WorldWideScience

Sample records for microbial co2 production

  1. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2014-01-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve

  2. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping

    2014-05-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve natural minerals rich in magnesium/calcium silicates (serpentine), and the alkali generated by the same process was used to absorb CO2 and precipitate magnesium/calcium carbonates. The concentrations of Mg2+ and Ca2+ dissolved from serpentine increased 20 and 145 times by using the acid solution. Under optimal conditions, 24mg of CO2 was absorbed into the alkaline solution and 13mg of CO2 was precipitated as magnesium/calcium carbonates over a fed-batch cycle (24h). Additionally, the MEDCC removed 94% of the COD (initially 822mg/L) and achieved 22% desalination (initially 35g/L NaCl). These results demonstrate the viability of this process for effective CO2 sequestration using renewable organic matter and natural minerals. © 2014 Elsevier Ltd.

  3. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization

    DEFF Research Database (Denmark)

    Pan, Xiaofang; Angelidaki, Irini; Alvarado-Morales, Merlin

    2016-01-01

    For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H-2/CO2), CH4 production kinetics were investigated at 37 +/- 1 degrees C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate from...... formate, acetate and H-2/CO2 were 19.58 +/- 0.49, 42.65 +/- 1.17 and 314.64 +/- 3.58 N mL/gVS/d in digested manure system and 6.53 +/- 0.31, 132.04 +/- 3.96 and 640.16 +/- 19.92 N mL/gVS/d in sewage sludge system during second generation incubation. Meanwhile the model could not fit well in granular...... sludge system, while the rate of formate methanation was faster than from H-2/CO2 and acetate. Considering both the kinetic results and microbial assay we could conclude that H-2/CO2 methanation was the fastest methanogenic step in digested manure and sewage sludge system with Methanomicrobiales...

  4. Microbial Community Pathways for the Production of Volatile Fatty Acids From CO2 and Electricity

    Directory of Open Access Journals (Sweden)

    Jorge Wenzel

    2018-04-01

    Full Text Available This study aims at elucidating the metabolic pathways involved in the production of volatile fatty acids from CO2 and electricity. Two bioelectrochemical systems (BES were fed with pure CO2 (cells A and B. The cathode potential was first poised at −574 mV vs. standard hydrogen electrode (SHE and then at −756 mV vs. SHE in order to ensure the required reducing power. Despite applying similar operation conditions to both BES, they responded differently. A mixture of organic compounds (1.87 mM acetic acid, 2.30 mM formic acid, 0.43 mM propionic acid, 0.15 mM butyric acid, 0.55 mM valeric acid, and 0.62 mM ethanol was produced in cell A while mainly 1.82 mM acetic acid and 0.23 mM propionic acid were produced in cell B. The microbial community analysis performed by 16S rRNA gene pyrosequencing showed a predominance of Clostridium sp. and Serratia sp. in cell A whereas Burkholderia sp. and Xanthobacter sp. predominated in cell B. The coexistence of three metabolic pathways involved in carbon fixation was predicted. Calvin cycle was predicted in both cells during the whole experiment while Wood-Ljungdahl and Arnon-Buchanan pathways predominated in the period with higher coulombic efficiency. Metabolic pathways which transform organic acids into anabolic intermediaries were also predicted, indicating the occurrence of complex trophic interactions. These results further complicate the understanding of these mixed culture microbial processes but also expand the expectation of compounds that could potentially be produced with this technology.

  5. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C; Logan, Bruce E

    2014-01-01

    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.

  6. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    KAUST Repository

    Zhu, Xiuping

    2014-03-24

    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.

  7. Application of microbial photosynthesis to energy production and CO2 fixation

    International Nuclear Information System (INIS)

    Asada, Y.; Miyake, J.

    1994-01-01

    This paper presents different applications of microbial photosynthesis for energy production and carbon dioxide fixation. The authors discuss about energetic aspects of photosynthesis and features of biological way for solar energy conversion. (TEC). 4 figs., 12 refs

  8. Biogeochemical controls on microbial CH4 and CO2 production in Arctic polygon tundra

    Science.gov (United States)

    Zheng, J.

