerard; Roberts, Michael; Morford, Megan; Wheeler, Ray

    2012-01-01

    Microbial detection, identification, and control are essential for the maintenance and preservation of spacecraft water systems. Requirements set by NASA put limitations on the energy, mass, materials, noise, cost, and crew time that can be devoted to microbial control. Efforts are being made to attain real-time detection and identification of microbial contamination in microgravity environments. Research for evaluating technologies for capability enhancement on-orbit is currently focused on the use of adenosine triphosphate (ATP) analysis for detection purposes and polymerase chain reaction (peR) for microbial identification. Additional research is being conducted on how to control for microbial contamination on a continual basis. Existing microbial control methods in spacecraft utilize iodine or ionic silver biocides, physical disinfection, and point-of-use sterilization filters. Although these methods are effective, they require re-dosing due to loss of efficacy, have low human toxicity thresholds, produce poor taste, and consume valuable mass and crew time. Thus, alternative methods for microbial control are needed. This project also explores ultraviolet light-emitting diodes (UV-LEDs), surface passivation methods for maintaining residual biocide levels, and several antimicrobial materials aimed at improving current microbial control techniques, as well as addressing other materials presently under analysis and future directions to be pursued.

  14. Ukraine - USA partnership for peace. AEMS project on development and improving of 'Defense' automated emergency management system of the Civil Defense Department of Ukraine

    International Nuclear Information System (INIS)

    1998-01-01

    AEMS project is destined for the development and improving of 'Defense' system of the Civil Defense Department of Ukraine. 'Defense' system is destined for prevention and operation prognosis of emergencies of technological and natural character on the territory of Ukraine as well as for the elaboration of the solutions on protection and rescue of the population and national economy resources. The data are processed at national, regional, district and town levels. By the results of task solutions possible losses of human and material resources as well as necessary forces and means for removal of these consequences are defined. (R.P.)

  15. Cooperative Autonomous Resilient Defense Platform for Cyber-Physical Systems

    OpenAIRE

    Azab, Mohamed Mahmoud Mahmoud

    2013-01-01

    Cyber-Physical Systems (CPS) entail the tight integration of and coordination between computational and physical resources. These systems are increasingly becoming vital to modernizing the national critical infrastructure systems ranging from healthcare, to transportation and energy, to homeland security and national defense. Advances in CPS technology are needed to help improve their current capabilities as well as their adaptability, autonomicity, efficiency, reliability, safety and usabili...

  16. Formation of higher plant component microbial community in closed ecological system

    Science.gov (United States)

    Tirranen, L. S.

    2001-07-01

    Closed ecological systems (CES) place at the disposal of a researcher unique possibilities to study the role of microbial communities in individual components and of the entire system. The microbial community of the higher plant component has been found to form depending on specific conditions of the closed ecosystem: length of time the solution is reused, introduction of intrasystem waste water into the nutrient medium, effect of other component of the system, and system closure in terms of gas exchange. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of wheat. The composition of the components' microflora changed, species diversity decreased, individual species of bacteria and fungi whose numbers were not so great before the closure prevailed. Special attention should be paid to phytopathogenic and conditionally pathogenic species of microorganisms potentially hazardous to man or plants and the least controlled in CES. This situation can endanger creation of CES and make conjectural existence of preplanned components, man, specifically, and consequently, of CES as it is.

  17. Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems.

    Science.gov (United States)

    Iranzo, Jaime; Lobkovsky, Alexander E; Wolf, Yuri I; Koonin, Eugene V

    2015-03-13

    Parasite-host arms race is one of the key factors in the evolution of life. Most cellular life forms, in particular prokaryotes, possess diverse forms of defense against pathogens including innate immunity, adaptive immunity and programmed cell death (altruistic suicide). Coevolution of these different but interacting defense strategies yields complex evolutionary regimes. We develop and extensively analyze a computational model of coevolution of different defense strategies to show that suicide as a defense mechanism can evolve only in structured populations and when the attainable degree of immunity against pathogens is limited. The general principle of defense evolution seems to be that hosts do not evolve two costly defense mechanisms when one is sufficient. Thus, the evolutionary interplay of innate immunity, adaptive immunity and suicide, leads to an equilibrium state where the combination of all three defense strategies is limited to a distinct, small region of the parameter space. The three strategies can stably coexist only if none of them are highly effective. Coupled adaptive immunity-suicide systems, the existence of which is implied by the colocalization of genes for the two types of defense in prokaryotic genomes, can evolve either when immunity-associated suicide is more efficacious than other suicide systems or when adaptive immunity functionally depends on the associated suicide system. Computational modeling reveals a broad range of outcomes of coevolution of anti-pathogen defense strategies depending on the relative efficacy of different mechanisms and population structure. Some of the predictions of the model appear compatible with recent experimental evolution results and call for additional experiments.

  18. Vulnerability And Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)

    International Nuclear Information System (INIS)

    Durling, R.L. Jr.; Price, D.E.; Spero, K.K.

    2005-01-01

    For over ten years, the Counterproliferation Analysis and Planning System (CAPS) at Lawrence Livermore National Laboratory (LLNL) has been a planning tool used by U.S. combatant commands for mission support planning against foreign programs engaged in the manufacture of weapons of mass destruction (WMD). CAPS is endorsed by the Secretary of Defense as the preferred counterproliferation tool to be used by the nation's armed services. A sister system, the Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging CAPS expertise designed to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors, HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities is presented

  19. Wounding in the plant tissue: the defense of a dangerous passage

    Directory of Open Access Journals (Sweden)

    Daniel Valentin Savatin

    2014-09-01

    Full Text Available Plants are continuously exposed to agents such as herbivores and environmental mechanical stresses that cause wounding and open the way to the invasion by microbial pathogens. Wounding provides nutrients to pathogens and facilitates their entry into the tissue and subsequent infection. Plants have evolved constitutive and induced defense mechanisms to properly respond to wounding and prevent infection. The constitutive defenses are represented by physical barriers, i.e. the presence of cuticle or lignin, or by metabolites that act as toxins or deterrents for herbivores. Plants are also able to sense the injured tissue as an altered self and induce responses similar to those activated by pathogen infection. Endogenous molecules released from wounded tissue may act as Damage-Associated Molecular Patterns (DAMPs that activate the plant innate immunity. Wound-induced responses are both rapid, such as the oxidative burst and the expression of defense-related genes, and late, such as the callose deposition, the accumulation of proteinase inhibitors and of hydrolytic enzymes (i.e. chitinases and gluganases. Typical examples of DAMPs involved in the response to wounding are the peptide systemin and the oligogalacturonides, which are oligosaccharides released from the pectic component of the cell wall. Responses to wounding take place both at the site of damage (local response and systemically (systemic response and are mediated by hormones such as jasmonic acid, ethylene, salicylic acid and abscisic acid.

  20. Use of the Homeland-Defense Operational Planning System (HOPS) for Emergency Management

    International Nuclear Information System (INIS)

    Durling, Jr. R.L.; Price, D.E.

    2005-01-01

    The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors, HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented

  1. How microbial community composition regulates coral disease development.

    Directory of Open Access Journals (Sweden)

    Justin Mao-Jones

    2010-03-01

    Full Text Available Reef coral cover is in rapid decline worldwide, in part due to bleaching (expulsion of photosynthetic symbionts and outbreaks of infectious disease. One important factor associated with bleaching and in disease transmission is a shift in the composition of the microbial community in the mucus layer surrounding the coral: the resident microbial community-which is critical to the healthy functioning of the coral holobiont-is replaced by pathogenic microbes, often species of Vibrio. In this paper we develop computational models for microbial community dynamics in the mucus layer in order to understand how the surface microbial community responds to changes in environmental conditions, and under what circumstances it becomes vulnerable to overgrowth by pathogens. Some of our model's assumptions and parameter values are based on Vibrio spp. as a model system for other established and emerging coral pathogens. We find that the pattern of interactions in the surface microbial community facilitates the existence of alternate stable states, one dominated by antibiotic-producing beneficial microbes and the other pathogen-dominated. A shift to pathogen dominance under transient stressful conditions, such as a brief warming spell, may persist long after environmental conditions have returned to normal. This prediction is consistent with experimental findings that antibiotic properties of Acropora palmata mucus did not return to normal long after temperatures had fallen. Long-term loss of antibiotic activity eliminates a critical component in coral defense against disease, giving pathogens an extended opportunity to infect and spread within the host, elevating the risk of coral bleaching, disease, and mortality.

  2. How microbial community composition regulates coral disease development.

    Science.gov (United States)

    Mao-Jones, Justin; Ritchie, Kim B; Jones, Laura E; Ellner, Stephen P

    2010-03-30

    Reef coral cover is in rapid decline worldwide, in part due to bleaching (expulsion of photosynthetic symbionts) and outbreaks of infectious disease. One important factor associated with bleaching and in disease transmission is a shift in the composition of the microbial community in the mucus layer surrounding the coral: the resident microbial community-which is critical to the healthy functioning of the coral holobiont-is replaced by pathogenic microbes, often species of Vibrio. In this paper we develop computational models for microbial community dynamics in the mucus layer in order to understand how the surface microbial community responds to changes in environmental conditions, and under what circumstances it becomes vulnerable to overgrowth by pathogens. Some of our model's assumptions and parameter values are based on Vibrio spp. as a model system for other established and emerging coral pathogens. We find that the pattern of interactions in the surface microbial community facilitates the existence of alternate stable states, one dominated by antibiotic-producing beneficial microbes and the other pathogen-dominated. A shift to pathogen dominance under transient stressful conditions, such as a brief warming spell, may persist long after environmental conditions have returned to normal. This prediction is consistent with experimental findings that antibiotic properties of Acropora palmata mucus did not return to normal long after temperatures had fallen. Long-term loss of antibiotic activity eliminates a critical component in coral defense against disease, giving pathogens an extended opportunity to infect and spread within the host, elevating the risk of coral bleaching, disease, and mortality.

  3. Isonitrosoacetophenone drives transcriptional reprogramming in Nicotiana tabacum cells in support of innate immunity and defense.

    Directory of Open Access Journals (Sweden)

    Arnaud T Djami-Tchatchou

    Full Text Available Plants respond to various stress stimuli by activating broad-spectrum defense responses both locally as well as systemically. As such, identification of expressed genes represents an important step towards understanding inducible defense responses and assists in designing appropriate intervention strategies for disease management. Genes differentially expressed in tobacco cell suspensions following elicitation with isonitrosoacetophenone (INAP were identified using mRNA differential display and pyro-sequencing. Sequencing data produced 14579 reads, which resulted in 198 contigs and 1758 singletons. Following BLAST analyses, several inducible plant defense genes of interest were identified and classified into functional categories including signal transduction, transcription activation, transcription and protein synthesis, protein degradation and ubiquitination, stress-responsive, defense-related, metabolism and energy, regulation, transportation, cytoskeleton and cell wall-related. Quantitative PCR was used to investigate the expression of 17 selected target genes within these categories. Results indicate that INAP has a sensitising or priming effect through activation of salicylic acid-, jasmonic acid- and ethylene pathways that result in an altered transcriptome, with the expression of genes involved in perception of pathogens and associated cellular re-programming in support of defense. Furthermore, infection assays with the pathogen Pseudomonas syringae pv. tabaci confirmed the establishment of a functional anti-microbial environment in planta.

  4. Integrated defense system framework and high fidelity hardware-in-the-loop sensor stimulators

    Science.gov (United States)

    Buford, James A., Jr.; Barnett, Thomas C., Jr.; Vatz, Bernard W., II; Williams, M. Joshua; Van Bebber, James; Burson, Cliff

    2008-04-01

    The Strategic Defense Center of the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC), System Simulation and Development Directorate (SS&DD) provides modeling and simulation (M&S) tools, providing medium and hi-fi sensor stimulation, and test control frameworks to evaluate performance of integrated defense systems. These systems include hardware and software representations provided by and operated by Service Program Offices or their representatives. The representations are geographically distributed, but linked together to provide a dynamic, real-time, interactive test environment that is centrally controlled and synchronized through Global Positioning System (GPS) sources. The distributed nodes and the central control facility communicate through the Single Stimulation Framework (SSF). Operation of the SSF provides characterization and assessment of the integrated defense systems. This paper will summarize the concept, features, and functions of the SSF. The complex communications will be discussed, as well as the philosophy of stimulating the participating system components externally with consistent scenarios and truth state data that will bypass the simulation of these events by the individual participants.

  5. Application of System and Integration Readiness Levels to Department of Defense Research and Development

    Science.gov (United States)

    2016-07-01

    prompting folding foot-pegs. The human-motorcycle interface maturity followed the technical maturity at the expense of safety. Early airplanes were...this paper shows matrix notation in both reduced tensor notation and matrix notation as a convenience for a multidisciplinary audience. SRLj, [SRL...index for managing the acquisition of defense systems. Paper presented at National Defense Industrial Association 13th Annual Systems Engineering

  6. Buying Program of the Standard Automated Materiel Management System. Automated Small Purchase System: Defense Supply Center Philadelphia

    National Research Council Canada - National Science Library

    2001-01-01

    The Standard Automated Materiel Management System Automated Small Purchase System is a fully automated micro-purchases system used by the General and Industrial Directorate at the Defense Supply Center Philadelphia...

  7. UNIPOLAR, BIPOLAR OR MULTIPOLAR INTERNATIONAL SYSTEM? THE DEFENSE INDUSTRY FACTOR

    OpenAIRE

    ÖZKAN, Gökhan

    2008-01-01

    International system can be defined as a complex system of systems that is comprised of economic, political, scientific, technological and military systems. It is hard to analyze this complex system. It is even harder to forecast its future. Nonetheless, there are factors such as the defense industry and military power that affect the dynamics of the international system much more than other factors. After the Revolution in Military Affairs, which transformed the military paradigm, significa...

  8. A fermented meat model system for studies of microbial aroma formation

    DEFF Research Database (Denmark)

    Tjener, Karsten; Stahnke, Louise Heller; Andersen, L.

    2003-01-01

    A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starter......H, microbial growth and volatile profiles was similar to sausage production. Based on these findings, the model system was considered valid for studies of aroma formation of meat cultures for fermented sausage....... for multivariate data analysis. Growth of lactic acid bacteria was comparable for model and sausages, whereas survival of S. xylosus was better in the model. Multivariate analysis of volatiles showed that differences between fast and slowly acidified samples were identical for model and sausage. For both sausage...

  9. Analysis of System Training Impact for Major Defense Acquisition Programs (MDAPs): Training Systems Acquisition

    Science.gov (United States)

    2012-07-01

    Training Systems Acquisition IDA Document D-4648 Log: H 12-001032 July 2012 Approved for public release; distribution is unlimited...Background The Patriot system began because of the need to replace an aging and limited air defense system in the 1970s, the Nike -Hercules, and...simulation technology, embedded training and distributed learning (DoD Instruction 1322.26), and instrumentation systems that provide “anytime, anyplace

  10. THE DEFENSE PLANNING SYSTEMS AND THEIR IMPLICATIONS

    Directory of Open Access Journals (Sweden)

    Laszlo STICZ

    2010-01-01

    Full Text Available Defense planning in the Alliance is a fundamental element of the arrangements which enable its member countries to enjoy the crucial political, military and resource advantages of collective defense and other common military efforts to enhance security and stability. In this respect, the aim of this paper is to outline the role of the Armed Forces and the specific processes aiming to achieve the ultimate goal of a nation regarding national security, with focus on defense planning and the PDPS.

  11. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge

    OpenAIRE

    Dahle, H?kon; ?kland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-01-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent f...

  12. Methodological approaches for studying the microbial ecology of drinking water distribution systems

    OpenAIRE

    Douterelo, Isabel; Boxall, Joby B.; Deines, Peter; Sekar, Raju; Fish, Katherine E.; Biggs, Catherine A.

    2014-01-01

    The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for chara...

  13. THE PLANNING, PROGRAMING, BUDGETING SYSTEM AND ITS IMPLEMENTATION IN THE SERBIAN MINISTRY OF DEFENSE

    Directory of Open Access Journals (Sweden)

    Sasa RADUSKI

    2010-01-01

    Full Text Available The main purpose of introducing the PPBES to the Serbian Ministry of Defense and the Serbian Armed Forces is to provide a rational management of resources and to maintain and build capacity of the Ministry and the Serbian Armed Forces in order to achieve their goals, objectives and missions.Expected results of implementation of the PPBES are reflected in increasing the efficiency and rationalization of the defense planning to a higher level, ensuring compatibility with defense planning and budgeting system of the state and developing a foundation for the effective management of defense resources.

  14. Microbial Communities in Different Tissues of Atta sexdens rubropilosa Leaf-cutting Ants.

    Science.gov (United States)

    Vieira, Alexsandro S; Ramalho, Manuela O; Martins, Cintia; Martins, Vanderlei G; Bueno, Odair C

    2017-10-01

    Bacterial endosymbionts are common in all insects, and symbiosis has played an integral role in ant evolution. Atta sexdens rubropilosa leaf-cutting ants cultivate their symbiotic fungus using fresh leaves. They need to defend themselves and their brood against diseases, but they also need to defend their obligate fungus gardens, their primary food source, from infection, parasitism, and usurpation by competitors. This study aimed to characterize the microbial communities in whole workers and different tissues of A. sexdens rubropilosa queens using Ion Torrent NGS. Our results showed that the microbial community in the midgut differs in abundance and diversity from the communities in the postpharyngeal gland of the queen and in whole workers. The main microbial orders in whole workers were Lactobacillales, Clostridiales, Enterobacteriales, Actinomycetales, Burkholderiales, and Bacillales. In the tissues of the queens, the main orders were Burkholderiales, Clostridiales, Syntrophobacterales, Lactobacillales, Bacillales, and Actinomycetales (midgut) and Entomoplasmatales, unclassified γ-proteobacteria, and Actinomycetales (postpharyngeal glands). The high abundance of Entomoplasmatales in the postpharyngeal glands (77%) of the queens was an unprecedented finding. We discuss the role of microbial communities in different tissues and castes. Bacteria are likely to play a role in nutrition and immune defense as well as helping antimicrobial defense in this ant species.

  15. Cooperative microbial tolerance behaviors in host-microbiota mutualism

    Science.gov (United States)

    Ayres, Janelle S.

    2016-01-01

    Animal defense strategies against microbes are most often thought of as a function of the immune system, the primary function of which is to sense and kill microbes through the execution of resistance mechanisms. However, this antagonistic view creates complications for our understanding of beneficial host-microbe interactions. Pathogenic microbes are described as employing a few common behaviors that promote their fitness at the expense of host health and fitness. Here, a complementary framework is proposed to suggest that in addition to pathogens, beneficial microbes have evolved behaviors to manipulate host processes in order to promote their own fitness and do so through the promotion of host health and fitness. In this Perspective, I explore the idea that patterns or behaviors traditionally ascribed to pathogenic microbes are also employed by beneficial microbes to promote host tolerance defense strategies. Such strategies would promote host health without having a negative impact on microbial fitness and would thereby yield cooperative evolutionary dynamics that are likely required to drive mutualistic co-evolution of hosts and microbes. PMID:27259146

  16. MUWS (Microbiology in Urban Water Systems – an interdisciplinary approach to study microbial communities in urban water systems

    Directory of Open Access Journals (Sweden)

    P. Deines

    2010-07-01

    Full Text Available Microbiology in Urban Water Systems (MUWS is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems and sewer networks are both large, highly interconnected, dynamic, subject to time and varying inputs and demands, and difficult to control. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance within urban water infrastructure systems is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we ultimately aim to link microbial community abundance, diversity and function to physical and engineering variables so that novel insights into the performance and management of both water distribution systems and sewer networks can be explored. By presenting the details and principals behind the molecular microbiological techniques that we use, this paper demonstrates the potential of an integrated approach to better understand how urban water system function, and so meet future challenges.

  17. Isolation and characterization of the microbial community of a freshwater distribution system

    International Nuclear Information System (INIS)

    Balamurugan, P.; Subba Rao, T.

    2015-01-01

    This investigation provides generic information on culturable and non-culturable microbial community of a freshwater distribution system. Culture based and culture independent (16S rRNA gene sequencing) techniques were used to identify the resident microbial community of the system. Selective isolation of the fouling bacteria such as biofilm formers and corrosion causing bacteria was also attempted. Denaturing gradient gel electrophoresis (DGGE) was carried out and the bands were sequenced to obtain the diversity of the total bacterial types. Pseudomonas aeruginosa was predominantly observed in most of the samples. A variety of bacteria, related to groups such as Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were identified. The study highlights the relevance of the observed microbial diversity with respect to material deterioration in a freshwater distribution system, which can aid in designing effective control methods. (author)

  18. Department of Defense Quality Management Systems and ISO 9000:2000

    National Research Council Canada - National Science Library

    Lucius, Tommie

    2002-01-01

    ...) to the Department of Defense (DoD) quality management system (QMS) in procurement. In particular, the researcher will examine the new standard and its utility for DoD procurement, focusing on changes from the previous ISO 9000 series...

  19. Microbial Ecology and Evolution in the Acid Mine Drainage Model System.

    Science.gov (United States)

    Huang, Li-Nan; Kuang, Jia-Liang; Shu, Wen-Sheng

    2016-07-01

    Acid mine drainage (AMD) is a unique ecological niche for acid- and toxic-metals-adapted microorganisms. These low-complexity systems offer a special opportunity for the ecological and evolutionary analyses of natural microbial assemblages. The last decade has witnessed an unprecedented interest in the study of AMD communities using 16S rRNA high-throughput sequencing and community genomic and postgenomic methodologies, significantly advancing our understanding of microbial diversity, community function, and evolution in acidic environments. This review describes new data on AMD microbial ecology and evolution, especially dynamics of microbial diversity, community functions, and population genomes, and further identifies gaps in our current knowledge that future research, with integrated applications of meta-omics technologies, will fill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Design and Acquisition of Software for Defense Systems

    Science.gov (United States)

    2018-02-14

    embrace of iterative development has benefited bottom lines and cost , schedule, and testing performance, while the Department and its defense industrial...February 2018 CLEARED FOR OPEN PUBLICATION February 14, 2018 DEPARTMENT OF DEFENSE OFFICE OF PREPUBLICATION AND SECURITY REVIEW...Force concluded that the Department of Defense would benefit from the implementation of continuous iterative development best practices as software

  1. Acquisition Planning at the Defense Communications Agency.

    Science.gov (United States)

    1984-04-01

    guidelines for interaction are developed under the leadership of DCA agencywide integrators with the participation of personnel from DCA, the Services...Communications System DCSO - Defense Communications System Organizatin . DDN - Defense Data Network DEC - Decision Making DG - Defense Guidance DIA - Defense

  2. Followup Audit of Controls Over Operating System and Security Software and Other General Controls for Computer Systems Supporting the Defense Finance and Accounting Service

    National Research Council Canada - National Science Library

    1996-01-01

    This is the third in a series of followup audits made to evaluate the corrective actions taken by the Defense Finance and Accounting Service, the Defense Information Systems Agency, and the Defense...

  3. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    Directory of Open Access Journals (Sweden)

    Łukasz Jałowiecki

    Full Text Available The aim of the study was to determine the potential of community-level physiological profiles (CLPPs methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A, trickling filter/biofilter system (technology B, and aerated filter system (the fluidized bed reactor, technology C. High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs, as shown by the diversity indices. Principal components analysis (PCA showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.

  4. Systems Concepts for Integrated Air Defense of Multinational Mobile Crisis Reaction Forces (Concepts de systemes pour la defense aerienne integree de forces internationales mobiles d'intervention en situation de crise)

    National Research Council Canada - National Science Library

    2001-01-01

    The meeting proceedings from this symposium on System Concepts for Integrated Air Defense of Multinational Mobile Crisis Reaction Forces was organized and sponsored by the Systems Concepts and Integration (SCI...

  5. Increased resiliency and activity of microbial mediated carbon cycling enzymes in diversified bioenergy cropping systems

    Science.gov (United States)

    Upton, R.; Bach, E.; Hofmockel, K. S.

    2017-12-01

    Microbes are mediators of soil carbon (C) and are influenced in membership and activity by nitrogen (N) fertilization and inter-annual abiotic factors. Microbial communities and their extracellular enzyme activities (EEA) are important parameters that influence ecosystem C cycling properties and are often included in microbial explicit C cycling models. In an effort to generate model relevant, empirical findings, we investigated how both microbial community structure and C degrading enzyme activity are influenced by inter-annual variability and N inputs in bioenergy crops. Our study was performed at the Comparison of Biofuel Systems field-site from 2011 to 2014, in three bioenergy cropping systems, continuous corn (CC) and two restored prairies, both fertilized (FP) and unfertilized (P). We hypothesized microbial community structure would diverge during the prairie restoration, leading to changes in C cycling enzymes over time. Using a sequencing approach (16S and ITS) we determined the bacterial and fungal community structure response to the cropping system, fertilization, and inter-annual variability. Additionally, we used EEA of β-glucosidase, cellobiohydrolase, and β-xylosidase to determine inter-annual and ecosystem impacts on microbial activity. Our results show cropping system was a main effect for microbial community structure, with corn diverging from both prairies to be less diverse. Inter-annual changes showed that a drought occurring in 2012 significantly impacted microbial community structure in both the P and CC, decreasing microbial richness. However, FP increased in microbial richness, suggesting the application of N increased resiliency to drought. Similarly, the only year in which C cycling enzymes were impacted by ecosystem was 2012, with FP supporting higher potential enzymatic activity then CC and P. The highest EEA across all ecosystems occurred in 2014, suggesting the continued root biomass and litter build-up in this no till system

  6. Roadmap Modeling and Assessment Approach for Defense Technology System of Systems

    Directory of Open Access Journals (Sweden)

    Hui Lu

    2018-06-01

    Full Text Available Advanced defense technology plays a crucial role in safeguarding national safety and development interests. Aiming to handle the problems of current research and development (R&D management approaches faced with the rocketing complexities of system of systems, the authors propose a novel roadmap modeling and assessment methodology through studying the driving forces of general technology development and analyzing realistic requirements of defense technology management in this article. First, a requirement decomposition framework is designed based on multi-view theories and text-mining tools are used to construct a multi-layer knowledge-flow network model. Second, the contribution rates of requirement elements at different levels are evaluated using a multi-criteria decision-making approach and the node importance is assessed based on the topological structure of multi-layer network. Third, it is utilized to demonstrate the effectiveness of the proposed approaches that illustrative examples of the technology requirements in maritime security strategy investigating and a dual-layer knowledge-flow network consists of patents that belong to the “Coherent Light Generator (CLC” classification from the United States Patent and Trademark Office (USPTO database and the related academic papers from Web of Science. Finally, the contributions, potential applications, and drawbacks of this work are discussed and research outlooks are provided.

  7. A novel lung slice system with compromised antioxidant defenses

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, S.J.; Adam, A.; Cohen, G.M. (Univ. of London (England)); Smith, L.L. (Imperial Chemical Industries PLC, Cheshire (England))

    1990-04-01

    In order to facilitate the study of oxidative stress in lung tissue, rat lung slices with impaired antioxidant defenses were prepared and used. Incubation of lung slices with the antineoplastic agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (100 {mu}M) in an amino acid-rich medium for 45 min produced a near-maximal (approximately 85%), irreversible inhibition of glutathione reductase, accompanied by only a modest (approximately 15%) decrease in pulmonary nonprotein sulfhydryls (NPSH) and no alteration in intracellular ATP, NADP{sup +}, and NADPH levels. The amounts of NADP(H), ATP, and NPSH were stable over a 4-hr incubation period following the removal from BCNU. The viability of the system was further evaluated by measuring the rate of evolution of {sup 14}CO{sub 2} from D-({sup 14}C(U))-glucose. The rates of evolution were almost identical in the compromised system when compared with control slices over a 4-hr time period. By using slices with compromised oxidative defenses, preliminary results have been obtained with paraquat, nitrofurantoin, and 2,3-dimethoxy-1,4-naphthoquinone.

  8. A novel lung slice system with compromised antioxidant defenses

    International Nuclear Information System (INIS)

    Hardwick, S.J.; Adam, A.; Cohen, G.M.; Smith, L.L.

    1990-01-01

    In order to facilitate the study of oxidative stress in lung tissue, rat lung slices with impaired antioxidant defenses were prepared and used. Incubation of lung slices with the antineoplastic agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (100 μM) in an amino acid-rich medium for 45 min produced a near-maximal (approximately 85%), irreversible inhibition of glutathione reductase, accompanied by only a modest (approximately 15%) decrease in pulmonary nonprotein sulfhydryls (NPSH) and no alteration in intracellular ATP, NADP + , and NADPH levels. The amounts of NADP(H), ATP, and NPSH were stable over a 4-hr incubation period following the removal from BCNU. The viability of the system was further evaluated by measuring the rate of evolution of 14 CO 2 from D-[ 14 C(U)]-glucose. The rates of evolution were almost identical in the compromised system when compared with control slices over a 4-hr time period. By using slices with compromised oxidative defenses, preliminary results have been obtained with paraquat, nitrofurantoin, and 2,3-dimethoxy-1,4-naphthoquinone

  9. Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems.

    Science.gov (United States)

    Zhang, Yu; Xie, Jianping; Liu, Miaomiao; Tian, Zhe; He, Zhili; van Nostrand, Joy D; Ren, Liren; Zhou, Jizhong; Yang, Min

    2013-10-15

    It is widely demonstrated that antibiotics in the environment affect microbial community structure. However, direct evidence regarding the impacts of antibiotics on microbial functional structures in wastewater treatment systems is limited. Herein, a high-throughput functional gene array (GeoChip 3.0) in combination with quantitative PCR and clone libraries were used to evaluate the microbial functional structures in two biological wastewater treatment systems, which treat antibiotic production wastewater mainly containing oxytetracycline. Despite the bacteriostatic effects of antibiotics, the GeoChip detected almost all key functional gene categories, including carbon cycling, nitrogen cycling, etc., suggesting that these microbial communities were functionally diverse. Totally 749 carbon-degrading genes belonging to 40 groups (24 from bacteria and 16 from fungi) were detected. The abundance of several fungal carbon-degrading genes (e.g., glyoxal oxidase (glx), lignin peroxidase or ligninase (lip), manganese peroxidase (mnp), endochitinase, exoglucanase_genes) was significantly correlated with antibiotic concentrations (Mantel test; P functional genes have been enhanced by the presence of antibiotics. However, from the fact that the majority of carbon-degrading genes were derived from bacteria and diverse antibiotic resistance genes were detected in bacteria, it was assumed that many bacteria could survive in the environment by acquiring antibiotic resistance and may have maintained the position as a main player in nutrient removal. Variance partitioning analysis showed that antibiotics could explain 24.4% of variations in microbial functional structure of the treatment systems. This study provides insights into the impacts of antibiotics on microbial functional structure of a unique system receiving antibiotic production wastewater, and reveals the potential importance of the cooperation between fungi and bacteria with antibiotic resistance in maintaining the

  10. Information Management Principles Applied to the Ballistic Missile Defense System

    Science.gov (United States)

    2007-03-01

    of a BMDS. From this, the Army produced the Nike -Zeus system comprised of four radars, the Zeus missile, and a computer fire control system (General...made the Nike -Zeus our first National Missile Defense (NMD) system named Sentinel. The architecture was to cover 14 locations, 10 of which were...1999). Additionally, there are cultural impacts (Gordon & Gordon, 1999). A company choosing an Apple OS may have to wage a big fight against the

  11. Unraveling the relationship between microbial translocation and systemic immune activation in HIV infection

    Science.gov (United States)

    Shan, Liang; Siliciano, Robert F.

    2014-01-01

    Chronic immune activation is a key factor in HIV-1 disease progression. The translocation of microbial products from the intestinal lumen into the systemic circulation occurs during HIV-1 infection and is associated closely with immune activation; however, it has not been determined conclusively whether microbial translocation drives immune activation or occurs as a consequence of HIV-1 infection. In an important study in this issue of the JCI, Kristoff and colleagues describe the role of microbial translocation in producing immune activation in an animal model of HIV-1 infection, SIV infection of pigtailed macaques. Blocking translocation of intestinal bacterial LPS into the circulation dramatically reduced T cell activation and proliferation, production of proinflammatory cytokines, and plasma SIV RNA levels. This study directly demonstrates that microbial translocation promotes the systemic immune activation associated with HIV-1/SIV infection. PMID:24837427

  12. Microbial ecology-based engineering of Microbial Electrochemical Technologies.

    Science.gov (United States)

    Koch, Christin; Korth, Benjamin; Harnisch, Falk

    2018-01-01

    Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Policy implications of the Strategic Defense Initiative

    International Nuclear Information System (INIS)

    Goodwin, R.C.

    1991-01-01

    Specific topics include: the technological feasibility of proposed components and architectures; the compatibility of the proposed systems with existing and proposed arms control agreements, with special emphasis upon the ABM Treaty, Outer Space Treaty, the Defense and Space Treaty, and the START Treaty; the compatibility of proposed systems with classical warfare doctrine and the four modern strategic nuclear doctrines of Massive Retaliation, Assured Destruction, Countervailing and Flexible Response; the economics of strategic defense including an assessment of overall governmental spending, of the suballocation for defense, and of the feasibility of defensive systems which are cost-effective at the margin; and, in summary, an assessment of the New Strategic Concept which balances arms control, offensive forces, and defensive forces. This study falls within the realm of defense policy analysis in that it attempts to determine whether the administration's proposed Strategic Defense Initiative, as well as the long-term strategic defensive systems derived from SDI research, constitute efficient, desirable allocation of scarce government resources - especially in a period of seemingly relaxed superpower tensions and numerous demands upon those resources

  14. Developing Model Benchtop Systems for Microbial Experimental Evolution

    Science.gov (United States)

    Gentry, D.; Wang, J.; Arismendi, D.; Alvarez, J.; Ouandji, C.; Blaich, J.

    2017-12-01

    Understanding how microbes impact an ecosystem has improved through advances of molecular and genetic tools, but creating complex systems that emulate natural biology goes beyond current technology. In fact, many chemical, biological, and metabolic pathways of even model organisms are still poorly characterized. Even then, standard laboratory techniques for testing microbial impact on environmental change can have many drawbacks; they are time-consuming, labor intensive, and are at risk of contamination. By having an automated process, many of these problems can be reduced or even eliminated. We are developing a benchtop system that can run for long periods of time without the need for human intervention, involve multiple environmental stressors at once, perform real-time adjustments of stressor exposure based on current state of the population, and minimize contamination risks. Our prototype device allows operators to generate an analogue of real world micro-scale ecosystems that can be used to model the effects of disruptive environmental change on microbial ecosystems. It comprises of electronics, mechatronics, and fluidics based systems to control, measure, and evaluate the before and after state of microbial cultures from exposure to environmental stressors. Currently, it uses four parallel growth chambers to perform tests on liquid cultures. To measure the population state, optical sensors (LED/photodiode) are used. Its primary selection pressure is UV-C radiation, a well-studied stressor known for its cell- and DNA- damaging effects and as a mutagen. Future work will involve improving the current growth chambers, as well as implementing additional sensors and environmental stressors into the system. Full integration of multiple culture testing will allow inter-culture comparisons. Besides the temperature and OD sensors, other types of sensors can be integrated such as conductivity, biomass, pH, and dissolved gasses such as CO2 and O2. Additional

  15. [Microbial air purity in hospitals. Operating theatres with air conditioning system].

    Science.gov (United States)

    Krogulski, Adam; Szczotko, Maciej

    2010-01-01

    The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.

  16. Methodological approaches for studying the microbial ecology of drinking water distribution systems.

    Science.gov (United States)

    Douterelo, Isabel; Boxall, Joby B; Deines, Peter; Sekar, Raju; Fish, Katherine E; Biggs, Catherine A

    2014-11-15

    The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. 77 FR 11355 - Defense Federal Acquisition Regulation Supplement; Business Systems-Definition and Administration...

    Science.gov (United States)

    2012-02-24

    ...D published an initial proposed rule for Business Systems-- Definition and Administration (DFARS... the definition and administration of contractor business systems as follows: A. Contractor business..., 245, and 252 RIN 0750-AG58 Defense Federal Acquisition Regulation Supplement; Business Systems...

  18. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Science.gov (United States)

    Baron, Julianne L; Vikram, Amit; Duda, Scott; Stout, Janet E; Bibby, Kyle

    2014-01-01

    Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  19. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Directory of Open Access Journals (Sweden)

    Julianne L Baron

    Full Text Available Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  20. PRINCIPLES OF THE SYSTEM OF "CUSTOMIZABLE” DEFENSE ON THE FULL BASKETBALL COURT

    Directory of Open Access Journals (Sweden)

    Pavle Rubin

    2010-09-01

    Full Text Available The problem of this work stems from the fact that the tactics (not just applications, but also to create the principles of basketball games and variants belongs to the domain experts of this sport (coaches, theorists, etc.. Every devising, selecting and applying specific tactics should satisfy two main objectives, to: be the greater surprise and provide adequate "response" to the opponent's tactics. The possibility of surprising opponent is primarily associated with the phase of defense, till firstly from an offense is expected to find and implement an adequate solution ("response". Prerequisite that this defense could be successfully adopted is that the players (they know, and they can play quality individual defense (one - on - one. Another prerequisite is that the basketball players fully adopted the principles of the system: zone pressing and "man to man" (variations of "pressing" on the full court. The defense in the foul court is, even more demanding because of the space that is defended, which allows players to adapt to the possible, at least the first time, adequate "response" on offense.

  1. Root systems and soil microbial biomass under no-tillage system

    Directory of Open Access Journals (Sweden)

    Venzke Filho Solismar de Paiva

    2004-01-01

    Full Text Available Some root parameters such as distribution, length, diameter and dry matter are inherent to plant species. Roots can influence microbial population during vegetative cycle through the rhizodeposits and, after senescence, integrating the soil organic matter pool. Since they represent labile substrates, especially regarding nitrogen, they can determine the rate of nutrient availability to the next crop cultivated under no-tillage (NT. The root systems of two crop species: maize (Zea mays L. cultivar Cargill 909 and soybean [Glycine max (L. Merr.] cultivar Embrapa 59, were compared in the field, and their influence on spatial distribution of the microbial C and N in a clayey-textured Typic Hapludox cultivated for 22 years under NT, at Tibagi, State of Paraná (PR, Brazil, was determined. Digital image processing and nail-plate techniques were used to evaluate 40 plots of a 80 ´ 50 ´ 3 cm soil profile. It was observed that 36% and 30% of the maize and soybeans roots, respectively, are concentrated in the 0 to 10 cm soil layer. The percent distribution of root dry matter was similar for both crops. The maize roots presented a total of 1,324 kg C ha-1 and 58 kg N ha-1, with higher root dry matter density and more roots in decomposition in the upper soil layer, decreasing with depth. The soybean roots (392 kg C ha-1 and 21 kg N ha-1 showed higher number of thinner roots and higher density per length unity compared to the maize. The maize roots enhanced microbial-C down to deeper soil layers than did the soybean roots. The microbial N presented a better correlation with the concentration of thin active roots and with roots in decomposition or in indefinite shape, possibly because of higher concentration of C and N easily assimilated by soil microorganisms.

  2. Planning a transportation system for US Defense Transuranic waste

    International Nuclear Information System (INIS)

    Gilbert, K.V.; Hurley, J.D.; Smith, L.J.; McFadden, M.H.; Raudenbush, M.H.; Fedie, M.L.

