WorldWideScience

Sample records for microbial conversion products

  1. Microbial Conversion of Waste Glycerol from Biodiesel Production into Value-Added Products

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2013-09-01

    Full Text Available Biodiesel has gained a significant amount of attention over the past decade as an environmentally friendly fuel that is capable of being utilized by a conventional diesel engine. However, the biodiesel production process generates glycerol-containing waste streams which have become a disposal issue for biodiesel plants and generated a surplus of glycerol. A value-added opportunity is needed in order to compensate for disposal-associated costs. Microbial conversions from glycerol to valuable chemicals performed by various bacteria, yeast, fungi, and microalgae are discussed in this review paper, as well as the possibility of extending these conversions to microbial electrochemical technologies.

  2. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  3. Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Shu-Hsien; Yang, Shang-Shyng [Institute of Microbiology and Biochemistry, National Taiwan University, Taipei 10617, (Taiwan); Liu, Ching-Piao [Department of Biological Science and Technology, Meiho Institute of Technology, Pingtung 91201, (Taiwan)

    2007-05-15

    Food waste is approximately one quarter of the total garbage in Taiwan. To investigate the feasibility of microbial conversion of food waste to multiple functional biofertilizer, food waste was mixed with bulking materials, inoculated with thermophilic and lipolytic microbes and incubated at 50{sup o}C in a mechanical composter. Microbial inoculation enhanced the degradation of food wastes, increased the total nitrogen and the germination rate of alfalfa seed, shortened the maturity period and improved the quality of biofertilizer. In food waste inoculated with thermophilic and lipolytic Brevibacillus borstelensis SH168 for 28 days, total nitrogen increased from 2.01% to 2.10%, ash increased from 24.94% to 29.21%, crude fat decreased from 4.88% to 1.34% and the C/N ratio decreased from 18.02 to 17.65. Each gram of final product had a higher population of thermophilic microbes than mesophilic microbes. Microbial conversion of food waste to biofertilizer is a feasible and potential technology in the future to maintain the natural resources and to reduce the impact on environmental quality. (author)

  4. Microbial conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lau, P. [National Research Council of Canada, Ottawa, ON (Canada). Bioconversion and Sustainable Development

    2006-07-01

    Microbes are a biomass and an valuable resource. This presentation discussed microbial conversion technologies along with background information on microbial cells, their characteristics and microbial diversity. Untapped opportunities for microbial conversion were identified. Metagenomic and genome mining approaches were also discussed, as they can provide access to uncultivated or unculturable microorganisms in communal populations and are an unlimited resource for biocatalysts, novel genes and metabolites. Genome mining was seen as an economical approach. The presentation also emphasized that the development of microbial biorefineries would require significant insights into the relevant microorganisms and that biocatalysts were the ultimate in sustainability. In addition, the presentation discussed the natural fibres initiative for biochemicals and biomaterials. Anticipated outputs were identified and work in progress of a new enzyme-retting cocktail to provide diversity and/or consistency in fibre characteristics for various applications were also presented. It was concluded that it is necessary to leverage understanding of biological processes to produce bioproducts in a clean and sustainable manner. tabs., figs.

  5. Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams.

    Science.gov (United States)

    Uprety, Bijaya K; Reddy, Jayanth Venkatarama; Dalli, Sai Swaroop; Rakshit, Sudip K

    2017-07-01

    We have demonstrated possible use of microbial oil in biopolymer industries. Microbial oil was produced from biodiesel based crude glycerol and subsequently converted into polyol. Fermentation of crude glycerol in a batch bioreactor using Rhodosporidium toruloides ATCC 10788 produced 18.69g/L of lipid at the end of 7days. The microbial oil was then chemically converted to polyol and characterized using FT-IR and 1 H NMR. For comparison, canola oil and palm oil were also converted into their respective polyols. The hydroxyl numbers of polyols from canola, palm and microbial oil were found to be 266.86, 222.32 and 230.30 (mgKOH/g of sample) respectively. All the polyols were further converted into rigid and semi-rigid polyurethanes (maintaining the molar -NCO/-OH ratio of 1.1) to examine their suitability in polymer applications. Conversion of microbial lipid to polyurethane foam also provides a new route for the production of polymers using biodiesel based crude glycerol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Conversion of Crude Oil to Methane by a Microbial Consortium Enriched From Oil Reservoir Production Waters

    Directory of Open Access Journals (Sweden)

    Carolina eBerdugo-Clavijo

    2014-05-01

    Full Text Available The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls, corresponding to the detection of an alkyl succinate synthase gene (assA in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic versus sessile within a subsurface crude oil reservoir.

  7. Development of optimal enzymatic and microbial conversion systems for biofuel production

    Science.gov (United States)

    Aramrueang, Natthiporn

    The increase in demand for fuels, along with the concerns over the depletion of fossil fuels and the environmental problems associated with the use of the petroleum-based fuels, has driven the exploitation of clean and renewable energy. Through a collaboration project with Mendota Bioenergy LLC to produce advanced biofuel from sugar beet and other locally grown crops in the Central Valley of California through demonstration and commercial-scale biorefineries, the present study focused on the investigation of selected potential biomass as biofuel feedstock and development of bioconversion systems for sustainable biofuel production. For an efficient biomass-to-biofuel conversion process, three important steps, which are central to this research, must be considered: feedstock characterization, enzymatic hydrolysis of the feedstock, and the bioconversion process. The first part of the research focused on the characterization of various lignocellulosic biomass as feedstocks and investigated their potential ethanol yields. Physical characteristics and chemical composition were analyzed for four sugar beet varieties, three melon varieties, tomato, Jose tall wheatgrass, wheat hay, and wheat straw. Melons and tomato are those products discarded by the growers or processors due to poor quality. The mass-based ethanol potential of each feedstock was determined based on the composition. The high sugar-containing feedstocks are sugar beet roots, melons, and tomato, containing 72%, 63%, and 42% average soluble sugars on a dry basis, respectively. Thus, for these crops, the soluble sugars are the main substrate for ethanol production. The potential ethanol yields, on average, for sugar beet roots, melons, and tomato are 591, 526, and 448 L ethanol/metric ton dry basis (d.b.), respectively. Lignocellulosic biomass, including Jose Tall wheatgrass and wheat straw, are composed primarily of cellulose (27-39% d.b.) and hemicellulose (26-30% d.b.). The ethanol yields from these

  8. Reclamation of Marine Chitinous Materials for the Production of α-Glucosidase Inhibitors via Microbial Conversion

    Directory of Open Access Journals (Sweden)

    Van Bon Nguyen

    2017-11-01

    Full Text Available Six kinds of chitinous materials have been used as sole carbon/nitrogen (C/N sources for producing α-glucosidase inhibitors (aGI by Paenibacillus sp. TKU042. The aGI productivity was found to be highest in the culture supernatants using demineralized crab shell powder (deCSP and demineralized shrimp shell powder (deSSP as the C/N source. The half maximal inhibitory concentration (IC50 and maximum aGI activity of fermented deCSP (38 µg/mL, 98%, deSSP (108 µg/mL, 89%, squid pen powder (SPP (422 µg/mL, 98%, and shrimp head powder (SHP (455 µg/mL, 92% were compared with those of fermented nutrient broth (FNB (81 µg/mL, 93% and acarbose (1095 µg/mL, 74%, a commercial antidiabetic drug. The result of the protein/chitin ratio on aGI production showed that the optimal ratio was 0.2/1. Fermented deCSP showed lower IC50 and higher maximum inhibitory activity than those of acarbose against rat intestinal α-glucosidase.

  9. Microbial production of xylitol from xylose and L-arabinose: conversion of L-arabitol to xylitol using bacterial oxidoreductases

    Science.gov (United States)

    Microbial production of xylitol, using hemicellulosic biomass such as agricultural residues, is becoming more attractive for reducing its manufacturing cost. L-arabitol is a particular problem to xylitol production from hemicellulosic hydrolyzates that contain both xylose and L-arabinose because it...

  10. Electrobiorefineries: Unlocking the Synergy of Electrochemical and Microbial Conversions.

    Science.gov (United States)

    Harnisch, Falk; Urban, Carolin

    2017-12-13

    An integrated biobased economy urges an alliance of the two realms of "chemical production" and "electric power". The concept of electrobiorefineries provides a blueprint for such an alliance. Joining the forces of microbial and electrochemical conversions in electrobiorefineries allows interfacing the production, storage, and exploitation of electricity as well as biobased chemicals. Electrobiorefineries are a technological evolution of biorefineries by the addition of (bio)electrochemical transformations. This interfacing of microbial and electrochemical conversions will result in synergies affecting the entire process line, like enlarging the product portfolio, increasing the productivity, or exploiting new feedstock. A special emphasis is given to the utilization of oxidative and reductive electroorganic reactions of microbially produced intermediates that may serve as privileged building blocks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Polyhydroxyalkanoates (PHA) production from fermented crude glycerol: Study on the conversion of 1,3-propanediol to PHA in mixed microbial consortia

    DEFF Research Database (Denmark)

    Burniol Figols, Anna; Varrone, Cristiano; Daugaard, Anders Egede

    2018-01-01

    Crude glycerol, a by-product from the biodiesel industry, can be converted by mixed microbial consortia into 1,3-propanediol (1,3-PDO) and volatile fatty acids. In this study, further conversion of these main products into polyhydroxyalkanoates (PHA) was investigated with the focus on 1,3-PDO. Two...... different approaches for the enrichment of PHA accumulating microbial consortia using an aerobic dynamic feeding strategy were applied. With the first approach, where nitrogen was present during the whole cycle, no net production of PHA from 1,3-PDO was observed in the fermented effluent, not even...... the storage response. Nitrogen was still supplied during the famine phase. With the latter strategy, a net production of PHA from 1,3-PDO was observed at a yield of 0.24 Cmol PHA/Cmol 1,3-PDO. The overall yield from the fermented effluent was 0.42 Cmol PHA/Cmol substrate. Overall, the PHA yield from 1,3-PDO...

  12. Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of methanogenesis in production water of high-temperature oil reservoirs amended with bicarbonate

    Directory of Open Access Journals (Sweden)

    Guang-Chao eYang

    2016-03-01

    Full Text Available CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in Carbon Dioxide Capture and Storage (CDCS facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form (0~90 mM with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs.

  13. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels.

    Science.gov (United States)

    Islam, Zia Ul; Zhisheng, Yu; Hassan, El Barbary; Dongdong, Chang; Hongxun, Zhang

    2015-12-01

    This review highlights the potential of the pyrolysis-based biofuels production, bio-ethanol in particular, and lipid in general as an alternative and sustainable solution for the rising environmental concerns and rapidly depleting natural fuel resources. Levoglucosan (1,6-anhydrous-β-D-glucopyranose) is the major anhydrosugar compound resulting from the degradation of cellulose during the fast pyrolysis process of biomass and thus the most attractive fermentation substrate in the bio-oil. The challenges for pyrolysis-based biorefineries are the inefficient detoxification strategies, and the lack of naturally available efficient and suitable fermentation organisms that could ferment the levoglucosan directly into bio-ethanol. In case of indirect fermentation, acid hydrolysis is used to convert levoglucosan into glucose and subsequently to ethanol and lipids via fermentation biocatalysts, however the presence of fermentation inhibitors poses a big hurdle to successful fermentation relative to pure glucose. Among the detoxification strategies studied so far, over-liming, extraction with solvents like (n-butanol, ethyl acetate), and activated carbon seem very promising, but still further research is required for the optimization of existing detoxification strategies as well as developing new ones. In order to make the pyrolysis-based biofuel production a more efficient as well as cost-effective process, direct fermentation of pyrolysis oil-associated fermentable sugars, especially levoglucosan is highlly desirable. This can be achieved either by expanding the search to identify naturally available direct levoglusoan utilizers or modify the existing fermentation biocatalysts (yeasts and bacteria) with direct levoglucosan pathway coupled with tolerance engineering could significantly improve the overall performance of these microorganisms.

  14. Microbial products II

    Energy Technology Data Exchange (ETDEWEB)

    Pape, H; Rehm, H J [eds.

    1986-01-01

    The present volume deals mainly with compounds which have been detected as natural microbial products. Part 1 of this volume introduces the general aspects of the overproduction of metabolites and the concepts and genetics of secondary metabolism. Compounds such as nucleosides, nucleotides, coenzymes, vitamins and lipids are dealt with in part 2. Part 3 then is devoted to products and antibiotics with uses im medicine, veterinary medicine, plant protection and metabolites with antitumor activity. Several secondary metabolites have found uses in human and animal health care. With 244 figs., 109 tabs.

  15. Variations in soil microbial community structure induced by the conversion from paddy fields to upland fields

    Science.gov (United States)

    Dai, X.

    2015-12-01

    Land-use conversion is an important factor influencing the carbon and nitrogen gas exchange between land and atmosphere, and soil microorganisms is main driver of soil carbon and nitrogen gas production. Understanding the effect of land-use conversion on soil microbial communities and its influencing factor is important for greenhouse gas emission reduction and soil organic carbon and nitrogen sequestration and stability. The influence of land use conversion on soil process was undergoing a dynamic change, but little research has been done to understand the effect on soil microbial communities during the initial years after land conversion. In the study, the influences of land-use conversion from double rice cropping (RR) to maize-maize (MM) and soybean-peanut (SP) double cropping systems on soil physical and chemical properties, and microbial community structure was studied after two years of the conversion in southern China. The results showed that land use conversion significantly changed soil properties, microbial communities and biomass. Soil pH significantly decreased by 0.50 and 0.52 after conversion to MM and SP, respectively. Soil TN and NH4-N also significantly decreased by 9%-15% and 60% after conversion to upland fields, respectively. The total PLFAs, bacterial, gram-positive bacterial (G+), gram-negative bacterial (G-) and actinomycetic PLFAs decreased significantly. The ng g-1 soil concentration of monounsaturated chain PLFAs 16:1ω7c and 18:1ω9t were significantly higher at paddy fields than at upland fields. No significant differences in soil properties, microbial communities and biomass were found between conversed MM and SP. Our results indicated that land use conversion, not crop type conversed had a significant effects on soil properties and microbial communities at the initial of land conversion. And soil pH was the key factor regulating the variations in soil microbial community structure after land use conversion from paddy to upland fields.

  16. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  17. Microbial Propionic Acid Production

    Directory of Open Access Journals (Sweden)

    R. Axayacatl Gonzalez-Garcia

    2017-05-01

    Full Text Available Propionic acid (propionate is a commercially valuable carboxylic acid produced through microbial fermentation. Propionic acid is mainly used in the food industry but has recently found applications in the cosmetic, plastics and pharmaceutical industries. Propionate can be produced via various metabolic pathways, which can be classified into three major groups: fermentative pathways, biosynthetic pathways, and amino acid catabolic pathways. The current review provides an in-depth description of the major metabolic routes for propionate production from an energy optimization perspective. Biological propionate production is limited by high downstream purification costs which can be addressed if the target yield, productivity and titre can be achieved. Genome shuffling combined with high throughput omics and metabolic engineering is providing new opportunities, and biological propionate production is likely to enter the market in the not so distant future. In order to realise the full potential of metabolic engineering and heterologous expression, however, a greater understanding of metabolic capabilities of the native producers, the fittest producers, is required.

  18. Microbial production of biovanillin

    Directory of Open Access Journals (Sweden)

    A. Converti

    2010-10-01

    Full Text Available This review aims at providing an overview on the microbial production of vanillin, a new alternative method for the production of this important flavor of the food industry, which has the potential to become economically competitive in the next future. After a brief description of the applications of vanillin in different industrial sectors and of its physicochemical properties, we described the traditional ways of providing vanillin, specifically extraction and chemical synthesis (mainly oxidation and compared them with the new biotechnological options, i.e., biotransformations of caffeic acid, veratraldehyde and mainly ferulic acid. In the second part of the review, emphasis has been addressed to the factors most influencing the bioproduction of vanillin, specifically the age of inoculum, pH, temperature, type of co-substrate, as well as the inhibitory effects exerted either by excess substrate or product. The final part of the work summarized the downstream processes and the related unit operations involved in the recovery of vanillin from the bioconversion medium.

  19. Microbial production of biovanillin.

    Science.gov (United States)

    Converti, A; Aliakbarian, B; Domínguez, J M; Bustos Vázquez, G; Perego, P

    2010-07-01

    This review aims at providing an overview on the microbial production of vanillin, a new alternative method for the production of this important flavor of the food industry, which has the potential to become economically competitive in the next future. After a brief description of the applications of vanillin in different industrial sectors and of its physicochemical properties, we described the traditional ways of providing vanillin, specifically extraction and chemical synthesis (mainly oxidation) and compared them with the new biotechnological options, i.e., biotransformations of caffeic acid, veratraldehyde and mainly ferulic acid. In the second part of the review, emphasis has been addressed to the factors most influencing the bioproduction of vanillin, specifically the age of inoculum, pH, temperature, type of co-substrate, as well as the inhibitory effects exerted either by excess substrate or product. The final part of the work summarized the downstream processes and the related unit operations involved in the recovery of vanillin from the bioconversion medium.

  20. Development of Electro-Microbial Carbon Capture and Conversion Systems

    KAUST Repository

    Al Rowaihi, Israa S.

    2017-05-01

    Carbon dioxide is a viable resource, if used as a raw material for bioprocessing. It is abundant and can be collected as a byproduct from industrial processes. Globally, photosynthetic organisms utilize around 6’000 TW (terawatt) of solar energy to fix ca. 800 Gt (gigaton) of CO2 in the planets largest carbon-capture process. Photosynthesis combines light harvesting, charge separation, catalytic water splitting, generation of reduction equivalents (NADH), energy (ATP) production and CO2 fixation into one highly interconnected and regulated process. While this simplicity makes photosynthetic production of commodity interesting, yet photosynthesis suffers from low energy efficiency, which translates in an extensive footprint for solar biofuels production conditions that store < 2% of solar energy. Electron transfer processes form the core of photosynthesis. At moderate light intensity, the electron transport chains reach maximum transfer rates and only work when photons are at appropriate wavelengths, rendering the process susceptible to oxidative damage, which leads to photo-inhibition and loss of efficiency. Based on our fundamental analysis of the specialized tasks in photosynthesis, we aimed to optimize the efficiency of these processes separately, then combine them in an artificial photosynthesis (AP) process that surpasses the low efficiency of natural photosynthesis. Therefore, by combining photovoltaic light harvesting with electrolytic water splitting or CO2 reduction in combination with microbiological conversion of electrochemical products to higher valuable compounds, we developed an electro-microbial carbon capture and conversion setups that capture CO2 into the targeted bioplastic; polyhydroxybutyrate (PHB). Based on the type of the electrochemical products, and the microorganism that either (i) convert products formed by electrochemical reduction of CO2, e.g. formate (using inorganic cathodes), or (ii) use electrochemically produced H2 to reduce CO2

  1. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  2. Microbial conversion of biomass into bio-based polymers.

    Science.gov (United States)

    Kawaguchi, Hideo; Ogino, Chiaki; Kondo, Akihiko

    2017-12-01

    The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Microbial conversion of hymexazol in soil

    International Nuclear Information System (INIS)

    Nakanishi, Toshiro; Takahi, Yukiyoshi; Tomita, Kazuo

    1974-01-01

    The metabolism of hymexazol (3-hydroxy-5-methylisoxazole) in soil was studied by using 14 C-labeled chemical ( 14 C-labeled at the 3 position on the isoxazole ring) to obtain fundamental information on its persistence in disease controlling activity and on residue analysis. Radioactive hymexazol was degraded in the unsterilized soil, and three radioactive metabolites were identified with carbon dioxide, acetoacetamide, and 5-methyl-2(3H)-oxazolone. The amount of 14 CO 2 evolved from radioactive hymexazol treated soil increased with time, whereas those of the other metabolites decreased. The breakdown of hymexazol in unsterilized soil is biological, since only a trace of 14 CO 2 was evolved from the sterilized soil. Production of 14 CO 2 was remarkable in submerged condition compared to that in moist one. The amount of 14 CO 2 evolved from radioactive hymexazol treated soil increased with increasing temperature levels from 15C to 35C. Hymexazol was also degraded to CO 2 , acetoacetamide, and 5-methyl-2(3H)-oxazolone in the soil infested with Bacillus subtilis, Streptomyces griseus, Aspergillus niger, Arthrinium sp., or Penicillium sp. A certain portion of hymexazol and/or its metabolites were so tightly adsorbed by the soil that it could not be removed by extraction with 1N HCl and subsequent elution with 1N NaOH or methanol. Since acetoacetamide and 5-methyl-2(3H)-oxazolone were found to be less effective than hymexazol against Fusarium wilt of cucumber, the metabolism of hymexazol in soil can be considered as a detoxication step. (auth.)

  4. Combined polyhydroxyalkanoates (PHA) and 1,3-propanediol production from crude glycerol: Selective conversion of volatile fatty acids into PHA by mixed microbial consortia

    DEFF Research Database (Denmark)

    Burniol Figols, Anna; Varrone, Cristiano; Le, Simone Balzer

    2018-01-01

    in the supernatant by means of mixed microbial consortia selection strategies. The process showed highly reproducible results in terms of PHA yield, 0.99 ± 0.07 Cmol PHA/Cmol S (0.84 g COD PHA/g COD S), PHA content (76 ± 3.1 g PHA/100 g TSS) and 1,3-PDO recovery (99 ± 2.1%). The combined process had an ultimate...

  5. Microbial lipases: Production, properties and biotechnological applications

    Directory of Open Access Journals (Sweden)

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  6. Engineering sugar utilization and microbial tolerance toward lignocellulose conversion

    Directory of Open Access Journals (Sweden)

    Lizbeth M. Nieves

    2015-02-01

    Full Text Available Production of fuels and chemicals through a fermentation-based manufacturing process that uses renewable feedstock such as lignocellulosic biomass is a desirable alternative to petrochemicals. Although it is still in its infancy, synthetic biology offers great potential to overcome the challenges associated with lignocellulose conversion. In this review, we will summarize the identification and optimization of synthetic biological parts used to enhance the utilization of lignocellulose-derived sugars and to increase the biocatalyst tolerance for lignocellulose-derived fermentation inhibitors. We will also discuss the ongoing efforts and future applications of synthetic integrated biological systems used to improve lignocellulose conversion.

  7. Fermentative hydrogen production by microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Maintinguer, Sandra I.; Fernandes, Bruna S.; Duarte, Iolanda C.S.; Saavedra, Nora Katia; Adorno, M. Angela T.; Varesche, M. Bernadete [Department of Hydraulics and Sanitation, School of Engineering of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-carlense, 400, 13566-590 Sao Carlos-SP (Brazil)

    2008-08-15

    Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H{sub 2} and volatile acids' producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H{sub 2} by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H{sub 2}/mol sucrose), 20% (1.6 mol H{sub 2}/mol sucrose), 15% (1.2 mol H{sub 2}/mol sucrose) and 4% (0.3 mol H{sub 2}/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (author)

  8. Microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Martin; Beckmaann, Sabrina; Siegert, Michael; Grundger, Friederike; Richnow, Hans [Geomicrobiology Group, Federal Institute for Geosciences and Natural Resources (Germany)

    2011-07-01

    In recent years, oil production has increased enormously but almost half of the oil now remaining is heavy/biodegraded and cannot be put into production. There is therefore a need for new technology and for diversification of energy sources. This paper discusses the microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs. The objective of the study is to identify microbial and geochemical controls on methanogenesis in reservoirs. A graph shows the utilization of methane for various purposes in Germany from 1998 to 2007. A degradation process to convert coal to methane is shown using a flow chart. The process for converting oil to methane is also given. Controlling factors include elements such as Fe, nitrogen and sulfur. Atmospheric temperature and reservoir pressure and temperature also play an important role. From the study it can be concluded that isotopes of methane provide exploration tools for reservoir selection and alkanes and aromatic compounds provide enrichment cultures.

  9. Application of microbial photosynthesis to energy production and CO2 fixation

    International Nuclear Information System (INIS)

    Asada, Y.; Miyake, J.

    1994-01-01

    This paper presents different applications of microbial photosynthesis for energy production and carbon dioxide fixation. The authors discuss about energetic aspects of photosynthesis and features of biological way for solar energy conversion. (TEC). 4 figs., 12 refs

  10. Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture.

    Science.gov (United States)

    Grunert, Oliver; Reheul, Dirk; Van Labeke, Marie-Christine; Perneel, Maaike; Hernandez-Sanabria, Emma; Vlaeminck, Siegfried E; Boon, Nico

    2016-05-01

    Vegetables and fruits are an important part of a healthy food diet, however, the eco-sustainability of the production of these can still be significantly improved. European farmers and consumers spend an estimated €15.5 billion per year on inorganic fertilizers and the production of N-fertilizers results in a high carbon footprint. We investigated if fertilizer type and medium constituents determine microbial nitrogen conversions in organic growing media and can be used as a next step towards a more sustainable horticulture. We demonstrated that growing media constituents showed differences in urea hydrolysis, ammonia and nitrite oxidation and in carbon dioxide respiration rate. Interestingly, mixing of the growing media constituents resulted in a stimulation of the function of the microorganisms. The use of organic fertilizer resulted in an increase in amoA gene copy number by factor 100 compared to inorganic fertilizers. Our results support our hypothesis that the activity of the functional microbial community with respect to nitrogen turnover in an organic growing medium can be improved by selecting and mixing the appropriate growing media components with each other. These findings contribute to the understanding of the functional microbial community in growing media and its potential role towards a more responsible horticulture. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.; Dai, Ziyu; Ramasamy, Karthikeyan K.; Zhu, Yunhua

    2010-09-01

    Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can be produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.

  12. Biotechnological Processes in Microbial Amylase Production.

    Science.gov (United States)

    Gopinath, Subash C B; Anbu, Periasamy; Arshad, M K Md; Lakshmipriya, Thangavel; Voon, Chun Hong; Hashim, Uda; Chinni, Suresh V

    2017-01-01

    Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.

  13. Biotechnological Processes in Microbial Amylase Production

    Directory of Open Access Journals (Sweden)

    Subash C. B. Gopinath

    2017-01-01

    Full Text Available Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi amylase is discussed along with its production methods from the laboratory to industrial scales.

  14. Conversion of sulfur compounds and microbial community in anaerobic treatment of fish and pork waste.

    Science.gov (United States)

    He, Ruo; Yao, Xing-Zhi; Chen, Min; Ma, Ruo-Chan; Li, Hua-Jun; Wang, Chen; Ding, Shen-Hua

    2018-04-07

    Volatile sulfur compounds (VSCs) are not only the main source of malodor in anaerobic treatment of organic waste, but also pose a threat to human health. In this study, VSCs production and microbial community was investigated during the anaerobic degradation of fish and pork waste. The results showed that after the operation of 245 days, 94.5% and 76.2% of sulfur compounds in the fish and pork waste was converted into VSCs. Among the detected VSCs including H 2 S, carbon disulfide, methanethiol, ethanethiol, dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide, methanethiol was the major component with the maximum concentration of 4.54% and 3.28% in the fish and pork waste, respectively. The conversion of sulfur compounds including total sulfur, SO 4 2- -S, S 2- , methionine and cysteine followed the first-order kinetics. Miseq sequencing analysis showed that Acinetobacter, Clostridium, Proteus, Thiobacillus, Hyphomicrobium and Pseudomonas were the main known sulfur-metabolizing microorganisms in the fish and pork waste. The C/N value had most significant influence on the microbial community in the fish and pork waste. A main conversion of sulfur compounds with CH 3 SH as the key intermediate was firstly hypothesized during the anaerobic degradation of fish and pork waste. These findings are helpful to understand the conversion of sulfur compounds and to develop techniques to control ordor pollution in the anaerobic treatment of organic waste. Copyright © 2018. Published by Elsevier Ltd.

  15. Microbial conversion of acetanilide to 2'-hydroxyacetanilide and 4'-hydroxyacetanilide.

    Science.gov (United States)

    Theriault, R J; Longfield, T H

    1967-11-01

    Approximately 700 cultures of various types were examined for their ability to hydroxylate acetanilide. The major product formed by unidentified Streptomyces species RJTS-539 was identified as 4'-hydroxyacetanilide (N-acetyl-p-aminophenol). This culture gave a peak yield of 405 mg per liter from 1,000 mg of acetanilide per liter. Considerably lower yields of 4'-hydroxyacetanilide were isolated from S. cinnamoneus NRRLB-1285. The major conversion product of acetanilide formed by Amanita muscaria F-6 was identified as 2'-hydroxyacetanilide, with a peak yield of 433 mg per liter from 1,000 mg per liter of substrate. A small amount of 4'-hydroxyacetanilide was also formed. Six other Streptomyces cultures formed small amounts of one or two products identical or similar to 2'-hydroxyacetanilide or 4'-hydroxyacetanilide as determined by thin-layer chromatography and ultraviolet spectra.

  16. Genome engineering for microbial natural product discovery.

    Science.gov (United States)

    Choi, Si-Sun; Katsuyama, Yohei; Bai, Linquan; Deng, Zixin; Ohnishi, Yasuo; Kim, Eung-Soo

    2018-03-03

    The discovery and development of microbial natural products (MNPs) have played pivotal roles in the fields of human medicine and its related biotechnology sectors over the past several decades. The post-genomic era has witnessed the development of microbial genome mining approaches to isolate previously unsuspected MNP biosynthetic gene clusters (BGCs) hidden in the genome, followed by various BGC awakening techniques to visualize compound production. Additional microbial genome engineering techniques have allowed higher MNP production titers, which could complement a traditional culture-based MNP chasing approach. Here, we describe recent developments in the MNP research paradigm, including microbial genome mining, NP BGC activation, and NP overproducing cell factory design. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Microbial amylases in the production of alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, H J

    1970-01-01

    This book is based on experiments carried out in the experimental distillery of the University of Hohenheim on the use of microbial enzyme preparations for processing wheat and maize, with particular reference to comparison of green and cured malts. The subject is divided into the following chapters: introduction (pp. -14); raw materials (pp. 5-6); enzymic dextrinizing and saccharification agents (pp. 6-10); technology of alcohol production with microbial amylses (pp. 11-27); experiments into, results of and discussion on special problems of the mashing and fermentation process with reference to application of microbial amylases (pp. 28-45); Analytical methods (pp. 46-51); and Resume (pp. 5254).

  18. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.

    Science.gov (United States)

    Yu, Ping; Chen, Xingge; Li, Peng

    2017-09-01

    Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  19. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  20. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  1. Gluconic Acid: Properties, Applications and Microbial Production

    Directory of Open Access Journals (Sweden)

    Sumitra Ramachandran

    2006-01-01

    Full Text Available Gluconic acid is a mild organic acid derived from glucose by a simple oxidation reaction. The reaction is facilitated by the enzyme glucose oxidase (fungi and glucose dehydrogenase (bacteria such as Gluconobacter. Microbial production of gluconic acid is the preferred method and it dates back to several decades. The most studied and widely used fermentation process involves the fungus Aspergillus niger. Gluconic acid and its derivatives, the principal being sodium gluconate, have wide applications in food and pharmaceutical industry. This article gives a review of microbial gluconic acid production, its properties and applications.

  2. Systems biology of microbial exopolysaccharides production

    Directory of Open Access Journals (Sweden)

    Ozlem eAtes

    2015-12-01

    Full Text Available Exopolysaccharides (EPS produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture and medicine. EPSs are mainly associated with high-value applications and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore a systems-based approach constitutes an important step towards understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan and dextran.

  3. Systems Biology of Microbial Exopolysaccharides Production.

    Science.gov (United States)

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran.

  4. Energy production, conversion, storage, conservation, and coupling

    CERN Document Server

    Demirel, Yaşar

    2012-01-01

    Understanding the sustainable use of energy in various processes is an integral part of engineering and scientific studies, which rely on a sound knowledge of energy systems. Whilst many institutions now offer degrees in energy-related programs, a comprehensive textbook, which introduces and explains sustainable energy systems and can be used across engineering and scientific fields, has been lacking. Energy: Production, Conversion, Storage, Conservation, and Coupling provides the reader with a practical understanding of these five main topic areas of energy including 130 examples and over 600 practice problems. Each chapter contains a range of supporting figures, tables, thermodynamic diagrams and charts, while the Appendix supplies the reader with all the necessary data including the steam tables. This new textbook presents a clear introduction of basic vocabulary, properties, forms, sources, and balances of energy before advancing to the main topic areas of: • Energy production and conversion in importa...

  5. Bioactive natural products from novel microbial sources.

    Science.gov (United States)

    Challinor, Victoria L; Bode, Helge B

    2015-09-01

    Despite the importance of microbial natural products for human health, only a few bacterial genera have been mined for the new natural products needed to overcome the urgent threat of antibiotic resistance. This is surprising, given that genome sequencing projects have revealed that the capability to produce natural products is not a rare feature among bacteria. Even the bacteria occurring in the human microbiome produce potent antibiotics, and thus potentially are an untapped resource for novel compounds, potentially with new activities. This review highlights examples of bacteria that should be considered new sources of natural products, including anaerobes, pathogens, and symbionts of humans, insects, and nematodes. Exploitation of these producer strains, combined with advances in modern natural product research methodology, has the potential to open the way for a new golden age of microbial therapeutics. © 2015 New York Academy of Sciences.

  6. Microbial production of value-added nutraceuticals.

    Science.gov (United States)

    Wang, Jian; Guleria, Sanjay; Koffas, Mattheos Ag; Yan, Yajun

    2016-02-01

    Nutraceuticals are important natural bioactive compounds that confer health-promoting and medical benefits to humans. Globally growing demands for value-added nutraceuticals for prevention and treatment of human diseases have rendered nutraceuticals a multi-billion dollar market. However, supply limitations and extraction difficulties from natural sources such as plants, animals or fungi, restrict the large-scale use of nutraceuticals. Metabolic engineering via microbial production platforms has been advanced as an eco-friendly alternative approach for production of value-added nutraceuticals from simple carbon sources. Microbial platforms like the most widely used Escherichia coli and Saccharomyces cerevisiae have been engineered as versatile cell factories for production of diverse and complex value-added chemicals such as phytochemicals, prebiotics, polysaccaharides and poly amino acids. This review highlights the recent progresses in biological production of value-added nutraceuticals via metabolic engineering approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Microbial Physiology of the Conversion of Residual Oil to Methane: A Protein Prospective

    Science.gov (United States)

    Morris, Brandon E. L.; Bastida-Lopez, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Suflita, Joseph M.

    2010-05-01

    Traditional petroleum recovery techniques are unable to extract the majority of oil in most petroliferous deposits. The recovery of even a fraction of residual hydrocarbon in conventional reserves could represent a substantive energy supply. To this end, the microbial conversion of residual oil to methane has gained increasing relevance in recent years [1,2]. Worldwide demand for methane is expected to increase through 2030 [3], as it is a cleaner-burning alternative to traditional fuels [4]. To investigate the microbial physiology of hydrocarbon-decomposition and ultimate methanogenesis, we initiated a two-pronged approach. First, a model alkane-degrading sulfate-reducing bacterium, Desulfoglaeba alkanexedens, was used to interrogate the predominant metabolic pathway(s) differentially expressed during growth on either n-decane or butyrate. A total of 81 proteins were differentially expressed during bacterial growth on butyrate, while 100 proteins were unique to the alkane-grown condition. Proteins related to alkylsuccinate synthase, or the homologous 1-methyl alkylsuccinate synthase, were identified only in the presence of the hydrocarbon. Secondly, we used a newly developed stable isotope probing technique [5] targeted towards proteins to monitor the flux of carbon through a residual oil-degrading bacterial consortium enriched from a gas-condensate contaminated aquifer [1]. Combined carbon and hydrogen stable isotope fractionation identified acetoclastic methanogenesis as the dominant process in this system. Such findings agree with the previous clone library characterization of the consortium. Furthermore, hydrocarbon activation was determined to be the rate-limiting process during the net conversion of residual oil to methane. References 1. Gieg, L.M., K.E. Duncan, and J.M. Suflita, Bioenegy production via microbial conversion of residual oil to natural gas. Appl Environ Micro, 2008. 74(10): p. 3022-3029. 2. Jones, D.M., et al., Crude-oil biodegradation via

  8. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts.

    Science.gov (United States)

    Yu, Chaowei; Simmons, Blake A; Singer, Steven W; Thelen, Michael P; VanderGheynst, Jean S

    2016-12-01

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have been discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. In this article, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.

  9. Bioethanol production from cassava peels using different microbial ...

    African Journals Online (AJOL)

    Bioethanol production from cassava peels using different microbial inoculants. ... Log in or Register to get access to full text downloads. ... Abstract. The potential of bioethanol production using different microbial inoculants for the simultaneous ...

  10. Electricity production and microbial characterization of thermophilic microbial fuel cells.

    Science.gov (United States)

    Dai, Kun; Wen, Jun-Li; Zhang, Fang; Ma, Xi-Wen; Cui, Xiang-Yu; Zhang, Qi; Zhao, Ting-Jia; Zeng, Raymond J

    2017-11-01

    Thermophilic microbial fuel cell (TMFC) offers many benefits, but the investigations on the diversity of exoelectrogenic bacteria are scarce. In this study, a two-chamber TMFC was constructed using ethanol as an electron donor, and the microbial dynamics were analyzed by high-throughput sequencing and 16S rRNA clone-library sequencing. The open-circuit potential of TMFC was approximately 650mV, while the maximum voltage was around 550mV. The maximum power density was 437mW/m 2 , and the columbic efficiency in this work was 20.5±6.0%. The Firmicutes bacteria, related to the uncultured bacterium clone A55_D21_H_B_C01 with a similarity of 99%, accounted for 90.9% of all bacteria in the TMFC biofilm. This unknown bacterium has the potential to become a new thermophilic exoelectrogenic bacterium that is yet to be cultured. The development of TMFC-involved biotechnologies will be beneficial for the production of valuable chemicals and generation of energy in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Perspectives of microbial oils for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiang; Du Wei; Liu Dehua [Tsinghua Univ., Beijing (China). Dept. of Chemical Engineering

    2008-10-15

    Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed. (orig.)

  12. Microbial production of citric acid

    Directory of Open Access Journals (Sweden)

    Luciana P. S Vandenberghe

    1999-01-01

    Full Text Available Citric acid is the most important organic acid produced in tonnage and is extensively used in food and pharmaceutical industries. It is produced mainly by submerged fermentation using Aspergillus niger or Candida sp. from different sources of carbohydrates, such as molasses and starch based media. However, other fermentation techniques, e.g. solid state fermentation and surface fermentation, and alternative sources of carbon such as agro-industrial residues have been intensively studied showing great perspective to its production. This paper reviews recent developments on citric acid production by presenting a brief summary of the subject, describing micro-organisms, production techniques, and substrates, etc.O ácido cítrico é o ácido mais produzido em termos de tonagem e é extensivamente utilizado pelas indústrias alimentícia e farmacêutica. É produzido principalmente por fermentação submersa utilizando o fungo Aspergillus niger e leveduras do gênero Candida sp. à partir de diferentes fontes de carbono, como a glicose e meios à base de amido. No entanto, outras técnicas de fermentação, e.g. fermentação no estado sólido e em superfície, e fontes alternativas de carbono tem sido intensamente estudadas mostrando grande perspectivas para o processo. O presente trabalho apresenta um resumo dos últimos avanços sobre a produção do ácido cítrico, descrevendo de maneira sucinta os trabalhos mais recentes, descrevendo microrganismos, técnicas de produção e substratos empregados, etc.

  13. Microbial Glycosidases for Wine Production

    Directory of Open Access Journals (Sweden)

    Sergi Maicas

    2016-08-01

    Full Text Available Winemaking is a complex process involving the interaction of different microbes. The two main groups of microorganisms involved are yeasts and bacteria. The yeasts present in spontaneous fermentation may be divided into two groups: the Saccharomyces yeasts, particularly S. cerevisiae; and the non-Saccharomyces yeasts, which include members of the genera Rhodotorula, Pichia, Candida, Debaryomyces, Metschtnikowia, Hansenula, and Hanseniaspora. S. cerevisiae yeasts are able to convert sugar into ethanol and CO2 via fermentation. They have been used by humans for thousands of years for the production of fermented beverages and foods, including wine. Their enzymes provide interesting organoleptic characteristics in wine. Glycosidases with oenological implications have been widely reported in yeasts, bacteria, and fungi. β-Glucosidase activity is involved in the release of terpenes to wine, thus contributing to varietal aroma. α-Rhamnosidase, α-arabinosidase, or β-apiosidase activities have also been reported to contribute to the wine production process. Oenococcus oeni (a lactic acid bacteria present in wine also has numerous glycosidases, and their activities contribute to the liberation of several aromatic compounds which contribute to floral and fruity wine characteristics.

  14. Optimization of Microbial Elastase Production

    International Nuclear Information System (INIS)

    Abd EI-Aziz, A.B.; Hassan, A.A.

    2010-01-01

    The extra cellular proteases (caseinase, gelatinase and elastase) and hemolytic activities of the tested microorganisms on agar plates were detected, using different substrates (gelatin, casein, hemoglobin and elastin).The proteolytic activities were detected only from Pseudomonas aeruginosa, Prevotella bivius, Bacillus subtilis and Micrococcus luteus. The production of elastase by Bacillus subtilis (has low hemolysins activity) at various temperatures (30 degree C - 37 degree C) and at exposure to different doses of gamma irradiation (0.25-1.0 kGy) was investigated in shake flask. The results indicated that the incubation temperature 37 degree C was the optimum for cell growth at earlier stage; while maximum elastase activity was obtained when the cells were cultivated at 30 degree C and irradiation dose level of 0.75 kGy. The effects of temperature, substrate content, elastase concentration, ph and different metals ions on elastolysis were investigated as well the elastase amino acids composition was detected by using amino acids analyzer

  15. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    International Nuclear Information System (INIS)

    Jeor, Jeffery D.; Reed, David W.; Daubaras, Dayna L.; Thompson, Vicki S.

    2016-01-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost for maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.

  16. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeor, Jeffery D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daubaras, Dayna L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost for maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.

  17. A new approach to microbial production of gallic acid.

    Science.gov (United States)

    Bajpai, Bhakti; Patil, Shridhar

    2008-10-01

    In a new approach to microbial gallic acid production by Aspergillus fischeri MTCC 150, 40gL(-1) of tannic acid was added in two installments during the bioconversion phase of the process (25gL(-1) and 15gL(-1) at 32 and 44h respectively). The optimum parameters for the bioconversion phase were found to be temperature: 35°C, pH: slightly acidic (3.3-3.5), aeration: nil and agitation: 250 rpm. A maximum of 71.4% conversion was obtained after 71h fermentation with 83.3% product recovery. The yield was 7.35 g of gallic acid per g of biomass accumulated and the fermenter productivity was 0.56 g of gallic acid produced per liter of medium per hour.

  18. Conversion of Uric Acid into Ammonium in Oil-Degrading Marine Microbial Communities: a Possible Role of Halomonads

    KAUST Repository

    Gertler, Christoph; Bargiela, Rafael; Mapelli, Francesca; Han, Xifang; Chen, Jianwei; Hai, Tran; Amer, Ranya A.; Mahjoubi, Mouna; Malkawi, Hanan Issa; Magagnini, Mirko; Cherif, Ameur; Abdel-Fattah, Yasser Refaat; Kalogerakis, Nicolas E.; Daffonchio, Daniele; Ferrer, Manuel; Golyshin, Peter N.

    2015-01-01

    Uric acid is a promising hydrophobic nitrogen source for biostimulation of microbial activities in oil-impacted marine environments. This study investigated metabolic processes and microbial community changes in a series of microcosms using sediment from the Mediterranean and the Red Sea amended with ammonium and uric acid. Respiration, emulsification, ammonium and protein concentration measurements suggested a rapid production of ammonium from uric acid accompanied by the development of microbial communities containing hydrocarbonoclastic bacteria after 3 weeks of incubation. About 80 % of uric acid was converted to ammonium within the first few days of the experiment. Microbial population dynamics were investigated by Ribosomal Intergenic Spacer Analysis and Illumina sequencing as well as by culture-based techniques. Resulting data indicated that strains related to Halomonas spp. converted uric acid into ammonium, which stimulated growth of microbial consortia dominated by Alcanivorax spp. and Pseudomonas spp. Several strains of Halomonas spp. were isolated on uric acid as the sole carbon source showed location specificity. These results point towards a possible role of halomonads in the conversion of uric acid to ammonium utilized by hydrocarbonoclastic bacteria. © 2015 Springer Science+Business Media New York

  19. Conversion of Uric Acid into Ammonium in Oil-Degrading Marine Microbial Communities: a Possible Role of Halomonads

    KAUST Repository

    Gertler, Christoph

    2015-04-29

    Uric acid is a promising hydrophobic nitrogen source for biostimulation of microbial activities in oil-impacted marine environments. This study investigated metabolic processes and microbial community changes in a series of microcosms using sediment from the Mediterranean and the Red Sea amended with ammonium and uric acid. Respiration, emulsification, ammonium and protein concentration measurements suggested a rapid production of ammonium from uric acid accompanied by the development of microbial communities containing hydrocarbonoclastic bacteria after 3 weeks of incubation. About 80 % of uric acid was converted to ammonium within the first few days of the experiment. Microbial population dynamics were investigated by Ribosomal Intergenic Spacer Analysis and Illumina sequencing as well as by culture-based techniques. Resulting data indicated that strains related to Halomonas spp. converted uric acid into ammonium, which stimulated growth of microbial consortia dominated by Alcanivorax spp. and Pseudomonas spp. Several strains of Halomonas spp. were isolated on uric acid as the sole carbon source showed location specificity. These results point towards a possible role of halomonads in the conversion of uric acid to ammonium utilized by hydrocarbonoclastic bacteria. © 2015 Springer Science+Business Media New York

  20. Microbial granulation for lactic acid production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which...... increased, reaching 67 g L-fermenter−1h−1 at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s−1 and 0...

  1. Evidence for the microbial in situ conversion of oil to methane in the Dagang oilfield

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, N.; Richnow, H.H. [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; Cai, M. [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; University of Science and Technology, Beijing (China). School of Civil and Environment Engineering; Straaten, N.; Krueger, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe BGR Geozentrum (BGR), Hannover (Germany). Fachbereich Geochemie der Rohstoffe; Yao, Jun [University of Science and Technology, Beijing (China). School of Civil and Environment Engineering

    2013-08-01

    In situ biotransformation of oil to methane was investigated in a reservoir in Dagang, China using chemical fingerprinting, isotopic analyses, and molecular and biological methods. The reservoir is highly methanogenic despite chemical indications of advanced oil degradation, such as depletion of n-alkanes, alkylbenzenes, and light polycyclic aromatic hydrocarbon (PAHs) fractions or changes in the distribution of several alkylated polycyclic aromatic hydrocarbons. The degree of degradation strongly varied between different parts of the reservoir, ranging from severely degraded to nearly undegraded oil compositions. Geochemical data from oil, water and gas samples taken from the reservoir are consistent with in situ biogenic methane production linked to aliphatic and aromatic hydrocarbon degradation. Microcosms were inoculated with production and injection waters in order to characterize these processes in vitro. Subsequent degradation experiments revealed that autochthonous microbiota are capable of producing methane from {sup 13}C-labelled n-hexadecane or 2-methylnaphthalene, and suggest that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. The microbial communities from produced oil-water samples were composed of high numbers of microorganisms (on the order to 10{sup 7}), including methane-producing Archaea within the same order of magnitude. In summary, the investigated sections of the Dagang reservoir may have significant potential for testing the viability of in situ conversion of oil to methane as an enhanced recovery method, and biodegradation of the aromatic fractions of the oil may be an important methane source. (orig.)

  2. Development of Electro-Microbial Carbon Capture and Conversion Systems

    KAUST Repository

    Al Rowaihi, Israa

    2017-01-01

    to fix ca. 800 Gt (gigaton) of CO2 in the planets largest carbon-capture process. Photosynthesis combines light harvesting, charge separation, catalytic water splitting, generation of reduction equivalents (NADH), energy (ATP) production and CO2 fixation

  3. Microbial community response to chlorine conversion in a chloraminated drinking water distribution system.

    Science.gov (United States)

    Wang, Hong; Proctor, Caitlin R; Edwards, Marc A; Pryor, Marsha; Santo Domingo, Jorge W; Ryu, Hodon; Camper, Anne K; Olson, Andrew; Pruden, Amy

    2014-09-16

    Temporary conversion to chlorine (i.e., "chlorine burn") is a common approach to controlling nitrification in chloraminated drinking water distribution systems, yet its effectiveness and mode(s) of action are not fully understood. This study characterized occurrence of nitrifying populations before, during and after a chlorine burn at 46 sites in a chloraminated distribution system with varying pipe materials and levels of observed nitrification. Quantitative polymerase chain reaction analysis of gene markers present in nitrifying populations indicated higher frequency of detection of ammonia oxidizing bacteria (AOB) (72% of samples) relative to ammonia oxidizing archaea (AOA) (28% of samples). Nitrospira nitrite oxidizing bacteria (NOB) were detected at 45% of samples, while presence of Nitrobacter NOB could not be confirmed at any of the samples. During the chlorine burn, the numbers of AOA, AOB, and Nitrospira greatly reduced (i.e., 0.8-2.4 log). However, rapid and continued regrowth of AOB and Nitrospira were observed along with nitrite production in the bulk water within four months after the chlorine burn, and nitrification outbreaks appeared to worsen 6-12 months later, even after adopting a twice annual burn program. Although high throughput sequencing of 16S rRNA genes revealed a distinct community shift and higher diversity index during the chlorine burn, it steadily returned towards a condition more similar to pre-burn than burn stage. Significant factors associated with nitrifier and microbial community composition included water age and sampling location type, but not pipe material. Overall, these results indicate that there is limited long-term effect of chlorine burns on nitrifying populations and the broader microbial community.

  4. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell.

    Science.gov (United States)

    Chookaew, Teera; Prasertsan, Poonsuk; Ren, Zhiyong Jason

    2014-03-25

    Crude glycerol is a main byproduct of the biodiesel industry, and the beneficial use of waste glycerol has been a major challenge. This study characterises the conversion of crude glycerol into bioenergy such as H2 and electricity using a two-stage process linking dark fermentation with a microbial fuel cell (MFC) or microbial electrolysis cell (MEC). The results showed that fermentation achieved a maximum H2 rate of 332 mL/L and a yield of 0.55 mol H2/mol glycerol, accompanied by 20% of organic removal. Fed with the raw fermentation products with an initial COD of 7610 mg/L, a two-chamber MFC produced 92 mW/m(2) in power density and removed 50% of COD. The Columbic efficiency was 14%. When fed with 50% diluted fermentation product, a similar power output (90m W/m(2)) and COD removal (49%) were obtained, but the CE doubled to 27%. Similar substrates were used to produce H2 in two-chamber MECs, and the diluted influent had a higher performance, with the highest yield at 106 mL H2/g COD and a CE of 24%. These results demonstrate that dark fermentation linked with MFC/MEC can be a feasible option for conversion of waste glycerol into bioenergy. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Production of hydrogen by microbial fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S.; Cox, D.; Levandowsky, M.

    1988-01-01

    Production of hydrogen by defined and undefined bacterial cultures was studied, using pure sugars (glucose and maltose) or natural sources rich in either pure sugars or polysaccharides. The latter included sugar cane juice, corn pulp (enzymatically treated or untreated), and enzymatically treated paper. Mixed microbial flora from sewage and landfill sediments, as well as pure and mixed cultures of known coliform bacteria produced mixtures of hydrogen and carbon dioxide at 37/sup 0/C and 55/sup 0/C, with hydrogen concentrations as high as 87%. In the case of the pure glucose substrate, an average yield of 0.7 mol hydrogen per mol glucose was obtained.

  6. Advances and bottlenecks in microbial hydrogen production.

    Science.gov (United States)

    Stephen, Alan J; Archer, Sophie A; Orozco, Rafael L; Macaskie, Lynne E

    2017-09-01

    Biological production of hydrogen is poised to become a significant player in the future energy mix. This review highlights recent advances and bottlenecks in various approaches to biohydrogen processes, often in concert with management of organic wastes or waste CO 2 . Some key bottlenecks are highlighted in terms of the overall energy balance of the process and highlighting the need for economic and environmental life cycle analyses with regard also to socio-economic and geographical issues. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Problems with the microbial production of butanol.

    Science.gov (United States)

    Zheng, Yan-Ning; Li, Liang-Zhi; Xian, Mo; Ma, Yu-Jiu; Yang, Jian-Ming; Xu, Xin; He, Dong-Zhi

    2009-09-01

    With the incessant fluctuations in oil prices and increasing stress from environmental pollution, renewed attention is being paid to the microbial production of biofuels from renewable sources. As a gasoline substitute, butanol has advantages over traditional fuel ethanol in terms of energy density and hygroscopicity. A variety of cheap substrates have been successfully applied in the production of biobutanol, highlighting the commercial potential of biobutanol development. In this review, in order to better understand the process of acetone-butanol-ethanol production, traditional clostridia fermentation is discussed. Sporulation is probably induced by solvent formation, and the molecular mechanism leading to the initiation of sporulation and solventogenesis is also investigated. Different strategies are employed in the metabolic engineering of clostridia that aim to enhancing solvent production, improve selectivity for butanol production, and increase the tolerance of clostridia to solvents. However, it will be hard to make breakthroughs in the metabolic engineering of clostridia for butanol production without gaining a deeper understanding of the genetic background of clostridia and developing more efficient genetic tools for clostridia. Therefore, increasing attention has been paid to the metabolic engineering of E. coli for butanol production. The importation and expression of a non-clostridial butanol-producing pathway in E. coli is probably the most promising strategy for butanol biosynthesis. Due to the lower butanol titers in the fermentation broth, simultaneous fermentation and product removal techniques have been developed to reduce the cost of butanol recovery. Gas stripping is the best technique for butanol recovery found so far.