    2016-12-01

    Accurately simulating methane (CH4) and carbon dioxide (CO2) emissions from high latitude soils is critically important for reducing uncertainties in soil carbon-climate feedback predictions. The signature polygonal ground of Arctic tundra generates high level of heterogeneity in soil thermal regime, hydrology and oxygen availability, which limits the application of current land surface models with simple moisture response functions. We synthesized CH4 and CO2 production measurements from soil microcosm experiments across a wet-to dry permafrost degradation gradient from low-centered (LCP) to flat-centered (FCP), and high-centered polygons (HCP) to evaluate the relative importance of biogeochemical processes and their response to warming. More degraded polygon (HCP) showed much less carbon loss as CO2 or CH4, while the total CO2 production from FCP is comparable to that from LCP. Maximum CH4 production from the active layer of LCP was nearly 10 times that of permafrost and FCP. Multivariate analyses identifies gravimetric water content and organic carbon content as key predictors for CH4 production, and iron reduction as a key regulator of pH. The synthesized data are used to validate the geochemical model PHREEQC with extended anaerobic organic substrate turnover, fermentation, iron reduction, and methanogenesis reactions. Sensitivity analyses demonstrate that better representations of anaerobic processes and their pH dependency could significantly improve estimates of CH4 and CO2 production. The synthesized data suggest local decreases in CH4 production along the polygon degradation gradient, which is consistent with previous surface flux measurements. Methane oxidation occurring through the soil column of degraded polygons contributes to their low CH4 emissions as well.

  9. NATURAL CO2 FLOW FROM THE LOIHI VENT: IMPACT ON MICROBIAL PRODUCTION AND FATE OF THE CO2

    Energy Technology Data Exchange (ETDEWEB)

    Richard B. Coffin; Thomas J. Boyd; David L. Knies; Kenneth S. Grabowski; John W. Pohlman; Clark S. Mitchell

    2004-02-27

    The program for International Collaboration on CO{sub 2} Ocean Sequestration was initiated December 1997. Preliminary steps involved surveying a suite of biogeochemical parameters off the coast of Kona on the Big Island of Hawaii. The preliminary survey was conducted twice, in 1999 and 2000, to obtain a thorough data set including measurements of pH, current profiles, CO{sub 2} concentrations, microbial activities, and water and sediment chemistries. These data were collected in order to interpret a planned CO{sub 2} injection experiment. After these preliminary surveys were completed, local environment regulation forced moving the project to the coast north east of Bergen, Norway. The preliminary survey along the Norwegian Coast was conducted during 2002. However, Norwegian government revoked a permit, approved by the Norwegian State Pollution Control Authority, for policy reasons regarding the CO{sub 2} injection experiment. As a result the research team decided to monitor the natural CO{sub 2} flow off the southern coast of the Big Island. From December 3rd-13th 2002 scientists from four countries representing the Technical Committee of the International Carbon Dioxide Sequestration Experiment examined the hydrothermal venting at Loihi Seamount (Hawaiian Islands, USA). Work focused on tracing the venting gases, the impacts of the vent fluids on marine organisms, and CO{sub 2} influence on biogeochemical cycles. The cruise on the R/V Ka'imikai-O-Kanaloa (KOK) included 8 dives by the PISCES V submarine, 6 at Loihi and 2 at a nearby site in the lee of the Big Island. Data for this final report is from the last 2 dives on Loihi.

  10. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Science.gov (United States)

    Deppeler, Stacy; Petrou, Katherina; Schulz, Kai G.; Westwood, Karen; Pearce, Imojen; McKinlay, John; Davidson, Andrew

    2018-01-01

    High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments ≥ 953 µatm (days 3-5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the

  11. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Directory of Open Access Journals (Sweden)

    S. Deppeler

    2018-01-01

    Full Text Available High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a and particulate organic matter (POM in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C, causing significant reductions in gross primary production (GPP14C, Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5, yet gross bacterial production (GBP14C remained unchanged and cell-specific bacterial productivity (csBP14C was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative

  12. Use of MgO to mitigate the effect of microbial CO2 production in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Wang, Y.; Brush, L.H.

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP), located in a salt bed in southern New Mexico, is designed by US Department of Energy to demonstrate the safe and permanent disposal of design-basis transuranic waste. WIPP performance assessment requires consideration of radionuclide release in brines in the event of inadvertent human intrusion. The mobility of radionuclides depends on chemical factors such as brine pmH (-log molality of H + ) and CO 2 fugacity. According to current waste inventory estimates, a large quantity (∼ 10 9 moles C) of organic materials will be emplaced in the WIPP. Those organic material will potentially be degraded by halophilic or halotolerant microorganisms in the presence of liquid water in the repository, especially if a large volume of brine is introduced into the repository by human intrusions. Organic material biodegradation will produce a large amount of CO 2 , which will acidify the WIPP brine and thus significantly increase the mobility of actinides. This communication addresses (1) the rate of organic material biodegradation and the quantity of CO 2 to be possibly generated, (2) the effect of microbial CO 2 production on overall WIPP performance, and (3) the mechanism of using MgO to mitigate this effect

  13. Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of methanogenesis in production water of high-temperature oil reservoirs amended with bicarbonate

    Directory of Open Access Journals (Sweden)

    Guang-Chao eYang

    2016-03-01

    Full Text Available CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in Carbon Dioxide Capture and Storage (CDCS facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form (0~90 mM with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs.