    1983-05-01

    The development and planning of a transportation system for US Department of Energy (USDOE) Defense Transuranic (TRU) waste has required the talents and expertise of many people. Coordination activities, design activities, fabrication, research and development, operations, and transportation are but a few of the areas around which this system is built. Due to the large number of organizations, regulations and personalities the planning task becomes extremely complex. The intent of this paper is to discuss the steps taken in planning this system, to identify the various organizations around which this system is designed, and to discuss program progress to date, scheduling, and future plans. 9 figures, 1 table

  3. Planning a transportation system for US defense transuranic waste

    International Nuclear Information System (INIS)

    Gilbert, K.V.; Hurley, J.D.; Smith, L.J.; McFadden, M.H.; Raudenbush, M.H.; Fedie, M.L.

    1983-01-01

    The development and planning of a transportation system for US Department of Energy (USDOE) Defense Transuranic (TRU) waste has required the talents and expertise of many people. Coordination activities, design activities, fabrication, research and development, operations, and transportation are but a few of the areas around which this system is built. Due to the large number of organizations, regulations and personalities the planning task becomes extremely complex. The intent of this paper is to discuss the steps taken in planning this system, to identify the various organizations around which this system is designed, and to discuss program progress to date, scheduling, and future plans

  4. Microbial Indicators of Soil Quality under Different Land Use Systems in Subtropical Soils

    Science.gov (United States)

    Maharjan, M.

    2016-12-01

    Land-use change from native forest to intensive agricultural systems can negatively impact numerous soil parameters. Understanding the effects of forest ecosystem transformations on markers of long-term soil health is particularly important in rapidly developing regions such as Nepal, where unprecedented levels of agriculturally-driven deforestation have occurred in recent decades. However, the effects of widespread land use changes on soil quality in this region have yet to be properly characterized. Microbial indicators (soil microbial biomass, metabolic quotient and enzymes activities) are particularly suited to assessing the consequences of such ecosystem disturbances, as microbial communities are especially sensitive to environmental change. Thus, the aim of this study was to assess the effect of land use system; i.e. forest, organic and conventional farming, on soil quality in Chitwan, Nepal using markers of microbial community size and activity. Total organic C and N contents were higher in organic farming compared with conventional farming and forest, suggesting higher nutrient retention and soil preservation with organic farming practices compared to conventional. These differences in soil composition were reflected in the health of the soil microbial communities: Organic farm soil exhibited higher microbial biomass C, elevated β-glucosidase and chitinase activities, and a lower metabolic quotient relative to other soils, indicating a larger, more active, and less stressed microbial community, respectively. These results collectively demonstrate that application of organic fertilizers and organic residues positively influence nutrient availability, with subsequent improvements in soil quality and productivity. Furthermore, the sensitivity of microbial indicators to different management practices demonstrated in this study supports their use as effective markers of ecosystem disturbance in subtropical soils.

  5. Microbial Rechargeable Battery

    NARCIS (Netherlands)

    Molenaar, Sam D.; Mol, Annemerel R.; Sleutels, Tom H.J.A.; Heijne, Ter Annemiek; Buisman, Cees J.N.

    2016-01-01

    Bioelectrochemical systems hold potential for both conversion of electricity into chemicals through microbial electrosynthesis (MES) and the provision of electrical power by oxidation of organics using microbial fuel cells (MFCs). This study provides a proof of concept for a microbial

  6. Recent advances in dental biofilm: impacts of microbial interactions on the biofilm ecology and pathogenesis

    Directory of Open Access Journals (Sweden)

    Yung-Hua Li

    2017-05-01

    Full Text Available The human oral cavity is a complex ecosystem harboring hundreds species of microbes that are largely living on the tooth surfaces as dental biofilms. Most microbes in dental biofilms promote oral health by stimulating the immune system or by preventing invasion of pathogens. Species diversity, high cell density and close proximity of cells are typical of life in dental biofilms, where microbes interact with each other and develop complex interactions that can be either competitive or cooperative. Competition between species is a well-recognized ecological force to drive microbial metabolism, species diversity and evolution. However, it was not until recently that microbial cooperative activities are also recognized to play important roles in microbial physiology and ecology. Importantly, these interactions profoundly affect the overall biomass, function, diversity and the pathogenesis in dental biofilms. It is now recognized that every human body contains a personalized oral microbiome that is essential to maintaining the oral health. Remarkably, the indigenous species in dental biofilms often maintain a relatively stable and harmless relationship with the host, despite regular exposure to environmental perturbations and the host defense factors. Such stability or homeostasis results from a dynamic balance of microbial-microbial and microbial-host interactions. Under certain circumstances, however, the homeostasis may breakdown, predisposing a site to diseases. In this review, we describe several examples of microbial interactions and their impacts on the homeostasis and pathogenesis of dental biofilms. We hope to encourage research on microbial interactions in the regulation of the homeostasis in biofilms.

  7. Ten years of maintaining and expanding a microbial genome and metagenome analysis system.

    Science.gov (United States)

    Markowitz, Victor M; Chen, I-Min A; Chu, Ken; Pati, Amrita; Ivanova, Natalia N; Kyrpides, Nikos C

    2015-11-01

    Launched in March 2005, the Integrated Microbial Genomes (IMG) system is a comprehensive data management system that supports multidimensional comparative analysis of genomic data. At the core of the IMG system is a data warehouse that contains genome and metagenome datasets sequenced at the Joint Genome Institute or provided by scientific users, as well as public genome datasets available at the National Center for Biotechnology Information Genbank sequence data archive. Genomes and metagenome datasets are processed using IMG's microbial genome and metagenome sequence data processing pipelines and are integrated into the data warehouse using IMG's data integration toolkits. Microbial genome and metagenome application specific data marts and user interfaces provide access to different subsets of IMG's data and analysis toolkits. This review article revisits IMG's original aims, highlights key milestones reached by the system during the past 10 years, and discusses the main challenges faced by a rapidly expanding system, in particular the complexity of maintaining such a system in an academic setting with limited budgets and computing and data management infrastructure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. 76 FR 28855 - Defense Federal Acquisition Regulation Supplement; Business Systems-Definition and Administration

    Science.gov (United States)

    2011-05-18

    ...; Business Systems-- Definition and Administration; Interim Rule #0;#0;Federal Register / Vol. 76 , No. 96...-AG58 Defense Federal Acquisition Regulation Supplement; Business Systems--Definition and Administration... an initial proposed rule for Business Systems-- Definition and Administration (DFARS Case 2009-D038...

  9. Safety assessment of inter-channel / inter-system digital communications: A defensive measures approach

    International Nuclear Information System (INIS)

    Thuy, N. N. Q.

    2006-01-01

    Inappropriately designed inter-channel and inter-system digital communications could initiate common cause failure of multiple channels or multiple systems. Defensive measures were introduced in EPRI report TR-1002835 (Guideline for Performing Defense-in-Depth and Diversity Assessments for Digital Upgrades) to assess, on a deterministic basis, the susceptibility of digital systems architectures to common-cause failures. This paper suggests how this approach could be applied to assess inter-channel and inter-system digital communications from a safety standpoint. The first step of the approach is to systematically identify the so called 'influence factors' that one end of the data communication path can have on the other. Potential factors to be considered would typically include data values, data volumes and data rates. The second step of the approach is to characterize the ways possible failures of a given end of the communication path could affect these influence factors (e.g., incorrect data values, excessive data rates, time-outs, incorrect data volumes). The third step is to analyze the designed-in measures taken to guarantee independence of the other end. In addition to classical error detection and correction codes, typical defensive measures are one-way data communication, fixed-rate data communication, fixed-volume data communication, validation of data values. (authors)

  10. Defense nuclear energy systems selection methodology for civil nuclear power applications

    International Nuclear Information System (INIS)

    Scarborough, J.C.

    1986-01-01

    A methodology developed to select a preferred nuclear power system for a US Department of Defense (DOD) application has been used to evaluate preferred nuclear power systems for a remote island community in Southeast Asia. The plant would provide ∼10 MW of electric power, possibly low-temperature process heat for the local community, and would supplement existing island diesel electric capacity. The nuclear power system evaluation procedure was evolved from a disciplined methodology for ranking ten nuclear power designs under joint development by the US Department of Energy (DOE) and DOD. These included six designs proposed by industry for the Secure Military Power Plant Program (now termed Multimegawatt Terrestrial Reactor Program), the SP-100 Program, the North Warning System Program, and the Modular Advanced High-Temperature Gas-Cooled Reactor (HTGR) and Liquid-Metal Reactor (LMR) programs. The 15 evaluation criteria established for the civil application were generally similar to those developed and used for the defense energy systems evaluation, except that the weighting factor applied to each individual criterion differed. The criteria and their weighting (importance) functions for the civil application are described

  11. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.

    Science.gov (United States)

    Zarate, Sonia I; Kempema, Louisa A; Walling, Linda L

    2007-02-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF.

  12. Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    King, Alison E.; Hofmockel, Kirsten S.

    2017-03-01

    Diversifying biologically simple cropping systems often entails altering other management practices, such as tillage regime or nitrogen (N) source. We hypothesized that the interaction of crop rotation, N source, and tillage in diversified cropping systems would promote microbially-mediated soil C and N cycling while attenuating inorganic N pools. We studied a cropping systems trial in its 10th year in Iowa, USA, which tested a 2-yr cropping system of corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] managed with conventional fertilizer N inputs and conservation tillage, a 3-yr cropping system of corn/soybean/small grain + red clover (Trifolium pratense L.), and a 4-yr cropping system of corn/soybean/small grain + alfalfa (Medicago sativa L.)/alfalfa. Three year and 4-yr cropping systems were managed with composted manure, reduced N fertilizer inputs, and periodic moldboard ploughing. We assayed soil microbial biomass carbon (MBC) and N (MBN), soil extractable NH4 and NO3, gross proteolytic activity of native soil, and potential activity of six hydrolytic enzymes eight times during the growing season. At the 0-20cm depth, native protease activity in the 4-yr cropping system was greater than in the 2-yr cropping system by a factor of 7.9, whereas dissolved inorganic N pools did not differ between cropping systems (P = 0.292). At the 0-20cm depth, MBC and MBN the 4-yr cropping system exceeded those in the 2-yr cropping system by factors of 1.51 and 1.57. Our findings suggest that diversified crop cropping systems, even when periodically moldboard ploughed, support higher levels of microbial biomass, greater production of bioavailable N from SOM, and a deeper microbially active layer than less diverse cropping systems.

  13. Strategic Defense Initiative Overview

    National Research Council Canada - National Science Library

    1990-01-01

    ... to Third World and other nations. I will then discuss the scope of the SDI effort, the evolving strategic defense system architectures and theater defense, our compliancy with the ABM Treaty, technology spinoffs resulting from SDI...

  14. Interoperability In Multi-Layered Active Defense:The Need For Commonality And Robustness Between Active Defense Weapon Systems

    Science.gov (United States)

    2016-02-16

    into areas where there is no access to maritime platforms. Sea-based interceptor platforms have the ability to intercept targets at each stage of the...argues that the most efficient concept for integrating active defense weapon systems is a multi- layered architecture with redundant intercept ...faster data transfer and will prevent data loss. The need for almost 100% interception successes is increasing as the threat becomes more

  15. Department of Defense Systems Engineering FY 2012 Annual Report

    Science.gov (United States)

    2013-03-01

    by the Utility Helicopter PMO, is utilizing the latest Defense Acquisition Guidelines and previously approved PEO AVN SEP examples to develop all...efforts. As a whole, all of PEO AVN Program Management Offices understand the importance of systems engineering. They stress the continued use of...established SE guidelines, practices and procedures throughout our acquisition processes. PEO AVN , working with the AMRDEC SE Division, has

  16. Development of fusion fuel cycles: Large deviations from US defense program systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, James Edward, E-mail: james.klein@srnl.doe.gov; Poore, Anita Sue; Babineau, David W.

    2015-10-15

    Highlights: • All tritium fuel cycles start with a “Tritium Process.” All have similar tritium processing steps. • Fusion tritium fuel cycles minimize process tritium inventories for various reasons. • US defense program facility designs did not minimize in-process inventories. • Reduced inventory tritium facilities will lower public risk. - Abstract: Fusion energy research is dominated by plasma physics and materials technology development needs with smaller levels of effort and funding dedicated to tritium fuel cycle development. The fuel cycle is necessary to supply and recycle tritium at the required throughput rate; additionally, tritium confinement throughout the facility is needed to meet regulatory and environmental release limits. Small fuel cycle development efforts are sometimes rationalized by stating that tritium processing technology has already been developed by nuclear weapons programs and these existing processes only need rescaling or engineering design to meet the needs of fusion fuel cycles. This paper compares and contrasts features of tritium fusion fuel cycles to United States Cold War era defense program tritium systems. It is concluded that further tritium fuel cycle development activities are needed to provide technology development beneficial to both fusion and defense programs tritium systems.

  17. 75 FR 76692 - Defense Federal Acquisition Regulation Supplement; Business Systems-Definition and Administration...

    Science.gov (United States)

    2010-12-09

    ..., and 252 RIN 0750-AG58 Defense Federal Acquisition Regulation Supplement; Business Systems--Definition... for Business Systems--Definition and Administration (DFARS Case 2009-D038) in the Federal Register on... improve the effectiveness of DoD oversight of contractor business systems. The comment period is being...

  18. Control Systems Cyber Security:Defense in Depth Strategies

    Energy Technology Data Exchange (ETDEWEB)

    David Kuipers; Mark Fabro

    2006-05-01

    Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecture that requires: Maintenance of various field devices, telemetry collection, and/or industrial-level process systems Access to facilities via remote data link or modem Public facing services for customer or corporate operations A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.

  19. Strategic Missile Defense & Nuclear Deterrence

    Science.gov (United States)

    Grego, Laura

    The United States has pursued defenses against nuclear-armed long-range ballistic missiles since at least the 1950s. At the same time, concerns that missile defenses could undermine nuclear deterrence and potentially spark an arms race led the United States and Soviet Union to negotiate limits on these systems. The 1972 Anti-Ballistic Missile Treaty constrained strategic missile defenses for thirty years. After abandoning the treaty in 2002, President George W. Bush began fielding the Ground-based Midcourse Defense (GMD) homeland missile defense system on an extremely aggressive schedule, nominally to respond to threats from North Korea and Iran. Today, nearly fifteen years after its initial deployment, the potential and the limits of this homeland missile defense are apparent. Its test record is poor and it has no demonstrated ability to stop an incoming missile under real-world conditions. No credible strategy is in place to solve the issue of discriminating countermeasures. Insufficient oversight has not only exacerbated the GMD system's problems, but has obscured their full extent, which could encourage politicians and military leaders to make decisions that actually increase the risk of a missile attack against the United States. These are not the only costs. Both Russia and China have repeatedly expressed concerns that U.S. missile defenses adversely affect their own strategic capabilities and interests, particularly taken in light of the substantial US nuclear forces. This in turn affects these countries' nuclear modernization priorities. This talk will provide a technical overview of the US strategic missile defense system, and how it relates to deterrence against non-peer adversaries as well as how it affects deterrence with Russia and China and the long-term prospects for nuclear reductions

  20. Ballistic Missile Defense

    OpenAIRE

    Mayer, Michael

    2011-01-01

    At the 2010 NATO summit in Lisbon, the alliance decided to move forward on the development of a territorial ballistic missile defense (BMD) system and explore avenues for cooperation with Russia in this endeavor. Substantial progress on BMD has been made over the past decade, but some questions remain regarding the ultimate strategic utility of such a system and whether its benefi ts outweigh the possible opportunity costs. Missile defense has been a point of contention between the US and its...

  1. Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape.

    Science.gov (United States)

    Lachaise, Tom; Ourry, Morgane; Lebreton, Lionel; Guillerm-Erckelboudt, Anne-Yvonne; Linglin, Juliette; Paty, Chrystelle; Chaminade, Valérie; Marnet, Nathalie; Aubert, Julie; Poinsot, Denis; Cortesero, Anne-Marie; Mougel, Christophe

    2017-12-01

    Interactions between plants and phytophagous insects play an important part in shaping the biochemical composition of plants. Reciprocally plant metabolites can influence major life history traits in these insects and largely contribute to their fitness. Plant rhizospheric microorganisms are an important biotic factor modulating plant metabolites and adaptation to stress. While plant-insects or plant-microorganisms interactions and their consequences on the plant metabolite signature are well-documented, the impact of soil microbial communities on plant defenses against phytophagous insects remains poorly known. In this study, we used oilseed rape (Brassica napus) and the cabbage root fly (Delia radicum) as biological models to tackle this question. Even though D. radicum is a belowground herbivore as a larva, its adult life history traits depend on aboveground signals. We therefore tested whether soil microbial diversity influenced emergence rate and fitness but also fly oviposition behavior, and tried to link possible effects to modifications in leaf and root metabolites. Through a removal-recolonization experiment, 3 soil microbial modalities ("high," "medium," "low") were established and assessed through amplicon sequencing of 16S and 18S ribosomal RNA genes. The "medium" modality in the rhizosphere significantly improved insect development traits. Plant-microorganism interactions were marginally associated to modulations of root metabolites profiles, which could partly explain these results. We highlighted the potential role of plant-microbial interaction in plant defenses against Delia radicum. Rhizospheric microbial communities must be taken into account when analyzing plant defenses against herbivores, being either below or aboveground. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  2. Genome-scale biological models for industrial microbial systems.

    Science.gov (United States)

    Xu, Nan; Ye, Chao; Liu, Liming

    2018-04-01

    The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.

  3. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.

    Science.gov (United States)

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-07-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition.

  4. Changes in the glucosinolate-myrosinase defense system in Brassica juncea cotyledons during seedling development.

    Science.gov (United States)

    Wallace, S K; Eigenbrode, Sanford D

    2002-02-01

    Optimal defense theory (ODT) predicts that plant defenses will be allocated to plant organs and tissues in proportion to their relative fitness values and susceptibilities to attack. This study was designed to test ODT predictions on the myrosinase-glucosinolate defense system in Brassica juncea by examining the relationships between the fitness value of B. juncea cotyledons and the levels and effectiveness of cotyledon defenses. Specifically, we estimated fitness value of cotyledons during plant development by measuring plant growth and seed production after cotyledon damage or removal at successive seedling ages. Cotyledon removal within five days of emergence had a significant impact on growth and seed production, but cotyledon removal at later stages did not. Consistent with ODT, glucosinolate and myrosinase levels in cotyledons also declined with seedling age, as did relative defenses against a generalist herbivore, Spodoptera eridania, as estimated by bioassay. Declines in glucosinolates were as predicted by a passive, allometric dilution model based on cotyledon expansion. Declines in myrosinase activity were significantly more gradual than predicted by allometric dilution, suggesting active retention of myrosinase activity as young cotyledons expand.

  5. Patriot/Medium Extended Air Defense System Combined Aggregate Program (Patriot/MEADS CAP)

    Science.gov (United States)

    2013-12-01

    SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY...States, Germany, and Italy to replace the U.S. Patriot air defense systems, Patriot and Hawk systems in Germany, and the Nike system in Italy. The MEADS...combat demonstrated capability against these threats. MEADS will employ a netted distributed architecture with modular components to increase

  6. Modeling of Target Tracking System for Homing Missiles and Air Defense Systems

    Directory of Open Access Journals (Sweden)

    Yunes Sh. ALQUDSI

    2018-06-01

    Full Text Available One reason of why the guidance and control systems are imperfect is due to the dynamics of both the tracker and the missile, which appears as an error in the alignment with the LOS and delay in the response of the missile to change its orientation. Other reasons are the bias and disturbances as well as the noise about and within the system such as the thermal noise. This paper deals with the tracking system used in the homing guidance and air defense systems. A realistic model for the tracking system model is developed including the receiver servo dynamics and the possible disturbance and noise that may affect the accuracy of the tracking signals measured by the seeker sensor. Modeling the parameters variability and uncertainty is also examined to determine the robustness margin of the tracking system.

  7. Defense Systems Management Review. Volume 3, Number 2, Spring 1980. Managing the Process.

    Science.gov (United States)

    1980-01-01

    and no one did. As a result, many literally curled up and died, and for no known medical reason. Major Mayer ended a lecture on the subject with a plea...November 6, 1978. 10. Fred E. Rosell, Jr., "’ rip Report-Visit to Defense Documentation Center (DDC), May 16, 1978," Defense Systems Management College...easily expandable to splits among three or more producers. To do this for three companies, you must determine the split between Companies A and B as a

  8. Minmax defense strategy for complex multi-state systems

    International Nuclear Information System (INIS)

    Hausken, Kjell; Levitin, Gregory

    2009-01-01

    This paper presents a general optimization methodology that merges game theory and multi-state system survivability theory. The defender has multiple alternatives of defense strategy that presumes separation and protection of system elements. The attacker also has multiple alternatives of its attack strategy based on a combination of different possible attack actions against different groups of system elements. The defender minimizes, and the attacker maximizes, the expected damage caused by the attack (taking into account the unreliability of system elements and the multi-state nature of complex series-parallel systems). The problem is defined as a two-period minmax non-cooperative game between the defender who moves first and the attacker who moves second. An exhaustive minmax optimization algorithm is presented based on a double-loop genetic algorithm for determining the solution. A universal generating function technique is applied for evaluating the losses caused by system performance reduction. Illustrative examples with solutions are presented

  9. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization.

    Science.gov (United States)

    Slaby, Beate M; Hackl, Thomas; Horn, Hannes; Bayer, Kristina; Hentschel, Ute

    2017-11-01

    Marine sponges are ancient metazoans that are populated by distinct and highly diverse microbial communities. In order to obtain deeper insights into the functional gene repertoire of the Mediterranean sponge Aplysina aerophoba, we combined Illumina short-read and PacBio long-read sequencing followed by un-targeted metagenomic binning. We identified a total of 37 high-quality bins representing 11 bacterial phyla and two candidate phyla. Statistical comparison of symbiont genomes with selected reference genomes revealed a significant enrichment of genes related to bacterial defense (restriction-modification systems, toxin-antitoxin systems) as well as genes involved in host colonization and extracellular matrix utilization in sponge symbionts. A within-symbionts genome comparison revealed a nutritional specialization of at least two symbiont guilds, where one appears to metabolize carnitine and the other sulfated polysaccharides, both of which are abundant molecules in the sponge extracellular matrix. A third guild of symbionts may be viewed as nutritional generalists that perform largely the same metabolic pathways but lack such extraordinary numbers of the relevant genes. This study characterizes the genomic repertoire of sponge symbionts at an unprecedented resolution and it provides greater insights into the molecular mechanisms underlying microbial-sponge symbiosis.

  10. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    Science.gov (United States)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major

  11. Microbial activity at Yucca Mountain

    International Nuclear Information System (INIS)

    Horn, J.M.; Meike, A.

    1995-01-01

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified

  12. Microbial activity at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Meike, A.

    1995-09-25

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified.

  13. Charges Assessed the Army by the Defense Logistics Agency for Deployable Medical Systems

    National Research Council Canada - National Science Library

    1995-01-01

    .... Deployable medical systems are standardized modular field hospitals that can be prepositioned in the event of a contingency, national emergency, or war operations. In FY 1994, the Defense Personnel Support Center billed the Army $25 million for acquiring and assembling deployable medical systems.

  14. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  15. The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins

    Directory of Open Access Journals (Sweden)

    Kevin D. Kohl

    2016-07-01

    Full Text Available The microbial communities inhabiting the alimentary tracts of mammals, particularly those of herbivores, are estimated to be one of the densest microbial reservoirs on Earth. The significance of these gut microbes in influencing the physiology, ecology and evolution of their hosts is only beginning to be realized. To understand the microbiome of herbivores with a focus on nutritional ecology, while evaluating the roles of host evolution and environment in sculpting microbial diversity, we have developed an experimental system consisting of the microbial communities of several species of herbivorous woodrats (genus Neotoma that naturally feed on a variety of dietary toxins. We designed this system to investigate the long-standing, but experimentally neglected hypothesis that ingestion of toxic diets by herbivores is facilitated by the gut microbiota. Like several other rodent species, the woodrat stomach has a sacculated, nongastric foregut portion. We have documented a dense and diverse community of microbes in the woodrat foregut, with several genera potentially capable of degrading dietary toxins and/or playing a role in stimulating hepatic detoxification enzymes of the host. The biodiversity of these gut microbes appears to be a function of host evolution, ecological experience and diet, such that dietary toxins increase microbial diversity in hosts with experience with these toxins while novel toxins depress microbial diversity. These microbial communities are critical to the ingestion of a toxic diet as reducing the microbial community with antibiotics impairs the host’s ability to feed on dietary toxins. Furthermore, the detoxification capacity of gut microbes can be transferred from Neotoma both intra and interspecifically to naïve animals that lack ecological and evolutionary history with these toxins. In addition to advancing our knowledge of complex host-microbes interactions, this system holds promise for identifying microbes that

  16. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng; Bougouffa, Salim; Wang, Yong; Lee, On On; Yang, Jiangke; Chan, Colin; Song, Xingyu; Qian, Pei-Yuan

    2014-01-01

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  17. Toward understanding the dynamics of microbial communities in an estuarine system.

    Directory of Open Access Journals (Sweden)

    Weipeng Zhang

    Full Text Available Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE. The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  18. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng

    2014-04-14

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  19. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Directory of Open Access Journals (Sweden)

    Yao Zhang

    Full Text Available To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4 concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  20. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Science.gov (United States)

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  1. The design about the intrusion defense system for IHEP

    International Nuclear Information System (INIS)

    Liu Baoxu; Xu Rongsheng; Yu Chuansong; Wu Chunzhen

    2003-01-01

    With the development of network technologies, limitations on traditional methods of network security protection are becoming more and more obvious. An individual network security product or the simple combination of several products can hardly complete the goal of keeping from hackers' intrusion. Therefore, on the basis of the analyses about the security problems of IHEPNET which is an open and scientific research network, the author designs an intrusion defense system especially for IHEPNET

  2. 75 FR 12173 - Proposed Information Collection; Comment Request; Defense Priorities and Allocations System

    Science.gov (United States)

    2010-03-15

    ... Allocations System regulation (15 CFR part 700) must retain the records for at least 3 years. II. Method of... Request; Defense Priorities and Allocations System AGENCY: Bureau of Industry and Security, Commerce...: Direct all written comments to Diana Hynek, Departmental Paperwork Clearance Officer, Department of...

  3. MICROBIAL CHARACTERISTICS OF SOILS UNDER AN INTEGRATED CROP-LIVESTOCK SYSTEM

    Directory of Open Access Journals (Sweden)

    Andréa Scaramal da Silva

    2015-02-01

    Full Text Available Integrated crop-livestock systems (ICLs are a viable strategy for the recovery and maintenance of soil characteristics. In the present study, an ICL experiment was conducted by the Instituto Agronômico do Paraná in the municipality of Xambre, Parana (PR, Brazil, to evaluate the effects of various grazing intensities. The objective of the present study was to quantify the levels of microbial biomass carbon (MBC and soil enzymatic activity in an ICL of soybean (summer and Brachiaria ruziziensis (winter, with B. ruziziensis subjected to various grazing intensities. Treatments consisted of varying pasture heights and grazing intensities (GI: 10, 20, 30, and 40 cm (GI-10, GI-20, GI-30, and GI-40, respectively and a no grazing (NG control. The microbial characteristics analysed were MBC, microbial respiration (MR, metabolic quotient (qCO2, the activities of acid phosphatase, β-glucosidase, arylsuphatase, and cellulase, and fluorescein diacetate (FDA hydrolysis. Following the second grazing cycle, the GI-20 treatment (20-cm - moderate grazing intensity contained the highest MBC concentrations and lowest qCO2 concentrations. Following the second soybean cycle, the treatment with the highest grazing intensity (GI-10 contained the lowest MBC concentration. Soil MBC concentrations in the pasture were favoured by the introduction of animals to the system. High grazing intensity (10-cm pasture height during the pasture cycle may cause a decrease in soil MBC and have a negative effect on the microbial biomass during the succeeding crop. Of all the enzymes analyzed, only arylsuphatase and cellulase activities were altered by ICL management, with differences between the moderate grazing intensity (GI-20 and no grazing (NG treatments.

  4. The Integrated Microbial Genomes (IMG) System: An Expanding Comparative Analysis Resource

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Anderson, Iain; Lykidis, Athanasios; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2009-09-13

    The integrated microbial genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG contains both draft and complete microbial genomes integrated with other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. Since its first release in 2005, IMG's data content and analytical capabilities have been constantly expanded through regular releases. Several companion IMG systems have been set up in order to serve domain specific needs, such as expert review of genome annotations. IMG is available at .

  5. Cruise Missile Defense

    National Research Council Canada - National Science Library

    Hichkad, Ravi R; Bolkcom, Christopher

    2005-01-01

    Congress has expressed interest in cruise missile defense for years. Cruise missiles (CMs) are essentially unmanned attack aircraft -- vehicles composed of an airframe, propulsion system, guidance system, and weapons payload...

  6. Cruise Missile Defense

    National Research Council Canada - National Science Library

    Hichkad, Ravi R; Bolkcom, Christopher

    2004-01-01

    Congress has expressed interest in cruise missile defense for years. Cruise missiles (CMs) are essentially unmanned attack aircraft -- vehicles composed of an airframe, propulsion system, guidance system, and weapons payload...

  7. Direct fed microbial supplementation repartitions host energy to the immune system.

    Science.gov (United States)

    Qiu, R; Croom, J; Ali, R A; Ballou, A L; Smith, C D; Ashwell, C M; Hassan, H M; Chiang, C-C; Koci, M D

    2012-08-01

    Direct fed microbials and probiotics are used to promote health in livestock and poultry; however, their mechanism of action is still poorly understood. We previously reported that direct fed microbial supplementation in young broilers reduced ileal respiration without changing whole-body energy expenditure. The current studies were conducted to further investigate the effects of a direct fed microbial on energy metabolism in different tissues of broilers. One hundred ninety-two 1-d-old broiler chicks (16 chicks/pen) were randomly assigned to 2 dietary groups: standard control starter diet (CSD) and CSD plus direct fed microbial (DFMD; 0.3%) with 6 pens/treatment. Body weight, feed consumption, whole-body energy expenditure, organ mass, tissue respiration rates, and peripheral blood mononuclear cell (PBMC) ATP concentrations were measured to estimate changes in energy metabolism. No differences in whole body energy expenditure or BW gain were observed; however, decreased ileal O(2) respiration (P energy consumption by PBMC corresponded with an altered immune response, broilers were immunized with sheep red blood cells (SRBC) and assayed for differences in their humoral response. The DFMD-fed broilers had a faster rate of antigen specific IgG production (P direct fed microbial used in this study resulted in energy re-partitioning to the immune system and an increase in antibody production independent of changes in whole body metabolism or growth performance.

  8. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.

    Science.gov (United States)

    Xiong, Weili; Abraham, Paul E; Li, Zhou; Pan, Chongle; Hettich, Robert L

    2015-10-01

    The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. IMG: the integrated microbial genomes database and comparative analysis system

    Science.gov (United States)

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Jacob, Biju; Huang, Jinghua; Williams, Peter; Huntemann, Marcel; Anderson, Iain; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2012-01-01

    The Integrated Microbial Genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG integrates publicly available draft and complete genomes from all three domains of life with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. IMG's data content and analytical capabilities have been continuously extended through regular updates since its first release in March 2005. IMG is available at http://img.jgi.doe.gov. Companion IMG systems provide support for expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er), teaching courses and training in microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu) and analysis of genomes related to the Human Microbiome Project (IMG/HMP: http://www.hmpdacc-resources.org/img_hmp). PMID:22194640

  10. Cost of space-based laser ballistic missile defense.

    Science.gov (United States)

    Field, G; Spergel, D

    1986-03-21

    Orbiting platforms carrying infrared lasers have been proposed as weapons forming the first tier of a ballistic missile defense system under the President's Strategic Defense Initiative. As each laser platform can destroy a limited number of missiles, one of several methods of countering such a system is to increase the number of offensive missiles. Hence it is important to know whether the cost-exchange ratio, defined as the ratio of the cost to the defense of destroying a missile to the cost to the offense of deploying an additional missile, is greater or less than 1. Although the technology to be used in a ballistic missile defense system is still extremely uncertain, it is useful to examine methods for calculating the cost-exchange ratio. As an example, the cost of an orbiting infrared laser ballistic missile defense system employed against intercontinental ballistic missiles launched simultaneously from a small area is compared to the cost of additional offensive missiles. If one adopts lower limits to the costs for the defense and upper limits to the costs for the offense, the cost-exchange ratio comes out substantially greater than 1. If these estimates are confirmed, such a ballistic missile defense system would be unable to maintain its effectiveness at less cost than it would take to proliferate the ballistic missiles necessary to overcome it and would therefore not satisfy the President's requirements for an effective strategic defense. Although the method is illustrated by applying it to a space-based infrared laser system, it should be straightforward to apply it to other proposed systems.

  11. Factors Influencing the Effectiveness of Systems Engineering Training and Education in the Department of Defense

    Science.gov (United States)

    2011-04-30

    learning. Recommendations are also presented for additional research into a more effective systems engineering andragogy . 15. SUBJECT TERMS 16...into a more effective systems engineering andragogy . Purpose Competency-based training for defense acquisition workers in the systems engineering

  12. High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved.

    Science.gov (United States)

    Turaev, Dmitrij; Rattei, Thomas

    2016-06-01

    The systems biology of microbial communities, organismal communities inhabiting all ecological niches on earth, has in recent years been strongly facilitated by the rapid development of experimental, sequencing and data analysis methods. Novel experimental approaches and binning methods in metagenomics render the semi-automatic reconstructions of near-complete genomes of uncultivable bacteria possible, while advances in high-resolution amplicon analysis allow for efficient and less biased taxonomic community characterization. This will also facilitate predictive modeling approaches, hitherto limited by the low resolution of metagenomic data. In this review, we pinpoint the most promising current developments in metagenomics. They facilitate microbial systems biology towards a systemic understanding of mechanisms in microbial communities with scopes of application in many areas of our daily life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Variation in plant defense suppresses herbivore performance

    Science.gov (United States)

    Pearse, Ian; Paul, Ryan; Ode, Paul J.

    2018-01-01

    Defensive variability of crops and natural systems can alter herbivore communities and reduce herbivory. However, it is still unknown how defense variability translates into herbivore suppression. Nonlinear averaging and constraints in physiological tracking (also more generally called time-dependent effects) are the two mechanisms by which defense variability might impact herbivores. We conducted a set of experiments manipulating the mean and variability of a plant defense, showing that defense variability does suppress herbivore performance and that it does so through physiological tracking effects that cannot be explained by nonlinear averaging. While nonlinear averaging predicted higher or the same herbivore performance on a variable defense than on an invariable defense, we show that variability actually decreased herbivore performance and population growth rate. Defense variability reduces herbivore performance in a way that is more than the average of its parts. This is consistent with constraints in physiological matching of detoxification systems for herbivores experiencing variable toxin levels in their diet and represents a more generalizable way of understanding the impacts of variability on herbivory. Increasing defense variability in croplands at a scale encountered by individual herbivores can suppress herbivory, even if that is not anticipated by nonlinear averaging.

  14. Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense.

    NARCIS (Netherlands)

    Vos, J.B.; Sterkenburg, M.A. van; Rabe, K.F.; Schalkwijk, J.; Hiemstra, P.S.; Datson, N.A.

    2005-01-01

    The airway epithelium responds to microbial exposure by altering expression of a variety of genes to increase innate host defense. We aimed to delineate the early transcriptional response in human primary bronchial epithelial cells exposed for 6 h to a mixture of IL-1beta and TNF-alpha or

  15. Marine Microbial Systems Ecology: Microbial Networks in the Sea

    NARCIS (Netherlands)

    Muijzer, G.; Stal, L.J.; Cretoiu, M.S.

    2016-01-01

    Next-generation sequencing of DNA has revolutionized microbial ecology. Using this technology, it became for the first time possible to analyze hundreds of samples simultaneously and in great detail. 16S rRNA amplicon sequencing, metagenomics and metatranscriptomics became available to determine the

  16. Multiple Identified Neurons and Peripheral Nerves Innervating the Prothoracic Defense Glands in Stick Insects Reveal Evolutionary Conserved and Novel Elements of a Chemical Defense System

    Directory of Open Access Journals (Sweden)

    Johannes Strauß

    2017-11-01

    Full Text Available The defense glands in the dorsal prothorax are an important autapomorphic trait of stick insects (Phasmatodea. Here, we study the functional anatomy and neuronal innervation of the defense glands in Anisomorpha paromalus (Westwood, 1859 (Pseudophasmatinae, a species which sprays its defense secretions when disturbed or attacked. We use a neuroanatomical approach to identify the nerves innervating the gland muscles and the motoneurons with axons in the different nerves. The defense gland is innervated by nerves originating from two segments, the subesophageal ganglion (SOG, and the prothoracic ganglion. Axonal tracing confirms the gland innervation via the anterior subesophageal nerve, and two intersegmental nerves, the posterior subesophageal nerve, and the anterior prothoracic nerve. Axonal tracing of individual nerves reveals eight identified neuron types in the subesophageal or prothoracic ganglion. The strongest innervating nerve of the gland is the anterior subesophageal nerve, which also supplies dorsal longitudinal thorax muscles (neck muscles by separate nerve branches. Tracing of individual nerve branches reveals different sets of motoneurons innervating the defense gland (one ipsilateral and one contralateral subesophageal neuron or the neck muscle (ventral median neurons. The ipsilateral and contralateral subesophageal neurons have no homologs in related taxa like locusts and crickets, and thus evolved within stick insects with the differentiation of the defense glands. The overall innervation pattern suggests that the longitudinal gland muscles derived from dorsal longitudinal neck muscles. In sum, the innervating nerves for dorsal longitudinal muscles are conserved in stick insects, while the neuronal control system was specialized with conserved motoneurons for the persisting neck muscles, and evolutionarily novel subesophageal and prothoracic motoneurons innervating the defense gland.

  17. Department of Defense perspective

    International Nuclear Information System (INIS)

    Devine, R.

    1985-01-01

    This paper examines radiation instrumentation from the Department of Defense perspective. Radiation survey instruments and calibration, or RADIAC, as it is called in the services, while administratively falling under the Assistant Secretary of Defense for Atomic Energy, has generally been managed at a lower level. The Naval Electronics Systems Command and Army Signal Corp are the two principles in the Department of Defense for RADIAC. The actions of the services are coordinated through the tri-service RADIAC working group, which meets about every year and a half. Several points from this organization are highlighted

  18. External Quality Control Review of the Defense Information Systems Agency Audit Organization

    Science.gov (United States)

    2012-08-07

    We are providing this report for your information and use. We have reviewed the system of quality control for the audit organization of the Defense...audit organization encompasses the audit organization’s leadership, emphasis on performing high quality work, and policies and procedures established

  19. CLASSIFICATION OF THE MGR DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) defense high-level waste disposal container system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333PY ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  20. Soil microbial communities under cacao agroforestry and cover crop systems in Peru

    Science.gov (United States)

    Cacao (Theobroma cacao) trees are grown in tropical regions worldwide for chocolate production. We studied the effects of agroforestry management systems and cover cropping on soil microbial communities under cacao in two different replicated field experiments in Peru. Two agroforestry systems, Imp...

  1. Microbial Diversity in Soil Treatment Systems for Wastewater

    Science.gov (United States)

    Van Cuyk, S.; Spear, J.; Siegrist, R.; Pace, N.