  8. Microbial electrolysis cells as innovative technology for hydrogen production

    International Nuclear Information System (INIS)

    Chorbadzhiyska, Elitsa; Hristov, Georgi; Mitov, Mario; Hubenova, Yolina

    2011-01-01

    Hydrogen production is becoming increasingly important in view of using hydrogen in fuel cells. However, most of the production of hydrogen so far comes from the combustion of fossil fuels and water electrolysis. Microbial Electrolysis Cell (MEC), also known as Bioelectrochemically Assisted Microbial Reactor, is an ecologically clean, renewable and innovative technology for hydrogen production. Microbial electrolysis cells produce hydrogen mainly from waste biomass assisted by various bacteria strains. The principle of MECs and their constructional elements are reviewed and discussed. Keywords: microbial Electrolysis Cells, hydrogen production, waste biomass purification

  9. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams.

    Science.gov (United States)

    Papadaki, Aikaterini; Mallouchos, Athanasios; Efthymiou, Maria-Nefeli; Gardeli, Chryssavgi; Kopsahelis, Nikolaos; Aguieiras, Erika C G; Freire, Denise M G; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2017-12-01

    The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enzymes and microorganisms in food industry waste processing and conversion to useful products: literature review

    Energy Technology Data Exchange (ETDEWEB)

    Carroad, P A [Univ. of California, Davis; Wilke, C R

    1978-01-01

    Bioconversion of food processing wastes is receiving increased attention with the realization that waste components represent an available and utilizable resource for conversion to useful products. Liquid wastes are characterized as dilute streams containing sugars, starches, proteins and fats. Solid wastes are generally cellulosic, but may contain other polymers. The greatest potential for economic bioconversion is represented by processes to convert cellulose to glucose, glucose to alcohol and protein, starch to invert sugar, and dilute waste streams to methane by anaerobic digestion. Microbial or enzymatic processes to accomplish these conversions are described.

  11. Microbial granulation for lactic acid production.

    Science.gov (United States)

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon; Im, Wan-Taek; Yun, Yeo-Myeong; Park, Chul; Kim, Mi-Sun

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0 ± 0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L(-1) d(-1) . As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT. Up to the HRT decrease to 0.5 h, the LA concentration was maintained at 19-20 g L(-1) with over 90% of substrate removal efficiency. However, further decrease of HRT resulted in a decrease of LA concentration with increase in residual glucose. Nevertheless, the volumetric LA productivity continuously increased, reaching 67 g L-fermenter (-1) h(-1) at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s(-1) and 0.39-0.92, respectively. © 2015 Wiley Periodicals, Inc.

  12. Power production with direct energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S. [Sandia National Labs., Albuquerque, NM (United States); Morrow, C. [Morrow Consulting, Albuquerque, NM (United States); Anghaie, S. [Florida Univ., Gainesville, FL (United States); Beller, D. [Los Alamos National Lab., NM (United States); Brown, L. [General Atomic Co., San Diego, CA (United States); Parish, T. [Texas A and M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2001-07-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  13. Power production with direct energy conversion

    International Nuclear Information System (INIS)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S.; Morrow, C.; Anghaie, S.; Beller, D.; Brown, L.; Parish, T.

    2001-01-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  14. Effects of forest conversion on soil microbial communities depend on soil layer on the eastern Tibetan Plateau of China.

    Directory of Open Access Journals (Sweden)

    Ruoyang He

    Full Text Available Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT. Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA, respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus, microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.

  15. Production of Microbial Protease from Selected Soil Fungal Isolates ...

    African Journals Online (AJOL)

    Production of Microbial Protease from Selected Soil Fungal Isolates. ... Nigerian Journal of Biotechnology ... and 500C. The optimal pH on the enzyme production was observed to be between pH 3.5 and 5.5 for the organisms. Keywords: Soil microorganism, fungal isolate, incubation period, microbial enzyme. Nig J. Biotech.

  16. Microbial lipid production: screening with yeasts grown on Brazilian molasses.

    Science.gov (United States)

    Vieira, J P F; Ienczak, J L; Rossell, C E V; Pradella, J G C; Franco, T T

    2014-12-01

    Rhodotorula glutinis CCT 2182, Rhodosporidium toruloides CCT 0783, Rhodotorula minuta CCT 1751 and Lipomyces starkeyi DSM 70296 were evaluated for the conversion of sugars from Brazilian molasses into single-cell oil (SCO) feedstock for biodiesel. Pulsed fed-batch fermentations were performed in 1.65 l working volume bioreactors. The maximum specific growth rate (µmax), lipid productivity (Pr) and cellular lipid content were, respectively, 0.23 h(-1), 0.41 g l(-1) h(-1), and 41% for Rsp. toruloides; 0.20 h(-1), 0.27 g l(-1) h(-1), and 36% for Rta. glutinis; 0.115 h(-1), 0.135 g l(-1) h(-1), and 27 % for Rta. minuta; and 0.11 h(-1), 0.13 g l(-1) h(-1), and 32% for L. starkeyi. Based on their microbial lipid productivity, content, and profile, Rsp. toruloides and Rta. glutinis are promising candidates for biodiesel production from Brazilian molasses. All the oils from the yeasts were similar to the composition of plant oils (rapeseed and soybean) and could be used as raw material for biofuels, as well as in food and nutraceutical products.

  17. New life in old reservoirs - the microbial conversion of oil to methane

    Science.gov (United States)

    Gründger, Friederike; Feisthauer, Stefan; Richnow, Hans Hermann; Siegert, Michael; Krüger, Martin

    2010-05-01

    Since almost 20 years it is known from stable isotope studies that large amounts of biogenic methane are formed in oil reservoirs. The investigation of this degradation process and of the underlying biogeochemical controls are of economical and social importance, since even under optimal conditions, not more than 30-40 % of the oil in a reservoir is actually recovered. The conversion of parts of this non-recoverable oil via an appropriate biotechnological treatment into easily recoverable methane would provide an extensive and ecologically sound energy resource. Laboratory mesocosm as well as high pressure autoclave experiments with samples from different geosystems showed high methane production rates after the addition of oils, single hydrocarbons or coals. The variation of parameters, like temperature, pressure or salinity, showed a broad tolerance to environmental conditions. The fingerprinting of the microbial enrichments with DGGE showed a large bacterial diversity while that of Archaea was limited to three to four dominant species. The Q-PCR results showed the presence of high numbers of Archaea and Bacteria. To analyse their function, we measured the abundances of genes indicative of metal reduction (16S rRNA gene for Geobacteraceae), sulphate reduction (sulphate reductase, dsr), and methanogenesis (methyl coenzyme M-reductase, mcrA). The methanogenic consortia will be further characterised to determine enzymatic pathways and the individual role of each partner. Degradation pathways for different compounds will be studied using 13C-labelled substrates and molecular techniques. Our stable isotope data from both, methane produced in our incubations with samples from various ecosystems and field studies, implies a common methanogenic biodegradation mechanism, resulting in consistent patterns of hydrocarbon alteration.

  18. Production of aromas and fragrances through microbial oxidation of monoterpenes

    Directory of Open Access Journals (Sweden)

    H. F. Rozenbaum

    2006-09-01

    Full Text Available Aromas and fragrances can be obtained through the microbial oxidation of monoterpenes. Many microorganisms can be used to carry out extremely specific conversions using substrates of low commercial value. However, for many species, these substrates are highly toxic, consequently inhibiting their metabolism. In this work, the conversion ability of Aspergillus niger IOC-3913 for terpenic compounds was examined. This species was preselected because of its high resistance to toxic monoterpenic substrates. Though it has been grown in media containing R-limonene (one of the cheapest monoterpenic hydrocarbons, which is widely available on the market, the species has not shown the ability to metabolize it, since biotransformation products were not detected in high resolution gas chromatography analyses. For this reason, other monoterpenes (alpha-pinene, beta-pinene and camphor were used as substrates. These compounds were shown to be metabolized by the selected strain, producing oxidized compounds. Four reaction systems were used: a biotransformation in a liquid medium with cells in growth b with pre-grown cultures c with cells immobilized in a synthetic polymer network and d in a solid medium to which the substrate was added via the gas phase. The main biotransformation products were found in all the reaction systems, although the adoption of previously cultivated cells seemed to favor biotransformation. Cell immobilization seemed to be a feasible strategy for alleviating the toxic effect of the substrate. Through mass spectrometry it was possible to identify verbenone and alpha-terpineol as the biotransformation products of alpha-pinene and beta-pinene, respectively. The structures of the other oxidation products are described.

  19. Product Conversion: The Link between Separations and Fuel Fabrication

    International Nuclear Information System (INIS)

    Felker, L.K.; Vedder, R.J.; Walker, E.A.; Collins, E.D.

    2008-01-01

    Several chemical processing flowsheets are under development for the separation and isolation of the actinide, lanthanide, and fission product streams in spent nuclear fuel. The conversion of these product streams to solid forms, typically oxides, is desired for waste disposition and recycle of product fractions back into transmutation fuels or targets. The modified direct denitration (MDD) process developed at Oak Ridge National Laboratory (ORNL) in the 1980's offers significant advantages for the conversion of the spent fuel products to powder form suitable for direct fabrication into recycle fuels. A glove-box-contained MDD system and a fume-hood-contained system have been assembled at ORNL for the purposes of testing the co-conversion of uranium and mixed-actinide products. The current activities are focused on the conversion of the first products from the processing of spent nuclear fuel in the Coupled End-to-End Demonstration currently being conducted at ORNL. (authors)

  20. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell

    Science.gov (United States)

    Miceli, Joseph F.; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I.; Krajmalnik-Brown, Rosa

    2014-01-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (~11 A/m2) and Coulombic efficiency (~70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ~80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed micro bial cultures containing complementing biochemical pathways. PMID:25048958

  1. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products.

    Science.gov (United States)

    Liguori, Rossana; Ventorino, Valeria; Pepe, Olimpia; Faraco, Vincenza

    2016-01-01

    Lignocellulosic biomasses derived from dedicated crops and agro-industrial residual materials are promising renewable resources for the production of fuels and other added value bioproducts. Due to the tolerance to a wide range of environments, the dedicated crops can be cultivated on marginal lands, avoiding conflict with food production and having beneficial effects on the environment. Besides, the agro-industrial residual materials represent an abundant, available, and cheap source of bioproducts that completely cut out the economical and environmental issues related to the cultivation of energy crops. Different processing steps like pretreatment, hydrolysis and microbial fermentation are needed to convert biomass into added value bioproducts. The reactor configuration, the operative conditions, and the operation mode of the conversion processes are crucial parameters for a high yield and productivity of the biomass bioconversion process. This review summarizes the last progresses in the bioreactor field, with main attention on the new configurations and the agitation systems, for conversion of dedicated energy crops (Arundo donax) and residual materials (corn stover, wheat straw, mesquite wood, agave bagasse, fruit and citrus peel wastes, sunflower seed hull, switchgrass, poplar sawdust, cogon grass, sugarcane bagasse, sunflower seed hull, and poplar wood) into sugars and ethanol. The main novelty of this review is its focus on reactor components and properties.

  2. Microbial production of scleroglucan and downstream processing

    Directory of Open Access Journals (Sweden)

    Natalia Alejandra Castillo

    2015-10-01

    Full Text Available Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a beta-1,3-beta-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc., and biomedical (immunoceutical, antitumor, etc. applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high EPS concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined.

  3. Genomic Prospecting for Microbial Biodiesel Production

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Lykidis, Athanasios; Ivanova, Natalia

    2008-03-20

    Biodiesel is defined as fatty acid mono-alkylesters and is produced from triacylglycerols. In the current article we provide an overview of the structure, diversity and regulation of the metabolic pathways leading to intracellular fatty acid and triacylglycerol accumulation in three types of organisms (bacteria, algae and fungi) of potential biotechnological interest and discuss possible intervention points to increase the cellular lipid content. The key steps that regulate carbon allocation and distribution in lipids include the formation of malonyl-CoA, the synthesis of fatty acids and their attachment onto the glycerol backbone, and the formation of triacylglycerols. The lipid biosynthetic genes and pathways are largely known for select model organisms. Comparative genomics allows the examination of these pathways in organisms of biotechnological interest and reveals the evolution of divergent and yet uncharacterized regulatory mechanisms. Utilization of microbial systems for triacylglycerol and fatty acid production is in its infancy; however, genomic information and technologies combined with synthetic biology concepts provide the opportunity to further exploit microbes for the competitive production of biodiesel.

  4. Farm Deployable Microbial Bioreactor for Fuel Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict [Auburn Univ., Montgomery AL (United States)

    2016-03-30

    Research was conducted to develop a farm and field deployable microbial bioreactor for bioethanol production from biomass. Experiments were conducted to select the most efficient microorganisms for conversion of plant fiber to sugars for fermentation to ethanol. Mixtures of biomass and surface soil samples were collected from selected sites in Alabama black belt counties (Macon, Sumter, Choctaw, Dallas, Montgomery, Lowndes) and other areas within the state of Alabama. Experiments were conducted to determine the effects of culture parameters on key biomass saccharifying enzymes (cellulase, beta-glucosidase, xylanase and beta-xylosidase). A wide-scale sampling of locally-grown fruits in Central Alabama was embarked to isolate potential xylose fermenting microorganisms. Yeast isolates were evaluated for xylose fermentation. Selected microorganisms were characterized by DNA based methods. Factors affecting enzyme production and biomass saccharification were examined and optimized in the laboratory. Methods of biomass pretreatment were compared. Co-production of amylolytic enzymes with celluloytic-xylanolytic enzymes was evaluated; and co-saccharification of a combination of biomass, and starch-rich materials was examined. Simultaneous saccharification and fermentation with and without pre-saccharifcation was studied. Whole culture broth and filtered culture broth simultaneous saccahrifcation and fermentation were compared. A bioreactor system was designed and constructed to employ laboratory results for scale up of biomass saccharification.

  5. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

    KAUST Repository

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E.

    2011-01-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs

  6. Production of Solar Fuels by Photoelectrochemical Conversion of Carbon Dioxide

    OpenAIRE

    Irtem, Ibrahim Erdem

    2017-01-01

    Growing global emission of carbon dioxide gas (CO2) reflects the world’s energy dependence on fossil fuels. The conversion of CO2 emission into value-added products, like fuels completes a circular CO2 economy which requires a renewable energy conversion and storage system. Amongst a few, photo/electrochemistry has been particularly appealing thanks to its energy efficiency and enormous potential for industrial applications. Formic acid (HCOOH) production from CO2 reduction appears as an al...

  7. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  8. Conversion to organic wine production: exploring the economic performance impacts

    OpenAIRE

    Nisén, Pia

    2014-01-01

    This study focuses on understanding the relationship between organic wine production and economic performance. The aim of this study is to clarify, what are the economic impacts that result from the conversion of wine production from conventional to organic. This is an interesting topic to be explored in more detail because despite the increasing demand of organic wine and share of vineyard area used for organic winemaking, the economic consequences of the conversion are still somewhat unclea...

  9. Effect of methyl-β-cyclodextrin on gene expression in microbial conversion of phytosterol.

    Science.gov (United States)

    Shtratnikova, Victoria Y; Schelkunov, Mikhail I; Dovbnya, Dmitry V; Bragin, Eugeny Y; Donova, Marina V

    2017-06-01

    Modified β-cyclodextrins are widely used for the enhancement of microbial conversions of lipophilic compounds such as steroids. Multiple mechanisms of cyclodextrin-mediated enhancement of phytosterol bioconversion by mycobacteria had previously been shown to include steroid solubilization, alterations in the cell wall permeability for both steroids and nutrients, facilitation of protein leaking, and activity suppression of some steroid-transforming enzymes.In this work, we studied whether cyclodextrins might affect expression of the genes involved in the steroid catabolic pathway. Phytosterol bioconversion with 9α-hydroxy-androst-4-ene-3,17-dione accumulation by Mycobacterium sp. VKM Ac-1817D in the presence of methylated β-cyclodextrin (MCD) was investigated. RNA sequencing of the whole transcriptomes in different combinations of phytosterol and MCD showed a similar expression level of the steroid catabolism genes related to the KstR-regulon and was responsible for side chain and initial steps of steroid core oxidation; whereas, induction levels of the genes related to the KstR2-regulon were attenuated in the presence of MCD in this strain. The data were attenuated with quantitative real-time PCR.The results contribute to the understanding of cyclodextrin effects on microbial steroid conversion and provide a basis for the use of cyclodextrins as expression enhancers for studies of sterol catabolism in actinobacteria.

  10. Sustainable resource recovery and energy conversion processes using microbial electrochemical technologies

    Science.gov (United States)

    Yates, Matthew D.

    Microbial Electrochemical Technologies (METs) are emerging technological platforms for the conversion of waste into usable products. METs utilize naturally occurring bacteria, called exoelectrogens, capable of transferring electrons to insoluble terminal electron acceptors. Electron transfer processes in the exoelectrogen Geobacter sulfurreducens were exploited here to develop sustainable processes for synthesis of industrially and socially relevant end products. The first process examined was the removal of soluble metals from solution to form catalytic nanoparticles and nanoporous structures. The second process examined was the biocatalytic conversion of electrons into hydrogen gas using electrons supplied directly to an electrode. Nanoparticle formation is desirable because materials on the nanoscale possess different physical, optical, electronic, and mechanical properties compared to bulk materials. In the first process, soluble palladium was used to form catalytic palladium nanoparticles using extracellular electron transfer (EET) processes of G. sulfurreducens, typically the dominant member of mixedculture METs. Geobacter cells reduced the palladium extracellularly using naturally produced pili, which provided extracellular adsorption and reduction sites to help delay the diffusion of soluble metals into the cell. The extracellular reduction prevented cell inactivation due to formation of intracellular particles, and therefore the cells could be reused in multiple palladium reduction cycles. A G. sulfurreducens biofilm was next investigated as a biotemplate for the formation of a nanoporous catalytic palladium structure. G. sulfurreducens biofilms have a dense network of pili and extracellular cytochromes capable of high rates of electron transfer directly to an electrode surface. These pili and cytochromes provide a dense number of reduction sites for nanoparticle formation without the need for any synthetic components. The cells within the biofilm also can

  11. Final Scientific/Technical Report for project “Increasing the Rate and Extent of Microbial Coal to Methane Conversion through Optimization of Microbial Activity, Thermodynamics, and Reactive Transport”

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Matthew [Montana State Univ., Bozeman, MT (United States)

    2018-01-17

    Currently, coal bed methane (CBM) wells have a limited lifetime since the rate of methane removal via the installed wells is much faster than the in situ methane production rates. Along with water issues created by large amounts of CBM production water, the short life span of CBM wells is a huge deterrent to the environmental and economic feasibility of CBM production. The process of biogenic methanogenesis can be enhanced via the stimulation of the associated microbial communities that can convert the organic fractions of coal to methane. This process is termed Microbially-Enhanced Coal Bed Methane (MECBM). However, the rates of methane production are still limited and long incubation times are necessary. We hypothesized that the elucidation of chemical and biological parameters that limited MECBM together with thermodynamic considerations would inform strategies to optimize the process under flow conditions. We incorporated microbiological, physicochemical, and engineering processes to develop a more sustainable CBM production scheme with native coal and native microorganisms. The proposed combination of microbial ecology and physiology as well as optimized engineering principles minimized key constraints that impact microbial coal conversion to methane under environmentally relevant conditions. The combined approach for bench-scale tests resulted in more effective and less environmentally burdensome coal-dependent methane production with the potential for H2O and CO2 management.

  12. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.

    Science.gov (United States)

    Logan, Bruce E; Rabaey, Korneel

    2012-08-10

    Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy and chemical production technologies. We review the key advances that will enable the use of exoelectrogenic microorganisms to generate biofuels, hydrogen gas, methane, and other valuable inorganic and organic chemicals. Moreover, we examine the key challenges for implementing these systems and compare them to similar renewable energy technologies. Although commercial development is already underway in several different applications, ranging from wastewater treatment to industrial chemical production, further research is needed regarding efficiency, scalability, system lifetimes, and reliability.

  13. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies

    KAUST Repository

    Logan, B. E.

    2012-08-09

    Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy and chemical production technologies. We review the key advances that will enable the use of exoelectrogenic microorganisms to generate biofuels, hydrogen gas, methane, and other valuable inorganic and organic chemicals. Moreover, we examine the key challenges for implementing these systems and compare them to similar renewable energy technologies. Although commercial development is already underway in several different applications, ranging from wastewater treatment to industrial chemical production, further research is needed regarding efficiency, scalability, system lifetimes, and reliability.

  14. Microbial hydrogenogenic CO conversions: applications in synthesis gas purification and biodesulfurization

    NARCIS (Netherlands)

    Sipma, J.

    2006-01-01

    Hydrogen gas attracts great interest as a potential clean future fuel and it is an excellent electron donor in biotechnological reductive processes, e.g. in biodesulfurization. Bulk production of H 2 relies on the conversion of organic matter into synthesis gas, a mixture of H

  15. Combinatorial enzyme technology: Conversion of pectin to oligo species and its effect on microbial growth

    Science.gov (United States)

    Plant cell wall polysaccharides, which consist of polymeric backbones with various types of substitution, were studied using the concept of combinatorial enzyme technology for conversion of agricultural fibers to functional products. Using citrus pectin as the starting substrate, an active oligo spe...

  16. Review on production, characterization and applications of microbial levan.

    Science.gov (United States)

    Srikanth, Rapala; Reddy, Chinta H S S Sundhar; Siddartha, Gudimalla; Ramaiah, M Janaki; Uppuluri, Kiran Babu

    2015-04-20

    Levan is a homopolymer of fructose naturally obtained from both plants and microorganisms. Microbial levans are more advantageous, economical and industrially feasible with numerous applications. Bacterial levans are much larger than those produced by plants with multiple branches and molecular weights ranging from 2 to 100 million Da. However levans from plants generally have molecular weights ranging from about 2000 to 33,000 Da. Microbial levans have wide range of applications in food, medicine, pharmaceutical, cosmetic and commercial industrial sectors. With excellent polymeric medicinal properties and ease of production, microbial levan appear as a valuable and versatile biopolymer of the future. The present article summarizes and discusses the most essential properties of bioactive microbial levan and recent developments in its production, characterization and the emerging applications in health and industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Microbial Stereoselective One-Step Conversion of Diols to Chiral Lactones in Yeast Cultures

    Directory of Open Access Journals (Sweden)

    Filip Boratyński

    2015-12-01

    Full Text Available It has been shown that whole cells of different strains of yeast catalyze stereoselective oxidation of meso diols to the corresponding chiral lactones. Among screening-scale experiments, Candida pelliculosa ZP22 was selected as the most effective biocatalyst for the oxidation of monocyclic diols 3a–b with respect to the ratio of high conversion to stereoselectivity. This strain was used in the preparative oxidation, affording enantiomerically-enriched isomers of lactones: (+-(3aR,7aS-cis-hexahydro-1(3H -isobenzofuranone (2a and (+-(3aS,4,7,7aR-cis-tetrahydro-1(3H-isobenzofuranone (2b. Scaling up the culture growth, as well as biotransformation conditions has been successfully accomplished. Among more bulky substrates, bicyclic diol 3d was totally converted into enantiomerically-pure exo-bridged (+-(3aR,4S,7R,7aS-cis-tetrahydro-4,7-methanoisobenzofuran -1(3H-one (2d by Yarrovia lipolytica AR71. Microbial oxidation of diol 3f by Candida sake AM908 and Rhodotorula rubra AM4 afforded optically-pure cis-3-butylhexahydro-1(3H -isobenzofuranone (2f, however with low conversion.

  18. Conversion of rainforest into agroforestry and monoculture plantation in China: Consequences for soil phosphorus forms and microbial community.

    Science.gov (United States)

    Wang, Jinchuang; Ren, Changqi; Cheng, Hanting; Zou, Yukun; Bughio, Mansoor Ahmed; Li, Qinfen

    2017-10-01

    Microbial communities and their associated enzyme activities affect quantity and quality of phosphorus (P) in soils. Land use change is likely to alter microbial community structure and feedback on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to land use and shifts in the amount and quality of soil phosphorus (P). We investigated effects of the conversion of rainforests into rubber agroforests (AF), young rubber (YR), and mature rubber (MR) plantations on soil P fractions (i.e., labile P, moderately labile P, occluded P, Ca P, and residual P) in Hainan Island, Southern China. Microbial community composition and microbial enzyme were assayed to assess microbial community response to forest conversion. In addition, we also identified soil P fractions that were closely related to soil microbial and chemical properties in these forests. Conversion of forest to pure rubber plantations and agroforestry system caused a negative response in soil microorganisms and activity. The bacteria phospholipid fatty acid (PLFAs) levels in young rubber, mature rubber and rubber agroforests decreased after forest conversion, while the fungal PLFAs levels did not change. Arbuscular mycorrhizal fungi (AMF) (16:1w5c) had the highest value of 0.246μmol(gOC) -1 in natural forest, followed by rubber agroforests, mature rubber and young rubber. Level of soil acid phosphatase activity declined soon (5 years) after forest conversion compared to natural forest, but it improved in mature rubber and agroforestry system. Labile P, moderately labile P, occluded P and residual P were highest in young rubber stands, while moderately labile, occluded and residual P were lowest in rubber agroforestry system. Soil P fractions such as labile P, moderately labile P, and Ca P were the most important contributors to the variation in soil microbial community composition. We also found that soil P factions differ significantly among

  19. Optimized microbial cells for production of melatonin and other compounds

    DEFF Research Database (Denmark)

    2017-01-01

    Described herein are recombinant microbial host cells comprising biosynthetic pathways and their use in producing oxidation products and downstream products, e.g., melatonin and related compounds, as well as enzyme variants, nucleic acids, vectors and methods useful for preparing and using...

  20. Microbial production of bulk chemicals: development of anaerobic processes

    NARCIS (Netherlands)

    Weusthuis, R.A.; Lamot, I.; Oost, van der J.; Sanders, J.P.M.

    2011-01-01

    nnovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role

  1. Some non-thermal microbial inactivation methods in dairy products

    International Nuclear Information System (INIS)

    Yangilar, F.; Kabil, E.

    2013-01-01

    During the production of dairy products, some thermal processes such as pasteurization and sterilization are used commonly to inactive microorganisms. But as a result of thermal processes, loss of nutrient and aroma, non-enzymatic browning and organoleptic differentiation especially in dairy products are seen. Because of this, alternative methods are needed to provide microbial inactivation and as major problems are caused by high temperatures, non-thermal processes are focused on. For this purpose, some methods such as high pressure (HP), pulsed light (PL), ultraviolet radiation (UV), supercritical carbon dioxide (SC-CO2) or pulsed electric field (PEF) are used in food. These methods products are processed in ambient temperature and so not only mentioned losses are minimized but also freshness and naturality of products can be preserved. In this work, we will try to be given information about methods of non-thermal microbial inactivation of dairy products. (author) [tr

  2. Microbial Transformations of Actinides and Fission Products in Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A. J. [Pohang Univ. Science and Technology, Pohang (Korea, Republic of)

    2011-07-01

    The environmental factors that can affect microbial growth and activity include moisture, temperature, ph, Eh, availability of organic and inorganic nutrients, and radiation. The microbial activity in a specific repository is influenced by the ambient environment of the repository, and the materials to be emplaced. For example, a repository in unsaturated igneous rock formations such as volcanic tuff rocks at Yucca Mountain is generally expected to be oxidizing; a repository in a hydrologically expected to be oxidizing; a repository in a hydrologically saturated zone, especially in sedimentary rocks, could be reducing. Sedimentary rocks contain a certain amount of organic matter, which may stimulate microbial activities and, thus maintain the repository and its surrounding areas at reducing conditions. Although the impacts of microbial activity on high-level nuclear waste and the long-term performance of the repository have not fully investigated, little microbial activity is expected in the near-field because of the radiation, lack of nutrients and the harsh conditions. However in the far-field microbial effects could be significant. Much of our understanding of the microbial effects on radionuclides stems from studies conducted with selected transuranic elements and fission products and limited studies with low-level radioactive wastes. Significant aerobic- and anaerobic-microbial activity is expected to occur in the waste because of the presence of electron donors and acceptors. The actinides initially may be present as soluble- or insoluble-forms but, after disposal, may be converted from one to the other by microorganisms. The direct enzymatic or indirect non-enzymatic actions of microbes could alter the speciation, solubility, and sorption properties of the actinides, thereby increasing or decreasing their concentrations in solution.

  3. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste.

    Science.gov (United States)

    Almeida, João R M; Fávaro, Léia C L; Quirino, Betania F

    2012-07-18

    The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a "waste-stream" instead of a valuable "coproduct". The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others) by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.

  4. Microbial contamination of spices used in production of meat products

    Directory of Open Access Journals (Sweden)

    Marcela Klimešová

    2015-05-01

    Full Text Available There was investigated microbial quality of spices used in production of meat products (black pepper, allspice, coriander, juniper, cumin, cinnamon, badian, mustard, bay leaf, paprika, rosemary, garlic, ginger, thyme, cardamom. The spices were analysed on the presence of total count of mesophilic, thermoresistant and coliforming microorganisms, Staphylococcus aureus, methicilin resistant S. aureus (MRSA, Escherichia coli, Salmonella spp., Bacillus cereus, Bacillus licheniformis and moulds. For the detection of fungal contamination was used agar with glucose, yeast extract and oxytetracyklin and dichloran-glycerol agar. The cultivation was performed at 25 ±1°C for 5 - 7 days. The microscopic method was used for species identification. The aflatoxin presence was confirmed by ELISA test in all of tested spices and was performed in ppb (pars per billion = μg/kg. TCM ranged from 200 to 5600000 cfu/g, TRM from 20 to 90000 cfu/g and coliforming bacteria from 30 to 3200 cfu/g. B. cereus was present in juniper, mustard, bay leaf, thyme and cardamom (32%, while B. licheniformis was confirmed in 58% of cases (allspice, pepper, ground juniper, badian, bay leaf, paprika, garlic, thyme and cardamom. S. aureus was detected in whole coriander, cinnamon, badian and mustard but only in law number (30, 40, 20 and 10 cfu/g respectively. No strains S. aureus was identified as MRSA. The presence of Salmonella spp. and E. coli was not confirmed. The fungal contamination was found in 14 spices and the their count varied from 0 to 1550 cfu/g. There were confirmed the presence of Aspergillus flavus (allspice whole and ground, black pepper whole and ground, whole coriander, ground cumin, ground bay leaf, Aspergillus niger (allspice whole and ground, black pepper ground, ground juniper, cumin ground, bay leaf ground, ground rosemary, ground thyme, Penicillium glaucum (allspice whole and ground, whole juniper, whole cinnamon, Penicillium claviforme (whole black pepper

  5. Microbial production of lysine from sustainable feedstock

    DEFF Research Database (Denmark)

    Wang, Zhihao; Grishkova, Maria; Solem, Christian

    2014-01-01

    Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization.......Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization....

  6. Production of microbial glycolipid biosurfactants and their antimicrobial activity

    Science.gov (United States)

    Microbial glycolipids produced by bacteria or yeast as secondary metabolites, such as sophorolipids (SLs), rhamnolipids (RLs) and mannosylerythritol lipids (MELs) are “green” biosurfactants desirable in a bioeconomy. High cost of production is a major hurdle toward widespread commercial use of bios...

  7. Tropical Land Use Conversion Effects on Soil Microbial Community Structure and Function: Emerging Patterns and Knowledge Gaps

    Science.gov (United States)

    Seeley, M.; Marin-Spiotta, E.

    2016-12-01

    Modifications in vegetation due to land use conversions (LUC) between primary forests, pasture, cropping systems, tree plantations, and secondary forests drive shifts in soil microbial communities. These microbial community alterations affect carbon sequestration, nutrient cycling, aboveground biomass, and numerous other soil processes. Despite their importance, little is known about soil microbial organisms' response to LUC, especially in tropical regions where LUC rates are greatest. This project identifies current trends and uncertainties in tropical soil microbiology by comparing 56 published studies on LUC in tropical regions. This review indicates that microbial biomass and functional groups shifted in response to LUC, supporting demonstrated trends in changing soil carbon stocks due to LUC. Microbial biomass was greatest in primary forests when compared to secondary forests and in all forests when compared to both cropping systems and tree plantations. No trend existed when comparing pasture systems and forests, likely due to variations in pasture fertilizer use. Cropping system soils had greater gram positive and less gram negative bacteria than forest soils, potentially resulting in greater respiration of older carbon stocks in agricultural soils. Bacteria dominated primary forests while fungal populations were greatest in secondary forests. To characterize changes in microbial communities resulting from land use change, research must reflect the biophysical variation across the tropics. A chi-squared test revealed that the literature sites represented mean annual temperature variation across the tropics (p-value=0.66).

  8. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies

    KAUST Repository

    Logan, B. E.; Rabaey, K.

    2012-01-01

    Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a

  9. Microbial Conversion of Acetanilide to 2′-Hydroxyacetanilide and 4′-Hydroxyacetanilide

    Science.gov (United States)

    Theriault, Robert J.; Longfield, Thomas H.

    1967-01-01

    Approximately 700 cultures of various types were examined for their ability to hydroxylate acetanilide. The major product formed by unidentified Streptomyces species RJTS-539 was identified as 4′-hydroxyacetanilide (N-acetyl-p-aminophenol). This culture gave a peak yield of 405 mg per liter from 1,000 mg of acetanilide per liter. Considerably lower yields of 4′-hydroxyacetanilide were isolated from S. cinnamoneus NRRLB-1285. The major conversion product of acetanilide formed by Amanita muscaria F-6 was identified as 2′-hydroxyacetanilide, with a peak yield of 433 mg per liter from 1,000 mg per liter of substrate. A small amount of 4′-hydroxyacetanilide was also formed. Six other Streptomyces cultures formed small amounts of one or two products identical or similar to 2′-hydroxyacetanilide or 4′-hydroxyacetanilide as determined by thin-layer chromatography and ultraviolet spectra. Images Fig. 1 Fig. 2 PMID:16349759

  10. Inhibitors degradation and microbial response during continuous anaerobic conversion of hydrothermal liquefaction wastewater.

    Science.gov (United States)

    Si, Buchun; Li, Jiaming; Zhu, Zhangbing; Shen, Mengmeng; Lu, Jianwen; Duan, Na; Zhang, Yuanhui; Liao, Qiang; Huang, Yun; Liu, Zhidan

    2018-07-15

    One critical challenge of hydrothermal liquefaction (HTL) is its complex aqueous product, which has a high concentration of organic pollutants (up to 100gCOD/L) and diverse fermentation inhibitors, such as furfural, phenolics and N-heterocyclic compounds. Here we report continuous anaerobic digestion of HTL wastewater via an up-flow anaerobic sludge bed reactor (UASB) and packed bed reactor (PBR). Specifically, we investigated the transformation of fermentation inhibitors and microbial response. GC-MS identified the complete degradation of furfural and 5-hydroxymethylfurfural (5-HMF), and partial degradation (54.0-74.6%) of organic nitrogen and phenolic compounds, including 3-hydroxypyridine, phenol and 4-ethyl-phenol. Illumina MiSeq sequencing revealed that the bacteria families related to detoxification increased in response to the HTL aqueous phase. In addition, the increase of acetate-oxidizing bacteria in UASB and acetogens in PBR showed a strengthened acetogenesis. As for the archaeal communities, an increase in hydrogenotrophic methanogens was observed. Based on GC-MS/HPLC and microbial analysis, we speculate that dominant fermentation inhibitors were transformed into intermediates (Acetyl-CoA and acetate), further contributing to biomethane formation. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator.

    Science.gov (United States)

    Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae

    2018-01-01

    Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Studies on potential effects of fumaric acid on rumen microbial fermentation, methane production and microbial community.

    Science.gov (United States)

    Riede, Susanne; Boguhn, Jeannette; Breves, Gerhard

    2013-01-01

    The greenhouse gas methane (CH4) contributes substantially to global climate change. As a potential approach to decrease ruminal methanogenesis, the effects of different dosages of fumaric acid (FA) on ruminal microbial metabolism and on the microbial community (archaea, bacteria) were studied using a rumen simulation technique (RUSITEC). FA acts as alternative hydrogen acceptor diverting 2H from methanogenesis of archaea towards propionate formation of bacteria. Three identical trials were conducted with 12 fermentation vessels over a period of 14 days. In each trial, four fermentation vessels were assigned to one of the three treatment groups differing in FA dosage: low fumaric acid (LFA), high fumaric acid (HFA) and without FA (control). FA was continuously infused with the buffer. Grass silage and concentrate served as substrate. FA led to decreases in pH and to higher production rates of total short chain fatty acids (SCFA) mediated by increases in propionate for LFA of 1.69 mmol d(-1) and in propionate and acetate production for HFA of 4.49 and 1.10 mmol d(-1), respectively. Concentrations of NH3-N, microbial crude protein synthesis, their efficiency, degradation of crude nutrients and detergent fibre fraction were unchanged. Total gas and CH4 production were not affected by FA. Effects of FA on structure of microbial community by means of single strand conformation polymorphism (SSCP) analyses could not be detected. Given the observed increase in propionate production and the unaffected CH4 production it can be supposed that the availability of reduction equivalents like 2H was not limited by the addition of FA in this study. It has to be concluded from the present study that the application of FA is not an appropriate approach to decrease the ruminal CH4 production.

  13. Microbials for the production of monoclonal antibodies and antibody fragments.

    Science.gov (United States)

    Spadiut, Oliver; Capone, Simona; Krainer, Florian; Glieder, Anton; Herwig, Christoph

    2014-01-01

    Monoclonal antibodies (mAbs) and antibody fragments represent the most important biopharmaceutical products today. Because full length antibodies are glycosylated, mammalian cells, which allow human-like N-glycosylation, are currently used for their production. However, mammalian cells have several drawbacks when it comes to bioprocessing and scale-up, resulting in long processing times and elevated costs. By contrast, antibody fragments, that are not glycosylated but still exhibit antigen binding properties, can be produced in microbial organisms, which are easy to manipulate and cultivate. In this review, we summarize recent advances in the expression systems, strain engineering, and production processes for the three main microbials used in antibody and antibody fragment production, namely Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. NREL Advancements in Methane Conversion Lead to Cleaner Air, Useful Products

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Researchers at NREL leveraged the recent on-site development of gas fermentation capabilities and novel genetic tools to directly convert methane to lactic acid using an engineered methanotrophic bacterium. The results provide proof-of-concept data for a gas-to-liquids bioprocess that concurrently produces fuels and chemicals from methane. NREL researchers developed genetic tools to express heterologous genes in methanotrophic organisms, which have historically been difficult to genetically engineer. Using these tools, researchers demonstrated microbial conversion of methane to lactate, a high-volume biochemical precursor predominantly utilized for the production of bioplastics. Methane biocatalysis offers a means to concurrently liquefy and upgrade natural gas and renewable biogas, enabling their utilization in conventional transportation and industrial manufacturing infrastructure. Producing chemicals and fuels from methane expands the suite of products currently generated from biorefineries, municipalities, and agricultural operations, with the potential to increase revenue and significantly reduce greenhouse gas emissions.

  15. Microbial conversion of curcumin into colorless hydroderivatives by the endophytic fungus Diaporthe sp. associated with Curcuma longa.

    Science.gov (United States)

    Maehara, Shoji; Ikeda, Michiteru; Haraguchi, Hiroyuki; Kitamura, Chinami; Nagoe, Tetsuro; Ohashi, Kazuyoshi; Shibuya, Hirotaka

    2011-01-01

    We investigated the microbial conversion of curcumin (1) using endophytic fungi associated with the rhizome of Curcuma longa (Zingiberaceae). We found that Diaporthe sp., an endophytic filamentous fungus, converts curcumin (1) into four colorless derivatives, namely (3R,5R)-tetrahydrocurcumin (2), a novel (3R,5S)-hexahydrocurcumin (3) named neohexahydrocurcumin, (3S,5S)-octahydrocurcumin (4) and meso-octahydrocurcumin (5).

  16. PHA Production in Aerobic Mixed Microbial Cultures

    NARCIS (Netherlands)

    Johnson, K.

    2010-01-01

    Polyhydroxyalkanoate (PHA) is a common intracellular energy and carbon storage material in bacteria, which is considered as a bioplastic due to its plastic like properties. PHAs are versatile materials which are biodegradable and made from renewable resources. Commercial production of PHAs is

  17. Microbial platform for production of aromatic compounds

    DEFF Research Database (Denmark)

    Skovbjerg, Christine Alexandra Egaa; Olsen, Kresten Jon Kromphardt; Larsen, Thomas Ostenfeld

    2017-01-01

    Polyketides form the basic building blocks of numerous natural products, which are in use in pharmaceuticals, food additives and other fine chemicals. Many of these polyketides possess very specific cyclic and aromatic conformations. The programmable platform we aim to create will be able...

  18. Microbial conversion of ethylbenzene to 1-phenethanol and acetophenone by Nocardia tartaricans ATCC 31190.

    Science.gov (United States)

    Cox, D P; Goldsmith, C D

    1979-09-01

    A culture of Nocardia tartaricans ATCC 31190 was capable of catalyzing the conversion of ethylbenzene to 1-phenethanol and acetophenone while growing in a shake flask culture with hexadecane as the source of carbon and energy. This subterminal oxidative reaction with ethylbenzene appears not to have been previously reported for Nocardia species. When N. tartaricans was grown on glucose as its source of carbon and energy and ethylbenzene was added, no subsequent production of 1-phenethanol or acetophenone was observed. The mechanisms of 1-phenethanol and acetophenone production from ethylbenzene are thought to involve a subterminal oxidation of the alpha-carbon of the alkyl group to 1-phenethanol followed by biological oxidation of the latter to acetophenone.

  19. Microbial production of hyaluronic acid: current state, challenges, and perspectives

    Directory of Open Access Journals (Sweden)

    Liu Long

    2011-11-01

    Full Text Available Abstract Hyaluronic acid (HA is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid with a molecular weight up to 6 million Daltons. With excellent viscoelasticity, high moisture retention capacity, and high biocompatibility, HA finds a wide-range of applications in medicine, cosmetics, and nutraceuticals. Traditionally HA was extracted from rooster combs, and now it is mainly produced via streptococcal fermentation. Recently the production of HA via recombinant systems has received increasing interest due to the avoidance of potential toxins. This work summarizes the research history and current commercial market of HA, and then deeply analyzes the current state of microbial production of HA by Streptococcus zooepidemicus and recombinant systems, and finally discusses the challenges facing microbial HA production and proposes several research outlines to meet the challenges.

  20. Microbial biotechnologies for potable water production

    DEFF Research Database (Denmark)

    Fowler, S. Jane; Smets, Barth F.

    2017-01-01

    Sustainable Development Goal 6 requires the provision of safe drinking water to the world. We propose that increased exploitation of biological processes is fundamental to achieving this goal due to their low economic and energetic costs. Biological processes exist for the removal of most common...... contaminants, and biofiltration processes can establish a biologically stable product that retains high quality in distribution networks, minimizing opportunities for pathogen invasion....

  1. Microbial production strategies and applications of lycopene and other terpenoids.

    Science.gov (United States)

    Ma, Tian; Deng, Zixin; Liu, Tiangang

    2016-01-01

    Terpenoids are a large class of compounds that have far-reaching applications and economic value, particularly those most commonly found in plants; however, the extraction and synthesis of these compounds is often expensive and technically challenging. Recent advances in microbial metabolic engineering comprise a breakthrough that may enable the efficient, cost-effective production of these limited natural resources. Via the engineering of safe, industrial microorganisms that encode product-specific enzymes, and even entire metabolic pathways of interest, microbial-derived semisynthetic terpenoids may soon replace plant-derived terpenoids as the primary source of these valuable compounds. Indeed, the recent metabolic engineering of an Escherichia coli strain that produces the precursor to lycopene, a commercially and medically important compound, with higher yields than those in tomato plants serves as a successful example. Here, we review the recent developments in the metabolic engineering of microbes for the production of certain terpenoid compounds, particularly lycopene, which has been increasingly used in pharmaceuticals, nutritional supplements, and cosmetics. Furthermore, we summarize the metabolic engineering strategies used to achieve successful microbial production of some similar compounds. Based on this overview, there is a reason to believe that metabolic engineering comprises an optimal approach for increasing the production of lycopene and other terpenoids.

  2. Microbial production of glucose/fructose syrups

    Energy Technology Data Exchange (ETDEWEB)

    Matur, A.; Saglam, N.

    1982-04-01

    With the ever-increasing demand for sugar and the trend in rising price, rapid progress in research on new and/or alternative sweeteners has been inevitable during the past decade or so. Pure glucose, glucose/fructose, glucose/maltose syrups are often called isosyrups. Isosyrups have been recognized as a good alternative sources of sugar. These are used today in the manufacture of soft drinks, jams and jellies, confectionary, baking fermentation, dietetic and infant food, ice-cream, pharmaceutical processes, etc. Isosyrups are produced by hydrolysis of starch and cellulocis raw materials have been utilized for the production of isosyrups.

  3. Chemical Biology of Microbial Anticancer Natural Products

    DEFF Research Database (Denmark)

    Bladt, Tanja Thorskov; Gotfredsen, Charlotte Held

    than 100 years. New natural products (NPs) are continually discovered and with the increase in selective biological assays, previously described compounds often also display novel bioactivities, justifying their presence in novel screening efforts. Screening and discovery of compounds with activity...... towards chronic lymphocytic leukemia (CLL) cells is crucial since CLL is considered as an incurable disease. To discover novel agents that targets CLL cells is complicated. CLL cells rapidly undergo apoptosis in vitro when they are removed from their natural microenvironment, even though they are long...

  4. Microbial Production of Food Grade Pigments

    Directory of Open Access Journals (Sweden)

    Laurent Dufossé

    2006-01-01

    Full Text Available The controversial topic of synthetic dyes in food has been discussed for many years. The scrutiny and negative assessment of synthetic food dyes by the modern consumer have raised a strong interest in natural colouring alternatives. Nature is rich in colours (minerals, plants, microalgae, etc., and pigment-producing microorganisms (fungi, yeasts, bacteria are quite common. Among the molecules produced by microorganisms are carotenoids, melanins, flavins, quinones, and more specifically monascins, violacein or indigo. The success of any pigment produced by fermentation depends upon its acceptability on the market, regulatory approval, and the size of the capital investment required to bring the product to market. A few years ago, some expressed doubts about the successful commercialization of fermentation-derived food grade pigments because of the high capital investment requirements for fermentation facilities and the extensive and lengthy toxicity studies required by regulatory agencies. Public perception of biotechnology-derived products also had to be taken into account. Nowadays some fermentative food grade pigments are on the market: Monascus pigments, astaxanthin from Xanthophyllomyces dendrorhous, Arpink Red from Penicillium oxalicum, riboflavin from Ashbya gossypii, b-carotene from Blakeslea trispora. The successful marketing of pigments derived from algae or extracted from plants, both as a food colour and a nutritional supplement, reflects the presence and importance of niche markets in which consumers are willing to pay a premium for »all natural ingredients«.

  5. 40 CFR 158.2160 - Microbial pesticides product performance data requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Microbial pesticides product... AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Microbial Pesticides § 158.2160 Microbial pesticides product performance data requirements. Product performance data must be developed for...

  6. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2013-01-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions

  7. Microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  8. Microbial control of hydrogen sulfide production

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J. [Univ. of Oklahoma, Tulsa, OK (United States)] [and others

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  9. Intermediate products of radiolytic conversions of 6-aminophenalenone in ethanol

    International Nuclear Information System (INIS)

    Semenova, G.V.; Ponomarev, A.V.; Kartasheva, L.I.; Pikaev, A.K.

    1992-01-01

    Intermediate products of the conversions of 6-aminophenalenone in ethanol were investigated by pulse radiolysis. In alkaline medium the main product is the 6-aminophenalenone radical cation, the optical absorption spectrum of which contains two bands with maxima at 355 and 400 nm. The precursors of this particle are e s , CH 3 CHOH and CH 3 CHO - radicals. In neutral and acid medium, radical cations are protonated in reactions with alcohol and hydrogen ions. The H-adduct of 6-aminophenalenone that arises has optical absorption maxima at 350 and 390 nm. The presence of two maxima is due to two different structures of the product. The molar extinction coefficients of the radical anions and H-adducts of 6-aminophenalenone and the rate constants of the reactions involving them were estimated. 6 refs., 4 figs., 2 tabs

  10. Engineering microbial electrocatalysis for chemical and fuel production.

    Science.gov (United States)

    Rosenbaum, Miriam A; Henrich, Alexander W

    2014-10-01

    In many biotechnological areas, metabolic engineering and synthetic biology have become core technologies for biocatalyst development. Microbial electrocatalysis for biochemical and fuel production is still in its infancy and reactions rates and the product spectrum are currently very low. Therefore, molecular engineering strategies will be crucial for the advancement and realization of many new bioproduction routes using electroactive microorganisms. The complex and unresolved biochemistry and physiology of extracellular electron transfer and the lack of molecular tools for these new non-model hosts for genetic engineering constitute the major challenges for this effort. This review is providing an insight into the current status, challenges and promising approaches of pathway engineering for microbial electrocatalysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Conversion of waste polystyrene through catalytic degradation into valuable products

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin; Jan, Muhammad Rasul; Adnan [University of Peshawar, Peshawar (Pakistan)

    2014-08-15

    Waste expanded polystyrene (EPS) represents a source of valuable chemical products like styrene and other aromatics. The catalytic degradation was carried out in a batch reactor with a mixture of polystyrene (PS) and catalyst at 450 .deg. C for 30 min in case of Mg and at 400 .deg. C for 2 h both for MgO and MgCO{sub 3} catalysts. At optimum degradation conditions, EPS was degraded into 82.20±3.80 wt%, 91.60±0.20 wt% and 81.80±0.53 wt% liquid with Mg, MgO and MgCO{sub 3} catalysts, respectively. The liquid products obtained were separated into different fractions by fractional distillation. The liquid fractions obtained with three catalysts were compared, and characterized using GC-MS. Maximum conversion of EPS into styrene monomer (66.6 wt%) was achieved with Mg catalyst, and an increase in selectivity of compounds was also observed. The major fraction at 145 .deg. C showed the properties of styrene monomer. The results showed that among the catalysts used, Mg was found to be the most effective catalyst for selective conversion into styrene monomer as value added product.

  12. Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials.

    Science.gov (United States)

    Zhou, Minghua; Yang, Jie; Wang, Hongyu; Jin, Tao; Xu, Dake; Gu, Tingyue

    2013-01-01

    Today's global energy crisis requires a multifaceted solution. Bioenergy is an important part of the solution. The microbial fuel cell (MFC) technology stands out as an attractive potential technology in bioenergy. MFCs can convert energy stored in organic matter directly into bioelectricity. MFCs can also be operated in the electrolysis mode as microbial electrolysis cells to produce bioproducts such as hydrogen and ethanol. Various wastewaters containing low-grade organic carbons that are otherwise unutilized can be used as feed streams for MFCs. Despite major advances in the past decade, further improvements in MFC power output and cost reduction are needed for MFCs to be practical. This paper analysed MFC operating principles using bioenergetics and bioelectrochemistry. Several major issues were explored to improve the MFC performance. An emphasis was placed on the use of catalytic materials for MFC electrodes. Recent advances in the production of various biomaterials using MFCs were also investigated.

  13. Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches

    OpenAIRE

    Aura, Anna-Marja; Mattila, Ismo; Hyötyläinen, Tuulia; Gopalacharyulu, Peddinti; Cheynier, Veronique; Souquet, Jean-Marc; Bes, Magali; Le Bourvellec, Carine; Guyot, Sylvain; Orešič, Matej

    2012-01-01

    Purpose Syrah red grapes are used in the production of tannin-rich red wines. Tannins are high molecular weight molecules, proanthocyanidins (PAs), and poorly absorbed in the upper intestine. In this study, gut microbial metabolism of Syrah grape phenolic compounds was investigated. Methods Syrah grape pericarp was subjected to an enzymatic in vitro digestion model, and red wine and grape skin PA fraction were prepared. Microbial conversion was screened using an in vitro colon model with faec...

  14. Trends in microbial control techniques for poultry products.

    Science.gov (United States)

    Silva, Filomena; Domingues, Fernanda C; Nerín, Cristina

    2018-03-04

    Fresh poultry meat and poultry products are highly perishable foods and high potential sources of human infection due to the presence of several foodborne pathogens. Focusing on the microbial control of poultry products, the food industry generally implements numerous preventive measures based on the Hazard Analysis and Critical Control Points (HACCP) food safety management system certification together with technological steps, such as refrigeration coupled to modified atmosphere packaging that are able to control identified potential microbial hazards during food processing. However, in recent years, to meet the demand of consumers for minimally processed, high-quality, and additive-free foods, technologies are emerging associated with nonthermal microbial inactivation, such as high hydrostatic pressure, irradiation, and natural alternatives, such as biopreservation or the incorporation of natural preservatives in packaging materials. These technologies are discussed throughout this article, emphasizing their pros and cons regarding the control of poultry microbiota and their effects on poultry sensory properties. The discussion for each of the preservation techniques mentioned will be provided with as much detail as the data and studies provided in the literature for poultry meat and products allow. These new approaches, on their own, have proved to be effective against a wide range of microorganisms in poultry meat. However, since some of these emergent technologies still do not have full consumer's acceptability and, taking into consideration the hurdle technology concept for poultry processing, it is suggested that they will be used as combined treatments or, more frequently, in combination with modified atmosphere packaging.