  14. Analysis of Microbial Communities in the Oil Reservoir Subjected to CO2-Flooding by Using Functional Genes as Molecular Biomarkers for Microbial CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Jin-Feng eLiu

    2015-03-01

    Full Text Available Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs.

  15. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Science.gov (United States)

    Vincent Jerald. Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  16. Microbial electrochemical separation of CO2 for biogas upgrading

    DEFF Research Database (Denmark)

    Kokkoli, Argyro; Zhang, Yifeng; Angelidaki, Irini

    2018-01-01

    was obtained at 1.2 V, inlet biogas rate of 0.088 mL/h/mL reactor and NaCl concentration of 100 mM at a 5-day operation. Meanwhile, the organic matter of the domestic wastewater in the anode was almost completely removed at the end. The study demonstrated a new sustainable way to simultaneously upgrade biogas......Biogas upgrading to natural gas quality has been under focus the recent years for increasing the utilization potential of biogas. Conventional methods for CO2 removal are expensive and have environmental challenges, such as increased emissions of methane in the atmosphere with serious greenhouse...... impact. In this study, an innovative microbial electrochemical separation cell (MESC) was developed to in-situ separate and regenerate CO2 via alkali and acid regeneration. The MESC was tested under different applied voltages, inlet biogas rates and electrolyte concentrations. Pure biomethane...

  17. Global CO2 emissions from cement production

    Science.gov (United States)

    Andrew, Robbie M.

    2018-01-01

    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.

  18. Microbial electrochemical separation of CO2 for biogas upgrading.

    Science.gov (United States)

    Kokkoli, Argyro; Zhang, Yifeng; Angelidaki, Irini

    2018-01-01

    Biogas upgrading to natural gas quality has been under focus the recent years for increasing the utilization potential of biogas. Conventional methods for CO 2 removal are expensive and have environmental challenges, such as increased emissions of methane in the atmosphere with serious greenhouse impact. In this study, an innovative microbial electrochemical separation cell (MESC) was developed to in-situ separate and regenerate CO 2 via alkali and acid regeneration. The MESC was tested under different applied voltages, inlet biogas rates and electrolyte concentrations. Pure biomethane was obtained at 1.2V, inlet biogas rate of 0.088mL/h/mL reactor and NaCl concentration of 100mM at a 5-day operation. Meanwhile, the organic matter of the domestic wastewater in the anode was almost completely removed at the end. The study demonstrated a new sustainable way to simultaneously upgrade biogas and treat wastewater which can be used as proof of concept for further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Microbial Electrolytic Capture, Separation and Regeneration of CO2 for Biogas Upgrading.

    Science.gov (United States)

    Jin, Xiangdan; Zhang, Yifeng; Li, Xiaohu; Zhao, Nannan; Angelidaki, Irini

    2017-08-15

    Biogas upgrading to natural gas quality is essential for the efficient use of biogas in various applications. Carbon dioxide (CO 2 ) which constitutes a major part of the biogas is generally removed by physicochemical methods. However, most of the methods are expensive and often present environmental challenges. In this study, an innovative microbial electrolytic system was developed to capture, separate and regenerate CO 2 for biogas upgrading without external supply of chemicals, and potentially to treat wastewater. The new system was operated at varied biogas flow rates and external applied voltages. CO 2 was effectively separated from the raw biogas and the CH 4 content in the outlet reached as high as 97.0 ± 0.2% at the external voltage of 1.2 V and gas flow rate of 19.6 mL/h. Regeneration of CO 2 was also achieved in the regeneration chamber with low pH (1.34 ± 0.04). The relatively low electric energy consumption (≤0.15 kWh/m 3 biogas) along with the H 2 production which can contribute to the energy input makes the overall energy need of the system low, and thereby makes the technology promising. This work provides the first attempt for development of a sustainable biogas upgrading technology and potentially expands the application of microbial electrochemical technologies.