    2002-05-01

    There is an increasing awareness and concern over land based wastewater system performance with respect to the removal of bacteria and virus. The goal of this work is to describe and identify the organismal composition of the microbiota in the applied wastewater effluent, the rich biomat that develops at the infiltrative surface, and in the soil percolate in order to aid in the understanding of bacterial and virus purification in soil treatment systems. The traditional reliance on pure culture techniques to describe microbiota is circumvented by the employment of a molecular approach. Microbial community characterization is underway based on cloning and sequencing of 16S rRNA genes for phylogenetic analyses, to determine the nature and quantity of microbiota that constitute these ecosystems. Knowledge of the organisms naturally present can influence the design and treatment capacity of these widely used land based systems. Laboratory, intermediate and field scale systems are currently under study. Since human pathogens are known to exist in sewage effluents, their removal in wastewater infiltration systems and within the underlying soil are in need of a more fundamental understanding. The relationship between design parameters and environmental conditions, including a microbial characterization, is essential for the prevention of contamination in groundwater sources. Preliminary results indicate the presence of uncultured organisms and phylogenetic kinds that had not been detected in these systems using other methods. Acinetobacter johnsonii and Acrobacter cryaerophilus were the two dominant species found in septic tank effluent, comprising 20% and 11% of the library respectively. In soil samples collected from the infiltrative surface of a column dosed with STE, there was no dominant bacterial species present. Percolate samples collected from the outflow of the column showed that a tuber borchii symbiont, a common soil microorganism, dominated the bacterial

  2. Habitat Fragmentation can Modulate Drought Effects on the Plant-soil-microbial System in Mediterranean Holm Oak (Quercus ilex) Forests.

    Science.gov (United States)

    Flores-Rentería, Dulce; Curiel Yuste, Jorge; Rincón, Ana; Brearley, Francis Q; García-Gil, Juan Carlos; Valladares, Fernando

    2015-05-01

    Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.

  3. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Guolong Zhang

    2014-02-01

    Full Text Available Host defense peptides (HDPs are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens.

  4. The Virome and Its Major Component, Anellovirus, a Convoluted System Molding Human Immune Defenses and Possibly Affecting the Development of Asthma and Respiratory Diseases in Childhood

    Directory of Open Access Journals (Sweden)

    Giulia Freer

    2018-04-01

    Full Text Available The microbiome, a thriving and complex microbial community colonizing the human body, has a broad impact on human health. Colonization is a continuous process that starts very early in life and occurs thanks to shrewd strategies microbes have evolved to tackle a convoluted array of anatomical, physiological, and functional barriers of the human body. Cumulative evidence shows that viruses are part of the microbiome. This part, called virome, has a dynamic composition that reflects what we eat, how and where we live, what we do, our genetic background, and other unpredictable variables. Thus, the virome plays a chief role in shaping innate and adaptive host immune defenses. Imbalance of normal microbial flora is thought to trigger or exacerbate many acute and chronic disorders. A compelling example can be found in the respiratory apparatus, where early-life viral infections are major determinants for the development of allergic diseases, like asthma, and other non-transmissible diseases. In this review, we focus on the virome and, particularly, on Anelloviridae, a recently discovered virus family. Anelloviruses are major components of the virome, present in most, if not all, human beings, where they are acquired early in life and replicate persistently without causing apparent disease. We will discuss how modulation of innate and adaptive immune systems by Anelloviruses can influence the development of respiratory diseases in childhood and provide evidence for the use of Anelloviruses as useful and practical molecular markers to monitor inflammatory processes and immune system competence.

  5. Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses1[W][OA

    Science.gov (United States)

    Zarate, Sonia I.; Kempema, Louisa A.; Walling, Linda L.

    2007-01-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF. PMID:17189328

  6. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System

    NARCIS (Netherlands)

    Zetsche, Bernd; Gootenberg, Jonathan S.; Abudayyeh, Omar O.; Slaymaker, Ian M.; Makarova, Kira S.; Essletzbichler, Patrick; Volz, Sara E.; Joung, Julia; Oost, van der John; Regev, Aviv; Koonin, Eugene V.; Zhang, Feng

    2015-01-01

    The microbial adaptive immune system CRISPR mediates defense against foreign genetic elements through two classes of RNA-guided nuclease effectors. Class 1 effectors utilize multi-protein complexes, whereas class 2 effectors rely on single-component effector proteins such as the well-characterized

  7. Streamlining genomes: toward the generation of simplified and stabilized microbial systems

    NARCIS (Netherlands)

    Leprince, A.; Passel, van M.W.J.; Martins Dos Santos, V.A.P.

    2012-01-01

    At the junction between systems and synthetic biology, genome streamlining provides a solid foundation both for increased understanding of cellular circuitry, and for the tailoring of microbial chassis towards innovative biotechnological applications. Iterative genomic deletions (targeted and

  8. 78 FR 28756 - Defense Federal Acquisition Regulation Supplement: System for Award Management Name Changes...

    Science.gov (United States)

    2013-05-16

    ... Management Name Changes, Phase 1 Implementation (DFARS Case 2012- D053) AGENCY: Defense Acquisition... Excluded Parties Listing System (EPLS) databases into the System for Award Management (SAM) database. DATES... enacted in an effort to improve the management and promotion of electronic Government services and...

  9. Photovoltaics in the Department of Defense

    International Nuclear Information System (INIS)

    Chapman, R.N.

    1997-01-01

    This paper documents the history of photovoltaic use within the Department of Defense leading up to the installation of 2.1 MW of photovoltaics underway today. This history describes the evolution of the Department of Defense's Tri-Service Photovoltaic Review Committee and the committee's strategic plan to realize photovoltaic's full potential through outreach, conditioning of the federal procurement system, and specific project development. The Photovoltaic Review Committee estimates photovoltaic's potential at nearly 4,000 MW, of which about 700 MW are considered to be cost-effective at today's prices. The paper describes photovoltaic's potential within the Department of Defense, the status and features of the 2.1-MW worth of photovoltaic systems under installation, and how these systems are selected and implemented. The paper also documents support provided to the Department of Defense by the Department of Energy dating back to the late 70s. copyright 1997 American Institute of Physics

  10. Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System.

    Science.gov (United States)

    Huang, Yanyan; Liu, Zhen; Liu, Chaoqun; Ju, Enguo; Zhang, Yan; Ren, Jinsong; Qu, Xiaogang

    2016-06-01

    In this work, for the first time, we constructed a novel multi-nanozymes cooperative platform to mimic intracellular antioxidant enzyme-based defense system. V2 O5 nanowire served as a glutathione peroxidase (GPx) mimic while MnO2 nanoparticle was used to mimic superoxide dismutase (SOD) and catalase (CAT). Dopamine was used as a linker to achieve the assembling of the nanomaterials. The obtained V2 O5 @pDA@MnO2 nanocomposite could serve as one multi-nanozyme model to mimic intracellular antioxidant enzyme-based defense procedure in which, for example SOD, CAT, and GPx co-participate. In addition, through assembling with dopamine, the hybrid nanocomposites provided synergistic antioxidative effect. Importantly, both in vitro and in vivo experiments demonstrated that our biocompatible system exhibited excellent intracellular reactive oxygen species (ROS) removal ability to protect cell components against oxidative stress, showing its potential application in inflammation therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Integration Role of European Defense Procurement in Achieving a More Competitive and Stronger European Defense Equipment Market

    Science.gov (United States)

    2015-06-01

    and systems, even monopolistic ) essence of the supply side of the defense market . There are only a few suppliers that can meet today’s complex...DEFENSE PROCUREMENT IN ACHIEVING A MORE COMPETITIVE AND STRONGER EUROPEAN DEFENSE EQUIPMENT MARKET by Kiril O. Angelov June 2015 Thesis Advisor...COMPETITIVE AND STRONGER EUROPEAN DEFENSE EQUIPMENT MARKET 5. FUNDING NUMBERS 6. AUTHOR(S) Kiril O. Angelov 7. PERFORMING ORGANIZATION NAME(S) AND

  12. Microbial Monitoring from the Frontlines to Space: Department of Defense Small Business Innovation Research Technology Aboard the International Space Station

    Science.gov (United States)

    Oubre, Cherie M.; Khodadad, Christina L.; Castro, Victoria A.; Ott, C. Mark; Flint, Stephanie; Pollack, Lawrence P.; Roman, Monserrate C.

    2017-01-01

    The RAZOR (trademark) EX, a quantitative Polymerase Chain Reaction (qPCR) instrument, is a portable, ruggedized unit that was designed for the Department of Defense (DoD) with its reagent chemistries traceable to a Small Business Innovation Research (SBIR) contract beginning in 2002. The PCR instrument's primary function post 9/11 was to enable frontline soldiers and first responders to detect biological threat agents and bioterrorism activities in remote locations to include field environments. With its success for DoD, the instrument has also been employed by other governmental agencies including Department of Homeland Security (DHS). The RAZOR (Trademark) EX underwent stringent testing by the vendor, as well as through the DoD, and was certified in 2005. In addition, the RAZOR (trademark) EX passed DHS security sponsored Stakeholder Panel on Agent Detection Assays (SPADA) rigorous evaluation in 2011. The identification and quantitation of microbial pathogens is necessary both on the ground as well as during spaceflight to maintain the health of astronauts and to prevent biofouling of equipment. Currently, culture-based monitoring technology has been adequate for short-term spaceflight missions but may not be robust enough to meet the requirements for long-duration missions. During a NASA-sponsored workshop in 2011, it was determined that the more traditional culture-based method should be replaced or supplemented with more robust technologies. NASA scientists began investigating innovative molecular technologies for future space exploration and as a result, PCR was recommended. Shortly after, NASA sponsored market research in 2012 to identify and review current, commercial, cutting edge PCR technologies for potential applicability to spaceflight operations. Scientists identified and extensively evaluated three candidate technologies with the potential to function in microgravity. After a thorough voice-of-the-customer trade study and extensive functional and

  13. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells.

    Science.gov (United States)

    Liao, Hsin-Kai; Gu, Ying; Diaz, Arturo; Marlett, John; Takahashi, Yuta; Li, Mo; Suzuki, Keiichiro; Xu, Ruo; Hishida, Tomoaki; Chang, Chan-Jung; Esteban, Concepcion Rodriguez; Young, John; Izpisua Belmonte, Juan Carlos

    2015-03-10

    To combat hostile viruses, bacteria and archaea have evolved a unique antiviral defense system composed of clustered regularly interspaced short palindromic repeats (CRISPRs), together with CRISPR-associated genes (Cas). The CRISPR/Cas9 system develops an adaptive immune resistance to foreign plasmids and viruses by creating site-specific DNA double-stranded breaks (DSBs). Here we adapt the CRISPR/Cas9 system to human cells for intracellular defense against foreign DNA and viruses. Using HIV-1 infection as a model, our results demonstrate that the CRISPR/Cas9 system disrupts latently integrated viral genome and provides long-term adaptive defense against new viral infection, expression and replication in human cells. We show that engineered human-induced pluripotent stem cells stably expressing HIV-targeted CRISPR/Cas9 can be efficiently differentiated into HIV reservoir cell types and maintain their resistance to HIV-1 challenge. These results unveil the potential of the CRISPR/Cas9 system as a new therapeutic strategy against viral infections.

  14. HOMA: Israel's National Missile Defense Strategy (Abridged Version)

    National Research Council Canada - National Science Library

    Lailari, Guermantes

    2002-01-01

    ... (Hebrew for Fortress Wall), Chapter 1 discusses the fundamentals of missile defense and the reason why Israel's missile defense system affects US national security interests, Chapter 2 describes Israel's missile defense...

  15. Development of System Architecture to Investigate the Impact of Integrated Air and Missile Defense in a Distributed Lethality Environment

    Science.gov (United States)

    2017-12-01

    SYSTEM ARCHITECTURE TO INVESTIGATE THE IMPACT OF INTEGRATED AIR AND MISSILE DEFENSE IN A DISTRIBUTED LETHALITY ENVIRONMENT by Justin K. Davis...TO INVESTIGATE THE IMPACT OF INTEGRATED AIR AND MISSILE DEFENSE IN A DISTRIBUTED LETHALITY ENVIRONMENT 5. FUNDING NUMBERS 6. AUTHOR(S) Justin K...ARCHITECTURE TO INVESTIGATE THE IMPACT OF INTEGRATED AIR AND MISSILE DEFENSE IN A DISTRIBUTED LETHALITY ENVIRONMENT Justin K. Davis Lieutenant

  16. Defenses and morality: Adam Smith, Sigmund Freud, and contemporary psychoanalysis.

    Science.gov (United States)

    Gabrinetti, Paul A; Özler, Sule

    2014-10-01

    In this paper we follow the development and transmission of moral learning from Adam Smith's impartial spectator to Sigmund Freud's superego and then to contemporary psychoanalysis. We argue that defenses are an integral component in the acquisition of any moral system. Elaborating on this argument, we assert that there is a progression from defensive systems that are "closed" to defensive systems that are "open," as defined in a recent work by Novick and Novick. The former system is "static, avoids reality, and is characterized by power dynamics, sadomasochism, and omnipotent defense." The latter, on the other hand, is a system that allows for "joy, creativity, spontaneity, love and it is attuned to reality." Furthermore, while Smith and Freud's systems are more one-person systems of defense, contemporary psychoanalysis has moved to more of a two-person system.

  17. Performance assessment and microbial diversity of two pilot scale multi-stage sub-surface flow constructed wetland systems.

    Science.gov (United States)

    Babatunde, A O; Miranda-CasoLuengo, Raul; Imtiaz, Mehreen; Zhao, Y Q; Meijer, Wim G

    2016-08-01

    This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems (CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100gBOD5/(m(2)·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus (P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10gP/(m(2)·day) based on the performance results obtained within the first 16months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance. Copyright © 2016. Published by Elsevier B.V.

  18. Molecular ecology of microbial mats

    NARCIS (Netherlands)

    Bolhuis, H.; Cretoiu, M.S.; Stal, L.J.

    2014-01-01

    Phototrophic microbial mats are ideal model systems for ecological and evolutionary analysis of highly diverse microbial communities. Microbial mats are small-scale, nearly closed, and self-sustaining benthic ecosystems that comprise the major element cycles, trophic levels, and food webs. The steep

  19. Method Verification Requirements for an Advanced Imaging System for Microbial Plate Count Enumeration.

    Science.gov (United States)

    Jones, David; Cundell, Tony

    2018-01-01

    The Growth Direct™ System that automates the incubation and reading of membrane filtration microbial counts on soybean-casein digest, Sabouraud dextrose, and R2A agar differs only from the traditional method in that micro-colonies on the membrane are counted using an advanced imaging system up to 50% earlier in the incubation. Based on the recommendations in USP Validation of New Microbiological Testing Methods , the system may be implemented in a microbiology laboratory after simple method verification and not a full method validation. LAY ABSTRACT: The Growth Direct™ System that automates the incubation and reading of microbial counts on membranes on solid agar differs only from the traditional method in that micro-colonies on the membrane are counted using an advanced imaging system up to 50% earlier in the incubation time. Based on the recommendations in USP Validation of New Microbiological Testing Methods , the system may be implemented in a microbiology laboratory after simple method verification and not a full method validation. © PDA, Inc. 2018.

  20. Dissolved Organic Carbon Influences Microbial Community Composition and Diversity in Managed Aquifer Recharge Systems

    KAUST Repository

    Li, D.; Sharp, J. O.; Saikaly, Pascal; Ali, Shahjahan; Alidina, M.; Alarawi, M. S.; Keller, S.; Hoppe-Jones, C.; Drewes, J. E.

    2012-01-01

    This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones.

  1. Dissolved Organic Carbon Influences Microbial Community Composition and Diversity in Managed Aquifer Recharge Systems

    KAUST Repository

    Li, D.

    2012-07-13

    This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones.

  2. Dissolved organic carbon influences microbial community composition and diversity in managed aquifer recharge systems.

    Science.gov (United States)

    Li, Dong; Sharp, Jonathan O; Saikaly, Pascal E; Ali, Shahjahan; Alidina, Mazahirali; Alarawi, Mohammed S; Keller, Stephanie; Hoppe-Jones, Christiane; Drewes, Jörg E

    2012-10-01

    This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones.

  3. Microbial flora variations in the respiratory tract of mice

    Directory of Open Access Journals (Sweden)

    Rosa Cangemi de Gutierrez

    1999-09-01

    Full Text Available A stable microbial system in the respiratory tract acts as an important defense mechanism against pathogenic microorganisms. Perturbations in this system may allow pathogens to establish. In an ecological environment such as the respiratory tract, there are many diverse factors that play a role in the establishment of the indigenous flora. In the present work we studied the normal microbial flora of different areas of the respiratory tract of mice and their evolution from the time the mice were born. Our interest was to know which were the dominant groups of microorganisms in each area, which were the first capable of colonizing and which dominated over time to be used as probiotic microorganisms. Our results show that Gram negative facultatively anaerobic bacilli and strict anaerobic microorganisms were the last ones to appear in the bronchia, while aerobic and Gram positive cocci were present in all the areas of the respiratory tract. The number of facultative aerobes and strict anaerobes were similar in the nasal passage, pharynx instilled and trachea, but lower in bronchia. The dominant species were Streptococcus viridans and Staphylococcus saprophyticcus, followed by S. epidermidis, Lactobacilli and S. cohnii I which were present on every studied days but at different proportions. This paper is the first part of a research topic investigating the protective effect of the indigenous flora against pathogens using the mice as an experimental model.

  4. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2004-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report is performed jointly by, Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures and the work done on recovery experiments on core rocks. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results do not show a

  5. Air defense planning for an area with the use of very short range air defense sets

    Directory of Open Access Journals (Sweden)

    Tadeusz Pietkiewicz

    2017-12-01

    Full Text Available This paper presents a heuristic method of planning the deployment of very short-range anti-air missile and artillery sets (VSHORAD around an area (‘protected area’ in order to protect it. A function dependent on the distance between the earliest feasible points of destroying targets and the centre of the protected area was taken as an objective function. This is a different indicator from those commonly used in the literature, and based on the likelihood of a defense zone penetration by means of an air attack (MAA: the kill probability of the MAA and the probability of area losses. The model constraints resulted directly from the restrictions imposed by real air defense systems and the nature of the area being defended. This paper assumes that the VSHORAD system operates as a part of a general, superordinate air defense command and control system based on the idea of network-centric warfare, which provides the VSHORAD system with a recognized air picture, air defense plans, and combat mission specifications. The presented method has been implemented. The final part of the paper presents the computational results. Keywords: optimal planning, air defense system, area installation protection, deployment of very short range anti-air missile and artillery sets (VSHORAD

  6. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system

    Science.gov (United States)

    Niu, Jiaojiao; Deng, Jie; Xiao, Yunhua; He, Zhili; Zhang, Xian; van Nostrand, J. D.; Liang, Yili; Deng, Ye; Liu, Xueduan; Yin, Huaqun

    2016-10-01

    Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and sediment under LS. Results showed that both LH and LS had higher relative abundance of S and Fe oxidizing bacteria, while S and Fe reducing bacteria were more abundant in the Sediment. GeoChip analysis showed a stronger functional potential for S0 oxidation in LH microbial communities. These findings were consistent with measured oxidation activities to S0 and Fe2+, which were highest by microbial communities from LH, lower by those from LS and lowest form Sediment. Moreover, phylogenetic molecular ecological network analysis indicated that these differences might be related to interactions among microbial taxa. Last but not the least, a conceptual model was proposed, linking the S&Fe cycling with responsible microbial populations in the bioleaching systems. Collectively, this study revealed the microbial community and functional structures in all three subsystems of the copper ore, and advanced a holistic understanding of the whole bioleaching system.

  7. Physcomitrella patens Activates Defense Responses against the Pathogen Colletotrichum gloeosporioides

    Directory of Open Access Journals (Sweden)

    Guillermo Reboledo

    2015-09-01

    Full Text Available The moss Physcomitrella patens is a suitable model plant to analyze the activation of defense mechanisms after pathogen assault. In this study, we show that Colletotrichum gloeosporioides isolated from symptomatic citrus fruit infects P. patens and cause disease symptoms evidenced by browning and maceration of tissues. After C. gloeosporioides infection, P. patens reinforces the cell wall by the incorporation of phenolic compounds and induces the expression of a Dirigent-protein-like encoding gene that could lead to the formation of lignin-like polymers. C. gloeosporioides-inoculated protonemal cells show cytoplasmic collapse, browning of chloroplasts and modifications of the cell wall. Chloroplasts relocate in cells of infected tissues toward the initially infected C. gloeosporioides cells. P. patens also induces the expression of the defense genes PAL and CHS after fungal colonization. P. patens reporter lines harboring the auxin-inducible promoter from soybean (GmGH3 fused to β-glucuronidase revealed an auxin response in protonemal tissues, cauloids and leaves of C. gloeosporioides-infected moss tissues, indicating the activation of auxin signaling. Thus, P. patens is an interesting plant to gain insight into defense mechanisms that have evolved in primitive land plants to cope with microbial pathogens.

  8. Non-tuberculous mycobacteria and microbial populations in drinking water distribution systems

    Directory of Open Access Journals (Sweden)

    Rossella Briancesco

    2010-01-01

    Full Text Available Data on the occurrence of non-tuberculous mycobacteria (NTM, in parallel with those obtained for bacterial indicators and amoebae, are presented with the aim to collect information on the spread of NTM in drinking water distribution systems in Italy. Samples were collected from taps of hospitals and households in Central and Southern Italy. The concentration values obtained for the more traditional microbial parameters complied with the mandatory requirements for drinking water. Conversely, moderate-to-high microbial loads (till 300 CFU/L were observed for the NTM. Positive samples were obtained from 62% of the investigated water samples. Analogous results were observed for amoebae showing a higher percentage of positive samples (76%. In terms of public health, the presence of mycobacteria in water distribution systems may represent a potential risk especially for vulnerable people such as children, the elderly or immunocompromised individuals.

  9. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity.

    Science.gov (United States)

    Velmourougane, Kulandaivelu

    2016-01-01

    A study was undertaken with an objective of evaluating the long-term impacts of organic (ORG) and conventional (CON) methods of coffee farming on soil physical, chemical, biological, and microbial diversity. Electrical conductivity and bulk density were found to increase by 34% and 21%, respectively, in CON compared to ORG system, while water holding capacity was found decreased in both the systems. Significant increase in organic carbon was observed in ORG system. Major nutrients, nitrogen and potassium, levels showed inclination in both ORG and CON system, but the trend was much more pronounced in CON system. Phosphorus was found to increase in both ORG and CON system, but its availability was found to be more with CON system. In biological attributes, higher soil respiration and fluorescein diacetate activity were recorded in ORG system compared to CON system. Higher soil urease activity was observed in CON system, while dehydrogenase activity does not show significant differences between ORG and CON systems. ORG system was found to have higher macrofauna (31.4%), microbial population (34%), and microbial diversity indices compared to CON system. From the present study, it is accomplished that coffee soil under long-term ORG system has better soil properties compared to CON system.

  10. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyungmi; Okabe, Satoshi [Hokkaido Univ., Sapporo (Japan). Dept. of Urban and Environmental Engineering

    2009-07-15

    A mediator-less three-stage two-chamber microbial fuel cell (MFC) system was developed and operated continuously for more than 1.5 years to evaluate continuous power generation while treating artificial wastewater containing glucose (10 mM) concurrently. A stable power density of 28 W/m3 was attained with an anode hydraulic retention time of 4.5 h and phosphate buffer as the cathode electrolyte. An overall dissolved organic carbon removal ratio was about 85%, and coulombic efficiency was about 46% in this MFC system. We also analyzed the microbial community structure of anode biofilms in each MFC. Since the environment in each MFC was different due to passing on the products to the next MFC in series, the microbial community structure was different accordingly. The anode biofilm in the first MFC consisted mainly of bacteria belonging to the Gammaproteobacteria, identified as Aeromonas sp., while the Firmicutes dominated the anode biofilms in the second and third MFCs that were mainly fed with acetate. Cyclic voltammetric results supported the presence of a redox compound(s) associated with the anode biofilm matrix, rather than mobile (dissolved) forms, which could be responsible for the electron transfer to the anode. Scanning electron microscopy revealed that the anode biofilms were comprised of morphologically different cells that were firmly attached on the anode surface and interconnected each other with anchor-like filamentous appendages, which might support the results of cyclic voltammetry. (orig.)

  11. Controls Over Operating System and Security Software Supporting the Defense Finance and Accounting Service

    National Research Council Canada - National Science Library

    McKinney, Terry

    1994-01-01

    This is the final in a series of three audits of management controls over the operating systems and security software used by the information processing centers that support the Defense Finance and Accounting Centers (DFAS...

  12. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus)

    Science.gov (United States)

    Oszust, Karolina; Frąc, Magdalena; Gryta, Agata; Bilińska, Nina

    2014-01-01

    The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions) significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential). Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a) ecological based on the use of probiotic preparations and organic fertilization (b) conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA) was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP) of PCR ammonia monooxygenase α-subunit (amoA) gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application. PMID:24897025

  13. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus

    Directory of Open Access Journals (Sweden)

    Karolina Oszust

    2014-06-01

    Full Text Available The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential. Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a ecological based on the use of probiotic preparations and organic fertilization (b conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP of PCR ammonia monooxygenase α-subunit (amoA gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application.

  14. Microbial enhancement of compost extracts based on cattle rumen content compost - characterisation of a system.

    Science.gov (United States)

    Shrestha, Karuna; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Midmore, David J

    2011-09-01

    Microbially enhanced compost extracts ('compost tea') are being used in commercial agriculture as a source of nutrients and for their perceived benefit to soil microbiology, including plant disease suppression. Rumen content material is a waste of cattle abattoirs, which can be value-added by conversion to compost and 'compost tea'. A system for compost extraction and microbial enhancement was characterised. Molasses amendment increased bacterial count 10-fold, while amendment based on molasses and 'fish and kelp hydrolysate' increased fungal count 10-fold. Compost extract incubated at 1:10 (w/v) dilution showed the highest microbial load, activity and humic/fulvic acid content compared to other dilutions. Aeration increased the extraction efficiency of soluble metabolites, and microbial growth rate, as did extraction of compost without the use of a constraining bag. A protocol of 1:10 dilution and aerated incubation with kelp and molasses amendments is recommended to optimise microbial load and fungal-to-bacterial ratio for this inoculum source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The complicated substrates enhance the microbial diversity and zinc leaching efficiency in sphalerite bioleaching system.

    Science.gov (United States)

    Xiao, Yunhua; Xu, YongDong; Dong, Weiling; Liang, Yili; Fan, Fenliang; Zhang, Xiaoxia; Zhang, Xian; Niu, Jiaojiao; Ma, Liyuan; She, Siyuan; He, Zhili; Liu, Xueduan; Yin, Huaqun

    2015-12-01

    This study used an artificial enrichment microbial consortium to examine the effects of different substrate conditions on microbial diversity, composition, and function (e.g., zinc leaching efficiency) through adding pyrite (SP group), chalcopyrite (SC group), or both (SPC group) in sphalerite bioleaching systems. 16S rRNA gene sequencing analysis showed that microbial community structures and compositions dramatically changed with additions of pyrite or chalcopyrite during the sphalerite bioleaching process. Shannon diversity index showed a significantly increase in the SP (1.460), SC (1.476), and SPC (1.341) groups compared with control (sphalerite group, 0.624) on day 30, meanwhile, zinc leaching efficiencies were enhanced by about 13.4, 2.9, and 13.2%, respectively. Also, additions of pyrite or chalcopyrite could increase electric potential (ORP) and the concentrations of Fe3+ and H+, which were the main factors shaping microbial community structures by Mantel test analysis. Linear regression analysis showed that ORP, Fe3+ concentration, and pH were significantly correlated to zinc leaching efficiency and microbial diversity. In addition, we found that leaching efficiency showed a positive and significant relationship with microbial diversity. In conclusion, our results showed that the complicated substrates could significantly enhance microbial diversity and activity of function.

  16. A Hydroponic Co-cultivation System for Simultaneous and Systematic Analysis of Plant/Microbe Molecular Interactions and Signaling.

    Science.gov (United States)

    Nathoo, Naeem; Bernards, Mark A; MacDonald, Jacqueline; Yuan, Ze-Chun

    2017-07-22

    An experimental design mimicking natural plant-microbe interactions is very important to delineate the complex plant-microbe signaling processes. Arabidopsis thaliana-Agrobacterium tumefaciens provides an excellent model system to study bacterial pathogenesis and plant interactions. Previous studies of plant-Agrobacterium interactions have largely relied on plant cell suspension cultures, the artificial wounding of plants, or the artificial induction of microbial virulence factors or plant defenses by synthetic chemicals. However, these methods are distinct from the natural signaling in planta, where plants and microbes recognize and respond in spatial and temporal manners. This work presents a hydroponic cocultivation system where intact plants are supported by metal mesh screens and cocultivated with Agrobacterium. In this cocultivation system, no synthetic phytohormone or chemical that induces microbial virulence or plant defense is supplemented. The hydroponic cocultivation system closely resembles natural plant-microbe interactions and signaling homeostasis in planta. Plant roots can be separated from the medium containing Agrobacterium, and the signaling and responses of both the plant hosts and the interacting microbes can be investigated simultaneously and systematically. At any given timepoint/interval, plant tissues or bacteria can be harvested separately for various "omics" analyses, demonstrating the power and efficacy of this system. The hydroponic cocultivation system can be easily adapted to study: 1) the reciprocal signaling of diverse plant-microbe systems, 2) signaling between a plant host and multiple microbial species (i.e. microbial consortia or microbiomes), 3) how nutrients and chemicals are implicated in plant-microbe signaling, and 4) how microbes interact with plant hosts and contribute to plant tolerance to biotic or abiotic stresses.

  17. Network Attack Detection and Defense: Securing Industrial Control Systems for Critical Infrastructures (Dagstuhl Seminar 14292)

    NARCIS (Netherlands)

    Dacer, Marc; Kargl, Frank; König, Hartmut; Valdes, Alfonso

    2014-01-01

    This report documents the program and the outcomes of Dagstuhl Seminar 14292 “Network Attack Detection and Defense: Securing Industrial Control Systems for Critical Infrastructures”. The main objective of the seminar was to discuss new approaches and ideas for securing industrial control systems. It

  18. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Li, Feifei; Tang, Junhong

    2016-10-01

    Waste pastry was hydrolyzed by glucoamylase and protease which were obtained from solid state fermentation of Aspergillus awamori and Aspergillus oryzae to produce waste pastry hydrolysate. Then, the effects of hydraulic retention times (HRTs) (4-12h) on hydrogen production rate (HPR) in the suspended microbial growth system (continuous stirred tank reactor, CSTR) and attached microbial growth system (continuous mixed immobilized sludge reactor, CMISR) from waste pastry hydrolysate were investigated. The maximum HPRs of CSTR (201.8mL/(h·L)) and CMISR (255.3mL/(h·L)) were obtained at HRT of 6h and 4h, respectively. The first-order reaction could be used to describe the enzymatic hydrolysis of waste pastry. The carbon content of the waste pastry remained 22.8% in the undigested waste pastry and consumed 77.2% for carbon dioxide and soluble microbial products. To our knowledge, this is the first study which reports biohydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Microbial contamination control in fuels and fuel systems since 1980 - a review

    Energy Technology Data Exchange (ETDEWEB)

    Passman, Frederick J. [Biodeterioration Control Associates, Inc (United States)], email: fredp@biodeterioration-control.com

    2011-07-01

    This paper presents a review of microbial contamination control in fuel and fuel systems. Some examples of the biodeterioration of components of fuel systems are given. Root cause analysis (RCA) and modeling can help in condition monitoring of fuel systems. RCA is a systematic process that starts after symptoms become apparent and facilitates improvement. Modeling, by contrast, starts before the problem occurs and the objective is to improve understanding of the process. Some of the different areas creating risk due to the process are climate, microbiology, chemistry, maintenance, and engineering. Condition monitoring is explained in detail, using representative samples. Contamination control plays a very important role. Various aspects of microbial contamination control are design, inventory control, house keeping and remediation. These aspects are explained in detail, using various examples. Since the deterioration cost involved is very high, its is important to avoid this problem by reducing the quantity of water used and using better risk assessment models.

  20. Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.

    Science.gov (United States)

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2013-12-06

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. Copyright © 2014 Johnston et al.

  1. The neuro-endocrinological role of microbial glutamate and GABA signaling

    Directory of Open Access Journals (Sweden)

    Roberto Mazzoli

    2016-11-01

    Full Text Available Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation and defense against pathogenic strains and interacts with the host organism through both direct contact (e.g., through surface antigens and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut-brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system also supports a communication pathway between the gut microbiota and neural circuits of the host, including the central nervous system. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut-brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune and humoral. In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin and trace amines, will be considered, with special focus on Glu and GABA circuits, receptors and signaling. From the basic science viewpoint, microbial endocrinology deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate, are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of

  2. Cost Effective Regional Ballistic Missile Defense

    Science.gov (United States)

    2016-02-16

    deploying advanced air defense systems18, such as the Russian S-300 and S-500, and concealing them in hardened, camouflaged sites, such as extensive... Russian objections to the European Phased Adaptive Approach (EPAA) and fund homeland defense priorities.39 Furthermore, the PTSS system was also... Theatre Ballistic Missile Defence Capability Becomes Operational,” Jane’s Missiles & Rockets, 1 February 2011. 55 Joseph W. Kirschbaum, REGIONAL MISSILE

  3. Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment.

    Science.gov (United States)

    Hsu, Tiffany; Joice, Regina; Vallarino, Jose; Abu-Ali, Galeb; Hartmann, Erica M; Shafquat, Afrah; DuLong, Casey; Baranowski, Catherine; Gevers, Dirk; Green, Jessica L; Morgan, Xochitl C; Spengler, John D; Huttenhower, Curtis

    2016-01-01

    Public transit systems are ideal for studying the urban microbiome and interindividual community transfer. In this study, we used 16S amplicon and shotgun metagenomic sequencing to profile microbial communities on multiple transit surfaces across train lines and stations in the Boston metropolitan transit system. The greatest determinant of microbial community structure was the transit surface type. In contrast, little variation was observed between geographically distinct train lines and stations serving different demographics. All surfaces were dominated by human skin and oral commensals such as Propionibacterium , Corynebacterium , Staphylococcus , and Streptococcus . The detected taxa not associated with humans included generalists from alphaproteobacteria, which were especially abundant on outdoor touchscreens. Shotgun metagenomics further identified viral and eukaryotic microbes, including Propionibacterium phage and Malassezia globosa . Functional profiling showed that Propionibacterium acnes pathways such as propionate production and porphyrin synthesis were enriched on train holding surfaces (holds), while electron transport chain components for aerobic respiration were enriched on touchscreens and seats. Lastly, the transit environment was not found to be a reservoir of antimicrobial resistance and virulence genes. Our results suggest that microbial communities on transit surfaces are maintained from a metapopulation of human skin commensals and environmental generalists, with enrichments corresponding to local interactions with the human body and environmental exposures. IMPORTANCE Mass transit environments, specifically, urban subways, are distinct microbial environments with high occupant densities, diversities, and turnovers, and they are thus especially relevant to public health. Despite this, only three culture-independent subway studies have been performed, all since 2013 and all with widely differing designs and conclusions. In this study, we

  4. The natural defense system and the normative self model [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Philippe Kourilsky

    2016-05-01

    Full Text Available Infectious agents are not the only agressors, and the immune system is not the sole defender of the organism. In an enlarged perspective, the ‘normative self model’ postulates that a ‘natural defense system’ protects man and other complex organisms against the environmental and internal hazards of life, including infections and cancers. It involves multiple error detection and correction mechanisms that confer robustness to the body at all levels of its organization. According to the model, the self relies on a set of physiological norms, and NONself (meaning : Non Obedient to the Norms of the self is anything ‘off-norms’. The natural defense system comprises a set of ‘civil defenses’ (to which all cells in organs and tissues contribute, and a ‘professional army ‘, made of a smaller set of mobile cells. Mobile and non mobile cells differ in their tuning abilities. Tuning extends the recognition capabilities of NONself by the mobile cells, which increase their defensive function. To prevent them to drift, which would compromise self/NONself discrimination, the more plastic mobile cells need to periodically refer to the more stable non mobile cells to keep within physiological standards.

  5. Whole body exposure to low-dose γ-radiation enhances the antioxidant defense system

    International Nuclear Information System (INIS)

    Pathak, C.M.; Avti, P.K.; Khanduja, K.L.; Sharma, S.C.

    2008-01-01

    It is believed that the extent of cellular damage by low- radiation dose is proportional to the effects observed at high radiation dose as per the Linear-No-Threshold (LNT) hypothesis. However, this notion may not be true at low-dose radiation exposure in the living system. Recent evidence suggest that the living organisms do not respond to ionizing radiations in a linear manner in the low dose range 0.01-0.5Gy and rather restore the homeostasis both in vivo and in vitro by normal physiological mechanisms such as cellular and DNA repair processes, immune reactions, antioxidant defense, adaptive responses, activation of immune functions, stimulation of growth etc. In this study, we have attempted to find the critical radiation dose range and the post irradiation period during which the antioxidant defense systems in the lungs, liver and kidneys remain stimulated in these organs after whole body exposure of the animals to low-dose radiation

  6. 77 FR 76938 - Defense Federal Acquisition Regulation Supplement: Contracting Activity Updates (DFARS Case 2012...

    Science.gov (United States)

    2012-12-31

    ... Security Cooperation Agency, the Defense Security Service, the Defense Threat Reduction Agency, the Missile... DEPARTMENT OF DEFENSE Defense Acquisition Regulations System 48 CFR Part 202 RIN 0750-AH81 Defense...: Defense Acquisition Regulations System, Department of Defense (DoD). ACTION: Final rule. SUMMARY: DoD is...

  7. Guiding bioprocess design by microbial ecology.

    Science.gov (United States)

    Volmer, Jan; Schmid, Andreas; Bühler, Bruno

    2015-06-01

    Industrial bioprocess development is driven by profitability and eco-efficiency. It profits from an early stage definition of process and biocatalyst design objectives. Microbial bioprocess environments can be considered as synthetic technical microbial ecosystems. Natural systems follow Darwinian evolution principles aiming at survival and reproduction. Technical systems objectives are eco-efficiency, productivity, and profitable production. Deciphering technical microbial ecology reveals differences and similarities of natural and technical systems objectives, which are discussed in this review in view of biocatalyst and process design and engineering strategies. Strategies for handling opposing objectives of natural and technical systems and for exploiting and engineering natural properties of microorganisms for technical systems are reviewed based on examples. This illustrates the relevance of considering microbial ecology for bioprocess design and the potential for exploitation by synthetic biology strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. 77 FR 39125 - Defense Acquisition Regulations System; Defense Federal Acquisition Regulation Supplement; Only...

    Science.gov (United States)

    2012-06-29

    ... market research/industry communication. In 2008, the Office of Management and Budget and Office of... unique or brand name specifications, and enhancing acquisition planning. In 2010, the Government... strategic defense capabilities, because of a shift to ``lowest price possible.'' Further, according to this...

  9. Plant defense induced in in vitro propagated banana (Musa paradisiaca) plantlets by Fusarium derived elicitors.

    Science.gov (United States)

    Patel, Miral; Kothari, I L; Mohan, J S S

    2004-07-01

    Perception of microbial signal molecules is part of the strategy evolved by plants to survive attacks by potential pathogens. To gain a more complete understanding of the early signaling events involved in these responses, we used fungal components of Fusarium under in vitro condition and checked the rise in signal molecule, salicylic acid (SA), and marker enzymes in defense reactions against the pathogen. SA level increased by 21 folds in elicitor treated plantlets as compared to that of control plantlets and there was marked increase in phenylalanine ammonia-lyase(PAL), peroxidase(POX), polyphenol oxidase(PPO) along with higher total phenolic content. Present results indicated that use of fungal components had successfully induced systemic resistance in in vitro cultured banana plantlets.