  15. Microbial quality of some medicinal herbal products in Kashan, Iran

    Directory of Open Access Journals (Sweden)

    Mazroi Arani Navid

    2014-04-01

    Full Text Available Introduction: The use of medicinal plants has risen worldwide. In Iran, herbal waters and rose waters are of traditional medicinal products and as a result, they are widespreadly consumed. Therefore, diagnosis of microbial quality of these products is important. The aim of this study was to evaluate microbial quality of herbal extracts distributed in Kashan, Iran. Methods: In this descriptive study, 256 samples of herbal waters and 191 samples of rose waters (total samples of 447 distributed in Kashan during 2012 to 2013 were purchased and transferred to laboratory. Then microbial tests such as total aerobic bacterial count, mold and yeast count, total coliforms, and detection of Enterococcus, Pseudomonas and sulphite-reducing Clostridia were evaluated based on national standard of Iran. Results: Contamination with Pseudomonas and Enterococcus was observed in the herbal water samples. 196 cases (43.84% of the total samples, 113 cases (44.15% of the herbal waters and 83 cases (43.45% of the rose waters were usable based on the national standard of Iran. Neither herbal waters nor rosewater samples were contaminated by E.Coli and Sulphite-reducing clostridia. Additionally, none of the rosewater samples was contaminated by Coliforms and Pseudomonas. Conclusion: Based on the findings and due to the fact that these products are contaminated with aerobic mesophilic bacteria, mold and yeast, to minimize the risks we recommend to apply pasteurized temperature, high-quality packaging material and hygiene observance in processing time of herbal waters and rose waters.

  16. Microbial hydrogen production from sewage sludge bioaugmented with a constructed microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kotay, Shireen Meher; Das, Debabrata [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2010-10-15

    A constructed microbial consortium was formulated from three facultative H{sub 2}-producing anaerobic bacteria, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1. This consortium was tested as the seed culture for H{sub 2} production. In the initial studies with defined medium (MYG), E. cloacae produced more H{sub 2} than the other two strains and it also was found to be the dominant member when consortium was used. On the other hand, B. coagulans as a pure culture gave better H{sub 2} yield (37.16 ml H{sub 2}/g COD{sub consumed}) than the other two strains using sewage sludge as substrate. The pretreatment of sludge included sterilization (15% v/v), dilution and supplementation with 0.5% w/v glucose, which was found to be essential to screen out the H{sub 2} consuming bacteria and ameliorate the H{sub 2} production. Considering (1:1:1) defined consortium as inoculum, COD reduction was higher and yield of H{sub 2} was recorded to be 41.23 ml H{sub 2}/g COD{sub reduced}. Microbial profiling of the spent sludge showed that B. coagulans was the dominant member in the constructed consortium contributing towards H{sub 2} production. Increase in H{sub 2} yield indicated that in consortium, the substrate utilization was significantly higher. The H{sub 2} yield from pretreated sludge (35.54 ml H{sub 2}/g sludge) was comparatively higher than that reported in literature (8.1-16.9 ml H{sub 2}/g sludge). Employing formulated microbial consortium for biohydrogen production is a successful attempt to augment the H{sub 2} yield from sewage sludge. (author)

  17. Microbial Insights into Shifting Methane Production Potential in Thawing Permafrost

    Science.gov (United States)

    Crossen, K.; Wilson, R.; Raab, N.; Neumann, R.; Chanton, J.; Saleska, S. R.; Rich, V. I.

    2017-12-01

    Permafrost, which stores 50% of global soil carbon, is thawing rapidly due to climate change, and resident microbes are contributing to changing carbon gas emissions. Predictions of the fate of carbon in these regions is poorly constrained; however, improved, careful mapping of microbial community members influencing CO2 and CH4 emissions will help clarify the system response to continued change. In order to more fully understand connections between the microbial communities, major geochemical transformations, and CO2 and CH4 emissions, peat cores were collected from the active layers of three permafrost habitats spanning a thaw gradient (collapsed palsa, bog, and fen) at Stordalen Mire, Abisko, Sweden. Anaerobic incubations of shallow and deep subsamples from these sites were performed, with time-course characterization of the changes in microbial communities, peat geochemistry, and carbon gas production. The latter were profiled with 16S rRNA amplicon sequencing, and targeted metagenomes. The communities within each habitat and depth were statistically distinct, and changed significantly over the course of the incubations. Acidobacteria was consistently the dominant bacterial phylum in all three habitat types. With increased thaw, the relative abundance of Actinobacteria tended to decrease, while Chloroflexi and Bacteroidetes increased with thaw. The relative abundance of methanogens increased with thaw and with depth within each habitat. Over time in the incubations, the richness of the communities tended to decrease. Homoacetogenesis (CO2 + H2 -> CH3COOH) has been documented in other peatlands, and homoacetogens can influence CH4 production by interacting with methanogens, competing with hydrogenotrophs while providing substrate for acetoclasts. Modelling of microbial reaction networks suggests potential for highest homoacetogenesis rates in the collapsed palsa, which also contains the highest relative abundances of lineages taxonomically affiliated with known

  18. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    International Nuclear Information System (INIS)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    1987-01-01

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells. (author)

  19. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    Science.gov (United States)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells.

  20. Mesophilic and thermophilic conditions select for unique but highly parallel microbial communities to perform carboxylate platform biomass conversion.

    Directory of Open Access Journals (Sweden)

    Emily B Hollister

    Full Text Available The carboxylate platform is a flexible, cost-effective means of converting lignocellulosic materials into chemicals and liquid fuels. Although the platform's chemistry and engineering are well studied, relatively little is known about the mixed microbial communities underlying its conversion processes. In this study, we examined the metagenomes of two actively fermenting platform communities incubated under contrasting temperature conditions (mesophilic 40°C; thermophilic 55 °C, but utilizing the same inoculum and lignocellulosic feedstock. Community composition segregated by temperature. The thermophilic community harbored genes affiliated with Clostridia, Bacilli, and a Thermoanaerobacterium sp, whereas the mesophilic community metagenome was composed of genes affiliated with other Clostridia and Bacilli, Bacteriodia, γ-Proteobacteria, and Actinobacteria. Although both communities were able to metabolize cellulosic materials and shared many core functions, significant differences were detected with respect to the abundances of multiple Pfams, COGs, and enzyme families. The mesophilic metagenome was enriched in genes related to the degradation of arabinose and other hemicellulose-derived oligosaccharides, and the production of valerate and caproate. In contrast, the thermophilic community was enriched in genes related to the uptake of cellobiose and the transfer of genetic material. Functions assigned to taxonomic bins indicated that multiple community members at either temperature had the potential to degrade cellulose, cellobiose, or xylose and produce acetate, ethanol, and propionate. The results of this study suggest that both metabolic flexibility and functional redundancy contribute to the platform's ability to process lignocellulosic substrates and are likely to provide a degree of stability to the platform's fermentation processes.

  1. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    Science.gov (United States)

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  2. Electricity production from microbial fuel cell by using yeast

    International Nuclear Information System (INIS)

    Vorasingha, A.; Souvakon, C.; Boonchom, K.

    2006-01-01

    The continuous search for methods to generate electricity from renewable sources such as water, solar energy, wind, nuclear or chemicals was discussed with particular focus on attaining the full power of the microbial fuel cell (MFC). Under ideal environmental conditions, the only byproducts of a biofuel cell would be water and carbon dioxide (CO 2 ). The production of energy from renewables such as biomass is important for sustainable development and reducing global emissions of CO 2 . Hydrogen can also be an important component of an energy infrastructure that reduces CO 2 emissions if the hydrogen is produced from renewable sources and used in fuel cells. Hydrogen gas can be biologically produced at high concentration from the fermentation of high sugar substrates such as glucose and sucrose. Some of the issues of MFC design were addressed, including the use of cheap substrates to derive microbial electricity. In the MFC, yeast donates electrons to a chemical electron mediator, which in turn transfers the electrons to an electrode, producing electricity. Experimental results showed that glucose yielded the highest peak voltage, but a semi-processed sugar and molasses were similar to glucose in the electricity production pattern. It was noted that this technology is only at the research stages, and more research is needed before household microbial fuel cells can be made available for producing power for prolonged periods of time. Future research efforts will focus on increasing the efficiency, finding alternatives to hazardous electron mediators and finding new microbes. 12 refs., 6 figs

  3. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste

    Directory of Open Access Journals (Sweden)

    Almeida João R M

    2012-07-01

    Full Text Available Abstract The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a “waste-stream” instead of a valuable “coproduct”. The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.

  4. Microbial production of building block chemicals and polymers.

    Science.gov (United States)

    Lee, Jeong Wook; Kim, Hyun Uk; Choi, Sol; Yi, Jongho; Lee, Sang Yup

    2011-12-01

    Owing to our increasing concerns on the environment, climate change, and limited natural resources, there has recently been considerable effort exerted to produce chemicals and materials from renewable biomass. Polymers we use everyday can also be produced either by direct fermentation or by polymerization of monomers that are produced by fermentation. Recent advances in metabolic engineering combined with systems biology and synthetic biology are allowing us to more systematically develop superior strains and bioprocesses for the efficient production of polymers and monomers. Here, we review recent trends in microbial production of building block chemicals that can be subsequently used for the synthesis of polymers. Also, recent successful cases of direct one-step production of polymers are reviewed. General strategies for the production of natural and unnatural platform chemicals are described together with representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Microbial Production of l-Serine from Renewable Feedstocks.

    Science.gov (United States)

    Zhang, Xiaomei; Xu, Guoqiang; Shi, Jinsong; Koffas, Mattheos A G; Xu, Zhenghong

    2018-07-01

    l-Serine is a non-essential amino acid that has wide and expanding applications in industry with a fast-growing market demand. Currently, extraction and enzymatic catalysis are the main processes for l-serine production. However, such approaches limit the industrial-scale applications of this important amino acid. Therefore, shifting to the direct fermentative production of l-serine from renewable feedstocks has attracted increasing attention. This review details the current status of microbial production of l-serine from renewable feedstocks. We also summarize the current trends in metabolic engineering strategies and techniques for the typical industrial organisms Corynebacterium glutamicum and Escherichia coli that have been developed to address and overcome major challenges in the l-serine production process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Microbial production of nattokinase: current progress, challenge and prospect.

    Science.gov (United States)

    Cai, Dongbo; Zhu, Chengjun; Chen, Shouwen

    2017-05-01

    Nattokinase (EC 3.4.21.62) is a profibrinolytic serine protease with a potent fibrin-degrading activity, and it has been produced by many host strains. Compared to other fibrinolytic enzymes (urokinase, t-PA and streprokinase), nattokinase shows the advantages of having no side effects, low cost and long life-time, and it has the potential to be used as a drug for treating cardiovascular disease and served as a functional food additive. In this review, we focused on screening of producing strains, genetic engineering, fermentation process optimization for microbial nattokinase production, and the extraction and purification of nattokinase were also discussed in this particular chapter. The selection of optimal nattokinase producing strain was the crucial starting element for improvement of nattokinase production. Genetic engineering, protein engineering, fermentation optimization and process control have been proved to be the effective strategies for enhancement of nattokinase production. Also, extraction and purification of nattokinase are critical for the quality evaluation of nattokinase. Finally, the prospect of microbial nattokinase production was also discussed regarding the recent progress, challenge, and trends in this field.

  7. Bioelectricity Production from Microalgae-Microbial Fuel Cell Technology (MMFC

    Directory of Open Access Journals (Sweden)

    da Costa Carlito

    2018-01-01

    Full Text Available Microbial fuel cell is an ecological innovative technology producing bioelectricity by utilizing microbes activity. Substituent energy is produced by changing the chemical energy to electrical energy through the catalytic reaction of microorganism. The research aims to find out the potency of bioelectricity produced by microalgae microbial fuel cell technology by utilizing the combination of tapioca wastewater and microalgae cultivation. This research is conducted through the ingredients preparation stage – microalgae culture, wastewater characterization, membrane and graphite activation, and the providing of other supporting equipment. The next stage is the MMFC arrangement, while the last one is bioelectricity measurement. The result of optimal bioelectricity production on the comparison of electrode 2 : 2, the power density is 44,33 mW/m2 on day 6, meanwhile, on that of 1 : 1, 20,18 mW/m2 power density on day 1 is obtained. It shows that bioelectricity can be produced from the combination of tapioca wastewater and microalgae culture through the microalgae-microbial fuel cell (MMFC technology.This research is expected to be a reference for the next research particularly the one that observes the utilizing of microalgae as the part of new and renewable energy sources.

  8. Photoelectrochemical based direct conversion systems for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Peterson, M.; Arent, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Photon driven, direct conversion systems consist of a light absorber and a water splitting catalyst as a monolithic system; water is split directly upon illumination. This one-step process eliminates the need to generate electricity externally and subsequently feed it to an electrolyzer. These configurations require only the piping necessary for transport of hydrogen to an external storage system or gas pipeline. This work is focused on multiphoton photoelectrochemical devices for production of hydrogen directly using sunlight and water. Two types of multijunction cells, one consisting of a-Si triple junctions and the other GaInP{sub 2}/GaAs homojunctions, were studied for the photoelectrochemical decomposition of water into hydrogen and oxygen from an aqueous electrolyte solution. To catalyze the water decomposition process, the illuminated surface of the device was modified either by addition of platinum colloids or by coating with ruthenium dioxide. These colloids have been characterized by gel electrophoresis.

  9. Microbial status and product labelling of 58 original tattoo inks

    DEFF Research Database (Denmark)

    Høgsberg, T; Saunte, D M; Frimodt-møller, Niels

    2011-01-01

    and labelled according to REACH as if they were plain chemicals. Objective  The objective of this study was to check the microbial product safety of unopened and opened tattoo ink stock bottles. Packaging, labelling, preservation, sterility and contamination with micro-organisms were studied. Methods  Physical......-pathogenic environmental bacteria. Yeast or moulds were detected in none of the samples. A total of 31% of the manufacturers informed only about the brand name. No information about content, sterility, risks or expiry date was indicated on the label. A total of 42% claimed sterility of their inks. A total of 54% labelled...

  10. Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures

    Directory of Open Access Journals (Sweden)

    Reis Maria AM

    2008-07-01

    Full Text Available Abstract Background This paper presents a metabolic model describing the production of polyhydroxyalkanoate (PHA copolymers in mixed microbial cultures, using mixtures of acetic and propionic acid as carbon source material. Material and energetic balances were established on the basis of previously elucidated metabolic pathways. Equations were derived for the theoretical yields for cell growth and PHA production on mixtures of acetic and propionic acid as functions of the oxidative phosphorylation efficiency, P/O ratio. The oxidative phosphorylation efficiency was estimated from rate measurements, which in turn allowed the estimation of the theoretical yield coefficients. Results The model was validated with experimental data collected in a sequencing batch reactor (SBR operated under varying feeding conditions: feeding of acetic and propionic acid separately (control experiments, and the feeding of acetic and propionic acid simultaneously. Two different feast and famine culture enrichment strategies were studied: (i either with acetate or (ii with propionate as carbon source material. Metabolic flux analysis (MFA was performed for the different feeding conditions and culture enrichment strategies. Flux balance analysis (FBA was used to calculate optimal feeding scenarios for high quality PHA polymers production, where it was found that a suitable polymer would be obtained when acetate is fed in excess and the feeding rate of propionate is limited to ~0.17 C-mol/(C-mol.h. The results were compared with published pure culture metabolic studies. Conclusion Acetate was more conducive toward the enrichment of a microbial culture with higher PHA storage fluxes and yields as compared to propionate. The P/O ratio was not only influenced by the selected microbial culture, but also by the carbon substrate fed to each culture, where higher P/O ratio values were consistently observed for acetate than propionate. MFA studies suggest that when mixtures of

  11. Valorization of By-Products from Palm Oil Mills for the Production of Generic Fermentation Media for Microbial Oil Synthesis.

    Science.gov (United States)

    Tsouko, Erminda; Kachrimanidou, Vasiliki; Dos Santos, Anderson Fragoso; do Nascimento Vitorino Lima, Maria Eduarda; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise Maria Guimarães; Koutinas, Apostolis A

    2017-04-01

    This study demonstrates the production of a generic nutrient-rich feedstock using by-product streams from palm oil production that could be used as a substitute for commercial fermentation supplements. Solid-state fermentations of palm kernel cake (PKC) and palm-pressed fiber (PPF) were conducted in tray bioreactors and a rotating drum bioreactor by the fungal strain Aspergillus oryzae for the production of crude enzymes. The production of protease was optimized (319.3 U/g) at an initial moisture content of 55 %, when PKC was used as the sole substrate. The highest free amino nitrogen (FAN) production (5.6 mg/g) obtained via PKC hydrolysis using the crude enzymes produced via solid-state fermentation was achieved at 50 °C. Three initial PKC concentrations (48.7, 73.7, and 98.7 g/L) were tested in hydrolysis experiments, leading to total Kjeldahl nitrogen to FAN conversion yields up to 27.9 %. Sequential solid-state fermentation followed by hydrolysis was carried out in the same rotating drum bioreactor, leading to the production of 136.7 U/g of protease activity during fermentation and 196.5 mg/L of FAN during hydrolysis. Microbial oil production was successfully achieved with the oleaginous yeast strain Lipomyces starkeyi DSM 70296 cultivated on the produced PKC hydrolysate mixed with commercial carbon sources, including glucose, xylose, mannose, galactose, and arabinose.

  12. Dereplication of Microbial Natural Products by LC-DAD-TOFMS

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Månsson, Maria; Rank, Christian

    2011-01-01

    Dereplication, the rapid identification of known compounds present in a mixture, is crucial to the fast discovery of novel natural products. Determining the elemental composition of compounds in mixtures and tentatively identifying natural products using MS/MS and UV/vis spectra is becoming easier...... with advances in analytical equipment and better compound databases. Here we demonstrate the use of LC-UV/vis-MS-based dereplication using data from UV/vis diode array detection and ESI+/ESI– time-of-flight MS for assignment of 719 microbial natural product and mycotoxin reference standards. ESI+ was the most...... unambiguously using multiple adduct ions, while a further 41% of the compounds were detected only as [M – H]−. The most reliable interpretations of conflicting ESI+ and ESI– data on a chromatographic peak were from the ionization polarity with the most intense ionization. Poor ionization was most common...

  13. Microbial production of volatile sulphur compounds in the large intestine of pigs fed two different diets.

    Science.gov (United States)

    Poulsen, H V; Jensen, B B; Finster, K; Spence, C; Whitehead, T R; Cotta, M A; Canibe, N

    2012-07-01

      To investigate the production of volatile sulphur compounds (VSC) in the segments of the large intestine of pigs and to assess the impact of diet on this production.   Pigs were fed two diets based on either wheat and barley (STD) or wheat and dried distillers grains with solubles (DDGS). Net production of VSC and potential sulphate reduction rate (SRR) (sulphate saturated) along the large intestine were determined by means of in vitro incubations. The net production rate of hydrogen sulphide and potential SRR increased from caecum towards distal colon and were significantly higher in the STD group. Conversely, the net methanethiol production rate was significantly higher in the DDGS group, while no difference was observed for dimethyl sulphide. The number of sulphate-reducing bacteria and total bacteria were determined by quantitative PCR and showed a significant increase along the large intestine, whereas no diet-related differences were observed.   VSC net production varies widely throughout the large intestine of pigs and the microbial processes involved in this production can be affected by diet.   This first report on intestinal production of all VSC shows both spatial and dietary effects, which are relevant to both bowel disease- and odour mitigation research. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  14. Whey-derived valuable products obtained by microbial fermentation.

    Science.gov (United States)

    Pescuma, Micaela; de Valdez, Graciela Font; Mozzi, Fernanda

    2015-08-01

    Whey, the main by-product of the cheese industry, is considered as an important pollutant due to its high chemical and biological oxygen demand. Whey, often considered as waste, has high nutritional value and can be used to obtain value-added products, although some of them need expensive enzymatic synthesis. An economical alternative to transform whey into valuable products is through bacterial or yeast fermentations and by accumulation during algae growth. Fermentative processes can be applied either to produce individual compounds or to formulate new foods and beverages. In the first case, a considerable amount of research has been directed to obtain biofuels able to replace those derived from petrol. In addition, the possibility of replacing petrol-derived plastics by biodegradable polymers synthesized during bacterial fermentation of whey has been sought. Further, the ability of different organisms to produce metabolites commonly used in the food and pharmaceutical industries (i.e., lactic acid, lactobionic acid, polysaccharides, etc.) using whey as growth substrate has been studied. On the other hand, new low-cost functional whey-based foods and beverages leveraging the high nutritional quality of whey have been formulated, highlighting the health-promoting effects of fermented whey-derived products. This review aims to gather the multiple uses of whey as sustainable raw material for the production of individual compounds, foods, and beverages by microbial fermentation. This is the first work to give an overview on the microbial transformation of whey as raw material into a large repertoire of industrially relevant foods and products.

  15. Engineered microbes and methods for microbial oil production

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2018-01-09

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  16. Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, D

    1977-01-01

    The enzymic conversion of cellulose is catalyzed by a multiple enzyme system. The Trichoderma enzyme system has insufficient ..beta..-glucosidase (EC 3.2.1.21) activity for the practical saccharification of cellulose. Aspergillus niger and A. phoenicis were superior producers of ..beta.. glucosidase and a method for production of this enzyme in liquid culture is presented. When Trichoderma cellulase preparations are supplemented with ..beta.. glucosidase from Aspergullus during practical saccharifications glucose is the predominant product and the rate of saccharification is significantly increased. The stimulatory effect of ..beta.. glucosidase appears to be due to the removal of inhibitory levels of cellobiose.

  17. Engineered microbes and methods for microbial oil production

    Science.gov (United States)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2015-02-10

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  18. Microbial nitrogen cycling response to forest-based bioenergy production.

    Science.gov (United States)

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  19. H2O2 Production in Microbial Electrochemical Cells Fed with Primary Sludge.

    Science.gov (United States)

    Ki, Dongwon; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2017-06-06

    We developed an energy-efficient, flat-plate, dual-chambered microbial peroxide producing cell (MPPC) as an anaerobic energy-conversion technology for converting primary sludge (PS) at the anode and producing hydrogen peroxide (H 2 O 2 ) at the cathode. We operated the MPPC with a 9 day hydraulic retention time in the anode. A maximum H 2 O 2 concentration of ∼230 mg/L was achieved in 6 h of batch cathode operation. This is the first demonstration of H 2 O 2 production using PS in an MPPC, and the energy requirement for H 2 O 2 production was low (∼0.87 kWh/kg H 2 O 2 ) compared to previous studies using real wastewaters. The H 2 O 2 gradually decayed with time due to the diffusion of H 2 O 2 -scavenging carbonate ions from the anode. We compared the anodic performance with a H 2 -producing microbial electrolysis cell (MEC). Both cells (MEC and MPPC) achieved ∼30% Coulombic recovery. While similar microbial communities were present in the anode suspension and anode biofilm for the two operating modes, aerobic bacteria were significant only on the side of the anode facing the membrane in the MPPC. Coupled with a lack of methane production in the MPPC, the presence of aerobic bacteria suggests that H 2 O 2 diffusion to the anode side caused inhibition of methanogens, which led to the decrease in chemical oxygen demand removal. Thus, the Coulombic efficiency was ∼16% higher in the MPPC than in the MEC (64% versus 48%, respectively).

  20. Base-Catalyzed Depolymerization of Solid Lignin-Rich Streams Enables Microbial Conversion

    DEFF Research Database (Denmark)

    Rodriguez, Alberto; Salvachúa, Davinia; Katahira, Rui

    2017-01-01

    hydroxycinnamic acids. BCD liquors were tested for microbial growth using seven aromatic-catabolizing bacteria and two yeasts. Three organisms (Pseudomonas putida KT2440, Rhodotorula mucilaginosa, and Corynebacterium glutamicum) tolerate high BCD liquor concentrations (up to 90% v/v) and rapidly consume the main...

  1. Microbial decontamination of cosmetic products by gamma irradiation

    International Nuclear Information System (INIS)

    Taha, S.M.A.

    2010-01-01

    The microbiological quality of cosmetic products (skin creams, massage gels and hair lotion) and the effect of gamma irradiation on this quality were investigated.The effectiveness of these cosmetic products with the tested pathogenic microorganisms was also examined. Total bacterial counts (TBC) of examined cosmetic products ranged between 5 cfu/g or ml. Most cosmetic products evaluated were free from mold and yeast. Spore forming bacteria (SFB) were low and ranged between 2 cfu/g or ml. The enterobacteriaceae (Ent) group was generally absent from the examined cosmetic products except for one sample (varic, skin cream) which contained 7x10 3 cfu/g. All cosmetic products studied were free from Pseudomonas species, Aeromonas hydrophila; Bacillus cereus; Listeria monocytogenes and Salmonella species. Only one sample (varic, skin cream) contained E. coli (2x10 2 cfu/g). Enterococcus faecalis was found in three samples of cosmetic products tested (maxi care, panol and varic creams) and the counts were 7x10 2 , 2x10 2 and 5x10 4 cfu/g, respectively. Also Staphylococcus aureus was found in the same three samples and the counts were in the range of 2-3x10 2 cfu/g. The effectiveness of cosmetic products with the tested pathogenic bacteria differs according to the type of cosmetic products examined . The irradiation dose of 6 kGy was very effective in microbial decontamination and elimination of pathogenic bacteria in cosmetic products for enhancing health quality and ensuring safety of these products.

  2. Investigating the possibility of Microbial Production of Mannitol from Waste Bread

    Directory of Open Access Journals (Sweden)

    Vajihe Sadeqi

    2016-07-01

    Full Text Available According to the significant role of sugar alcohols (Polyols in food industries, in the present study the possibility of microbial production of mannitol from bread waste was studied. Microbial growth and amylase production were investigated by five Iranian native strains of Bacillus spp in starch agar and broth. The best strain was selected, and its growth curve was determined. Leuconostoc mesentroides PTCC 1059 was used as a control strain to convert fructose to mannitol. In order to determine the ability of selected strains in converting waste breads into mannitol sugar, a culture medium was prepared from waste of Lavash and Baguette breads. Afterward, the ability to convert starch into fructose by Chemical analysis glucose test was used, and then bio-conversion analysis of fructose to mannitol by HPLC analysis was investigated. HPLC results showed that the Bacillus subtilis and Leuconostoc mesentroides PTCC 1059 had the ability of producing mannitol at a rate of 4.8g/L from fructose 5%, 0.15 g/L from Lavash bread 5%, and 0.2g/L from Baguette bread.

  3. Recent Advances in Microbial Production of Aromatic Chemicals and Derivatives.

    Science.gov (United States)

    Noda, Shuhei; Kondo, Akihiko

    2017-08-01

    Along with the development of metabolic engineering and synthetic biology tools, various microbes are being used to produce aromatic chemicals. In microbes, aromatics are mainly produced via a common important precursor, chorismate, in the shikimate pathway. Natural or non-natural aromatics have been produced by engineering metabolic pathways involving chorismate. In the past decade, novel approaches have appeared to produce various aromatics or to increase their productivity, whereas previously, the targets were mainly aromatic amino acids and the strategy was deregulating feedback inhibition. In this review, we summarize recent studies of microbial production of aromatics based on metabolic engineering approaches. In addition, future perspectives and challenges in this research area are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Biochar and microbial signaling: production conditions determine effects on microbial communication

    Science.gov (United States)

    Masiello, Caroline A.; Chen, Ye; Gao, Xiaodong; Liu, Shirley; Cheng, Hsiao-Ying; Bennett, Matthew R.; Rudgers, Jennifer A.; Wagner, Daniel S.; Zygourakis, Kyriacos; Silberg, Jonathan J.

    2013-01-01

    Charcoal has a long soil residence time, which has resulted in its production and use as a carbon sequestration technique (biochar). A range of biological effects can be triggered by soil biochar that can positively and negatively influence carbon storage, such as changing the decomposition rate of organic matter and altering plant biomass production. Sorption of cellular signals has been hypothesized to underlie some of these effects, but it remains unknown whether the binding of biochemical signals occurs, and if so, on time scales relevant to microbial growth and communication. We examined biochar sorption of N-3-oxo-dodecanoyl-L-homoserine lactone, an acyl-homoserine lactone (AHL) intercellular signaling molecule used by many gram-negative soil microbes to regulate gene expression. We show that wood biochars disrupt communication within a growing multicellular system that is made up of sender cells that synthesize AHL and receiver cells that express green fluorescent protein in response to an AHL signal. However, biochar inhibition of AHL-mediated cell-cell communication varied, with the biochar prepared at 700°C (surface area of 301 m2/g) inhibiting cellular communication 10-fold more than an equivalent mass of biochar prepared at 300°C (surface area of 3 m2/g). These findings provide the first direct evidence that biochars elicit a range of effects on gene expression dependent on intercellular signaling, implicating the method of biochar preparation as a parameter that could be tuned to regulate microbial-dependent soil processes, like nitrogen fixation and pest attack of root crops. PMID:24066613

  5. Biochar and microbial signaling: production conditions determine effects on microbial communication.

    Science.gov (United States)

    Masiello, Caroline A; Chen, Ye; Gao, Xiaodong; Liu, Shirley; Cheng, Hsiao-Ying; Bennett, Matthew R; Rudgers, Jennifer A; Wagner, Daniel S; Zygourakis, Kyriacos; Silberg, Jonathan J

    2013-10-15

    Charcoal has a long soil residence time, which has resulted in its production and use as a carbon sequestration technique (biochar). A range of biological effects can be triggered by soil biochar that can positively and negatively influence carbon storage, such as changing the decomposition rate of organic matter and altering plant biomass production. Sorption of cellular signals has been hypothesized to underlie some of these effects, but it remains unknown whether the binding of biochemical signals occurs, and if so, on time scales relevant to microbial growth and communication. We examined biochar sorption of N-3-oxo-dodecanoyl-L-homoserine lactone, an acyl-homoserine lactone (AHL) intercellular signaling molecule used by many gram-negative soil microbes to regulate gene expression. We show that wood biochars disrupt communication within a growing multicellular system that is made up of sender cells that synthesize AHL and receiver cells that express green fluorescent protein in response to an AHL signal. However, biochar inhibition of AHL-mediated cell-cell communication varied, with the biochar prepared at 700 °C (surface area of 301 m(2)/g) inhibiting cellular communication 10-fold more than an equivalent mass of biochar prepared at 300 °C (surface area of 3 m(2)/g). These findings provide the first direct evidence that biochars elicit a range of effects on gene expression dependent on intercellular signaling, implicating the method of biochar preparation as a parameter that could be tuned to regulate microbial-dependent soil processes, like nitrogen fixation and pest attack of root crops.

  6. Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production

    Science.gov (United States)

    Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.

    2014-12-01

    Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.

  7. Microbial Metabolite Production for Accelerated Metal and Radionuclide Bioremediation (Microbial Metabolite Production Report)

    International Nuclear Information System (INIS)

    TURICK, CHARLES

    2004-01-01

    Biogeochemical activity is an ongoing and dynamic process due to bacterial activity in the subsurface. Bacteria contribute significantly to biotransformation of metals and radionuclides. As basic science reveals more information about specific mechanisms of bacterial-metal reduction, an even greater contribution of bacteria to biogeochemical activities is realized. An understanding and application of the mechanisms of metal and radionuclide reduction offers tremendous potential for development into bioremedial processes and technologies. Most bacteria are capable of biogeochemical transformation as a result of meeting nutrient requirements. These assimilatory mechanisms for metals transformation include production of small molecules that serve as electron shuttles for metal reduction. This contribution to biogeochemistry is small however due to only trace requirements for minerals by bacteria. Dissimilatory metal reducing bacteria (DMRB) reduce oxidized metals and insoluble mineral oxides as a means for biological energy production during growth. These types of bacteria offer considerable potential for bioremediation of environments contaminated with toxic metals and radionuclides because of the relatively large amount of metal biotransformation they require for growth. One of the mechanisms employed by some DMRB for electron transfer to insoluble metal oxides is melanin production. The electrochemical properties of melanin provide this polymeric, humic-type compound with electron shuttling properties. Melanin, specifically, pyomelanin, increases the rate and degree of metal reduction in DMRB as a function of pyomelanin concentration. Due to its electron shuttling behavior, only low femtogram quantities per cell are required to significantly increase metal reduction capacity of DMRB. Melanin production is not limited to DMRB. In fact melanin is one of the most common pigments produced by biological systems. Numerous soil microorganisms produce melanin, contributing

  8. Choosing the right platform for the right product: Sustainable production of chemicals in microbial cell factories

    DEFF Research Database (Denmark)

    Herrgard, Markus

    The Novo Nordisk Foundation Center for Biosustainability (CFB) is a new non-profit research center focused on sustainable production of biochemicals and therapeutic proteins using microbial and mammalian cell factories. The work at CFB is organized around an iterative loop where cell factories...

  9. Biodiesel production from microbial granules in sequencing batch reactor.

    Science.gov (United States)

    Liu, Lin; Hong, Yuling; Ye, Xin; Wei, Lili; Liao, Jie; Huang, Xu; Liu, Chaoxiang

    2018-02-01

    Effect of reaction variables of in situ transesterification on the biodiesel production, and the characteristic differences of biodiesel obtained from aerobic granular sludge (AG) and algae-bacteria granular consortia (AAG) were investigated. The results indicated that the effect of variables on the biodiesel yield decreased in the order of methanol quantity > catalyst concentration > reaction time, yet the parameters change will not significantly affect biodiesel properties. The maximum biodiesel yield of AAG was 66.21 ± 1.08 mg/g SS, what is significant higher than that of AG (35.44 ± 0.92 mg/g SS). Although methyl palmitate was the dominated composition of biodiesel obtained from both granules, poly-unsaturated fatty acid in the AAG showed a higher percentage (21.86%) than AG (1.2%) due to Scenedesmus addition. Further, microbial analysis confirmed that the composition of biodiesel obtained from microbial granules was also determined by bacterial community, and Xanthomonadaceae and Rhodobacteraceae were the dominant bacteria of AG and AAG, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Conversion and conservation of light energy in a photosynthetic microbial mat ecosystem

    DEFF Research Database (Denmark)

    Al-Najjar, A.A.; De Beer, D.; Jørgensen, B. B.

    2011-01-01

    approach uses microscale measurements of the rates of heat dissipation, gross photosynthesis and light absorption in the system, and a model describing light propagation and conversion in a scattering-absorbing medium. The energy budget was dominated by heat dissipation on the expense of photosynthesis...

  11. Microbial decontamination of some chicken meat products by gamma irradiation

    International Nuclear Information System (INIS)

    Afifi, E.A.; El-Nashaby, F.M.

    2001-01-01

    This investigation aims to study the possibility of using gamma irradiation for microbial decontamination of some chicken meat products (Luncheon, Burger and debonded minced chicken) which are produced by three companies (Halwany Bros.(H)-Faragalla (F) and Egypco (E)). The samples were purchased from local supermarkets and examined for the presence of Salmonella spp. and Staphylococcus aureus. The examination illustrated that all examined samples were positive for Staphylococcus aureus. While Luncheon (F), Burger (H) and debonded minced chicken (E) were only positive for Salmonella spp. Therefore, these product samples were gamma irradiated at 0, 3, 6 and 9 kGy. The effects of radiation treatments and cold storage (5+,-1 degree) on the total volatile basic nitrogen (T.V.B.N.), microbiological quality and sensory properties of samples under investigation were studied. The results indicated that 3kGy dose of gamma irradiation completely destroyed Staphylococcus aureus and Salmonella spp. and caused slight increase in (T.V.B.N.) content for all samples. A gradual increase in total bacteria, molds and yeast and T. V. B. N. during storage were observed, while 6 kGy dose was also sufficient for destroying Salmonella spp. and Staphylococcus aureus in all chicken meat products under investigation without any detectable effects on the sensory properties of these products and increased the shelf-life of luncheon, burger and minced for 8, 4 and 3 weeks respectively as compared with 4, 2 and 1 weeks for control samples

  12. Microbial production of antioxidant food ingredients via metabolic engineering.

    Science.gov (United States)

    Lin, Yuheng; Jain, Rachit; Yan, Yajun

    2014-04-01

    Antioxidants are biological molecules with the ability to protect vital metabolites from harmful oxidation. Due to this fascinating role, their beneficial effects on human health are of paramount importance. Traditional approaches using solvent-based extraction from food/non-food sources and chemical synthesis are often expensive, exhaustive, and detrimental to the environment. With the advent of metabolic engineering tools, the successful reconstitution of heterologous pathways in Escherichia coli and other microorganisms provides a more exciting and amenable alternative to meet the increasing demand of natural antioxidants. In this review, we elucidate the recent progress in metabolic engineering efforts for the microbial production of antioxidant food ingredients - polyphenols, carotenoids, and antioxidant vitamins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Microbial degradation of coconut coir dust for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Uyenco, F.R.; Ochoa, J.A.K.

    Several species of white-rot fungi were studied for its ability to degrade the lignocellulose components of coir dust at optimum conditions. The most effective fungi was Phanerochaeta chrysosporium UPCC 4003. This organism degraded the lignocellulose complex of coir dust at a rate of about 25 percent in 4 weeks. The degradation process was carried on with minimal nitrogen concentration, coconut water supplementation and moisture levels between 85-90 percent. Shake flask cultures of the degraded coir dust using cellulolytic fungi were not effective. In fermentor cultures with Chaetomium cellulolyticum UPCC 3934, supplemented coir dust was converted into a microbial biomass product (MBP) with 15.58 percent lignin, 19.20 percent cellulose and 18.87 percent protein. More work is being done on the utilization of coir dust on a low technology.

  14. Biotic conversion of sulphate to sulphide and abiotic conversion of sulphide to sulphur in a microbial fuel cell using cobalt oxide octahedrons as cathode catalyst.

    Science.gov (United States)

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli; Kumar, Senthil

    2017-05-01

    Varying chemical oxygen demand (COD) and sulphate concentrations in substrate were used to determine reaction kinetics and mass balance of organic matter and sulphate transformation in a microbial fuel cell (MFC). MFC with anodic chamber volume of 1 L, fed with wastewater having COD of 500 mg/L and sulphate of 200 mg/L, could harvest power of 54.4 mW/m 2 , at a Coulombic efficiency of 14%, with respective COD and sulphate removals of 90 and 95%. Sulphide concentration, even up to 1500 mg/L, did not inhibit anodic biochemical reactions, due to instantaneous abiotic oxidation to sulphur, at high inlet sulphate. Experiments on abiotic oxidation of sulphide to sulphur revealed maximum oxidation taking place at an anodic potential of -200 mV. More than 99% sulphate removal could be achieved in a MFC with inlet COD/sulphate of 0.75, giving around 1.33 kg/m 3  day COD removal. Bioelectrochemical conversion of sulphate facilitating sulphur recovery in a MFC makes it an interesting pollution abatement technique.

  15. Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide

    Science.gov (United States)

    Glass, Jennifer B.; Orphan, Victoria J.

    2011-01-01

    Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO2 cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH4), and nitrous oxide (N2O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH4 and N2O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH4 oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N2O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N2O reductase, the only known enzyme capable of microbial N2O conversion to N2, have only been found in classical denitrifiers. Accumulation of N2O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N2O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide

  16. Modelling the bioconversion of cellulose into microbial products: rate limitations

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, J A

    1984-12-01

    The direct bioconversion of cellulose into microbial products carried out as a simultaneous saccharification and fermentation has a strong effect on the rates of cellulose degradation because cellobiose and glucose inhibition of the reaction are circumvented. A general mathematical model of the kinetics of this bioconversion has been developed. Its use in representing aerobic systems and in the analysis of the kinetic limitations has been investigated. Simulations have been carried out to find the rate limiting steps in slow fermentations and in rapid ones as determined by the specific rate of product formation. The requirements for solubilising and depolymerising enzyme activities (cellulase and cellobiase) in these systems has been determined. The activity that have been obtained for fungal cellulases are adequate for the kinetic requirements of the fastest fermentative strains. The results also show that for simultaneous bioconversions where strong cellobiose and glucose inhibition is overcome, no additional cellobiase is necessary to increase the rate of product formation. These results are useful for the selection of cellolytic micro-organisms and in the determination of enzymes to be cloned in recombinant strains. 17 references.

  17. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Hollister, Emily B.; Gentry, Terry J. [Texas A and M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Forrest, Andrea K.; Holtzapple, Mark T. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Wilkinson, Heather H.; Ebbole, Daniel J. [Texas A and M Univ., College Station, TX (United States). Dept. of Plant Pathology and Microbiology; Malfatti, Stephanie A.; Tringe, Susannah G. [DOE Joint Genome Institute, Walnut Creek, CA (United States)

    2010-09-15

    The carboxylate platform utilizes a mixed microbial community to convert lignocellulosic biomass into chemicals and fuels. While much of the platform is well understood, little is known about its microbiology. Mesophilic (40 C) and thermophilic (55 C) fermentations employing a sorghum feedstock and marine sediment inoculum were profiled using 16S rRNA tag-pyrosequencing over the course of a 30-day incubation. The contrasting fermentation temperatures converted similar amounts of biomass, but the mesophilic community was significantly more productive, and the two temperatures differed significantly with respect to propionic and butyric acid production. Pyrotag sequencing revealed the presence of dynamic communities that responded rapidly to temperature and changed substantially over time. Both temperatures were dominated by bacteria resembling Clostridia, but they shared few taxa in common. The species-rich mesophilic community harbored a variety of Bacteroidetes, Actinobacteria, and {gamma}-Proteobacteria, whereas the thermophilic community was composed mainly of Clostridia and Bacilli. Despite differences in composition and productivity, similar patterns of functional class dynamics were observed. Over time, organisms resembling known cellulose degraders decreased in abundance, while organisms resembling known xylose degraders increased. Improved understanding of the carboxylate platform's microbiology will help refine platform performance and contribute to our growing knowledge regarding biomass conversion and biofuel production processes. (orig.)

  18. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Hollister, Emily B; Gentry, Terry J [Texas A and M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Forrest, Andrea K; Holtzapple, Mark T [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Wilkinson, Heather H; Ebbole, Daniel J [Texas A and M Univ., College Station, TX (United States). Dept. of Plant Pathology and Microbiology; Malfatti, Stephanie A; Tringe, Susannah G [DOE Joint Genome Institute, Walnut Creek, CA (United States)

    2010-09-15

    The carboxylate platform utilizes a mixed microbial community to convert lignocellulosic biomass into chemicals and fuels. While much of the platform is well understood, little is known about its microbiology. Mesophilic (40 C) and thermophilic (55 C) fermentations employing a sorghum feedstock and marine sediment inoculum were profiled using 16S rRNA tag-pyrosequencing over the course of a 30-day incubation. The contrasting fermentation temperatures converted similar amounts of biomass, but the mesophilic community was significantly more productive, and the two temperatures differed significantly with respect to propionic and butyric acid production. Pyrotag sequencing revealed the presence of dynamic communities that responded rapidly to temperature and changed substantially over time. Both temperatures were dominated by bacteria resembling Clostridia, but they shared few taxa in common. The species-rich mesophilic community harbored a variety of Bacteroidetes, Actinobacteria, and {gamma}-Proteobacteria, whereas the thermophilic community was composed mainly of Clostridia and Bacilli. Despite differences in composition and productivity, similar patterns of functional class dynamics were observed. Over time, organisms resembling known cellulose degraders decreased in abundance, while organisms resembling known xylose degraders increased. Improved understanding of the carboxylate platform's microbiology will help refine platform performance and contribute to our growing knowledge regarding biomass conversion and biofuel production processes. (orig.)

  19. Alignment of microbial fitness with engineered product formation: obligatory coupling between acetate production and photoautotrophic growth.

    Science.gov (United States)

    Du, Wei; Jongbloets, Joeri A; van Boxtel, Coco; Pineda Hernández, Hugo; Lips, David; Oliver, Brett G; Hellingwerf, Klaas J; Branco Dos Santos, Filipe

    2018-01-01

    Microbial bioengineering has the potential to become a key contributor to the future development of human society by providing sustainable, novel, and cost-effective production pipelines. However, the sustained productivity of genetically engineered strains is often a challenge, as spontaneous non-producing mutants tend to grow faster and take over the population. Novel strategies to prevent this issue of strain instability are urgently needed. In this study, we propose a novel strategy applicable to all microbial production systems for which a genome-scale metabolic model is available that aligns the production of native metabolites to the formation of biomass. Based on well-established constraint-based analysis techniques such as OptKnock and FVA, we developed an in silico pipeline-FRUITS-that specifically 'Finds Reactions Usable in Tapping Side-products'. It analyses a metabolic network to identify compounds produced in anabolism that are suitable to be coupled to growth by deletion of their re-utilization pathway(s), and computes their respective biomass and product formation rates. When applied to Synechocystis sp. PCC6803, a model cyanobacterium explored for sustainable bioproduction, a total of nine target metabolites were identified. We tested our approach for one of these compounds, acetate, which is used in a wide range of industrial applications. The model-guided engineered strain shows an obligatory coupling between acetate production and photoautotrophic growth as predicted. Furthermore, the stability of acetate productivity in this strain was confirmed by performing prolonged turbidostat cultivations. This work demonstrates a novel approach to stabilize the production of target compounds in cyanobacteria that culminated in the first report of a photoautotrophic growth-coupled cell factory. The method developed is generic and can easily be extended to any other modeled microbial production system.

  20. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  1. Microbial liquefaction of peat for the production of synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekaran, M.

    1988-01-01

    Objectives of this study were: to evaluate the potential of using various microorganisms to hydrolyse and liquify peat; to determine the optimal conditions for peat hydrolysis and liquefaction; to study the co-metabolizable substances; to separate the compounds present in liquified peat by alumina and silica acid chromatography and capillary gas chromatography; and to identify the compounds in liquified peat by capillary GC-Mass spectrometry. Organisms used in the study include: Coprinus comatus, Coriolus hirsutus, Ganoderma lucidum, Lentinus edodes, Lenzites trabea, Phanerochaete chrysosporium, Pleurotus ostreatus, P. sapidus, Polyporus adjustus, Neurospora sitophila, Rhizophus arrhizus, Bacillus subtilis, Acinetobacter sp. and Alcaligenes sp. The fungi were maintained and cultivated in potato dextrose agar at 30 C. The bacteria were maintained in nutrient agar at 30 C. We have also initiated work on coal solubilization in addition to the studies on peat liquefaction. A relatively new substratum or semi-solid base for culture media called Pluronic F-127, or Polyol (BASF, New Jersey). Objectives of this study were: (1) to study the growth patterns of Candida ML 13 on pluronic as substratum; (2) to determine the rate of microbial coal solubilization on pluronic F-127 amended in different growth media; (3) to separate the mycelial mat of Candida ML 13 from unsolubilized coal particles and solubilized coal products from pluronic F-127; (4) to determine the effects of pH on microbial coal solubilization in pluronic F-127 media; (5) the effect of concentration of pluronic F-127 in media on coal solubilization; and, (6) to study the role of extracellular factors secreted by Candida ML 13 on coal solubilization in pluronic F-127 media. Results are discussed. 4 refs.

  2. Productivity of coffee crop (Coffea arabica L.) in conversion to the organic production system

    OpenAIRE

    Malta, Marcelo Ribeiro; Empresa de Pesquisa Agropecuária de Minas Gerais - EPAMIG; Pereira, Rosemary Gualberto Fonseca Alvarenga; Universidade Federal de Lavras - UFLA; Chagas, Sílvio Júlio de Rezende; Empresa de Pesquisa Agropecuária de Minas Gerais - EPAMIG; Guimarães, Rubens José; Universidade Federal de Lavras - UFLA

    2008-01-01

    This experiment was carried out in Lavras, MG, to verify the productivity of coffee crop (Coffea arabica L.) in conversion to the organic production system. The experiment was set in a six-year old coffee crop of the cultivar Catuaí Amarelo IAC 86, with spacing of 4,0 x 0,6 m, previously cultivated under the conventional system. In the organic treatments a 4 x 4 balanced lattice design with 5 replications in a 3 x 2 x 2 factorial scheme was used, besides 4 additional treatments. The f...

  3. Monitoring the Perturbation of Soil and Groundwater Microbial Communities Due to Pig Production Activities

    KAUST Repository

    Hong, Pei-Ying; Yannarell, A. C.; Dai, Q.; Ekizoglu, M.; Mackie, R. I.

    2013-01-01

    This study aimed to determine if biotic contaminants originating from pig production farms are disseminated into soil and groundwater microbial communities. A spatial and temporal sampling of soil and groundwater in proximity to pig production farms

  4. Plasma thermal conversion of bio-oil for hydrogen production

    International Nuclear Information System (INIS)

    Guenadou, David; Lorcet, Helene; Peybernes, Jean; Catoire, Laurent; Osmont, Antoine; Gokalp, Iskender

    2012-01-01

    Numerous processes exist or are proposed for the energetic conversion of biomass. The use of thermal plasma is proposed in the frame of the GALACSY project for the conversion of bio-oil to hydrogen and carbon monoxide. For this purpose, an experimental apparatus has been built. The feasibility of this conversion at very high temperature, as encountered in thermal plasma, is examined both experimentally and numerically. This zero dimensional study tends to show that a high temperature (around 2500 K or above) is needed to ensure a high yield of hydrogen (about 50 mol%) and about 95 mol% of CO+H 2 . Predicted CO+H 2 yield and CO/H 2 ratio are consistent with measurements. It is also expected that the formation of particles and tars is hampered. Thermodynamic data of selected bio-oil components are provided in the CHEMKINNASA format. (authors)

  5. D-malate production by permeabilized Pseudomonas pseudoalcaligenes; optimization of conversion and biocatalyst productivity.

    Science.gov (United States)

    Michielsen, M J; Frielink, C; Wijffels, R H; Tramper, J; Beeftink, H H

    2000-04-14

    For the development of a continuous process for the production of solid D-malate from a Ca-maleate suspension by permeabilized Pseudomonas pseudoalcaligenes, it is important to understand the effect of appropriate process parameters on the stability and activity of the biocatalyst. Previously, we quantified the effect of product (D-malate2 -) concentration on both the first-order biocatalyst inactivation rate and on the biocatalytic conversion rate. The effects of the remaining process parameters (ionic strength, and substrate and Ca2 + concentration) on biocatalyst activity are reported here. At (common) ionic strengths below 2 M, biocatalyst activity was unaffected. At high substrate concentrations, inhibition occurred. Ca2+ concentration did not affect biocatalyst activity. The kinetic parameters (both for conversion and inactivation) were determined as a function of temperature by fitting the complete kinetic model, featuring substrate inhibition, competitive product inhibition and first-order irreversible biocatalyst inactivation, at different temperatures simultaneously through three extended data sets of substrate concentration versus time. Temperature affected both the conversion and inactivation parameters. The final model was used to calculate the substrate and biocatalyst costs per mmol of product in a continuous system with biocatalyst replenishment and biocatalyst recycling. Despite the effect of temperature on each kinetic parameter separately, the overall effect of temperature on the costs was found to be negligible (between 293 and 308 K). Within pertinent ranges, the sum of the substrate and biocatalyst costs per mmol of product was calculated to decrease with the influent substrate concentration and the residence time. The sum of the costs showed a minimum as a function of the influent biocatalyst concentration.

  6. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    Science.gov (United States)

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation

    DEFF Research Database (Denmark)

    Martinez Ruiz, José Luis; Liu, Lifang; Petranovic, Dina

    2012-01-01

    Since the approval of recombinant insulin from Escherichia coli for its clinical use in the early 1980s, the amount of recombinant pharmaceutical proteins obtained by microbial fermentations has significantly increased. The recent advances in genomics together with high throughput analysis...... of recombinant therapeutics using yeast Saccharomyces cerevisiae as a model platform, and discusses the future potential of this platform for production of blood proteins and substitutes....

  8. Catalytic conversion of CO2 into valuable products

    International Nuclear Information System (INIS)

    Pham-Huu, C.; Ledoux, M.J.

    2008-01-01

    inertness the recovery of the active phase is extremely easy, i.e. acidic or basic washing, which reduce the cost investment of the process for the final spent catalyst disposal and the fully re-use of the support. The high thermal conductivity of the SiC support could also allow the reduction of the temperature loss during the reaction taken into account the high endothermicity of the reaction. The aim of the presentation is to report the synthesis and use of SiC-based catalyst for CO 2 reforming which allows the conversion of CO 2 into a more valuable products for further fuel processing via the Fischer-Tropsch synthesis

  9. Effect of different fertilizers on the microbial activity and productivity ...

    African Journals Online (AJOL)

    This study was conducted to evaluate the effect of the application of different rates of mineral nitrogen, well rotten farmyard manure and Klebsiella planticola SL09- based microbial biofertilizer (enteroplantin) on the count of soil microorganisms (total microbial count, counts of Azotobacter, oligonitrophilic bacteria, fungi and ...

  10. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system.

    Science.gov (United States)

    Ajayi, Folusho Francis; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Choi, Mi-Jin; Chang, In Seop; Kim, In S

    2010-03-01

    Bio-hydrogen production in light-assisted microbial electrolysis cell (MEC) with a dye sensitized solar cell (DSSC) was optimized by connecting multiple MECs to a single dye (N719) sensitized solar cell (V(OC) approx. 0.7 V). Hydrogen production occurred simultaneously in all the connected MECs when the solar cell was irradiated with light. The amount of hydrogen produced in each MEC depends on the activity of the microbial catalyst on their anode. Substrate (acetate) to hydrogen conversion efficiencies ranging from 42% to 65% were obtained from the reactors during the experiment. A moderate light intensity of 430 W m(-2) was sufficient for hydrogen production in the coupled MEC-DSSC. A higher light intensity of 915 W m(-2), as well as an increase in substrate concentration, did not show any improvement in the current density due to limitation caused by the rate of microbial oxidation on the anode. A significant reduction in the surface area of the connected DSSC only showed a slight effect on current density in the coupled MEC-DSSC system when irradiated with light.