  20. Impact of CO_2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO_2 Leakage

    International Nuclear Information System (INIS)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    2016-01-01

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO_2) emissions to the atmosphere. During this process, CO_2 is injected as super critical carbon dioxide (SC-CO_2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO_2 in subsurface geologic formations could unintentionally lead to CO_2 leakage into overlying freshwater aquifers. Introduction of CO_2 into these subsurface environments will greatly increase the CO_2 concentration and will create CO_2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO_2 gradients will impact these communities. The overarching goal of this project is to understand how CO_2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO_2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO_2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO_2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO_2 injection/leakage plume where CO_2 concentrations are highest. At CO_2 exposures expected downgradient from the CO_2 plume, selected microorganisms emerged as dominant in the CO_2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site

  1. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    Science.gov (United States)

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  2. Thermodynamic and kinetic response of microbial reactions to high CO2

    Directory of Open Access Journals (Sweden)

    Qusheng Jin

    2016-11-01

    Full Text Available Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  3. Responses of soil microbial activity to cadmium pollution and elevated CO2.

    Science.gov (United States)

    Chen, Yi Ping; Liu, Qiang; Liu, Yong Jun; Jia, Feng An; He, Xin Hua

    2014-03-06

    To address the combined effects of cadmium (Cd) and elevated CO2 on soil microbial communities, DGGE (denaturing gradient gel electrophoresis) profiles, respiration, carbon (C) and nitrogen (N) concentrations, loessial soils were exposed to four levels of Cd, i.e., 0 (Cd0), 1.5 (Cd1.5), 3.0 (Cd3.0) and 6.0 (Cd6.0) mg Cd kg(-1) soil, and two levels of CO2, i.e., 360 (aCO2) and 480 (eCO2) ppm. Compared to Cd0, Cd1.5 increased fungal abundance but decreased bacterial abundance under both CO2 levels, whilst Cd3.0 and Cd6.0 decreased both fungal and bacterial abundance. Profiles of DGGE revealed alteration of soil microbial communities under eCO2. Soil respiration decreased with Cd concentrations and was greater under eCO2 than under aCO2. Soil total C and N were greater under higher Cd. These results suggest eCO2 could stimulate, while Cd pollution could restrain microbial reproduction and C decomposition with the restraint effect alleviated by eCO2.

  4. Determination of microbial versus root-produced CO2 in an agricultural ecosystem by means of δ13CO2 measurements in soil air

    NARCIS (Netherlands)

    Schüßler, Wolfram; Neubert, Rolf; Levin, Ingeborg; Fischer, Natalie; Sonntag, Christian

    2000-01-01

    The amounts of microbial and root-respired CO2 in a maize/winter wheat agricultural system in south western Germany were investigated by measurements of the CO2 mixing ratio and the 13C/12C ratio in soil air. CO2 fluxes at the soil surface for the period of investigation (1993–1995) were also

  5. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    Science.gov (United States)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the

  6. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because ...

  7. Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    Science.gov (United States)

    Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin

    2011-01-01

    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722

  8. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumyeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates and enzymes activity) rather than total microbial biomass

  9. Extreme CO2 disturbance and the resilience of soil microbial communities

    Science.gov (United States)

    McFarland, Jack W.; Waldrop, Mark P.; Haw, Monica

    2013-01-01

    Carbon capture and storage (CSS) technology has the potential to inadvertently release large quantities of CO2 through geologic substrates and into surrounding soils and ecosystems. Such a disturbance has the potential to not only alter the structure and function of plant and animal communities, but also soils, soil microbial communities, and the biogeochemical processes they mediate. At Mammoth Mountain, we assessed the soil microbial community response to CO2 disturbance (derived from volcanic ‘cold’ CO2) that resulted in localized tree kill; soil CO2 concentrations in our study area ranged from 0.6% to 60%. Our objectives were to examine how microbial communities and their activities are restructured by extreme CO2 disturbance, and assess the response of major microbial taxa to the reintroduction of limited plant communities following an extensive period (15–20 years) with no plants. We found that CO2-induced tree kill reduced soil carbon (C) availability along our sampling transect. In response, soil microbial biomass decreased by an order of magnitude from healthy forest to impacted areas. Soil microorganisms were most sensitive to changes in soil organic C, which explained almost 60% of the variation for microbial biomass C (MBC) along the CO2gradient. We employed phospholipid fatty acid analysis and quantitative PCR (qPCR) to determine compositional changes among microbial communities in affected areas and found substantial reductions in microbial biomass linked to the loss of soil fungi. In contrast, archaeal populations responded positively to the CO2 disturbance, presumably due to reduced competition of bacteria and fungi, and perhaps unique adaptations to energy stress. Enzyme activities important in the cycling of soil C, nitrogen (N), and phosphorus (P) declined with increasing CO2, though specific activities (per unit MBC) remained stable or increased suggesting functional redundancy among restructured communities. We conclude that both the

  10. Effect of elevated CO2 on chlorpyriphos degradation and soil microbial activities in tropical rice soil.

    Science.gov (United States)

    Adak, Totan; Munda, Sushmita; Kumar, Upendra; Berliner, J; Pokhare, Somnath S; Jambhulkar, N N; Jena, M

    2016-02-01

    Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities.