  10. EXPERIENCE OF ADMINISTRATION OF IBUPROFEN IN COMPLEX TREATMENT OF INFANTS WITH MICROBIAL INFLAMMATORY DISEASES OF URINARY SYSTEM

    Directory of Open Access Journals (Sweden)

    O.K. Botvin’ev

    2009-01-01

    Full Text Available The microbial inflammatory diseases of urinary system in children can be often accompanied with fever and pain. The article presents an experience of ibuprofen (Nurofen for Children administration for the purpose of stopping fever and pain in 420 children in age 3 months — 3 years old with microbial inflammatory diseases of urinary system. The observation showed high effectiveness of short treatment with ibuprofen course (2–5 days. As clinical and laboratory observation showed, the short-termed administration of the drug was well-tolerated and did not cause significant adverse effects, excluding single cases of allergic rash and light dyspeptic disorders.Key words: children, microbial inflammatory diseases of urinary system, ibuprofen, treatment.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2009;8(5:84-87

  11. Defense Business Board

    Science.gov (United States)

    Skip to main content (Press Enter). Toggle navigation Defense Business Board Search Search Defense Business Board: Search Search Defense Business Board: Search Defense Business Board Business Excellence in Defense of the Nation Defense Business Board Home Charter Members Meetings Studies Contact Us The Defense

  12. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    Science.gov (United States)

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  13. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers.

    Science.gov (United States)

    Li, Huan; Li, Shang; Tang, Wei; Yang, Yang; Zhao, Jianfu; Xia, Siqing; Zhang, Weixian; Wang, Hong

    2018-06-01

    Secondary water supply systems (SWSSs) refer to the in-building infrastructures (e.g., water storage tanks) used to supply water pressure beyond the main distribution systems. The purpose of this study was to investigate the influence of SWSSs on microbial community structure and the occurrence of opportunistic pathogens, the latter of which are an emerging public health concern. Higher numbers of bacterial 16S rRNA genes, Legionella and mycobacterial gene markers were found in public building taps served by SWSSs relative to the mains, regardless of the flushing practice (P water retention time, warm temperature and loss of disinfectant residuals promoted microbial growth and colonization of potential pathogens in SWSSs. Varied levels of microbial community shifts were found in different types of SWSSs during water transportation from the distribution main to taps, highlighting the critical role of SWSSs in shaping the drinking water microbiota. Overall, the results provided insight to factors that might aid in controlling pathogen proliferation in real-world water systems using SWSSs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Review of defense display research programs

    Science.gov (United States)

    Tulis, Robert W.; Hopper, Darrel G.; Morton, David C.; Shashidhar, Ranganathan

    2001-09-01

    Display research has comprised a substantial portion of the defense investment in new technology for national security for the past 13 years. These investments have been made by the separate service departments and, especially, via several Defense Research Projects Agency (DARPA) programs, known collectively as the High Definition Systems (HDS) Program (which ended in 2001) and via the Office of the Secretary of Defense (OSD) Defense Production Act (DPA) Title III Program (efforts ended in 2000). Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These completed DARPA and DPA research and infrastructure programs are reviewed. Service investments have been and are being made to transition display technology; examples are described. Display science and technology (S&T) visions are documented for each service to assist the identification of areas meriting consideration for future defense research.

  15. Intelligibility in microbial complex systems: Wittgenstein and the score of life.

    Science.gov (United States)

    Baquero, Fernando; Moya, Andrés

    2012-01-01

    Knowledge in microbiology is reaching an extreme level of diversification and complexity, which paradoxically results in a strong reduction in the intelligibility of microbial life. In our days, the "score of life" metaphor is more accurate to express the complexity of living systems than the classic "book of life." Music and life can be represented at lower hierarchical levels by music scores and genomic sequences, and such representations have a generational influence in the reproduction of music and life. If music can be considered as a representation of life, such representation remains as unthinkable as life itself. The analysis of scores and genomic sequences might provide mechanistic, phylogenetic, and evolutionary insights into music and life, but not about their real dynamics and nature, which is still maintained unthinkable, as was proposed by Wittgenstein. As complex systems, life or music is composed by thinkable and only showable parts, and a strategy of half-thinking, half-seeing is needed to expand knowledge. Complex models for complex systems, based on experiences on trans-hierarchical integrations, should be developed in order to provide a mixture of legibility and imageability of biological processes, which should lead to higher levels of intelligibility of microbial life.

  16. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system

    Science.gov (United States)

    Metcalf, Jessica L; Wegener Parfrey, Laura; Gonzalez, Antonio; Lauber, Christian L; Knights, Dan; Ackermann, Gail; Humphrey, Gregory C; Gebert, Matthew J; Van Treuren, Will; Berg-Lyons, Donna; Keepers, Kyle; Guo, Yan; Bullard, James; Fierer, Noah; Carter, David O; Knight, Rob

    2013-01-01

    Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001 PMID:24137541

  17. Microbial community assembly patterns under incipient conditions in a basaltic soil system

    Science.gov (United States)

    Sengupta, A.; Stegen, J.; Alves Meira Neto, A.; Wang, Y.; Chorover, J.; Troch, P. A. A.; Maier, R. M.

    2017-12-01

    In sub-surface environments, the biotic components are critically linked to the abiotic processes. However, there is limited understanding of community establishment, functional associations, and community assembly processes of such microbes in sub-surface environments. This study presents the first analysis of microbial signatures in an incipient terrestrial basalt soil system conducted under controlled conditions. A sub-meter scale sampling of a soil mesocosm revealed the contrasting distribution patterns of simple soil parameters such as bulk density and electrical conductivity. Phylogenetic analysis of 16S rRNA gene indicated the presence of a total 40 bacterial and archaeal phyla, with high relative abundance of Actinobacteria on the surface and highest abundance of Proteobacteria throughout the system. Community diversity patterns were inferred to be dependent on depth profile and average water content in the system. Predicted functional gene analysis suggested mixotrophy lifestyles with both autotrophic and heterotrophic metabolisms, likelihood of a unique salt tolerant methanogenic pathway with links to novel Euryarchea, signatures of an incomplete nitrogen cycle, and predicted enzymes of extracellular iron (II) to iron (III) conversion followed by intracellular uptake, transport and regulation. Null modeling revealed microbial community assembly was predominantly governed by variable selection, but the influence of the variable selection did not show systematic spatial structure. The presence of significant heterogeneity in predicted functions and ecologically deterministic shifts in community composition in a homogeneous incipient basalt highlights the complexity exhibited by microorganisms even in the simplest of environmental systems. This presents an opportunity to further develop our understanding of how microbial communities establish, evolve, impact, and respond in sub-surface environments.

  18. Second Line of Defense Virtual Private Network Guidance for Deployed and New CAS Systems

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surya V.; Thronas, Aaron I.

    2010-01-01

    This paper discusses the importance of remote access via virtual private network (VPN) for the Second Line of Defense (SLD) Central Alarm System (CAS) sites, the requirements for maintaining secure channels while using VPN and implementation requirements for current and future sites.

  19. Pine Defensive Monoterpene α-Pinene Influences the Feeding Behavior of Dendroctonus valens and Its Gut Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Letian Xu

    2016-11-01

    Full Text Available The exposure to plant defense chemicals has negative effects on insect feeding activity and modifies insect gut microbial community composition. Dendroctonus valens is a very destructive forest pest in China, and harbors a large diversity and abundance of gut microorganisms. Host pine defensive chemicals can protect the pines from attack by the holobiont. In this study, boring length of D. valens feeding on 0 mg/g α-pinene and 9 mg/g α-pinene concentration in phloem media for 6 and 48 h were recorded, and their gut bacterial communities were analyzed in parallel. Nine milligram per gram α-pinene concentration significantly inhibited boring length of D. valens and altered its gut microbial community structure after 6 h. The inhibition of boring length from 9 mg/g α-pinene in diets ceased after 48 h. No significant differences of the bacterial communities were observed between the beetles in 0 and 9 mg/g α-pinene concentration in phloem media after 48 h. Our results showed that the inhibition of the feeding behavior of D. valens and the disturbance to its gut bacterial communities in 9 mg/g α-pinene concentration in phloem media after 6 h were eliminated after 48 h. The resilience of gut bacterial community of D. valens may help the beetle catabolize pine defense chemical.

  20. Impact of wheat / faba bean mixed cropping or rotation systems on soil microbial functionalities

    Directory of Open Access Journals (Sweden)

    Sanâa Wahbi

    2016-09-01

    Full Text Available Cropping systems based on carefully designed species mixtures reveal many potential advantages in terms of enhancing crop productivity, reducing pest and diseases and enhacing ecological serices. Associating cereals and legume production either through intercropping or rotations might be a relevant strategy of producing both type of culture, while benefiting from combined nitrogen fixed by the legume through its symbiotic association with nitrogen-fixing bacteria, and from a better use of P and water through mycorrhizal associations. These practices also participate to the diversification of agricultural productions, enabling to secure the regularity of income returns across the seasonal and climatic uncertainties. In this context, we designed a field experiment aiming to estimate the two years impact of these practices on wheat yield and on soil microbial activities as estimated through Substrate Induced Respiration (SIR method and mycorrhizal soil infectivity (MSI measurement. It is expected that understanding soil microbial functionalities in response to these agricultural practices might allows to target the best type of combination, in regard to crop productivity. We found that the tested cropping systems largely impacted soil microbial functionalities and mycorrhizal soil infectivity. Intercropping gave better results in terms of crop productivity than the rotation practice after 2 cropping seasons. Benefits resulting from intercrop should be highly linked with changes recorded on soil microbial functionalities.

  1. Immune indexes of larks from desert and temperate regions show weak associations with life history but stronger links to environmental variation in microbial abundance.

    Science.gov (United States)

    Horrocks, Nicholas P C; Hegemann, Arne; Matson, Kevin D; Hine, Kathryn; Jaquier, Sophie; Shobrak, Mohammed; Williams, Joseph B; Tinbergen, Joost M; Tieleman, B Irene

    2012-01-01

    Immune defense may vary as a result of trade-offs with other life-history traits or in parallel with variation in antigen levels in the environment. We studied lark species (Alaudidae) in the Arabian Desert and temperate Netherlands to test opposing predictions from these two hypotheses. Based on their slower pace of life, the trade-off hypothesis predicts relatively stronger immune defenses in desert larks compared with temperate larks. However, as predicted by the antigen exposure hypothesis, reduced microbial abundances in deserts should result in desert-living larks having relatively weaker immune defenses. We quantified host-independent and host-dependent microbial abundances of culturable microbes in ambient air and from the surfaces of birds. We measured components of immunity by quantifying concentrations of the acute-phase protein haptoglobin, natural antibody-mediated agglutination titers, complement-mediated lysis titers, and the microbicidal ability of whole blood. Desert-living larks were exposed to significantly lower concentrations of airborne microbes than temperate larks, and densities of some bird-associated microbes were also lower in desert species. Haptoglobin concentrations and lysis titers were also significantly lower in desert-living larks, but other immune indexes did not differ. Thus, contrary to the trade-off hypothesis, we found little evidence that a slow pace of life predicted increased immunological investment. In contrast, and in support of the antigen exposure hypothesis, associations between microbial exposure and some immune indexes were apparent. Measures of antigen exposure, including assessment of host-independent and host-dependent microbial assemblages, can provide novel insights into the mechanisms underlying immunological variation.

  2. Systems Level Dissection of Anaerobic Methane Cycling: Quantitative Measurements of Single Cell Ecophysiology, Genetic Mechanisms, and Microbial Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Orphan, Victoria [California Inst. of Technology (CalTech), Pasadena, CA (United States); Tyson, Gene [University of Queensland, Brisbane Australia; Meile, Christof [University of Georgia, Athens, Georgia; McGlynn, Shawn [California Inst. of Technology (CalTech), Pasadena, CA (United States); Yu, Hang [California Inst. of Technology (CalTech), Pasadena, CA (United States); Chadwick, Grayson [California Inst. of Technology (CalTech), Pasadena, CA (United States); Marlow, Jeffrey [California Inst. of Technology (CalTech), Pasadena, CA (United States); Trembath-Reichert, Elizabeth [California Inst. of Technology (CalTech), Pasadena, CA (United States); Dekas, Anne [California Inst. of Technology (CalTech), Pasadena, CA (United States); Hettich, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pan, Chongle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellisman, Mark [University of California San Diego; Hatzenpichler, Roland [California Inst. of Technology (CalTech), Pasadena, CA (United States); Skennerton, Connor [California Inst. of Technology (CalTech), Pasadena, CA (United States); Scheller, Silvan [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2017-12-25

    The global biological CH4 cycle is largely controlled through coordinated and often intimate microbial interactions between archaea and bacteria, the majority of which are still unknown or have been only cursorily identified. Members of the methanotrophic archaea, aka ‘ANME’, are believed to play a major role in the cycling of methane in anoxic environments coupled to sulfate, nitrate, and possibly iron and manganese oxides, frequently forming diverse physical and metabolic partnerships with a range of bacteria. The thermodynamic challenges overcome by the ANME and their bacterial partners and corresponding slow rates of growth are common characteristics in anaerobic ecosystems, and, in stark contrast to most cultured microorganisms, this type of energy and resource limited microbial lifestyle is likely the norm in the environment. While we have gained an in-depth systems level understanding of fast-growing, energy-replete microorganisms, comparatively little is known about the dynamics of cell respiration, growth, protein turnover, gene expression, and energy storage in the slow-growing microbial majority. These fundamental properties, combined with the observed metabolic and symbiotic versatility of methanotrophic ANME, make these cooperative microbial systems a relevant (albeit challenging) system to study and for which to develop and optimize culture-independent methodologies, which enable a systems-level understanding of microbial interactions and metabolic networks. We used an integrative systems biology approach to study anaerobic sediment microcosms and methane-oxidizing bioreactors and expanded our understanding of the methanotrophic ANME archaea, their interactions with physically-associated bacteria, ecophysiological characteristics, and underlying genetic basis for cooperative microbial methane-oxidation linked with different terminal electron acceptors. Our approach is inherently multi-disciplinary and multi-scaled, combining transcriptional and

  3. Modular Open System Architecture for Reducing Contamination Risk in the Space and Missile Defense Supply Chain

    Science.gov (United States)

    Seasly, Elaine

    2015-01-01

    To combat contamination of physical assets and provide reliable data to decision makers in the space and missile defense community, a modular open system architecture for creation of contamination models and standards is proposed. Predictive tools for quantifying the effects of contamination can be calibrated from NASA data of long-term orbiting assets. This data can then be extrapolated to missile defense predictive models. By utilizing a modular open system architecture, sensitive data can be de-coupled and protected while benefitting from open source data of calibrated models. This system architecture will include modules that will allow the designer to trade the effects of baseline performance against the lifecycle degradation due to contamination while modeling the lifecycle costs of alternative designs. In this way, each member of the supply chain becomes an informed and active participant in managing contamination risk early in the system lifecycle.

  4. Transportation System Risk Assessment on DOE Defense Program shipments

    International Nuclear Information System (INIS)

    Brumburgh, G.P.; Kimura, C.Y.; Alesso, H.P.; Prassinos, P.G.

    1992-01-01

    Substantial effort has been expended concerning the level of safety provided to persons, property, and the environment from the hazards associated with transporting radioactive material. This work provided an impetus for the Department of Energy to investigate the use of probabilistic risk assessment techniques to supplement the deterministic approach to transportation safety. The DOE recently decided to incorporate the methodologies associated with PRAs in the process for authorizing the transportation of nuclear components, special assemblies, and radioactive materials affiliated with the DOE Defense Program. Accordingly, the LLNL, sponsored by the DOE/AL, is tasked with developing a safety guide series to provide guidance to preparers performing a transportation system risk assessment

  5. Microbial diversity in different compartments of an aquaponics system.

    Science.gov (United States)

    Schmautz, Zala; Graber, Andreas; Jaenicke, Sebastian; Goesmann, Alexander; Junge, Ranka; Smits, Theo H M

    2017-05-01

    Aquaponics is a solution for sustainable production of fish and plants in a single semi-closed system, where nutrient-rich water from the aquaculture provides nutrients for plant growth. We examined the microbial communities within an experimental aquaponics system. Whereas the fish feces contained a separate community dominated by bacteria of the genus Cetobacterium, the samples from plant roots, biofilter, and periphyton were more similar to each other, while the communities were more diverse. Detailed examination of the data gave the first indications to functional groups of organisms in the different compartments of the aquaponic system. As other nitrifiers other than members of the genus Nitrospira were only present at low numbers, it was anticipated that Nitrospirae may perform the nitrification process in the biofilm.

  6. Protease inhibitor (PI) mediated defense in leaves and flowers of pigeonpea (protease inhibitor mediated defense in pigeonpea).

    Science.gov (United States)

    Padul, Manohar V; Tak, Rajesh D; Kachole, Manvendra S

    2012-03-01

    More than 200 insect pests are found growing on pigeonpea. Insects lay eggs, attack and feed on leaves, flowers and developing pods. Plants have developed elaborate defenses against these insect pests. The present work evaluates protease inhibitor (PI) based defense of pigeonpea in leaves and flowers. PIs in the extracts of these tender tissues were detected by using gel X-ray film contact print method. Up to three PIs (PI-3, PI-4 and PI-5) were detected in these tissues as against nine (PI-1-PI-9) in mature seeds. PI-3 is the major component of these tissues. Mechanical wounding, insect chewing, fungal pathogenesis and application of salicylic acid induced PIs in pigeonpea in these tissues. Induction was found to be local as well as systemic but local response was stronger than systemic response. During both local and systemic induction, PI-3 appeared first. In spite of the presence and induction of PIs in these tender tissues and seeds farmers continue to suffer yield loses. This is due to the weak expression of PIs. However the ability of the plant to respond to external stimuli by producing defense proteins does not seem to be compromised. This study therefore indicates that PIs are components of both constitutive and inducible defense and provide a ground for designing stronger inducible defense (PIs or other insect toxin based) in pigeonpea. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. Microbial transformation of citral by Penicillium sp..

    Science.gov (United States)

    Esmaeili, Akbar; Tavassoli, Afsaneh

    2010-01-01

    Thymol is present in the essential oils from herbs and spices, such as thyme. It is produced by these plant species as a chemical defense against phytopathogenic microorganisms. Therefore, this compound has attracted great attention in food industry, i.e., it has been used as a natural preservative in foods such as cheese to prevent fungal growth. Previous studies concerning the biotransformation of nerol by Penicillium sp. and microbial transformation of citral by sporulated surface cultures method (SSCM) of Penicillium digitatum have been reported. The objective of this research was to study the pathway involved during biotransformation of citral by Penicillium sp. using two methods. The culture preparation was done using different microbial methods and incubation periods to obtain Penicillium for citral biotransformation. The biotransformation products were identified by gas chromatography (GC) and gas chromatography/mass spectroscopy (GC/MS). A comparison of the two methods showed that SSCM was more effective, its major products were thymol (21.5 %), geranial (18.6 %) and nerol (13.7 %). LM produced only one compound — thymol — with a low efficiency.

  8. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  9. Effects of Gain/Loss Framing in Cyber Defense Decision-Making

    Energy Technology Data Exchange (ETDEWEB)

    Bos, Nathan; Paul, Celeste; Gersh, John; Greenberg, Ariel; Piatko, Christine; Sperling, Scott; Spitaletta, Jason; Arendt, Dustin L.; Burtner, Edwin R.

    2016-10-24

    Cyber defense requires decision making under uncertainty. Yet this critical area has not been a strong focus of research in judgment and decision-making. Future defense systems, which will rely on software-defined networks and may employ ‘moving target’ defenses, will increasingly automate lower level detection and analysis, but will still require humans in the loop for higher level judgment. We studied the decision making process and outcomes of 17 experienced network defense professionals who worked through a set of realistic network defense scenarios. We manipulated gain versus loss framing in a cyber defense scenario, and found significant effects in one of two focal problems. Defenders that began with a network already in quarantine (gain framing) used a quarantine system more than those that did not (loss framing). We also found some difference in perceived workload and efficacy. Alternate explanations of these findings and implications for network defense are discussed.

  10. Studies about behavior of microbial degradation of organic compounds

    International Nuclear Information System (INIS)

    Ohtsuka, Makiko

    2003-02-01

    Some of TRU waste include organic compounds, thus these organic compounds might be nutrients for microbial growth at disposal site. This disposal system might be exposed to high alkali condition by cement compounds as engineering barrier material. In the former experimental studies, it has been supposed that microbial exist under pH = 12 and the microbial activity acclimated to high alkali condition are able to degrade asphalt under anaerobic condition. Microbes are called extremophile that exist in cruel habitat as high alkali or reductive condition. We know less information about the activity of extremophile, though any recent studies reveal them. In this study, the first investigation is metabolic pathway as microbial activity, the second is microbial degradation of aromatic compounds in anaerobic condition, and the third is microbial activity under high alkali. Microbial metabolic pathway consist of two systems that fulfill their function each other. One system is to generate energy for microbial activities and the other is to convert substances for syntheses of organisms' structure materials. As these systems are based on redox reaction between substances, it is made chart of the microbial activity region using pH, Eh, and depth as parameter, There is much report that microbe is able to degrade aromatic compounds under aerobic or molecular O 2 utilizing condition. For degradation of aromatic compounds in anaerobic condition, supplying electron acceptor is required. Co-metabolism and microbial consortia has important role, too. Alcalophile has individual transporting system depending Na + and acidic compounds contained in cell wall. Generating energy is key for survival and growth under high alkali condition. Co-metabolism and microbial consortia are effective for microbial degradation of aromatic compounds under high alkali and reductive condition, and utilizable electron acceptor and degradable organic compounds are required for keeping microbial activity and

  11. The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Or, D.; Gulez, Gamze

    2008-01-01

    Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless, no experim....... The PSM constitutes a tool uniquely adapted to study the influence of liquid film geometry on microbial processes. It should therefore contribute to uncovering mechanisms of microbial adaptation to unsaturated environments.......Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless......, no experimental systems are available that allow real-time observation of bacterial processes in liquid films of controlled thickness. We propose a novel, inexpensive, easily operated experimental platform, termed the porous surface model (PSM) that enables quantitative real-time microscopic observations...

  12. Carp erythrodermatitis : host defense-pathogen interaction

    OpenAIRE

    Pourreau, C.N.

    1990-01-01

    The outcome of a bacterial infection depends on the interaction between pathogen and host. The ability of the microbe to survive in the host depends on its invasive potential (i.e. spreading and multiplication), and its ability to obtain essential nutrients and to resist the host's defense system. On the other hand, the host's resistance to a bacterial attack depends on its physiological state, the intensity of the bacterial attack and the efficacy of the defense system to ...

  13. Financial Management: U.S. Army Corps of Engineers Financial Information Imported Into the Defense Departmental Reporting System - Audited Financial Statements

    National Research Council Canada - National Science Library

    Granetto, Paul J; Peek, Marvin L; Armstrong, Jack L; Wenzel, Paul C; Furey, Kathleen A; Zimmerman, Craig W

    2004-01-01

    ... are: the Corps of Engineers Financial Management System, the Corps of Engineers Enterprise Management Information System, and the Defense Departmental Reporting System - Audited Financial Statements...

  14. Pesticide dissipation and microbial community changes in a biopurification system: influence of the rhizosphere.

    Science.gov (United States)

    Diez, M C; Elgueta, S; Rubilar, O; Tortella, G R; Schalchli, H; Bornhardt, C; Gallardo, F

    2017-12-01

    The dissipation of atrazine, chlorpyrifos and iprodione in a biopurification system and changes in the microbial and some biological parameters influenced by the rhizosphere of Lolium perenne were studied in a column system packed with an organic biomixture. Three column depths were analyzed for residual pesticides, peroxidase, fluorescein diacetate activity and microbial communities. Fungal colonization was analyzed by confocal laser scanning microscopy to assess the extent of its proliferation in wheat straw. The L. perenne rhizosphere enhanced pesticide dissipation and negligible pesticide residues were detected at 20-30 cm column depth. Atrazine, chlorpyrifos and iprodione removal was 82, 89 and 74% respectively in the first 10 cm depth for columns with vegetal cover. The presence of L. perenne in contaminated columns stimulated peroxidase activity in all three column depth sections. Fluorescein diacetate activity decreased over time in all column sections with the highest values in biomixtures with vegetal cover. Microbial communities, analyzed by PCR-DGGE, were not affected by the pesticide mixture application, presenting high values of similarity (>65%) with and without vegetal cover. Microbial abundance of Actinobacteria varied according to treatment and no clear link was observed. However, bacterial abundance increased over time and was similar with and without vegetal cover. On the other hand, fungal abundance decreased in all sections of columns after 40 days, but an increase was observed in response to pesticide application. Fungal colonization and straw degradation during pesticide dissipation were verified by monitoring the lignin autofluorescence loss.

  15. Combined Effects of Nutrient and Pesticide Management on Soil Microbial Activity in Hybrid Rice Double Annual Cropping System

    Institute of Scientific and Technical Information of China (English)

    XIE Xiao-mei; LIAO Min; LIU Wei-ping; Susanne KLOSE

    2004-01-01

    Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbial biomass phospholipid contents,abundance of heterotrophic bacteria and proteolytic bacteria, electron transport system (ETS)/dehydrogenase activity, soil protein contents under different management practices and at various growth stages. Marked depletions in the soil microbial biomass phospholipid contents were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also induced slight changes, and the lowest microbial biomass phospholipid content was found with pesticides application alone. A decline in the bacterial abundance of heterotrophic bacteria and proteolytic bacteria was observed during the continuance of crop growth, while the lowest abundance of heterotrophic bacteria and proteolytic bacteria was found with pesticides application alone, which coincided with the decline of soil microbial biomass. A consistent increase in the electron transport system activity was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or combined with pesticides increased it, while a decline was noticed with pesticides application alone as compared with the control.The soil protein content was found to be relatively stable with fertilizers and/or pesticides application at various growth stages in both crops undertaken, but notable changes were detected at different growth stages.

  16. PCE dechlorination by non-Dehalococcoides in a microbial electrochemical system.

    Science.gov (United States)

    Yu, Jaecheul; Park, Younghyun; Nguyen, Van Khanh; Lee, Taeho

    2016-08-01

    The bioremediation of tetrachloroethene (perchloroethene; PCE) contaminated sites generally requires a supply of some fermentable organic substrates as an electron donor. On the other hand, organic substrates can induce the massive growth of microorganisms around the injection wells, which can foul the contaminated subsurface environment. In this study, PCE dechlorination to ethene was performed in a microbial electrochemical system (MES) using the electrode (a cathode polarized at -500 mV vs. standard hydrogen electrode) as the electron donor. Denaturing gel gradient electrophoresis and pyrosequencing revealed a variety of non-Dehalococcoides bacteria dominant in MES, such as Acinetobacter sp. (25.7 % for AS1 in suspension of M3), Rhodopseudomonas sp. (10.5 % for AE1 and 10.1 % for AE2 in anodic biofilm of M3), Pseudomonas aeruginosa (22.4 % for BS1 in suspension of M4), and Enterobacter sp. (21.7 % for BE1 in anodic biofilm of M4) which are capable of electron transfer, hydrogen production and dechlorination. The Dehalococcoides group, however, was not detected in this system. Therefore, these results suggest that a range of bacterial species outside the Dehalococcoides can play an important role in the microbial electrochemical dechlorination process, which may lead to innovative bioremediation technology.

  17. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system.

    Science.gov (United States)

    Endara, María-José; Coley, Phyllis D; Ghabash, Gabrielle; Nicholls, James A; Dexter, Kyle G; Donoso, David A; Stone, Graham N; Pennington, R Toby; Kursar, Thomas A

    2017-09-05

    Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore-host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead "chase" hosts based on the herbivore's own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution.

  18. The Effect of Hydroxylated Fullerene Nanoparticles on Antioxidant Defense System in Brain Ischemia Rat

    Directory of Open Access Journals (Sweden)

    2017-05-01

    Full Text Available Background and Objectives: According to the previous findings, brain ischemia attenuates the brain antioxidant defense system. This study aimed to investigate the effect of hydroxylated fullerene nanoparticle on antioxidant defense system in ischemic brain rat. Methods: In this Experimental study, rats were divided into three groups (n=6 in each group: sham, ischemic control, and ischemic treatment group. Brain ischemia was induced by middle cerebral artery (MCA occlusion for 90 minutes followed by a 24-hour reperfusion. Ischemic treatment animals received fullerene nanoparticles intraperitoneally at a dose of 10mg/kg immediately after the end of MCA occlusion. After 24-h reperfusion period, brain catalase and superoxide dismutase (SOD, and glutathione activities were assessed by biochemical methods. The data were analyzed using one-way ANOVA and Tukey post-hoc test. Results: The mean glutathione level and catalase and SOD activities in sham animals were 1±0.18%, 1±0.20%, and 1±0.04%, respectively. Induction of brain ischemia decreased the value of glutathione level and catalase and SOD activities in control ischemic rats and their values were obtained to be 0.55±0.09%, 0.44±0.05%, and 0.86±0.02%, respectively. Fullerene significantly increased the activities of catalase (0.93±0.29% and SOD (1.33±0.22% in ischemic treatment group compared to ischemic control rats, but did not change the glutathione level (0.52±0.25%. Conclusion: The results of this study showed that treatment with fullerene nanoparticles improves the brain antioxidant defense system, which is weakened during brain ischemia, through increasing catalase and SOD activities.

  19. Department of Defense Agency Financial Report for FY 2011

    Science.gov (United States)

    2011-11-01

    able to distribute resources across hospitals and clinics within a market to meet the needs of the entire population of eligible beneficiaries. In...WRAMC), Washington, DC. This entailed construction of a new community hospital and a dental clinic at Fort Belvoir and an expansion of the National...Department of Defense DSB Defense Science Board DSS Defense Security Service DTM Directive-type Memorandum DTS Defense Travel System EBF Education

  20. COMPARISON OF COMPOST MATURITY, MICROBIAL SURVIVAL AND HEALTH HAZARDS IN TWO COMPOSTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    G. N.K. Rockson

    2012-08-01

    Full Text Available Data collected on germination index, temperature, moisture content, pH, total viable count, total coliform count and total fungi count were determined during composting in HV and FA systems at VREL Farms for a period of thirteen weeks and analysed to ascertain the effects of temperature, moisture and pH on compost maturity and microbial survival. There were no significant differences in germination index, pH and moisture content values for both systems as ANOVA results at α = 5% yielded p-values of 0.17, 0.98 and 0.13 respectively. Moisture content and pH values ranged between 40%-70% and 7.20 - 8.30 respectively. Temperature values recorded however were significantly different (p-value = 1.2 x 10-5, α = 5% in both systems and affected the microbial distribution during the process. The temperature recorded in HV and FA systems ranged between 45.19 ºC – 65.44 ºC and 29.00 ºC – 50.83ºC respectively. Germination Index values were >150% in different systems at the end of week 12. Listeria spp., known to be zoonotic, and Staphylococcus spp. survived in compost processed in FA system; and Penicillium spp. in both systems.

  1. Microbial plant litter decomposition in aquatic and terrestrial boreal systems along a natural fertility gradient

    Science.gov (United States)

    Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes

    2017-04-01

    Plant litter decomposition is a global ecosystem process, with a crucial role in carbon and nutrient cycling. The majority of litter processing occurs in terrestrial systems, but an important fraction also takes place in inland waters. Among environmental factors, pH impacts the litter decomposition through its selective influence on microbial decomposers. Fungal communities are less affected by pH than bacteria, possibly owing to a wider pH tolerance by this group. On the other hand, bacterial pH optima are constrained to a narrower range of pH values. The microbial decomposition of litter is universally nutrient limited; but few comparisons exist between terrestrial and aquatic systems. We investigated the microbial colonisation and decomposition of plant litter along a fertility gradient, which varied in both pH and N availability in both soil and adjacent water. To do this we installed litterbags with birch (Betula pendula) in streams and corresponding soils in adjacent riparian areas in a boreal system, in Krycklan, Sweden. During the four months covering the ice-free growth season we monitored the successional dynamics of fungal (acetate incorporation into ergosterol) and bacterial growth (thymidine incorporation), microbial respiration in leaf litter, and quantitative and qualitative changes in litter over time. We observed that bacterial growth rates were initially higher in litter decomposing in streams than those in soils, but differences between terrestrial and aquatic bacterial production converged towards the end of the experiment. In litter bags installed in soils, bacterial growth was lower at sites with more acidic pH and lower N availability, while aquatic bacteria were relatively unaffected by the fertility level. Fungal growth rates were two-fold higher for litter decomposing in streams than in soils. In aquatic systems, fungal growth was initially lower in low fertility sites, but differences gradually disappeared over the time course. Fungal

  2. Microbial ecology of phototrophic biofilms

    NARCIS (Netherlands)

    Roeselers, G.

    2007-01-01

    Biofilms are layered structures of microbial cells and an extracellular matrix of polymeric substances, associated with surfaces and interfaces. Biofilms trap nutrients for growth of the enclosed microbial community and help prevent detachment of cells from surfaces in flowing systems. Phototrophic

  3. Department of Defense high power laser program guidance

    Science.gov (United States)

    Muller, Clifford H.

    1994-06-01

    The DoD investment of nominally $200 million per year is focused on four high power laser (HPL) concepts: Space-Based Laser (SBL), a Ballistic Missile Defense Organization effort that addresses boost-phase intercept for Theater Missile Defense and National Missile Defense; Airborne Laser (ABL), an Air Force effort that addresses boost-phase intercept for Theater Missile Defense; Ground-Based Laser (GBL), an Air Force effort addressing space control; and Anti-Ship Missile Defense (ASMD), a Navy effort addressing ship-based defense. Each organization is also supporting technology development with the goal of achieving less expensive, brighter, and lighter high power laser systems. These activities represent the building blocks of the DoD program to exploit the compelling characteristics of the high power laser. Even though DoD's HPL program are focused and moderately strong, additional emphasis in a few technical areas could help reduce risk in these programs. In addition, a number of options are available for continuing to use the High-Energy Laser System Test Facility (HELSTF) at White Sands Missile Range. This report provides a brief overview and guidance for the five efforts which comprise the DoD HPL program (SBL, ABL, GBL, ASMD, HELSTF).

  4. 48 CFR 225.7016 - Restriction on Ballistic Missile Defense research, development, test, and evaluation.

    Science.gov (United States)

    2010-10-01

    ... Missile Defense research, development, test, and evaluation. 225.7016 Section 225.7016 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS... Acquisition 225.7016 Restriction on Ballistic Missile Defense research, development, test, and evaluation. [68...

  5. Effects of copper particles on a model septic system's function and microbial community.

    Science.gov (United States)

    Taylor, Alicia A; Walker, Sharon L

    2016-03-15

    There is concern surrounding the addition of nanoparticles into consumer products due to toxicity potential and the increased risk of human and environmental exposures to these particles. Copper nanoparticles are found in many common consumer goods; therefore, the disposal and subsequent interactions between potentially toxic Cu-based nanoparticles and microbial communities may have detrimental impacts on wastewater treatment processes. This study investigates the effects of three copper particles (micron- and nano-scale Cu particles, and a nano-scale Cu(OH)2-based fungicide) on the function and operation of a model septic tank. Septic system analyses included water quality evaluations and microbial community characterizations to detect changes in and relationships between the septic tank function and microbial community phenotype/genotype. As would be expected for optimal wastewater treatment, biological oxygen demand (BOD5) was reduced by at least 63% during nano-scale Cu exposure, indicating normal function. pH was reduced to below the optimum anaerobic fermentation range during the micro Cu exposure, suggesting incomplete degradation of organic waste may have occurred. The copper fungicide, Cu(OH)2, caused a 57% increase in total organic carbon (TOC), which is well above the typical range for septic systems and also corresponded to increased BOD5 during the majority of the Cu(OH)2 exposure. The changes in TOC and BOD5 demonstrate that the system was improperly treating waste. Overall, results imply individual exposures to the three Cu particles caused distinct disruptions in septic tank function. However, it was observed that the system was able to recover to typical operating conditions after three weeks post-exposure. These results imply that during periods of Cu introduction, there are likely pulses of improper removal of total organic carbon and significant changes in pH not in the optimal range for the system. Copyright © 2016 Elsevier Ltd. All rights

  6. Microbial communities from different subsystems in biological heap leaching system play different roles in iron and sulfur metabolisms.

    Science.gov (United States)

    Xiao, Yunhua; Liu, Xueduan; Ma, Liyuan; Liang, Yili; Niu, Jiaojiao; Gu, Yabing; Zhang, Xian; Hao, Xiaodong; Dong, Weiling; She, Siyuan; Yin, Huaqun

    2016-08-01

    The microbial communities are important for minerals decomposition in biological heap leaching system. However, the differentiation and relationship of composition and function of microbial communities between leaching heap (LH) and leaching solution (LS) are still unclear. In this study, 16S rRNA gene sequencing was used to assess the microbial communities from the two subsystems in ZiJinShan copper mine (Fujian province, China). Results of PCoA and dissimilarity test showed that microbial communities in LH samples were significantly different from those in LS samples. The dominant genera of LH was Acidithiobacillus (57.2 ∼ 87.9 %), while Leptospirillum (48.6 ∼ 73.7 %) was predominant in LS. Environmental parameters (especially pH) were the major factors to influence the composition and structure of microbial community by analysis of Mantel tests. Results of functional test showed that microbial communities in LH utilized sodium thiosulfate more quickly and utilized ferrous sulfate more slowly than those in LS, which further indicated that the most sulfur-oxidizing processes of bioleaching took place in LH and the most iron-oxidizing processes were in LS. Further study found that microbial communities in LH had stronger pyrite leaching ability, and iron extraction efficiency was significantly positively correlated with Acidithiobacillus (dominated in LH), which suggested that higher abundance ratio of sulfur-oxidizing microbes might in favor of minerals decomposition. Finally, a conceptual model was designed through the above results to better exhibit the sulfur and iron metabolism in bioleaching systems.

  7. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2005-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by the independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report was performed by Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures, the work done on recovery experiments on core rocks, and computer simulations. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results

  8. IEEE Computer Society/Software Engineering Institute Watts S. Humphrey Software Process Achievement Award 2016: Raytheon Integrated Defense Systems Design for Six Sigma Team

    Science.gov (United States)

    2017-04-01

    worldwide • $23 billion in sales for 2015 Raytheon Integrated Defense Systems (IDS) is one of five businesses within Raytheon Company and is headquartered...Raytheon Integrated Defense Systems DFSS team has developed and implemented numerous leading-edge improvement and optimization methodologies resulting in...our software systems . In this section, we explain the first methodology, the application of statistical test optimization (STO) using Design of

  9. 76 FR 13297 - Defense Federal Acquisition Regulation Supplement; Technical Amendments

    Science.gov (United States)

    2011-03-11

    ... 215 Government procurement. Ynette R. Shelkin, Editor, Defense Acquisition Regulations System... Director, Defense Procurement and Acquisition Policy. DATES: Effective Date: March 11, 2011. Applicability... adding a section at 215.300 with a reference to Director, Defense Procurement and Acquisition Policy...

  10. Space-based ballistic-missile defense

    International Nuclear Information System (INIS)

    Bethe, H.A.; Garwin, R.L.; Gottfried, K.; Kendall, H.W.