  11. Microbial status and product labelling of 58 original tattoo inks.

    Science.gov (United States)

    Høgsberg, T; Saunte, D M; Frimodt-Møller, N; Serup, J

    2013-01-01

    European Council resolutions on tattoo ink introduce sterility and preservation of inks to protect customers. Inks used in Denmark are typically purchased over the internet from international suppliers and manufacturers from the US and the UK. In Denmark tattoo inks are regulated and labelled according to REACH as if they were plain chemicals. The objective of this study was to check the microbial product safety of unopened and opened tattoo ink stock bottles. Packaging, labelling, preservation, sterility and contamination with micro-organisms were studied. Physical inspection and culture of bacteria and fungi. Six of 58 unopened stock bottles (10%) were contaminated with bacteria and one of six samples (17%) of previously used stock bottles was contaminated. The bacterial species represented bacteria considered pathogenic in humans as well as non-pathogenic environmental bacteria. Yeast or moulds were detected in none of the samples. A total of 31% of the manufacturers informed only about the brand name. No information about content, sterility, risks or expiry date was indicated on the label. A total of 42% claimed sterility of their inks. A total of 54% labelled a maximum period of durability of typically 2-3 years. The physical sealing was leaking in 28% of the products. The European Council resolutions regarding safety of tattoo inks are not effective. Stock bottles of tattoo ink may contain bacteria pathogenic to humans and environmental bacteria, and packaging, labelling and preservation of inks are of inadequate quality. Claim of sterility can be erroneous. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  12. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  13. The kinetics of steam-carbon dioxide conversion, rational ways and production catalysts of process gas

    International Nuclear Information System (INIS)

    Khamroev, F.B.

    2016-01-01

    The purpose of the present work is to study the kinetics of steam-carbon dioxide conversion, rational ways and production catalysts of process gas. The experimental equation of steam-carbon methane conversion, heat stability increasing and catalyst efficiency, decreasing of hydrodynamical resistance of catalyst layer were determined.

  14. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Oguntimein, Gbekeloluwa B. [Morgan State Univ., Baltimore, MD (United States); Rodriguez, Jr., Miguel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); National Lab., Oak Ridge, TN (United States). BioEnergy Science Center; Dumitrache, Alexandru [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); National Lab., Oak Ridge, TN (United States). BioEnergy Science Center; Shollenberger, Todd [National Renewable Energy Lab. (NREL), Golden, CO (United States); Decker, Stephen R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davison, Brian H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); National Lab., Oak Ridge, TN (United States). BioEnergy Science Center; Brown, Steven D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); National Lab., Oak Ridge, TN (United States). BioEnergy Science Center; LanzaTech, Inc., Skokie, IL (United States)

    2017-11-09

    Here, to develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential. Clostridium thermocellum parent Δhpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentations when compared to the Δhpt strain. A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.

  15. The Impact of Selection, Gene Conversion, and Biased Sampling on the Assessment of Microbial Demography.

    Science.gov (United States)

    Lapierre, Marguerite; Blin, Camille; Lambert, Amaury; Achaz, Guillaume; Rocha, Eduardo P C

    2016-07-01

    Recent studies have linked demographic changes and epidemiological patterns in bacterial populations using coalescent-based approaches. We identified 26 studies using skyline plots and found that 21 inferred overall population expansion. This surprising result led us to analyze the impact of natural selection, recombination (gene conversion), and sampling biases on demographic inference using skyline plots and site frequency spectra (SFS). Forward simulations based on biologically relevant parameters from Escherichia coli populations showed that theoretical arguments on the detrimental impact of recombination and especially natural selection on the reconstructed genealogies cannot be ignored in practice. In fact, both processes systematically lead to spurious interpretations of population expansion in skyline plots (and in SFS for selection). Weak purifying selection, and especially positive selection, had important effects on skyline plots, showing patterns akin to those of population expansions. State-of-the-art techniques to remove recombination further amplified these biases. We simulated three common sampling biases in microbiological research: uniform, clustered, and mixed sampling. Alone, or together with recombination and selection, they further mislead demographic inferences producing almost any possible skyline shape or SFS. Interestingly, sampling sub-populations also affected skyline plots and SFS, because the coalescent rates of populations and their sub-populations had different distributions. This study suggests that extreme caution is needed to infer demographic changes solely based on reconstructed genealogies. We suggest that the development of novel sampling strategies and the joint analyzes of diverse population genetic methods are strictly necessary to estimate demographic changes in populations where selection, recombination, and biased sampling are present. © The Author 2016. Published by Oxford University Press on behalf of the Society for

  16. Effects of shearing on biogas production and microbial community structure during anaerobic digestion with recuperative thickening.

    Science.gov (United States)

    Yang, Shufan; Phan, Hop V; Bustamante, Heriberto; Guo, Wenshan; Ngo, Hao H; Nghiem, Long D

    2017-06-01

    Recuperative thickening can intensify anaerobic digestion to produce more biogas and potentially reduce biosolids odour. This study elucidates the effects of sludge shearing during the thickening process on the microbial community structure and its effect on biogas production. Medium shearing resulted in approximately 15% increase in biogas production. By contrast, excessive or high shearing led to a marked decrease in biogas production, possibly due to sludge disintegration and cell lysis. Microbial analysis using 16S rRNA gene amplicon sequencing showed that medium shearing increased the evenness and diversity of the microbial community in the anaerobic digester, which is consistent with the observed improved biogas production. By contrast, microbial diversity decreased under either excessive shearing or high shearing condition. In good agreement with the observed decrease in biogas production, the abundance of Bacteroidales and Syntrophobaterales (which are responsible for hydrolysis and acetogenesis) decreased due to high shearing during recuperative thickening. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  17. Effect of different fertilizers on the microbial activity and productivity ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... randomized block design in four replications at the experimental field of the Biotechnical Faculty,. Podgorica in ..... (plants, animals and humans) through the food chain. In general, the ... Microbial ecology of the rhizosphere.

  18. Microbial desalination cells for energy production and desalination

    KAUST Repository

    Kim, Younggy; Logan, Bruce E.

    2013-01-01

    Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving

  19. Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches.

    Science.gov (United States)

    Aura, Anna-Marja; Mattila, Ismo; Hyötyläinen, Tuulia; Gopalacharyulu, Peddinti; Cheynier, Veronique; Souquet, Jean-Marc; Bes, Magali; Le Bourvellec, Carine; Guyot, Sylvain; Orešič, Matej

    2013-03-01

    Syrah red grapes are used in the production of tannin-rich red wines. Tannins are high molecular weight molecules, proanthocyanidins (PAs), and poorly absorbed in the upper intestine. In this study, gut microbial metabolism of Syrah grape phenolic compounds was investigated. Syrah grape pericarp was subjected to an enzymatic in vitro digestion model, and red wine and grape skin PA fraction were prepared. Microbial conversion was screened using an in vitro colon model with faecal microbiota, by measurement of short-chain fatty acids by gas chromatography (GC) and microbial phenolic metabolites using GC with mass detection (GC-MS). Red wine metabolites were further profiled using two-dimensional GC mass spectrometry (GCxGC-TOFMS). In addition, the effect of PA structure and dose on conversion efficiency was investigated by GC-MS. Red wine exhibited a higher degree of C1-C3 phenolic acid formation than PA fraction or grape pericarp powders. Hydroxyphenyl valeric acid (flavanols and PAs as precursors) and 3,5-dimethoxy-4-hydroxybenzoic acid (anthocyanin as a precursor) were identified from the red wine metabolite profile. In the absence of native grape pericarp or red wine matrix, the isolated PAs were found to be effective in the dose-dependent inhibition of microbial conversions and short-chain fatty acid formation. Metabolite profiling was complementary to targeted analysis. The identified metabolites had biological relevance, because the structures of the metabolites resembled fragments of their grape phenolic precursors or were in agreement with literature data.

  20. Microbial electrosynthesis of biochemicals

    NARCIS (Netherlands)

    Bajracharya, S.

    2016-01-01

    Microbial electrosynthesis (MES) is an electricity-driven production of chemicals from low-value waste using microorganisms as biocatalysts. MES from CO2 comprises conversion of CO2 to multi-carbon compounds employing microbes at the cathode which use electricity as an energy source. This thesis

  1. Influence of phosphorus precipitation on permeability and soluble microbial product concentration in a membrane bioreactor

    Czech Academy of Sciences Publication Activity Database

    Gómez, M.; Dvořák, L.; Růžičková, I.; Wanner, J.; Holba, Marek; Sýkorová, E.

    2013-01-01

    Roč. 129, Feb 2013 (2013), s. 164-169 ISSN 0960-8524 Institutional support: RVO:67985939 Keywords : membrane bioreactor * coagulant adition * soluble microbial products Subject RIV: EF - Botanics Impact factor: 5.039, year: 2013

  2. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.; Call, Douglas; Cheng, Shaoan; Hamelers, Hubertus V. M.; Sleutels, Tom H. J. A.; Jeremiasse, Adriaan W.; Rozendal, René A.

    2008-01-01

    production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here

  3. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2014-01-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve

  4. Microbial production host selection for converting second-generation feedstocks into bioproducts

    NARCIS (Netherlands)

    Rumbold, K.; Buijsen, H.J.J. van; Overkamp, K.M.; Groenestijn, J.W. van; Punt, P.J.; Werf, M.J.V.D.

    2009-01-01

    Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of

  5. Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells

    KAUST Repository

    Liu, Jia; Geise, Geoffrey M.; Luo, Xi; Hou, Huijie; Zhang, Fang; Feng, Yujie; Hickner, Michael A.; Logan, Bruce E.

    2014-01-01

    Power production in microbial reverse-electrodialysis cells (MRCs) can be limited by the internal resistance of the reverse electrodialysis stack. Typical MRC stacks use non-conductive spacers that block ion transport by the so-called spacer shadow

  6. [Fermentation production of microbial catalase and its application in textile industry].

    Science.gov (United States)

    Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2010-11-01

    Microbial catalase is an important industrial enzyme that catalyzes the decomposition of hydrogen peroxide to water and oxygen. This enzyme has great potential of application in food, textile and pharmaceutical industries. The production of microbial catalase has been significantly improved thanks to advances in bioprocess engineering and genetic engineering. In this paper, we review the progresses in fermentation production of microbial catalase and its application in textile industry. Among these progresses, we will highlight strain isolation, substrate and environment optimization, enzyme induction, construction of engineering strains and application process optimization. Meanwhile, we also address future research trends for microbial catalase production and its application in textile industry. Molecular modification (site-directed mutagenesis and directed revolution) will endue catalase with high pH and temperature stabilities. Improvement of catalase production, based on the understanding of induction mechanism and the process control of recombinant stain fermentation, will further accelerate the application of catalase in textile industry.

  7. Probabilistic quantitative microbial risk assessment model of norovirus from wastewater irrigated vegetables in Ghana using genome copies and fecal indicator ratio conversion for estimating exposure dose

    DEFF Research Database (Denmark)

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K.

    2017-01-01

    physical and environmental factors that might influence the reliability of using indicator organisms in microbial risk assessment. The challenges facing analytical studies on virus enumeration (genome copies or particles) have contributed to the already existing lack of data in QMRA modelling. This study......The need to replace the commonly applied fecal indicator conversions ratio (an assumption of 1:10− 5 virus to fecal indicator organism) in Quantitative Microbial Risk Assessment (QMRA) with models based on quantitative data on the virus of interest has gained prominence due to the different...... attempts to fit a QMRA model to genome copies of norovirus data. The model estimates the risk of norovirus infection from the intake of vegetables irrigated with wastewater from different sources. The results were compared to the results of a corresponding model using the fecal indicator conversion ratio...

  8. Design of a microbial fuel cell and its transition to microbial electrolytic cell for hydrogen production by electrohydrogenesis.

    Science.gov (United States)

    Gupta, Pratima; Parkhey, Piyush; Joshi, Komal; Mahilkar, Anjali

    2013-10-01

    Anaerobic bacteria were isolated from industrial wastewater and soil samples and tested for exoelectrogenic activity by current production in double chambered microbial fuel cell (MFC), which was further transitioned into a single chambered microbial electrolytic cell to test hydrogen production by electrohydrogenesis. Of all the cultures, the isolate from industrial water sample showed the maximum values for current = 0.161 mA, current density = 108.57 mA/m2 and power density = 48.85 mW/m2 with graphite electrode. Maximum voltage across the cell, however, was reported by the isolate from sewage water sample (506 mv) with copper as electrode. Tap water with KMnO4 was the best cathodic electrolyte as the highest values for all the measured MFC parameters were reported with it. Once the exoelectrogenic activity of the isolates was confirmed by current production, these were tested for hydrogen production in a single chambered microbial electrolytic cell (MEC) modified from the MFC. Hydrogen production was reported positive from co-culture of isolates of both the water samples and co-culture of one soil and one water sample. The maximum rate and yield of hydrogen production was 0.18 m3H2/m3/d and 3.2 mol H2/mol glucose respectively with total hydrogen production of 42.4 mL and energy recovery of 57.4%. Cumulative hydrogen production for a five day cycle of MEC operation was 0.16 m3H2/m3/d.

  9. Temperature dependence of bioelectrochemical CO2 conversion and methane production with a mixed-culture biocathode.

    Science.gov (United States)

    Yang, Hou-Yun; Bao, Bai-Ling; Liu, Jing; Qin, Yuan; Wang, Yi-Ran; Su, Kui-Zu; Han, Jun-Cheng; Mu, Yang

    2018-02-01

    This study evaluated the effect of temperature on methane production by CO 2 reduction during microbial electrosynthesis (MES) with a mixed-culture biocathode. Reactor performance, in terms of the amount and rate of methane production, current density, and coulombic efficiency, was compared at different temperatures. The microbial properties of the biocathode at each temperature were also analyzed by 16S rRNA gene sequencing. The results showed that the optimum temperature for methane production from CO 2 reduction in MES with a mixed-culture cathode was 50°C, with the highest amount and rate of methane production of 2.06±0.13mmol and 0.094±0.01mmolh -1 , respectively. In the mixed-culture biocathode MES, the coulombic efficiency of methane formation was within a range of 19.15±2.31% to 73.94±2.18% due to by-product formation at the cathode, including volatile fatty acids and hydrogen. Microbial analysis demonstrated that temperature had an impact on the diversity of microbial communities in the biofilm that formed on the MES cathode. Specifically, the hydrogenotrophic methanogen Methanobacterium became the predominant archaea for methane production from CO 2 reduction, while the abundance of the aceticlastic methanogen Methanosaeta decreased with increased temperature. Copyright © 2017. Published by Elsevier B.V.

  10. Reprint of Design of synthetic microbial communities for biotechnological production processes.

    Science.gov (United States)

    Jagmann, Nina; Philipp, Bodo

    2014-12-20

    In their natural habitats microorganisms live in multi-species communities, in which the community members exhibit complex metabolic interactions. In contrast, biotechnological production processes catalyzed by microorganisms are usually carried out with single strains in pure cultures. A number of production processes, however, may be more efficiently catalyzed by the concerted action of microbial communities. This review will give an overview of organismic interactions between microbial cells and of biotechnological applications of microbial communities. It focuses on synthetic microbial communities that consist of microorganisms that have been genetically engineered. Design principles for such synthetic communities will be exemplified based on plausible scenarios for biotechnological production processes. These design principles comprise interspecific metabolic interactions via cross-feeding, regulation by interspecific signaling processes via metabolites and autoinducing signal molecules, and spatial structuring of synthetic microbial communities. In particular, the implementation of metabolic interdependencies, of positive feedback regulation and of inducible cell aggregation and biofilm formation will be outlined. Synthetic microbial communities constitute a viable extension of the biotechnological application of metabolically engineered single strains and enlarge the scope of microbial production processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels

    Directory of Open Access Journals (Sweden)

    Fu-Xing Niu

    2017-09-01

    Full Text Available Isoprenoids are the most abundant and highly diverse group of natural products. Many isoprenoids have been used for pharmaceuticals, nutraceuticals, flavors, cosmetics, food additives and biofuels. Carotenoids and isoprenoid-based biofuels are two classes of important isoprenoids. These isoprenoids have been produced microbially through metabolic engineering and synthetic biology efforts. Herein, we briefly review the engineered biosynthetic pathways in well-characterized microbial systems for the production of carotenoids and several isoprenoid-based biofuels.

  12. Effect of Pulp mill sludge on soil characteristics, microbial diversity and vegetal production of Lollium perene

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, F.; Cea, M.; Diez, M. C.

    2009-07-01

    The Chemical properties of the sludge (High organic matter content, pH, buffer capacity, nitrogen and phosphorous level, and low concentration of trace heavy metals and organic pollutants) suggest that this material may represent a valuable resource as soil amendment, improving soil characteristics, microbial diversity and vegetal production of mill sludge addition to volcanic soil (Andisol) on soil characteristics, microbial diversity and vegetal production of Lollium perenne, in field assays. (Author)

  13. Organic acid production from starchy waste by rumen derived microbial communities

    OpenAIRE

    Ayudthaya, S. P. N.; Van De Weijer, Antonius H. P.; Van Gelder, Antonie H.; Stams, Alfons Johannes Maria; De Vos, Willem M.; Plugge, Caroline M.

    2017-01-01

    Microbiology Centennial Symposium 2017 - Exploring Microbes for the Quality of Life (Book of Abstracts) Converting organic waste to energy carriers and valuable products such as organic acids (OA) using microbial fermentation is one of the sustainable options of renewable energy. Substrate and inoculum are important factors in optimizing the fermentation. In this study, we investigated organic acid production and microbial composition shift during the fermentation of starchy (p...

  14. Bioassays for risk assessment of coal conversion products

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, S.; Sinder, C.; Pfeifer, F.; Klein, J. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1999-07-01

    Traditional as well as biotechnological processing coal leads to complex mixtures of products. Besides chemical and physical characterization, which provides the information for product application, there is a need for bioassays to monitor properties that are probably toxic, mutagenic or cancerogenic. Investigations carried out focused on the selection, adaptation and validation of bioassays for the sensitive estimation of toxic effects. Organisms like bacteria, Daphnia magna and Scenedesmus subspicatus, representing different complexities in the biosphere, were selected as test systems for ecotoxicological and mutagenicity studies. The results obtained indicate that bioassays are, in principle, suitable tools for characterization and evaluation of coal-derived substances and bioconversion products. Using coal products, coal-relevant model compounds and bioconversion products, data for risk assessment are presented. (orig.)

  15. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    Science.gov (United States)

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Waste valorization by biotechnological conversion into added value products.

    Science.gov (United States)

    Liguori, Rossana; Amore, Antonella; Faraco, Vincenza

    2013-07-01

    Fossil fuel reserves depletion, global warming, unrelenting population growth, and costly and problematic waste recycling call for renewable resources of energy and consumer products. As an alternative to the 100 % oil economy, production processes based on biomass can be developed. Huge amounts of lignocellulosic wastes are yearly produced all around the world. They include agricultural residues, food farming wastes, "green-grocer's wastes," tree pruning residues, and organic and paper fraction of urban solid wastes. The common ways currently adopted for disposal of these wastes present environmental and economic disadvantages. As an alternative, processes for adding value to wastes producing high added products should be developed, that is the upgrading concept: adding value to wastes by production of a product with desired reproducible properties, having economic and ecological advantages. A wide range of high added value products, such as enzymes, biofuels, organic acids, biopolymers, bioelectricity, and molecules for food and pharmaceutical industries, can be obtained by upgrading solid wastes. The most recent advancements of their production by biotechnological processes are overviewed in this manuscript.

  17. CONVERSION PRODUCT STRUCTURE AS TOOL TO INCREASE YIELD PROCESSING ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    A. I. Khorev

    2014-01-01

    Full Text Available The authors' analysis of the performance of organizations, processing raw materials of agricultural origin, in particular, dealing with meat processing, identified the need to develop tools to increase their profitability. Unlike common approaches to assessing the profitability of the processing organizations, taking into account only the interests of the organization's leadership and buyers of products, the authors proposed and implemented a concept based on the interests of participants in the triune balance business activities: owners of capital, management organizations and consumers. As one of the tools for improving the yield of processing organizations are invited to transform their product mix of economic evaluations of profitability of each product line positions. Russian researchers income from product sales are traditionally measured by indicators such as net income, income from sales, profit margins and profitability level - in terms of return on sales. The disadvantage of using these indicators, according to the authors, is their lack of objectivity in the evaluation of the effectiveness of investment business owners. In this work was used unconventional and non-proliferation in the Russian practice, the rate of economic value added (EVA, a built - in system of profitability assortment positions. As indicators, the production of a particular product line units proposed and used two quantitative indicators - EVA level per unit of production and profitability of production (for EVA, as well as a quality parameter - the level of demand. Developed by the evaluation program transformation product structure represented as a matrix management capabilities, allowing to achieve a balance of interests of the triune main participants in business activity.

  18. Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production.

    Science.gov (United States)

    Ko, Ja Kyong; Lee, Sun-Mi

    2018-04-01

    Cellulosic fuels are expected to have great potential industrial applications in the near future, but they still face technical challenges to become cost-competitive fuels, thus presenting many opportunities for improvement. The economical production of viable biofuels requires metabolic engineering of microbial platforms to convert cellulosic biomass into biofuels with high titers and yields. Fortunately, integrating traditional and novel engineering strategies with advanced engineering toolboxes has allowed the development of more robust microbial platforms, thus expanding substrate ranges. This review highlights recent trends in the metabolic engineering of microbial platforms, such as the industrial yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, for the production of renewable fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hydrogen production from biomass by thermochemical recuperative energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, C.; Araki, K.; Yamaguchi, Y.; Tsutsumi, A. [Tokyo Univ. (Japan). Dept. of Chemical System Engineering

    2002-07-01

    The authors conducted, using a thermogravimetric reactor, a kinetic study of production of thermochemical recuperative hydrogen from biomass. The four different biomass materials used were: cellulose, lignin, metroxylon stem, and coconut husk. Under both rapid heating and slow heating conditions, the weight changes of the biomass samples during the steam gasification or pyrolysis were measured at 973 Kelvin. Simultaneously, measurements of the evolution rates of low-molecular-weight gas products such as hydrogen, methane, carbon monoxide, and carbon dioxide were taken with the help of a mass spectrometer and a micro gas chromatograph (GC). The steam gasification of char significantly increased the amount of hydrogen and carbon dioxide production. The results also indicated that at higher heating rate, the cold gas efficiency of steam gasification was increased. This can be explained by the suppression of the tar production at lower temperature. 25 refs., 2 tabs., 10 figs.

  20. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  1. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs

    Directory of Open Access Journals (Sweden)

    P. K. Gao

    2015-06-01

    Full Text Available Microbial communities in injected water are expected to have significant influence on those of reservoir strata in long-term water flooding petroleum reservoirs. To investigate the similarities and differences in microbial communities in injected water and reservoir strata, high-throughput sequencing of microbial partial 16S rRNA of the water samples collected from the wellhead and downhole of injection wells, and from production wells in a homogeneous sandstone reservoir and a heterogeneous conglomerate reservoir were performed. The results indicate that a small number of microbial populations are shared between the water samples from the injection and production wells in the sandstone reservoir, whereas a large number of microbial populations are shared in the conglomerate reservoir. The bacterial and archaeal communities in the reservoir strata have high concentrations, which are similar to those in the injected water. However, microbial population abundance exhibited large differences between the water samples from the injection and production wells. The number of shared populations reflects the influence of microbial communities in injected water on those in reservoir strata to some extent, and show strong association with the unique variation of reservoir environments.

  2. Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal

    Science.gov (United States)

    Acetone butanol ethanol (ABE) was produced in an integrated continuous fermentation and product recovery system using a microbial strain Clostridium beijerinckii BA101 for ABE production and fermentation gases (CO2 and H2) for product removal by gas stripping. This represents a continuation of our ...

  3. Evaluation of microbial content of some soybean milk products ...

    African Journals Online (AJOL)

    Evaluating the microbiological content of soybean milk, highly consumed by the public is the aim of this research work. Ten samples of soybean milk, locally prepared by different manufacturers were used for the study. The microbial load and identity of the microorganisms present were determined using standard ...

  4. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    SAM

    3Department of Social Sciences, University of Rwanda, P.O. Box 117 Butare, ... pineapple processing Enterprises (SMEs) over a storage duration of 12 months. .... The results were measured against ... analyzed for microbial contamination using International Organization ... All culture media used were manufactured by.

  5. Hydrogen production profiles using furans in microbial electrolysis cells.

    Science.gov (United States)

    Catal, Tunc; Gover, Tansu; Yaman, Bugra; Droguetti, Jessica; Yilancioglu, Kaan

    2017-06-01

    Microbial electrochemical cells including microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) are novel biotechnological tools that can convert organic substances in wastewater or biomass into electricity or hydrogen. Electroactive microbial biofilms used in this technology have ability to transfer electrons from organic compounds to anodes. Evaluation of biofilm formation on anode is crucial for enhancing our understanding of hydrogen generation in terms of substrate utilization by microorganisms. In this study, furfural and hydroxymethylfurfural (HMF) were analyzed for hydrogen generation using single chamber membrane-free MECs (17 mL), and anode biofilms were also examined. MECs were inoculated with mixed bacterial culture enriched using chloroethane sulphonate. Hydrogen was succesfully produced in the presence of HMF, but not furfural. MECs generated similar current densities (5.9 and 6 mA/cm 2 furfural and HMF, respectively). Biofilm samples obtained on the 24th and 40th day of cultivation using aromatic compounds were evaluated by using epi-fluorescent microscope. Our results show a correlation between biofilm density and hydrogen generation in single chamber MECs.

  6. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2010-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treatment of sewage sludge and simultaneous generate electricity. Stable power generation (145±5 mW/m2) was produced continuously from raw sewage sludge for 5.5 days. The corresponding total chemical oxygen demand (TCOD) removal efficiency...... of an effective system to treatment of sewage sludge and simultaneous recover energy....

  7. Impact on TRMM Products of Conversion to Linux

    Science.gov (United States)

    Stocker, Erich Franz; Kwiatkowski, John

    2008-01-01

    In June 2008, TRMM data processing will be assumed by the Precipitation Processing System (PPS). This change will also mean a change in the hardware production environment from an SGI 32 bit IRIX processing environment to a Linux (Beowulf) 64 bit processing environment. This change of platform and operating system addressing (32 to 64) has some influence on data values in the TRMM data products. This paper will describe the transition architecture and scheduling. It will also provide an analysis of what the nature of the product differences will be. It will demonstrate that the differences are not scientifically significant and are generally not visible. However, they are not always identical with those which the SGI would produce.

  8. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

    KAUST Repository

    Wang, Aijie

    2011-03-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25mL) connected in series to an MEC (72mL) produced a maximum of 0.43V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48m 3 H 2/m 3/d (based on the MEC volume), and a yield of 33.2mmol H 2/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3mmol H 2/g cellulose, with a total hydrogen production rate of 0.24m 3 H 2/m 3/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input. © 2010 Elsevier Ltd.

  9. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.

    Science.gov (United States)

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E

    2011-03-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m(3) H(2)/m(3)/d (based on the MEC volume), and a yield of 33.2 mmol H(2)/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H(2)/g cellulose, with a total hydrogen production rate of 0.24 m(3) H(2)/m(3)/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Determining phenols in coal conversion products by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kanitskaya, L.V.; Kushnarev, D.F.; Polonov, V.M.; Kalabin, G.A.

    1985-03-01

    Possibility of using nuclear magnetic resonance spectra of the hydrogen 1 (/sup 1/H) isotope for a qualitative and quantitative evaluation of the hydroxyl groups in the products of coal processing is investigated. The basis of the method is the fact that in NMR spectra of the /sup 1/H in organic compounds with acid protons, the latter are unprotected when strong bases are used as solvents because of intermolecular hydrogen bonds. The resin from the medium-temperature semicoking of Cheremkhovskii coals, its hydrogenate, and phenol fraction of the hydrogenate were used for the investigation. The results were compared with the results of other NMR spectroscopy methods. The high solubility of hexamethanol and the fact that the products can be analyzed in the natural state, are some advantages of the method. 18 references.

  11. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.

    Science.gov (United States)

    Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai

    2015-02-01

    Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Conversational agents for academically productive talk: a comparison of directed and undirected agent interventions

    DEFF Research Database (Denmark)

    Tegos, Stergios; Demetriadis, Stavros N.; Papadopoulos, Pantelis M.

    2016-01-01

    Conversational agents that draw on the framework of academically productive talk (APT) have been lately shown to be effective in helping learners sustain productive forms of peer dialogue in diverse learning settings. Yet, literature suggests that more research is required on how learners respond...

  13. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    Science.gov (United States)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  14. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2011-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treat sewage sludge and simultaneously generate electricity. Stable power generation (145± 5 mW/m2, 470 Ω) was produced continuously from raw sewage sludge for 5.5 days. The maximum power density reached 190±5 mW/m2. The corresponding total...... system to treat sewage sludge and simultaneously recover energy....

  15. Progresses in the stable isotope studies of microbial processes associated with wetland methane production

    International Nuclear Information System (INIS)

    Li Qing; Lin Guanghui

    2013-01-01

    Methane emissions from wetlands play a key role in regulating global atmospheric methane concentration, so better understanding of microbial processes for the methane emission in wetlands is critical for developing process models and reducing uncertainty in global methane emission inventory. In this review, we describe basic microbial processes for wetland methane production and then demonstrate how stable isotope fractionation and stable isotope probing can be used to investigate the mechanisms underlying different methanogenic pathways and to quantify microbial species involved in wetland methane production. When applying stable isotope technique to calculate contributions of different pathways to the total methane production in various wetlands, the technical challenge is how to determine isotopic fractionation factors for the acetate derived methane production and carbon dioxide derived methane production. Although the application of stable isotope probing techniques to study the actual functions of different microbial organisms to methane production process is significantly superior to the traditional molecular biology method, the combination of these two technologies will be crucial for direct linking of the microbial community and functional structure with the corresponding metabolic functions, and provide new ideas for future studies. (authors)

  16. Conversion of hazardous plastic wastes into useful chemical products.

    Science.gov (United States)

    Siddiqui, Mohammad Nahid

    2009-08-15

    Azoisobutylnitrile (AIBN) initiator was used in the treatment of most widely used domestic plastics in lieu of catalysts. The pyrolysis of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), poly-ethylene terephthalate (PET) and polystyrene (PS) plastics with azoisobutylnitrile was carried out individually under nitrogen atmosphere. A series of single (plastic/AIBN) and binary (mixed plastics/AIBN) reactions were carried out in a 25-cm(3) micro-autoclave reactor. The optimum conditions selected for this study were: 5% AIBN by weight of total plastics, 60 min, 650 psi and 420 degrees C. It was found that HDPE, LDPE, PP underwent to a maximum cracking and produced highest amounts of liquid and gaseous products. Pyrolysis of PET and PS plastics with AIBN afforded comparatively significant amount of insoluble organic materials. In other reactions, fixed ratios of mixed plastics were pyrolyzed with AIBN that afforded excellent yields of liquid hydrocarbons. This result shows a very significant increase in the liquid portions of the products on using AIBN in the pyrolysis of plastics. The use of AIBN in the pyrolysis of plastics is seems to be feasible and an environmental friendly alternative to catalytic process for maximizing the liquid fuels or chemical feed stocks in higher amounts.

  17. Photobiological production of hydrogen: a solar energy conversion option

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Lien, S.; Seibert, M.

    1979-01-01

    This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

  18. Conversion of hazardous plastic wastes into useful chemical products

    International Nuclear Information System (INIS)

    Siddiqui, Mohammad Nahid

    2009-01-01

    Azoisobutylnitrile (AIBN) initiator was used in the treatment of most widely used domestic plastics in lieu of catalysts. The pyrolysis of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), poly-ethylene terephthalate (PET) and polystyrene (PS) plastics with azoisobutylnitrile was carried out individually under nitrogen atmosphere. A series of single (plastic/AIBN) and binary (mixed plastics/AIBN) reactions were carried out in a 25-cm 3 micro-autoclave reactor. The optimum conditions selected for this study were: 5% AIBN by weight of total plastics, 60 min, 650 psi and 420 o C. It was found that HDPE, LDPE, PP underwent to a maximum cracking and produced highest amounts of liquid and gaseous products. Pyrolysis of PET and PS plastics with AIBN afforded comparatively significant amount of insoluble organic materials. In other reactions, fixed ratios of mixed plastics were pyrolyzed with AIBN that afforded excellent yields of liquid hydrocarbons. This result shows a very significant increase in the liquid portions of the products on using AIBN in the pyrolysis of plastics. The use of AIBN in the pyrolysis of plastics is seems to be feasible and an environmental friendly alternative to catalytic process for maximizing the liquid fuels or chemical feed stocks in higher amounts.

  19. Microbial conversion of agriculture wastes as a source of energy for developing countries: a case study in Nigeria

    International Nuclear Information System (INIS)

    Ejike, C.; Okereke, G.U.

    1991-01-01

    The direct relationship between level of economic development of any nation and its consumption of energy show that there is improve standard of living with increase in the per capita consumption of energy. In Nigeria, the need to offset some of the economic set backs brought about by increasing fuel costs and chronic lack of foreign currency reserves has compelled her to search for alternative sources of energy. The continuous increase in concern over environmental pollution has also resulted in greater negative cost values of wastes and hence has increased their potential as substrates for bio-derived energy. Cellulosic agricultural wastes are available in Nigeria in large amounts, are ordinarily of little economic value and are non toxic. Nigeria produces about 227,500 tons of animal waste per day implying the bio gas production could be a feasible alternative source of energy. Conversion of agricultural waste to usable energy at commercially acceptable rates involves the availability of raw materials and conversion of same to suitable substrates for fermentation to alcohol and then to bio gas. Saccharomyces spp. produced from fermentation of alcoholic beverages in Northern Nigeria have been used in the production of ethanol from corn corp waste and grass straw. Chromolaena odorata a weed that has no economic value which grows luxuriantly in Nigeria has been used in the generation of bio gas. Drying procedure and pH are among other conditions the affect methane yield. The development of the biotechnology of bio-derivable energy from agricultural waste if effectively harnessed will help to aleviate the energy problems of developing countries. The climate for the promotion of this technology is favourable because of low cost of raw material, high cost of fuel energy, and poor foreign exchange earning capacity of developing countries. (author)

  20. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping

    2013-06-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions representative of seawater and river water). A bipolar membrane (BPM) was placed next to the anode to prevent Cl- contamination and acidification of the anolyte, and to produce protons for HCl recovery. A 5-cell paired reverse-electrodialysis (RED) stack provided the electrical energy required to overcome the BPM over-potential (0.3-0.6 V), making the overall process spontaneous. The MRCC reactor produced electricity (908 mW/m2) as well as concentrated acidic and alkaline solutions, and therefore did not require an external power supply. After a fed-batch cycle, the pHs of the chemical product solutions were 1.65 ± 0.04 and 11.98 ± 0.10, due to the production of 1.35 ± 0.13 mmol of acid, and 0.59 ± 0.14 mmol of alkali. The acid- and alkali-production efficiencies based on generated current were 58 ± 3% and 25 ± 3%. These results demonstrated proof-of-concept acid and alkali production using only renewable energy sources. © 2013 Elsevier B.V.

  1. Production of microbial biosurfactants: Status quo of rhamnolipid and surfactin towards large-scale production.

    Science.gov (United States)

    Henkel, Marius; Geissler, Mareen; Weggenmann, Fabiola; Hausmann, Rudolf

    2017-07-01

    Surfactants are an important class of industrial chemicals. Nowadays oleochemical surfactants such as alkyl polyglycosides (APGs) become increasingly important. This trend towards the utilization of renewable resources continues and consumers increasingly demand for environmentally friendly products. Consequently, research in microbial surfactants has drastically increased in the last years. While for mannosylerythritol lipids and sophorolipids established industrial processes exist, an implementation of other microbially derived surfactants has not yet been achieved. Amongst these biosurfactants, rhamnolipids synthesized by Pseudomonas aeruginosa and surfactin produced by Bacillus subtilis are so far the most analyzed biosurfactants due to their exceptional properties and the concomitant possible applications. In this review, a general overview is given regarding the current status of biosurfactants and benefits attributed to these molecules. Furthermore, the most recent research approaches for both rhamnolipids and surfactin are presented with respect to possible methods for industrial processes and the occurring drawbacks and limitations researchers have to address and overcome. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Microbial community structure and soil pH correspond to methane production in Arctic Alaska soils.

    Science.gov (United States)

    Wagner, Robert; Zona, Donatella; Oechel, Walter; Lipson, David

    2017-08-01

    While there is no doubt that biogenic methane production in the Arctic is an important aspect of global methane emissions, the relative roles of microbial community characteristics and soil environmental conditions in controlling Arctic methane emissions remains uncertain. Here, relevant methane-cycling microbial groups were investigated at two remote Arctic sites with respect to soil potential methane production (PMP). Percent abundances of methanogens and iron-reducing bacteria correlated with increased PMP, while methanotrophs correlated with decreased PMP. Interestingly, α-diversity of the methanogens was positively correlated with PMP, while β-diversity was unrelated to PMP. The β-diversity of the entire microbial community, however, was related to PMP. Shannon diversity was a better correlate of PMP than Simpson diversity across analyses, while rarefied species richness was a weak correlate of PMP. These results demonstrate the following: first, soil pH and microbial community structure both probably control methane production in Arctic soils. Second, there may be high functional redundancy in the methanogens with regard to methane production. Third, iron-reducing bacteria co-occur with methanogens in Arctic soils, and iron-reduction-mediated effects on methanogenesis may be controlled by α- and β-diversity. And finally, species evenness and rare species abundances may be driving relationships between microbial groups, influencing Arctic methane production. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Reusing salad from salad bars – simulating the effects on product loss, microbial safety and product quality

    NARCIS (Netherlands)

    Tromp, S.O.; Rijgersberg, H.; Franz, E.

    2012-01-01

    The goal of this study is to model the effects of reusing salad from salad bars to reduce product loss, while keeping microbial safety and product quality at acceptable levels. We, therefore, expand our previously developed simulation model by incorporating reuse strategies and a quality decay

  4. Innovative microbial fuel cell for electricity production from anaerobic reactors

    DEFF Research Database (Denmark)

    Min, Booki; Angelidaki, Irini

    2008-01-01

    A submersible microbial fuel cell (SMFC) was developed by immersing an anode electrode and a cathode chamber in an anaerobic reactor. Domestic wastewater was used as the medium and the inoculum in the experiments. The SMFC could successfully generate a stable voltage of 0.428 ± 0.003 V with a fixed......, a large portion of voltage drop was caused by the ohmic (electrolyte) resistance of the medium present between two electrodes, although the two electrodes were closely positioned (about 3 cm distance; internal resistance = 35 ± 2 Ω). The open circuit potential (0.393 V vs. a standard hydrogen electrode...

  5. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  6. Synthetic biology for microbial production of lipid-based biofuels

    Energy Technology Data Exchange (ETDEWEB)

    d' Espaux, L; Mendez-Perez, D; Li, R; Keasling, JD

    2015-10-23

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  7. Engineering a Synthetic Microbial Consortium for Comprehensive Conversion of Algae Biomass into Terpenes for Advanced Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weihua [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wu, Benjamin Chiau-Pin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Davis, Ryan Wesley [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    Recent strategies for algae-based biofuels have primarily focused on biodiesel production by exploiting high algal lipid yields under nutrient stress conditions. However, under conditions supporting robust algal biomass accumulation, carbohydrate and proteins typically comprise up to ~80% of the ash-free dry weight of algae biomass. Therefore, comprehensive utilization of algal biomass for production of multipurpose intermediate- to high-value bio-based products will promote scale-up of algae production and processing to commodity volumes. Terpenes are hydrocarbon and hydrocarbon-like (C:O>10:1) compounds with high energy density, and are therefore potentially promising candidates for the next generation of value added bio-based chemicals and “drop-in” replacements for petroleum-based fuels. In this study, we demonstrated the feasibility of bioconversion of proteins into sesquiterpene compounds as well as comprehensive bioconversion of algal carbohydrates and proteins into biofuels. To achieve this, the mevalonate pathway was reconstructed into an E. coli chassis with six different terpene synthases (TSs). Strains containing the various TSs produced a spectrum of sesquiterpene compounds in minimal medium containing amino acids as the sole carbon source. The sesquiterpene production was optimized through three different regulation strategies using chamigrene synthase as an example. The highest total terpene titer reached 166 mg/L, and was achieved by applying a strategy to minimize mevalonate accumulation in vivo. The highest yields of total terpene were produced under reduced IPTG induction levels (0.25 mM), reduced induction temperature (25°C), and elevated substrate concentration (20 g/L amino acid mixture). A synthetic bioconversion consortium consisting of two engineering E. coli strains (DH1-TS and YH40-TS) with reconstructed terpene biosynthetic pathways was designed for comprehensive single-pot conversion of algal carbohydrates and proteins to

  8. Microbial pretreatment of cotton stalks by Phanerochaete chrysosporium for bioethanol production

    Science.gov (United States)

    Shi, Jian

    Lignocellulosic biomass has been recognized as a widespread, potentially low cost renewable source of mixed sugars for fermentation to fuel ethanol. Pretreatment, as the first step towards conversion of lignocellulose to ethanol, remains one of the main barriers to technical and commercial success of the processing technology. Existing pretreatment methods have largely been developed on the basis of physiochemical technologies which are considered relatively expensive and usually involve adverse environmental impacts. In this study, an environmentally benign alternative, microbial pretreatment using Phanerochaete chrysosporium, was explored to degrade lignin in cotton stalks and facilitate their conversion into ethanol. Two submerged liquid pretreatment techniques (SmC), shallow stationary and agitated cultivation, at three inorganic salt concentrations (no salts, modified salts without Mn2+, modified salts with Mn2+) were compared by evaluating their pretreatment efficiencies. Shallow stationary cultivation with no salt was superior to other pretreatment conditions and gave 20.7% lignin degradation along with 76.3% solids recovery and 29.0% carbohydrate availability over a 14 day period. The influence of substrate moisture content (65%, 75% and 80% M.C. wet-basis), inorganic salt concentration (no salts, modified salts without Mn2+ , modified salts with Mn2+) and culture time (0-14 days) on pretreatment effectiveness in solid state (SSC) systems was also examined. It was shown that solid state cultivation at 75% M.C. without salts was the most preferable pretreatment resulting in 27.6% lignin degradation, 71.1% solids recovery and 41.6% carbohydrate availability over a period of 14 days. A study on hydrolysis and fermentation of cotton stalks treated microbially using the most promising SmC (shallow stationary, no salts) and SSC (75% moisture content, no salts) methods resulted in no increase in cellulose conversion with direct enzyme application (10.98% and 3

  9. Microbial and nutritional aspects on the production of live feeds in a fish farming industry.

    Science.gov (United States)

    De Donno, A; Lugoli, F; Bagordo, F; Vilella, S; Campa, A; Grassi, T; Guido, M

    2010-03-01

    Aquaculture is an enterprise in constant development, in particular relating to its effect on the environment and also the quality of its products. It represents a valid alternative to traditional fishing, facing the increasing demand for fish products. To guarantee to the consumer a product of high nutritional, organoleptic and hygienic quality, it is fundamental to monitor every phase of the fish farming industry, isolating the potential risk points. For this reason there has been a rapid evolution of productive technique, particularly in the technology, artificial reproduction and feed sectors. The aim of this research has been the monitoring of the evolution of certain microbial and nutritional quality indexes (total microbial counts and lipid analysis on suspensions of Rotifers and Artemia, used as live feed) in the larval phase of the productive cycle of the farm raised fish, in an intensive system. The study has shown an increment in the total microbial counts in the fish farming industry within the production of Rotifers and Artemia, more evident in the suspensions of Rotifers. In addition the study has demonstrated that the maintenance phase, in the enrichment protocol, can reduce the EPA and DHA content. The results confirm the importance of microbial and nutritional control of the live feeds before they get supplied to fish larvae.

  10. Production of microbial biomass protein by sequential culture fermentation of Arachniotus sp., and Candida utilis

    International Nuclear Information System (INIS)

    Ahmed, S.; Ahmad, F.; Hashmi, A.S.

    2010-01-01

    Sequential culture fermentation by Arachniotus sp. at 35 deg. C for 72 h and followed by Candida utilis fermentation at 35 deg. C for 72 h more resulted in higher production of microbial biomass protein. 6% (w/v) corn stover, 0.0075% CaCl/sub 2/.2H/sub 2/O, 0.005% MgSO/sub 4/.7H/sub 2/O, 0.01% KH/sub 2/PO/sub 4/, C:N ratio of 30:1 and 1% molasses gave higher microbial biomass protein production by the sequential culture fermentation of Arachniotus sp., and C. utilis. The mixed microbial biomass protein produced in the 75-L fermentor contained 16.41%, 23.51%, 10.9%, 12.11% and 0.12% true protein, crude protein, crude fiber, ash and RNA content, respectively. The amino acid profile of final mixed microbial biomass protein showed that it was enriched with essential amino acids. Thus, the potential utilization of corn stover can minimize the cost for growth of these microorganisms and enhance microbial biomass protein production by sequential culture fermentation. (author)

  11. Preparation results for lifetime test of conversion LEU fuel in plutonium production reactors

    International Nuclear Information System (INIS)

    Vatulin, A.; Stetskiy, Yu.; Kukharkin, N.; Kalougin, A.; Gavrilov, P.; Ivanov, A.

    1999-01-01

    The program of converting Russian production reactors for the purpose to stop their plutonium fabrication is currently in progress. The program also provides for operation of these reactors under the conversion mode with using of low-enriched fuel (LEU). LEU fuel elements were developed and activities related to their preparation for reactor tests were carried out. (author)

  12. Relevance of microbial finished product testing in food safety management

    NARCIS (Netherlands)

    Zwietering, M.H.; Jacxsens, L.; Membre, J.M.; Nauta, M.; Peterz, M.

    2016-01-01

    Management of microbiological food safety is largely based on good design of processes, products and procedures. Finished product testing may be considered as a control measure at the end of the production process. However, testing gives only very limited information on the safety status of a food.

  13. Developments in commercially produced microbials at Biochem Products

    Science.gov (United States)

    John Lublinkhof; Douglas H. Ross

    1985-01-01

    Biochem Products is part of a large industrial and scientific family - the Solvay Group. Solvay, headquartered in Brussels, Belgium is a multinational company with 46,000 employees worldwide. In the U.S., our working partners include a large polymer manufacturer, a peroxygen producer and a leading poultry and animal health products company. Biochem Products is a...

  14. Probabilistic quantitative microbial risk assessment model of norovirus from wastewater irrigated vegetables in Ghana using genome copies and fecal indicator ratio conversion for estimating exposure dose.

    Science.gov (United States)

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K; Abaidoo, Robert C; Dalsgaard, Anders; Hald, Tine

    2017-12-01

    The need to replace the commonly applied fecal indicator conversions ratio (an assumption of 1:10 -5 virus to fecal indicator organism) in Quantitative Microbial Risk Assessment (QMRA) with models based on quantitative data on the virus of interest has gained prominence due to the different physical and environmental factors that might influence the reliability of using indicator organisms in microbial risk assessment. The challenges facing analytical studies on virus enumeration (genome copies or particles) have contributed to the already existing lack of data in QMRA modelling. This study attempts to fit a QMRA model to genome copies of norovirus data. The model estimates the risk of norovirus infection from the intake of vegetables irrigated with wastewater from different sources. The results were compared to the results of a corresponding model using the fecal indicator conversion ratio to estimate the norovirus count. In all scenarios of using different water sources, the application of the fecal indicator conversion ratio underestimated the norovirus disease burden, measured by the Disability Adjusted Life Years (DALYs), when compared to results using the genome copies norovirus data. In some cases the difference was >2 orders of magnitude. All scenarios using genome copies met the 10 -4 DALY per person per year for consumption of vegetables irrigated with wastewater, although these results are considered to be highly conservative risk estimates. The fecal indicator conversion ratio model of stream-water and drain-water sources of wastewater achieved the 10 -6 DALY per person per year threshold, which tends to indicate an underestimation of health risk when compared to using genome copies for estimating the dose. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Relevance of microbial finished product testing in food safety management

    DEFF Research Database (Denmark)

    Zwietering, Marcel H.; Jacxsens, Liesbeth; Membré, Jeanne Marie

    2016-01-01

    Management of microbiological food safety is largely based on good design of processes, products and procedures. Finished product testing may be considered as a control measure at the end of the production process. However, testing gives only very limited information on the safety status of a food......-active way by implementing an effective food safety management system. For verification activities in a food safety management system, finished product testing may however be useful. For three cases studies; canned food, chocolate and cooked ham, the relevance of testing both of finished products....... If a hazardous organism is found it means something, but absence in a limited number of samples is no guarantee of safety of a whole production batch. Finished product testing is often too little and too late. Therefore most attention should be focussed on management and control of the hazards in a more pro...

  16. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  17. Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels

    Science.gov (United States)

    Wang, Yong , Liu; Wei, [Richland, WA

    2012-01-24

    The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

  18. Microbial dynamics during production of lesser mealworms (Alphitobius diaperinus) for human consumption at industrial scale.

    Science.gov (United States)

    Wynants, E; Crauwels, S; Verreth, C; Gianotten, N; Lievens, B; Claes, J; Van Campenhout, L

    2018-04-01

    In this study, the microbial dynamics during an industrial production cyle of lesser mealworms (Alphitobius diaperinus), sold for human consumption, were characterised. The microbial numbers as well as the microbial diversity were generally higher for the substrate, existing of remaining feed, faeces and exuviae, than for the larvae. Most of the species-level operational taxonomic units, identified using Illumina MiSeq sequencing, that were present in the feed were also detected in the larvae and vice versa. However, bacterial diversity decreased in the larvae during rearing. These results suggested that the feed is an important determinant of the insect bacterial community, but that some bacterial species show a competitive advantage inside the insect gut and become dominant. A blanching treatment of the larvae after harvest reduced most microbial counts, but the number of aerobic endospores remained at 4.0 log cfu/g. Whereas food pathogens Salmonella spp., Listeria monocytogenes, Bacillus cereus or coagulase-positive staphylococci were not detected in our study, fungal isolates corresponding to the genera Aspergillus and Fusarium were recovered. Therefore, it cannot be excluded that mycotoxins were present. The results of this study contribute to a better understanding of the microbial dynamics and food safety aspects during the production of edible insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Microbial desalination cells for energy production and desalination

    KAUST Repository

    Kim, Younggy

    2013-01-01

    Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving ion transport through a series of ion-exchange membranes (IEMs). The specific MDC architecture and current conditions substantially affect the amount of wastewater needed to desalinate water. Other baseline conditions have varied among studies making comparisons of the effectiveness of different designs problematic. The extent of desalination is affected by water transport through IEMs by both osmosis and electroosmosis. Various methods have been used, such as electrolyte recirculation, to avoid low pH that can inhibit exoelectrogenic activity. The highest current density in an MDC to date is 8.4A/m2, which is lower than that produced in other bioelectrochemical systems. This implies that there is a room for substantial improvement in desalination rates and overall performance. We review here the state of the art in MDC design and performance, safety issues related to the use of MDCs with wastewater, and areas that need to be examined to achieve practical application of this new technology. © 2012 Elsevier B.V.

  20. Simultaneous electricity production and antibiotics removal by microbial fuel cells.

    Science.gov (United States)

    Zhou, Ying; Zhu, Nengwu; Guo, Wenying; Wang, Yun; Huang, Xixian; Wu, Pingxiao; Dang, Zhi; Zhang, Xiaoping; Xian, Jinchan

    2018-04-07

    The removal of antibiotics is crucial for improvement of water quality in animal wastewater treatment. In this paper, the performance of microbial fuel cell (MFC) in terms of degradation of typical antibiotics was investigated. Electricity was successfully produced by using sludge supernatant mixtures and synthesized animal wastewater as inoculation in MFC. Results demonstrated that the stable voltage, the maximum power density and internal resistance of anaerobic self-electrolysis (ASE) -112 and ASE-116 without antibiotics addition were 0.574 V, 5.78 W m -3 and 28.06 Ω, and 0.565 V, 5.82 W m -3 and 29.38 Ω, respectively. Moreover, when adding aureomycin, sulfadimidine, roxithromycin and norfloxacin into the reactors, the performance of MFC was inhibited (0.51 V-0.41 V), while the output voltage was improved with the decreased concentration of antibiotics. However, the removal efficiency of ammonia nitrogen (NH 3 -N) and total phosphorus (TP) were both obviously enhanced. Simultaneously, LC-MS analysis showed that the removal efficiency of aureomycin, roxithromycin and norfloxacin were all 100% and the removal efficiency of sulfadimidine also reached 99.9%. These results indicated that antibiotics displayed significantly inhibitions for electricity performance but improved the quality of water simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows

    NARCIS (Netherlands)

    Palakawong Na Ayudthaya, Susakul; De Weijer, Van Antonius H.P.; Gelder, Van Antonie H.; Stams, Alfons J.M.; Vos, De Willem M.; Plugge, Caroline M.

    2018-01-01

    Background: Exploring different microbial sources for biotechnological production of organic acids is important. Dutch and Thai cow rumen samples were used as inocula to produce organic acid from starch waste in anaerobic reactors. Organic acid production profiles were determined and microbial

  2. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.; Perez, Joe M.; Lloyd, Wallis A.; Logan, Bruce E.