    1984-01-01

    This article, based on a forthcoming book by the Union for Concerned Scientists, focuses on the technical aspects of the issue of space-based ballistic-missile defense. After analysis, the authors conclude that the questionable performance of the proposed defense, the ease with which it could be overwhelmed or circumvented, and its potential as an antisatellite system would cause grievous damage to the security of the US if the Strategic Defense Initiative were to be pursued. The path toward greater security lies in quite another direction, they feel. Although research on ballistic-missile defense should continue at the traditional level of expenditure and within the constraints of the ABM Treaty, every effort should be made to negotiate a bilateral ban on the testing and use of space weapons. The authors think it is essential that such an agreement cover all altitudes, because a ban on high-altitude antisatellite weapons alone would not viable if directed energy weapons were developed for ballistic-missile defense. Further, the Star Wars program, unlikely ever to protect the entire nation against a nuclear attack, would nonetheless trigger a major expansion of the arms race

  11. Genome-wide association study of Arabidopsis thaliana leaf microbial community.

    Science.gov (United States)

    Horton, Matthew W; Bodenhausen, Natacha; Beilsmith, Kathleen; Meng, Dazhe; Muegge, Brian D; Subramanian, Sathish; Vetter, M Madlen; Vilhjálmsson, Bjarni J; Nordborg, Magnus; Gordon, Jeffrey I; Bergelson, Joy

    2014-11-10

    Identifying the factors that influence the outcome of host-microbial interactions is critical to protecting biodiversity, minimizing agricultural losses and improving human health. A few genes that determine symbiosis or resistance to infectious disease have been identified in model species, but a comprehensive examination of how a host genotype influences the structure of its microbial community is lacking. Here we report the results of a field experiment with the model plant Arabidopsis thaliana to identify the fungi and bacteria that colonize its leaves and the host loci that influence the microbe numbers. The composition of this community differs among accessions of A. thaliana. Genome-wide association studies (GWAS) suggest that plant loci responsible for defense and cell wall integrity affect variation in this community. Furthermore, species richness in the bacterial community is shaped by host genetic variation, notably at loci that also influence the reproduction of viruses, trichome branching and morphogenesis.

  12. Microbial community changes in biological phosphate-removal systems on altering sludge phosphorus content

    NARCIS (Netherlands)

    Liu, WT; Linning, KD; Nakamura, K; Mino, T; Matsuo, T; Forney, LJ

    Biomarkers (respiratory quinones and cellular fatty acids) and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes were used to characterize the microbial community structure of lab-scale enhanced biological phosphate-removal (EBPR) systems in response to altering sludge

  13. The science, technology, and politics of ballistic missile defense

    Science.gov (United States)

    Coyle, Philip E.

    2014-05-01

    America's missile defense systems are deployed at home and abroad. This includes the Groundbased Missile Defense (GMD) system in Alaska and California, the Phased Adaptive Approach in Europe (EPAA), and regional systems in the Middle East and Asia. Unfortunately these systems lack workable architectures, and many of the required elements either don't work or are missing. Major review and reconsideration is needed of all elements of these systems. GMD performance in tests has gotten worse with time, when it ought to be getting better. A lack of political support is not to blame as the DoD spends about 10 billion per year, and proposes to add about 5 billion over the next five years. Russia objects to the EPAA as a threat to its ICBM forces, and to the extensive deployment of U.S. military forces in countries such as Poland, the Czech Republic and Romania, once part of the Soviet Union. Going forward the U.S. should keep working with Russia whose cooperation will be key to diplomatic gains in the Middle East and elsewhere. Meanwhile, America's missile defenses face an enduring set of issues, especially target discrimination in the face of attacks designed to overwhelm the defenses, stage separation debris, chaff, decoys, and stealth. Dealing with target discrimination while also replacing, upgrading, or adding to the many elements of U.S. missiles defenses presents daunting budget priorities. A new look at the threat is warranted, and whether the U.S. needs to consider every nation that possesses even short-range missiles a threat to America. The proliferation of missiles of all sizes around the world is a growing problem, but expecting U.S. missile defenses to deal with all those missiles everywhere is unrealistic, and U.S. missile defenses, effective or not, are justifying more and more offensive missiles.

  14. The science, technology, and politics of ballistic missile defense

    International Nuclear Information System (INIS)

    Coyle, Philip E.

    2014-01-01

    America's missile defense systems are deployed at home and abroad. This includes the Groundbased Missile Defense (GMD) system in Alaska and California, the Phased Adaptive Approach in Europe (EPAA), and regional systems in the Middle East and Asia. Unfortunately these systems lack workable architectures, and many of the required elements either don't work or are missing. Major review and reconsideration is needed of all elements of these systems. GMD performance in tests has gotten worse with time, when it ought to be getting better. A lack of political support is not to blame as the DoD spends about $10 billion per year, and proposes to add about $5 billion over the next five years. Russia objects to the EPAA as a threat to its ICBM forces, and to the extensive deployment of U.S. military forces in countries such as Poland, the Czech Republic and Romania, once part of the Soviet Union. Going forward the U.S. should keep working with Russia whose cooperation will be key to diplomatic gains in the Middle East and elsewhere. Meanwhile, America's missile defenses face an enduring set of issues, especially target discrimination in the face of attacks designed to overwhelm the defenses, stage separation debris, chaff, decoys, and stealth. Dealing with target discrimination while also replacing, upgrading, or adding to the many elements of U.S. missiles defenses presents daunting budget priorities. A new look at the threat is warranted, and whether the U.S. needs to consider every nation that possesses even short-range missiles a threat to America. The proliferation of missiles of all sizes around the world is a growing problem, but expecting U.S. missile defenses to deal with all those missiles everywhere is unrealistic, and U.S. missile defenses, effective or not, are justifying more and more offensive missiles

  15. The science, technology, and politics of ballistic missile defense

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, Philip E. [Center for Arms Control and Non-Proliferation, Washington, DC (United States)

    2014-05-09

    America's missile defense systems are deployed at home and abroad. This includes the Groundbased Missile Defense (GMD) system in Alaska and California, the Phased Adaptive Approach in Europe (EPAA), and regional systems in the Middle East and Asia. Unfortunately these systems lack workable architectures, and many of the required elements either don't work or are missing. Major review and reconsideration is needed of all elements of these systems. GMD performance in tests has gotten worse with time, when it ought to be getting better. A lack of political support is not to blame as the DoD spends about $10 billion per year, and proposes to add about $5 billion over the next five years. Russia objects to the EPAA as a threat to its ICBM forces, and to the extensive deployment of U.S. military forces in countries such as Poland, the Czech Republic and Romania, once part of the Soviet Union. Going forward the U.S. should keep working with Russia whose cooperation will be key to diplomatic gains in the Middle East and elsewhere. Meanwhile, America's missile defenses face an enduring set of issues, especially target discrimination in the face of attacks designed to overwhelm the defenses, stage separation debris, chaff, decoys, and stealth. Dealing with target discrimination while also replacing, upgrading, or adding to the many elements of U.S. missiles defenses presents daunting budget priorities. A new look at the threat is warranted, and whether the U.S. needs to consider every nation that possesses even short-range missiles a threat to America. The proliferation of missiles of all sizes around the world is a growing problem, but expecting U.S. missile defenses to deal with all those missiles everywhere is unrealistic, and U.S. missile defenses, effective or not, are justifying more and more offensive missiles.

  16. Defense Strategies for Asymmetric Networked Systems with Discrete Components

    Directory of Open Access Journals (Sweden)

    Nageswara S. V. Rao

    2018-05-01

    Full Text Available We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.

  17. Defense Strategies for Asymmetric Networked Systems with Discrete Components.

    Science.gov (United States)

    Rao, Nageswara S V; Ma, Chris Y T; Hausken, Kjell; He, Fei; Yau, David K Y; Zhuang, Jun

    2018-05-03

    We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.

  18. Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments.

    Science.gov (United States)

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso

    2012-11-01

    Water utilities in parts of the U.S. control microbial regrowth in drinking water distribution systems (DWDS) by alternating postdisinfection methods between chlorination and chloramination. To examine how this strategy influences drinking water microbial communities, an urban DWDS (population ≅ 40,000) with groundwater as the source water was studied for approximately 2 years. Water samples were collected at five locations in the network at different seasons and analyzed for their chemical and physical characteristics and for their microbial community composition and structure by examining the 16S rRNA gene via terminal restriction fragment length polymorphism and DNA pyrosequencing technology. Nonmetric multidimension scaling and canonical correspondence analysis of microbial community profiles could explain >57% of the variation. Clustering of samples based on disinfection types (free chlorine versus combined chlorine) and sampling time was observed to correlate to the shifts in microbial communities. Sampling location and water age (chlorinated water, and Methylophilaceae, Methylococcaceae, and Pseudomonadaceae were more abundant in chloraminated water. No correlation was observed with minor populations that were detected frequently (water and survived through the treatment process. Transient microbial populations including Flavobacteriaceae and Clostridiaceae were also observed. Overall, reversible shifts in microbial communities were especially pronounced with chloramination, suggesting stronger selection of microbial populations from chloramines than chlorine.

  19. Subseafloor Microbial Life in Venting Fluids from the Mid Cayman Rise Hydrothermal System

    Science.gov (United States)

    Huber, J. A.; Reveillaud, J.; Reddington, E.; McDermott, J. M.; Sylva, S. P.; Breier, J. A.; German, C. R.; Seewald, J.

    2012-12-01

    in Piccard vent fluids, a basalt-hosted black smoker site located at ~4950 m with a maximum temperature of 403 °C. However, hyperthermophilic and thermophilic heterotrophs of the genus Thermococcus were isolated from Piccard vent fluids, but not Von Damm. These obligate anaerobes, growing optimally at 55-90 °C, are ubiquitous at hydrothermal systems and serve as a readily cultivable indicator organism of subseafloor populations. Finally, molecular analysis of vent fluids is on-going and will define the microbial population structure in this novel ecosystem and allow for direct comparisons with other deep-sea and subsurface habitats as part of our continuing efforts to explore the deep microbial biosphere on Earth.

  20. CRISPR-Cas Defense System and Potential Prophages in Cyanobacteria Associated with the Coral Black Band Disease.

    Science.gov (United States)

    Buerger, Patrick; Wood-Charlson, Elisha M; Weynberg, Karen D; Willis, Bette L; van Oppen, Madeleine J H

    2016-01-01

    Understanding how pathogens maintain their virulence is critical to developing tools to mitigate disease in animal populations. We sequenced and assembled the first draft genome of Roseofilum reptotaenium AO1, the dominant cyanobacterium underlying pathogenicity of the virulent coral black band disease (BBD), and analyzed parts of the BBD-associated Geitlerinema sp. BBD_1991 genome in silico . Both cyanobacteria are equipped with an adaptive, heritable clustered regularly interspaced short palindromic repeats (CRISPR)-Cas defense system type I-D and have potential virulence genes located within several prophage regions. The defense system helps to prevent infection by viruses and mobile genetic elements via identification of short fingerprints of the intruding DNA, which are stored as templates in the bacterial genome, in so-called "CRISPRs." Analysis of CRISPR target sequences (protospacers) revealed an unusually high number of self-targeting spacers in R. reptotaenium AO1 and extraordinary long CRIPSR arrays of up to 260 spacers in Geitlerinema sp. BBD_1991. The self-targeting spacers are unlikely to be a form of autoimmunity; instead these target an incomplete lysogenic bacteriophage. Lysogenic virus induction experiments with mitomycin C and UV light did not reveal an actively replicating virus population in R. reptotaenium AO1 cultures, suggesting that phage functionality is compromised or excision could be blocked by the CRISPR-Cas system. Potential prophages were identified in three regions of R. reptotaenium AO1 and five regions of Geitlerinema sp. BBD_1991, containing putative BBD relevant virulence genes, such as an NAD-dependent epimerase/dehydratase (a homolog in terms of functionality to the third and fourth most expressed gene in BBD), lysozyme/metalloendopeptidases and other lipopolysaccharide modification genes. To date, viruses have not been considered to be a component of the BBD consortium or a contributor to the virulence of R. reptotaenium AO1

  1. 75 FR 71560 - Defense Federal Acquisition Regulation Supplement; Cost and Software Data Reporting System (DFARS...

    Science.gov (United States)

    2010-11-24

    ... also asked what allowance is provided for contractors with accounting software that does not... RIN 0750-AG46 Defense Federal Acquisition Regulation Supplement; Cost and Software Data Reporting... Regulation Supplement (DFARS) to address DoD Cost and Software Data Reporting system requirements for Major...

  2. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions.

    Science.gov (United States)

    Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian

    2013-10-01

    Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree

  3. Complex Dynamical Behaviors in a Predator-Prey System with Generalized Group Defense and Impulsive Control Strategy

    Directory of Open Access Journals (Sweden)

    Shunyi Li

    2013-01-01

    Full Text Available A predator-prey system with generalized group defense and impulsive control strategy is investigated. By using Floquet theorem and small amplitude perturbation skills, a local asymptotically stable prey-eradication periodic solution is obtained when the impulsive period is less than some critical value. Otherwise, the system is permanent if the impulsive period is larger than the critical value. By using bifurcation theory, we show the existence and stability of positive periodic solution when the pest eradication lost its stability. Numerical examples show that the system considered has more complicated dynamics, including (1 high-order quasiperiodic and periodic oscillation, (2 period-doubling and halving bifurcation, (3 nonunique dynamics (meaning that several attractors coexist, and (4 chaos and attractor crisis. Further, the importance of the impulsive period, the released amount of mature predators and the degree of group defense effect are discussed. Finally, the biological implications of the results and the impulsive control strategy are discussed.

  4. Photochemical and microbial alterations of DOM spectroscopic properties in the estuarine system Ria de Aveiro.

    Science.gov (United States)

    Santos, L; Santos, E B H; Dias, J M; Cunha, A; Almeida, A

    2014-08-01

    The influence of photochemical transformations of chromophoric dissolved organic matter (CDOM) on microbial communities was evaluated in the estuarine system Ria de Aveiro. Two sites, representative of the marine and brackish water zones of the estuary, were surveyed regularly in order to determine seasonal and vertical profiles of variation of CDOM properties. Optical parameters of CDOM indicative of aromaticity and molecular weight were used to establish CDOM sources, and microbial abundance and activity was characterized. Additionally, microcosm experiments were performed in order to simulate photochemical reactions of CDOM and to evaluate microbial responses to light-induced changes in CDOM composition. The CDOM of the two estuarine zones showed different spectral characteristics, with significantly higher values of the specific ultra-violet absorbance at 254 nm (SUVA254) (5.5 times) and of the absorption coefficient at 350 nm (a350) (12 times) and lower SR (S275-295/S350-400) ratio at brackish water compared with the marine zone, reflecting the different amounts and prevailing sources of organic matter, as well as distinct riverine and oceanic influences. At the marine zone, the abundance of bacteria and the activity of Leu-AMPase correlated with a350 and a254, suggesting a microbial contribution to the HMW CDOM pool. The irradiation of DOM resulted in a decrease of the values of a254 and a350 and an increase of the slope S275-295 and of the ratios E2 : E3 (a250/a365) and SR, which in turn increase its bioavailability. However, the extent of photoinduced transformations and microbial responses was dependent on the initial optical characteristics of CDOM. In Ria de Aveiro both photochemical and microbial processes yielded optical changes in CDOM and the overall results of these combined processes determine the fate of CDOM in the estuarine system and have an influence on local productivity and in adjacent coastal areas.

  5. Contribution to the improvement of management in defense logistics

    Directory of Open Access Journals (Sweden)

    Srđan D. Ljubojević

    2013-12-01

    Full Text Available Introduction Changes in social environment require adequate answers of all organizational systems, including defense systems and their logistic systems. Improvement of management in defense logistics involves good knowledge of management theory and practice, knowledge of the impact of ownership and market on management, knowledge of public and other macroeconomic sectors functioning, broader opening towards environment and the exchange of knowledge, information and lessons learned with international environment. The paper presents theoretical and practical knowledge that is prerequisite for improving the management of defense and the management of defense logistic systems.   Definition and the essence of management   Regarding its complexity and a lack of a comprehensive definition, the concept of management is nowadays considered in three ways: as a skill, as social categories - structure of management, as well as a theory - a scientific discipline. When we aanalyze the phenomenon of management, with respect to the historical aspect of its development, there is a necessity to distinguish between management as a scientific discipline and management practice.   Relation between organizational science and management In theory and practice, management is associated with the achievements of many other scientific fields. One of the areas closest to management is organizational science. Today, in the management theory and organization theory, the prevailing attitudes state that these two areas are non-separable and that they are focused on the explaination of the same phenomenon, with the same desire to improve effectivity and development of different purpose systems. There is no clear boundary between organizational science and management, both from theoretical and practical aspects.   Achievements and shortcomings of organizational schools   As a result of solving problems in real systems, a number of opinions and different organizational

  6. Assessment of tillage systems in organic farming: influence of soil structure on microbial biomass. First results

    OpenAIRE

    Vian, Jean François; Peigné, Joséphine; Chaussod, Rémi; Roger-Estrade, Jean

    2007-01-01

    Soil tillage modifies environmental conditions of soil microorganisms and their ability to release nitrogen. We compare the influence of reduced tillage (RT) and mouldboard ploughing (MP) on the soil microbial functioning in organic farming. In order to connect soil structure generated by these tillage systems on the soil microbial biomass we adopt a particular sampling scheme based on the morphological characterisation of the soil structure by the description of the soil profile. This method...

  7. Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage.

    Science.gov (United States)

    Biswas, Kristi; Turner, Susan J

    2012-02-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (<5%). Biovolume estimates of the SRBs were higher in biofilm samples from one of the WWTPs which receives both domestic and industrial waste and is influenced by seawater infiltration. The suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems.

  8. Microbial bioinformatics 2020.

    Science.gov (United States)

    Pallen, Mark J

    2016-09-01

    Microbial bioinformatics in 2020 will remain a vibrant, creative discipline, adding value to the ever-growing flood of new sequence data, while embracing novel technologies and fresh approaches. Databases and search strategies will struggle to cope and manual curation will not be sustainable during the scale-up to the million-microbial-genome era. Microbial taxonomy will have to adapt to a situation in which most microorganisms are discovered and characterised through the analysis of sequences. Genome sequencing will become a routine approach in clinical and research laboratories, with fresh demands for interpretable user-friendly outputs. The "internet of things" will penetrate healthcare systems, so that even a piece of hospital plumbing might have its own IP address that can be integrated with pathogen genome sequences. Microbiome mania will continue, but the tide will turn from molecular barcoding towards metagenomics. Crowd-sourced analyses will collide with cloud computing, but eternal vigilance will be the price of preventing the misinterpretation and overselling of microbial sequence data. Output from hand-held sequencers will be analysed on mobile devices. Open-source training materials will address the need for the development of a skilled labour force. As we boldly go into the third decade of the twenty-first century, microbial sequence space will remain the final frontier! © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Microbial community structure characteristics associated membrane fouling in A/O-MBR system.

    Science.gov (United States)

    Gao, Da-Wen; Wen, Zhi-Dan; Li, Bao; Liang, Hong

    2014-02-01

    The study demonstrated the potential relationship between microbial community structure and membrane fouling in an anoxic-oxic membrane bioreactor (A/O-MBR). The results showed that the microbial community structure in biocake was different with aerobic mixture, and the dominant populations were out of sync during the fouling process. Based on microbial community structure and metabolites analysis, the results showed that the succession of microbial community might be the leading factor to the variation of metabolites, and it might be the primary cause of membrane fouling. The rise of Shannon diversity index (H) of the microbial community in A/O-MBR went with the gradually serious membrane fouling. Pareto-Lorenz curve was used to describe the evenness of microbial distribution in A/O-MBR, and the result indicated when community evenness was low, the membrane fouling took place smoothly or slightly, otherwise, high evenness of microbial community would lead to more seriously membrane fouling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. 75 FR 33271 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Foreign...

    Science.gov (United States)

    2010-06-11

    ... Certain Contracts with Foreign Entities for the Conduct of Ballistic Missile Defense Research, Development..., development, test, or evaluation in connection with the Ballistic Missile Defense Program. The provision... DEPARTMENT OF DEFENSE Defense Acquisition Regulations System [OMB Control Number 0704-0229...

  11. Microbial based strategies for assessing rhizosphere-enhanced phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, C M [US Army Cold Regions Research and Engineering Lab., Hanover, NH (United States); Wolf, D C [Arkansas Univ., Fayetteville, AR (United States)

    1999-01-01

    The U.S. Department of Defense has considered phytoremediation to be a feasible technology to clean up contaminated sites in remote, cold regions. In cold regions, contaminated soil treatment rates are reduced by low temperatures and short treatment seasons. One technology that overcomes these limitations is rhizosphere-enhanced biotreatment which is a low-cost, simple technology that stimulates indigenous microorganisms. A study was conducted in which rhizosphere-enhanced treatment was compared to natural attenuation at a petroleum-contaminated site in Fairbanks, Alaska. The effects of vegetation and nutrient additions on remediation of soils contaminated with both diesel and crude oil were examined. Soil total petroleum hydrocarbon (TPH) concentrations in both treatments decreased relative to the initial TPH concentrations. After 640 days of treatment, the rhizosphere treatment had significantly lower TPH concentrations. It was concluded that an improved understanding of the time-dependent relationships between contaminant concentration changes and microbial community changes, along with improved techniques to characterize microbial communities, could provide a useful tool for monitoring the functioning of phytoremediation. 25 refs., 8 figs.

  12. Microbial based strategies for assessing rhizosphere-enhanced phytoremediation

    International Nuclear Information System (INIS)

    Reynolds, C.M.; Wolf, D.C.

    1999-01-01

    The U.S. Department of Defense has considered phytoremediation to be a feasible technology to clean up contaminated sites in remote, cold regions. In cold regions, contaminated soil treatment rates are reduced by low temperatures and short treatment seasons. One technology that overcomes these limitations is rhizosphere-enhanced biotreatment which is a low-cost, simple technology that stimulates indigenous microorganisms. A study was conducted in which rhizosphere-enhanced treatment was compared to natural attenuation at a petroleum-contaminated site in Fairbanks, Alaska. The effects of vegetation and nutrient additions on remediation of soils contaminated with both diesel and crude oil were examined. Soil total petroleum hydrocarbon (TPH) concentrations in both treatments decreased relative to the initial TPH concentrations. After 640 days of treatment, the rhizosphere treatment had significantly lower TPH concentrations. It was concluded that an improved understanding of the time-dependent relationships between contaminant concentration changes and microbial community changes, along with improved techniques to characterize microbial communities, could provide a useful tool for monitoring the functioning of phytoremediation. 25 refs., 8 figs

  13. Soil microbial biomass under different management and tillage systems of permanent intercropped cover species in an orange orchard

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-12-01

    Full Text Available To mitigate soil erosion and enhance soil fertility in orange plantations, the permanent protection of the inter-rows by cover species has been suggested. The objective of this study was to evaluate alterations in the microbial biomass, due to different soil tillage systems and intercropped cover species between rows of orange trees. The soil of the experimental area previously used as pasture (Brachiaria humidicola was an Ultisol (Typic Paleudult originating from Caiuá sandstone in the northwestern part of the State of Paraná, Brazil. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST (strip width 2 m, in combination with different ground cover management systems. The citrus cultivar 'Pera' orange (Citrus sinensis grafted onto 'Rangpur' lime rootstock was used. Soil samples were collected after five years of treatment from a depth of 0-15 cm, under the tree canopy and in the inter-row, in the following treatments: (1 CT and an annual cover crop with the leguminous species Calopogonium mucunoides; (2 CT and a perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and an evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and a cover crop with spontaneous Brachiaria humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of Brachiaria humidicola. Soil tillage and the different cover species influenced the microbial biomass, both under the tree canopy and in the inter-row. The cultivation of brachiaria increased C and N in the microbial biomass, while bahiagrass increased P in the microbial biomass. The soil microbial biomass was enriched in N and P by the presence of ground cover species and according to the soil P content. The grass species increased C, N and P in the soil microbial biomass from the inter-row more than leguminous species.

  14. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways.

    Science.gov (United States)

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. © 2016 American Society of Plant Biologists. All rights reserved.

  15. Soviet civil defense plans make nuclear war winnable

    International Nuclear Information System (INIS)

    Goure, L.

    1985-01-01

    In this paper, the author expresses his opinion that the U.S. is naive and suicidal in its lack of civil defense preparation for nuclear war. The Soviets' extensive civil defense planning is evidence that they plan to use their nuclear weapons and survive a counterattack by the U.S. The author compares the two systems and explains why the Soviets' system is superior

  16. Contribution to the improvement of management in defense logistics

    OpenAIRE

    LJUBOJEVIC SRDJAN D.; ANDREJIC MARKO D.; DRAGOVIC NEBOJSA K.

    2013-01-01

    Introduction Changes in social environment require adequate answers of all organizational systems, including defense systems and their logistic systems. Improvement of management in defense logistics involves good knowledge of management theory and practice, knowledge of the impact of ownership and market on management, knowledge of public and other macroeconomic sectors functioning, broader opening towards environment and the exchange of knowledge, information and lessons learned with inter...

  17. 78 FR 70025 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement...

    Science.gov (United States)

    2013-11-22

    ... and Procedures AGENCY: Defense Acquisition Regulations System, Department of Defense (DoD). ACTION... proposed information collection; (c) ways to enhance the quality, utility, and clarity of the information..., withhold, or withdraw purchasing system approval at the conclusion of a purchasing system review...

  18. Microbial Insight into a Pilot-Scale Enhanced Two-Stage High-Solid Anaerobic Digestion System Treating Waste Activated Sludge.

    Science.gov (United States)

    Wu, Jing; Cao, Zhiping; Hu, Yuying; Wang, Xiaolu; Wang, Guangqi; Zuo, Jiane; Wang, Kaijun; Qian, Yi

    2017-11-30

    High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process "thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)". Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H₂ and CO₂ to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance.

  19. Dynamic defense workshop :

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Sean Michael; Doak, Justin E.; Haas, Jason Juedes.; Helinski, Ryan; Lamb, Christopher C.

    2013-02-01

    On September 5th and 6th, 2012, the Dynamic Defense Workshop: From Research to Practice brought together researchers from academia, industry, and Sandia with the goals of increasing collaboration between Sandia National Laboratories and external organizations, de ning and un- derstanding dynamic, or moving target, defense concepts and directions, and gaining a greater understanding of the state of the art for dynamic defense. Through the workshop, we broadened and re ned our de nition and understanding, identi ed new approaches to inherent challenges, and de ned principles of dynamic defense. Half of the workshop was devoted to presentations of current state-of-the-art work. Presentation topics included areas such as the failure of current defenses, threats, techniques, goals of dynamic defense, theory, foundations of dynamic defense, future directions and open research questions related to dynamic defense. The remainder of the workshop was discussion, which was broken down into sessions on de ning challenges, applications to host or mobile environments, applications to enterprise network environments, exploring research and operational taxonomies, and determining how to apply scienti c rigor to and investigating the eld of dynamic defense.

  20. Anorexia and Attachment: Dysregulated Defense and Pathological Mourning

    Directory of Open Access Journals (Sweden)

    elisa edelvecchio

    2014-10-01

    Full Text Available The role of Defensive exclusion (Deactivation and Segregated Systems in the development of early relationships and related to subsequent manifestations of symptoms of eating disorders was assessed using the Adult Attachment Projective Picture System (AAP. Fifty-one DSM-IV diagnosed women with anorexia participated in the study. Anorexic patients were primarily classified as dismissing or unresolved. Quantitative and qualitative analyses of defensive exclusion were carried out. Results showed potential benefits of using the AAP defense exclusion coding system, in addition to the main attachment classifications, in order to better understand the developmental issues involved in anorexia. Discussion concerned the processes, such as pathological mourning, that may underlie the associations between dismissing and unresolved attachment and anorexia. Implications for developmental research and clinical nosology are discussed.

  1. Technical Soddi Defenses: The Trojan Horse Defense Revisited

    Directory of Open Access Journals (Sweden)

    Chad Steel

    2014-12-01

    Full Text Available In 2004, the Trojan horse defense was at a crossroads, with two child pornography cases where it was successfully employed in the United Kingdom, resulting in acquittals.  The original Trojan horse defense has now become part of the more general “technical SODDI” defense, which includes the possibility of unknown actors using unsecured Wi-Fi connections or having physical access to a computer to perform criminal acts.  In the past ten years, it has failed to be effective in the United States for criminal cases, with no published acquittals in cases where it was the primary defense.  In the criminal cases where it has been used as leverage in plea negotiations, there has been either poor forensics performed by the prosecution or political pressure to resolve a matter.  On the civil side, however, the defense has been wildly successful, effectively shutting down large John Doe copyright infringement litigation against non-commercial violators.  

  2. Biofiltration of airborne VOCs with green wall systems-Microbial and chemical dynamics.

    Science.gov (United States)

    Mikkonen, A; Li, T; Vesala, M; Saarenheimo, J; Ahonen, V; Kärenlampi, S; Blande, J D; Tiirola, M; Tervahauta, A

    2018-05-06

    Botanical air filtration is a promising technology for reducing indoor air contaminants, but the underlying mechanisms need better understanding. Here, we made a set of chamber fumigation experiments of up to 16 weeks of duration, to study the filtration efficiencies for seven volatile organic compounds (VOCs; decane, toluene, 2-ethylhexanol, α-pinene, octane, benzene, and xylene) and to monitor microbial dynamics in simulated green wall systems. Biofiltration functioned on sub-ppm VOC levels without concentration-dependence. Airflow through the growth medium was needed for efficient removal of chemically diverse VOCs, and the use of optimized commercial growth medium further improved the efficiency compared with soil and Leca granules. Experimental green wall simulations using these components were immediately effective, indicating that initial VOC removal was largely abiotic. Golden pothos plants had a small additional positive impact on VOC filtration and bacterial diversity in the green wall system. Proteobacteria dominated the microbiota of rhizosphere and irrigation water. Airborne VOCs shaped the microbial communities, enriching potential VOC-utilizing bacteria (especially Nevskiaceae and Patulibacteraceae) in the irrigation water, where much of the VOC degradation capacity of the biofiltration systems resided. These results clearly show the benefits of active air circulation and optimized growth media in modern green wall systems. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco.

    Science.gov (United States)

    Alamillo, Josefa M; Saénz, Pilar; García, Juan Antonio

    2006-10-01

    Plum pox virus (PPV) is able to replicate in inoculated leaves of Nicotiana tabacum, but is defective in systemic movement in this host. However, PPV produces a systemic infection in transgenic tobacco expressing the silencing suppressor P1/HC-Pro from tobacco etch virus (TEV). In this work we show that PPV is able to move to upper non-inoculated leaves of tobacco plants expressing bacterial salicylate hydroxylase (NahG) that degrades salicylic acid (SA). Replication and accumulation of PPV is higher in the locally infected leaves of plants deficient in SA or expressing TEV P1/HC-Pro silencing suppressor. Accumulation of viral derived small RNAs was reduced in the NahG transgenic plants, suggesting that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco. Besides, expression of SA-mediated defense transcripts, such as those of pathogenesis-related (PR) proteins PR-1 and PR-2 or alternative oxidase-1, as well as that of the putative RNA-dependent RNA polymerase NtRDR1, is induced in response to PPV infection, and the expression patterns of these defense transcripts are altered in the TEV P1/HC-Pro transgenic plants. Long-distance movement of PPV is highly enhanced in NahG x P1/HC-Pro double-transgenic plants and systemic symptoms in these plants reveal that the expression of an RNA-silencing suppressor and the lack of SA produce additive but distinct effects. Our results suggest that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco, and that silencing suppressors, such as P1/HC-Pro, also alter the SA-mediated defense. Both an RNA-silencing and an SA-mediated defense mechanism could act together to limit PPV infection.

  4. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling.

    Science.gov (United States)

    Mazzoli, Roberto; Pessione, Enrica

    2016-01-01

    Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation, and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut-brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system (CNS) also supports a communication pathway between the gut microbiota and neural circuits of the host, including the CNS. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions, and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut-brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune, and humoral). In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin, and trace amines) will be considered, with special focus on Glu and GABA circuits, receptors, and signaling. From the basic science viewpoint, "microbial endocrinology" deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate), are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of neurogastroenteric and

  5. Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System

    Directory of Open Access Journals (Sweden)

    Ronald Anderson

    2010-05-01

    Full Text Available In general antibiotics interact cooperatively with host defences, weakening and decreasing the virulence of microbial pathogens, thereby increasing vulnerability to phagocytosis and eradication by the intrinsic antimicrobial systems of the host. Antibiotics, however, also interact with host defences by several other mechanisms, some harmful, others beneficial. Harmful activities include exacerbation of potentially damaging inflammatory responses, a property of cell-wall targeted agents, which promotes the release of pro-inflammatory microbial cytotoxins and cell-wall components. On the other hand, inhibitors of bacterial protein synthesis, especially macrolides, possess beneficial anti-inflammatory/cytoprotective activities, which result from interference with the production of microbial virulence factors/cytotoxins. In addition to these pathogen-directed, anti-inflammatory activities, some classes of antimicrobial agent possess secondary anti-inflammatory properties, unrelated to their conventional antimicrobial activities, which target cells of the innate immune system, particularly neutrophils. This is a relatively uncommon, potentially beneficial property of antibiotics, which has been described for macrolides, imidazole anti-mycotics, fluoroquinolones, and tetracyclines. Although of largely unproven significance in the clinical setting, increasing awareness of the pro-inflammatory and anti-inflammatory properties of antibiotics may contribute to a more discerning and effective use of these agents.

  6. Microbial characterization of a radionuclide- and metal-contaminated waste site

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Lumppio, H.L.; Ainsworth, C.C.; Plymale, A.E.

    1993-04-01

    The operation of nuclear processing facilities and defense-related nuclear activities has resulted in contamination of near-surface and deep-subsurface sediments with both radionuclides and metals. The presence of mixed inorganic contaminants may result in undetectable microbial populations or microbial populations that are different from those present in uncontaminated sediments. To determine the impact of mixed radionuclide and metal contaminants on sediment microbial communities, we sampled a processing pond that was used from 1948 to 1975 for the disposal of radioactive and metal-contaminated wastewaters from laboratories and nuclear fuel fabrication facilities on the Hanford Site in Washington State. Because the Hanford Site is located in a semiarid environment with average rainfall of 159 mm/year, the pond dried and a settling basin remained after wastewater input into the pond ceased in 1975. This processing pond basin offered a unique opportunity to obtain near-surface sediments that had been contaminated with both radionuclides and metals for several decades. Our objectives were to determine the viable populations of microorganisms in the sediments and to test several hypotheses about how the addition of both radionuclides and metals influenced the microbial ecology of the sediments. Our first hypothesis was that viable populations of microorganisms would be lower in the more contaminated sediments. Second, we expected that long-term metal exposure would result in enhanced metal resistance. Finally, we hypothesized that microorganisms from the most radioactive sediments should have had enhanced radiation resistance

  7. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots

    Directory of Open Access Journals (Sweden)

    Carmen eGómez-Lama Cabanás

    2014-09-01

    Full Text Available Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets, many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR experiments aiming to: (i validate the induction of these genes, and (ii shed light on their expression pattern along time (from 1 to 15 days. Induction of olive genes potentially coding for lypoxigenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e. jerf, bHLH, WRKYs, as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mount a wide array of systemic defense responses in distant tissues (stems, leaves. This sheds light on how olive plants respond to the ‘non-hostile’ colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7.

  8. Rethinking Defensive Information Warfare

    Science.gov (United States)

    2004-06-01

    Countless studies, however, have demonstrated the weakness in this system.15 The tension between easily remembered passwords and suffi...vulnerabilities Undiscovered flaws The patch model for Internet security has failed spectacularly. Caida , 2004 Signature-Based Defense Anti virus, intrusion

  9. [Study of defense styles, defenses and coping strategies in alcohol-dependent population].

    Science.gov (United States)

    Ribadier, A; Varescon, I

    2017-05-01

    Defense mechanisms have been seen to greatly change over time and across different definitions made by different theoretical currents. Recently with the definition provided by the DSM IV, defense mechanisms have integrated the concept of coping as a defensive factor. These mechanisms are no longer considered just through a psychodynamic approach but also through a cognitive and behavioral one. In recent years, new theories have therefore integrated these two components of the defensive operation. According to Chabrol and Callahan (2013), defense mechanisms precede coping strategies. In individuals with psychopathological disorders, these authors indicate a relative stability of these mechanisms. Also, we asked about the presence of unique characteristics among people with alcohol dependence. Indeed, studies conducted with people with alcohol dependence highlight the presence of a neurotic defense style and some highly immature defenses (projection, acting out, splitting and somatization). In terms of coping strategies, persons with alcohol dependence preferentially use avoidant strategies and strategies focused on emotion. However, although several studies have been conducted to assess coping strategies and defense styles within a population of individuals with an alcohol problem, at the present time none of them has taken into account all these aspects of defense mechanisms. The aim of this study is therefore to study the defenses and defense styles and coping strategies in an alcohol-dependent population. This multicenter study (3 CHU, 1 center of supportive care and prevention in addiction and 1 clinic) received a favorable opinion of an Institutional Review Board (IRB Registration #: 00001072). Eighty alcohol-dependent individuals responded to a questionnaire assessing sociodemographic characteristics and elements related to the course of consumption. Coping strategies were assessed by means of a questionnaire validated in French: the Brief Cope. The Defense

  10. Combined Effects of Nutrient and Pesticide Management on Soil Microbial Activity in Hybrid Rice Double Annual Cropping System

    Institute of Scientific and Technical Information of China (English)

    XIEXiao-mei; LIAOMin; LIUWei-ping; SusanneKLOSE

    2004-01-01

    Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbial biomass phospholipid contents,abundance of heterotrophic bacteria and proteolytic bacteria, electron transport system (ETS)/dehydrogenase activity, soil protein contents under different management practices and at various growth stages. Marked depletions in the soil microbial biomass phospholipid contents were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also induced slight changes, and the lowest microbial biomass phospholipid content was found with pesticides application alone. A decline in the bacterial abundance of heterotrophic bacteria and proteolytic bacteria was observed during the continuance of crop growth, while the lowest abundance of heterotrophic bacteria and proteolyrJc bacteria was found with pesticides application alone, which coincided with the decline of soil microbial biomass. A consistent increase in the electron transport svstem activit), was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or combined with pesticides increased it, while a decline was noticed with pesticides application alone as compared with the control.The soil protein content was found to be relatively stable with fertilizers and/or pesticides application at various growth stages in both crops undertaken, but notable changes were detected at different growrh stages

  11. Characteristics of microbial community functional structure of a biological coking wastewater treatment system.

    Science.gov (United States)

    Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min

    2018-01-01

    Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.

  12. Soil microbial properties after long-term swine slurry application to conventional and no-tillage systems in Brazil.

    Science.gov (United States)

    Balota, Elcio L; Machineski, Oswaldo; Hamid, Karima I A; Yada, Ines F U; Barbosa, Graziela M C; Nakatani, Andre S; Coyne, Mark S

    2014-08-15

    Swine waste can be used as an agricultural fertilizer, but large amounts may accumulate excess nutrients in soil or contaminate the surrounding environment. This study evaluated long-term soil amendment (15 years) with different levels of swine slurry to conventional (plow) tillage (CT) and no tillage (NT) soils. Long-term swine slurry application did not affect soil organic carbon. Some chemical properties, such as calcium, base saturation, and aluminum saturation were significantly different within and between tillages for various application rates. Available P and microbial parameters were significantly affected by slurry addition. Depending on tillage, soil microbial biomass and enzyme activity increased up to 120 m(3) ha(-1) year(-1) in all application rates. The NT system had higher microbial biomass and activity than CT at all application levels. There was an inverse relationship between the metabolic quotient (qCO2) and MBC, and the qCO2 was 53% lower in NT than CT. Swine slurry increased overall acid phosphatase activity, but the phosphatase produced per unit of microbial biomass decreased. A comparison of data obtained in the 3rd and 15th years of swine slurry application indicated that despite slurry application the CT system degraded with time while the NT system had improved values of soil quality indicators. For these Brazilian oxisols, swine slurry amendment was insufficient to maintain soil quality parameters in annual crop production without additional changes in tillage management. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Acquisition: Acquisition of Targets at the Missile Defense Agency

    National Research Council Canada - National Science Library

    Ugone, Mary L; Meling, John E; James, Harold C; Haynes, Christine L; Heller, Brad M; Pomietto, Kenneth M; Bobbio, Jaime; Chang, Bill; Pugh, Jacqueline

    2005-01-01

    Who Should Read This Report and Why? Missile Defense Agency program managers who are responsible for the acquisition and management of targets used to test the Ballistic Missile Defense System should be interested in this report...

  14. Eco-evolutionary Red Queen dynamics regulate biodiversity in a metabolite-driven microbial system.

    Science.gov (United States)

    Bonachela, Juan A; Wortel, Meike T; Stenseth, Nils Chr

    2017-12-15

    The Red Queen Hypothesis proposes that perpetual co-evolution among organisms can result from purely biotic drivers. After more than four decades, there is no satisfactory understanding as to which mechanisms trigger Red Queen dynamics or their implications for ecosystem features such as biodiversity. One reason for such a knowledge gap is that typical models are complicated theories where limit cycles represent an idealized Red Queen, and therefore cannot be used to devise experimental setups. Here, we bridge this gap by introducing a simple model for microbial systems able to show Red Queen dynamics. We explore diverse biotic sources that can drive the emergence of the Red Queen and that have the potential to be found in nature or to be replicated in the laboratory. Our model enables an analytical understanding of how Red Queen dynamics emerge in our setup, and the translation of model terms and phenomenology into general underlying mechanisms. We observe, for example, that in our system the Red Queen offers opportunities for the increase of biodiversity by facilitating challenging conditions for intraspecific dominance, whereas stasis tends to homogenize the system. Our results can be used to design and engineer experimental microbial systems showing Red Queen dynamics.

  15. Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems

    Science.gov (United States)

    Kracke, Frauke; Vassilev, Igor; Krömer, Jens O.

    2015-01-01

    Microbial electrochemical techniques describe a variety of emerging technologies that use electrode–bacteria interactions for biotechnology applications including the production of electricity, waste and wastewater treatment, bioremediation and the production of valuable products. Central in each application is the ability of the microbial catalyst to interact with external electron acceptors and/or donors and its metabolic properties that enable the combination of electron transport and carbon metabolism. And here also lies the key challenge. A wide range of microbes has been discovered to be able to exchange electrons with solid surfaces or mediators but only a few have been studied in depth. Especially electron transfer mechanisms from cathodes towards the microbial organism are poorly understood but are essential for many applications such as microbial electrosynthesis. We analyze the different electron transport chains that nature offers for organisms such as metal respiring bacteria and acetogens, but also standard biotechnological organisms currently used in bio-production. Special focus lies on the essential connection of redox and energy metabolism, which is often ignored when studying bioelectrochemical systems. The possibility of extracellular electron exchange at different points in each organism is discussed regarding required redox potentials and effect on cellular redox and energy levels. Key compounds such as electron carriers (e.g., cytochromes, ferredoxin, quinones, flavins) are identified and analyzed regarding their possible role in electrode–microbe interactions. This work summarizes our current knowledge on electron transport processes and uses a theoretical approach to predict the impact of different modes of transfer on the energy metabolism. As such it adds an important piece of fundamental understanding of microbial electron transport possibilities to the research community and will help to optimize and advance bioelectrochemical

  16. Ballistic missile defense effectiveness

    Science.gov (United States)

    Lewis, George N.

    2017-11-01

    The potential effectiveness of ballistic missile defenses today remains a subject of debate. After a brief discussion of terminal and boost phase defenses, this chapter will focus on long-range midcourse defenses. The problems posed by potential countermeasures to such midcourse defenses are discussed as are the sensor capabilities a defense might have available to attempt to discriminate the actual missile warhead in a countermeasures environment. The role of flight testing in assessing ballistic missile defense effectiveness is discussed. Arguments made about effectiveness by missile defense supporters and critics are summarized.

  17. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health

    Science.gov (United States)

    Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J

    2014-01-01

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  18. Counting viruses and bacteria in photosynthetic microbial mats

    NARCIS (Netherlands)

    Carreira, C; Staal, M.; Middelboe, M.; Brussaard, C.P.D.

    2015-01-01

    Viral abundances in benthic environments are the highest found in aquatic systems. Photosynthetic microbial mats represent benthic environments with high microbial activity and possibly high viral densities, yet viral abundances have not been examined in such systems. Existing extraction procedures

  19. FY 1997 Financial Reporting by The Defense Automated Printing Service

    National Research Council Canada - National Science Library

    1998-01-01

    .... The accuracy of information in the financial systems and reported on financial statements is the joint responsibility of the Defense Automated Printing Service and the Defense Logistics Agency...

  20. 76 FR 72391 - Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense...

    Science.gov (United States)

    2011-11-23

    ... DEPARTMENT OF DEFENSE Office of the Secretary [Docket ID DOD-2011-OS-0055] Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense Logistics Agency Actions AGENCY: Defense Logistics Agency, Department of Defense. ACTION: Revised Defense Logistics Agency...

  1. Method for performing diversity and defense-in-depth analyses of reactor protection systems

    International Nuclear Information System (INIS)

    Preckshot, G.G.

    1994-12-01

    The purpose of this NUREG is to describe a method for analyzing computer-based nuclear reactor protection systems that discovers design vulnerabilities to common-mode failure. The potential for common-mode failure has become an important issue as the software content of protection systems has increased. This potential was not present in earlier analog protection systems because it could usually be assumed that common-mode failure, if it did occur, was due to slow processes such as corrosion or premature wear-out. This assumption is no longer true for systems containing software. It is the purpose of the analysis method described here to determine points of a design for which credible common-mode failures are uncompensated either by diversity or defense-in-depth

  2. Advanced thermal management technologies for defense electronics

    Science.gov (United States)

    Bloschock, Kristen P.; Bar-Cohen, Avram

    2012-05-01

    Thermal management technology plays a key role in the continuing miniaturization, performance improvements, and higher reliability of electronic systems. For the past decade, and particularly, the past 4 years, the Defense Advanced Research Projects Agency (DARPA) has aggressively pursued the application of micro- and nano-technology to reduce or remove thermal constraints on the performance of defense electronic systems. The DARPA Thermal Management Technologies (TMT) portfolio is comprised of five technical thrust areas: Thermal Ground Plane (TGP), Microtechnologies for Air-Cooled Exchangers (MACE), NanoThermal Interfaces (NTI), Active Cooling Modules (ACM), and Near Junction Thermal Transport (NJTT). An overview of the TMT program will be presented with emphasis on the goals and status of these efforts relative to the current State-of-the-Art. The presentation will close with future challenges and opportunities in the thermal management of defense electronics.

  3. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    production. Research should focus on the actions of enzymes and enzyme complexes within the context of the whole cell, how they’re regulated, where they’re placed, and what they interact with. Better modeling tools are needed to facilitate progress in microbial energy transformations. Models of metabolic dynamics, including levels of reductants and regulation of electron flow need to be improved. Global techno-economic models of microbial energy conversion systems, which seek to simultaneously describe the resource flows into and out of a system as well as its economics, are needed and should be made publicly available on the internet. Finally, more emphasis needs to be placed on multidisciplinary education and training and on cooperation between disciplines in order to make the most of microbial energy conversion technologies and to meet the research needs of the future.

  4. Effects of Conservation Agriculture and Fertilization on Soil Microbial Diversity and Activity

    Directory of Open Access Journals (Sweden)

    Johan Habig

    2015-07-01

    Full Text Available Soil microbial communities perform critical functions in ecosystem processes. These functions can be used to assess the impact of agricultural practices on sustainable crop production. In this five-year study, the effect of various agricultural practices on soil microbial diversity and activity was investigated in a summer rainfall area under South African dryland conditions. Microbial diversity and activity were measured in the 0–15 cm layer of a field trial consisting of two fertilizer levels, three cropping systems, and two tillage systems. Using the Shannon–Weaver and Evenness diversity indices, soil microbial species richness and abundance were measured. Microbial enzymatic activities: β-glucosidase, phosphatase and urease, were used to evaluate ecosystem functioning. Cluster analysis revealed a shift in soil microbial community diversity and activity over time. Microbial diversity and activity were higher under no-till than conventional tillage. Fertilizer levels seemed to play a minor role in determining microbial diversity and activity, whereas the cropping systems played a more important role in determining the activity of soil microbial communities. Conservation agriculture yielded the highest soil microbial diversity and activity in diversified cropping systems under no-till.

  5. Influence of IR sensor technology on the military and civil defense

    Science.gov (United States)

    Becker, Latika

    2006-02-01

    Advances in basic infrared science and developments in pertinent technology applications have led to mature designs being incorporated in civil as well as military area defense systems. Military systems include both tactical and strategic, and civil area defense includes homeland security. Technical challenges arise in applying infrared sensor technology to detect and track targets for space and missile defense. Infrared sensors are valuable due to their passive capability, lower mass and power consumption, and their usefulness in all phases of missile defense engagements. Nanotechnology holds significant promise in the near future by offering unique material and physical properties to infrared components. This technology is rapidly developing. This presentation will review the current IR sensor technology, its applications, and future developments that will have an influence in military and civil defense applications.

  6. Scaling up microbial fuel cells and other bioelectrochemical systems

    KAUST Repository

    Logan, Bruce E.

    2009-12-15

    Scientific research has advanced on different microbial fuel cell (MFC) technologies in the laboratory at an amazing pace, with power densities having reached over 1 kW/m3 (reactor volume) and to 6.9 W/m2 (anode area) under optimal conditions. The main challenge is to bring these technologies out of the laboratory and engineer practical systems for bioenergy production at larger scales. Recent advances in new types of electrodes, a better understanding of the impact of membranes and separators on performance of these systems, and results from several new pilot-scale tests are all good indicators that commercialization of the technology could be possible within a few years. Some of the newest advances and future challenges are reviewed here with respect to practical applications of these MFCs for renewable energy production and other applications. © 2009 Springer-Verlag.

  7. Scaling up microbial fuel cells and other bioelectrochemical systems

    KAUST Repository

    Logan, Bruce E.

    2009-01-01

    Scientific research has advanced on different microbial fuel cell (MFC) technologies in the laboratory at an amazing pace, with power densities having reached over 1 kW/m3 (reactor volume) and to 6.9 W/m2 (anode area) under optimal conditions. The main challenge is to bring these technologies out of the laboratory and engineer practical systems for bioenergy production at larger scales. Recent advances in new types of electrodes, a better understanding of the impact of membranes and separators on performance of these systems, and results from several new pilot-scale tests are all good indicators that commercialization of the technology could be possible within a few years. Some of the newest advances and future challenges are reviewed here with respect to practical applications of these MFCs for renewable energy production and other applications. © 2009 Springer-Verlag.

  8. Elimination of pyraclostrobin by simultaneous microbial degradation coupled with the Fenton process in microbial fuel cells and the microbial community.

    Science.gov (United States)

    Zhao, Huanhuan; Kong, Chui-Hua

    2018-06-01

    The elimination of pyraclostrobin by simultaneous microbial degradation and Fenton oxidation was achieved in a microbial fuel cell (MFC) system. After 12 h of incubation, the removal rate of pyraclostrobin was 1.4 mg/L/h at the anode and 1.7 mg/L/h at the cathode. The pyraclostrobin concentration was less than the detection limit (0.1 mg/L) after 72 h at the anode and 24 h at the cathode. The air flow rate, temperature, and pH of the catholyte had significant effects on the generation of H 2 O 2 . The maximum production of H 2 O 2 was 1.2 mg/L after reaction for 20 h during the Fenton process. Microbial community analysis indicated that functional bacteria in the genera Chryseobacterium, Stenotrophomonas, Arcobacter, and Comamonas were predominant in the anodic biofilm. In conclusion, the MFC-Fenton system provides an effective approach for treating environmental contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-01-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  10. 48 CFR 752.228-3 - Worker's compensation insurance (Defense Base Act).

    Science.gov (United States)

    2010-10-01

    ... insurance (Defense Base Act). 752.228-3 Section 752.228-3 Federal Acquisition Regulations System AGENCY FOR... Clauses 752.228-3 Worker's compensation insurance (Defense Base Act). As prescribed in 728.309, the... contracting officer. (a) The Contractor agrees to procure Defense Base Act (DBA) insurance pursuant to the...

  11. 48 CFR 52.228-3 - Workers' Compensation Insurance (Defense Base Act).

    Science.gov (United States)

    2010-10-01

    ... Insurance (Defense Base Act). 52.228-3 Section 52.228-3 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.228-3 Workers' Compensation Insurance (Defense Base Act). As prescribed in 28.309(a), insert the following clause: Workers' Compensation Insurance (Defense Base Act) (APR 1984) The Contractor...

  12. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  13. The effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon

    Directory of Open Access Journals (Sweden)

    Wei Hui Xu

    2015-09-01

    Full Text Available The growth of watermelon is often threatened by Fusarium oxysporum f. sp. niveum (Fon in successively monocultured soil, which results in economic loss. The objective of this study was to investigate the effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon and to explore the relationship between the effect and the incidence of wilt caused by Fon. The results showed that the activities of soil polyphenol oxidase, urease and invertase were increased, the microbial biomass nitrogen (MBN and microbial biomass phosphorus (MBP were significantly increased, and the ratio of MBC/MBN was decreased (P<0.05. Real-time PCR analysis showed that the Fon population declined significantly in the watermelon/wheat companion system compared with the monoculture system (P<0.05. The analysis of microbial communities showed that the relative abundance of microbial communities was changed in the rhizosphere of watermelon. Compared with the monoculture system, the relative abundances of Alphaproteobacteria, Actinobacteria, Gemmatimonadetes and Sordariomycetes were increased, and the relative abundances of Gammaproteobacteria, Sphingobacteria, Cytophagia, Pezizomycetes, and Eurotiomycetes were decreased in the rhizosphere of watermelon in the watermelon/wheat companion system; importantly, the incidence of Fusarium wilt was also decreased in the watermelon/wheat companion system. In conclusion, this study indicated that D123 wheat as a companion crop increased soil enzyme activities and microbial biomass, decreased the Fon population, and changed the relative abundance of microbial communities in the rhizosphere of watermelon, which may be related to the reduction of Fusarium wilt in the watermelon/wheat companion system.

  14. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    International Nuclear Information System (INIS)

    Wang, Yifeng; Papenguth, Hans W.

    2000-01-01

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation

  15. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    WANG,YIFENG; PAPENGUTH,HANS W.

    2000-05-04

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.

  16. Defense Human Resources Activity > PERSEREC

    Science.gov (United States)

    Skip to main content (Press Enter). Toggle navigation Defense Human Resources Activity Search Search Defense Human Resources Activity: Search Search Defense Human Resources Activity: Search Defense Human Resources Activity U.S. Department of Defense Defense Human Resources Activity Overview

  17. Long-term effects of potato cropping system strategies on soilborne diseases and soil microbial communities

    Science.gov (United States)

    Cropping systems incorporating soil health management practices, such as longer rotations, disease-suppressive crops, reduced tillage, and/or organic amendments can substantially affect soil microbial communities, and potentially reduce soilborne potato diseases and increase productivity, but long-t...

  18. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense

    Directory of Open Access Journals (Sweden)

    Piera Valenti

    2018-03-01

    Full Text Available The innate defense system of the female mucosal genital tract involves a close and complex interaction among the healthy vaginal microbiota, different cells, and various proteins that protect the host from pathogens. Vaginal lactobacilli and lactoferrin represent two essential actors in the vaginal environment. Lactobacilli represent the dominant bacterial species able to prevent facultative and obligate anaerobes outnumber in vaginal microbiota maintaining healthy microbial homeostasis. Several mechanisms underlie the protection exerted by lactobacilli: competition for nutrients and tissue adherence, reduction of the vaginal pH, modulation of immunity, and production of bioactive compounds. Among bioactive factors of cervicovaginal mucosa, lactoferrin, an iron-binding cationic glycoprotein, is a multifunctional glycoprotein with antibacterial, antifungal, antiviral, and antiparasitic activities, recently emerging as an important modulator of inflammation. Lactobacilli and lactoferrin are largely under the influence of female hormones and of paracrine production of various cytokines. Lactoferrin is strongly increased in lower genital tract mucosal fluid of women affected by Neisseria gonorrheae, Chlamydia trachomatis, and Trichomonas vaginalis infections promoting both innate and adaptive immune responses. In vaginal dysbiosis characterized by low amounts of vaginal lactobacilli and increased levels of endogenous anaerobic bacteria, the increase in lactoferrin could act as an immune modulator assuming the role normally played by the healthy microbiota in vaginal mucosa. Then lactoferrin and lactobacilli may be considered as biomarkers of altered microbial homeostasis at vaginal level. Considering the shortage of effective treatments to counteract recurrent and/or antibiotic-resistant bacterial infections, the intravaginal administration of lactobacilli and lactoferrin could be a novel efficient therapeutic strategy and a valuable tool to restore

  19. A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome.

    Directory of Open Access Journals (Sweden)

    Brendan J O'Hara

    2017-06-01

    Full Text Available Vibrio cholerae-specific bacteriophages are common features of the microbial community during cholera infection in humans. Phages impose strong selective pressure that favors the expansion of phage-resistant strains over their vulnerable counterparts. The mechanisms allowing virulent V. cholerae strains to defend against the ubiquitous threat of predatory phages have not been established. Here, we show that V. cholerae PLEs (phage-inducible chromosomal island-like elements are widespread genomic islands dedicated to phage defense. Analysis of V. cholerae isolates spanning a 60-year collection period identified five unique PLEs. Remarkably, we found that all PLEs (regardless of geographic or temporal origin respond to infection by a myovirus called ICP1, the most prominent V. cholerae phage found in cholera patient stool samples from Bangladesh. We found that PLE activity reduces phage genome replication and accelerates cell lysis following ICP1 infection, killing infected host cells and preventing the production of progeny phage. PLEs are mobilized by ICP1 infection and can spread to neighboring cells such that protection from phage predation can be horizontally acquired. Our results reveal that PLEs are a persistent feature of the V. cholerae mobilome that are adapted to providing protection from a single predatory phage and advance our understanding of how phages influence pathogen evolution.

  20. A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome.

    Science.gov (United States)

    O'Hara, Brendan J; Barth, Zachary K; McKitterick, Amelia C; Seed, Kimberley D

    2017-06-01

    Vibrio cholerae-specific bacteriophages are common features of the microbial community during cholera infection in humans. Phages impose strong selective pressure that favors the expansion of phage-resistant strains over their vulnerable counterparts. The mechanisms allowing virulent V. cholerae strains to defend against the ubiquitous threat of predatory phages have not been established. Here, we show that V. cholerae PLEs (phage-inducible chromosomal island-like elements) are widespread genomic islands dedicated to phage defense. Analysis of V. cholerae isolates spanning a 60-year collection period identified five unique PLEs. Remarkably, we found that all PLEs (regardless of geographic or temporal origin) respond to infection by a myovirus called ICP1, the most prominent V. cholerae phage found in cholera patient stool samples from Bangladesh. We found that PLE activity reduces phage genome replication and accelerates cell lysis following ICP1 infection, killing infected host cells and preventing the production of progeny phage. PLEs are mobilized by ICP1 infection and can spread to neighboring cells such that protection from phage predation can be horizontally acquired. Our results reveal that PLEs are a persistent feature of the V. cholerae mobilome that are adapted to providing protection from a single predatory phage and advance our understanding of how phages influence pathogen evolution.

  1. Changes in Rumen Microbial Community Composition during Adaption to an In Vitro System and the Impact of Different Forages.

    Directory of Open Access Journals (Sweden)

    Melanie B Lengowski

    Full Text Available This study examined ruminal microbial community composition alterations during initial adaption to and following incubation in a rumen simulation system (Rusitec using grass or corn silage as substrates. Samples were collected from fermenter liquids at 0, 2, 4, 12, 24, and 48 h and from feed residues at 0, 24, and 48 h after initiation of incubation (period 1 and on day 13 (period 2. Microbial DNA was extracted and real-time qPCR was used to quantify differences in the abundance of protozoa, methanogens, total bacteria, Fibrobacter succinogenes, Ruminococcus albus, Ruminobacter amylophilus, Prevotella bryantii, Selenomonas ruminantium, and Clostridium aminophilum. We found that forage source and sampling time significantly influenced the ruminal microbial community. The gene copy numbers of most microbial species (except C. aminophilum decreased in period 1; however, adaption continued through period 2 for several species. The addition of fresh substrate in period 2 led to increasing copy numbers of all microbial species during the first 2-4 h in the fermenter liquid except protozoa, which showed a postprandial decrease. Corn silage enhanced the growth of R. amylophilus and F. succinogenes, and grass silage enhanced R. albus, P. bryantii, and C. aminophilum. No effect of forage source was detected on total bacteria, protozoa, S. ruminantium, or methanogens or on total gas production, although grass silage enhanced methane production. This study showed that the Rusitec provides a stable system after an adaption phase that should last longer than 48 h, and that the forage source influenced several microbial species.

  2. Results from a national survey of Crown prosecutors and defense counsel on impaired driving in Canada: a "System Improvements" perspective.

    Science.gov (United States)

    Robertson, Robyn; Vanlaar, Ward; Simpson, Herb; Boase, Paul

    2009-01-01

    This article summarizes the main findings from a study designed to examine the legal process in Canada as it applies to alcohol-impaired driving from the point of view of Crown prosecutors and defense counsel, and to identify evidentiary or procedural factors that may impact the legal process, the rights of the accused, and interactions of all parts in the legal process. The data in this study were collected by means of a survey that was mailed out to the population of Crown prosecutors and defense counsel in Canada. In total, 765 prosecutors and 270 defense lawyers or an estimated 33% of all Canadian prosecutors and 15% of defense lawyers completed and returned the questionnaire. The "systems improvement" paradigm was used to interpret the findings and draw conclusions. Such an approach acknowledges the importance of the context in which countermeasures are implemented and delivered and the structures or entities used to deliver countermeasures to a designated target group. Results on type of charges and breath alcohol concentration, caseload, case outcomes, case preparation time, conviction rate at trial and overall conviction rate, reasons for acquittals and time to resolve cases are described. The findings from this national survey suggest that there are important challenges within the criminal justice system that impede the effective and efficient processing of impaired driving cases. Some of these challenges occur as a function of practices and policies, while others occur as a function of legislation. This study illustrates that a "system improvements" approach that acknowledges the importance of all elements of the criminal justice system and the interaction between those elements, can be beneficial in overcoming the alcohol-impaired driving problem.

  3. Why even good defenses may be bad

    International Nuclear Information System (INIS)

    Glaser, C.L.

    1984-01-01

    The current debate over whether an effective ballistic missile defense (BMD) is technically feasible and whether it could be developed and deployed has left most of the advocacy up to those supporting a BMD program. The author emphasizes the issues beyond technical feasibility in his conclusion that assured destruction may still be preferable to perfect defense in terms of reducing the probability of nuclear war. After examining a number of possible scenarios involving the US and Soviet Union, the positions of allies, and the possibility of clandestine bombs, he sees no reason to expect that a defense system would be less vulnerable or have fewer uncertainties. 29 references

  4. 76 FR 28757 - Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense...

    Science.gov (United States)

    2011-05-18

    ... DEPARTMENT OF DEFENSE Office of the Secretary [DOCKET ID DOD-2011-OS-0055] Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense Logistics Agency Actions AGENCY: Defense Logistics Agency, Department of Defense. ACTION: Notice of Availability (NOA) of Revised...

  5. 76 FR 53119 - Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense...

    Science.gov (United States)

    2011-08-25

    ... DEPARTMENT OF DEFENSE Office of the Secretary [Docket ID: DOD-2011-OS-0055] Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense Logistics Agency Actions AGENCY: Defense Logistics Agency, Department of Defense. ACTION: Comment Addressed on Notice of...

  6. A controlled comparison of the BacT/ALERT® 3D and VIRTUO™ microbial detection systems.

    Science.gov (United States)

    Totty, H; Ullery, M; Spontak, J; Viray, J; Adamik, M; Katzin, B; Dunne, W M; Deol, P

    2017-10-01

    The performance of the next-generation BacT/ALERT® VIRTUO™ Microbial Detection System (VIRTUO™, bioMérieux Inc., Hazelwood, MO) was compared to the BacT/ALERT® 3D Microbial Detection System (3D, bioMérieux Inc., Durham, NC) using BacT/ALERT® FA Plus (FA Plus), BacT/ALERT® PF Plus (PF Plus), BacT/ALERT® FN Plus (FN Plus), BacT/ALERT® Standard Aerobic (SA), and BacT/ALERT® Standard Anaerobic (SN) blood culture bottles (bioMérieux Inc., Durham, NC). A seeded limit of detection (LoD) study was performed for each bottle type in both systems. The LoD studies demonstrated that both systems were capable of detecting organisms at nearly identical levels [detection (TTD) between the systems using a panel of clinically relevant microorganisms inoculated at or near the LoD with 0, 4, or 10 mL of healthy human blood. VIRTUO™ exhibited a faster TTD by an average of 3.5 h, as well as demonstrated a significantly improved detection rate of 99.9% compared to 98.8% with 3D (p-value <0.05).

  7. Peptidoglycan from Fermentation By-Product Triggers Defense Responses in Grapevine

    Science.gov (United States)

    Chen, Yang; Takeda, Taito; Aoki, Yoshinao; Fujita, Keiko; Suzuki, Shunji; Igarashi, Daisuke

    2014-01-01

    Plants are constantly under attack from a variety of microorganisms, and rely on a series of complex detection and response systems to protect themselves from infection. Here, we found that a by-product of glutamate fermentation triggered defense responses in grapevine, increasing the expression of defense response genes in cultured cells, foliar chitinase activity, and resistance to infection by downy mildew in leaf explants. To identify the molecule that triggered this innate immunity, we fractionated and purified candidates extracted from Corynebacterium glutamicum, a bacterium used in the production of amino acids by fermentation. Using hydrolysis by lysozyme, a silkworm larva plasma detection system, and gel filtration analysis, we identified peptidoglycan as inducing the defense responses. Peptidoglycans of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus also generated similar defensive responses. PMID:25427192

  8. 75 FR 76423 - Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting

    Science.gov (United States)

    2010-12-08

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting AGENCY: National Defense Intelligence College, Defense Intelligence Agency, Department of Defense. ACTION: Notice of Closed Meeting. SUMMARY: Pursuant to the...

  9. 76 FR 28960 - Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting

    Science.gov (United States)

    2011-05-19

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting AGENCY: National Defense Intelligence College, Defense Intelligence Agency, Department of Defense. ACTION: Notice of Closed Meeting. SUMMARY: Pursuant to the...

  10. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude

    Directory of Open Access Journals (Sweden)

    Krystal de Alcantara Notaro

    2014-04-01

    Full Text Available Agroforestry systems are an alternative option for sustainable production management. These systems contain trees that absorb nutrients from deeper layers of the soil and leaf litter that help improve the soil quality of the rough terrain in high altitude areas, which are areas extremely susceptible to environmental degradation. The aim of this study was to characterize the stock and nutrients in litter, soil activity and the population of microorganisms in coffee (Coffea arabica L. plantations under high altitude agroforestry systems in the semi-arid region of the state of Pernambuco, Brazil. Samples were collected from the surface litter together with soil samples taken at two depths (0-10 and 10-20 cm from areas each subject to one of the following four treatments: agroforestry system (AS, native forest (NF, biodynamic system (BS and coffee control (CT.The coffee plantation had been abandoned for nearly 15 years and, although there had been no management or harvesting, still contained productive coffee plants. The accumulation of litter and mean nutrient content of the litter, the soil nutrient content, microbial biomass carbon, total carbon, total nitrogen, C/N ratio, basal respiration, microbial quotient, metabolic quotient and microbial populations (total bacteria, fluorescent bacteria group, total fungi and Trichoderma spp. were all analyzed. The systems thatwere exposed to human intervention (A and BS differed in their chemical attributes and contained higher levels of nutrients when compared to NF and CT. BS for coffee production at high altitude can be used as a sustainable alternative in the high altitude zones of the semi-arid region in Brazil, which is an area that is highly susceptible to environmental degradation.

  11. Indicators of the development of defense logistics as a science

    Directory of Open Access Journals (Sweden)

    Marko D. Andrejić

    2012-10-01

    Full Text Available In practice, there are several approaches in discussing the achieved level of development of a scientific discipline. One group of them concentrates on external indicators of the development of a scientific discipline, i.e. its research network, while the other group analyzes the science structure, i.e. its elements. The achieved level of the development of the defense system and its (external and internal environment, general knowledge on the development and the systematic treatment of science as well as the present situation in the society require an insight into the internal and external indicators of the development of defense logistics as a scientific discipline (Defense Science. General knowledge on the creation, development and interdependence of sciences as well as internal and external indicators of the achieved development level of Defense Logistics show that it should be developed in the network environment as a multidisciplinary science, in close cooperation with other special disciplines of logistics, within defense science. It could thus contribute to the improvement of the defense as an important public function as well as to closer contacts of the scientific disciplines dealing with technical systems and technologies with the so-called. orthodox military disciplines.

  12. Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system

    Science.gov (United States)

    Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.

    2012-12-01

    Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic

  13. Nitrogen removal and microbial communities in a three-stage system simulating a riparian environment.

    Science.gov (United States)

    Wang, Ziyuan; Wang, Zhixin; Pei, Yuansheng

    2014-06-01

    The riparian zone is an active interface for nitrogen removal, in which nitrogen transformations by microorganisms have not been valued. In this study, a three-stage system was constructed to simulate the riparian zone environments, and nitrogen removal as well as the microbial community was investigated in this 'engineered riparian system'. The results demonstrated that stage 1 of this system accounted for 41-51 % of total nitrogen removal. Initial ammonium loading and redox potential significantly impacted the nitrogen removal performances. Stages 1 and 2 were both composed of an anoxic/oxic (A/O) zone and an anaerobic column. The A/O zone removed most of the ammonium load (6.8 g/m(2)/day), while the anaerobic column showed a significant nitrate removal rate (11.1 g/m(2)/day). Molecular biological analysis demonstrated that bacterial diversity was high in the A/O zones, where ammonium-oxidizing bacteria and nitrite-oxidizing bacteria accounted for 8.42 and 3.32 % of the bacterial population, respectively. The denitrifying bacteria Acidovorax sp. and the nitrifying bacteria Nitrosospira/Nitrosomonas were the predominant microorganisms in this engineered riparian system. This three-stage system was established to achieve favorable nitrogen removal and the microbial community in the system was also retained. This investigation should deepen our understanding of biological nitrogen removal in engineered riparian zones.

  14. Effects of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in integrated wastewater treatment systems.

    Science.gov (United States)

    Zhao, Zhimiao; Song, Xinshan; Zhang, Yinjiang; Zhao, Yufeng; Wang, Bodi; Wang, Yuhui

    2017-12-01

    In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe 3+ (5.6 mg L -1 ), iron powder (2.8 mg L -1 ), and CaCO 3 powder (0.2 mg L -1 ) in influent as the adjusting agents, initial phosphorus source (PO 4 3- ) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO 3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe 3+ and iron powder produced Fe 2+ , which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of microbial DNA on human DNA profiles generated using the PowerPlex® 16 HS system.

    Science.gov (United States)

    Dembinski, Gina M; Picard, Christine J

    2017-11-01

    Most crime scenes are not sterile and therefore may be contaminated with environmental DNA, especially if a decomposing body is found. Collecting biological evidence from this individual will yield DNA samples mixed with microbial DNA. This also becomes important if postmortem swabs are collected from sexually assaulted victims. Although genotyping kits undergo validation tests, including bacterial screens, they do not account for the diverse microbial load during decomposition. We investigated the effect of spiking human DNA samples with known concentrations of DNA from 17 microbe species associated with decomposition on DNA profiles produced using the Promega PowerPlex ® HS system. Two species, Bacillus subtilis and Mycobacterium smegmatis, produced an extraneous allele at the TPOX locus. When repeated with the PowerPlex ® Fusion kit, the extra allele no longer amplified with these two species. This experiment demonstrates that caution should be exhibited if microbial load is high and the PowerPlex ® 16HS system is used. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  16. An Autonomous System for Experimental Evolution of Microbial Cultures: Test Results Using Ultraviolet-C Radiation and Escherichia Coli.

    Science.gov (United States)

    Ouandji, Cynthia; Wang, Jonathan; Arismendi, Dillon; Lee, Alonzo; Blaich, Justin; Gentry, Diana

    2017-01-01

    At its core, the field of microbial experimental evolution seeks to elucidate the natural laws governing the history of microbial life by understanding its underlying driving mechanisms. However, observing evolution in nature is complex, as environmental conditions are difficult to control. Laboratory-based experiments for observing population evolution provide more control, but manually culturing and studying multiple generations of microorganisms can be time consuming, labor intensive, and prone to inconsistency. We have constructed a prototype, closed system device that automates the process of directed evolution experiments in microorganisms. It is compatible with any liquid microbial culture, including polycultures and field samples, provides flow control and adjustable agitation, continuously monitors optical density (OD), and can dynamically control environmental pressures such as ultraviolet-C (UV-C) radiation and temperature. Here, the results of the prototype are compared to iterative exposure and survival assays conducted using a traditional hood, UV-C lamp, and shutter system.

  17. Evolution and Function of Thioester-Containing Proteins and the Complement System in the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Upasana Shokal

    2017-06-01

    Full Text Available The innate immune response is evolutionary conserved among organisms. The complement system forms an important and efficient immune defense mechanism. It consists of plasma proteins that participate in microbial detection, which ultimately results in the production of various molecules with antimicrobial activity. Thioester-containing proteins (TEPs are a superfamily of secreted effector proteins. In vertebrates, certain TEPs act in the innate immune response by promoting recruitment of immune cells, phagocytosis, and direct lysis of microbial invaders. Insects are excellent models for dissecting the molecular basis of innate immune recognition and response to a wide range of microbial infections. Impressive progress in recent years has generated crucial information on the role of TEPs in the antibacterial and antiparasite response of the tractable model insect Drosophila melanogaster and the mosquito malaria vector Anopheles gambiae. This knowledge is critical for better understanding the evolution of TEPs and their involvement in the regulation of the host innate immune system.

  18. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  19. Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  20. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia

    2016-05-01

    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  1. 32 CFR Appendix A to Part 77 - DD Form 2580, Operation Transition Department of Defense

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false DD Form 2580, Operation Transition Department of Defense A Appendix A to Part 77 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... to Part 77—DD Form 2580, Operation Transition Department of Defense Outplacement and Referral System...

  2. PTSD as a criminal defense: a review of case law.

    Science.gov (United States)

    Berger, Omri; McNiel, Dale E; Binder, Renée L

    2012-01-01

    Posttraumatic stress disorder (PTSD) has been offered as a basis for criminal defenses, including insanity, unconsciousness, self-defense, diminished capacity, and sentencing mitigation. Examination of case law (e.g., appellate decisions) involving PTSD reveals that when offered as a criminal defense, PTSD has received mixed treatment in the judicial system. Courts have often recognized testimony about PTSD as scientifically reliable. In addition, PTSD has been recognized by appellate courts in U.S. jurisdictions as a valid basis for insanity, unconsciousness, and self-defense. However, the courts have not always found the presentation of PTSD testimony to be relevant, admissible, or compelling in such cases, particularly when expert testimony failed to show how PTSD met the standard for the given defense. In cases that did not meet the standard for one of the complete defenses, PTSD has been presented as a partial defense or mitigating circumstance, again with mixed success.

  3. Lasers and particle beam for fusion and strategic defense

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This special issue of the Journal of Fusion Energy consists of the edited transscripts of a symposium on the applications of laser and particle beams to fusion and strategic defense. Its eleven papers discuss these topics: the Strategic Defense Initiative; accelerators for heavy ion fusion; rf accelerators for fusion and strategic defense; Pulsed power, ICF, and the Strategic Defense Initiative; chemical lasers; the feasibility of KrF lasers for fusion; the damage resistance of coated optic; liquid crystal devices for laser systems; fusion neutral-particle beam research and its contribution to the Star Wars program; and induction linacs and free electron laser amplifiers for ICF devices and directed-energy weapons

  4. Location of Microbial Ecology Evaluation Device in Apollo Command Module

    Science.gov (United States)

    1971-01-01

    The location of the Microbial Ecology Evaluation Device (MEED) installed on the open hatch of the Apollo Command Module is illustrated in this photograph. The MEED, equipment of the Microbial Response in Space Environment experiment, will house a selection of microbial systems. The MEED will be deployed during the extravehicular activity on the transearth coast phase of the Aopllo 16 lunar landing mission. The purpose of the experiment will be to measure the effects of certain space environmental parameters on the microbial test systems.

  5. Transforming Defense

    National Research Council Canada - National Science Library

    Lamb, Christopher J; Bunn, M. E; Lutes, Charles; Cavoli, Christopher

    2005-01-01

    .... Despite the resources and attention consumed by the war on terror, and recent decisions by the White House to curtail the growth of defense spending, the senior leadership of the Department of Defense (DoD...

  6. Performance of UV disinfection and the microbial quality of greywater effluent along a reuse system for toilet flushing

    International Nuclear Information System (INIS)

    Friedler, Eran; Gilboa, Yael

    2010-01-01

    This paper examines the microbial quality of treated RBC (Rotating Biological Contactor) and MBR (Membrane Bioreactor) light greywater along a continuous pilot-scale reuse system for toilet flushing, quantifies the efficiency of UV disinfection unit, and evaluates the regrowth potential of selected microorganisms along the system. The UV disinfection unit was found to be very efficient in reducing faecal coliforms and Staphylococcus aureus. On the other hand, its efficiency of inactivation of HPC (Heterotrophic Plate Count) and Pseudomonas aeruginosa was lower. Some regrowth occurred in the reuse system as a result of HPC regrowth which included opportunistic pathogens such as P. aeruginosa. Although the membrane (UF) of the MBR system removed all bacteria from the greywater, bacteria were observed in the reuse system due to 'hopping phenomenon.' The microbial quality of the disinfected greywater was found to be equal or even better than the microbial quality of 'clean' water in toilet bowls flushed with potable water (and used for excretion). Thus, the added health risk associated with reusing the UV-disinfected greywater for toilet flushing (regarding P. aeruginosa and S. aureus), was found to be insignificant. The UV disinfection unit totally removed (100%) the viral indicator (F-RNA phage, host: E. coli F amp + ) injected to the treatment systems simulating transient viral contamination. To conclude, this work contributes to better design of UV disinfection reactors and provides an insight into the long-term behavior of selected microorganisms along on-site greywater reuse systems for toilet flushing.