    2009-01-01

    The use of glycerol for hydrogen gas production was examined via electrohydrogenesis using microbial electrolysis cells (MECs). A hydrogen yield of 3.9 mol-H2/mol was obtained using glycerol, which is higher than that possible by fermentation

  3. Fed-batch fermentation dealing with nitrogen limitation in microbial transglutaminase production by Streptoverticillium mobaraense

    NARCIS (Netherlands)

    Rinzema, A; Tramper, J; de Bruin, E; Bol, J

    In the later stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense the availability of a nitrogen source accessible to the microorganism becomes critical. Fed-batch fermentation is investigated with the aim of avoiding this substrate limitation.

  4. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Terlouw, H.; Hamelers, H.V.M.; Buisman, C.J.N.

    2008-01-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a

  5. 40 CFR 158.2171 - Experimental use permit microbial pesticides product analysis data requirements table.

    Science.gov (United States)

    2010-07-01

    ... conducted at the point in the production process after which there would be no potential for microbial... Identity R MP EP -- 885.1200 Manufacturing process R TGAI and MP TGAI and EP 1, 2 Deposition of a sample in... -- 830.6313 Stability to normal and elevated temperatures, metals and metal ions R TGAI TGAI -- 830.6317...

  6. Microbial analysis of meat and meat products sold in fast food ...

    African Journals Online (AJOL)

    The present study was carried out to investigate the rate of microbial contamination of ready-to-eat meat and meat products sold in different fast food restaurants in Aba. This study was carried out between June and August, 2015. Samples were collected aseptically from five fast food restaurants using sterile polythene bags.

  7. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production

    DEFF Research Database (Denmark)

    Liu, Wenzong; Cai, Weiwei; Guo, Zechong

    2016-01-01

    Methane production rate (MPR) in waste activated sludge (WAS) digestion processes is typically limitedby the initial steps of complex organic matter degradation, leading to a limited MPR due to sludgefermentation speed of solid particles. In this study, a novel microbial electrolysis AD reactor (ME...

  8. MILK KEFIR: COMPOSITION, MICROBIAL CULTURES, BIOLOGICAL ACTIVITIES AND RELATED PRODUCTS

    Directory of Open Access Journals (Sweden)

    Maria Rosa Prado

    2015-10-01

    Full Text Available In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance.

  9. Milk kefir: composition, microbial cultures, biological activities, and related products.

    Science.gov (United States)

    Prado, Maria R; Blandón, Lina Marcela; Vandenberghe, Luciana P S; Rodrigues, Cristine; Castro, Guillermo R; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance.

  10. Development of sustainable CO2 conversion processes for the methanol production

    DEFF Research Database (Denmark)

    Roh, Kosan; Nguyen, Tuan B.H.; Suriyapraphadilok, Uthaiporn

    2015-01-01

    reforming process has to be integrated with the existing conventional methanol plant to obtain a reduced CO2 emission as well as lowered production costs. On the other hand, the CO2 hydrogenation based methanol plant could achieve a reduction of net CO2 emission at a reasonable production cost only......Utilization of CO2 feedstock through CO2 conversion for producing valuable chemicals as an alternative to sequestration of the captured CO2 is attracting increasing attention in recent studies. Indeed, the methanol production process via thermochemical CO2 conversion reactions is considered a prime...... candidate for commercialization. The aim of this study is to examine two different options for a sustainable methanol plant employing the combined reforming and CO2 hydrogenation reactions, respectively. In addition, process improvement strategies for the implementation of the developed processes are also...

  11. Statistical analysis of the electric energy production from photovoltaic conversion using mobile and fixed constructions

    Science.gov (United States)

    Bugała, Artur; Bednarek, Karol; Kasprzyk, Leszek; Tomczewski, Andrzej

    2017-10-01

    The paper presents the most representative - from the three-year measurement time period - characteristics of daily and monthly electricity production from a photovoltaic conversion using modules installed in a fixed and 2-axis tracking construction. Results are presented for selected summer, autumn, spring and winter days. Analyzed measuring stand is located on the roof of the Faculty of Electrical Engineering Poznan University of Technology building. The basic parameters of the statistical analysis like mean value, standard deviation, skewness, kurtosis, median, range, or coefficient of variation were used. It was found that the asymmetry factor can be useful in the analysis of the daily electricity production from a photovoltaic conversion. In order to determine the repeatability of monthly electricity production, occurring between the summer, and summer and winter months, a non-parametric Mann-Whitney U test was used as a statistical solution. In order to analyze the repeatability of daily peak hours, describing the largest value of the hourly electricity production, a non-parametric Kruskal-Wallis test was applied as an extension of the Mann-Whitney U test. Based on the analysis of the electric energy distribution from a prepared monitoring system it was found that traditional forecasting methods of the electricity production from a photovoltaic conversion, like multiple regression models, should not be the preferred methods of the analysis.

  12. Microbial hazards reduction during creamy cream cheese production

    Directory of Open Access Journals (Sweden)

    Dorota Miarka

    2015-03-01

    Full Text Available The purpose of the work was to identify the hazards relevant to the production of safe food and to assess the effects of a possible infection. The paper presents the microbiological hazards that can occur throughout the production of creamy cream cheese and indicates the means to their minimization or elimination. The analysis of microbiological hazards showed that in the manufacturing process of the type of cheese mentioned, there are a few critical steps that should be specifically overseen. In order to acquire a high quality product it is important to monitor a quality of raw material, the parameters of pasteurization and souring, temperature of product packaging, storage conditions of the finished product and maintain hygiene throughout the production. The process of heat treatment, which is pasteurization, is a critical step (critical control points - CCP for the whole process. Monitoring this stage and consistent adherence to Operational Pre-Condition Programs at the thermisation and centrifuging and later packaging, guarantees a safe product and its long shelf life.

  13. Relationships among gas production, end products of rumen fermentation and microbial N produced in vitro at two incubation times

    DEFF Research Database (Denmark)

    Cattani, Mirko; Maccarana, Laura; Hansen, Hanne Helene

    2013-01-01

    at 48 h. At t½, the valerate content in rumen fl uid was negligible. However, relatively large amounts of valerate were measured after 48 h, probably the result of microbial lysis. Results suggest that relationships among end-products of rumen fermentation can be more accurately evaluated at a substrate...... for ammonia N (N-NH3), volatile fatty acids (VFA), residual NDF and N bound to residual NDF (N-NDF). Values of GP were also predicted from VFA. Microbial N (MN) was computed as the difference between N present at the beginning and at the end of incubation. At 48 h, the relationship between GP measured...

  14. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    Science.gov (United States)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  15. Versatile microbial surface-display for environmental remediation and biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

    2008-02-14

    Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

  16. Electron acceptor-based regulation of microbial greenhouse gas production from thawing permafrost

    DEFF Research Database (Denmark)

    Bak, Ebbe Norskov; Jones, Eleanor; Yde, Jacob Clement

    layer as well in the permafrost. These investigations are accompanied by characterization of the carbon, iron and sulfate content in the soil and will be followed by characterization of the microbial community structure. The aim of this study is to get a better understanding of how the availability...... of sulfate and iron and the microbial community structure regulate the production of CO2 and CH4 in thawing permafrost, and to elucidate how the rate of the organic carbon degradation changes with depth in permafrost-affected soils. This study improves our understanding of climate feedback mechanisms...

  17. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    SAM

    Quantitative determination of heavy metals: zinc, iron, lead, copper, cadmium and aluminium ...... consumption of dairy products, fish/seafood and meat from Ismailia ... Contamination in Green Leafy Vegetables Grown in Bangalore Urban.

  18. bioelectricity production from cassava mill effluents using microbial

    African Journals Online (AJOL)

    user

    2016-04-02

    Apr 2, 2016 ... technologies of energy production using renewable ... mediators in the commercial use of MFCs for energy .... gas for a period of 4 minutes to maintain anaerobic ..... potentials of some Nigerian industrial wastewater through ...

  19. Tibia mineralization of chickens determined to meat production using a microbial phytase

    Directory of Open Access Journals (Sweden)

    Mária Angelovičová

    2018-02-01

    Full Text Available The target of the research was 6-phytase of microbial origin. It was used in feed mixtures for chickens determined to meat production. Its effect has been studied in relation to the tibia mineralization by calcium, phosphorus and magnesium. 6-phytase is a product of Aspergillus oryzae. That was obtained by means of biotechnological processes of production of commercially available enzymes. It was incorporated in the feed mixtures 0.1%. In a 38-day feeding trial, 300 one-day-old, as hatched, Cobb 500 chickens determined to meat production (100 birds per group were fed on one concentrations of dietary non-phytate phosphorus (2.32, 2.31 g.kg-1, respectively and supplemental microbial phytase (0 and 500   FTU.kg-1 feed mixtures. Control group was used to compare the results and control feed mixtures contained 4.5 g.kg-1 without microbial phytase. At days 40 it was selected 6 birds in every group, which were slaughter in accordance with the principles of welfare. Left tibias of every bird were used to determination of calcium, phosphorus and magnesium contents. According to in vivo, it was found that the addition of microbial phytase to reduced dietary non-phytate phosphorus increased concentrations of calcium (Ca, phosphorus (P and magnesium (Mg in tibia. The differences among groups were statistically significant (p <0.05. It was concluded that reducing of dietary non-phytate phosphorus on the 2.32, 2.31 g.kg-1, respectively, by monocalcium phosphate and microbial phytase supplementation in feed mixtures facilitated tibia mineralization at chicken determined to meat production. Normal 0 21 false false false EN-GB X-NONE X-NONE

  20. Application of agave subproducts for production of microbial inulinases

    Directory of Open Access Journals (Sweden)

    Huerta Alcocer, S.A.

    2014-07-01

    Full Text Available Mexico is the center of origin of the genus Agave spp. with 159 endemic species, 75 % of all known species. The main use of these plants is in the production of alcoholic beverages, mainly tequila, which is obtained from the “pines” of A. tequilana Weber var. Azul. During tequila production, a huge amount of waste is produced, including leaves that are not used. Main compounds found in these subproducts are polysaccharides, specifically inulin. Current review focuses on the use of these agricultural wastes to obtain inulinase production, and in the production of high fructose syrup using these enzymes in these wastes. Currently, high fructose syrups, especially oligosaccharides, have prompted much interest for their benefits to health due to its low glycemic index and their function as prebiotic in the intestinal flora. The main microorganisms involved with inulinases production belong to the genera Aspergillus and Kluyveromyces. The latter is preferred in the industry due to its high growth rate, high temperature tolerance (52 °C and by having the GRAS (Generally Recognized As Safe status. This review emphasizes on the advances achieved in the production of inulinases by yeast K. marxianus.

  1. Research Progress of Hydrogen Production fromOrganic Wastes in Microbial Electrolysis Cell(MEC

    Directory of Open Access Journals (Sweden)

    YU Yin-sheng

    2015-08-01

    Full Text Available Microbial electrolysis cell(MECtechnology as an emerging technology, has achieved the target of hydrogen production from different substrates such as waste water, forestry wastes, activated sludge by simultaneous enzymolysis and fermentation, which can effectively improve the efficiency of resource utilization. This paper described the working principle of MEC and analyzed these factors influencing the process of hydrogen production from organic waste in MEC.

  2. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Stedmon, Colin A.; Granskog, Mats A.

    2014-01-01

    The majority of dissolved organic matter (DOM) in the ocean is resistant to microbial degradation, yet its formation remains poorly understood. The fluorescent fraction of DOM can be used to trace the formation of recalcitrant DOM (RDOM). A long-term (> 1 year) experiment revealed 27–52% removal...... of dissolved organic carbon and a nonlinear increase in RDOM fluorescence associated with microbial turnover of semilabile DOM. This fluorescence was also produced using glucose as the only initial carbon source, suggesting that degradation of prokaryote remnants contributes to RDOM. Our results indicate...... that the formation of a fluorescent RDOM component depends on the bioavailability of the substrate: the less labile, the larger the production of fluorescent RDOM relative to organic carbon remineralized. The anticipated increase in microbial carbon demand due to ocean warming can potentially forcemicrobes...

  3. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes.

    Science.gov (United States)

    Pagliano, Giorgia; Ventorino, Valeria; Panico, Antonio; Pepe, Olimpia

    2017-01-01

    Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil fuels. To valorize biomass, waste materials derived from agriculture, food processing factories, and municipal organic waste can be used to produce biopolymers, such as biohydrogen and biogas, through different microbial processes. In fact, different bacterial strains can synthesize biopolymers to convert waste materials into valuable intracellular (e.g., polyhydroxyalkanoates) and extracellular (e.g., exopolysaccharides) bioproducts, which are useful for biochemical production. In particular, large numbers of bacteria, including Alcaligenes eutrophus , Alcaligenes latus , Azotobacter vinelandii , Azotobacter chroococcum , Azotobacter beijerincki , methylotrophs, Pseudomonas spp., Bacillus spp., Rhizobium spp., Nocardia spp., and recombinant Escherichia coli , have been successfully used to produce polyhydroxyalkanoates on an industrial scale from different types of organic by-products. Therefore, the development of high-performance microbial strains and the use of by-products and waste as substrates could reasonably make the production costs of biodegradable polymers comparable to those required by petrochemical-derived plastics and promote their use. Many studies have reported use of the same organic substrates as alternative energy sources to produce biogas and biohydrogen through anaerobic digestion as well as dark and photofermentation processes under anaerobic conditions. Therefore, concurrently obtaining bioenergy and biopolymers at a reasonable cost through an integrated system is becoming feasible using by-products and waste as organic carbon sources. An overview of the suitable substrates and microbial strains used in low-cost polyhydroxyalkanoates for biohydrogen and biogas

  4. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    Science.gov (United States)

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.

  5. Microbial production of the flavonoids garbanzol, resokaempferol and fisetin

    DEFF Research Database (Denmark)

    2016-01-01

    The invention provides a genetically modified micro-organism comprising one or more transgene for the production of one or more of the flavonoids garbanzol, resokaempferol and fisetin. The micro-organism may be a bacterial or yeast cell engineered to express a metabolic pathway for garbanzol...

  6. Microbial production of astilbin, a bioactive rhamnosylated flavanonol, from taxifolin

    DEFF Research Database (Denmark)

    Thuan, Nguyen Huy; Malla, Sailesh; Trung, Nguyen Thanh

    2017-01-01

    Flavonoids are plant-based polyphenolic biomolecules with a wide range of biological activities. Glycosylated flavonoids have drawn special attention in the industries as it improves solubility, stability, and bioactivity. Herein, we report the production of astilbin (ATN) from taxifolin (TFN) in...

  7. Microbial platform technology for recombinant antibody fragment production: A review.

    Science.gov (United States)

    Gupta, Sanjeev Kumar; Shukla, Pratyoosh

    2017-02-01

    Recombinant antibody fragments are being used for the last few years as an important therapeutic protein to cure various critical and life threatening human diseases. Several expression platforms now days employed for the production of these recombinant fragments, out of which bacterial system has emerged a promising host for higher expression. Since, a small antibody fragment unlike full antibody does not require human-like post-translational modification therefore it is potentially expressed in prokaryotic production system. Recently, small antibody fragments such as scFvs (single-chain variable fragments) and Fabs (antibody fragments) which does not require glycosylation are successfully produced in bacteria and have commercially launched for therapeutic use as these fragments shows better tissue penetration and less immunogenic to human body compared to full-size antibody. Recently developed Wacker's ESETEC secretion technology is an efficient technology for the expression and secretion of the antibody fragment (Fab) exceeded up to 4.0 g/L while scFv up to 3.5 g/L into the fermentation broth. The Pfenex system and pOP prokaryotic expression vector are another platform used for the considerably good amount of antibody fragment production successfully. In this review, we summarize the recent progress on various expression platforms and cloning approaches for the production of different forms of antibody fragments in E. coli.

  8. Microbial production of next-generation stevia sweeteners.

    Science.gov (United States)

    Olsson, Kim; Carlsen, Simon; Semmler, Angelika; Simón, Ernesto; Mikkelsen, Michael Dalgaard; Møller, Birger Lindberg

    2016-12-07

    The glucosyltransferase UGT76G1 from Stevia rebaudiana is a chameleon enzyme in the targeted biosynthesis of the next-generation premium stevia sweeteners, rebaudioside D (Reb D) and rebaudioside M (Reb M). These steviol glucosides carry five and six glucose units, respectively, and have low sweetness thresholds, high maximum sweet intensities and exhibit a greatly reduced lingering bitter taste compared to stevioside and rebaudioside A, the most abundant steviol glucosides in the leaves of Stevia rebaudiana. In the metabolic glycosylation grid leading to production of Reb D and Reb M, UGT76G1 was found to catalyze eight different reactions all involving 1,3-glucosylation of steviol C 13 - and C 19 -bound glucoses. Four of these reactions lead to Reb D and Reb M while the other four result in formation of side-products unwanted for production. In this work, side-product formation was reduced by targeted optimization of UGT76G1 towards 1,3 glucosylation of steviol glucosides that are already 1,2-diglucosylated. The optimization of UGT76G1 was based on homology modelling, which enabled identification of key target amino acids present in the substrate-binding pocket. These residues were then subjected to site-saturation mutagenesis and a mutant library containing a total of 1748 UGT76G1 variants was screened for increased accumulation of Reb D or M, as well as for decreased accumulation of side-products. This screen was performed in a Saccharomyces cerevisiae strain expressing all enzymes in the rebaudioside biosynthesis pathway except for UGT76G1. Screening of the mutant library identified mutations with positive impact on the accumulation of Reb D and Reb M. The effect of the introduced mutations on other reactions in the metabolic grid was characterized. This screen made it possible to identify variants, such as UGT76G1 Thr146Gly and UGT76G1 His155Leu , which diminished accumulation of unwanted side-products and gave increased specific accumulation of the desired

  9. Biogas Production and Engine Conversion From Diesel Engine to Biogas Engine for Lighting in Rural Area

    OpenAIRE

    Tun, Seint Thandar

    2012-01-01

    The research of alternative fuels implemented in internal combustion engines are becoming the subjects of interest nowadays. This paper describes a production of biogas from cow dung, diesel engine conversion process with piston modification of ZH1115 diesel engine. To produce biogas, the usual practice is to mix water with some organic material, such as cow dung (a free source of the appropriate micro-organisms). The slurry is placed in a leak-proof container (called a digester) and leaves i...

  10. HEU core conversion of Russian production reactors: a major threat to the international RERTR regime

    International Nuclear Information System (INIS)

    Kuperman, Alan J.; Leventhal, Paul L.

    1998-01-01

    This paper calls the attention for the major threat to the International Reduced Enrichment for Research and Test Reactors (RERTR) program, represented by the HEU core conversion of russian production reactors. This program aims to reduce and eventually eliminate international civilian commerce in nuclear weapons-usable, highly enriched uranium , and thereby significantly lower risks of the material being stolen or diverted by terrorist or states for producing nuclear weapons

  11. Method for conversion of carbohydrate polymers to value-added chemical products

    Science.gov (United States)

    Zhang, Zongchao C [Norwood, NJ; Brown, Heather M [Kennewick, WA; Su, Yu [Richland, WA

    2012-02-07

    Methods are described for conversion of carbohydrate polymers in ionic liquids, including cellulose, that yield value-added chemicals including, e.g., glucose and 5-hydroxylmethylfurfural (HMF) at temperatures below 120.degree. C. Catalyst compositions that include various mixed metal halides are described that are selective for specified products with yields, e.g., of up to about 56% in a single step process.

  12. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds.

    Science.gov (United States)

    Schempp, Florence M; Drummond, Laura; Buchhaupt, Markus; Schrader, Jens

    2018-03-14

    Terpenoid flavor and fragrance compounds are of high interest to the aroma industry. Microbial production offers an alternative sustainable access to the desired terpenoids independent of natural sources. Genetically engineered microorganisms can be used to synthesize terpenoids from cheap and renewable resources. Due to its modular architecture, terpenoid biosynthesis is especially well suited for the microbial cell factory concept: a platform host engineered for a high flux toward the central C 5 prenyl diphosphate precursors enables the production of a broad range of target terpenoids just by varying the pathway modules converting the C 5 intermediates to the product of interest. In this review typical terpenoid flavor and fragrance compounds marketed or under development by biotech and aroma companies are given, and the specificities of the aroma market are discussed. The main part of this work focuses on key strategies and recent advances to engineer microbes to become efficient terpenoid producers.

  13. Microbial Proteases in Baked Goods: Modification of Gluten and Effects on Immunogenicity and Product Quality

    Directory of Open Access Journals (Sweden)

    Nina G. Heredia-Sandoval

    2016-08-01

    Full Text Available Gluten-related diseases are a range of inflammatory disorders of the small intestine, characterized by an adverse response to gluten ingestion; therefore, the treatment is a gluten withdrawal. In spite of the increased market of gluten-free products, widely available breads with high acceptability are still missing due to the technological challenge of substituting the special gluten properties. Instead of using alternative ingredients for baking, some attempts have been done to decrease gluten immunogenicity by its enzymatic degradation with microbial proteases. Although the gluten immunogenicity reduction has been reached to an acceptable level, some quality parameters of the products are affected. This review focus on the use of microbial peptidases to prepare less immunogenic baked goods and their effect on product quality.

  14. Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC)

    DEFF Research Database (Denmark)

    Thygesen, Anders; Marzorati, Massimo; Boon, Nico

    2011-01-01

    In a microbial electrolysis cell (MEC), hydrolysate produced by hydrothermal treatment of wheat straw was used for hydrogen production during selective recovery of phenols. The average H2 production rate was 0.61 m3 H2/m3 MEC·day and equivalent to a rate of 0.40 kg COD/m3 MEC·day. The microbial...... the energy content in the consumed compounds and the cell voltage of 0.7 V. The highest hydrogen production was equivalent to 0.8 kg COD/m3 MEC·day and was obtained at pH 7–8 and 25°C. Accumulation of 53% w/v phenolic compounds in the liquor was obtained by stepwise addition of the hydrolysate during...

  15. Microbial Proteases in Baked Goods: Modification of Gluten and Effects on Immunogenicity and Product Quality.

    Science.gov (United States)

    Heredia-Sandoval, Nina G; Valencia-Tapia, Maribel Y; Calderón de la Barca, Ana M; Islas-Rubio, Alma R

    2016-08-30

    Gluten-related diseases are a range of inflammatory disorders of the small intestine, characterized by an adverse response to gluten ingestion; therefore, the treatment is a gluten withdrawal. In spite of the increased market of gluten-free products, widely available breads with high acceptability are still missing due to the technological challenge of substituting the special gluten properties. Instead of using alternative ingredients for baking, some attempts have been done to decrease gluten immunogenicity by its enzymatic degradation with microbial proteases. Although the gluten immunogenicity reduction has been reached to an acceptable level, some quality parameters of the products are affected. This review focus on the use of microbial peptidases to prepare less immunogenic baked goods and their effect on product quality.

  16. Microbial alkaline proteases: Optimization of production parameters and their properties

    Directory of Open Access Journals (Sweden)

    Kanupriya Miglani Sharma

    2017-06-01

    Full Text Available Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous reports available on various aspects of alkaline proteases. Diverse sources for isolation of alkaline protease producing microorganisms are reported. The various nutritional and environmental parameters affecting the production of alkaline proteases in submerged and solid state fermentation are described. The enzymatic and physicochemical properties of alkaline proteases from several microorganisms are discussed which can help to identify enzymes with high activity and stability over extreme pH and temperature, so that they can be developed for industrial applications.

  17. Microbial production of next-generation stevia sweeteners

    DEFF Research Database (Denmark)

    Olsson, Kim; Carlsen, Simon; Semmler, Angelika

    2016-01-01

    BACKGROUND: The glucosyltransferase UGT76G1 from Stevia rebaudiana is a chameleon enzyme in the targeted biosynthesis of the next-generation premium stevia sweeteners, rebaudioside D (Reb D) and rebaudioside M (Reb M). These steviol glucosides carry five and six glucose units, respectively......, and have low sweetness thresholds, high maximum sweet intensities and exhibit a greatly reduced lingering bitter taste compared to stevioside and rebaudioside A, the most abundant steviol glucosides in the leaves of Stevia rebaudiana. RESULTS: In the metabolic glycosylation grid leading to production....... This screen made it possible to identify variants, such as UGT76G1Thr146Gly and UGT76G1His155Leu, which diminished accumulation of unwanted side-products and gave increased specific accumulation of the desired Reb D or Reb M sweeteners. This improvement in a key enzyme of the Stevia sweetener biosynthesis...

  18. Microbial production of the flavonoids garbanzol, resokaempferol and fisetin

    OpenAIRE

    Stahlhut, Steen Gustav; Siedler, Solvej; Neves, Ana Rute; MAURY,, JEROME; Förster, Jochen; Gaspar, Paula; Borodina, Irina; Rodriguez Prado, Edith Angelica; Strucko, Tomas

    2016-01-01

    The invention provides a genetically modified micro-organism comprising one or more transgene for the production of one or more of the flavonoids garbanzol, resokaempferol and fisetin. The micro-organism may be a bacterial or yeast cell engineered to express a metabolic pathway for garbanzol, resokaempferol and/or fisetin biosynthesis. The invention further provides a method for producing garbanzol, resokaempferol and/or fisetin employing the genetically modified micro-organism of the inventi...

  19. Chitin Lengthens Power Production in a Sedimentary Microbial Fuel Cell

    Science.gov (United States)

    2014-01-01

    organic carbon sediments demonstrate that chitin enhances and lengthens power production. Keywords—chitin; MFC; microbiology ; iron-reducing bacteria...levels of organic content available as a food source for bacteria in the sediment. Dependent upon applications, there are scenarios where a SMFC...as ethanol, molasses, or vegetable oils. In the case of underwater marine sediment, options for carbon amendment are limited to solid carbon

  20. Microbial production of hydrogen from starch-manufacturing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, H.; Maki, R.; Hirose, J.; Hayashi, S. [Miyazaki Univ. (Japan). Dept. of Applied Chemistry

    2002-05-01

    Effective hydrogen production from starch-manufacturing wastes by microorganisms was investigated. Continuous hydrogen production in high yield of 2.7 mol H{sub 2} mol{sup -1} glucose was attained by a mixed culture of Clostridium butyricum and Enterobacter aerogenes HO-39 in the starch waste medium consisting of sweet potato starch residue as a carbon source and corn steep liquor as a nitrogen source in a repeated batch culture. Rhodobacter sp. M-19 could produce hydrogen from the supernatant of the culture broth obtained in the repeated batch culture of C. butyricum and E. aerogenes HO-39. Hydrogen yield of 4.5 mol H{sub 2} mol{sup -1} glucose was obtained by culturing Rhodobacter sp. M-19 in the supernatant supplemented with 20{mu}gl{sup -1} Na{sub 2}MoO{sub 4} 2H{sub 2}O and 10mgl{sup -1} EDTA in a repeated batch culture with pH control at 7.5. Therefore, continuous hydrogen production with total hydrogen yield of 7.2 mol H{sub 2} mol{sup -1} glucose from the starch remaining in the starch residue was attained by the repeated batch culture with C. butyricum and E. aerogenes HO-39 and by the successive repeated batch culture with Rhodobacter sp. M-19. (Author)

  1. PRODUCTION AND USES OF MICROBIAL ENZYMES FOR DAIRY PROCESSING

    International Nuclear Information System (INIS)

    EL-KABBANY, H.M.I.

    2008-01-01

    The isolation and identification of fungal producer from various Egyptian dairy products samples was studied. Among fungi testes, only one out of the 48 isolates was found to be positive yielded a suitable enzyme substitute (rennet) and identified as Cryphonectria parasitica (C. parasitica) and was found to be negative for mycotoxins. The highest growth and production of the crude enzyme were obtained from barley medium after an incubation period for 6-8 days at 25 0 C and pH 5. It was found also to be sensitive to gamma rays, since 2.5 kGy completely inactivated the germination of the spores while very low doses up to 0.05 kGy did not affect the production of rennet like enzyme (RLE). Precipitation of the crude enzyme produced by C. parasitica using ammonium sulphate (NH 4 ) 2 SO 4 gave the highest milk clotting activity (MCA) at 50 0 C. Further purification was achieved by using Sephadex G-100 to give pure RLE. MCA of the fungal and animal rennin proved to be essentially identical in milk containing various concentrations of CaCl 2 . An addition of 160 ppm of CaCl 2 increased the enzyme activity. The optimum temperature was 60 0 C while pre-heating thermophiles at 15 0 C for 10 minutes complete inactivation. Both rennins manifested comparable clotting activities in milk at pH 6

  2. Microbial production of poly(hydroxybutyrate) from C₁ carbon sources.

    Science.gov (United States)

    Khosravi-Darani, Kianoush; Mokhtari, Zahra-Beigom; Amai, Tomohito; Tanaka, Kenji

    2013-02-01

    Polyhydroxybutyrate (PHB) is an attractive substitute for petrochemical plastic due to its similar properties, biocompatibility, and biodegradability. The cost of scaled-up PHB production inhibits its widespread usage. Intensive researches are growing to reduce costs and improve thermomechanical, physical, and processing properties of this green biopolymer. Among cheap substrates which are used for reducing total cost of PHB production, some C₁ carbon sources, e.g., methane, methanol, and CO₂ have received a great deal of attention due to their serious role in greenhouse problem. This article reviews the fundamentals of strategies for reducing PHA production and moves on to the applications of several cheap substrates with a special emphasis on methane, methanol, and CO₂. Also, some explanation for involved microorganisms including the hydrogen-oxidizing bacteria and methanotrophs, their history, culture condition, and nutritional requirements are given. After description of some important strains among the hydrogen-oxidizing and methanotrophic producers of PHB, the article is focused on limitations, threats, and opportunities for application and their future trends.

  3. Synthetic and systems biology for microbial production of commodity chemicals.

    Science.gov (United States)

    Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J; Keasling, Jay D; Martín, Héctor García

    2016-01-01

    The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.

  4. Not appropriate dinner table conversation? Talking to children about meat production.

    Science.gov (United States)

    Bray, Heather J; Zambrano, Sofia C; Chur-Hansen, Anna; Ankeny, Rachel A

    2016-05-01

    Although Australians on average consume large quantities of meat, their attitudes to farm animal welfare are poorly understood. We know little about how farm animal production is discussed in Australian households or how children learn about the origins of meat. This study consisted of an online survey completed by 225 primary carers throughout Australia recruited through social media. Findings include that conversations about the origin of meat were generally stimulated by meal preparation within the home rather than visits to agricultural shows or similar activities. Parents preferred to initiate conversations with children about meat production before they were 5 years of age. Urban parents were more likely than rural parents to reveal that they were conflicted about eating meat and would be more empathetic to children who chose to stop eating meat. Rural parents were more likely than urban parents to feel that children should eat what they are given and that talking about meat is not a major issue. Both groups felt that it was important that children should know where their food comes from. The findings of this study suggest that parental attitudes to meat production and consumption influence conversations about meat origins with children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Microbial pretreatment of corn stovers by solid-state cultivation of Phanerochaete chrysosporium for biogas production.

    Science.gov (United States)

    Liu, Shan; Wu, Shubiao; Pang, Changle; Li, Wei; Dong, Renjie

    2014-02-01

    The microbial pretreatment of corn stover and corn stover silage was achieved via the solid-state cultivation of Phanerochaete chrysosporium; pretreatment effects on the biodegradability and subsequent anaerobic production of biogas were investigated. The peak levels of daily biogas production and CH₄ yield from corn stover silage were approximately twice that of corn stover. Results suggested that ensiling was a potential pretreatment method to stimulate biogas production from corn stover. Surface morphology and Fourier-transform infrared spectroscopy analyses demonstrated that the microbial pretreatment of corn stover silage improved biogas production by 10.5 to 19.7% and CH4 yield by 11.7 to 21.2% because pretreatment could decrease dry mass loss (14.2%) and increase substrate biodegradability (19.9% cellulose, 32.4% hemicellulose, and 22.6% lignin). By contrast, the higher dry mass loss in corn stover (55.3%) after microbial pretreatment was accompanied by 54.7% cellulose, 64.0% hemicellulose, and 61.1% lignin degradation but did not significantly influence biogas production.

  6. Microbial and sponge loops modify fish production in phase-shifting coral reefs.

    Science.gov (United States)

    Silveira, Cynthia B; Silva-Lima, Arthur W; Francini-Filho, Ronaldo B; Marques, Jomar S M; Almeida, Marcelo G; Thompson, Cristiane C; Rezende, Carlos E; Paranhos, Rodolfo; Moura, Rodrigo L; Salomon, Paulo S; Thompson, Fabiano L

    2015-10-01

    Shifts from coral to algae dominance of corals reefs have been correlated to fish biomass loss and increased microbial metabolism. Here we investigated reef benthic and planktonic primary production, benthic dissolved organic carbon (DOC) release and bacterial growth efficiency in the Abrolhos Bank, South Atlantic. Benthic DOC release rates are higher while water column bacterial growth efficiency is lower at impacted reefs. A trophic model based on the benthic and planktonic primary production was able to predict the observed relative fish biomass in healthy reefs. In contrast, in impacted reefs, the observed omnivorous fish biomass is higher, while that of the herbivorous/coralivorous fish is lower than predicted by the primary production-based model. Incorporating recycling of benthic-derived carbon in the model through microbial and sponge loops explains the difference and predicts the relative fish biomass in both reef types. Increased benthic carbon release rates and bacterial carbon metabolism, but decreased bacterial growth efficiency could lead to carbon losses through respiration and account for the uncoupling of benthic and fish production in phase-shifting reefs. Carbon recycling by microbial and sponge loops seems to promote an increase of small-bodied fish productivity in phase-shifting coral reefs. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Automated DNA extraction platforms offer solutions to challenges of assessing microbial biofouling in oil production facilities.

    Science.gov (United States)

    Oldham, Athenia L; Drilling, Heather S; Stamps, Blake W; Stevenson, Bradley S; Duncan, Kathleen E

    2012-11-20

    The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources.

  8. Microbial engineering for the production of advanced biofuels.

    Science.gov (United States)

    Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

    2012-08-16

    Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

  9. Kinetic Studies on Microbial Production of Tannase Using Redgram Husk

    OpenAIRE

    S. K. Mohan; T. Viruthagiri; C. Arunkumar

    2015-01-01

    Tannase (tannin acyl hydrolase, E.C.3.1.1.20) is an important hydrolysable enzyme with innumerable applications and industrial potential. In the present study, a kinetic model has been developed for the batch fermentation used for the production of tannase by A.flavus MTCC 3783. Maximum tannase activity of 143.30 U/ml was obtained at 96 hours under optimum operating conditions at 35oC, an initial pH of 5.5 and with an inducer tannic acid concentration of 3% (w/v) for a fe...

  10. Operational, design and microbial aspects related to power production with microbial fuel cells implemented in constructed wetlands.

    Science.gov (United States)

    Corbella, Clara; Guivernau, Miriam; Viñas, Marc; Puigagut, Jaume

    2015-11-01

    This work aimed at determining the amount of energy that can be harvested by implementing microbial fuel cells (MFC) in horizontal subsurface constructed wetlands (HSSF CWs) during the treatment of real domestic wastewater. To this aim, MFC were implemented in a pilot plant based on two HSSF CW, one fed with primary settled wastewater (Settler line) and the other fed with the effluent of a hydrolytic up-flow sludge blanket reactor (HUSB line). The eubacterial and archaeal community was profiled on wetland gravel, MFC electrodes and primary treated wastewater by means of 16S rRNA gene-based 454-pyrosequencing and qPCR of 16S rRNA and mcrA genes. Maximum current (219 mA/m(2)) and power (36 mW/m(2)) densities were obtained for the HUSB line. Power production pattern correlated well with water level fluctuations within the wetlands, whereas the type of primary treatment implemented had a significant impact on the diversity and relative abundance of eubacteria communities colonizing MFC. It is worth noticing the high predominance (13-16% of relative abundance) of one OTU belonging to Geobacter on active MFC of the HUSB line that was absent for the settler line MFC. Hence, MFC show promise for power production in constructed wetlands receiving the effluent of a HUSB reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production.

    Science.gov (United States)

    Sinsabaugh, Robert L; Moorhead, Daryl L; Xu, Xiaofeng; Litvak, Marcy E

    2017-06-01

    The carbon use efficiency of plants (CUE a ) and microorganisms (CUE h ) determines rates of biomass turnover and soil carbon sequestration. We evaluated the hypothesis that CUE a and CUE h counterbalance at a large scale, stabilizing microbial growth (μ) as a fraction of gross primary production (GPP). Collating data from published studies, we correlated annual CUE a , estimated from satellite imagery, with locally determined soil CUE h for 100 globally distributed sites. Ecosystem CUE e , the ratio of net ecosystem production (NEP) to GPP, was estimated for each site using published models. At the ecosystem scale, CUE a and CUE h were inversely related. At the global scale, the apparent temperature sensitivity of CUE h with respect to mean annual temperature (MAT) was similar for organic and mineral soils (0.029°C -1 ). CUE a and CUE e were inversely related to MAT, with apparent sensitivities of -0.009 and -0.032°C -1 , respectively. These trends constrain the ratio μ : GPP (= (CUE a  × CUE h )/(1 - CUE e )) with respect to MAT by counterbalancing the apparent temperature sensitivities of the component processes. At the ecosystem scale, the counterbalance is effected by modulating soil organic matter stocks. The results suggest that a μ : GPP value of c. 0.13 is a homeostatic steady state for ecosystem carbon fluxes at a large scale. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Laccase: microbial sources, production, purification, and potential biotechnological applications.

    Science.gov (United States)

    Shraddha; Shekher, Ravi; Sehgal, Simran; Kamthania, Mohit; Kumar, Ajay

    2011-01-01

    Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. In the recent years, these enzymes have gained application in the field of textile, pulp and paper, and food industry. Recently, it is also used in the design of biosensors, biofuel cells, as a medical diagnostics tool and bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases have received attention of researchers in the last few decades due to their ability to oxidize both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. It has been identified as the principal enzyme associated with cuticular hardening in insects. Two main forms have been found: laccase-1 and laccase-2. This paper reviews the occurrence, mode of action, general properties, production, applications, and immobilization of laccases within different industrial fields.

  13. Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Shraddha

    2011-01-01

    Full Text Available Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. In the recent years, these enzymes have gained application in the field of textile, pulp and paper, and food industry. Recently, it is also used in the design of biosensors, biofuel cells, as a medical diagnostics tool and bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases have received attention of researchers in the last few decades due to their ability to oxidize both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. It has been identified as the principal enzyme associated with cuticular hardening in insects. Two main forms have been found: laccase-1 and laccase-2. This paper reviews the occurrence, mode of action, general properties, production, applications, and immobilization of laccases within different industrial fields.

  14. Microbial production of four biodegradable siderophores under submerged fermentation.

    Science.gov (United States)

    Fazary, Ahmed E; Al-Shihri, Ayed S; Alfaifi, Mohammad Y; Saleh, Kamel A; Alshehri, Mohammed A; Elbehairi, Serag Eldin I; Ju, Yi-Hsu

    2016-07-01

    Four siderophore analogues were isolated and purified from Escherichia coli, Bacillus spp. ST13, and Streptomyces pilosus microorganisms under some specific submerged fermentation conditions. In order to evaluate the highest production of this siderophore analogues through the growth, a rapid spectrophotometric screening semi-quantitative method was used, in which interestingly the analogues were isolated in its own form not its iron chelate. After chromatographic separation, the chemical structures of the isolated and purified siderophores were illustrated using detailed spectroscopic techniques. The biodegradation studies were done on that four novel isolated and purified siderophores following OECD protocols. In addition, the bioactivities of these siderophores and their iron complexes were examined and evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The global threat reduction initiative and conversion of isotope production to LEU targets

    International Nuclear Information System (INIS)

    Kuperman, A. J.

    2005-01-01

    The U.S. Global Threat Reduction Initiative (GTRI) has given a decisive impetus to the RERTR program's longstanding goal of converting worldwide production of medical radioisotopes from reliance on bomb-grade, highly enriched uranium (HEU) to low-enriched uranium (LEU) unsuitable for weapons. Although the four major; isotope producers continue to resist calls for conversion, they face mounting pressure from a variety of fronts including: (1) GTRI; (2) a related, multilateral U.S. initiative to forge agreement on conversion among the states that are home to the major producers; (3) an IAEA effort to provide technical assistance that will facilitate large-scale production of medical isotopes using LEU by producers who seek to do so; (4) planned production in the United States of substantial quantities of medical isotopes using LEU; and (5) pending U.S. legislation that would prohibit the export of HEU for production of isotopes as soon as alternative, LEU-produced isotopes are available. Accordingly, it now appears inevitable that worldwide isotope production will be converted from reliance on HEU to LEU. The only remaining question is which producers will be the first to reliably deliver sizeable quantities of LEU-produced isotopes and thereby capture global market share from the others. (author)

  16. Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains—OptSwap

    DEFF Research Database (Denmark)

    King, Zachary A.; Feist, Adam

    2013-01-01

    Central oxidoreductase enzymes (eg, dehydrogenases, reductases) in microbial metabolism often have preferential binding specificity for one of the two major currency metabolites NAD(H) and NADP(H). These enzyme specificities result in a division of the metabolic functionality of the currency...... specificities of oxidoreductase enzyme and complementary reaction knockouts. Using the Escherichia coli genome-scale metabolic model iJO1366, OptSwap predicted eight growth-coupled production designs with significantly greater product yields or substrate-specific productivities than designs predicted with gene...

  17. Refreshing Rubbers as Customized Photothermal Conversion Materials through Post-Darkening Modeling Production.

    Science.gov (United States)

    Li, Ruiting; Wang, Zhen; Han, Peng; He, Yonglin; Zhang, Xiaohong; Wang, Yapei

    2017-12-19

    Organic conjugated polymers with low energy bandgaps are emerging as a particular class of near-infrared (NIR) photothermal conversion materials. However, these polymers routinely possess high phase transition temperatures due to the rigid skeleton and strong intermolecular interactions. Conjugated polymers can rarely be thermally processed at low temperature, especially below 100 °C. This work formulates a concept of post-darkening modeling production (p-DMP) by which the thermoplastic non-conjugated trans-polyisoprene (TPI) is refreshed into a photothermal conversion material with high light use efficiency. Two steps, including the customizable shaping at low temperature and iodine vapor-tailored "darkening", ensure the ease of preparing photothermal conversion devices with desirable topologies. A few characterizations, with the combination of density functional theory (DFT) calculations, provide reasonable explanations for understanding the "darkening" process of TPI in iodine atmosphere. In particular, the p-DMP is successfully extended to three-dimension (3D) printing, opening an avenue to fabricate personalized photothermal products, for example, a sunlight-directed physiotherapy device for healthcare of articular tissues. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-01-01

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  19. A review of conversion processes for bioethanol production with a focus on syngas fermentation

    Directory of Open Access Journals (Sweden)

    Mamatha Devarapalli

    2015-09-01

    Full Text Available Bioethanol production from corn is a well-established technology. However, emphasis on exploring non-food based feedstocks is intensified due to dispute over utilization of food based feedstocks to generate bioethanol. Chemical and biological conversion technologies for non-food based biomass feedstocks to biofuels have been developed. First generation bioethanol was produced from sugar based feedstocks such as corn and sugar cane. Availability of alternative feedstocks such as lignocellulosic and algal biomass and technology advancement led to the development of complex biological conversion processes, such as separate hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, simultaneous saccharification and co-fermentation (SSCF, consolidated bioprocessing (CBP, and syngas fermentation. SHF, SSF, SSCF, and CBP are direct fermentation processes in which biomass feedstocks are pretreated, hydrolyzed and then fermented into ethanol. Conversely, ethanol from syngas fermentation is an indirect fermentation that utilizes gaseous substrates (mixture of CO, CO2 and H2 made from industrial flue gases or gasification of biomass, coal or municipal solid waste. This review article provides an overview of the various biological processes for ethanol production from sugar, lignocellulosic, and algal biomass. This paper also provides a detailed insight on process development, bioreactor design, and advances and future directions in syngas fermentation.

  20. Nanomodification of the electrodes in microbial fuel cell: impact of nanoparticle density on electricity production and microbial community

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Zhang, Yifeng; Angelidaki, Irini

    2014-01-01

    The nano-decoration of electrode with nanoparticles is one effective way to enhance power output of microbial fuel cells (MFCs). However, the amount of nanoparticles used for decoration has not been optimized yet, and how it affects the microbial community is still unknown. In this study, differe...

  1. Microbial Biodiesel Production by Direct Transesterification of Rhodotorula glutinis Biomass

    Directory of Open Access Journals (Sweden)

    I-Ching Kuan

    2018-04-01

    Full Text Available (1 Background: Lipids derived from oleaginous microbes have become promising alternative feedstocks for biodiesel. This is mainly because the lipid production rate from microbes is one to two orders of magnitude higher than those of energy crops. However, the conventional process for converting these lipids to biodiesel still requires a large amount of energy and organic solvents; (2 Methods: In this study, an oleaginous yeast, Rhodotorula glutinis, was used for direct transesterification without lipid pre-extraction to produce biodiesel, using sulfuric acid or sodium hydroxide as a catalyst. Such processes decreased the amount of energy and organic solvents required simultaneously; (3 Results: When 1 g of dry R. glutinis biomass was subject to direct transesterification in 20 mL of methanol catalyzed by 0.6 M H2SO4 at 70 °C for 20 h, the fatty acid methyl ester (FAME yield reached 111%. Using the same amount of biomass and methanol loading but catalyzed by 1 g/L NaOH at 70 °C for 10 h, the FAME yield reached 102%. The acid-catalyzed process showed a superior moisture tolerance; when the biomass contained 70% moisture, the FAME yield was 43% as opposed to 34% of the base-catalyzed counterpart; (4 Conclusions: Compared to conventional transesterification, which requires lipid pre-extraction, direct transesterification not only simplifies the process and shortens the reaction time, but also improves the FAME yield.

  2. Microbial Diversity-Based Novel Crop Protection Products

    Energy Technology Data Exchange (ETDEWEB)

    Pioneer Hi-Bred International Inc.; DuPont Experimental Station; Yalpani, Ronald Flannagan, Rafael Herrmann, James Presnail, Tamas Torok, and Nasser; Herrmann, Rafael; Presnail, James; Torok, Tamas; Yalpani, Nasser

    2007-05-10

    Extremophilic microorganisms are adapted to survive in ecological niches with high temperatures, extremes of pH, high salt concentrations, high pressure, radiation, etc. Extremophiles produce unique biocatalysts and natural products that function under extreme conditions comparab le to those prevailing in various industrial processes. Therefore, there is burgeoning interest in bioprospecting for extremophiles with potential immediate use in agriculture, the food, chemical, and pharm aceutical industries, and environmental biotechnology. Over the years, several thousand extremophilic bacteria, archaea, and filamentous fungi were collected at extreme environmental sites in the USA, the Chernobyl Exclusion Zone surrounding the faeild nuclear power plant in Ukraine, in and around Lake Baikal in Siberia, and at geothermal sites on the Kamchatka peninsula in Russia. These organisms were cultured under proprietary conditions, and the cell- free supernatants were screened for biological activities against plant pathogenic fungi and major crop damaging insects. Promising peptide lead molecules were isolated, characterized, and sequenced. Relatively high hit rates characterized the tested fermentation broths. Of the 26,000 samples screened, over thousand contained biological activity of interest. A fair number of microorganisms expressed broad- spectrum antifungal or insecticidal activity. Two- dozen broadly antifungal peptides (AFPs) are alr eady patent protected, and many more tens are under further investigation. Tapping the gene pool of extremophilic microorganisms to provide novel ways of crop protection proved a successful strategy.

  3. Microbial Diversity-Based Novel Crop Protection Products

    International Nuclear Information System (INIS)

    Flannagan, Ronald; Herrmann, Rafael; Presnail, James; Torok, Tamas; Yalpani, Nasser

    2007-01-01

    Extremophilic microorganisms are adapted to survive in ecological niches with high temperatures, extremes of pH, high salt concentrations, high pressure, radiation, etc. Extremophiles produce unique biocatalysts and natural products that function under extreme conditions comparab le to those prevailing in various industrial processes. Therefore, there is burgeoning interest in bioprospecting for extremophiles with potential immediate use in agriculture, the food, chemical, and pharm aceutical industries, and environmental biotechnology. Over the years, several thousand extremophilic bacteria, archaea, and filamentous fungi were collected at extreme environmental sites in the USA, the Chernobyl Exclusion Zone surrounding the faeild nuclear power plant in Ukraine, in and around Lake Baikal in Siberia, and at geothermal sites on the Kamchatka peninsula in Russia. These organisms were cultured under proprietary conditions, and the cell- free supernatants were screened for biological activities against plant pathogenic fungi and major crop damaging insects. Promising peptide lead molecules were isolated, characterized, and sequenced. Relatively high hit rates characterized the tested fermentation broths. Of the 26,000 samples screened, over thousand contained biological activity of interest. A fair number of microorganisms expressed broad- spectrum antifungal or insecticidal activity. Two- dozen broadly antifungal peptides (AFPs) are alr eady patent protected, and many more tens are under further investigation. Tapping the gene pool of extremophilic microorganisms to provide novel ways of crop protection proved a successful strategy.

  4. Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work.

    Science.gov (United States)

    Peña, C; Castillo, T; García, A; Millán, M; Segura, D

    2014-07-01

    Poly-(3-hydroxybutyrate) [P(3HB)] is a polyester synthesized as a carbon and energy reserve material by a wide number of bacteria. This polymer is characterized by its thermo-plastic properties similar to plastics derived from petrochemical industry, such as polyethylene and polypropylene. Furthermore, P(3HB) is an inert, biocompatible and biodegradable material which has been proposed for several uses in medical and biomedical areas. Currently, only few bacterial species such as Cupriavidus necator, Azohydromonas lata and recombinant Escherichia coli have been successfully used for P(3HB) production at industrial level. Nevertheless, in recent years, several fermentation strategies using other microbial models such as Azotobacter vinelandii, A. chroococcum, as well as some methane-utilizing species, have been developed in order to improve the P(3HB) production and also its mean molecular weight. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Production of microbial oil with high oleic acid content by Trichosporon capitatum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zong, Minhua [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640 (China); Li, Yuanyuan; Chen, Lei [School of Biosciences and Bioengineering, South China University of Technology, Guangzhou 510640 (China)

    2011-01-15

    Microbial oils with high unsaturated fatty acids content, especially oleic acid content, are good feedstock for high quality biodiesel production. Trichosporon capitatum was found to accumulate lipid with around 80% oleic acid and 89% total unsaturated fatty acids content on nitrogen-limited medium. In order to improve its lipid yield, effects of medium components and culture conditions on cell growth and lipid accumulation were investigated. Optimization of media resulted in a 61% increase in the lipid yield of T. capitatum after cultivation at 28 C and 160 rpm for 6 days. In addition, T. capitatum could grow well on cane molasses and afford a lipid yield comparable to that on synthetic nitrogen-limited medium. The biodiesel from the microbial oil produced by T. capitatum on cane molasses displayed a low cold filter plugging point (-15 C), and so T. capitatum might be a promising strain to provide lipid suitable for high quality biodiesel production. (author)

  6. Effect of warm-smoking on total microbial count of meat products

    Directory of Open Access Journals (Sweden)

    A Javadi

    2007-11-01

    Full Text Available The frankfurters are amongst the most famous and popular sausages in the world and beef and poultry meat are used in Iran for their preparation. The techniques of warm smoking at 42°c for two hours and then hot smoking together with steam cooking at 8°c for one hour are utilized in proportion of this product. In spite of its carcinogenic properties, smoke is used to create color, flavor and odor and to improve the preservative qualities of sausages. In this study, 14 sausage samples were taken from each of the stages of frankfurter production line including pre-smoking, post- warm smoking and post-hot smoking, their total microbial counts (aerobic mesophiles determined and the means of the three stages compared using the ANOVA statistical test. The results indicated that the total microbial count increased significantly (P

  7. An overview of aquatic photochemistry as it relates to microbial production

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.L. [Dalhousie Univ., Halifax, NS (Canada). Inst. of Oceanography

    2000-07-01

    A review of fundamental photochemistry and its potential impact on microbial processes in natural waters was presented. It is a known fact that solar radiation alters chromophoric dissolved organic matter (CDOM) and results in the production of a complex mixture of reactive oxygen species, inorganic nutrients, and carbon photoproducts. In addition, it results in reduced average molecular weight and changes in water optical properties. The largest carbon product results from the direct photo-mineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC), thereby bypassing the microbial web. Other studies demonstrated that growth was enhanced for heterotrophic bacteria in natural samples exposed to sunlight, that bacterial growth was absent when stimulated by photochemistry and that there was a marked reduction in the ability of DOC to support bacterial growth after exposure to ultraviolet radiation B (UV-B). 20 refs., 1 fig.

  8. Fission product model for lattice calculation of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Iijima, S.; Yoshida, T.; Yamamoto, T.