  7. Home - Defense Technology Security Administration

    Science.gov (United States)

    by @dtsamil Defense Technology Security Administration Mission, Culture, and History Executive Official seal of Defense Technology Security Administration Official seal of Defense Technology Security Administration OFFICE of the SECRETARY of DEFENSE Defense Technology Security Administration

  8. COMPETITIVENESS OF DEFENSE INDUSTRY IN TURKEY

    Directory of Open Access Journals (Sweden)

    Hakki BILGEN

    2010-01-01

    Full Text Available Turkey has created some opportunities for the organisations in the defense industry to generate a suitable business and to ensure its sustainability. The domestic coverage ratio of defense system need in 2010 is aimed as 50%. To achieve this target depends on the defense industry competitiveness. In this study, the development plans, strategies and foreign trade are examined. Its contribution which has an important place in the research and development investment, is not at the level expected in Turkey’s economy. Turkey occupies 47th position in World Competitiveness Scoreboard, and 61st position in Global Competitiveness Index in 2009. The index factors are investigated to understand the competitiveness according to the Porter’s diamond model, applied in Turkey for the first time. As a result, the competitiveness analysis of Turkish defense industry is carried out and its global place and competitive advantage are exposed. Therefore, a framework is made to introduce a guide for decision-making by using a widely-accepted model, and to contribute to the plans and strategies

  9. Risk-based cost-benefit analysis for evaluating microbial risk mitigation in a drinking water system.

    Science.gov (United States)

    Bergion, Viktor; Lindhe, Andreas; Sokolova, Ekaterina; Rosén, Lars

    2018-04-01

    Waterborne outbreaks of gastrointestinal diseases can cause large costs to society. Risk management needs to be holistic and transparent in order to reduce these risks in an effective manner. Microbial risk mitigation measures in a drinking water system were investigated using a novel approach combining probabilistic risk assessment and cost-benefit analysis. Lake Vomb in Sweden was used to exemplify and illustrate the risk-based decision model. Four mitigation alternatives were compared, where the first three alternatives, A1-A3, represented connecting 25, 50 and 75%, respectively, of on-site wastewater treatment systems in the catchment to the municipal wastewater treatment plant. The fourth alternative, A4, represented installing a UV-disinfection unit in the drinking water treatment plant. Quantitative microbial risk assessment was used to estimate the positive health effects in terms of quality adjusted life years (QALYs), resulting from the four mitigation alternatives. The health benefits were monetised using a unit cost per QALY. For each mitigation alternative, the net present value of health and environmental benefits and investment, maintenance and running costs was calculated. The results showed that only A4 can reduce the risk (probability of infection) below the World Health Organization guidelines of 10 -4 infections per person per year (looking at the 95th percentile). Furthermore, all alternatives resulted in a negative net present value. However, the net present value would be positive (looking at the 50 th percentile using a 1% discount rate) if non-monetised benefits (e.g. increased property value divided evenly over the studied time horizon and reduced microbial risks posed to animals), estimated at 800-1200 SEK (€100-150) per connected on-site wastewater treatment system per year, were included. This risk-based decision model creates a robust and transparent decision support tool. It is flexible enough to be tailored and applied to local

  10. Optimizing Active Cyber Defense

    OpenAIRE

    Lu, Wenlian; Xu, Shouhuai; Yi, Xinlei

    2016-01-01

    Active cyber defense is one important defensive method for combating cyber attacks. Unlike traditional defensive methods such as firewall-based filtering and anti-malware tools, active cyber defense is based on spreading "white" or "benign" worms to combat against the attackers' malwares (i.e., malicious worms) that also spread over the network. In this paper, we initiate the study of {\\em optimal} active cyber defense in the setting of strategic attackers and/or strategic defenders. Specific...

  11. Re-engineering software systems in the Department of Defense using integrated computer aided software engineering tools

    OpenAIRE

    Jennings, Charles A.

    1992-01-01

    Approved for public release; distribution is unlimited The Department of Defense (DoD) is plagues with severe cost overruns and delays in developing software systems. Existing software within Dod, some developed 15-to 20 years ago, require continual maintenance and modification. Major difficulties arise with maintaining older systems due to cryptic source code and a lack of adequate documentation. To remedy this situation, the DoD, is pursuing the integrated computer aided software engi...

  12. New directions in coral reef microbial ecology.

    Science.gov (United States)

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  13. Analysis of electrode microbial communities in an up-flow bioelectrochemical system treating azo dye wastewater

    International Nuclear Information System (INIS)

    Cui, Min-Hua; Cui, Dan; Gao, Lei; Cheng, Hao-Yi; Wang, Ai-Jie

    2016-01-01

    Bioelectrochemical system (BES) is a rapidly developing technology covering contamination remediation, resource recovery and power generation. Electrode biofilms play a key role in BES operation. In this work, a single chamber up-flow bioelectrochemical system (UBES) was assembled with two preinoculated anodes and two raw cathodes for azo dye wastewater treatment. Microbial community structures of these electrodes after long-term operation (more than 200 days) were carried out by high-throughput Illumina 16S rRNA gene MiSeq sequencing platform. Microorganisms belonging to Enterobacter, Desulfovibrio and Enterococcus, which are capable of bidirectional extracellular electron transfer, were found to be the dominant members in all biofilms. Neither the polarity nor the position of the electrodes obviously altered the microbial community structures. This study provides a feasible strategy to build electrode active biofilms in a BES for azo dye wastewater treatment and gives great inspirations to bring this technology closer to application.

  14. Physics of a ballistic missile defense - The chemical laser boost-phase defense

    Science.gov (United States)

    Grabbe, Crockett L.

    1988-01-01

    The basic physics involved in proposals to use a chemical laser based on satellites for a boost-phase defense are investigated. After a brief consideration of simple physical conditions for the defense, a calculation of an equation for the number of satellites needed for the defense is made along with some typical values of this for possible future conditions for the defense. Basic energy and power requirements for the defense are determined. A sumary is made of probable minimum conditions that must be achieved for laser power, targeting accuracy, number of satellites, and total sources for power needed.

  15. Perspective on methods to calculate a fee for disposal of defense high-level waste in combined (civilian/defense) repositories

    International Nuclear Information System (INIS)

    1986-12-01

    The Department of Energy intends to send the high-level waste from defense operations to combined civilian/defense repositories for disposal. The federal government must pay a fee to cover its fair share of the cost for the disposal system. This report provides an overview perspective on the defense high-level waste (DHLW) quantities and characteristics and on potential alternatives for calculation and payment of the disposal fee. Information on the DHLW expected from government sites includes the number of waste canisters, radioactivity, thermal decay power, mass of defense reactor fuel, and total electrical energy-equivalents. Ranges in quantities are shown where different operating scenarios are being considered. Several different fee determination methods are described and fees for different quantities of waste are estimated. Information is also included on possible payment alternatives, production and shipping schedules, and credits which could be applied to the fee

  16. 75 FR 26739 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Part 244...

    Science.gov (United States)

    2010-05-12

    ... Control Number 0704-0253) AGENCY: Defense Acquisition Regulations System, Department of Defense. ACTION... proposed information collection; (c) ways to enhance the quality, utility, and clarity of the information..., withhold, or withdraw purchasing system approval at the conclusion of a purchasing system review...

  17. Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil.

    Science.gov (United States)

    Ridl, Jakub; Kolar, Michal; Strejcek, Michal; Strnad, Hynek; Stursa, Petr; Paces, Jan; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas.

  18. Strategy alternatives for homeland air and cruise missile defense.

    Science.gov (United States)

    Murphy, Eric M; Payne, Michael D; Vanderwoude, Glenn W

    2010-10-01

    Air and cruise missile defense of the U.S. homeland is characterized by a requirement to protect a large number of critical assets nonuniformly dispersed over a vast area with relatively few defensive systems. In this article, we explore strategy alternatives to make the best use of existing defense resources and suggest this approach as a means of reducing risk while mitigating the cost of developing and acquiring new systems. We frame the issue as an attacker-defender problem with simultaneous moves. First, we outline and examine the relatively simple problem of defending comparatively few locations with two surveillance systems. Second, we present our analysis and findings for a more realistic scenario that includes a representative list of U.S. critical assets. Third, we investigate sensitivity to defensive strategic choices in the more realistic scenario. As part of this investigation, we describe two complementary computational methods that, under certain circumstances, allow one to reduce large computational problems to a more manageable size. Finally, we demonstrate that strategic choices can be an important supplement to material solutions and can, in some cases, be a more cost-effective alternative. © 2010 Society for Risk Analysis.

  19. Early warning system for detection of microbial contamination of source waters

    DEFF Research Database (Denmark)

    Mogensen, Claus Tilsted; Bentien, Anders; Lau, Mogens

    2011-01-01

    Ensuring chemical and microbial water quality is an ever increasing important issue world-wide. Currently, determination of microbial water quality is a time (and money) consuming manual laboratory process. We have developed and field-tested an online and real-time sensor for measuring the microb...

  20. Investment in defense and cost of predator-induced defense along a resource gradient

    DEFF Research Database (Denmark)

    Steiner, Uli

    2007-01-01

    An organism's investment in different traits to reduce predation is determined by the fitness benefit of the defense relative to the fitness costs associated with the allocation of time and resources to the defense. Inherent tradeoffs in time and resource allocation should result in differential...... investment in defense along a resource gradient, but competing models predict different patterns of investment. There are currently insufficient empirical data on changes in investment in defensive traits or their costs along resource gradients to differentiate between the competing allocation models....... In this study, I exposed tadpoles to caged predators along a resource gradient in order to estimate investment in defense and costs of defense by assessing predator-induced plasticity. Induced defenses included increased tail depth, reduced feeding, and reduced swimming activity; costs associated...

  1. Unfolding Green Defense

    DEFF Research Database (Denmark)

    Larsen, Kristian Knus

    2015-01-01

    In recent years, many states have developed and implemented green solutions for defense. Building on these initiatives NATO formulated the NATO Green Defence Framework in 2014. The framework provides a broad basis for cooperation within the Alliance on green solutions for defense. This report aims...... to inform and support the further development of green solutions by unfolding how green technologies and green strategies have been developed and used to handle current security challenges. The report, initially, focuses on the security challenges that are being linked to green defense, namely fuel...... consumption in military operations, defense expenditure, energy security, and global climate change. The report then proceeds to introduce the NATO Green Defence Framework before exploring specific current uses of green technologies and green strategies for defense. The report concludes that a number...

  2. Synthetic Biology and Microbial Fuel Cells: Towards Self-Sustaining Life Support Systems

    Science.gov (United States)

    Hogan, John Andrew

    2014-01-01

    NASA ARC and the J. Craig Venter Institute (JCVI) collaborated to investigate the development of advanced microbial fuels cells (MFCs) for biological wastewater treatment and electricity production (electrogenesis). Synthetic biology techniques and integrated hardware advances were investigated to increase system efficiency and robustness, with the intent of increasing power self-sufficiency and potential product formation from carbon dioxide. MFCs possess numerous advantages for space missions, including rapid processing, reduced biomass and effective removal of organics, nitrogen and phosphorus. Project efforts include developing space-based MFC concepts, integration analyses, increasing energy efficiency, and investigating novel bioelectrochemical system applications

  3. Subseafloor fluid mixing and fossilized microbial life in a Cretaceous 'Lost City'-type hydrothermal system at the Iberian Margin

    Science.gov (United States)

    Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.

    2015-12-01

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type hydrothermal system at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization systems have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent systems have likely existed throughout most of Earth

  4. Defense Contract Audit Agency Compensation Audits

    National Research Council Canada - National Science Library

    1999-01-01

    .... The Defense Contract Audit Agency (DCAA) assists the administrative contracting officer in accomplishing that responsibility by determining whether the contractor's compensation system is sound, reliable, consistently applied, and results...

  5. Monitoring Soil Microbial Activities in Different Cropping Systems Using Combined Methods

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhimin; LIU Haijun; HAN Jun; SUN Jingjing; WU Xiaoying; YAO Jun

    2017-01-01

    Cropping activities may affect soil microbial activities and biomass,which would affect C and N cycling in soil and thus the crop yields and quality.In the present study,a combination of microcalorimetric,enzyme activity (sucrase,urease,catalase,and fluorescein diacetate hydrolysis),and real-time polymerase chain reaction (RT-PCR) analyses was used to investigate microbial status of farmland soils,collected from 5 different sites in Huazhong Agriculture University,China.Our results showed that among the 5 sites,both positive and negative impacts of cropping activities on soil microbial activity were observed.Enzyme activity analysis showed that cropping activities reduced soil sucrase and urease activities,which would influence the C and N cycles in soil.Much more attentions should be given to microbial status affected by cropping activities in future.According to the correlation analysis,fluorescein diacetate hydrolysis showed a significantly (P < 0.05) negative correlation with the time to reach the maximum power output (R =--0.898),but a significantly (P < 0.05) positive correlation with bacterial gene copy number (R =0.817).Soil catalase activity also showed a significantly (P < 0.05) positive correlation with bacterial gene copy number (R =0.965).Using combined methods would provide virtual information of soil microbial status.

  6. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Defense Acquisition Reform, 19602009: An Elusive Goal

    Science.gov (United States)

    2011-10-31

    the seven largest economies of the world (United States, China, Japan, Germany, France, United Kingdom, and Italy ).11 Major weapon systems...the Federal Acquisition Regulation.96 95 Ibid., pp. 20, 21. 96 Joseph Ferrara , “DoD’s 5000 Documents: Evolution and Change in Defense Acquisition...Wayne Smith. How Much Is Enough: Shaping the Defense Program, 1961–1969. New York: Harper & Row, 1971. Ferrara , Joseph. “DoD’s 5000 Documents

  8. In-Drift Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.

  9. In-Drift Microbial Communities

    International Nuclear Information System (INIS)

    Jolley, D.

    2000-01-01

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses

  10. Microbial ecology and biogeochemistry of continental Antarctic soils.

    Science.gov (United States)

    Cowan, Don A; Makhalanyane, Thulani P; Dennis, Paul G; Hopkins, David W

    2014-01-01

    The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbor microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths) possess a genetic capacity for nitrogen and carbon cycling, polymer degradation, and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  11. Defense Agencies Initiative Increment 2 (DAI Inc 2)

    Science.gov (United States)

    2016-03-01

    module. In an ADM dated September 23, 2013, the MDA established Increment 2 as a MAIS program to include budget formulation; grants financial...2016 Major Automated Information System Annual Report Defense Agencies Initiative Increment 2 (DAI Inc 2) Defense Acquisition Management...President’s Budget RDT&E - Research, Development, Test, and Evaluation SAE - Service Acquisition Executive TBD - To Be Determined TY - Then

  12. Induction of defensive enzymes (isozymes) during defense against ...

    African Journals Online (AJOL)

    user

    2012-09-06

    Sep 6, 2012 ... defense against two different fungal pathogens in pear calli ... study the biochemical changes in relation to plant defense ... relatively easy to manipulate by empirical means, allowing for a ... earlier phase, and the degree of rot was significantly ..... resistance of fruit, and they play an important role in the.

  13. Long-term spatial and temporal microbial community dynamics in a large-scale drinking water distribution system with multiple disinfectant regimes.

    Science.gov (United States)

    Potgieter, Sarah; Pinto, Ameet; Sigudu, Makhosazana; du Preez, Hein; Ncube, Esper; Venter, Stephanus

    2018-08-01

    Long-term spatial-temporal investigations of microbial dynamics in full-scale drinking water distribution systems are scarce. These investigations can reveal the process, infrastructure, and environmental factors that influence the microbial community, offering opportunities to re-think microbial management in drinking water systems. Often, these insights are missed or are unreliable in short-term studies, which are impacted by stochastic variabilities inherent to large full-scale systems. In this two-year study, we investigated the spatial and temporal dynamics of the microbial community in a large, full scale South African drinking water distribution system that uses three successive disinfection strategies (i.e. chlorination, chloramination and hypochlorination). Monthly bulk water samples were collected from the outlet of the treatment plant and from 17 points in the distribution system spanning nearly 150 km and the bacterial community composition was characterised by Illumina MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Like previous studies, Alpha- and Betaproteobacteria dominated the drinking water bacterial communities, with an increase in Betaproteobacteria post-chloramination. In contrast with previous reports, the observed richness, diversity, and evenness of the bacterial communities were higher in the winter months as opposed to the summer months in this study. In addition to temperature effects, the seasonal variations were also likely to be influenced by changes in average water age in the distribution system and corresponding changes in disinfectant residual concentrations. Spatial dynamics of the bacterial communities indicated distance decay, with bacterial communities becoming increasingly dissimilar with increasing distance between sampling locations. These spatial effects dampened the temporal changes in the bulk water community and were the dominant factor when considering the entire distribution system. However

  14. Host-pathogen interactions between the human innate immune system and Candida albicans—understanding and modeling defense and evasion strategies

    Science.gov (United States)

    Dühring, Sybille; Germerodt, Sebastian; Skerka, Christine; Zipfel, Peter F.; Dandekar, Thomas; Schuster, Stefan

    2015-01-01

    The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given. PMID:26175718

  15. The role of ecological theory in microbial ecology.

    Science.gov (United States)

    Prosser, James I; Bohannan, Brendan J M; Curtis, Tom P; Ellis, Richard J; Firestone, Mary K; Freckleton, Rob P; Green, Jessica L; Green, Laura E; Killham, Ken; Lennon, Jack J; Osborn, A Mark; Solan, Martin; van der Gast, Christopher J; Young, J Peter W

    2007-05-01

    Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.

  16. Role of Ergothioneine in Microbial Physiology and Pathogenesis.

    Science.gov (United States)

    Cumming, Bridgette M; Chinta, Krishna C; Reddy, Vineel P; Steyn, Adrie J C

    2018-02-20

    L-ergothioneine is synthesized in actinomycetes, cyanobacteria, methylobacteria, and some fungi. In contrast to other low-molecular-weight redox buffers, glutathione and mycothiol, ergothioneine is primarily present as a thione rather than a thiol at physiological pH, which makes it resistant to autoxidation. Ergothioneine regulates microbial physiology and enables the survival of microbes under stressful conditions encountered in their natural environments. In particular, ergothioneine enables pathogenic microbes, such as Mycobacterium tuberculosis (Mtb), to withstand hostile environments within the host to establish infection. Recent Advances: Ergothioneine has been reported to maintain bioenergetic homeostasis in Mtb and protect Mtb against oxidative stresses, thereby enhancing the virulence of Mtb in a mouse model. Furthermore, ergothioneine augments the resistance of Mtb to current frontline anti-TB drugs. Recently, an opportunistic fungus, Aspergillus fumigatus, which infects immunocompromised individuals, has been found to produce ergothioneine, which is important in conidial health and germination, and contributes to the fungal resistance against redox stresses. The molecular mechanisms of the functions of ergothioneine in microbial physiology and pathogenesis are poorly understood. It is currently not known if ergothioneine is used in detoxification or antioxidant enzymatic pathways. As ergothioneine is involved in bioenergetic and redox homeostasis and antibiotic susceptibility of Mtb, it is of utmost importance to advance our understanding of these mechanisms. A clear understanding of the role of ergothioneine in microbes will advance our knowledge of how this thione enhances microbial virulence and resistance to the host's defense mechanisms to avoid complete eradication. Antioxid. Redox Signal. 28, 431-444.

  17. Defense Meteorological Satellite Program (DMSP) Film

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The United States Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) is a polar orbiting meteorological sensor with two...

  18. Defense.gov Special Report: Defense Officials Release Operational Energy

    Science.gov (United States)

    , DOD Operational Energy Strategy DOD's Operational Energy Strategy will guide the Defense Department to operations are among the goals of the Defense Department's operational energy strategy, a senior Pentagon operational energy footprint, experts in solar power, microgrids and "smart" generators recently

  19. Immune defense and host life history.

    Science.gov (United States)

    Zuk, Marlene; Stoehr, Andrew M

    2002-10-01

    Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.

  20. 75 FR 52732 - Renewal of Department of Defense Federal Advisory Committee; Missile Defense Advisory Committee

    Science.gov (United States)

    2010-08-27

    ... Committee; Missile Defense Advisory Committee AGENCY: Department of Defense (DoD). ACTION: Renewal of..., the Department of Defense gives notice that it is renewing the charter for the Missile Defense... Director, Missile Defense Agency, independent advice and recommendations on all matters relating to missile...

  1. Defensive Swarm: An Agent Based Modeling Analysis

    Science.gov (United States)

    2017-12-01

    32  1.  System Dynamics .........................................................................33  2.  Variables...CONSIDERATIONS AND RECOMMENDATIONS ..........................83  1.  Prolonged Time of Operations ....................................................83...LIST OF FIGURES Figure 1.  Unmanned Aircraft System ..........................................................................8  Figure 2.  Defensive

  2. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic.

    Science.gov (United States)

    Daley, Kiley; Truelstrup Hansen, Lisbeth; Jamieson, Rob C; Hayward, Jenny L; Piorkowski, Greg S; Krkosek, Wendy; Gagnon, Graham A; Castleden, Heather; MacNeil, Kristen; Poltarowicz, Joanna; Corriveau, Emmalina; Jackson, Amy; Lywood, Justine; Huang, Yannan

    2017-06-13

    Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung-each has a population of water conveyance. Generally, the source and drinking water was of satisfactory microbial quality, containing Escherichia coli levels of water in households receiving trucked water contained less than the recommended 0.2 mg/L of free chlorine, while piped drinking water in Iqaluit complied with Health Canada guidelines for residual chlorine (i.e. >0.2 mg/L free chlorine). Some buildings in the four communities contained manganese (Mn), copper (Cu), iron (Fe) and/or lead (Pb) concentrations above Health Canada guideline values for the aesthetic (Mn, Cu and Fe) and health (Pb) objectives. Corrosion of components of the drinking water distribution system (household storage tanks, premise plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks in buildings and ultimately at the tap.

  3. What is microbial community ecology?

    Science.gov (United States)

    Konopka, Allan

    2009-11-01

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property.

  4. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations.

    Science.gov (United States)

    Kim, Jaai; Lim, Juntaek; Lee, Changsoo

    2013-12-01

    Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Characterization of Microbial Fuel Cells at Microbially and Electrochemically Meaningful Time scales

    KAUST Repository

    Ren, Zhiyong; Yan, Hengjing; Wang, Wei; Mench, Matthew M.; Regan, John M.

    2011-01-01

    The variable biocatalyst density in a microbial fuel cell (MFC) anode biofilm is a unique feature of MFCs relative to other electrochemical systems, yet performance characterizations of MFCs typically involve analyses at electrochemically relevant

  6. Microbial bioenergetics of coral-algal interactions

    Directory of Open Access Journals (Sweden)

    Ty N.F. Roach

    2017-06-01

    Full Text Available Human impacts are causing ecosystem phase shifts from coral- to algal-dominated reef systems on a global scale. As these ecosystems undergo transition, there is an increased incidence of coral-macroalgal interactions. Mounting evidence indicates that the outcome of these interaction events is, in part, governed by microbially mediated dynamics. The allocation of available energy through different trophic levels, including the microbial food web, determines the outcome of these interactions and ultimately shapes the benthic community structure. However, little is known about the underlying thermodynamic mechanisms involved in these trophic energy transfers. This study utilizes a novel combination of methods including calorimetry, flow cytometry, and optical oxygen measurements, to provide a bioenergetic analysis of coral-macroalgal interactions in a controlled aquarium setting. We demonstrate that the energetic demands of microbial communities at the coral-algal interaction interface are higher than in the communities associated with either of the macroorganisms alone. This was evident through higher microbial power output (energy use per unit time and lower oxygen concentrations at interaction zones compared to areas distal from the interface. Increases in microbial power output and lower oxygen concentrations were significantly correlated with the ratio of heterotrophic to autotrophic microbes but not the total microbial abundance. These results suggest that coral-algal interfaces harbor higher proportions of heterotrophic microbes that are optimizing maximal power output, as opposed to yield. This yield to power shift offers a possible thermodynamic mechanism underlying the transition from coral- to algal-dominated reef ecosystems currently being observed worldwide. As changes in the power output of an ecosystem are a significant indicator of the current state of the system, this analysis provides a novel and insightful means to quantify

  7. Microbial Photoelectrosynthesis for Self-Sustaining Hydrogen Generation.

    Science.gov (United States)

    Lu, Lu; Williams, Nicholas B; Turner, John A; Maness, Pin-Ching; Gu, Jing; Ren, Zhiyong Jason

    2017-11-21

    Current artificial photosynthesis (APS) systems are promising for the storage of solar energy via transportable and storable fuels, but the anodic half-reaction of water oxidation is an energy intensive process which in many cases poorly couples with the cathodic half-reaction. Here we demonstrate a self-sustaining microbial photoelectrosynthesis (MPES) system that pairs microbial electrochemical oxidation with photoelectrochemical water reduction for energy efficient H 2 generation. MPES reduces the overall energy requirements thereby greatly expanding the range of semiconductors that can be utilized in APS. Due to the recovery of chemical energy from waste organics by the mild microbial process and utilization of cost-effective and stable catalyst/electrode materials, our MPES system produced a stable current of 0.4 mA/cm 2 for 24 h without any external bias and ∼10 mA/cm 2 with a modest bias under one sun illumination. This system also showed other merits, such as creating benefits of wastewater treatment and facile preparation and scalability.

  8. Strategic Defense Initiative Organization: Corporate Plan

    National Research Council Canada - National Science Library

    1992-01-01

    ... requires a flexible yet focused approach to attain its mission; namely, to research, develop, acquire, and deploy systems and technologies which provide ballistic missile defense to include Global Protection Against Limited Strikes (OPALS...

  9. Ballistic Missile Defense: An Administration Perspective

    National Research Council Canada - National Science Library

    Bell, Robert

    1995-01-01

    ...: "What is our strategy?" What the Clinton Administration is doing with regard to strategic offensive systems provides an instructive context for what we re now trying to do on the strategic defensive side...

  10. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    OpenAIRE

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Usin...

  11. Strategic Defense Initiative Organization adaptive structures program overview

    Science.gov (United States)

    Obal, Michael; Sater, Janet M.

    In the currently envisioned architecture none of the Strategic Defense System (SDS) elements to be deployed will receive scheduled maintenance. Assessments of performance capability due to changes caused by the uncertain effects of environments will be difficult, at best. In addition, the system will have limited ability to adjust in order to maintain its required performance levels. The Materials and Structures Office of the Strategic Defense Initiative Organization (SDIO) has begun to address solutions to these potential difficulties via an adaptive structures technology program that combines health and environment monitoring with static and dynamic structural control. Conceivable system benefits include improved target tracking and hit-to-kill performance, on-orbit system health monitoring and reporting, and threat attack warning and assessment.

  12. Defense AT&L (Volume 37, Number 1, January-February 2008)

    Science.gov (United States)

    2008-02-01

    Senate, he serves as the senior advisor to the secretary of defense on testing Department of Defense weapon systems, and prescribing policies and...including several commands. As general, his final assign- ment was the senior air defense advisor to the chief of staff of the Army. His awards...by going to <www. usajobs.gov>. For more details, see the USA Staffing Ap- plication Manager’s online help at <http://eshelp.opm. gov/ robo /projects

  13. Interconnection of Key Microbial Functional Genes for Enhanced Benzo[a]pyrene Biodegradation in Sediments by Microbial Electrochemistry.

    Science.gov (United States)

    Yan, Zaisheng; He, Yuhong; Cai, Haiyuan; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Krumholz, Lee R; Jiang, He-Long

    2017-08-01

    Sediment microbial fuel cells (SMFCs) can stimulate the degradation of polycyclic aromatic hydrocarbons in sediments, but the mechanism of this process is poorly understood at the microbial functional gene level. Here, the use of SMFC resulted in 92% benzo[a]pyrene (BaP) removal over 970 days relative to 54% in the controls. Sediment functions, microbial community structure, and network interactions were dramatically altered by the SMFC employment. Functional gene analysis showed that c-type cytochrome genes for electron transfer, aromatic degradation genes, and extracellular ligninolytic enzymes involved in lignin degradation were significantly enriched in bulk sediments during SMFC operation. Correspondingly, chemical analysis of the system showed that these genetic changes resulted in increases in the levels of easily oxidizable organic carbon and humic acids which may have resulted in increased BaP bioavailability and increased degradation rates. Tracking microbial functional genes and corresponding organic matter responses should aid mechanistic understanding of BaP enhanced biodegradation by microbial electrochemistry and development of sustainable bioremediation strategies.

  14. Review of the all Source Analysis System as a Part of the Audit of the Effectiveness of the Defense Acquisition Board Review Process-FY 1993.

    Science.gov (United States)

    1993-04-20

    OFFICE OF THE INSPECTOR GENERAL REVIEW OF THE ALL SOURCE ANALYSIS SYSTEM AS A PART OF THE AUDIT OF THE EFFECTIVENESS OF THE DEFENSE...System as a Part of the Audit of the Effectiveness of the Defense Acquisition Board Review Process--FY 1993 (Report No. 93-087) We are providing...appreciate the courtesies extended to the audit staff. If you have questions on this report, please contact Program Director Russell A. Rau at (703) 693

  15. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review.

    Science.gov (United States)

    Dos Santos Ramos, Matheus Aparecido; Da Silva, Patrícia Bento; Spósito, Larissa; De Toledo, Luciani Gaspar; Bonifácio, Bruna Vidal; Rodero, Camila Fernanda; Dos Santos, Karen Cristina; Chorilli, Marlus; Bauab, Taís Maria

    2018-01-01

    Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms.

  16. MetaMetaDB: a database and analytic system for investigating microbial habitability.

    Directory of Open Access Journals (Sweden)

    Ching-chia Yang

    Full Text Available MetaMetaDB (http://mmdb.aori.u-tokyo.ac.jp/ is a database and analytic system for investigating microbial habitability, i.e., how a prokaryotic group can inhabit different environments. The interaction between prokaryotes and the environment is a key issue in microbiology because distinct prokaryotic communities maintain distinct ecosystems. Because 16S ribosomal RNA (rRNA sequences play pivotal roles in identifying prokaryotic species, a system that comprehensively links diverse environments to 16S rRNA sequences of the inhabitant prokaryotes is necessary for the systematic understanding of the microbial habitability. However, existing databases are biased to culturable prokaryotes and exhibit limitations in the comprehensiveness of the data because most prokaryotes are unculturable. Recently, metagenomic and 16S rRNA amplicon sequencing approaches have generated abundant 16S rRNA sequence data that encompass unculturable prokaryotes across diverse environments; however, these data are usually buried in large databases and are difficult to access. In this study, we developed MetaMetaDB (Meta-Metagenomic DataBase, which comprehensively and compactly covers 16S rRNA sequences retrieved from public datasets. Using MetaMetaDB, users can quickly generate hypotheses regarding the types of environments a prokaryotic group may be adapted to. We anticipate that MetaMetaDB will improve our understanding of the diversity and evolution of prokaryotes.

  17. MetaMetaDB: a database and analytic system for investigating microbial habitability.

    Science.gov (United States)

    Yang, Ching-chia; Iwasaki, Wataru

    2014-01-01

    MetaMetaDB (http://mmdb.aori.u-tokyo.ac.jp/) is a database and analytic system for investigating microbial habitability, i.e., how a prokaryotic group can inhabit different environments. The interaction between prokaryotes and the environment is a key issue in microbiology because distinct prokaryotic communities maintain distinct ecosystems. Because 16S ribosomal RNA (rRNA) sequences play pivotal roles in identifying prokaryotic species, a system that comprehensively links diverse environments to 16S rRNA sequences of the inhabitant prokaryotes is necessary for the systematic understanding of the microbial habitability. However, existing databases are biased to culturable prokaryotes and exhibit limitations in the comprehensiveness of the data because most prokaryotes are unculturable. Recently, metagenomic and 16S rRNA amplicon sequencing approaches have generated abundant 16S rRNA sequence data that encompass unculturable prokaryotes across diverse environments; however, these data are usually buried in large databases and are difficult to access. In this study, we developed MetaMetaDB (Meta-Metagenomic DataBase), which comprehensively and compactly covers 16S rRNA sequences retrieved from public datasets. Using MetaMetaDB, users can quickly generate hypotheses regarding the types of environments a prokaryotic group may be adapted to. We anticipate that MetaMetaDB will improve our understanding of the diversity and evolution of prokaryotes.

  18. Synthetic microbial ecology and the dynamic interplay between microbial genotypes.

    Science.gov (United States)

    Dolinšek, Jan; Goldschmidt, Felix; Johnson, David R

    2016-11-01

    Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.

  19. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    Energy Technology Data Exchange (ETDEWEB)

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  20. Financial Reporting Procedures for Defense Distribution Depots - Defense Logistics Agency Business Area of the Defense Business Operations Fund

    National Research Council Canada - National Science Library

    Young, Shelton

    1994-01-01

    In our audit of the FY 1993 Financial Statements for the Distribution Depots--Defense Logistics Agency Business Mea of the Defense Business Operations Fund, we evaluated procedures and controls used...

  1. Microbial ecology and biogeochemistry of continental Antarctic soils

    Directory of Open Access Journals (Sweden)

    Don A Cowan

    2014-04-01

    Full Text Available The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbour microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths possess a genetic capacity for nitrogen and carbon cycling, polymer degradation and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  2. Improving Microbial Genome Annotations in an Integrated Database Context

    Science.gov (United States)

    Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Anderson, Iain; Mavromatis, Konstantinos; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2013-01-01

    Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG) family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/. PMID:23424620

  3. Improving microbial genome annotations in an integrated database context.

    Directory of Open Access Journals (Sweden)

    I-Min A Chen

    Full Text Available Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/.

  4. Male resource defense mating system in primates? An experimental test in wild capuchin monkeys.

    Directory of Open Access Journals (Sweden)

    Barbara Tiddi

    Full Text Available Ecological models of mating systems provide a theoretical framework to predict the effect of the defendability of both breeding resources and mating partners on mating patterns. In resource-based mating systems, male control over breeding resources is tightly linked to female mating preference. To date, few field studies have experimentally investigated the relationship between male resource control and female mating preference in mammals due to difficulties in manipulating ecological factors (e.g., food contestability. We tested the within-group male resource defense hypothesis experimentally in a wild population of black capuchin monkeys (Sapajus nigritus in Iguazú National Park, Argentina. Sapajus spp. represent an ideal study model as, in contrast to most primates, they have been previously argued to be characterized by female mate choice and a resource-based mating system in which within-group resource monopolization by high-ranking males drives female mating preference for those males. Here, we examined whether females (N = 12 showed a weaker preference for alpha males during mating seasons in which food distribution was experimentally manipulated to be less defendable relative to those in which it was highly defendable. Results did not support the within-group male resource defense hypothesis, as female sexual preferences for alpha males did not vary based on food defendability. We discuss possible reasons for our results, including the possibility of other direct and indirect benefits females receive in exercising mate choice, the potential lack of tolerance over food directed towards females by alpha males, and phylogenetic constraints.

  5. Defense styles of pedophilic offenders.

    Science.gov (United States)

    Drapeau, Martin; Beretta, Véronique; de Roten, Yves; Koerner, Annett; Despland, Jean-Nicolas

    2008-04-01

    This pilot study investigated the defense styles of pedophile sexual offenders. Interviews with 20 pedophiles and 20 controls were scored using the Defense Mechanisms Rating Scales. Results showed that pedophiles had a significantly lower overall defensive functioning score than the controls. Pedophiles used significantly fewer obsessional-level defenses but more major image-distorting and action-level defenses. Results also suggested differences in the prevalence of individual defenses where pedophiles used more dissociation, displacement, denial, autistic fantasy, splitting of object, projective identification, acting out, and passive aggressive behavior but less intellectualization and rationalization.

  6. Quorum sensing alters the microbial community of electrode-respiring bacteria and hydrogen scavengers toward improving hydrogen yield in microbial electrolysis cells

    International Nuclear Information System (INIS)

    Cai, Weiwei; Zhang, Zhaojing; Ren, Ge; Shen, Qiuxuan; Hou, Yanan; Ma, Anzhou; Deng, Ye; Wang, Aijie; Liu, Wenzong

    2016-01-01

    Highlights: • Enhanced hydrogen yield has been achieved with addition of AHL. • AHL regulated exoelectrogens resulting in electrochemical activity enhancement. • Microbial community shift in cathodic biofilm inhibited hydrogen loss. - Abstract: Quorum sensing has been widely applied to enhance the energy recovery of bioelectrochemical system as a sustainable pathway to enhance communication between cells and electrodes. However, how signalling molecules (acyl-homoserine lactones, AHLs) regulate the microbial community to improve hydrogen generation in microbial electrolysis cells (MECs) is not well understood, especially the subsequent influence on interspecies relationships among not only electrode-respiring bacteria but also hydrogen scavengers. Understanding AHL regulation in a complicated and actual biofilm system will be valuable for future applications of microbial electrochemical technology. Herein, we added short-chain AHLs (3OC6) to regulate the biofilm community on bio-electrodes in MECs. As a result, hydrogen yields were enhanced with AHL addition, increasing by 5.57%, 38.68%, and 81.82% with varied external voltages (0.8 V, 0.6 V, and 0.4 V, respectively). Accordingly, overall reactor performance was enhanced, including coulombic efficiency, electron recovery efficiency, and energy efficiency. Based on an electrochemical impedance spectra analysis, the structured biofilm under simple nutrient conditions (acetate) showed a lower internal resistance with AHL addition, indicating that the microbial communities were altered to enhance electron transfer between the biofilm and electrode. The change in the cathodic microbial structure with more electrochemically active bacteria and fewer hydrogen scavengers could contribute to a higher electron recovery and hydrogen yield with AHL addition. The regulation of the microbial community structure by AHLs represents a potential strategy to enhance electron transfer and hydrogen generation in

  7. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie

    2015-01-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses, with or with...... of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.......Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses....... The microbial growth caused changes in the crude oil–brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil–brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition...

  8. Responses of Soil Microbial Community Structure and Diversity to Agricultural Deintensification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jian; S.HU; RUI Wen-Yi; C.TU; H.G.DIAB; F.J.LOUWS; J.P.MUELLER; N.CREAMER; M.BELL; M.G.WAGGER

    2005-01-01

    Using a scheme of agricultural fields with progressively less intensive management (deintensification), different management practices in six agroecosystems located near Goldsboro, NC, USA were tested in a large-scale experiment, including two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT), an organic farming system (OR), an integrated cropping system with animals (IN), a successional field (SU), and a plantation woodlot (WO). Microbial phospholipid fatty acid (PLFA) profiles and substrate utilization patterns (BIOLOG ECO plates) were measured to examine the effects of deintensification on the structure and diversity of soil microbial communities. Principle component analyses of PLFA and BIOLOG data showed that the microbial community structure diverged among the soils of the six systems.Lower microbial diversity was found in lowly managed ecosystem than that in intensive and moderately managed agroecosystems, and both fungal contribution to the total identified PLFAs and the ratio of microbial biomass C/N increased along with agricultural deintensification. Significantly higher ratios of C/N (P < 0.05) were found in the WO and SU systems, and for fungal/bacterial PLFAs in the WO system (P < 0.05). There were also significant decreases (P < 0.05)along with agricultural deintensification for contributions of total bacterial and gram positive (G+) bacterial PLFAs.Agricultural deintensification could facilitate the development of microbial communities that favor soil fungi over bacteria.

  9. Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth.

    Science.gov (United States)

    Buch, Franziska; Rott, Matthias; Rottloff, Sandy; Paetz, Christian; Hilke, Ines; Raessler, Michael; Mithöfer, Axel

    2013-03-01

    Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated. Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasma-optical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes. The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes. The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey

  10. Defense AR Journal. Volume 16, Number 2, July 2008

    National Research Council Canada - National Science Library

    2008-01-01

    ...?, Lessons from the Development of Army Systems, How to Make Incentive Fees Work, Can Defense Sensemakers Really be Rational in a Hyperturbulent World, System of Systems Development for the DoDs...

  11. TLR-dependent human mucosal epithelial cell responses to microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Paola eMassari

    2014-08-01

    Full Text Available AbstractToll-Like Receptor (TLR signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in humans as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites, specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners, their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.

  12. Recognizing Plant Defense Priming

    NARCIS (Netherlands)

    Martinez-Medina, Ainhoa; Flors, Victor; Heil, Martin; Mauch-Mani, Brigitte; Pieterse, Corné M J|info:eu-repo/dai/nl/113115113; Pozo, Maria J; Ton, Jurriaan; van Dam, Nicole M; Conrath, Uwe

    2016-01-01

    Defense priming conditions diverse plant species for the superinduction of defense, often resulting in enhanced pest and disease resistance and abiotic stress tolerance. Here, we propose a guideline that might assist the plant research community in a consistent assessment of defense priming in

  13. Recognizing plant defense priming

    NARCIS (Netherlands)

    Martinez-Medina, A.; Flors, V.; Heil, M.; Mauch-Mani, B.; Pieterse, C.M.J.; Pozo, M.J.; Ton, J.; Van Dam, N.M.; Conrath, U.

    2016-01-01

    Defense priming conditions diverse plant species for the superinduction of defense, often resulting in enhanced pest and disease resistance and abiotic stress tolerance. Here, we propose a guideline that might assist the plant research community in a consistent assessment of defense priming in

  14. Managing soil microbial communities in grain production systems through cropping practices

    Science.gov (United States)

    Gupta, Vadakattu

    2013-04-01

    Cropping practices can significantly influence the composition and activity of soil microbial communities with consequences to plant growth and production. Plant type can affect functional capacity of different groups of biota in the soil surrounding their roots, rhizosphere, influencing plant nutrition, beneficial symbioses, pests and diseases and overall plant health and crop production. The interaction between different players in the rhizosphere is due to the plethora of carbon and nutritional compounds, root-specific chemical signals and growth regulators that originate from the plant and are modulated by the physico-chemical properties of soils. A number of plant and environmental factors and management practices can influence the quantity and quality of rhizodeposition and in turn affect the composition of rhizosphere biota communities, microbe-fauna interactions and biological processes. Some of the examples of rhizosphere interactions that are currently considered important are: proliferation of plant and variety specific genera or groups of microbiota, induction of genes involved in symbiosis and virulence, promoter activity in biocontrol agents and genes correlated with root adhesion and border cell quality and quantity. The observation of variety-based differences in rhizodeposition and associated changes in rhizosphere microbial diversity and function suggests the possibility for the development of varieties with specific root-microbe interactions targeted for soil type and environment i.e. designer rhizospheres. Spatial location of microorganisms in the heterogeneous field soil matrix can have significant impacts on biological processes. Therefore, for rhizosphere research to be effective in variable seasonal climate and soil conditions, it must be evaluated in the field and within a farming systems context. With the current focus on security of food to feed the growing global populations through sustainable agricultural production systems there is a

  15. A Comparative Assessment of Knowledge Management Leadership Approaches within the Department of Defense

    Science.gov (United States)

    2007-03-01

    A COMPARATIVE ASSESSMENT OF KNOWLEDGE MANAGEMENT LEADERSHIP APPROACHES WITHIN THE DEPARTMENT OF DEFENSE... MANAGEMENT LEADERSHIP APPROACHES WITHIN THE DEPARTMENT OF DEFENSE THESIS Presented to the Faculty Department of Systems and Engineering...KNOWLEDGE MANAGEMENT LEADERSHIP APPROACHES WITHIN THE DEPARTMENT OF DEFENSE Tommy V. S. Marshall II, BS Captain, USAF Approved

  16. Plant defense against insect herbivores

    DEFF Research Database (Denmark)

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    , defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce......Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar...... defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects...

  17. Microbial interactions in drinking water biofilms

    OpenAIRE

    Simões, Lúcia C.; Simões, M.; Vieira, M. J.

    2007-01-01

    Drinking water distribution networks may be viewed as a large reactor where a number of chemical and microbiological processes are taking place. Control of microbial growth in drinking water distribution systems (DWDS) often achieved through the addition of disinfectants, is essential to limit the spread of waterborne pathogens. However, microorganisms can resist disinfection through protection within biofilms and resistant host cells. Recent studies into the microbial ecology ...

  18. The National Research Council study: "Making sense of ballistic missile defense"

    Science.gov (United States)

    Wilkening, Dean A.

    2014-05-01

    This chapter explains and summarizes the main findings of a recent National Research Council study entitled Making Sense of Ballistic Missile Defense: An Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives.

  19. Other Defense Organizations and Defense Finance and Accounting Service Controls Over High-Risk Transactions Were Not Effective

    Science.gov (United States)

    2016-03-28

    Defense Organizations and Defense Finance and Accounting Service Controls Over High-Risk Transactions Were Not Effective M A R C H 2 8 , 2 0 1 6...Defense Organizations and Defense Finance and Accounting Service Controls Over High-Risk Transactions Were Not Effective Visit us at www.dodig.mil... FINANCE AND ACCOUNTING SERVICE DIRECTOR, DEFENSE HEALTH AGENCY SUBJECT: Other Defense Organizations and Defense Finance and Accounting Service

  20. DEFENSE PROGRAMS RISK MANAGEMENT FRAMEWORK

    Directory of Open Access Journals (Sweden)

    Constantin PREDA

    2012-01-01

    Full Text Available For the past years defense programs have faced delays in delivering defense capabilities and budget overruns. Stakeholders are looking for ways to improve program management and the decision making process given the very fluid and uncertain economic and political environment. Consequently, they have increasingly resorted to risk management as the main management tool for achieving defense programs objectives and for delivering the defense capabilities strongly needed for the soldiers on the ground on time and within limited defense budgets. Following a risk management based decision-making approach the stakeholders are expected not only to protect program objectives against a wide range of risks but, at the same time, to take advantage of the opportunities to increase the likelihood of program success. The prerequisite for making risk management the main tool for achieving defense programs objectives is the design and implementation of a strong risk management framework as a foundation providing an efficient and effective application of the best risk management practices. The aim of this paper is to examine the risk management framework for defense programs based on the ISO 31000:2009 standard, best risk management practices and the defense programs’ needs and particularities. For the purposes of this article, the term of defense programs refers to joint defense programs.

  1. Effects of lead contamination on soil microbial activity and rice physiological indices in soil-Pb-rice (Oryza sativa L.) system.

    Science.gov (United States)

    Zeng, Lu-Sheng; Liao, Min; Chen, Cheng-Li; Huang, Chang-Yong

    2006-10-01

    The effect of lead (Pb) treatment on the soil microbial activities (soil microbial biomass and soil basal respiration) and rice physiological indices were studied by greenhouse pot experiment. Pb was applied as lead acetate at six different levels in two different paddy soils, namely 0 (control), 100, 300, 500, 700, 900 mg kg-1 soil. The results showed that the application of Pb at lower level (500 mg Pb kg-1 soil), which might be the critical concentration of Pb causing a significant decline in the soil microbial activities. However, the degree of influence on soil microbial activities by Pb was related to the clay and organic matter contents of the soils. On the other hand, when the level of Pb treatments increased to 500 mg kg-1, there was ecological risk for both soil microbial activities and plants. The results also revealed that there was a consistent trend that the chlorophyll contents increased initially, and then decreased gradually with increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. In a word, soil microbial activities and rice physiological indices, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-rice system.

  2. Joint-Service Integration: An Organizational Culture Study of the United States Department of Defense Voluntary Education System

    Science.gov (United States)

    Benson, Martin K.

    2010-01-01

    The purpose of the descriptive case study with a multiple case framework was to (a) describe the organizational cultures of education programs and leaders in the United States (U.S.) Department of Defense (DoD) voluntary education system on Oahu, Hawaii; (b) determine if an overlapping common organizational culture exists; and (c) assess the…

  3. Rethinking Defensive Information Warfare

    National Research Council Canada - National Science Library

    French, Geoffrey S

    2004-01-01

    .... This paper examines defensive tactics and strategies from the German defense in depth that emerged from World War I to the American Active Defense that developed in the Cold War and proposes a new mindset for DIW that draws on these operational concepts from military history.

  4. COMBINED EFFECTS OF CO2 AND O3 ON ANTIOXIDATIVE AND PHOTOPROTECTIVE DEFENSE SYSTEMS IN NEEDLES OF PONDEROSA PINE

    Science.gov (United States)

    To determine interactive effects of important environmental stresses on biochemical defense mechanisms of tree seedlings, we studied responses to elevated O3 and elevated atmospheric CO2 on antioxidative and photoprotective systems in needles of ponderosa pine (Pinus ponderosa Do...

  5. PROBCON-HDW: A probability and consequence system of codes for long-term analysis of Hanford defense wastes

    International Nuclear Information System (INIS)

    Piepho, M.G.; Nguyen, T.H.

    1988-12-01

    The PROBCON-HDW (PROBability and CONsequence analysis for Hanford defense waste) computer code system calculates the long-term cumulative releases of radionuclides from the Hanford defense wastes (HDW) to the accessible environment and compares the releases to environmental release limits as defined in 40 CFR 191. PROBCON-HDW takes into account the variability of input parameter values used in models to calculate HDW release and transport in the vadose zone to the accessible environment (taken here as groundwater). A human intrusion scenario, which consists of drilling boreholes into the waste beneath the waste sites and bringing waste to the surface, is also included in PROBCON-HDW. PROBCON-HDW also includes the capability to combine the cumulative releases according to various long-term (10,000 year) scenarios into a composite risk curve or complementary cumulative distribution function (CCDF). The system structure of the PROBCON-HDW codes, the mathematical models in PROBCON-HDW, the input files, the input formats, the command files, and the graphical output results of several HDW release scenarios are described in the report. 3 refs., 7 figs., 9 tabs

  6. 75 FR 33752 - Defense Federal Acquisition Regulation Supplement; Organizational Conflicts of Interest in Major...

    Science.gov (United States)

    2010-06-15

    ... Conflicts of Interest in Major Defense Acquisition Programs AGENCY: Defense Acquisition Regulations System... extended an additional 30 days to provide additional time for interested parties to review the proposed... interested parties to review the proposed DFARS changes. Ynette R. Shelkin, Editor, Defense Acquisition...

  7. Microbial Diversity of Carbonate Chimneys at the Lost City Hydrothermal Field: Implications for Life-Sustaining Systems in Peridotite Seafloor Environments

    Science.gov (United States)

    Schrenk, M. O.; Cimino, P.; Kelley, D. S.; Baross, J. A.

    2002-12-01

    The Lost City Hydrothermal Field (LCHF) is a novel peridotite-hosted vent environment discovered in Dec. 2000 at 30 N near the Mid-Atlantic Ridge. This field contains multiple large (up to 60 m), carbonate chimneys venting high pH (9-10), moderate temperature (45-75 C) fluids. The LCHF is unusual in that it is located on 1.5 my-old oceanic crust, 15 km from the nearest spreading axis. Hydrothermal flow in this system is believed to be driven by exothermic serpentinization reactions involving iron-bearing minerals in the underlying seafloor. The conditions created by such reactions, which include significant quantities of dissolved methane and hydrogen, create habitats for microbial communities specifically adapted to this unusual vent environment. Ultramafic, reducing hydrothermal environments like the LCHF may be analogous to geologic settings present on the early Earth, which have been suggested to be important for the emergence of life. Additionally, the existence of hydrothermal environments far away from an active spreading center expands the range of potential life-supporting environments elsewhere in the solar system. To study the abundance and diversity of microbial communities inhabiting the environments that characterize the LCHF, carbonate chimney samples were analyzed by microscopic and molecular methods. Cell densities of between 105 and 107 cells/g were observed within various samples collected from the chimneys. Interestingly, 4-11% of the microbial population in direct contact with vent fluids fluoresced with Flavin-420, a key coenzyme involved in methanogenesis. Enrichment culturing from chimney material under aerobic and anaerobic conditions yielded microorganisms in the thermophilic and mesophilic temperature regimes in media designed for methanogenesis, methane-oxidation, and heterotrophy. PCR analysis of chimney material indicated the presence of both Archaea and Eubacteria in the carbonate samples. SSU rDNA clone libraries constructed from the

  8. Control of Database Applications at the Defense Finance and Accounting Service Indianapolis Center

    National Research Council Canada - National Science Library

    1997-01-01

    The Defense Finance and Accounting Service Financial Systems Organization, under the control of the Deputy Director for Information Management, Defense Finance and Accounting Service, is responsible...

  9. Microbial risk assessment and its implications for risk management in urban water systems

    OpenAIRE

    Westrell, Therese

    2004-01-01

    Infectious disease can be transmitted via various environmental pathways, many of which are incorporated into our water and wastewater systems. Quantitative microbial risk assessment (QMRA) can be a valuable tool in identifying hazard exposure pathways and estimating their associated health impacts. QMRA can be applied to establish standards and guidelines and has been adopted by the World Health Organisation for the management of risks from water-related infectious diseases. This thesis aims...

  10. The effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon.

    Science.gov (United States)

    Xu, Weihui; Wang, Zhigang; Wu, Fengzhi

    2015-01-01

    The growth of watermelon is often threatened by Fusarium oxysporum f. sp. niveum (Fon) in successively monocultured soil, which results in economic loss. The objective of this study was to investigate the effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon and to explore the relationship between the effect and the incidence of wilt caused by Fon. The results showed that the activities of soil polyphenol oxidase, urease and invertase were increased, the microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) were significantly increased, and the ratio of MBC/MBN was decreased (P Fusarium wilt was also decreased in the watermelon/wheat companion system. In conclusion, this study indicated that D123 wheat as a companion crop increased soil enzyme activities and microbial biomass, decreased the Fon population, and changed the relative abundance of microbial communities in the rhizosphere of watermelon, which may be related to the reduction of Fusarium wilt in the watermelon/wheat companion system.

  11. Reproducible analyses of microbial food for advanced life support systems

    Science.gov (United States)

    Petersen, Gene R.

    1988-01-01

    The use of yeasts in controlled ecological life support systems (CELSS) for microbial food regeneration in space required the accurate and reproducible analysis of intracellular carbohydrate and protein levels. The reproducible analysis of glycogen was a key element in estimating overall content of edibles in candidate yeast strains. Typical analytical methods for estimating glycogen in Saccharomyces were not found to be entirely aplicable to other candidate strains. Rigorous cell lysis coupled with acid/base fractionation followed by specific enzymatic glycogen analyses were required to obtain accurate results in two strains of Candida. A profile of edible fractions of these strains was then determined. The suitability of yeasts as food sources in CELSS food production processes is discussed.

  12. Microvillar cell surface as a natural defense system against xenobiotics: a new interpretation of multidrug resistance.

    Science.gov (United States)

    Lange, K; Gartzke, J

    2001-08-01

    The phenomenon of multidrug resistance (MDR) is reinterpreted on the basis of the recently proposed concept of microvillar signaling. According to this notion, substrate and ion fluxes across the surface of differentiated cells occur via transporters and ion channels that reside in membrane domains at the tips of microvilli (MV). The flux rates are regulated by the actin-based cytoskeletal core structure of MV, acting as a diffusion barrier between the microvillar tip compartment and the cytoplasm. The expression of this diffusion barrier system is a novel aspect of cell differentiation and represents a functional component of the natural defense system of epithelial cells against environmental hazardous ions and lipophilic compounds. Because of the specific organization of epithelial Ca(2+) signaling and the secretion, lipophilic compounds associated with the plasma membrane are transferred from the basal to the apical cell surface by a lipid flow mechanism. Drug release from the apical pole occurs by either direct secretion from the cell surface or metabolization by the microvillar cytochrome P-450 system and efflux of the metabolites and conjugation products through the large multifunctional anion channels localized in apical MV. The natural microvillar defense system also provides a mechanistic basis of acquired MDR in tumor cells. The microvillar surface organization is lost in rapidly growing cells such as tumor or embryonic cells but is restored during exposure of tumor cells to cytotoxins by induction of a prolonged G(0)/G(1) resting phase.

  13. Rapid radiometric detection of microbial contamination using 14C-glucose and standard liquid scintillation counting system

    International Nuclear Information System (INIS)

    Joshi, S.H.; Kamble, S.B.; Pilkhwal, N.S.; Ramamoorthy, N.

    1998-01-01

    A simple and rapid method for detection of microbial contamination based on quantitation of 14 CO 2 released during metabolism of 14 C-Glucose by microorganisms is reported. Liquid scintillation counting system (LSCS) with a modified sample preparation method was utilised. The scintillator was impregnated on Whatman-1 paper on which 14 CO 2 evolved during metabolism could be absorbed. The important parameters of counting such as efficiency, position sensitivity and geometry as well as effect of NaOH quantity and of microbial load on detection period were studied. The efficiency of radioactivity assay was 18±2.8 %. Contamination of the order of 5-10 organism/ml of product could be detected in about 24 hours. (author)

  14. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system.

    Science.gov (United States)

    Ajayi, Folusho Francis; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Choi, Mi-Jin; Chang, In Seop; Kim, In S

    2010-03-01

    Bio-hydrogen production in light-assisted microbial electrolysis cell (MEC) with a dye sensitized solar cell (DSSC) was optimized by connecting multiple MECs to a single dye (N719) sensitized solar cell (V(OC) approx. 0.7 V). Hydrogen production occurred simultaneously in all the connected MECs when the solar cell was irradiated with light. The amount of hydrogen produced in each MEC depends on the activity of the microbial catalyst on their anode. Substrate (acetate) to hydrogen conversion efficiencies ranging from 42% to 65% were obtained from the reactors during the experiment. A moderate light intensity of 430 W m(-2) was sufficient for hydrogen production in the coupled MEC-DSSC. A higher light intensity of 915 W m(-2), as well as an increase in substrate concentration, did not show any improvement in the current density due to limitation caused by the rate of microbial oxidation on the anode. A significant reduction in the surface area of the connected DSSC only showed a slight effect on current density in the coupled MEC-DSSC system when irradiated with light.

  15. 75 FR 65462 - Renewal of Department of Defense Federal Advisory Committee; Department of Defense Military...

    Science.gov (United States)

    2010-10-25

    ... Committee; Department of Defense Military Family Readiness Council AGENCY: Department of Defense (DoD... renewing the charter for the Department of Defense Military Family Readiness Council (hereafter referred to... requirements for the support of military family readiness by the Department of Defense; and (c) evaluate and...

  16. Measures of Microbial Biomass for Soil Carbon Decomposition Models

    Science.gov (United States)

    Mayes, M. A.; Dabbs, J.; Steinweg, J. M.; Schadt, C. W.; Kluber, L. A.; Wang, G.; Jagadamma, S.

    2014-12-01

    Explicit parameterization of the decomposition of plant inputs and soil organic matter by microbes is becoming more widely accepted in models of various complexity, ranging from detailed process models to global-scale earth system models. While there are multiple ways to measure microbial biomass, chloroform fumigation-extraction (CFE) is commonly used to parameterize models.. However CFE is labor- and time-intensive, requires toxic chemicals, and it provides no specific information about the composition or function of the microbial community. We investigated correlations between measures of: CFE; DNA extraction yield; QPCR base-gene copy numbers for Bacteria, Fungi and Archaea; phospholipid fatty acid analysis; and direct cell counts to determine the potential for use as proxies for microbial biomass. As our ultimate goal is to develop a reliable, more informative, and faster methods to predict microbial biomass for use in models, we also examined basic soil physiochemical characteristics including texture, organic matter content, pH, etc. to identify multi-factor predictive correlations with one or more measures of the microbial community. Our work will have application to both microbial ecology studies and the next generation of process and earth system models.

  17. Defense waste transportation: cost and logistics studies

    International Nuclear Information System (INIS)

    Andrews, W.B.; Cole, B.M.; Engel, R.L.; Oylear, J.M.

    1982-08-01

    Transportation of nuclear wastes from defense programs is expected to significantly increase in the 1980s and 1990s as permanent waste disposal facilities come into operation. This report uses models of the defense waste transportation system to quantify potential transportation requirements for treated and untreated contact-handled transuranic (CH-TRU) wastes and high-level defense wastes (HLDW). Alternative waste management strategies in repository siting, waste retrieval and treatment, treatment facility siting, waste packaging and transportation system configurations were examined to determine their effect on transportation cost and hardware requirements. All cost estimates used 1980 costs. No adjustments were made for future changes in these costs relative to inflation. All costs are reported in 1980 dollars. If a single repository is used for defense wastes, transportation costs for CH-TRU waste currently in surface storage and similar wastes expected to be generated by the year 2000 were estimated to be 109 million dollars. Recovery and transport of the larger buried volumes of CH-TRU waste will increase CH-TRU waste transportation costs by a factor of 70. Emphasis of truck transportation and siting of multiple repositories would reduce CH-TRU transportation costs. Transportation of HLDW to repositories for 25 years beginning in 1997 is estimated to cost $229 M in 1980 costs and dollars. HLDW transportation costs could either increase or decrease with the selection of a final canister configuration. HLDW transportation costs are reduced when multiple repositories exist and emphasis is placed on truck transport

  18. Guidance Optimization for Tactical Homing Missiles and Air Defense Systems

    Directory of Open Access Journals (Sweden)

    Yunes Sh. ALQUDSI

    2018-03-01

    Full Text Available The aim of this paper is to develop a functional approach to optimize the engagement effectiveness of the tactical homing missiles and air defense systems by utilizing the differential geometric concepts. In this paper the engagement geometry of the interceptor and the target is developed and expressed in differential geometric terms in order to demonstrate the possibilities of the impact triangles and specify the earliest interception based on the direct intercept geometry. Optimizing the missile heading angle and suitable missile velocity against the target velocity is then examined to achieve minimum missile latax, minimum time-to-go (time-to-hit and minimum appropriate missile velocity that is guaranteed a quick and precise interception for the given target. The study terminates with different scenarios of engagement optimization with two-dimensional simulation to demonstrate the applicability of the DG approach and to show its properties.

  19. The heterologous expression strategies of antimicrobial peptides in microbial systems.

    Science.gov (United States)

    Deng, Ting; Ge, Haoran; He, Huahua; Liu, Yao; Zhai, Chao; Feng, Liang; Yi, Li

    2017-12-01

    Antimicrobial peptides (AMPs) consist of molecules acting on the defense systems of numerous organisms toward tumor and multiple pathogens, such as bacteria, fungi, viruses, and parasites. Compared to traditional antibiotics, AMPs are more stable and have lower propensity for developing resistance through functioning in the innate immune system, thus having important applications in the fields of medicine, food and so on. However, despite of their high economic values, the low yield and the cumbersome extraction process in AMPs production are problems that limit their industrial application and scientific research. To conquer these obstacles, optimized heterologous expression technologies were developed that could provide effective ways to increase the yield of AMPs. In this review, the research progress on heterologous expression of AMPs using Escherichia coli, Bacillus subtilis, Pichia pastoris and Saccharomyces cerevisiae as host cells was mainly summarized, which might guide the expression strategies of AMPs in these cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Assessing coral reefs on a Pacific-wide scale using the microbialization score.

    Directory of Open Access Journals (Sweden)

    Tracey McDole

    Full Text Available The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change have been identified, the mechanism(s of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.

  1. Assessing coral reefs on a Pacific-wide scale using the microbialization score.

    Science.gov (United States)

    McDole, Tracey; Nulton, James; Barott, Katie L; Felts, Ben; Hand, Carol; Hatay, Mark; Lee, Hochul; Nadon, Marc O; Nosrat, Bahador; Salamon, Peter; Bailey, Barbara; Sandin, Stuart A; Vargas-Angel, Bernardo; Youle, Merry; Zgliczynski, Brian J; Brainard, Russell E; Rohwer, Forest

    2012-01-01

    The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.

  2. Bifurcation and complex dynamics of a discrete-time predator-prey system involving group defense

    Directory of Open Access Journals (Sweden)

    S. M. Sohel Rana

    2015-09-01

    Full Text Available In this paper, we investigate the dynamics of a discrete-time predator-prey system involving group defense. The existence and local stability of positive fixed point of the discrete dynamical system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation in the interior of R+2 by using bifurcation theory. Numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamical behaviors, including phase portraits, period-7, 20-orbits, attracting invariant circle, cascade of period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance of the chaotic dynamics and attracting chaotic set. The Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors.

  3. Colors and Some Morphological Traits as Defensive Mechanisms in Anurans

    Directory of Open Access Journals (Sweden)

    Luís Felipe Toledo

    2009-01-01

    Full Text Available Anurans may be brightly colored or completely cryptic. Generally, in the former situation, we are dealing with aposematism, and the latter is an example of camouflage. However, these are only simple views of what such colorations really mean and which defensive strategy is implied. For instance, a brightly colored frog may be part of a mimicry ring, which could be either Batesian, Müllerian, or Browerian. These are only examples of the diversity of color-usage systems as defensive strategies. Unfortunately, reports on the use of colors as defensive mechanisms are widespread in the available literature, and the possible functions are rarely mentioned. Therefore, we reviewed the literature and added new data to this subject. Then, we the use of colors (as defensive mechanism into categories. Mimicry was divided into the subcategories camouflage, homotypy, and nondeceitful homotypy, and these groups were also subcategorized. Dissuasive coloration was divided into behavioral display of colors, polymorphism, and polyphenism. Aposematism was treated apart, but aposematic colorations may be present in other defensive strategies. Finally, we propose functions and forms of evolution for some color systems in post-metamorphic anurans and hope that this review can be the basis for future research, even on other animal groups.

  4. Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems.

    Science.gov (United States)

    Guerrero, Leandro D; Vikram, Surendra; Makhalanyane, Thulani P; Cowan, Don A

    2017-09-01

    Microorganisms able to synthesize rhodopsins have the capacity to translocate ions through their membranes, using solar energy to generate a proton motive force. Rhodopsins are the most abundant phototrophic proteins in oceanic surface waters and are key constituents in marine bacterial ecology. However, it remains unclear how rhodopsins are used in most microorganisms. Despite their abundance in marine and fresh-water systems, the presence of functional rhodopsin systems in edaphic habitats has never been reported. Here, we show the presence of several new putative H + , Na + and Cl + pumping rhodopsins identified by metagenomic analysis of Antarctic desert hypolithic communities. Reconstruction of two Proteobacteria genomes harboring xanthorhodopsin-like proteins and one Bacteroidetes genome with a Na-pumping-like rhodopsin indicated that these bacteria were aerobic heterotrophs possessing the apparent capacity for the functional expression of rhodopsins. The existence of these protein systems in hypolithic bacteria expands the known role of rhodopsins to include terrestrial environments and suggests a possible predominant function as heterotrophic energy supply proteins, a feasible microbial adaptation to the harsh conditions prevalent in Antarctic edaphic systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Batteryless, wireless sensor powered by a sediment microbial fuel cell.

    Science.gov (United States)

    Donovan, Conrad; Dewan, Alim; Heo, Deukhyoun; Beyenal, Haluk

    2008-11-15

    Sediment microbial fuel cells (SMFCs) are considered to be an alternative renewable power source for remote monitoring. There are two main challenges to using SMFCs as power sources: 1) a SMFC produces a low potential at which most sensor electronics do not operate, and 2) a SMFC cannot provide continuous power, so energy from the SMFC must be stored and then used to repower sensor electronics intermittently. In this study, we developed a SMFC and a power management system (PMS) to power a batteryless, wireless sensor. A SMFC operating with a microbial anode and cathode, located in the Palouse River, Pullman, Washington, U.S.A., was used to demonstrate the utility of the developed system. The designed PMS stored microbial energy and then started powering the wireless sensor when the SMFC potential reached 320 mV. It continued powering until the SMFC potential dropped below 52 mV. The system was repowered when the SMFC potential increased to 320 mV, and this repowering continued as long as microbial reactions continued. We demonstrated that a microbial fuel cell with a microbial anode and cathode can be used as an effective renewable power source for remote monitoring using custom-designed electronics.

  6. MicroRNA-Mediated Gene Silencing in Plant Defense and Viral Counter-Defense

    Directory of Open Access Journals (Sweden)

    Sheng-Rui Liu

    2017-09-01

    Full Text Available MicroRNAs (miRNAs are non-coding RNAs of approximately 20–24 nucleotides in length that serve as central regulators of eukaryotic gene expression by targeting mRNAs for cleavage or translational repression. In plants, miRNAs are associated with numerous regulatory pathways in growth and development processes, and defensive responses in plant–pathogen interactions. Recently, significant progress has been made in understanding miRNA-mediated gene silencing and how viruses counter this defense mechanism. Here, we summarize the current knowledge and recent advances in understanding the roles of miRNAs involved in the plant defense against viruses and viral counter-defense. We also document the application of miRNAs in plant antiviral defense. This review discusses the current understanding of the mechanisms of miRNA-mediated gene silencing and provides insights on the never-ending arms race between plants and viruses.

  7. Recognizing Plant Defense Priming.

    Science.gov (United States)

    Martinez-Medina, Ainhoa; Flors, Victor; Heil, Martin; Mauch-Mani, Brigitte; Pieterse, Corné M J; Pozo, Maria J; Ton, Jurriaan; van Dam, Nicole M; Conrath, Uwe

    2016-10-01

    Defense priming conditions diverse plant species for the superinduction of defense, often resulting in enhanced pest and disease resistance and abiotic stress tolerance. Here, we propose a guideline that might assist the plant research community in a consistent assessment of defense priming in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic

    DEFF Research Database (Denmark)

    Daley, Kiley; Hansen, Lisbeth Truelstrup; Jamieson, Rob C.

    2017-01-01

    plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks......Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank...... inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung-each has a population of 0.2 mg/L free chlorine). Some buildings...

  9. KACC: An identification and characterization for microbial resources ...

    African Journals Online (AJOL)

    Korean Agricultural Culture Collection (KACC) is an authorized organizer and the official depository for microbial resources in Korea. The KACC has developed a web-based database system to provide integrated information about microbial resources. It includes not only simple text information on individual microbe but ...

  10. Implementing Set Based Design into Department of Defense Acquisition

    Science.gov (United States)

    2016-12-01

    The team employed a tailored waterfall process model in order to explore SBD applications in the support of defense acquisition and PORs. Figure 1...Engineering Model . Additionally, the team reviewed DOD case studies that implemented SBD. The SBD principles, along with the common themes from the...acquisition. 14. SUBJECT TERMS set based design, set based thinking, model based systems engineering, concurrent engineering, defense acquisition

  11. Insights into Feast-Famine polyhydroxyalkanoate (PHA)-producer selection: Microbial community succession, relationships with system function and underlying driving forces.

    Science.gov (United States)

    Huang, Long; Chen, Zhiqiang; Wen, Qinxue; Zhao, Lizhi; Lee, Duu-Jong; Yang, Lian; Wang, Yao

    2017-12-18

    The Feast-Famine (FF) process has been frequently used to select polyhydroxyalkanoate (PHA)-accumulating mixed cultures (MCs), but there has been little insight into the ecophysiology of the microbial community during the selection process. In three FF systems with well-defined conditions, synchronized variations in higher-order properties of MCs and complicate microbial community succession mainly including enrichment and elimination of non-top competitors and unexpected turnover of top competitors, were observed. Quantification of PHA-accumulating function genes (phaC) revealed that the top competitors maintained the PHA synthesis by playing consecutive roles when the highly dynamic turnover occurred. Due to its specific physiological characteristics during the PHA-accumulating process, Thauera strain OTU 7 was found to be responsible for the fluctuating SVI, which threatened the robustness of the FF system. This trait was also responsible for its later competitive exclusion by the other PHA-producer, Paracoccus strain OTU 1. Deterministic processes dominated the entire FF system, resulting in the inevitable microbial community succession in the acclimation phase and maintenance of the stable PHA-accumulating function in the maturation phase. However, neutral processes, likely caused by predation from bacterial phages, also occurred, which led to the unpredictable temporal dynamics of the top competitors. Copyright © 2017. Published by Elsevier Ltd.

  12. Analysis of the structural diversity of the microbial community in a ...

    African Journals Online (AJOL)

    drinie

    2002-10-04

    Oct 4, 2002 ... Microbial populations in paper-mill water systems are usually enumerated using microbiological techniques such as plate counts and the most probable number technique. These conventional methods can only quantify a limited percentage of the microbial populations and the microbial numbers are, ...

  13. Colloquium and Report on Systems Microbiology: Beyond Microbial Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Merry R. Buckley

    2004-12-13

    The American Academy of Microbiology convened a colloquium June 4-6, 2004 to confer about the scientific promise of systems microbiology. Participants discussed the power of applying a systems approach to the study of biology and to microbiology in particular, specifics about current research efforts, technical bottlenecks, requirements for data acquisition and maintenance, educational needs, and communication issues surrounding the field. A number of recommendations were made for removing barriers to progress in systems microbiology and for improving opportunities in education and collaboration. Systems biology, as a concept, is not new, but the recent explosion of genomic sequences and related data has revived interest in the field. Systems microbiology, a subset of systems biology, represents a different approach to investigating biological systems. It attempts to examine the emergent properties of microorganisms that arise from the interplay of genes, proteins, other macromolecules, small molecules, organelles, and the environment. It is these interactions, often nonlinear, that lead to the emergent properties of biological systems that are generally not tractable by traditional approaches. As a complement to the long-standing trend toward reductionism, systems microbiology seeks to treat the organism or community as a whole, integrating fundamental biological knowledge with genomics, metabolomics, and other data to create an integrated picture of how a microbial cell or community operates. Systems microbiology promises not only to shed light on the activities of microbes, but will also provide biology the tools and approaches necessary for achieving a better understanding of life and ecosystems. Microorganisms are ideal candidates for systems biology research because they are relatively easy to manipulate and because they play critical roles in health, environment, agriculture, and energy production. Potential applications of systems microbiology research

  14. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Science.gov (United States)

    Larsen, Peter; Gilbert, Jack

    2013-01-01

    In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm.) from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  15. Radioactive material defense construction using wind fan system against nuclear fallout in the aspect of nano-scopic dispersion

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2012-01-01

    Highlights: ► A realistic radiation protection system using aerodynamics is suggested. ► Manual formation procedure is constructed by this modeling. ► Chemical and natural accidents by wind fan are applicable. ► Nuclear disaster is avoided by national defense system. ► A sample case is realistically modeled. -- Abstract: Radioactive fallout defense system (RFDS) is suggested against possible nuclear accidents. A procedure consisting of several stages is considered. In particular, the dispersion of radioactive material is investigated for the case of wind fan operation where the radioactive molecules are considered as nano-scopic material. The modeling is done for one country dealing with a possible nuclear accident in another country. This study is thus applicable to regions where westerlies are prevailing. An aerodynamic fan analysis is performed. The incoming free wind stream is characterized by random sampling in Monte-Carlo simulation. The velocity of the fan is a critical aspect of the model. This model is applicable for volcanic ashes, nuclear bomb fallout, chemical material dispersion, and any other material combined with airflow. In addition, this fan could be studied, with nano-scale considerations, by a multi-scale technique.

  16. Microbial degradation of chloroethenes in groundwater systems

    Science.gov (United States)

    Bradley, Paul M.

    The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems. Résumé Les chloroéthanes, tétrachloroéthane (PCE) et trichloroéthane (TCE) sont parmi les polluants les plus communs trouvés dans les aquifères. Depuis les années 1980, on considère que les chloroéthanes ne sont pas significativement biodégradables dans les aquifères. Par conséquent, les efforts pour dépolluer les nappes contaminées par des chloroéthanes se sont limités à des tentatives de pompage-traitement globalement sans succès. Des travaux ultérieurs ont montré que dans des conditions réductrices, des micro-organismes présents dans les aquifères peuvent, par réduction, dégrader les PCE et TCE en composés moins chlorés, comme le dichlor

  17. Antipredator defenses predict diversification rates

    Science.gov (United States)

    Arbuckle, Kevin; Speed, Michael P.

    2015-01-01

    The “escape-and-radiate” hypothesis predicts that antipredator defenses facilitate adaptive radiations by enabling escape from constraints of predation, diversified habitat use, and subsequently speciation. Animals have evolved diverse strategies to reduce the direct costs of predation, including cryptic coloration and behavior, chemical defenses, mimicry, and advertisement of unprofitability (conspicuous warning coloration). Whereas the survival consequences of these alternative defenses for individuals are well-studied, little attention has been given to the macroevolutionary consequences of alternative forms of defense. Here we show, using amphibians as the first, to our knowledge, large-scale empirical test in animals, that there are important macroevolutionary consequences of alternative defenses. However, the escape-and-radiate hypothesis does not adequately describe them, due to its exclusive focus on speciation. We examined how rates of speciation and extinction vary across defensive traits throughout amphibians. Lineages that use chemical defenses show higher rates of speciation as predicted by escape-and-radiate but also show higher rates of extinction compared with those without chemical defense. The effect of chemical defense is a net reduction in diversification compared with lineages without chemical defense. In contrast, acquisition of conspicuous coloration (often used as warning signals or in mimicry) is associated with heightened speciation rates but unchanged extinction rates. We conclude that predictions based on the escape-and-radiate hypothesis must incorporate the effect of traits on both speciation and extinction, which is rarely considered in such studies. Our results also suggest that knowledge of defensive traits could have a bearing on the predictability of extinction, perhaps especially important in globally threatened taxa such as amphibians. PMID:26483488

  18. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse.

    Science.gov (United States)

    Kronenberg, Maria; Trably, Eric; Bernet, Nicolas; Patureau, Dominique

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are hardly biodegradable carcinogenic organic compounds. Bioremediation is a commonly used method for treating PAH contaminated environments such as soils, sediment, water bodies and wastewater. However, bioremediation has various drawbacks including the low abundance, diversity and activity of indigenous hydrocarbon degrading bacteria, their slow growth rates and especially a limited bioavailability of PAHs in the aqueous phase. Addition of nutrients, electron acceptors or co-substrates to enhance indigenous microbial activity is costly and added chemicals often diffuse away from the target compound, thus pointing out an impasse for the bioremediation of PAHs. A promising solution is the adoption of bioelectrochemical systems. They guarantee a permanent electron supply and withdrawal for microorganisms, thereby circumventing the traditional shortcomings of bioremediation. These systems combine biological treatment with electrochemical oxidation/reduction by supplying an anode and a cathode that serve as an electron exchange facility for the biocatalyst. Here, recent achievements in polycyclic aromatic hydrocarbon removal using bioelectrochemical systems have been reviewed. This also concerns PAH precursors: total petroleum hydrocarbons and diesel. Removal performances of PAH biodegradation in bioelectrochemical systems are discussed, focussing on configurational parameters such as anode and cathode designs as well as environmental parameters like porosity, salinity, adsorption and conductivity of soil and sediment that affect PAH biodegradation in BESs. The still scarcely available information on microbiological aspects of bioelectrochemical PAH removal is summarised here. This comprehensive review offers a better understanding of the parameters that affect the removal of PAHs within bioelectrochemical systems. In addition, future experimental setups are proposed in order to study syntrophic relationships between PAH

  19. Planetary Defense

    Science.gov (United States)

    2016-05-01

    4 Abstract Planetary defense against asteroids should be a major concern for every government in the world . Millions of asteroids and...helps make Planetary Defense viable because defending the Earth against asteroids benefits from all the above technologies. So if our planet security...information about their physical characteristics so we can employ the right strategies. It is a crucial difference if asteroids are made up of metal

  20. Defense of a space elevator

    Energy Technology Data Exchange (ETDEWEB)

    Laubscher, B. E. (Bryan E.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. If the SE's promise of low-cost access is to be realized, everything becomes economically more feasible to accomplish in space. In this paper we describe a defensive system of the SE. The primary scenario adopted for this analysis is the SE based on a floating platform in the ocean along the equator. A second possible scenario is the SE stationed on land (island or continent) on or near the equator. The SE will capture the imaginations of people around the world. It will become a symbol of power, capability, wealth and prestige for the country that builds it. As such, it will become a prime terrorist target. Moreover, the tremendous economic leverage afforded by the SE might motivate rogue nations to plot its destruction. Therefore, it is necessary to consider the requirements for defense of the SE. For the purposes of this paper it is assumed that the SE is to be deployed by the United States or one of its companies, and the resources of the US are available for its defense.