    1988-01-01

    A high precision fission product model for boiling water reactor (BWR) lattice calculation was developed, which consists of 45 nuclides to be treated explicitly and one nonsaturating pseudo nuclide. This model is applied to a high conversion BWR lattice calculation code. From a study based on a three-energy-group calculation of fission product poisoning due to full fission products and explicitly treated nuclides, the multigroup capture cross sections and the effective fission yields of the pseudo nuclide are determined, which do not depend on fuel types or reactor operating conditions for a good approximation. Apart from nuclear data uncertainties, the model and the derived pseudo nuclide constants would predict the fission product reactivity within an error of 0.1% Δk at high burnup

  9. Program THEK energy production units of average power and using thermal conversion of solar radiation

    Science.gov (United States)

    1978-01-01

    General studies undertaken by the C.N.R.S. in the field of solar power plants have generated the problem of building energy production units in the medium range of electrical power, in the order of 100 kW. Among the possible solutions, the principle of the use of distributed heliothermal converters has been selected as being, with the current status of things, the most advantageous solution. This principle consists of obtaining the conversion of concentrated radiation into heat by using a series of heliothermal conversion modules scattered over the ground; the produced heat is collected by a heat-carrying fluid circulating inside a thermal loop leading to a device for both regulation and storage.

  10. Characterization of microbial communities and fungal metabolites on field grown strawberries from organic and conventional production

    DEFF Research Database (Denmark)

    Jensen, Birgit; Knudsen, Inge-Marie Birkedal; Andersen, Birgitte

    2013-01-01

    The background levels of culturable indigenous microbial communities (microbiotas) on strawberries were examined in a field survey with four conventional and four organic growers with different production practise and geographic distribution. The microbiota on apparently healthy strawberries...... produced cyclopenol, cyclopenin, and viridicatin on the artificially infected berries, while Altemaria arborescens produced tenuazonic acid, Alternaria tenuissima produced altertoxin land altenuene, and Trichoderma spp. produced several peptaibols. In conclusion, native strawberry microbiotas are highly...

  11. Optimization of renewable pinene production from the conversion of macroalgae Saccharina latissima

    Energy Technology Data Exchange (ETDEWEB)

    Scullin, Chessa [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stavila, Vitalie [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Skarstad, Anita [Statoil Research Center, Trondheim (Norway); Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Simmons, Blake A. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Singh, Seema [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-05-01

    The enzymatic hydrolysis of Saccharina latissima with laminarinase was compared to hydrolysis with different combinations of cellulase and hemicellulase enzyme mixtures. The hemicellulase mixture resulted in similar release of glucose, while the cellulase mixture released 40% more glucose than laminarinase alone. The combination of a laminarinase augmented with a cellulase mixture resulted in a 53% increase of glucose release from S. latissima than laminarinase. Increasing biomass loading above 4% (w/v) reduced the sugar yield. Resulting macroalgae hydrolysates were used as a carbon source for the production of pinene, making use of a novel two plasmid Escherichia coli system. The macroalgal hydrolysates were suitable for the novel microbial production of pinene with no further treatment and/or purification.

  12. Optimization of renewable pinene production from the conversion of macroalgae Saccharina latissima.

    Science.gov (United States)

    Scullin, Chessa; Stavila, Vitalie; Skarstad, Anita; Keasling, Jay D; Simmons, Blake A; Singh, Seema

    2015-05-01

    Enzymatic hydrolysis of Saccharina latissima with laminarinase was compared to hydrolysis with different combinations of cellulase and hemicellulase enzyme mixtures. The hemicellulase mixture resulted in similar release of glucose, while the cellulase mixture released 40% more glucose than laminarinase alone. The combination of a laminarinase augmented with a cellulase mixture resulted in a 53% increase of glucose release from S. latissima than laminarinase. Increasing biomass loading above 4% (w/v) reduced the sugar yield. Resulting macroalgae hydrolysates were used as a carbon source for the production of pinene, making use of a novel two plasmid Escherichia coli system. The macroalgal hydrolysates were suitable for the novel microbial production of pinene with no further treatment and/or purification. Copyright © 2015. Published by Elsevier Ltd.

  13. High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production.

    Science.gov (United States)

    Cheng, Xiaoliang; Hiras, Jennifer; Deng, Kai; Bowen, Benjamin; Simmons, Blake A; Adams, Paul D; Singer, Steven W; Northen, Trent R

    2013-01-01

    Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS)-based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC), Medium 84 + rolled oats, and M9TE + MCC at 45°C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45°C than at all other temperatures. While T. bispora is reported to grow optimally at 60°C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45°C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.

  14. High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production

    Directory of Open Access Journals (Sweden)

    Xiaoliang eCheng

    2013-12-01

    Full Text Available Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC, Medium 84 + rolled oats, and M9TE + MCC at 45 °C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45 °C than at all other temperatures. While T. bispora is reported to grow optimally at 60 °C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45 °C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.

  15. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha; Kiely, Patrick D.; Call, Douglas F.; Logan, Bruce. E.

    2010-01-01

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  16. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha

    2010-12-15

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  17. Microbial community dynamics and biogas production from manure fractions in sludge bed anaerobic digestion.

    Science.gov (United States)

    Nordgård, A S R; Bergland, W H; Bakke, R; Vadstein, O; Østgaard, K; Bakke, I

    2015-12-01

    To elucidate how granular sludge inoculum and particle-rich organic loading affect the structure of the microbial communities and process performance in upflow anaerobic sludge bed (UASB) reactors. We investigated four reactors run on dairy manure filtrate and four on pig manure supernatant for three months achieving similar methane yields. The reactors fed with less particle rich pig manure stabilized faster and had highest capacity. Microbial community dynamics analysed by a PCR/denaturing gradient gel electrophoresis approach showed that influent was a major determinant for the composition of the reactor communities. Comparisons of pre- and non-adapted inoculum in the reactors run on pig manure supernatant showed that the community structure of the nonadapted inoculum adapted in approximately two months. Microbiota variance partitioning analysis revealed that running time, organic loading rate and inoculum together explained 26 and 31% of the variance in bacterial and archaeal communities respectively. The microbial communities of UASBs adapted to the reactor conditions in treatment of particle rich manure fractions, obtaining high capacity, especially on pig manure supernatant. These findings provide relevant insight into the microbial community dynamics in startup and operation of sludge bed reactors for methane production from slurry fractions, a major potential source of biogas. © 2015 The Society for Applied Microbiology.

  18. Hydrogen production with effluent from an ethanol–H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell

    KAUST Repository

    Lu, Lu; Ren, Nanqi; Xing, Defeng; Logan, Bruce E.

    2009-01-01

    Hydrogen can be produced by bacterial fermentation of sugars, but substrate conversion to hydrogen is incomplete. Using a single-chamber microbial electrolysis cell (MEC), we show that additional hydrogen can be produced from the effluent

  19. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Li, Feifei; Tang, Junhong

    2016-10-01

    Waste pastry was hydrolyzed by glucoamylase and protease which were obtained from solid state fermentation of Aspergillus awamori and Aspergillus oryzae to produce waste pastry hydrolysate. Then, the effects of hydraulic retention times (HRTs) (4-12h) on hydrogen production rate (HPR) in the suspended microbial growth system (continuous stirred tank reactor, CSTR) and attached microbial growth system (continuous mixed immobilized sludge reactor, CMISR) from waste pastry hydrolysate were investigated. The maximum HPRs of CSTR (201.8mL/(h·L)) and CMISR (255.3mL/(h·L)) were obtained at HRT of 6h and 4h, respectively. The first-order reaction could be used to describe the enzymatic hydrolysis of waste pastry. The carbon content of the waste pastry remained 22.8% in the undigested waste pastry and consumed 77.2% for carbon dioxide and soluble microbial products. To our knowledge, this is the first study which reports biohydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Acetaldehyde production and microbial colonization in oral squamous cell carcinoma and oral lichenoid disease.

    Science.gov (United States)

    Marttila, Emilia; Uittamo, Johanna; Rusanen, Peter; Lindqvist, Christian; Salaspuro, Mikko; Rautemaa, Riina

    2013-07-01

    The main aim of this prospective study was to explore the ability of the oral microbiome to produce acetaldehyde in ethanol incubation. A total of 90 patients [30 oral squamous cell carcinoma (OSCC); 30 oral lichenoid disease (OLD); 30 healthy controls (CO)] were enrolled in the study. Microbial samples were taken from the mucosa using a filter paper method. The density of microbial colonization was calculated and the spectrum analyzed. Microbial acetaldehyde production was measured by gas chromatography. The majority (68%) of cultures produced carcinogenic levels of acetaldehyde (>100 μM) when incubated with ethanol (22 mM). The mean acetaldehyde production by microbes cultured from smoker samples was significantly higher (213 μM) than from non-smoker samples (141 μM) (P=.0326). The oral microbiota from OSCC, OLD patients and healthy individuals are able to produce carcinogenic levels of acetaldehyde. The present provisional study suggests smoking may increase the production of acetaldehyde. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. 50 CFR Table 3 to Part 679 - Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut 3 Table 3 to Part 679 Wildlife and Fisheries FISHERY... Rates for Groundfish Species and Conversion Rates for Pacific Halibut ER28JA02.074 ER10JY02.000 ER28JA02...

  2. Microbial methane production in oxygenated water column of an oligotrophic lake

    Science.gov (United States)

    Grossart, Hans-Peter; Frindte, Katharina; Dziallas, Claudia; Eckert, Werner; Tang, Kam W.

    2011-01-01

    The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8–2.4 nM⋅h−1 at 6 m, which could explain 33–44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux. PMID:22089233

  3. Microbial community production, respiration, and structure of the microbial food web of an ecosystem in the northeastern Atlantic Ocean

    Science.gov (United States)

    Maixandeau, Anne; LefèVre, Dominique; Karayanni, Hera; Christaki, Urania; van Wambeke, France; Thyssen, Melilotus; Denis, Michel; FernáNdez, Camila I.; Uitz, Julia; Leblanc, Karine; QuéGuiner, Bernard

    2005-07-01

    Gross community production (GCP), dark community respiration (DCR), and the biomass of the different size classes of organisms in the microbial community were measured in the northeastern Atlantic basin as part of the Programme Océan Multidisciplinaire Méso Echelle (POMME) project. The field experiment was conducted during three seasons (winter, spring, and late summer-fall) in 2001. Samples were collected from four different mesoscale structures within the upper 100 m. GCP rates increased from winter (101 ± 24 mmol O2 m-2 d-1) to spring (153 ± 27 mmol O2 m-2 d-1) and then decreased from spring to late summer (44 ± 18 mmol O2 m-2 d-1). DCR rates increased from winter (-47 ± 18 mmol O2 m-2 d-1) to spring (-97 ± 7 mmol O2 m-2 d-1) and then decreased from spring to late summer (50 ± 7 mmol O2 m-2 d-1). The onset of stratification depended on latitude as well as on the presence of mesoscale structures (eddies), and this largely contributed to the variability of GCP. The trophic status of the POMME area was defined as net autotrophic, with a mean annual net community production rate of +38 ± 18 mmol O2 m-2 d-1, exhibiting a seasonal variation from +2 ± 20 mmol O2 m-2 d-1 to +57 ± 20 mmol O2 m-2 d-1. This study highlights that small organisms (picoautotrophs, nanoautotrophs, and bacteria) are the main organisms contributing to biological fluxes throughout the year and that episodic blooms of microphytoplankton are related to mesoscale structures.

  4. Substrate potential of last interglacial to Holocene permafrost organic matter for future microbial greenhouse gas production

    Science.gov (United States)

    Stapel, Janina G.; Schwamborn, Georg; Schirrmeister, Lutz; Horsfield, Brian; Mangelsdorf, Kai

    2018-04-01

    In this study the organic matter (OM) in several permafrost cores from Bol'shoy Lyakhovsky Island in NE Siberia was investigated. In the context of the observed global warming the aim was to evaluate the potential of freeze-locked OM from different depositional ages to act as a substrate provider for microbial production of greenhouse gases from thawing permafrost. To assess this potential, the concentrations of free and bound acetate, which form an appropriate substrate for methanogenesis, were determined. The largest free-acetate (in pore water) and bound-acetate (organic-matrix-linked) substrate pools were present in interstadial marine isotope stage (MIS) 3 and stadial MIS 4 Yedoma permafrost deposits. In contrast, deposits from the last interglacial MIS 5e (Eemian) contained only a small pool of substrates. The Holocene (MIS 1) deposits revealed a significant bound-acetate pool, representing a future substrate potential upon release during OM degradation. Additionally, pyrolysis experiments on the OM allocated an increased aliphatic character to the MIS 3 and 4 Late Pleistocene deposits, which might indicate less decomposed and presumably more easily degradable OM. Biomarkers for past microbial communities, including those for methanogenic archaea, also showed the highest abundance during MIS 3 and 4, which indicated OM-stimulated microbial degradation and presumably greenhouse gas production during time of deposition. On a broader perspective, Arctic warming will increase and deepen permafrost thaw and favor substrate availability from older freeze-locked permafrost deposits. Thus, the Yedoma deposits especially showed a high potential for providing substrates relevant for microbial greenhouse gas production.

  5. Proof of Kochen–Specker Theorem: Conversion of Product Rule to Sum Rule

    International Nuclear Information System (INIS)

    Toh, S.P.; Zainuddin, Hishamuddin

    2009-01-01

    Valuation functions of observables in quantum mechanics are often expected to obey two constraints called the sum rule and product rule. However, the Kochen–Specker (KS) theorem shows that for a Hilbert space of quantum mechanics of dimension d ≤ 3, these constraints contradict individually with the assumption of value definiteness. The two rules are not irrelated and Peres [Found. Phys. 26 (1996) 807] has conceived a method of converting the product rule into a sum rule for the case of two qubits. Here we apply this method to a proof provided by Mermin based on the product rule for a three-qubit system involving nine operators. We provide the conversion of this proof to one based on sum rule involving ten operators. (general)

  6. Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modelling approach and experimental validation.

    Science.gov (United States)

    Penloglou, Giannis; Chatzidoukas, Christos; Kiparissides, Costas

    2012-01-01

    The microbial production of polyhydroxybutyrate (PHB) is a complex process in which the final quantity and quality of the PHB depend on a large number of process operating variables. Consequently, the design and optimal dynamic operation of a microbial process for the efficient production of PHB with tailor-made molecular properties is an extremely interesting problem. The present study investigates how key process operating variables (i.e., nutritional and aeration conditions) affect the biomass production rate and the PHB accumulation in the cells and its associated molecular weight distribution. A combined metabolic/polymerization/macroscopic modelling approach, relating the process performance and product quality with the process variables, was developed and validated using an extensive series of experiments and measurements. The model predicts the dynamic evolution of the biomass growth, the polymer accumulation, the consumption of carbon and nitrogen sources and the average molecular weights of the PHB in a bioreactor, under batch and fed-batch operating conditions. The proposed integrated model was used for the model-based optimization of the production of PHB with tailor-made molecular properties in Azohydromonas lata bacteria. The process optimization led to a high intracellular PHB accumulation (up to 95% g of PHB per g of DCW) and the production of different grades (i.e., different molecular weight distributions) of PHB. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Heavy quark production form jet conversions in a quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu , W.; Fries, R.

    2008-05-22

    Recently, it has been demonstrated that the chemical composition of jets in heavy ion collisions is significantly altered compared to the jets in the vacuum. This signal can be used to probe the medium formed in nuclear collisions. In this study we investigate the possibility that fast light quarks and gluons can convert to heavy quarks when passing through a quark-gluon plasma. We study the rate of light to heavy jet conversions in a consistent Fokker-Planck framework and investigate their impact on the production of high-p{sub T} charm and bottom quarks at the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  8. Enhanced loss of fusion products during mode conversion heating in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C.; Zarnstorff, M.C.; Zweben, S.J.

    1995-07-01

    Ion Bernstein waves (IBWS) have been generated by mode conversion of ion cyclotron range of frequency (ICRF) fast waves in TFTR. The loss rate of fusion products in these discharges can be large, up to 10 times the first orbit loss rate. The losses are observed at the passing/trapped boundary, indicating that passing particles are being moved onto loss orbits either by increase of their v perpendicular due to the wave, by outward transport in minor radius, or both. The lost particles appear to be DD fusion produced tritons heated to ∼1.5 times their birth energy

  9. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    A self-powered submersible microbial electrolysis cell (SMEC), in which a specially designed anode chamber and external electricity supply were not needed, was developed for in situ biohydrogen production from anaerobic reactors. In batch experiments, the hydrogen production rate reached 17.8 m...... improvement of voltage output and reduction of electron losses were essential for efficient hydrogen generation. In addition, alternate exchanging the electricity-assisting and hydrogen-producing function between the two cell units of the SMEC was found to be an effective approach to inhibit methanogens...

  10. Interactive design of farm conversion : linking agricultural research and farmer learning for sustainable small scale horticulture production in Colombia

    NARCIS (Netherlands)

    Lee, R.A.

    2002-01-01

    Key words: interactive conversion design / vegetable production / small farms / sustainable farming / Colombia / learning processes / facilitation / agricultural research methods

  11. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    Science.gov (United States)

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  12. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production.

    Science.gov (United States)

    da Silva, Teresa Lopes; Gouveia, Luísa; Reis, Alberto

    2014-02-01

    The production of microbial biofuels is currently under investigation, as they are alternative sources to fossil fuels, which are diminishing and their use has a negative impact on the environment. However, so far, biofuels derived from microbes are not economically competitive. One way to overcome this bottleneck is the use of microorganisms to transform substrates into biofuels and high value-added products, and simultaneously taking advantage of the various microbial biomass components to produce other products of interest, as an integrated process. In this way, it is possible to maximize the economic value of the whole process, with the desired reduction of the waste streams produced. It is expected that this integrated system makes the biofuel production economically sustainable and competitive in the near future. This review describes the investigation on integrated microbial processes (based on bacteria, yeast, and microalgal cultivations) that have been experimentally developed, highlighting the importance of this approach as a way to optimize microbial biofuel production process.

  13. Circulating microbial products and acute phase proteins as markers of pathogenesis in lymphatic filarial disease.

    Directory of Open Access Journals (Sweden)

    R Anuradha

    Full Text Available Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Dysregulated host inflammatory responses leading to systemic immune activation are thought to play a central role in filarial disease pathogenesis. We measured the plasma levels of microbial translocation markers, acute phase proteins, and inflammatory cytokines in individuals with chronic filarial pathology with (CP Ag+ or without (CP Ag- active infection; with clinically asymptomatic infections (INF; and in those without infection (endemic normal [EN]. Comparisons between the two actively infected groups (CP Ag+ compared to INF and those without active infection (CP Ag- compared to EN were used preliminarily to identify markers of pathogenesis. Thereafter, we tested for group effects among all the four groups using linear models on the log transformed responses of the markers. Our data suggest that circulating levels of microbial translocation products (lipopolysaccharide and LPS-binding protein, acute phase proteins (haptoglobin and serum amyloid protein-A, and inflammatory cytokines (IL-1β, IL-12, and TNF-α are associated with pathogenesis of disease in lymphatic filarial infection and implicate an important role for circulating microbial products and acute phase proteins.

  14. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management

    Science.gov (United States)

    Jin, X.; Filley, T. R.

    2017-12-01

    Management of crop residues using plastic film mulching (PFM) has the potential to improve soil health by accelerating nutrient cycling and facilitating stable C pool production; however, a key aspect of this process—microbial immobilization of residue C—is poorly understood, especially under PFM when combined with different fertilization treatments. A 360-day in situ 13C-tracing technique was used to analyze the contribution and dynamics of microbial biomass C (MBC) to soil organic C (SOC) after 13C-labelled maize straw residue was applied to micro-plot topsoil in a cultivated maize (Zea mays L.) field under 27-year PFM and four fertilization treatments. Over the course of the experiment, MBC content was significantly (P<0.05) higher in treatments of manure (M) and manure plus nitrogen (MN) compared to the no-fertilization (CK) and nitrogen (N) treatments, regardless of PFM. Compared to no PFM controls, PFM enhanced the decomposition of maize straw during summer (Day 60) in the M and MN treatments, exhibiting increases of 93.0% and 28.6% in straw-derived 13C-MBC and 80.4% and 82.9% in 13C-MBC/13C-SOC, respectively. Overall, both PFM and organic manure treatments improved soil fertility through microbe-mediated incorporation of C derived from newly-added maize straw. Our results indicate that microbial growth and activity are affected by the utilization of different C sources and most dramatically during early seasonal transition.

  15. Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products

    Directory of Open Access Journals (Sweden)

    Musaalbakri Abdul Manan

    2017-12-01

    Full Text Available The promise of industrial biotechnology has been around since Chaim Weizmann developed acetone–butanol–ethanol fermentation at the University of Manchester in 1917 and the prospects nowadays look brighter than ever. Today’s biorefinery technologies would be almost unthinkable without biotechnology. This is a growing trend and biorefineries have also increased in importance in agriculture and the food industry. Novel biorefinery processes using solid state fermentation (SSF technology have been developed as alternative to conventional processing routes, leading to the production of added-value products from agriculture and food industry raw materials. SSF involves the growth of microorganisms on moist solid substrate in the absence of free-flowing water. Future biorefineries based on SSF aim to exploit the vast complexity of the technology to modify biomass produced by agriculture and the food industry for valuable by-products through microbial bioconversion. In this review, a summary has been made of the attempts at using modern microbial SSF technology for future biorefineries for the production of many added-value products ranging from feedstock for the fermentation process and biodegradable plastics to fuels and chemicals.

  16. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products

    OpenAIRE

    Liguori, Rossana; Ventorino, Valeria; Pepe, Olimpia; Faraco, Vincenza

    2015-01-01

    Lignocellulosic biomasses derived from dedicated crops and agro-industrial residual materials are promising renewable resources for the production of fuels and other added value bioproducts. Due to the tolerance to a wide range of environments, the dedicated crops can be cultivated on marginal lands, avoiding conflict with food production and having beneficial effects on the environment. Besides, the agro-industrial residual materials represent an abundant, available, and cheap source of biop...

  17. Microbial genome mining for accelerated natural products discovery: is a renaissance in the making?

    Science.gov (United States)

    Bachmann, Brian O; Van Lanen, Steven G; Baltz, Richard H

    2014-02-01

    Microbial genome mining is a rapidly developing approach to discover new and novel secondary metabolites for drug discovery. Many advances have been made in the past decade to facilitate genome mining, and these are reviewed in this Special Issue of the Journal of Industrial Microbiology and Biotechnology. In this Introductory Review, we discuss the concept of genome mining and why it is important for the revitalization of natural product discovery; what microbes show the most promise for focused genome mining; how microbial genomes can be mined; how genome mining can be leveraged with other technologies; how progress on genome mining can be accelerated; and who should fund future progress in this promising field. We direct interested readers to more focused reviews on the individual topics in this Special Issue for more detailed summaries on the current state-of-the-art.

  18. Microbial decontamination of cosmetic raw materials and personal care products by irradiation

    International Nuclear Information System (INIS)

    Katusin-Razem, B.; Mihaljevic, B.; Razem, D.

    2005-01-01

    Typical levels of sporadically occurring (dynamic) microbial contamination of cosmetic raw materials: pigments, abrasives and liposomes, as well as of final products for personal care, i.e. toothpaste, crayons, shampoos, cleansers and creams, were evaluated. In most cases, contamination was dominated by a single population of microorganisms, either Gram-negative bacteria or molds. The feasibility of microbial decontamination by irradiation was studied by determining the resistance to gamma radiation of contaminating microflora in situ. It was expressed as a dose required for the first 90% reduction, D first 9 0% red. The values in the range 1-2 kGy for molds and 0.1-0.6 kGy for Gram-negative bacteria were obtained. This relatively high susceptibility to irradiation allowed inactivation factors close to 6 to be achieved with doses generally not exceeding 3 kGy, and yielding endpoint contamination less than 10 g -1 . (author)

  19. Microbial decontamination of cosmetic raw materials and personal care products by irradiation

    International Nuclear Information System (INIS)

    Katusin-Razem, Branka; Mihaljevic, Branka; Razem, D.

    2003-01-01

    Typical levels of sporadically occurring (dynamic) microbial contamination of cosmetic raw materials: pigments, abrasives and liposomes, as well as of final products for personal care: toothpaste, crayons, shampoos, cleansers and creams, were evaluated. In most cases the contamination was dominated by a single population of microorganisms, either Gram-negative bacteria or molds. The feasibility of microbial decontamination by irradiation was studied by determining the resistance to gamma radiation of contaminating microflora in situ. It was expressed as a dose required for the first 90% reduction, D first 9 0% r ed . The values in the range 1-2 kGy for molds and 0.1-0.6 kGy for Gram-negative bacteria were obtained. This relatively high susceptibility to irradiation allowed inactivation factors close to 6 to be achieved with doses generally not exceeding 3 kGy, and yielding endpoint contamination less than 10/g

  20. Microbial production host selection for converting second-generation feedstocks into bioproducts

    Directory of Open Access Journals (Sweden)

    van Groenestijn Johan W

    2009-12-01

    Full Text Available Abstract Background Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum, two yeasts (Saccharomyces cerevisiae and Pichia stipitis and two fungi (Aspergillus niger and Trichoderma reesei were compared for their (i ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii resistance against inhibitors present in lignocellulosic hydrolysates, (iii their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood. The feedstock hydrolysates were generated in two manners: (i thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated. Results Large differences in the performance of the six tested microbial production hosts were observed. Carbon source versatility and inhibitor resistance were the major discriminators between the performances of these microorganisms. Surprisingly all 6 organisms performed relatively well on pretreated crude feedstocks. P. stipitis and A. niger were found to give the overall best performance C. glutamicum and S. cerevisiae were shown to be the least adapted to renewable feedstocks. Conclusion Based on the results obtained we conclude that a substrate oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic

  1. Feasibility of biohydrogen production from industrial wastes using defined microbial co-culture

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2015-01-01

    Full Text Available BACKGROUND: The development of clean or novel alternative energy has become a global trend that will shape the future of energy. In the present study, 3 microbial strains with different oxygen requirements, including Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, were used to construct a hydrogen production system that was composed of a mixed aerobic-facultative anaerobic-anaerobic consortium. The effects of metal ions, organic acids and carbohydrate substrates on this system were analyzed and compared using electrochemical and kinetic assays. It was then tested using small-scale experiments to evaluate its ability to convert starch in 5 L of organic wastewater into hydrogen. For the one-step biohydrogen production experiment, H1 medium (nutrient broth and potato dextrose broth was mixed directly with GAM broth to generate H2 medium (H1 medium and GAM broth. Finally, Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D of three species microbial co-culture to produce hydrogen under anaerobic conditions. For the two-step biohydrogen production experiment, the H1 medium, after cultured the microbial strains Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, was centrifuged to remove the microbial cells and then mixed with GAM broth (H2 medium. Afterward, the bacterial strain Clostridium acetobutylicum ATCC 824 was inoculated into the H2 medium to produce hydrogen by anaerobic fermentation. RESULTS: The experimental results demonstrated that the optimum conditions for the small-scale fermentative hydrogen production system were at pH 7.0, 35°C, a mixed medium, including H1 medium and H2 medium with 0.50 mol/L ferrous chloride, 0.50 mol/L magnesium sulfate, 0.50 mol/L potassium chloride, 1% w/v citric acid, 5% w/v fructose and 5% w/v glucose. The overall hydrogen production efficiency in the shake flask fermentation group was 33.7 m

  2. Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion.

    Science.gov (United States)

    Xin, Xiaodong; Ma, Yingqun; Liu, Yu

    2018-05-01

    A food waste resourceful process was developed by integrating the ultra-fast hydrolysis and microbial fuel cells (MFCs) for energy and resource recovery. Food waste was first ultra-fast hydrolyzed by fungal mash rich in hydrolytic enzymes in-situ produced from food waste. After which, the separated solids were readily converted to biofertilizer, while the liquid was fed to MFCs for direct electricity generation with a conversion efficiency of 0.245 kWh/kg food waste. It was estimated that about 192.5 million kWh of electricity could be produced from the food waste annually generated in Singapore, together with 74,390 tonnes of dry biofertilizer. Compared to anaerobic digestion, the proposed approach was more environmentally friendly and economically viable in terms of both electricity conversion and process cost. It is expected that this study may lead to the paradigm shift in food waste management towards ultra-fast concurrent recovery of resource and electricity with zero-solid discharge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.

    Science.gov (United States)

    Lu, Xiaowei; Jordan, Beth; Berge, Nicole D

    2012-07-01

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 °C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO(2)-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Metagenomic analyses reveal the involvement of syntrophic consortia in methanol/electricity conversion in microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Ayaka Yamamuro

    Full Text Available Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m(-2 (based on the projected area of the anode. In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors.

  5. Metagenomic analyses reveal the involvement of syntrophic consortia in methanol/electricity conversion in microbial fuel cells.

    Science.gov (United States)

    Yamamuro, Ayaka; Kouzuma, Atsushi; Abe, Takashi; Watanabe, Kazuya

    2014-01-01

    Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs) have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m(-2) (based on the projected area of the anode). In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors.

  6. Organizational Capability Deployment Analysis for Technology Conversion into Processes, Products and Services

    Directory of Open Access Journals (Sweden)

    Tomoe Daniela Hamanaka Gusberti

    2013-12-01

    Full Text Available This article discusses Organizational Capabilities as the basic components of business models that emerged under the New Product Development Process and Technological Management. In the context of the new Technology Based Companies Development, it adopts a qualitative research in order to identify, analyze and underpin the organizational capability deployment in a process of technology conversion into product and service. The analysis was carried out considering concepts from literature review, in a technology based enterprise started by an academic spin-off company. The analysis enabled the elicitation of a Business Model and the discussion of their components, and correspondent evolution hypothesis. The paper provides an example of capability deployment accordingly the established theory illustrated by a case study. The study not just enumerate the needed partners, resources, customer channels, it enabled the description of their connection, representing the logic behind the decision made to develop the conceptual model. This detailed representation of the model allows better addressed discussions.

  7. Microbial Consortium with High Cellulolytic Activity (MCHCA for enhanced biogas production.

    Directory of Open Access Journals (Sweden)

    Krzysztof ePoszytek

    2016-03-01

    Full Text Available The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used.The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate.Over one hundred strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, sixteen strains (representatives of Bacillus, Providencia and Ochrobactrum genera were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants.The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic Microbial Consortium with High Cellulolytic Activity has a great potential for application on industrial scale in agricultural biogas plants.

  8. Engineering soil organic matter quality: Biodiesel Co-Product (BCP) stimulates exudation of nitrogenous microbial biopolymers

    Science.gov (United States)

    Redmile-Gordon, Marc A.; Evershed, Richard P.; Kuhl, Alison; Armenise, Elena; White, Rodger P.; Hirsch, Penny R.; Goulding, Keith W.T.; Brookes, Philip C.

    2015-01-01

    Biodiesel Co-Product (BCP) is a complex organic material formed during the transesterification of lipids. We investigated the effect of BCP on the extracellular microbial matrix or ‘extracellular polymeric substance’ (EPS) in soil which is suspected to be a highly influential fraction of soil organic matter (SOM). It was hypothesised that more N would be transferred to EPS in soil given BCP compared to soil given glycerol. An arable soil was amended with BCP produced from either 1) waste vegetable oils or 2) pure oilseed rape oil, and compared with soil amended with 99% pure glycerol; all were provided with 15N labelled KNO3. We compared transfer of microbially assimilated 15N into the extracellular amino acid pool, and measured concomitant production of exopolysaccharide. Following incubation, the 15N enrichment of total hydrolysable amino acids (THAAs) indicated that intracellular anabolic products had incorporated the labelled N primarily as glutamine and glutamate. A greater proportion of the amino acids in EPS were found to contain 15N than those in the THAA pool, indicating that the increase in EPS was comprised of bioproducts synthesised de novo. Moreover, BCP had increased the EPS production efficiency of the soil microbial community (μg EPS per unit ATP) up to approximately double that of glycerol, and caused transfer of 21% more 15N from soil solution into EPS-amino acids. Given the suspected value of EPS in agricultural soils, the use of BCP to stimulate exudation is an interesting tool to consider in the theme of delivering sustainable intensification. PMID:26635420

  9. Recent advances in microbial production of mannitol: utilization of low-cost substrates, strain development and regulation strategies.

    Science.gov (United States)

    Zhang, Min; Gu, Lei; Cheng, Chao; Ma, Jiangfeng; Xin, Fengxue; Liu, Junli; Wu, Hao; Jiang, Min

    2018-02-26

    Mannitol has been widely used in fine chemicals, pharmaceutical industries, as well as functional foods due to its excellent characteristics, such as antioxidant protecting, regulation of osmotic pressure and non-metabolizable feature. Mannitol can be naturally produced by microorganisms. Compared with chemical manufacturing, microbial production of mannitol provides high yield and convenience in products separation; however the fermentative process has not been widely adopted yet. A major obstacle to microbial production of mannitol under industrial-scale lies in the low economical efficiency, owing to the high cost of fermentation medium, leakage of fructose, low mannitol productivity. In this review, recent advances in improving the economical efficiency of microbial production of mannitol were reviewed, including utilization of low-cost substrates, strain development for high mannitol yield and process regulation strategies for high productivity.

  10. Microbial electrosynthesis for acetate production from carbon dioxide: innovative biocatalysts leading to enhanced performance

    DEFF Research Database (Denmark)

    Aryal, Nabin

    Production of chemicals has significant influence on the emission of greenhouse gases (GHG) in particular carbon dioxide (CO2), thereby contributing to the climate changes of our planet. There is a general acceptance that we need to reduce the emission of GHG on a global level to cope with these ......Production of chemicals has significant influence on the emission of greenhouse gases (GHG) in particular carbon dioxide (CO2), thereby contributing to the climate changes of our planet. There is a general acceptance that we need to reduce the emission of GHG on a global level to cope...... with these changes. Production of chemicals utilization of CO2 as feedstock represents a sustainable alternative to many fossil derived products, which are non-renewable and have a strong negative impact on the environment. Microbial electrosynthesis (MES) is an emerging technique utilizing electrical energy...

  11. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Strik, David P.B.T.B.; Terlouw, Hilde; Hamelers, Hubertus V.M.; Buisman, Cees J.N. [Wageningen Univ. (Netherlands). Sub-Dept. of Environmental Technology

    2008-12-15

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m{sup 2} projected anode surface area and a maximum power production of 110 mW/m{sup 2} surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products. (orig.)

  12. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).

    Science.gov (United States)

    Strik, David P B T B; Terlouw, Hilde; Hamelers, Hubertus V M; Buisman, Cees J N

    2008-12-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products.

  13. Soil microbial activity under conventional and organic production of bean and maize

    Directory of Open Access Journals (Sweden)

    Marinković Jelena B.

    2016-01-01

    Full Text Available The objective of this study was to compare the effects of conventional and organic production system on microbial activity in the soil cultivated with bean and maize crops. The trial in Đurđevo was set up according to the conventional farming system, while organic farming system was used in Futog. Two maize hybrids and two bean cultivars were used in the trial. Soil samples were collected in two periods during 2014 (before sowing, at flowering stage of bean crops, and at 9-11 leaf stage of maize at two depths, at both locations. The following microbiological parameters were tested: the total number of micro­organisms, number of ammonifiers, Azotobacter sp., free nitrogen fixing bacteria, fungi, actinomycetes, and activity of dehydrogenase enzyme. The results showed that the total number of microorganisms, number of free N-fixers and dehydrogenase activity were higher within organic production, while Azotobacter sp. was more abundant in conventional production. Variations in the number of ammonifiers, fungi and actinomycetes in relation to the type of production were not obtained. Significant differences in microbial activity were also obtained between period and depths of sampling.

  14. Cellulase Production Potentials of the Microbial Profile of Some Sugarcane Bagasse Dumping Sites in Ilorin, Nigeria

    Directory of Open Access Journals (Sweden)

    Kamoldeen Abiodun AJIJOLAKEWU

    2013-11-01

    Full Text Available This research work investigated cellulase production potentials of the microbial profile of three sugarcane bagasse dumping sites at Zango area, Ilorin, Nigeria. The microbial isolates were screened for cellulase production with a view to select the best organism for eventual cellulase production. Pour Plate method was used for the isolation and a total of thirteen (13 different organisms including both fungal and bacterial species were isolated and screened. Six (6 fungal isolates identified as Mucor racemosus, Aspergillus niger, Aspergillus flavus, Neurospora sitophilus, Penicillium oxalicum and Penicillium citrinum were isolated, while seven (7 different bacterial species isolated include Clostridium cellobioparum, Clostridium thermocellum,Bacillus subtilis, Bacillus pumillus, Lactobacillus spp, Pseudomonas flavescens and Serratia spp. Generally, bacterial isolates were more in abundance than fungal species. However; fungal isolates were constant and were isolated through the experimental period of three weeks. All the isolates showed cellulase production potential in varying degrees as reflected in the clearance zone around their colonies. Fungal isolates produced more cellulase than the bacterial isolates. Mucor racemosus had the highest clearance zone (75.0 mm among the fungal isolates while Clostridium cellobioparum (35.0 mm were the best producer among bacterial isolates. The least producer among fungal isolates, Penicillium citrinum (40.0 mm, is a little more than the bacterial cellulase producer (35.0 mm and is far greater than the least bacterium Serratia spp (14.0 mm.

  15. Importance of microbial natural products and the need to revitalize their discovery.

    Science.gov (United States)

    Demain, Arnold L

    2014-02-01

    Microbes are the leading producers of useful natural products. Natural products from microbes and plants make excellent drugs. Significant portions of the microbial genomes are devoted to production of these useful secondary metabolites. A single microbe can make a number of secondary metabolites, as high as 50 compounds. The most useful products include antibiotics, anticancer agents, immunosuppressants, but products for many other applications, e.g., antivirals, anthelmintics, enzyme inhibitors, nutraceuticals, polymers, surfactants, bioherbicides, and vaccines have been commercialized. Unfortunately, due to the decrease in natural product discovery efforts, drug discovery has decreased in the past 20 years. The reasons include excessive costs for clinical trials, too short a window before the products become generics, difficulty in discovery of antibiotics against resistant organisms, and short treatment times by patients for products such as antibiotics. Despite these difficulties, technology to discover new drugs has advanced, e.g., combinatorial chemistry of natural product scaffolds, discoveries in biodiversity, genome mining, and systems biology. Of great help would be government extension of the time before products become generic.

  16. Product quality and microbial dynamics during vermicomposting and maturation of compost from pig manure.

    Science.gov (United States)

    Villar, Iria; Alves, David; Mato, Salustiano

    2017-11-01

    This research evaluates, through microbial dynamics, the use of earthworms Eisenia andrei for maturation of pre-composted pig manure in comparison with maturation under static conditions and with vermicomposting of fresh pig manure. Therefore, two substrates were used (fresh and pre-composted pig manure) and four treatments were developed: fresh manure vermicomposting, control of fresh manure without earthworms, pre-composting followed by vermicomposting and static maturation of pre-composted manure. In order to determine the microbial dynamics, the enzymatic activities and profiles of phospholipid fatty acids (PLFAs) were evaluated over a 112-days period. Physicochemical and biological parameters of the obtained products were also analyzed. The presence of earthworms significantly reduced (pquality values, it is necessary to optimize the vermicompost aging phase period to improve the stability. Static maturation presented stability on microbial dynamics that indicated a slow degradation of organic compounds so that, maturation of pre-composted manure through vermicomposting is better option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium

    Directory of Open Access Journals (Sweden)

    JELENA S. MILIĆ

    2009-04-01

    Full Text Available Bioremediation, a process that utilizes the capability of microorganism to degrade toxic waste, is emerging as a promising technology for the treatment of soil and groundwater contamination. The technology is very effective in dealing with petroleum hydrocarbon contamination. The aim of this study was to examine the composition of the microbial consortium during the ex situ experiment of bioremediation of soil heavily contaminated with crude oil and its products from the Oil Refinery Pančevo, Serbia. After a 5.5-month experiment with biostimulation and bioventilation, the concentration of the total petroleum hydrocarbons (TPH had been reduced from 29.80 to 3.29 g/kg (89 %. In soil, the dominant microorganism population comprised Gram-positive bacteria from actinomycete-Nocardia group. The microorganisms which decompose hydrocarbons were the dominant microbial population at the end of the process, with a share of more than 80 % (range 107 CFU/g. On the basis of the results, it was concluded that a stable microbial community had been formed after initial fluctuations.

  18. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus)

    Science.gov (United States)

    Oszust, Karolina; Frąc, Magdalena; Gryta, Agata; Bilińska, Nina

    2014-01-01

    The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions) significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential). Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a) ecological based on the use of probiotic preparations and organic fertilization (b) conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA) was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP) of PCR ammonia monooxygenase α-subunit (amoA) gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application. PMID:24897025

  19. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus

    Directory of Open Access Journals (Sweden)

    Karolina Oszust

    2014-06-01

    Full Text Available The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential. Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a ecological based on the use of probiotic preparations and organic fertilization (b conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP of PCR ammonia monooxygenase α-subunit (amoA gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application.

  20. Synthesis and analysis of separation networks for the recovery of intracellular chemicals generated from microbial-based conversions.

    Science.gov (United States)

    Yenkie, Kirti M; Wu, Wenzhao; Maravelias, Christos T

    2017-01-01

    Bioseparations can contribute to more than 70% in the total production cost of a bio-based chemical, and if the desired chemical is localized intracellularly, there can be additional challenges associated with its recovery. Based on the properties of the desired chemical and other components in the stream, there can be multiple feasible options for product recovery. These options are composed of several alternative technologies, performing similar tasks. The suitability of a technology for a particular chemical depends on (1) its performance parameters, such as separation efficiency; (2) cost or amount of added separating agent; (3) properties of the bioreactor effluent (e.g., biomass titer, product content); and (4) final product specifications. Our goal is to first synthesize alternative separation options and then analyze how technology selection affects the overall process economics. To achieve this, we propose an optimization-based framework that helps in identifying the critical technologies and parameters. We study the separation networks for two representative classes of chemicals based on their properties. The separation network is divided into three stages: cell and product isolation (stage I), product concentration (II), and product purification and refining (III). Each stage exploits differences in specific product properties for achieving the desired product quality. The cost contribution analysis for the two cases (intracellular insoluble and intracellular soluble) reveals that stage I is the key cost contributor (>70% of the overall cost). Further analysis suggests that changes in input conditions and technology performance parameters lead to new designs primarily in stage I. The proposed framework provides significant insights for technology selection and assists in making informed decisions regarding technologies that should be used in combination for a given set of stream/product properties and final output specifications. Additionally, the

  1. Microbial community shifts and biogas conversion computation during steady, inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia.

    Science.gov (United States)

    Niu, Qigui; Qiao, Wei; Qiang, Hong; Li, Yu-You

    2013-10-01

    The thermophilic methane fermentation of chicken manure (10% TS) was investigated within a wide range of ammonia. Microbiological analysis showed significant shifts in Archaeal and Bacterial proportions with VFA accmulation and CH4 formation before and after inhibition. VFA accumulated sharply with lower methane production, 0.29 L/g VS, than during the steady stage, 0.32 L/g VS. Biogas production almost ceased with the synergy inhibition of TAN (8000 mg/L) and VFA (25,000 mg/L). Hydrogenotrophic Methanothermobacter thermautotrophicus str. was the dominate archaea with 95% in the inhibition stage and 100% after 40 days recovery compared to 9.3% in the steady stage. Aceticlastic Methanosarcina was not encountered with coincided phenomenal of high VFA in the inhibition stage as well as recovery stage. Evaluation of the microbial diversity and functional bacteria indicated the dominate phylum of Firmicutes were 94.74% and 84.4% with and without inhibition. The microbial community shifted significantly with elevated ammonia concentration affecting the performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation.

    Science.gov (United States)

    Luo, Hongzhen; Yang, Rongling; Zhao, Yuping; Wang, Zhaoyu; Liu, Zheng; Huang, Mengyu; Zeng, Qingwei

    2018-04-01

    Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Improved quantification of farnesene during microbial production from Saccharomyces cerevisiae in two-liquid-phase fermentations

    DEFF Research Database (Denmark)

    Tippmann, Stefan; Nielsen, Jens; Khoomrung, Sakda

    2016-01-01

    Organic solvents are widely used in microbial fermentations to reduce gas stripping effects and capture hydrophobic or toxic compounds. Reliable quantification of biochemical products in these overlays is highly challenging and practically difficult. Here, we present a significant improvement...... carryover could be minimized. Direct quantification of farnesene in dodecane was achieved by GC-FID whereas GC-MS demonstrated to be an excellent technique for identification of known and unknown metabolites. The GC-FID is a suitable technique for direct quantification of farnesene in complex matrices...

  4. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production

    International Nuclear Information System (INIS)

    Wang, Shurong; Guo, Zuogang; Cai, Qinjie; Guo, Long

    2012-01-01

    Bio-oil must be upgraded to be suitable for use as a high-grade transport fuel. Crude bio-oil has a high content of carboxylic acids which can cause corrosion, and the high oxygen content of these acids also reduces the oil’s heating value. In this paper, acetic acid and propanoic acid were chosen as the model carboxylic acids in bio-oil. Their behavior in the production of liquid hydrocarbons during a catalytic conversion process was investigated in a micro-fixed bed reactor. The liquid organic phase from this catalytic conversion process mainly consisted of liquid hydrocarbons and phenol derivatives. Under the condition of low Liquid Hourly Space Velocity (LHSV), the liquid organic phase from acetic acid cracking had a selectivity of 22% for liquid hydrocarbons and a selectivity of 65% for phenol derivatives. The composition of the organic products changed considerably with the LHSV increasing to 3 h −1 . The selectivity for liquid hydrocarbons increased up to 52% while that for phenol derivatives decreased to 32%. Propanoic acid performed much better in producing liquid hydrocarbons than acetic acid. Its selectivity for liquid hydrocarbons was as high as 80% at LHSV = 3 h −1 . A mechanism for this catalytic conversion process was proposed according to the analysis of the components in the liquid organic phases. The pathways of the main compounds formation in the liquid organic phases were proposed, and the reason why liquid hydrocarbons were more effectively produced when using propanoic acid rather than acetic acid was also successfully explained. In addition, BET and SEM characterization were used to analyze the catalyst coke deposition. -- Graphical abstract: Display Omitted Highlights: ► High content of carboxylic acids in bio-oil causes its corrosiveness. ► Acetic acid and propanoic acid are two dominant acids in bio-oil. ► Liquid hydrocarbons were produced by cracking of these two dominant acids. ► A mechanism model was proposed to explain

  5. Some economic aspects of the conversion of raw materials into final products

    Energy Technology Data Exchange (ETDEWEB)

    Pick, H J [Univ. of Aston, Birmingham, Eng.; Becker, P E

    1978-01-01

    In a previous paper Pick and Becker analyzed the direct and indirect relations between energy and the ''physical structure'' materials used by the engineering and construction industries. The present paper provides a more general description of materials conversion from natural resources to final products. The cost of raw materials, only some 30 percent of which come from the developing countries, accounts for a relatively small proportion of final product costs, the remaining product costs arising from the progressive application of labor, capital, energy, etc. Emphasis is placed on the complete interdependence of the inputs to manufacturing; a change in any one having implications for the remainder. Materials substitution, while in principle providing an adaptive mechanism to change, also has implications for a wide range of factors of production and for social and industrial issues such as regional employment, the demand for specific trades and professions, for research and development and for industrial structure and capital investment. Full allowance for this interdependence needs to be an integral part of effective long term policy formulation and of research and development planning.

  6. Studies on the products resulting from the conversion of aspen poplar to an oil

    Energy Technology Data Exchange (ETDEWEB)

    Eager, R L; Mathews, J F; Pepper, J M; Zohdi, H

    1981-01-01

    The reactions involved in the conversion of aspen poplar into a variety of chemical products as a result of its interaction with CO and H/sub 2/O in the presence of Na/sub 2/CO/sub 3/ at elevated temperatures and pressures are considered. The original C content of the wood is distributed between an oil phase, a complex mixture of highly oxygenated H/sub 2/O-soluble products many of which were identified as low-molecular-weight aliphatic alcohols, ketones, and acids, and a gaseous phase consisting of mainly H and CO/sub 2/. Using model substances (cellulose, cellobiose, -D-glucose, D-fructose, D-xylose, sorbitol, glycerol, and an isolated lignin) information was obtained on the origin of the oil and of the H/sub 2/O-soluble products. Studies at 160 degrees - 360 degrees revealed a marked exothermic reaction occurring at 200-240 degrees for wood and cellulose, which was reflected in the nature of the resulting product. With increasing temperature an increase in the yields of the H/sub 2/O-souluble derivatives and also a change in their relative abundance was observed.

  7. Chemical diversity of microbial volatiles and their potential for plant growth and productivity

    Directory of Open Access Journals (Sweden)

    CHIDANANDA NAGAMANGALA KANCHISWAMY

    2015-03-01

    Full Text Available Microbial volatile organic compounds (MVOCs are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs and their potential physiological effects on crops and analyze potential and actual limitations for MVOC use as a sustainable strategy for improving productivity and reducing pesticide use.

  8. Production of a generic microbial feedstock for lignocellulose biorefineries through sequential bioprocessing.

    Science.gov (United States)

    Chang, Chen-Wei; Webb, Colin

    2017-03-01

    Lignocellulosic materials, mostly from agricultural and forestry residues, provide a potential renewable resource for sustainable biorefineries. Reducing sugars can be produced only after a pre-treatment stage, which normally involves chemicals but can be biological. In this case, two steps are usually necessary: solid-state cultivation of fungi for deconstruction, followed by enzymatic hydrolysis using cellulolytic enzymes. In this research, the utilisation of solid-state bioprocessing using the fungus Trichoderma longibrachiatum was implemented as a simultaneous microbial pretreatment and in-situ enzyme production method for fungal autolysis and further enzyme hydrolysis of fermented solids. Suspending the fermented solids in water at 50°C led to the highest hydrolysis yields of 226mg/g reducing sugar and 7.7mg/g free amino nitrogen (FAN). The resultant feedstock was shown to be suitable for the production of various products including ethanol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Recent progress in synthetic biology for microbial production of C3-C10 alcohols

    Directory of Open Access Journals (Sweden)

    Edna N. Lamsen

    2012-06-01

    Full Text Available The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. While microbial ethanol production is well established, higher chain alcohols possess chemical properties that are more similar to gasoline. Unfortunately, these alcohols (except 1-butanol are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. Synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of these advanced biofuels. This review concentrates on recent developments in synthetic biology to produce higher-chain alcohols as viable renewable replacements for traditional fuel.

  10. Application of Microbial Products to Promote Electrodialytic Remediation of Heavy Metal Contaminated Soil

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland

    2006-01-01

    remediation (EDR) method for efficient treatment of Pb-contaminated soil by application of microbial products. Mobilization of Pb in soil by complexation with exopolymers and whole or disintegrated cells was investigated in column studies. Although exopolymers were previously shown to mobilize Pb in soil...... as potential methods for promotion of EDR of Pb contaminated soil. By these methods mobilization of Pb would occur due to complexation with much smaller substances than the previously examined and rejected exopolymers, why they were considered more efficient for mobilization of Pb in an electric current field...... also rejected, primarily due to the insufficient concentrations produced by microorganisms in general and the unrealistic high costs of industrially produced siderophores in relation to the low value of the product to be treated. Furthermore no detection of siderophore production was possible during...

  11. Microbial Rechargeable Battery

    NARCIS (Netherlands)

    Molenaar, Sam D.; Mol, Annemerel R.; Sleutels, Tom H.J.A.; Heijne, Ter Annemiek; Buisman, Cees J.N.

    2016-01-01

    Bioelectrochemical systems hold potential for both conversion of electricity into chemicals through microbial electrosynthesis (MES) and the provision of electrical power by oxidation of organics using microbial fuel cells (MFCs). This study provides a proof of concept for a microbial

  12. Selective conversion of synthesis gas into C2-oxygenated products using mixed-metal homogeneous catalysts

    International Nuclear Information System (INIS)

    Whyman, R.

    1986-01-01

    A feature which is a key to any wider utilization of chemistry based on synthesis gas is an understanding of, and more particularly, an ability to control, those factors which determine the selectivity of the C 1 to C 2 transformation during the hydrogenation of carbon monoxide. With the exception of the rhodium-catalyzed conversion of carbon monoxide and hydrogen into ethylene glycol and methanol, in which molar ethylene glycol/methanol selectivities of ca 2/1 may be achieved, other catalyst systems containing metals such as cobalt or ruthenium exhibit only poor selectivities to ethylene glycol. The initial studies in this area were based on the reasoning that, since the reduction of carbon monoxide to C 2 products is a complex, multi-step process, the use of appropriate combinations of metals could generate synergistic effects which might prove more effective (in terms of both catalytic activity and selectivity) than simply the sum of the individual metal components. In particular, the concept of the combination of a good hydrogenation catalyst with a good carbonylation, or ''CO insertion'', catalyst seemed particularly germane. As a result of this approach the authors discovered an unprecedented example of the effect of catalyst promoters, particularly in the enhancement of C 2 /C 1 selectivity, and one which has led to the development of composite mixed-metal homogeneous catalyst systems for the conversion of CO/H 2 into C 2 -oxygenate esters

  13. Microbial quality and bioactive constituents of sweet peppers from sustainable production systems.

    Science.gov (United States)

    Marín, Alicia; Gil, María I; Flores, Pilar; Hellín, Pilar; Selma, María V

    2008-12-10

    Integrated, organic, and soil-less production systems are the principal production practices that have emerged to encourage more sustainable agricultural practices and safer edible plants, reducing inputs of plaguicides, pesticides, and fertilizers. Sweet peppers grown commercially under integrated, organic, and soil-less production systems were compared to study the influence of these sustainable production systems on the microbial quality and bioactive constituents (vitamin C, individual and total carotenoids, hydroxycinnamic acids, and flavonoids). The antioxidant composition of peppers was analyzed at green and red maturity stages and at three harvest times (initial, middle, and late season). Irrigation water, manure, and soil were shown to be potential transmission sources of pathogens to the produce. Coliform counts of soil-less peppers were up to 2.9 log units lower than those of organic and integrated peppers. Soil-less green and red peppers showed maximum vitamin C contents of 52 and 80 mg 100 g(-1) fresh weight (fw), respectively, similar to those grown in the organic production system. Moreover, the highest content of total carotenoids was found in the soil-less red peppers, which reached a maximum of 148 mg 100 g(-1) fw, while slightly lower contents were found in integrated and organic red peppers. Hydroxycinnamic acids and flavonoids represented 15 and 85% of the total phenolic content, respectively. Total phenolic content, which ranged from 1.2 to 4.1 mg 100 g(-1) fw, was significantly affected by the harvest time but not by the production system assayed. Soil-less peppers showed similar or even higher concentrations of bioactive compounds (vitamin C, provitamin A, total carotenoid, hydroxycinnamic acids, and flavonoids) than peppers grown under organic and integrated practices. Therefore, in the commercial conditions studied, soil-less culture was a more suitable alternative than organic or integrated practices, because it improved the microbial

  14. Trade-offs between microbiome diversity and productivity in a stratified microbial mat

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Hans C.; Brislawn, Colin; Renslow, Ryan S.; Dana, Karl; Morton, Beau; Lindemann, Stephen R.; Song, Hyun-Seob; Atci, Erhan; Beyenal, Haluk; Fredrickson, James K.; Jansson, Janet K.; Moran, James J.

    2016-11-01

    Productivity is a major determinant of ecosystem diversity. Microbial ecosystems are the most diverse on the planet yet very few relationships between diversity and productivity have been reported as compared to macro-ecological studies. Here we evaluated the spatial relationships of productivity and microbiome diversity in a laboratory-cultivated photosynthetic mat. The goal was to determine how spatial diversification of microorganisms drives localized carbon and energy acquisition rates. We measured sub-millimeter depth profiles of net primary-productivity and gross oxygenic photosynthesis in the context of the localized microenvironment and community structure and observed negative correlations between species richness and productivity within the energy-replete, photic zone. Variations between localized community structures were associated with distinct taxa as well as environmental profiles describing a continuum of biological niches. Spatial regions corresponding to high primary productivity and photosynthesis rates had relatively low species richness and high evenness. Hence, this system exhibited negative species-productivity and species–energy relationships. These negative relationships may be indicative of photosynthetically-driven, light-controlled mat ecosystems that are able to be the most productive with a relatively smaller, even distributions of species that specialize within the highly-oxic, photic zones.

  15. A simplified 2D to 3D video conversion technology——taking virtual campus video production as an example

    Directory of Open Access Journals (Sweden)

    ZHUANG Huiyang

    2012-10-01

    Full Text Available This paper describes a simplified 2D to 3D Video Conversion Technology, taking virtual campus 3D video production as an example. First, it clarifies the meaning of the 2D to 3D Video Conversion Technology, and points out the disadvantages of traditional methods. Second, it forms an innovative and convenient method. A flow diagram, software and hardware configurations are presented. Finally, detailed description of the conversion steps and precautions are given in turn to the three processes, namely, preparing materials, modeling objects and baking landscapes, recording screen and converting videos .

  16. Clean energy systems in the subsurface. Production, storage and conversion. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhengmeng Michael; Were, Patrick (eds.) [Clausthal Univ. of Technology, Goslar (Germany). Energie-Forschungszentrum Niedersachsen (EFZN); Xie, Heping [Sichuan Univ., Chengdu (China)

    2013-04-01

    Recent research on Integrated Energy and Environmental Utilization of Deep Underground Space. Results of the 3{sup rd} Sino-German Conference ''Underground Storage of CO{sub 2} and Energy'', held at Goslar, Germany, 21-23 May 2013. Researchers and professionals from academia and industry discuss the future of deep underground space technologies for an integrated energy and environmental utilization. Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group ''Underground Storage of CO{sub 2} and Energy'', is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3{sup rd} Sino-German conference on the theme ''Clean Energy Systems in the Subsurface: Production, Storage and Conversion''.

  17. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean

    Science.gov (United States)

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-01-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d−1 (∼10 nmol l−1 d−1). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (⩽20 m), contain a microbial population that uses a relatively high amount of carbon (0.3–10 nmol l−1 d−1), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04–0.68 nmol l−1 d−1. Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air–sea exchange scientists. PMID:23178665

  18. Geochemical characterization of the hydrous pyrolysis products from a recent cyanobacteria-dominated microbial mat

    Energy Technology Data Exchange (ETDEWEB)

    Franco, N.; Mendoça-Filho, J.G.; Silva, T.F.; Stojanovic, K.; Fontana, L.F.; Carvalhal-Gomes, S.B.V.; Silva, F.S.; Furukawa, G.G.

    2016-07-01

    Hydrous pyrolysis experiments were performed on a recent microbial mat sample from Lagoa Vermelha, Brazil, to determine whether crude oil can be generated and expelled during artificial maturation of the Organic Matter (OM). The experiments were conducted at 280ºC, 330ºC and 350ºC during 20h. Two types of liquid pyrolysis products, assigned as free oil and bitumen, were isolated and analyzed. Free oil represents free organic phase released by hydrous pyrolysis, whereas bitumen was obtained by extraction from the solid pyrolysis residue with dichloromethane. Changes in the OM maturity were determined using Rock-Eval parameters and biomarker maturity ratios of original sample and pyrolysis products. Biomarker compositions of original sample extract and liquid pyrolysates were used for determination of dominant bacterial source. The yields of free oil and bitumen showed that a microbial mat OM has a high liquid hydrocarbons generation potential. Rock-Eval maturity parameters, biopolymer and biomarker compositions indicate a significant increase of the OM maturity during hydrous pyrolysis. At 280ºC the release of free, adsorbed and occluded compounds was observed; however, without a cracking of the OM. At 330ºC the generation of bitumen and free oil is mostly related to the OM cracking. The highest yield of free oil was recorded at this temperature. Distribution of biomarkers in the extract of original sample and liquid pyrolysates confirms cyanobacteria-dominated microbial mats, whereas the identification of long chain n-alkane series, with maximum at C26, and prominent C30 hop-17(21)-ene additionally suggest the presence of sulfate reducing bacteria. (Author)

  19. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Vanessa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamelyn D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krause, Theodore R. [Argonne National Lab. (ANL), Argonne, IL (United States); Ahmed, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-16

    This report was prepared in response to the U.S. Department of Energy Fuel Cell Technologies Office Congressional Appropriation language to support research on carbon-free production of hydrogen using new chemical processes that utilize natural gas to produce solid carbon and hydrogen. The U.S. produces 9-10 million tons of hydrogen annually with more than 95% of the hydrogen produced by steam-methane reforming (SMR) of natural gas. SMR is attractive because of its high hydrogen yield; but it also converts the carbon to carbon dioxide. Non-oxidative thermal decomposition of methane to carbon and hydrogen is an alternative to SMR and produces CO2-free hydrogen. The produced carbon can be sold as a co-product, thus providing economic credit that reduces the delivered net cost of hydrogen. The combination of producing hydrogen with potentially valuable carbon byproducts has market value in that this allows greater flexibility to match the market prices of hydrogen and carbon. That is, the higher value product can subsidize the other in pricing decisions. In this report we highlight the relevant technologies reported in the literature—primarily thermochemical and plasma conversion processes—and recent research progress and commercial activities. Longstanding technical challenges include the high energetic requirements (e.g., high temperatures and/or electricity requirements) necessary for methane activation and, for some catalytic processes, the separation of solid carbon product from the spent catalyst. We assess current and new carbon product markets that could be served given technological advances, and we discuss technical barriers and potential areas of research to address these needs. We provide preliminary economic analysis for these processes and compare to other emerging (e.g., electrolysis) and conventional (e.g., SMR) processes for hydrogen production. The overarching conclusion of this study is that the cost of hydrogen can be potentially

  20. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes.

    Science.gov (United States)

    Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C

    2016-04-01

    Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells

    KAUST Repository

    Cusick, Roland D.

    2013-12-17

    Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m 2-cat) and wastewater (WW: 0.3 to 1.7 W/m2), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m2; WW: 1.9 W/m2). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m2-mem; WW: 1.7 W/m2) and 2-CP (Acetate: 1.3 W/m2-mem; WW: 0.6 W/m2) reactors were much higher than previous MRCs (0.3-0.5 W/m2-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment. © 2013 American Chemical Society.

  2. Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells

    KAUST Repository

    Cusick, Roland D.; Hatzell, Marta; Zhang, Fang; Logan, Bruce E.

    2013-01-01

    Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m 2-cat) and wastewater (WW: 0.3 to 1.7 W/m2), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m2; WW: 1.9 W/m2). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m2-mem; WW: 1.7 W/m2) and 2-CP (Acetate: 1.3 W/m2-mem; WW: 0.6 W/m2) reactors were much higher than previous MRCs (0.3-0.5 W/m2-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment. © 2013 American Chemical Society.

  3. Restructuring upstream bioprocessing: technological and economical aspects for production of a generic microbial feedstock from wheat.

    Science.gov (United States)

    Koutinas, A A; Wang, R; Webb, C

    2004-03-05

    Restructuring and optimization of the conventional fermentation industry for fuel and chemical production is necessary to replace petrochemical production routes. Guided by this concept, a novel biorefinery process has been developed as an alternative to conventional upstream processing routes, leading to the production of a generic fermentation feedstock from wheat. The robustness of Aspergillus awamori as enzyme producer is exploited in a continuous fungal fermentation on whole wheat flour. Vital gluten is extracted as an added-value byproduct by the conventional Martin process from a fraction of the overall wheat used. Enzymatic hydrolysis of gluten-free flour by the enzyme complex produced by A. awamori during fermentation produces a liquid stream rich in glucose (320 g/L). Autolysis of fungal cells produces a micronutrient-rich solution similar to yeast extract (1.6 g/L nitrogen, 0.5 g/L phosphorus). The case-specific combination of these two liquid streams can provide a nutrient-complete fermentation medium for a spectrum of microbial bioconversions for the production of such chemicals as organic acids, amino acids, bioethanol, glycerol, solvents, and microbial biodegradable plastics. Preliminary economic analysis has shown that the operating cost required to produce the feedstock is dependent on the plant capacity, cereal market price, presence and market value of added-value byproducts, labor costs, and mode of processing (batch or continuous). Integration of this process in an existing fermentation plant could lead to the production of a generic feedstock at an operating cost lower than the market price of glucose syrup (90% to 99% glucose) in the EU, provided that the plant capacity exceeds 410 m(3)/day. Further process improvements are also suggested. Copyright 2004 Wiley Periodicals, Inc.

  4. Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers.

    Science.gov (United States)

    Briber, Brittain M; Hutyra, Lucy R; Reinmann, Andrew B; Raciti, Steve M; Dearborn, Victoria K; Holden, Christopher E; Dunn, Allison L

    2015-01-01

    Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha(-1). As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm(2) yr(-1). Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha(-1) yr(-1), a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important.

  5. Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers.

    Directory of Open Access Journals (Sweden)

    Brittain M Briber

    Full Text Available Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha(-1. As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm(2 yr(-1. Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha(-1 yr(-1, a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important.

  6. Production of renewable phenolic resins by thermochemical conversion of biomass: A review

    Energy Technology Data Exchange (ETDEWEB)

    Effendi, A.; Gerhauser, H.; Bridgwater, A.V. [Bio-Energy Research Group, Aston University, Birmingham B4 7ET (United Kingdom)

    2008-10-15

    This review covers the production and utilisation of liquids from the thermal processing of biomass and related materials to substitute for synthetic phenol and formaldehyde in phenol formaldehyde resins. These resins are primarily employed in the manufacture of wood panels such as plywood, MDF, particle-board and OSB. The most important thermal conversion methods for this purpose are fast pyrolysis and vacuum pyrolysis, pressure liquefaction and phenolysis. Many feedstocks have been tested for their suitability as sources of phenolics including hard and softwoods, bark and residual lignins. Resins have been prepared utilising either the whole liquid product, or a phenolics enriched fraction obtained after fractional condensation or further processing, such as solvent extraction. None of the phenolics production and fractionation techniques covered in this review are believed to allow substitution of 100% of the phenol content of the resin without impacting its effectiveness compared to commercial formulations based on petroleum derived phenol. This survey shows that considerable progress has been made towards reaching the goal of a price competitive renewable resin, but that further research is required to meet the twin challenges of low renewable resin cost and satisfactory quality requirements. Particular areas of concern are wood panel press times, variability of renewable resin properties, odour, lack of reactive sites compared to phenol and potential for increased emissions of volatile organic compounds. (author)

  7. Impact of different antibiotics on methane production using waste-activated sludge: mechanisms and microbial community dynamics.

    Science.gov (United States)

    Mustapha, Nurul Asyifah; Sakai, Kenji; Shirai, Yoshihito; Maeda, Toshinari

    2016-11-01

    Anaerobic digestion is an effective method for reducing the by-product of waste-activated sludge (WAS) from wastewater treatment plants and for producing bioenergy from WAS. However, only a limited number of studies have attempted to improve anaerobic digestion by targeting the microbial interactions in WAS. In this study, we examined whether different antibiotics positively, negatively, or neutrally influence methane fermentation by evaluating changes in the microbial community and functions in WAS. Addition of azithromycin promoted the microbial communities related to the acidogenic and acetogenic stages, and a high concentration of soluble proteins and a high activity of methanogens were detected. Chloramphenicol inhibited methane production but did not affect the bacteria that contribute to the hydrolysis, acidogenesis, and acetogenesis digestion stages. The addition of kanamycin, which exhibits the same methane productivity as a control (antibiotic-free WAS), did not affect all of the microbial communities during anaerobic digestion. This study demonstrates the simultaneous functions and interactions of diverse bacteria and methanogenic Archaea in different stages of the anaerobic digestion of WAS. The ratio of Caldilinea, Methanosarcina, and Clostridium may correspond closely to the trend of methane production in each antibiotic. The changes in microbial activities and function by antibiotics facilitate a better understanding of bioenergy production.

  8. Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production.

    Science.gov (United States)

    Lindblad, Peter; Lindberg, Pia; Oliveira, Paulo; Stensjö, Karin; Heidorn, Thorsten

    2012-01-01

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.

  9. Distribution of phototrophic populations and primary production in a microbial mat from the Ebro Delta, Spain.

    Science.gov (United States)

    Martínez-Alonso, Maira; Mir, Joan; Caumette, Pierre; Gaju, Núria; Guerrero, Ricardo; Esteve, Isabel

    2004-03-01

    Microbial mats arising in the sand flats of the Ebro Delta (Tarragona, Spain) were investigated during the summer season, when the community was highly developed. These mats are composed of three pigmented layers of phototrophic organisms, an upper brown layer mainly composed of Lyngbya aestuarii and diatoms, an intermediate green layer of the cyanobacterium Microcoleus chthonoplastes, and an underlying pink layer of a so-far unidentified purple sulfur bacterium. In the photic zone, oxygenic phototrophs constitute about 58% of total photosynthetic biomass, measured as biovolume, and anoxygenic phototrophs represent 42%. Diatoms constitute 11.8% of the oxygenic biomass, M. chthonoplastes 61.2%, and L. aestuarii and coccoid cyanobacteria 20.6 and 6.4%, respectively. In this laminated community, organic matter has an autochthonous origin, and photosynthesis is the most important source of organic carbon. Oxygen production reaches up to 27.2 mmol O(2) m(-2) h(-1), measured at 1000 microE m(-2) s(-1) light intensity, whereas oxidation of sulfide in the light has been calculated to be 18.6 mmol S m(-2) h(-1). This amount represents 26% of the total photosynthetic production in terms of photoassimilated carbon, demonstrating the important role of anoxygenic phototrophs as primary producers in the pink layer of Ebro Delta microbial mats.

  10. Microbial Protein Production and Nitrogen Balance of Local Steer Fed Ammoniated Rice Straws Added

    Directory of Open Access Journals (Sweden)

    H Hindratiningrum

    2009-05-01

    Full Text Available The objective of the experiment was to investigate the kind of energy source feedstuffs on nutrient balance and microbial protein synthesis in local male beef cattle fed with ammoniated rice straws Twenty steers Peranakan Ongole (PO with average age 1-2 years old were used. They were divided 5 groups based on initial body weight as block. Therefore, Completely Randomised Block Design (CBRD was used for this experiment. Data were analysed by analysis variance and continued honestly significant different (HSD to test the differences between means. The result showed that the range MCP and eficiency MCP were 154,61 g/d until 226,54 g/d and 54,08 gMCP/kg DOMR until 62,64 gMCP/kg DOMR. The range of nitrogen balance were 72,28 gram until 111,67 gram. MCP and efficiency MCP were not affected (P>0,05 by the treatments but balance of nitrogen was affected (P<0,05. Diet containing fresh cassava waste as energy source (R2 was lower (P<0,05 than R1 and R4 while between R1,R3 and R4 was similar. This results indicate that feed source of energy (rice brand, wet cassava waste, dry cassava waste and corn can be used in steers with rice straw ensilage as forage. (Animal Production 11(2: 116-121 (2009 Key Words : Microbial protein production, nitrogen balance, rice straw, ensilage

  11. Design, Engineering, and Construction of Photosynthetic Microbial Cell Factories for Renewable Solar Fuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, Peter; Lindberg, Pia; Stensjoe, Karin (Photochemistry and Molecular Science, Dept. of Chemistry-Aangstroem Laboratory, Uppsala Univ., Uppsala (Sweden)), E-mail: Peter.Lindblad@kemi.uu.se; Oliveira, Paulo (Instituto de Biologia Molecular e Celular, Porto (Portugal)); Heidorn, Thorsten (Bioforsk-Norwegian Inst. for Agricultural and Environmental Research, Aas Oslo, (Norway))

    2012-03-15

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H{sub 2} production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted

  12. Evaluation of the Acceptability of Potential Depleted Uranium Hexafluoride Conversion Products at the Envirocare Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.

    2001-01-11

    The purpose of this report is to review and document the capability of potential products of depleted UF{sub 6} conversion to meet the current waste acceptance criteria and other regulatory requirements for disposal at the facility in Clive, Utah, owned by Envirocare of Utah, Inc. The investigation was conducted by identifying issues potentially related to disposal of depleted uranium (DU) products at Envirocare and conducting an initial analysis of them. Discussions were then held with representatives of Envirocare, the state of Utah (which is a NRC Agreement State and, thus, is the cognizant regulatory authority for Envirocare), and DOE Oak Ridge Operations. Provisional issue resolution was then established based on the analysis and discussions and documented in a draft report. The draft report was then reviewed by those providing information and revisions were made, which resulted in this document. Issues that were examined for resolution were (1) license receipt limits for U isotopes; (2) DU product classification as Class A waste; (3) use of non-DOE disposal sites for disposal of DOE material; (4) historical NRC views; (5) definition of chemical reactivity; (6) presence of mobile radionuclides; and (7) National Environmental Policy Act coverage of disposal. The conclusion of this analysis is that an amendment to the Envirocare license issued on October 5, 2000, has reduced the uncertainties regarding disposal of the DU product at Envirocare to the point that they are now comparable with uncertainties associated with the disposal of the DU product at the Nevada Test Site that were discussed in an earlier report.

  13. Primary production and microbial activity in the euphotic zone of Lake Baikal (Southern Basin) during late winter

    Czech Academy of Sciences Publication Activity Database

    Straškrábová, Viera; Izmest’yeva, L. R.; Maksimova, E. A.; Fietz, S.; Nedoma, Jiří; Borovec, Jakub; Kobanova, G. I.; Shchetinina, E. V.; Pislegina, E. V.

    2005-01-01

    Roč. 46, 1-4 (2005), s. 57-73 ISSN 0921-8181 Grant - others:EU(XE) CONTINENT EVK2-2000-0057 Institutional research plan: CEZ:AV0Z6017912 Keywords : primary production * bacterial production * microbial loop Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.223, year: 2005

  14. Improved microbial conversion of de-oiled Jatropha waste into biohydrogen via inoculum pretreatment: process optimization by experimental design approach

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2015-03-01

    Full Text Available In this study various pretreatment methods of sewage sludge inoculum and the statistical process optimization of de-oiled jatropha waste have been reported. Peak hydrogen production rate (HPR and hydrogen yield (HY of 0.36 L H2/L-d and 20 mL H2/g Volatile Solid (VS were obtained when heat shock pretreatment (95 oC, 30 min was employed. Afterwards, an experimental design was applied to find the optimal conditions for H2 production using heat-pretreated seed culture. The optimal substrate concentration, pH and temperature were determined by using response surface methodology as 205 g/L, 6.53 and 55.1 oC, respectively. Under these circumstances, the highest HPR of 1.36 L H2/L-d was predicted. Verification tests proved the reliability of the statistical approach. As a result of the heat pretreatment and fermentation optimization, a significant (~ 4 folds increase in HPR was achieved. PCR-DGGE results revealed that Clostridium sp. were majorly present under the optimal conditions.

  15. Methods for Detecting Microbial Methane Production and Consumption by Gas Chromatography.

    Science.gov (United States)

    Aldridge, Jared T; Catlett, Jennie L; Smith, Megan L; Buan, Nicole R

    2016-04-05

    Methane is an energy-dense fuel but is also a greenhouse gas 25 times more detrimental to the environment than CO 2 . Methane can be produced abiotically by serpentinization, chemically by Sabatier or Fisher-Tropsh chemistry, or biotically by microbes (Berndt et al. , 1996; Horita and Berndt, 1999; Dry, 2002; Wolfe, 1982; Thauer, 1998; Metcalf et al. , 2002). Methanogens are anaerobic archaea that grow by producing methane gas as a metabolic byproduct (Wolfe, 1982; Thauer, 1998). Our lab has developed and optimized three different gas chromatograph-utilizing assays to characterize methanogen metabolism (Catlett et al. , 2015). Here we describe the end point and kinetic assays that can be used to measure methane production by methanogens or methane consumption by methanotrophic microbes. The protocols can be used for measuring methane production or consumption by microbial pure cultures or by enrichment cultures.

  16. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms

    DEFF Research Database (Denmark)

    Merkey, Brian; Rittmann, Bruce E.; Chopp, David L.

    2009-01-01

    . In this paper, we develop and use a mathematical model to describe a model biofilm system that includes autotrophic and heterotrophic bacteria and the key products produced by the bacteria. The model combines the methods of earlier multi-species models with a multi-component biofilm model in order to explore...... the interaction between species via exchange of soluble microbial products (SMP). We show that multiple parameter sets are able to describe the findings of experimental studies, and that heterotrophs growing on autotrophically produced SMP may pursue either r- or K-strategies to sustain themselves when SMP...... is their only substrate. We also show that heterotrophs can colonize some distance from the autotrophs and still be sustained by autotrophically produced SMP. This work defines the feasible range of parameters for utilization of SMP by heterotrophs and the nature of the interactions between autotrophs...

  17. Russian Kefir Grains Microbial Composition and Its Changes during Production Process.

    Science.gov (United States)

    Kotova, I B; Cherdyntseva, T A; Netrusov, A I

    2016-01-01

    By combining DGGE-PCR method, classical microbiological analysis and light- and electron microscopic observations, it was found that the composition of microbial communities of central Russia regions kefir grains, starter and kefir drink include bacteria of the genera Lactobacillus, Leuconostoc and Lactococcus, and yeast anamorphs of the genera Saccharomyces, Kazachstania and Gibellulopsis. Fifteen prokaryotic and four eukaryotic pure cultures of microorganisms were isolated and identified from kefir grains. It has been shown that members of the genus Lactobacillus prevailed in kefir grains, whereas strains Leuconostoc pseudomesenteroides and Lactococcus lactis dominated in the final product - kefir drink. Yeasts contained in kefir grains in small amounts have reached a significant number of cells in the process of development of this dairy product. The possibility of reverse cell aggregation has been attempted in a mixed cultivation of all isolated pure cultures, but full formation kefir grains is not yet observed after 1.5 years of observation and reinoculations.

  18. Characterization of soluble microbial products as precursors of disinfection byproducts in drinking water supply.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan; Xie, Yue-Feng; Tang, Hao

    2014-02-15

    Water pollution by wastewater discharge can cause the problem of disinfection byproducts (DBPs) in drinking water supply. In this study, DBP formation characteristics of soluble microbial products (SMPs) as the main products of wastewater organic biodegradation were investigated. The results show that SMPs can act as DBP precursors in simulated wastewater biodegradation process. Under the experimental conditions, stabilized SMPs had DBPFP (DBP formation potential) yield of around 5.6 μmol mmol(-1)-DOC (dissolved organic carbon) and DBP speciation profile different from that of the conventional precursor, natural organic matter (NOM). SMPs contained polysaccharides, proteins, and humic-like substances, and the latter two groups can act as reactive DBP precursors. SMP fraction with molecular weight of water treatment processes, more efforts are needed to control wastewater-derived DBP problem in water resource management. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Characterization of microbial communities and fungal metabolites on field grown strawberries from organic and conventional production

    DEFF Research Database (Denmark)

    Jensen, Birgit; Knudsen, Inge M. B.; Andersen, Birgitte

    2013-01-01

    The background levels of culturable indigenous microbial communities (microbiotas) on strawberries were examined in a field survey with four conventional and four organic growers with different production practise and geographic distribution. The microbiota on apparently healthy strawberries...... was complex including potential plant pathogens, opportunistic human pathogens, plant disease biocontrol agents and mycotoxin producers. The latter group was dominated by Penicillium spp. and Aspergillus niger was also isolated. As expected, bacteria were the most abundant and diverse group of the strawberry...... microbiota followed by yeasts and filamentous fungi. No obvious correlation between grower practice and the strawberry microbiota was observed. Differences between microbiotas on strawberries from conventional systems with up to 10 fungicide spray treatments and organic production systems were insignificant...

  20. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass

    Directory of Open Access Journals (Sweden)

    Thomas P. West

    2017-04-01

    Full Text Available The dicarboxylic acid malic acid synthesized as part of the tricarboxylic acid cycle can be produced in excess by certain microorganisms. Although malic acid is produced industrially to a lesser extent than citric acid, malic acid has industrial applications in foods and pharmaceuticals as an acidulant among other uses. Only recently has the production of this organic acid from coproducts of industrial bioprocessing been investigated. It has been shown that malic acid can be synthesized by microbes from coproducts generated during biofuel production. More specifically, malic acid has been shown to be synthesized by species of the fungus Aspergillus on thin stillage, a coproduct from corn-based ethanol production, and on crude glycerol, a coproduct from biodiesel production. In addition, the fungus Ustilago trichophora has also been shown to produce malic acid from crude glycerol. With respect to bacteria, a strain of the thermophilic actinobacterium Thermobifida fusca has been shown to produce malic acid from cellulose and treated lignocellulosic biomass. An alternate method of producing malic acid is to use agricultural biomass converted to syngas or biooil as a substrate for fungal bioconversion. Production of poly(β-l-malic acid by strains of Aureobasidium pullulans from agricultural biomass has been reported where the polymalic acid is subsequently hydrolyzed to malic acid. This review examines applications of malic acid, metabolic pathways that synthesize malic acid and microbial malic acid production from biofuel-related coproducts, lignocellulosic biomass and poly(β-l-malic acid.

  1. Effectiveness of commercial microbial products in enhancing oil degradation in Prince William Sound field plots

    International Nuclear Information System (INIS)

    Venosa, A.D.; Haines, J.R.; Allen, D.M.

    1991-01-01

    In the spring of 1990, previously reported laboratory experiments were conducted on 10 commercial microbial products to test for enhanced biodegradation of weathered crude oil from the Exxon Valdez oil spill. The laboratory tests measured the rate and extent of oil degradation in closed flasks. Weathered oil from the beaches in Alaska and seawater from Prince William Sound were used in the tests. Two of the 10 products were found to provide significantly greater alkane degradation than flasks supplemented with mineral nutrients alone. These two products were selected for further testing on a beach in Prince William Sound. A randomized complete block experiment was designed to compare the effectiveness of these two products in enhancing oil degradation compared to simple fertilizer alone. Four small plots consisting of a no nutrient control, a mineral nutrient plot, and two plots receiving mineral nutrients plus the two products, were laid out on a contaminated beach. These four plots comprised a 'block' of treatments, and this block was replicated four times on the same beach. Triplicate samples of beach sediment were collected at four equally spaced time intervals and analyzed for oil residue weight and alkane hydrocarbon profile changes with time. The objective was to determine if either of the two commercial microbiological products was able to enhance bioremediation of an oil-contaminated beach in Prince William Sound to an extent greater than that achievable by simple fertilizer application. Results indicated no significant differences among the four treatments in the 27-day period of the experiment

  2. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery.

  3. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.

    2016-03-07

    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  4. Microbial Protein Production from Candida tropicalis ATCC13803 in a Submerged Batch Fermentation Process

    Directory of Open Access Journals (Sweden)

    Sahar Golaghaiee

    2017-01-01

    Full Text Available Background and Objective: Microbial protein production can resolve one of the major world challenges, i.e. lack of protein sources. Candida tropicalis growth was investigated to specify a medium to reach the highest cell proliferation and protein production.Material and Methods: Fractional factorial design and the index of signal to noise ratio were applied for optimization of microbial protein production. Optimization process was conducted based on the experimental results of Taguchi approach designs. Fermentationwas performed at 25oC and the agitation speed of 300 rpm for 70 h. Ammonium sulfate, iron sulfate, glycine and glucose concentrations were considered as process variables. Optimization of the culture medium composition was conducted in order to obtain the highest cell biomass concentration and protein content. Experiment design was performed based on the Taguchi approach and L-16 orthogonal arrays using Qualitek-4 software.Results and Conclusion: Maximum biomass of 8.72 log (CFU ml-1 was obtained using the optimized medium with 0.3, 0.15, 2 and 80 g l-1 of ammonium sulfate, iron sulfate, glycine and glucose, respectively. Iron sulfate and ammonium sulfate with 41.76% (w w-1 and 35.27% (w w-1 contributions, respectively, were recognized as the main components for cell growth. Glucose and glycine with 17.12% and 5.86% (w w-1 contributions,respectively, also affected cell production. The highest interaction severity index of +54.16% was observed between glycine and glucose while the least one of +0.43% was recorded for ammonium sulfate and glycine. A deviation of 7% between the highestpredicted cell numbers and the experimented count confirms the suitability of the applied statistical method. High protein content of 52.16% (w w-1 as well as low fat and nucleic acids content suggest that Candida tropicalis is a suitable case for commercial processes.Conflict of interest: The authors declare that there is no conflict of interest.

  5. Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Yuko eGoto

    2015-04-01

    Full Text Available The effects of graphene oxide (GO on electricity generation in soil microbial fuel cells (SMFCs and plant microbial fuel cell (PMFCs were investigated. GO at concentrations ranging from 0 to 1.9 g•kg-1 was added to soil and reduced for 10 days under anaerobic incubation. All SMFCs (GO-SMFCs utilizing the soils incubated with GO produced electricity at a greater rate and in higher quantities than the SMFCs which did not contain GO. In fed-batch operations, the overall average electricity generation in GO-SMFCs containing 1.0 g•kg-1 of GO was 40 ± 19 mW•m-2, which was significantly higher than the value of 6.6 ± 8.9 mW•m-2 generated from GO-free SMFCs (p -2 of electricity after 27 days of operation. Collectively, this study demonstrates that GO added to soil can be microbially reduced in soil, and facilitates electron transfer to the anode in both SMFCs and PMFCs.

  6. Microbial diversity and dynamics during methane production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu [Civil and Environmental Engineering, Colorado State University, Ft. Collins, CO 80532 (United States); Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Wolfe, Georgia L., E-mail: gwolfe@wisc.edu [Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 (United States); McMahon, Katherine D., E-mail: tmcmahon@engr.wisc.edu [Bacteriology, Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Benson, Craig H., E-mail: chbenson@wisc.edu [Civil and Environmental Engineering, Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  7. Microbial diversity and dynamics during methane production from municipal solid waste

    International Nuclear Information System (INIS)

    Bareither, Christopher A.; Wolfe, Georgia L.; McMahon, Katherine D.; Benson, Craig H.

    2013-01-01

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  8. Influence of production factors on feed intake and feed conversion ratio of grow-finishing pigs

    Directory of Open Access Journals (Sweden)

    Caio Abércio da Silva

    2017-05-01

    Full Text Available The aim of this study was to identify and quantify, through mathematical models, the production factors of grow-finishing (GF phases that influence the daily feed intake (DFI and feed conversion ratio (FCR in pigs. Sixty-five GF farms were evaluated between 2010 and 2013, linked to a cooperative system located in the western Parana State, Brazil, representing 463 batches, with a mean of 642.79 ± 363.29 animals per batch, equalling approximately 300,000 animals. Forty production factors were considered that related to management, sanitation, installations and equipment, nutrition, genetics and environment on the farms. The DFI was influenced by the barn's position relative to the sun (P = 0.048, initial body weight (P < 0.0001 and final body weight (P < 0.0001. It was observed that the FCR was influenced by the barn’s position relative to the sun (P = 0.0001, the use of humidifiers/misting (P = 0.03, the presence of composters (P = 0.006, trees on the sides of barns (P < 0.045, the initial body weight of the pigs (P < 0.0001 and duration of the grow-finishing phase (P < 0.0001. The variables selected in the models explained approximately 44 and 20% of the total variance in the DFI and FCR, respectively, demonstrating that this resource is a good tool for interpreting the factors related to the parameters evaluated.

  9. Impact of feed carbohydrates and nitrogen source on the production of soluble microbial products (SMPs) in anaerobic digestion.

    Science.gov (United States)

    Le, Chencheng; Stuckey, David C

    2017-10-01

    Six stirred fill-and-draw batch reactors with a range of carbohydrate feeds (glucose, fructose and sucrose), and nitrogen sources (NH 4 Cl, urea) at various concentrations were used to investigate the effect of feed composition on the production of soluble microbial products (SMPs) during anaerobic digestion (AD). To gain greater insights into the SMPs produced, the composition of various fractions was analyzed, while the low molecular weight (MW) SMPs generated with different feeds and nutrients were collected and chemically analyzed using GC-MS. Other organic solutes such as free amino acids were determined using HPLC, and this level of chemical analysis has never been carried out in past work because of analytical limitations. It was found that the presence of ammonium salts rather than urea at 200 mg/L stimulated the production of not only volatile fatty acids, but also SMPs of different MW fractions, and reduced the production of biogas significantly. The study also revealed that the type of SMP that dominates in a particular system depends on the chemical characteristics of the feed, and this insight has implications on the composition of the effluent from anaerobic digesters (and their potential chlorination by-products), and membrane fouling in membrane bioreactors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Improved cellulose conversion to bio-hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor

    International Nuclear Information System (INIS)

    Jiang, Hongyu; Gadow, Samir I.; Tanaka, Yasumitsu; Cheng, Jun; Li, Yu-You

    2015-01-01

    Thermophilic hydrogen fermentation of cellulose was evaluated by a long term continuous experiment and batch experiments. The continuous experiment was conducted under 55 °C using a continuously stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 10 day. A stable hydrogen yield of 15.4 ± 0.23 mol kg −1 of cellulose consumed was maintained for 190 days with acetate and butyrate as the main soluble byproducts. An analysis of the 16S rRNA sequences showed that the hydrogen-producing thermophilic cellulolytic microorganisms (HPTCM) were close to Thermoanaerobacterium thermosaccharolyticum, Clostridium sp. and Enterobacter cloacae. Batch experiment demonstrated that the highest H 2 producing activity was obtained at 55 °C and the ultimate hydrogen yield and the metabolic by-products were influenced greatly by temperatures. The effect of temperature variation showed that the activation energy for cellulose and glucose were estimated at 103 and 98.8 kJ mol −1 , respectively. - Highlights: • Continuous cellulosic-hydrogen fermentation was conducted at 55 °C. • Hydrogen yield was improved to 15.4 mol kg −1 of consumed-cellulose. • The cellulosic hydrogen bacteria were close to Clostridia and Enterobacter genus. • The mixed microflora produced H 2 within a wide range of temperatures (35 °C–65 °C). • Activation energy of cellulose and glucose were 103 and 98.8 kJ mol −1 , respectively

  11. Estimating Hydrogen Production Potential in Biorefineries Using Microbial Electrolysis Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    Borole, Abhijeet P [ORNL; Mielenz, Jonathan R [ORNL

    2011-01-01

    Microbial electrolysis cells (MECs) are devices that use a hybrid biocatalysis-electrolysis process for production of hydrogen from organic matter. Future biofuel and bioproducts industries are expected to generate significant volumes of waste streams containing easily degradable organic matter. The emerging MEC technology has potential to derive added- value from these waste streams via production of hydrogen. Biorefinery process streams, particularly the stillage or distillation bottoms contain underutilized sugars as well as fermentation and pretreatment byproducts. In a lignocellulosic biorefinery designed for producing 70 million gallons of ethanol per year, up to 7200 m3/hr of hydrogen can be generated. The hydrogen can either be used as an energy source or a chemical reagent for upgrading and other reactions. The energy content of the hydrogen generated is sufficient to meet 57% of the distillation energy needs. We also report on the potential for hydrogen production in existing corn mills and sugar-based biorefineries. Removal of the organics from stillage has potential to facilitate water recycle. Pretreatment and fermentation byproducts generated in lignocellulosic biorefinery processes can accumulate to highly inhibitory levels in the process streams, if water is recycled. The byproducts of concern including sugar- and lignin- degradation products such as furans and phenolics can also be converted to hydrogen in MECs. We evaluate hydrogen production from various inhibitory byproducts generated during pretreatment of various types of biomass. Finally, the research needs for development of the MEC technology and aspects particularly relevant to the biorefineries are discussed.

  12. Biogenic metallic nanoparticles as catalyst for bioelectricity production: A novel approach in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Saravanakumar, Kandasamy, E-mail: saravana732@gmail.com [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai (China); MubarakAli, Davoodbasha [Microbial Genetic Engineering Laboratory, Division of Bioengineering, College of Life Science and Bioengineering, Incheon National University, Songdo 406772, Incheon (Korea, Republic of); Department of Microbiology, School of Lifesciences, Bharathidasan University, Tiruchirappalli 620024 (India); Kathiresan, Kandasamy [Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu (India); Thajuddin, Nooruddin [Department of Microbiology, School of Lifesciences, Bharathidasan University, Tiruchirappalli 620024 (India); Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Alharbi, Naiyf S. [Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Chen, Jie, E-mail: jiechen59@sjtu.edu.cn [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai (China)

    2016-01-15

    Highlights: • Trichoderma sp., showed an abilities to synthesis of AgNPs and AuNPs with an excellent stability. • AuNPs significantly enhanced the bioelectricity production by MFC of anaerobic fermentation as catalyst. • Maximum bioelectricity production was optimized and obtained the voltage of 432.80 mA using RSM. - Abstract: The present work aimed to use the biogenic metallic nanoparticles as catalyst for bioelectricity production in microbial fuel cell (MFC) approach under anaerobic condition. Silver and gold nanoparticles (AuNPs) were synthesized using Trichoderma sp. Particle size and cystallinity were measured by X-ray diffraction revealed the crystalline structure with average size of 36.17 nm. Electron microscopic studies showed spherical shaped silver nanoparticles (AgNPs) and cubical shaped AuNPs with size ranges from 50 to 150 nm. The concentration of biogenic metallic nanoparticles as catalyst for enhanced bioelectricity generations and estimated by response surface methodology (RSM) and found at the greatest of 342.80 mA under optimized conditions are time interval, temperature, nanoparticles used as 63 h, 28 ± 2.0 °C, 22.54 mg l{sup −1} (AgNPs) and 25.62 mg l{sup −1} (AuNPs) in a batch reactor. AuNPs acted as an excellent catalyst to enhance the bioelectricity production. This novel technique could be used for eco-friendly, economically feasible and facile electricity production.

  13. Soluble microbial products (SMPs release in activated sludge systems: a review

    Directory of Open Access Journals (Sweden)

    Azami Hamed

    2012-12-01

    Full Text Available Abstract This review discusses the characterization, production and implications of soluble microbial products (SMPs in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as “the pool of organic compounds that are released into solution from substrate metabolism and biomass decay”'. Some of the SMPs have been identified as humic acids, polysaccharides, proteins, amino acids, antibiotics, extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production. As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewater post-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process.

  14. Soluble Microbial Products (SMPs Release in Activated Sludge Systems: a Review

    Directory of Open Access Journals (Sweden)

    Hamed Azami

    2012-12-01

    Full Text Available This review discusses the characterization, production and implications of soluble microbial products (SMPs in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as “the pool of organic compounds that are released into solution from substrate metabolism and biomass decay”'.Some of the SMPs have been identified as humic acids, olysaccharides, proteins, amino acids, antibiotics,extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production.As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewaterpost-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process.

  15. A model for improving microbial biofuel production using a synthetic feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  16. Biogenic metallic nanoparticles as catalyst for bioelectricity production: A novel approach in microbial fuel cells

    International Nuclear Information System (INIS)

    Saravanakumar, Kandasamy; MubarakAli, Davoodbasha; Kathiresan, Kandasamy; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Chen, Jie

    2016-01-01

    Highlights: • Trichoderma sp., showed an abilities to synthesis of AgNPs and AuNPs with an excellent stability. • AuNPs significantly enhanced the bioelectricity production by MFC of anaerobic fermentation as catalyst. • Maximum bioelectricity production was optimized and obtained the voltage of 432.80 mA using RSM. - Abstract: The present work aimed to use the biogenic metallic nanoparticles as catalyst for bioelectricity production in microbial fuel cell (MFC) approach under anaerobic condition. Silver and gold nanoparticles (AuNPs) were synthesized using Trichoderma sp. Particle size and cystallinity were measured by X-ray diffraction revealed the crystalline structure with average size of 36.17 nm. Electron microscopic studies showed spherical shaped silver nanoparticles (AgNPs) and cubical shaped AuNPs with size ranges from 50 to 150 nm. The concentration of biogenic metallic nanoparticles as catalyst for enhanced bioelectricity generations and estimated by response surface methodology (RSM) and found at the greatest of 342.80 mA under optimized conditions are time interval, temperature, nanoparticles used as 63 h, 28 ± 2.0 °C, 22.54 mg l"−"1 (AgNPs) and 25.62 mg l"−"1 (AuNPs) in a batch reactor. AuNPs acted as an excellent catalyst to enhance the bioelectricity production. This novel technique could be used for eco-friendly, economically feasible and facile electricity production.

  17. Monitoring the Perturbation of Soil and Groundwater Microbial Communities Due to Pig Production Activities

    KAUST Repository

    Hong, Pei-Ying

    2013-02-08

    This study aimed to determine if biotic contaminants originating from pig production farms are disseminated into soil and groundwater microbial communities. A spatial and temporal sampling of soil and groundwater in proximity to pig production farms was conducted, and quantitative PCR (Q-PCR) was utilized to determine the abundances of tetracycline resistance genes (i.e., tetQ and tetZ) and integrase genes (i.e., intI1 and intI2). We observed that the abundances of tetZ, tetQ, intI1, and intI2 in the soils increased at least 6-fold after manure application, and their abundances remained elevated above the background for up to 16 months. Q-PCR further determined total abundances of up to 5.88 × 109 copies/ng DNA for tetZ, tetQ, intI1, and intI2 in some of the groundwater wells that were situated next to the manure lagoon and in the facility well used to supply water for one of the farms. We further utilized 16S rRNA-based pyrosequencing to assess the microbial communities, and our comparative analyses suggest that most of the soil samples collected before and after manure application did not change significantly, sharing a high Bray-Curtis similarity of 78.5%. In contrast, an increase in Bacteroidetes and sulfur-oxidizing bacterial populations was observed in the groundwaters collected from lagoon-associated groundwater wells. Genera associated with opportunistic human and animal pathogens, such as Acinetobacter, Arcobacter, Yersinia, and Coxiella, were detected in some of the manure-treated soils and affected groundwater wells. Feces-associated bacteria such as Streptococcus, Erysipelothrix, and Bacteroides were detected in the manure, soil, and groundwater ecosystems, suggesting a perturbation of the soil and groundwater environments by invader species from pig production activities.

  18. Managing soil microbial communities in grain production systems through cropping practices

    Science.gov (United States)

    Gupta, Vadakattu

    2013-04-01

    Cropping practices can significantly influence the composition and activity of soil microbial communities with consequences to plant growth and production. Plant type can affect functional capacity of different groups of biota in the soil surrounding their roots, rhizosphere, influencing plant nutrition, beneficial symbioses, pests and diseases and overall plant health and crop production. The interaction between different players in the rhizosphere is due to the plethora of carbon and nutritional compounds, root-specific chemical signals and growth regulators that originate from the plant and are modulated by the physico-chemical properties of soils. A number of plant and environmental factors and management practices can influence the quantity and quality of rhizodeposition and in turn affect the composition of rhizosphere biota communities, microbe-fauna interactions and biological processes. Some of the examples of rhizosphere interactions that are currently considered important are: proliferation of plant and variety specific genera or groups of microbiota, induction of genes involved in symbiosis and virulence, promoter activity in biocontrol agents and genes correlated with root adhesion and border cell quality and quantity. The observation of variety-based differences in rhizodeposition and associated changes in rhizosphere microbial diversity and function suggests the possibility for the development of varieties with specific root-microbe interactions targeted for soil type and environment i.e. designer rhizospheres. Spatial location of microorganisms in the heterogeneous field soil matrix can have significant impacts on biological processes. Therefore, for rhizosphere research to be effective in variable seasonal climate and soil conditions, it must be evaluated in the field and within a farming systems context. With the current focus on security of food to feed the growing global populations through sustainable agricultural production systems there is a

  19. Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times.

    Science.gov (United States)

    Shin, Hang-Sik; Kang, Seok-Tae

    2003-01-01

    The formation and fate of soluble microbial products (SMP) in membrane bioreactor (MBR) was investigated at various sludge retention times (SRT) for 170 days. The SMP concentration was estimated by feeding glucose, which could be completely degraded, and by measuring the dissolved organic carbon (DOC) of the effluent from MBR. Under the conditions of SRT of 20 days, influent DOC of 112 mg/l and HRT of 6 h, the produced SMP was 4.7 mg DOC/l of which 57% was removed or retained by the membrane. DOC of MBR supernatant increased during 100 days and then gradually decreased. Specific UV absorbance showed that the accumulated compounds had a portion of larger, more aromatic, more hydrophobic and double-bond-rich organics, which originated from the decayed biomass. Molecular weight distributions of SMP in MBR supernatant showed that the acclimated microorganisms in a long SRT could decompose high molecular weight organics, it caused the shift of molecular weight distributions of SMP to a lower range. During the operation period, enumeration of active cells in the MBR showed that microbial inhibitions by accumulated SMP was not observed.

  20. Risk analysis of drinking water microbial contamination versus disinfection by-products (DBPs)

    International Nuclear Information System (INIS)

    Ashbolt, Nicholas John

    2004-01-01

    Managing the provision of safe drinking water has a renewed focus in light of the new World Health Organization (WHO) water safety plans. Risk analysis is a necessary component to assist in selecting priority hazards and identifying hazardous scenarios, be they qualitative to quantitative assessments. For any approach, acute diarrhoeal pathogens are often the higher risk issue for municipal water supplies, no matter how health burden is assessed. Furthermore, potential sequellae (myocarditis, diabetes, reactive arthritis and cancers) only further increase the potential health burden of pathogens; despite the enormous uncertainties in determining pathogen exposures and chemical dose-responses within respective microbial and chemical analyses. These interpretations are currently being improved by Bayesian and bootstrapping approaches to estimate parameters for stochastic assessments. A case example, covering the health benefits of ozonation for Cryptosporidium inactivation versus potential cancers from bromate exposures, illustrated the higher risks from a pathogen than one of the most likely disinfection by-products (DBPs). Such analyses help justify the industries long-held view of the benefits of multiple barriers to hazards and that microbial contamination of water supplies pose a clear public health risk when treatment is inadequate. Therefore, efforts to reduce potential health risks from DBP must not compromise pathogen control, despite socio-political issues

  1. Environmental proteomics of microbial plankton in a highly productive coastal upwelling system

    Energy Technology Data Exchange (ETDEWEB)

    Sowell, Sarah [Oregon State University, Corvallis; Abraham, Paul E [ORNL; Shah, Manesh B [ORNL; Verberkmoes, Nathan C [ORNL; Smith, Daniel [Oregon State University, Corvallis; Barofsky, Douglas [Oregon State University, Corvallis; Giovannoni, Stephen [Oregon State University, Corvallis

    2011-01-01

    Metaproteomics is one of a suite of new approaches providing insights into the activities of microorganisms in natural environments. Proteins, the final products of gene expression, indicate cellular priorities, taking into account both transcriptional and posttranscriptional control mechanisms that control adaptive responses. Here, we report the proteomic composition of the o 1.2 lm fraction of a microbial community from Oregon coast summer surface waters, detected with two-dimensional liquid chromatography coupled with electrospray tandem mass spectrometry. Spectra corresponding to proteins involved in protein folding and biosynthesis, transport, and viral capsid structure were the most frequently detected. A total of 36% of all the detected proteins were best matches to the SAR11 clade, and other abundant coastal microbial clades were also well represented, including the Roseobacter clade (17%), oligotrophic marine gammaproteobacteria group (6%), OM43 clade (1%). Viral origins were attributed to 2.5% of proteins. In contrast to oligotrophic waters, phosphate transporters were not highly detected in this nutrient-rich system. However, transporters for amino acids, taurine, polyamines and glutamine synthetase were among the most highly detected proteins, supporting predictions that carbon and nitrogen are more limiting than phosphate in this environment. Intriguingly, one of the highly detected proteins was methanol dehydrogenase originating from the OM43 clade, providing further support for recent reports that the metabolism of one-carbon compounds by these streamlined methylotrophs might be an important feature of coastal ocean biogeochemistry.

  2. An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant.

    Science.gov (United States)

    Ortseifen, Vera; Stolze, Yvonne; Maus, Irena; Sczyrba, Alexander; Bremges, Andreas; Albaum, Stefan P; Jaenicke, Sebastian; Fracowiak, Jochen; Pühler, Alfred; Schlüter, Andreas

    2016-08-10

    To study the metaproteome of a biogas-producing microbial community, fermentation samples were taken from an agricultural biogas plant for microbial cell and protein extraction and corresponding metagenome analyses. Based on metagenome sequence data, taxonomic community profiling was performed to elucidate the composition of bacterial and archaeal sub-communities. The community's cytosolic metaproteome was represented in a 2D-PAGE approach. Metaproteome databases for protein identification were compiled based on the assembled metagenome sequence dataset for the biogas plant analyzed and non-corresponding biogas metagenomes. Protein identification results revealed that the corresponding biogas protein database facilitated the highest identification rate followed by other biogas-specific databases, whereas common public databases yielded insufficient identification rates. Proteins of the biogas microbiome identified as highly abundant were assigned to the pathways involved in methanogenesis, transport and carbon metabolism. Moreover, the integrated metagenome/-proteome approach enabled the examination of genetic-context information for genes encoding identified proteins by studying neighboring genes on the corresponding contig. Exemplarily, this approach led to the identification of a Methanoculleus sp. contig encoding 16 methanogenesis-related gene products, three of which were also detected as abundant proteins within the community's metaproteome. Thus, metagenome contigs provide additional information on the genetic environment of identified abundant proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives.

    Science.gov (United States)

    Jiménez-Díaz, Lorena; Caballero, Antonio; Pérez-Hernández, Natalia; Segura, Ana

    2017-01-01

    Bio-jet fuel has attracted a lot of interest in recent years and has become a focus for aircraft and engine manufacturers, oil companies, governments and researchers. Given the global concern about environmental issues and the instability of oil market, bio-jet fuel has been identified as a promising way to reduce the greenhouse gas emissions from the aviation industry, while also promoting energy security. Although a number of bio-jet fuel sources have been approved for manufacture, their commercialization and entry into the market is still a far way away. In this review, we provide an overview of the drivers for intensified research into bio-jet fuel technologies, the type of chemical compounds found in bio-jet fuel preparations and the current state of related pre-commercial technologies. The biosynthesis of hydrocarbons is one of the most promising approaches for bio-jet fuel production, and thus we provide a detailed analysis of recent advances in the microbial biosynthesis of hydrocarbons (with a focus on alkanes). Finally, we explore the latest developments and their implications for the future of research into bio-jet fuel technologies. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Basic mechanisms of photosynthesis and applications to improved production and conversion of biomass to fuels and chemical products

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, M. [Georgia Institute of Tech., Atlanta, GA (United States); Greenbaum, E. [Oak Ridge National Laboratory, TN (United States); Wasielewski, M. [Argonne National Lab., IL (United States)

    1996-09-01

    Natural photosynthesis, the result of 3.5 billion years of evolutionary experimentation, is the best proven, functional solar energy conversion technology. It is responsible for filling the vast majority of humanity`s energy, nutritional, and materials needs. Understanding the basic physical chemical principles underlying photosynthesis as a working model system is vital to further exploitation of this natural technology. These principles can be used to improve or modify natural photosynthesis so that it is more efficient or so that it can produce unusual products such as hydrogen, methane, methanol, ethanol, diesel fuel substitutes, biodegradable materials, or other high value chemical products. Principles garnered from the natural process can also be used to design artificial photosynthetic devices that employ analogs of natural antenna and reaction center function, self-assembly and repair concepts, photoinduced charge transfer processes, photoprotection, and dark reactions that facilitate catalytic action to convert light into, useful chemical or electrical energy. The present broad understanding of many structural and functional aspects of photosynthesis has resulted from rapid recent research progress. X-ray structures of several key photosynthetic reaction centers and antenna systems are available, and the overall principles controlling photoinduced energy and electron transfer are being established.

  5. Conversion of Corn Stover Hydrolysates to Acids: Comparison Between Clostridium carboxidivorans P7 and Microbial Communities Developed from Lake Sediment and an Anaerobic Digester

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Xia, Chunjie [Southern Illinois University; Kumar, Aditi [Carbondale Community High School; Liang, Yanna [Southern Illinois University

    2017-01-18

    Anaerobic fermentation is an environmentally sustainable technology for converting a variety of feedstocks to biofuels and bioproducts. Considering the complex nature of lignocellulosic hydrolysates, we aimed to investigate product formation from corn stover hydrolysates by using microbial communities under anaerobic conditions. A community developed from lake sediment was able to produce lactic acid from only glucose in the raw or overlimed hydrolysates. Another community from an anaerobic digester, however, was capable of using all hexose and pentose sugars in the raw and undetoxified hydrolysates and released lactic acid at 26.76 g/L. A pure acetogen, Clostridium carboxidivorans P7, was able to grow on the raw and overlimed hydrolysates, too. But the consumption of sugars was minimal and the total released acid concentrations were less than 2 g/L. Next generation sequencing of the enriched community derived from the anaerobic digester revealed the presence of Lactobacillus strains. The predominant species were Lactobacillus parafarraginis (72.6%) and L. buchneri (13.4%). Product titer from using this enriched community can be further enhanced by cultivating at fed-batch or continuous fermentation modes. Results from this study widened the door for producing valuable products from lignocellulosic feedstocks through using mixed cultures.

  6. Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell

    KAUST Repository

    Call, D. F.

    2009-10-09

    A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries of pure and mixed cultures in microbial electrolysis cells (MECs). At an applied voltage of 0.7 V, both G. sulfurreducens and the mixed culture generated similar current densities (ca. 160 A/m3), resulting in hydrogen production rates of ca. 1.9 m3 H2/m 3/day, whereas G. metallireducens exhibited lower current densities and production rates of 110 ± 7 A/m3 and 1.3 ± 0.1 m3 H2/m3/day, respectively. Before methane was detected in the mixed-culture MEC, the mixed consortium achieved the highest overall energy recovery (relative to both electricity and substrate energy inputs) of 82% ± 8% compared to G. sulfurreducens (77% ± 2%) and G. metallireducens (78% ± 5%), due to the higher coulombic efficiency of the mixed consortium. At an applied voltage of 0.4 V, methane production increased in the mixed-culture MEC and, as a result, the hydrogen recovery decreased and the overall energy recovery dropped to 38% ± 16% compared to 80% ± 5% for G. sulfurreducens and 76% ± 0% for G. metallireducens. Internal hydrogen recycling was confirmed since the mixed culture generated a stable current density of 31 ± 0 A/m3 when fed hydrogen gas, whereas G. sulfurreducens exhibited a steady decrease in current production. Community analysis suggested that G. sulfurreducens was predominant in the mixed-culture MEC (72% of clones) despite its relative absence in the mixed-culture inoculum obtained from a microbial fuel cell reactor (2% of clones). These results demonstrate that Geobacter species are capable of obtaining similar hydrogen production rates and energy recoveries as mixed cultures in an MEC and that high coulombic efficiencies in mixed culture MECs can be attributed in part to the recycling of hydrogen into current. Copyright

  7. Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell▿

    Science.gov (United States)

    Call, Douglas F.; Wagner, Rachel C.; Logan, Bruce E.

    2009-01-01

    A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries of pure and mixed cultures in microbial electrolysis cells (MECs). At an applied voltage of 0.7 V, both G. sulfurreducens and the mixed culture generated similar current densities (ca. 160 A/m3), resulting in hydrogen production rates of ca. 1.9 m3 H2/m3/day, whereas G. metallireducens exhibited lower current densities and production rates of 110 ± 7 A/m3 and 1.3 ± 0.1 m3 H2/m3/day, respectively. Before methane was detected in the mixed-culture MEC, the mixed consortium achieved the highest overall energy recovery (relative to both electricity and substrate energy inputs) of 82% ± 8% compared to G. sulfurreducens (77% ± 2%) and G. metallireducens (78% ± 5%), due to the higher coulombic efficiency of the mixed consortium. At an applied voltage of 0.4 V, methane production increased in the mixed-culture MEC and, as a result, the hydrogen recovery decreased and the overall energy recovery dropped to 38% ± 16% compared to 80% ± 5% for G. sulfurreducens and 76% ± 0% for G. metallireducens. Internal hydrogen recycling was confirmed since the mixed culture generated a stable current density of 31 ± 0 A/m3 when fed hydrogen gas, whereas G. sulfurreducens exhibited a steady decrease in current production. Community analysis suggested that G. sulfurreducens was predominant in the mixed-culture MEC (72% of clones) despite its relative absence in the mixed-culture inoculum obtained from a microbial fuel cell reactor (2% of clones). These results demonstrate that Geobacter species are capable of obtaining similar hydrogen production rates and energy recoveries as mixed cultures in an MEC and that high coulombic efficiencies in mixed culture MECs can be attributed in part to the recycling of hydrogen into current. PMID:19820150

  8. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  9. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.

    2009-07-01

    The use of glycerol for hydrogen gas production was examined via electrohydrogenesis using microbial electrolysis cells (MECs). A hydrogen yield of 3.9 mol-H2/mol was obtained using glycerol, which is higher than that possible by fermentation, at relatively high rates of 2.0 ± 0.4 m3/m3 d (Eap = 0.9 V). Under the same conditions, hydrogen was produced from glucose at a yield of 7.2 mol-H2/mol and a rate of 1.9 ± 0.3 m3/m3 d. Glycerol was completely removed within 6 h, with 56% of the electrons in intermediates (primarily 1,3-propanediol), with the balance converted to current, intracellular storage products or biomass. Glucose was removed within 5 h, but intermediates (mainly propionate) accounted for only 19% of the electrons. Hydrogen was also produced using the glycerol byproduct of biodiesel fuel production at a rate of 0.41 ± 0.1 m3/m3 d. These results demonstrate that electrohydrogenesis is an effective method for producing hydrogen from either pure glycerol or glycerol byproducts of biodiesel fuel production. © 2009 International Association for Hydrogen Energy.

  10. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Cao, Mingfeng; Feng, Jun; Sirisansaneeyakul, Sarote; Song, Cunjiang; Chisti, Yusuf

    2018-05-28

    Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed. Copyright © 2018. Published by Elsevier Inc.

  11. Technological trends and market perspectives for production of microbial oils rich in omega-3.

    Science.gov (United States)

    Finco, Ana Maria de Oliveira; Mamani, Luis Daniel Goyzueta; Carvalho, Júlio Cesar de; de Melo Pereira, Gilberto Vinícius; Thomaz-Soccol, Vanete; Soccol, Carlos Ricardo

    2017-08-01

    In recent years, foods that contain omega-3 lipids have emerged as important promoters of human health. These lipids are essential for the functional development of the brain and retina, and reduction of the risk of cardiovascular and Alzheimer's diseases. The global market for omega-3 production, particularly docosahexaenoic acid (DHA), saw a large expansion in the last decade due to the increasing use of this lipid as an important component of infant food formulae and supplements. The production of omega-3 lipids from fish and vegetable oil sources has some drawbacks, such as complex purification procedures, unwanted contamination by marine pollutants, reduction or even extinction of several species of fish, and aspects related to sustainability. A promising alternative system for the production of omega-3 lipids is from microbial metabolism of yeast, fungi, or microalgae. The aim of this review is to discuss the various omega-3 sources in the context of the global demand and market potential for these bioactive compounds. To summarize, it is clear that fish and vegetable oil sources will not be sufficient to meet the future needs of the world population. The biotechnological production of single-cell oil comes as a sustainable alternative capable of supplementing the global demand for omega-3, causing less environmental impact.

  12. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Germann, Susanne M; Baallal Jacobsen, Simo A; Schneider, Konstantin; Harrison, Scott J; Jensen, Niels B; Chen, Xiao; Stahlhut, Steen G; Borodina, Irina; Luo, Hao; Zhu, Jiangfeng; Maury, Jérôme; Forster, Jochen

    2016-05-01

    Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N-acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L-tryptophan hydroxylase, a 5-hydroxy-L-tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O-methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co-factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L(-1) in a 76h fermentation using simulated fed-batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin. © 2015 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells.

    KAUST Repository

    Siegert, Michael; Li, Xiu-Fen; Yates, Matthew D; Logan, Bruce E

    2014-01-01

    High current densities in microbial electrolysis cells (MECs) result from the predominance of various Geobacter species on the anode, but it is not known if archaeal communities similarly converge to one specific genus. MECs were examined here on the basis of maximum methane production and current density relative to the inoculum community structure. We used anaerobic digester (AD) sludge dominated by acetoclastic Methanosaeta, and an anaerobic bog sediment where hydrogenotrophic methanogens were detected. Inoculation using solids to medium ratio of 25% (w/v) resulted in the highest methane production rates (0.27 mL mL(-1) cm(-2), gas volume normalized by liquid volume and cathode projected area) and highest peak current densities (0.5 mA cm(-2)) for the bog sample. Methane production was independent of solid to medium ratio when AD sludge was used as the inoculum. 16S rRNA gene community analysis using pyrosequencing and quantitative PCR confirmed the convergence of Archaea to Methanobacterium and Methanobrevibacter, and of Bacteria to Geobacter, despite their absence in AD sludge. Combined with other studies, these findings suggest that Archaea of the hydrogenotrophic genera Methanobacterium and Methanobrevibacter are the most important microorganisms for methane production in MECs and that their presence in the inoculum improves the performance.

  14. Experimental effect of ozone upon the microbial flora of commercially produced dairy fermented products.

    Science.gov (United States)

    Alexopoulos, A; Plessas, S; Kourkoutas, Y; Stefanis, C; Vavias, S; Voidarou, C; Mantzourani, I; Bezirtzoglou, E

    2017-04-04

    Ozone was used to control spoilage microorganisms during the manufacturing of dairy products. Ozone stream was applied onto the surface of freshly filled yoghurt cups just before storage for curd development in order to prevent cross contamination from spoilage airborne microorganisms. Accordingly, brine solution was bubbled with ozone for various periods of time and used for ripening of white (feta type) cheese. Both products were subjected to a continuous monitoring of microbial load and also tested for their sensorial properties. In ozonated yoghurt samples there was a reduction in mould counts of approximately 0.6Logcfu/g (25.1%) by the end of the monitoring period in relation to the control samples. In white cheese ripened with ozonated brine (1.3mg/L O 3 , NaCl 5%) it seems that ozone treatment during the two months of observation reduced some of the mould load but without offering any advantages over the use of traditional brine (NaCl 7%). However, some sensorial alterations were observed, probably due to the organic load in the brine which deactivates ozone in early stages of application. It is concluded that, if the factors of time and concentration of ozone are configured properly, ozonation could be a promising approach safeguarding the production of some dairy products. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modeling the formation of soluble microbial products (SMP in drinking water biofiltration

    Directory of Open Access Journals (Sweden)

    Yu Xin

    2008-09-01

    Full Text Available Both a theoretical and an empirical model were developed for predicting the formation of soluble microbial products (SMP during drinking water biofiltration. Four pilot-scale biofilters with ceramsite as the medium were fed with different acetate loadings for the determination of SMP formation. Using numerically simulated and measured parameters, the theoretical model was developed according to the substrate and biomass balance. The results of this model matched the measured data better for higher SMP formation but did not fit well when SMP formation was lower. In order to better simulate the reality and overcome the difficulties of measuring the kinetic parameters, a simpler empirical model was also developed. In this model, SMP formation was expressed as a function of fed organic loadings and the depth of the medium, and a much better fit was obtained.

  16. Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas.

    Science.gov (United States)

    Humphreys, Christopher M; Minton, Nigel P

    2018-04-01

    The future sustainable production of chemicals and fuels from non-petrochemical sources, while at the same time reducing greenhouse gas (GHG) emissions, represent two of society's greatest challenges. Microbial chassis able to grow on waste carbon monoxide (CO) and carbon dioxide (CO 2 ) can provide solutions to both. Ranging from the anaerobic acetogens, through the aerobic chemoautotrophs to the photoautotrophic cyanobacteria, they are able to convert C1 gases into a range of chemicals and fuels which may be enhanced and extended through appropriate metabolic engineering. The necessary improvements will be facilitated by the increasingly sophisticated gene tools that are beginning to emerge as part of the Synthetic Biology revolution. These tools, in combination with more accurate metabolic and genome scale models, will enable C1 chassis to deliver their full potential. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Microbial production of natural gas from coal and organic-rich shale

    Science.gov (United States)

    Orem, William

    2013-01-01

    Natural gas is an important component of the energy mix in the United States, producing greater energy yield per unit weight and less pollution compared to coal and oil. Most of the world’s natural gas resource is thermogenic, produced in the geologic environment over time by high temperature and pressure within deposits of oil, coal, and shale. About 20 percent of the natural gas resource, however, is produced by microorganisms (microbes). Microbes potentially could be used to generate economic quantities of natural gas from otherwise unexploitable coal and shale deposits, from coal and shale from which natural gas has already been recovered, and from waste material such as coal slurry. Little is known, however, about the microbial production of natural gas from coal and shale.

  18. Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Sanjay K.S. [Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Mall Road, Delhi 110007 (India); Department of Biotechnology, University of Pune, Pune 411007 (India); Purohit, Hemant J. [Environmental Genomics Unit, National Environmental Engineering Research Institute (NEERI), CSIR, Nehru Marg, Nagpur 440020 (India); Kalia, Vipin C. [Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Mall Road, Delhi 110007 (India)

    2010-10-15

    Mixed microbial cultures (MMCs) based on 11 isolates belonging to Bacillus spp. (Firmicutes), Bordetella avium, Enterobacter aerogenes and Proteus mirabilis (Proteobacteria) were employed to produce hydrogen (H{sub 2}) under dark fermentative conditions. Under daily fed culture conditions (hydraulic retention time of 2 days), MMC6 and MMC4, immobilized on ligno-cellulosic wastes - banana leaves and coconut coir evolved 300-330 mL H{sub 2}/day. Here, H{sub 2} constituted 58-62% of the total biogas evolved. It amounted to a H{sub 2} yield of 1.54-1.65 mol/mol glucose utilized over a period of 60 days of fermentation. The involvement of various Bacillus spp. -Bacillus sp., Bacillus cereus, Bacillus megaterium, Bacillus pumilus and Bacillus thuringiensis as components of the defined MMCs for H{sub 2} production has been reported here for the first time. (author)

  19. Methane production potential and microbial community structure for different forest soils

    Science.gov (United States)

    Matsumoto, Y.; Ueyama, M.; Kominami, Y.; Endo, R.; Tokumoto, H.; Hirano, T.; Takagi, K.; Takahashi, Y.; Iwata, H.; Harazono, Y.

    2017-12-01

    Forest soils are often considered as a methane (CH4) sink, but anaerobic microsites potentially decrease the sink at the ecosystem scale. In this study, we measured biological CH4 production potential of soils at various ecosystems, including upland forests, a lowland forest, and a bog, and analyzed microbial community structure using 16S ribosomal RNA (rRNA) genes. Three different types of soil samples (upland, bank of the stream, and center of the stream) were collected from Yamashiro forest meteorology research site (YMS) at Kyoto, Japan, on 11 May 2017. The soils were incubated at dark and anaerobic conditions under three different temperatures (37°C, 25°C, and 10°C) from 9 June 2017. The upland soils emitted CH4 with largest yields among the three soils at 37°C and 25°C, although no CH4 emission was observed at 10°C. For all temperature ranges, the emission started to increase with a 14- to 20-days lag after the start of the incubation. The lag indicates a slow transition to anaerobic conditions; as dissolved oxygen in water decreased, the number and/or activity of anaerobic bacteria like methanogens increased. The soils at the bank and center of the stream emitted CH4 with smaller yields than the upland soils in the three temperature ranges. The microbial community analyses indicate that methanogenic archaea presented at the three soils including the aerobic upland soil, but compositions of methanogenic archaea were different among the soils. In upland soils, hydrogenotrophic methanogens, such as Methanobacterium and Methanothermobacter, consisted almost all of the total methanogen detected. In the bank and center of the stream, soils contained approximately 10-25% of acetoclastic methanogens, such as Methanosarcina and Methanosaeta, among the total methanogen detected. Methanotrophs, a genus of Methanobacteriaceae, was appeared in the all types of soils. We will present results from same incubation and 16S rRNA analyses for other ecosystems, including

  20. Production of Microbial Transglutaminase on Media Made from Sugar Cane Molasses and Glycerol

    Directory of Open Access Journals (Sweden)

    Manuel Vázquez

    2009-01-01

    Full Text Available Transglutaminase is an enzyme that catalyses an acyl transfer reaction between γ-carboxamide groups of glutaminyl residues and lysine residues in proteins. Due to this property, this enzyme is used for enhancing textural properties of protein-rich food. The transglutaminase used as food additive is obtained by microorganisms, mainly by Streptoverticillium ladakanum. On the other hand, sugar cane molasses is a viscous liquid rich in noncrystallized carbohydrates (saccharose, glucose and fructose. In this work, the feasibility of using sugar cane molasses as a carbon source for the production of microbial transglutaminase by Streptoverticillium ladakanum NRRL 3191 has been studied. Carbon sources including sugar cane molasses (60 g of total sugars per L, glycerol (60 g/L and their mixture in a ratio of 1:1 (30 g/L of each were evaluated. Time course of microbial growth, transglutaminase activity and carbon source consumption were determined every 24 h during 120 h of fermentations at three agitation speeds (200, 300 or 400 rpm. The results showed that with the increase in agitation speed, the biomass concentration increased up to 8.39 g/L in the medium containing sugar cane molasses alone or the mixture of molasses and glycerol. The highest transglutaminase activity was obtained at 400 rpm in the medium containing a mixture of molasses and glycerol, reaching 0.460 U/mL, while in the medium containing sugar cane molasses alone, the activity was 0.240 U/mL, and using glycerol alone it was 0.250 U/mL. These results show that sugar cane molasses is a suitable medium for transglutaminase production when it is combined with glycerol.

  1. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.

    Science.gov (United States)

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.

  2. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    Directory of Open Access Journals (Sweden)

    Ivan Baumann

    2016-01-01

    Full Text Available Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  3. Microbial diversity arising from thermodynamic constraints

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  4. Microbial diversity arising from thermodynamic constraints.

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-11-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments.

  5. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production.

    Science.gov (United States)

    Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo

    2017-12-01

    Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  6. Fuelling the future: microbial engineering for the production of sustainable biofuels.

    Science.gov (United States)

    Liao, James C; Mi, Luo; Pontrelli, Sammy; Luo, Shanshan

    2016-04-01

    Global climate change linked to the accumulation of greenhouse gases has caused concerns regarding the use of fossil fuels as the major energy source. To mitigate climate change while keeping energy supply sustainable, one solution is to rely on the ability of microorganisms to use renewable resources for biofuel synthesis. In this Review, we discuss how microorganisms can be explored for the production of next-generation biofuels, based on the ability of bacteria and fungi to use lignocellulose; through direct CO2 conversion by microalgae; using lithoautotrophs driven by solar electricity; or through the capacity of microorganisms to use methane generated from landfill. Furthermore, we discuss how to direct these substrates to the biosynthetic pathways of various fuel compounds and how to optimize biofuel production by engineering fuel pathways and central metabolism.

  7. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C; Logan, Bruce E

    2014-01-01

    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.

  8. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    KAUST Repository

    Zhu, Xiuping

    2014-03-24

    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.

  9. Assessing the landscape context and conversion risk of protected areas using satellite data products

    Science.gov (United States)

    Svancara, Leona K.; Scott, J.M.; Loveland, Thomas R.; Pidgorna, Anna

    2009-01-01

    Since the establishment of the first national park (Yellowstone National Park in 1872) and the first wildlife refuge (Pelican Island in 1903), dramatic changes have occurred in both ecological and cultural landscapes across the U.S. The ability of these protected areas to maintain current levels of biodiversity depend, at least in part, on the integrity of the surrounding landscape. Our objective was to quantify and compare the extent and pattern of natural land cover, risk of conversion, and relationships with demographic and economic variables in counties near National Park Service units and U.S. Fish and Wildlife Service refuges with those counties distant from either type of protected area in the coterminous United States. Our results indicate that landscapes in counties within 10 km of both parks and refuges and those within 10 km of just parks were more natural, more intact, and more protected than those in counties within 10 km of just refuges and counties greater than 10 km from either protected area system. However, they also had greater human population density and change in population, indicating potential conversion risk since the percent of landscape protected averaged  2) in 76% of counties near both parks and refuges, 81% of counties near just parks, 91% of counties near just refuges, and 93% of distant counties. Thirteen percent of counties in the coterminous U.S. had moderate to high amounts of natural land cover (> 60%), low protection ( 20%). Although these areas are not the most critically endangered, they represent the greatest conservation opportunity, need, and urgency. Our approach is based on national level metrics that are simple, general, informative, and can be understood by broad audiences and by policy makers and managers to assess the health of lands surrounding parks and refuges. Regular monitoring of these metrics with satellite data products in counties surrounding protected areas provides a consistent, national level

  10. Gas production, microbial synthesis by radio phosphorus and digestibility of babassu and mofumbo in sheep diets

    International Nuclear Information System (INIS)

    Abdalla Filho, Adibe Luiz

    2015-01-01

    When food shortages in natural pastures is committed to animal nutrition, small ruminants can incorporate into their diets the leaves of other plants, such as trees and shrubs, many of them rich in secondary metabolites such as tannins and which still lack of studies about its effect on animal productivity. In order to verify the possibility of using leaves of Orbignya phalerata (Babassu) and Combretum leprosum (Mofumbo) in feed and to evaluate the effect of their inclusion in the sheep production system, two studies were conducted at the Animal Nutrition Laboratory of Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Piracicaba (LANA/CENA-USP). The first study evaluated the performance variables, biochemical and hematological parameters and also determined the microbial protein synthesis, nutrient apparent digestibility and enteric production of methane (CH4). The second study assessed the carcass characteristics, fatty acid profile and meat color of male sheep used in the first study. The experimental treatments were diets with forages to concentrate rate of 50:50, drawn up on the basis of using the leaves of the experimental plants replacing 30% of the Cynodon dactylon (Tifton-85) hay, resulting in three treatments: Control (no hay replacement), Babassu and Mofumbo. In the first study, there were used 24 Santa Ines sheep, in a randomized experimental design with eight repetitions for each treatment and 48 days of trial period. Also during this period, an in vitro microbial protein synthesis was performed using the radio phosphorus using five different inoculum of each studied treatment. After this period, for nine days, six animals from each treatment were allocated in metabolic cages for determining the nutrient apparent digestibility, microbial protein synthesis and nitrogen balance. Simultaneously it was quantified the enteric CH4 production in vivo. The Control group showed greater (P < 0.05) apparent digestibility of acid detergent fiber

  11. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells

    KAUST Repository

    Lu, Lu

    2012-11-01

    H2 can be obtained from glucose by fermentation at mesophilic temperatures, but here we demonstrate that hydrogen can also be obtained from glucose at low temperatures using microbial electrolysis cells (MECs). H2 was produced from glucose at 4°C in single-chamber MECs at a yield of about 6mol H2mol-1 glucose, and at rates of 0.25±0.03-0.37±0.04m3 H2m-3d-1. Pyrosequencing of 16S rRNA gene and electrochemical analyses showed that syntrophic interactions combining glucose fermentation with the oxidization of fermentation products by exoelectrogens was the predominant pathway for current production at a low temperature other than direct glucose oxidization by exoelectrogens. Another syntrophic interaction, methanogenesis and homoacetogenesis, which have been found in 25°C reactors, were not detected in MECs at 4°C. These results demonstrate the feasibility of H2 production from abundant biomass of carbohydrates at low temperature in MECs. © 2012 Elsevier Ltd.

  12. Characterization of soluble microbial products and their fouling impacts in membrane bioreactors

    KAUST Repository

    Jiang, Tao; Kennedy, Maria Dolores; Schepper, Veerle D.; Nam, Seongnam; Nopens, Ingmar; Vanrolleghem, Peter A.; Amy, Gary L.

    2010-01-01

    Membrane bioreactor (MBR) fouling is not only influenced by the soluble microbial products (SMP) concentration but by their characteristics. Experiments of separate producing biomass associated products (BAP) and utilization associated products (UAP) allowed the separation of BAP and UAP effects from sludge water (SW). Thus, filtration of individual SMP components and further characterization becomes possible. Unstirred cell filtration was used to study fouling mechanisms and liquid chromatography-organic carbon detection (LC-OCD) and fluorescence excitation-emission matrix (EEM) were used to characterize the foulant. Generally, the SMP exhibiting characteristics of higher molecular weight, greater hydrophilicity and a more reduced state showed a higher retention percentage. However, the higher retention does not always yield higher fouling effects. The UAP filtration showed the highest specific cake resistance and pore blocking resistance attributed to their higher percentage of low molecular weight molecules, although their retention percentage was lower than the SW and BAP filtration. The UAP produced in the cell proliferation phase appeared to have the highest fouling potential. © 2010 American Chemical Society.

  13. Effects of organic loading rate on biogas production from macroalgae: Performance and microbial community structure.

    Science.gov (United States)

    Sun, Meng-Ting; Fan, Xiao-Lei; Zhao, Xiao-Xian; Fu, Shan-Fei; He, Shuai; Manasa, M R K; Guo, Rong-Bo

    2017-07-01

    Macroalgae biomass has been considered as a promising feedstock for biogas production. In order to improve the efficiency of anaerobic digestion (AD) of macroalgae, semi-continuous fermentation was conducted to examine the effects of organic loading rate (OLR) on biogas production from Macrocystis pyrifer. Results showed that, under OLRs of 1.37, 2.74, 4.12 and 6.85kgVS substrate /(m 3 ·d), the average unit biogas yields were 438.9, 477.3, 480.1 and 188.7mL/(gVS substrate d), respectively. It indicated that biogas production was promoted by the increased OLR in an appropriate range while inhibited by the OLR beyond the appropriate range. The investigation on physical-chemical parameters revealed that unfavorable VFAs concentration, pH and salinity might be the main causes for system failure due to the overrange OLR, while the total phenols failed to reach the inhibitory concentration. Microbial community analysis demonstrated that several bacterial and archaeal phyla altered with increase in OLR apparently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characterization of soluble microbial products and their fouling impacts in membrane bioreactors

    KAUST Repository

    Jiang, Tao

    2010-09-01

    Membrane bioreactor (MBR) fouling is not only influenced by the soluble microbial products (SMP) concentration but by their characteristics. Experiments of separate producing biomass associated products (BAP) and utilization associated products (UAP) allowed the separation of BAP and UAP effects from sludge water (SW). Thus, filtration of individual SMP components and further characterization becomes possible. Unstirred cell filtration was used to study fouling mechanisms and liquid chromatography-organic carbon detection (LC-OCD) and fluorescence excitation-emission matrix (EEM) were used to characterize the foulant. Generally, the SMP exhibiting characteristics of higher molecular weight, greater hydrophilicity and a more reduced state showed a higher retention percentage. However, the higher retention does not always yield higher fouling effects. The UAP filtration showed the highest specific cake resistance and pore blocking resistance attributed to their higher percentage of low molecular weight molecules, although their retention percentage was lower than the SW and BAP filtration. The UAP produced in the cell proliferation phase appeared to have the highest fouling potential. © 2010 American Chemical Society.

  15. Production of a High Efficiency Microbial Flocculant by Proteus mirabilis TJ-1 Using Compound Organic Wastewater

    Science.gov (United States)

    Zhang, Zhiqiang; Xia, Siqing; Zhang, Jiao

    2010-11-01

    The production of a high efficiency microbial flocculant (MBF) by Proteus mirabilis TJ-1 using compound organic wastewater was investigated. To cut down the cost of the MBF production, several nutritive organic wastewaters were selected to replace glucose and peptone as the carbon source and the nitrogen source in the optimized medium of strain TJ-1, respectively. The compound wastewater of the milk candy and the soybean milk was found to be good carbon source and nitrogen source for this strain to produce MBF. The cost-effective culture medium consists of (per liter): 800 mL wastewater of milk candy, 200 mL wastewater of soybean milk, 0.3 g MgSO4ṡ7 H2O, 5 g K2HPO4, 2 g and KH2PO4, pH 7.0. The economic cost for the MBF production can be cut down over a half by using the developed culture medium. Furthermore, the utilization of the two wastewaters in the preparation of culture medium of strain TJ-1 can not only save their big treatment cost, but also realize their resource reuse.

  16. Biochemical conversions of lignocellulosic biomass for sustainable fuel-ethanol production in the upper Midwest

    Science.gov (United States)

    Brodeur-Campbell, Michael J.

    Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest — hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues — according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% of theoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure

  17. Microbial community structures in algae cultivation ponds for bioconversion of agricultural wastes from livestock industry for feed production

    Science.gov (United States)

    Dynamics of seasonal microbial community compositions in algae cultivation ponds are complex. There is very limited knowledge on community compositions that may play significant roles in the bioconversion of manure nu¬trients to animal feed. Algae production is an alternative where land area for pro...

  18. An overview of physico-chemical mechanisms of biogas production by microbial communities: a step towards sustainable waste management.

    Science.gov (United States)

    Goswami, Ramansu; Chattopadhyay, Pritam; Shome, Arunima; Banerjee, Sambhu Nath; Chakraborty, Amit Kumar; Mathew, Anil K; Chaudhury, Shibani

    2016-06-01

    Biogas is a combination of methane, CO 2 , nitrogen, H 2 S and traces of few other gases. Almost any organic waste can be biologically transformed into biogas and other energy-rich organic compounds through the process of anaerobic digestion (AD) and thus helping in sustainable waste management. Although microbes are involved in each step of AD, knowledge about those microbial consortia is limited due to the lack of phylogenetic and metabolic data of predominantly unculturable microorganisms. However, culture-independent methods like PCR-based ribotyping has been successfully employed to get information about the microbial consortia involved in AD. Microbes identified have been found to belong mainly to the bacterial phyla of Proteobacteria, Chloroflexi, Firmicutes and Bacteroidetes. Among the archaeal population, the majority have been found to be methanogens (mainly unculturable), the remaining being thermophilic microbes. Thus, the AD process as a whole could be controlled by regulating the microbial consortia involved in it. Optimization in the feedstock, pH, temperature and other physical parameters would be beneficial for the microbial growth and viability and thus helpful for biogas production in AD. Besides, the biogas production is also dependent upon the activity of several key genes, ion-specific transporters and enzymes, like genes coding for methyl-CoM reductase, formylmethanofuran transferase, formate dehydrogenase present in the microbes. Fishing for these high-efficiency genes will ultimately increase the biogas production and sustain the production plant.

  19. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Shireen Meher Kotay; Debabrata Das [Fermentation Technology Lab., Department of Biotechnology, Indian Institute of Technology Kharagpur, W.B., INDIA-721302 (India)

    2006-07-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H{sub 2} production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H{sub 2}/ g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H{sub 2}/g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5%w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H{sub 2}/ g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H{sub 2} g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H{sub 2}/g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H{sub 2}/g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge

  20. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Shireen Meher Kotay; Debabrata Das [Fermentation Technology Lab., Department of Biotechnology, Indian Institute of Technology Kharagpur, W.B., INDIA-721302 (India)

    2006-07-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H{sub 2} production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H{sub 2}/ g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H{sub 2}/ g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5% w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H{sub 2}/ g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H{sub 2}/ g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H{sub 2} / g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H{sub 2}/ g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from

  1. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    International Nuclear Information System (INIS)

    Shireen Meher Kotay; Debabrata Das

    2006-01-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H 2 production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H 2 / g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H 2 /g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5%w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H 2 / g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H 2 g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H 2 /g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H 2 /g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge. (authors)

  2. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    International Nuclear Information System (INIS)

    Shireen Meher Kotay; Debabrata Das

    2006-01-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H 2 production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H 2 / g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H 2 / g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5% w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H 2 / g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H 2 / g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H 2 / g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H 2 / g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge. (authors)

  3. Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures.

    Science.gov (United States)

    Silva, Fernando; Campanari, Sabrina; Matteo, Stefania; Valentino, Francesco; Majone, Mauro; Villano, Marianna

    2017-07-25

    A sequencing batch reactor (SBR) is typically used for selecting mixed microbial cultures (MMC) for polyhydroxyalkanoate (PHA) production. Since many waste streams suitable as process feedstock for PHA production are nitrogen-deficient, a nutrient supply in the SBR is typically required to allow for efficient microbial growth. The scope of this study was to devise a nitrogen feeding strategy which allows controlling the nitrogen levels during the feast and famine regime of a lab-scale SBR, thereby selecting for PHA-storing microorganisms. At the beginning of the cycle the reactor was fed with a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5gCODL -1 d -1 (i.e. 260CmmolL -1 d -1 ), whereas nitrogen (in the form of ammonium sulphate) was added either simultaneously to the carbon feed (coupled feeding strategy) or after the end of the feast phase (uncoupled feeding strategy). As a main result, PHA production was more than doubled (up to about 1300±64mgCODL -1 ) when carbon and nitrogen were separately fed and the higher PHA production also corresponded to an 82% increase in the polymer HV content (up to 20±1%, wtwt -1 ). Three SBR runs were performed with the uncoupled carbon and nitrogen feeding at different carbon to nitrogen (C/N) ratios (of 14.3, 17.9, and 22.3CmolNmol -1 , respectively) which were varied by progressively reducing the concentration of the nitrogen feeding. In spite of a comparable PHA storage yield at 14.3 and 17.9CmolNmol -1 (0.41±0.05 gCOD PHA gCOD VFA -1 and 0.38±0.05 gCOD PHA gCOD VFA -1 , respectively), the storage response of the selected MMC significantly decreased when the C/N ratio was set at the highest investigated value. Notably, an increase in this parameter also resulted in a change in the HV content in the polymer regardless the composition of the organic acids solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    International Nuclear Information System (INIS)

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A.

    2016-01-01

    microbial sulfide production potential of sulfur-containing wastes. - Highlights: • A lab-scale assay to estimate H 2 S production from solid wastes was developed. • High H 2 S concentrations depressed both methane production and sulfate reduction. • Base traps to sequester H 2 S reduced its toxic effect. • H 2 S production potential of different solid wastes was measured. • Not all sulfur in solid wastes is converted to H 2 S through biotransformation.

  5. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mei, E-mail: msun8@uncc.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Sun, Wenjie, E-mail: wsun@smu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Department of Civil and Environmental Engineering, Southern Methodist University, PO Box 750340, Dallas, TX (United States); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States)

    2016-05-01

    the importance of assays to estimate the microbial sulfide production potential of sulfur-containing wastes. - Highlights: • A lab-scale assay to estimate H{sub 2}S production from solid wastes was developed. • High H{sub 2}S concentrations depressed both methane production and sulfate reduction. • Base traps to sequester H{sub 2}S reduced its toxic effect. • H{sub 2}S production potential of different solid wastes was measured. • Not all sulfur in solid wastes is converted to H{sub 2}S through biotransformation.

  6. Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa.

    Science.gov (United States)

    Schurr, M J; Deretic, V

    1997-04-01

    Conversion of Pseudomonas aeruginosa to the mucoid phenotype plays a major role in the pathogenesis of respiratory infections in cystic fibrosis (CF). One mechanism responsible for mucoidy is based on mutations that inactivate the anti-sigma factor, MucA, which normally inhibits the alternative sigma factor, AIgU. The loss of MucA allows AIgU to freely direct transcription of the genes responsible for the production of the exopolysaccharide alginate resulting in mucoid colony morphology. In Escherichia coli, a close homologue of AIgU, sigma(E), directs transcription of several genes under conditions of extreme heat shock. Here we examined whether AIgU, besides its role in controlling alginate production, affects the heat-shock response in P. aeruginosa. The P. aeruginosa rpoH gene encoding a homologue of the major heat-shock sigma factor, sigma32, was found to be transcribed by AIgU containing RNA polymerase from one of its promoters (P3) identified in this study. Transcription of rpoH from P3 was elevated upon exposure to extreme heat shock in an aIgU-dependent manner. Importantly, the AIgU-dependent promoter of rpoH was found to be activated in mucoid mucA mutants. In keeping with this observation, introduction of a wild-type mucA gene abrogated AIgU-dependent rpoH transcription in mucoid P. aeruginosa laboratory isolates and CF isolates. These results suggest that conversion to mucoidy and the heat-shock response are co-ordinately regulated in P. aeruginosa. The simultaneous activation of both systems in mucA mutants, selected in the lungs of CF patients, may have significance for the inflammatory processes characteristic of the establishment of chronic infection and ensuing clinical deterioration in CF.

  7. Development of Equation Based on Urinary Purine Derivatives to Estimate Rumen Microbial Protein Production in Goats

    International Nuclear Information System (INIS)

    Jetana, Thongsuk; Abdullah, Norhani; Liang, Boo Juan; Syed Salim, Syed Jalaludin; Ho, Wan Yin

    2003-06-01

    Three experiments were conducted at the farm of the Universiti Putra Malaysia, Serdang, Selangor, Malaysia, to establish a model as an index for estimating rumen microbial protein production. In Experiment 1, six Ferral male goats (wt. 40.2±4.6 kg) were used to determine the endogenous purine derivatives (PD) excreted in the urine by fasting. In Experiment 2, four Ferral male goats (wt. 39.6±1.8 kg) were used to measure the proportion of plasma PD excreted in the urine by using [ 14 C]-uric acid as a marker at two levels of feed intake (40% and 80% voluntary intake), using an incomplete 2x4 Latin square experimental design. The feed consisted of 40% oil palm frond and 60% concentrate (OPFC). In Experiment 3, four Ferral male goats fed (OPFC)) were slaughtered and rumen contents were taken for measurements of purine and total nitrogen contents of mixed rumen microbes. The results showed that endogenous PD (allantoin, uric acid, xanthine and hypoxanthine) excreted in the urine obtained by the fasting trial was 202±17 μmol/kg BW 0 . 75 d - 1. The average percentage recovery of plasma PD excretion in the urine by using [ 14 C)-uric acid as a marker was 83±2.0% (cv=6.88, ranged 76.3-91.4%, n=8). Percentage recovery was not affected by levels of feed intake. The ratio of purine N: total N in the mixed rumen liquid associated bacteria (LAB) was 0.085. In this study, a preliminary model for goats was established by using the information from the recovery of labeled PD [ 14 C]-uric acid and the fasting PD excretion. The model obtained was Y 0.83X + 0.202 x BW 0 . 75 , where Y = PD excretion in the urine (mmol/d) X PD absorption at small intestine (mmol/d) BW 0 . 75 = Metabolic body weight (kg) Thus the microbial nitrogen based on total PD (MNpd) can be calculated as follows: MNpd = 70 x X = 0.992 x X (g/d) 0.085 x 0.83 x 1000 where 0.085 is the ratio of purine-N: total N in mixed rumen microbes, 0.83 is the average of digestibility of microbial purine from published

  8. Microbial Community Pathways for the Production of Volatile Fatty Acids From CO2 and Electricity

    Directory of Open Access Journals (Sweden)

    Jorge Wenzel

    2018-04-01

    Full Text Available This study aims at elucidating the metabolic pathways involved in the production of volatile fatty acids from CO2 and electricity. Two bioelectrochemical systems (BES were fed with pure CO2 (cells A and B. The cathode potential was first poised at −574 mV vs. standard hydrogen electrode (SHE and then at −756 mV vs. SHE in order to ensure the required reducing power. Despite applying similar operation conditions to both BES, they responded differently. A mixture of organic compounds (1.87 mM acetic acid, 2.30 mM formic acid, 0.43 mM propionic acid, 0.15 mM butyric acid, 0.55 mM valeric acid, and 0.62 mM ethanol was produced in cell A while mainly 1.82 mM acetic acid and 0.23 mM propionic acid were produced in cell B. The microbial community analysis performed by 16S rRNA gene pyrosequencing showed a predominance of Clostridium sp. and Serratia sp. in cell A whereas Burkholderia sp. and Xanthobacter sp. predominated in cell B. The coexistence of three metabolic pathways involved in carbon fixation was predicted. Calvin cycle was predicted in both cells during the whole experiment while Wood-Ljungdahl and Arnon-Buchanan pathways predominated in the period with higher coulombic efficiency. Metabolic pathways which transform organic acids into anabolic intermediaries were also predicted, indicating the occurrence of complex trophic interactions. These results further complicate the understanding of these mixed culture microbial processes but also expand the expectation of compounds that could potentially be produced with this technology.

  9. Long-term carbon exclusion alters soil microbial function but not community structure across forests of contrasting productivity

    Science.gov (United States)

    Hart, S. C.; Dove, N. C.; Stark, J.

    2017-12-01

    While it is well-documented that distinct heterotrophic microbial communities emerge under different conditions of carbon (C) availability, the response of soil microbial communities and their function to long-term conditions of C exclusion in situ has yet to be investigated. We evaluated the role of C in controlling soil microbial communities and function by experimentally excluding plant C inputs for nine years at four forest sites along a productivity gradient in Oregon, USA. Carbon exclusion treatments were implemented by root trenching to a depth of 30 cm using 25-cm diameter steel pipe, and minimizing aboveground inputs as plant litter by covering the pipe with a 1-mm mesh screen. After nine years, we measured rates of gross and net nitrogen (N) transformations and microbial respiration in situ in the upper 15-cm of mineral soil in both C excluded plots and undisturbed control soils. We measured the soil total C and N concentration and potential extracellular enzyme activities. We used phospholipid fatty acid (PLFA) analysis to determine potential changes in the microbial community structure. Nine years of C exclusion reduced soil total C by about 20%, except at the highest productivity site where no statistically significant change was observed. Although PLFA community structure and microbial C were unchanged, microbial respiration was reduced by 15-45% at all sites. Similarly, specific extracellular enzyme activities for all enzymes increased at these sites with C exclusion, suggesting that the microbial communities were substrate-limited. Although gross N mineralization decreased under C exclusion, decreases in gross N immobilization were greater, resulting in increased net N mineralization rates in all but the lowest productivity site. Furthermore, C exclusion only increased net nitrification in the highest productivity site. Although these field-based results are largely consistent with previous laboratory studies indicating a strong coupling between C

  10. Comparison of different pretreatment methods for lignocellulosic materials. Part I: conversion of rye straw to valuable products.

    Science.gov (United States)

    Ingram, Thomas; Wörmeyer, Kai; Lima, Juan Carlos Ixcaraguá; Bockemühl, Vera; Antranikian, Garabed; Brunner, Gerd; Smirnova, Irina

    2011-04-01

    The conversion of lignocellulose to valuable products requires I: a fractionation of the major components hemicellulose, cellulose, and lignin, II: an efficient method to process these components to higher valued products. The present work compares liquid hot water (LHW) pretreatment to the soda pulping process and to the ethanol organosolv pretreatment using rye straw as a single lignocellulosic material. The organosolv pretreated rye straw was shown to require the lowest enzyme loading in order to achieve a complete saccharification of cellulose to glucose. At biomass loadings of up to 15% (w/w) cellulose conversion of LHW and organosolv pretreated lignocellulose was found to be almost equal. The soda pulping process shows lower carbohydrate and lignin recoveries compared to the other two processes. In combination with a detailed analysis of the different lignins obtained from the three pretreatment methods, this work gives an overview of the potential products from different pretreatment processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan

    2015-01-01

    Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply.

  12. Evaluation of microbial community composition in thermophilic methane-producing incubation of production water from a high-temperature oil reservoir.

    Science.gov (United States)

    Zhou, Fang; Mbadinga, Serge Maurice; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong

    2013-01-01

    Investigation of petroleum microbes is fundamental for the development and utilization of oil reservoirs' microbial resources, and also provides great opportunities for research and development of bio-energy. Production water from a high-temperature oil reservoir was incubated anaerobically at 55 degrees C for more than 400 days without amendment of any nutrients. Over the time of incubation, about 1.6 mmol of methane and up to 107 micromol of hydrogen (H2) were detected in the headspace. Methane formation indicated that methanogenesis was likely the predominant process in spite of the presence of 23.4 mM SO4(2-) in the production water. Microbial community composition of the incubation was characterized by means of 16S rRNA gene clone libraries construction. Bacterial composition changed from Pseudomonales as the dominant population initially to Hydrogenophilales-related microorganisms affiliated to Petrobacter spp. closely. After 400 days of incubation, other bacterial members detected were related to Anareolineales, beta-, gamma-, and delta-Proteobacteria. The archaeal composition of the original production water was essentially composed of obligate acetoclastic methanogens of the genus Methanosaeta, but the incubation was predominantly composed of CO2-reducing methanogens of the genus Methanothermobacter and Crenarchaeotes-related microorganisms. Our results suggest that methanogenesis could be more active than expected in oil reservoir environments and methane formation from CO2-reduction played a significant role in the methanogenic community. This conclusion is consistent with the predominant role played by H2-oxidizing methanogens in the methanogenic conversion of organic matter in high-temperature petroleum reservoirs.

  13. Product information representation for feature conversion and implementation of group technology automated coding

    Science.gov (United States)

    Medland, A. J.; Zhu, Guowang; Gao, Jian; Sun, Jian

    1996-03-01

    Feature conversion, also called feature transformation and feature mapping, is defined as the process of converting features from one view of an object to another view of the object. In a relatively simple implementation, for each application the design features are automatically converted into features specific for that application. All modifications have to be made via the design features. This is the approach that has attracted most attention until now. In the ideal situation, however, conversions directly from application views to the design view, and to other applications views, are also possible. In this paper, some difficulties faced in feature conversion are discussed. A new representation scheme of feature-based parts models has been proposed for the purpose of one-way feature conversion. The parts models consist of five different levels of abstraction, extending from an assembly level and its attributes, single parts and their attributes, single features and their attributes, one containing the geometric reference element and finally one for detailed geometry. One implementation of feature conversion for rotational components within GT (Group Technology) has already been undertaken using an automated coding procedure operating on a design-feature database. This database has been generated by a feature-based design system, and the GT coding scheme used in this paper is a specific scheme created for a textile machine manufacturing plant. Such feature conversion techniques presented here are only in their early stages of development and further research is underway.

  14. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    International Nuclear Information System (INIS)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches

  15. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.

    2010-01-01

    Although platinum is commonly used as catalyst on the cathode in microbial electrolysis cells (MEC), non-precious metal alternatives are needed to reduce costs. Cathodes were constructed using a nickel powder (0.5-1 μm) and their performance was compared to conventional electrodes containing Pt (0.002 μm) in MECs and electrochemical tests. The MEC performance in terms of coulombic efficiency, cathodic, hydrogen and energy recoveries were similar using Ni or Pt cathodes, although the maximum hydrogen production rate (Q) was slightly lower for Ni (Q = 1.2-1.3 m3 H2/m3/d; 0.6 V applied) than Pt (1.6 m3 H2/m3/d). Nickel dissolution was minimized by replacing medium in the reactor under anoxic conditions. The stability of the Ni particles was confirmed by examining the cathodes after 12 MEC cycles using scanning electron microscopy and linear sweep voltammetry. Analysis of the anodic communities in these reactors revealed dominant populations of Geobacter sulfurreduces and Pelobacter propionicus. These results demonstrate that nickel powder can be used as a viable alternative to Pt in MECs, allowing large scale production of cathodes with similar performance to systems that use precious metal catalysts. © 2009 Professor T. Nejat Veziroglu.

  16. A microbial fluidized electrode electrolysis cell (MFEEC) for enhanced hydrogen production

    KAUST Repository

    Liu, Jia

    2014-12-01

    A microbial fluidized electrode electrolysis cell (MFEEC) was used to enhance hydrogen gas production from dissolved organic matter. Flowable granular activated carbon (GAC) particles were used to provide additional surface area for growth of exoelectrogenic bacteria. The use of this exoelectrogenic biofilm on the GAC particles with fluidization produced higher current densities and hydrogen gas recoveries than controls (no recirculation or no GAC), due to intermittent contact of the capacitive particles with the anode. The total cumulative charge of 1688C m-2 with the MFEEC reactor (a recirculation flow rate of 19 mL min-1) was 20% higher than that of the control reactor (no GAC). The highest hydrogen gas yield of 0.82 ± 0.01 mol-H2/mol-acetate (17 mL min-1) was 39% higher than that obtained without recirculation (0.59 ± 0.01 mol-H 2/mol-acetate), and 116% higher than that of the control (no GAC, without recirculation). These results show that flowable GAC particles provide a useful approach for enhancing hydrogen gas production in bioelectrochemical systems. © 2014 Elsevier B.V. All rights reserved.

  17. Recombinant production of plant lectins in microbial systems for biomedical application – the frutalin case study

    Directory of Open Access Journals (Sweden)

    Carla eOliveira

    2014-08-01

    Full Text Available Frutalin is a homotetrameric partly-glycosylated alpha-D-galactose-binding lectin of biomedical interest from Artocarpus incisa (breadfruit seeds, belonging to the jacalin-related lectins family. As other plant lectins, frutalin is a heterogeneous mixture of several isoforms possibly with distinct biological activities. The main problem of using such lectins as biomedical tools is that batch-to-batch variation in isoforms content may lead to inconstant results. The production of lectins by recombinant means has the advantage of obtaining high amounts of proteins with defined amino-acid sequences and more precise properties. In this mini review, we provide the strategies followed to produce two different forms of frutalin in two different microbial systems: Escherichia coli and Pichia pastoris. The processing and functional properties of the recombinant frutalin obtained from these hosts are compared to those of frutalin extracted from breadfruit. Emphasis is given particularly to recombinant frutalin produced in P. pastoris, which showed a remarkable capacity as biomarker of human prostate cancer and as apoptosis-inducer of cancer cells. Recombinant frutalin production opens perspectives for its development as a new tool in human medicine.

  18. Recombinant production of plant lectins in microbial systems for biomedical application – the frutalin case study

    Science.gov (United States)

    Oliveira, Carla; Teixeira, José A.; Domingues, Lucília

    2014-01-01

    Frutalin is a homotetrameric partly glycosylated α-D-galactose-binding lectin of biomedical interest from Artocarpus incisa (breadfruit) seeds, belonging to the jacalin-related lectins family. As other plant lectins, frutalin is a heterogeneous mixture of several isoforms possibly with distinct biological activities. The main problem of using such lectins as biomedical tools is that “batch-to-batch” variation in isoforms content may lead to inconstant results. The production of lectins by recombinant means has the advantage of obtaining high amounts of proteins with defined amino-acid sequences and more precise properties. In this mini review, we provide the strategies followed to produce two different forms of frutalin in two different microbial systems: Escherichia coli and Pichia pastoris. The processing and functional properties of the recombinant frutalin obtained from these hosts are compared to those of frutalin extracted from breadfruit. Emphasis is given particularly to recombinant frutalin produced in P. pastoris, which showed a remarkable capacity as biomarker of human prostate cancer and as apoptosis-inducer of cancer cells. Recombinant frutalin production opens perspectives for its development as a new tool in human medicine. PMID:25152749

  19. Quantitative physiology of Penicillium cyclopium grown on whey for production of microbial protein

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J H; Libuchi, S; Lebeault, J M

    1981-01-01

    A filamentous fungus, Penicillium cyclopium, capable of growing on deproteinized whey was isolated and characterized for the purpose of production of microbial protein. This organism has a maximum specific growth rate of 0.2/hour at pH 3.0 to 4.5 and 28 degrees C in a medium containing only ammonium nitrogen and deproteinized whey. The yield coefficients are 0.68 g biomass/g lactose, 12.0 g biomass/g nitrogen, and 2.10 g biomass/g oxygen respectively. Crude protein and total nucleic acid contents of this organism are 47.5% and 7.4% (dry cell weight basis), respectively. The profile of essential amino acids show that it could be a good source of animal feed or food protein. However there are several advantages in using fungal cells (Spicer 1971); their amino acid profile is better, the recovery of biomass from the culture broth is much easier, their filamentous structure facilitates production of texturized foodstuffs without extraction and spinning, and they are already accepted as foods in many parts of the world. The authors have selected a filamentous fungus, Penicillium cyclopium which grows fast on deproteinized whey and has a high protein content. This paper describes the quantitative physiology of this organism and the amino acid profile of its protein. (Refs. 19).

  20. Soil microbial C:N ratio is a robust indicator of soil productivity for paddy fields

    Science.gov (United States)

    Li, Yong; Wu, Jinshui; Shen, Jianlin; Liu, Shoulong; Wang, Cong; Chen, Dan; Huang, Tieping; Zhang, Jiabao

    2016-10-01

    Maintaining good soil productivity in rice paddies is important for global food security. Numerous methods have been developed to evaluate paddy soil productivity (PSP), most based on soil physiochemical properties and relatively few on biological indices. Here, we used a long-term dataset from experiments on paddy fields at eight county sites and a short-term dataset from a single field experiment in southern China, and aimed at quantifying relationships between PSP and the ratios of carbon (C) to nutrients (N and P) in soil microbial biomass (SMB). In the long-term dataset, SMB variables generally showed stronger correlations with the relative PSP (rPSP) compared to soil chemical properties. Both correlation and variation partitioning analyses suggested that SMB N, P and C:N ratio were good predictors of rPSP. In the short-term dataset, we found a significant, negative correlation of annual rice yield with SMB C:N (r = -0.99), confirming SMB C:N as a robust indicator for PSP. In treatments of the short-term experiment, soil amendment with biochar lowered SMB C:N and improved PSP, while incorporation of rice straw increased SMB C:N and reduced PSP. We conclude that SMB C:N ratio does not only indicate PSP but also helps to identify management practices that improve PSP.