  11. Toward solar biodiesel production from CO2 using engineered cyanobacteria.

    Science.gov (United States)

    Woo, Han Min; Lee, Hyun Jeong

    2017-05-01

    Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to various biochemicals including fatty acid-derived biodiesel. Recently, Synechococcus elongatus PCC 7942, a model cyanobacterium, has been engineered to convert CO2 to fatty acid ethyl esters (FAEEs) as biodiesel. Modular pathway has been constructed for FAEE production. Several metabolic engineering strategies were discussed to improve the production levels of FAEEs, including host engineering by improving CO2 fixation rate and photosynthetic efficiency. In addition, protein engineering of key enzyme in S. elongatus PCC 7942 was implemented to address issues on FAEE secretions toward sustainable FAEE production from CO2. Finally, advanced metabolic engineering will promote developing biosolar cell factories to convert CO2 to feasible amount of FAEEs toward solar biodiesel. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. CO2 balance in production of energy based on biogas

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Holm-Nielsen, J.B.

    1997-01-01

    Biogas is an essential biomass source for achieving a reduction of CO2 emission by 50% in year 2030 in Denmark. The physical potential for biogas production in Denmark is more than 10 times the present biogas production in Denmark. In Denmark the largest part of the biogas production is produced...... of increased transportation distances at large biogas plants on the total CO2 balance of the biogas plant. The advantage of constructing large biogas plants is the cost-effective possibility of using industrial organic waste to increase biogas production. In some cases co-fermentation increases biogas...... production up 100%. The present study evaluate optimal transportation strategies for biogas plants taking CO2 balances into account....

  13. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because ......2-induced geochemical changes promoted anaerobic and acidophilic organisms and altered carbon turnover in affected soils.......Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because...... the pore gas phase was largely hypoxic. Compared with a reference soil, the mofette was more acidic (ΔpH ~0.8), strongly enriched in organic carbon (up to 10 times), and exhibited lower prokaryotic diversity. It was dominated by methanogens and subdivision 1 Acidobacteria, which likely thrived under stable...

  14. Temperature dependence of bioelectrochemical CO2 conversion and methane production with a mixed-culture biocathode.

    Science.gov (United States)

    Yang, Hou-Yun; Bao, Bai-Ling; Liu, Jing; Qin, Yuan; Wang, Yi-Ran; Su, Kui-Zu; Han, Jun-Cheng; Mu, Yang

    2018-02-01

    This study evaluated the effect of temperature on methane production by CO 2 reduction during microbial electrosynthesis (MES) with a mixed-culture biocathode. Reactor performance, in terms of the amount and rate of methane production, current density, and coulombic efficiency, was compared at different temperatures. The microbial properties of the biocathode at each temperature were also analyzed by 16S rRNA gene sequencing. The results showed that the optimum temperature for methane production from CO 2 reduction in MES with a mixed-culture cathode was 50°C, with the highest amount and rate of methane production of 2.06±0.13mmol and 0.094±0.01mmolh -1 , respectively. In the mixed-culture biocathode MES, the coulombic efficiency of methane formation was within a range of 19.15±2.31% to 73.94±2.18% due to by-product formation at the cathode, including volatile fatty acids and hydrogen. Microbial analysis demonstrated that temperature had an impact on the diversity of microbial communities in the biofilm that formed on the MES cathode. Specifically, the hydrogenotrophic methanogen Methanobacterium became the predominant archaea for methane production from CO 2 reduction, while the abundance of the aceticlastic methanogen Methanosaeta decreased with increased temperature. Copyright © 2017. Published by Elsevier B.V.

  15. Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites.

    Science.gov (United States)

    Ham, Baknoon; Choi, Byoung-Young; Chae, Gi-Tak; Kirk, Matthew F; Kwon, Man Jae

    2017-01-01

    Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO 2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO 2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO 2 levels (sample groups I and II) and one control site with low CO 2 content (group III). Samples from sites with elevated CO 2 had pH ranging from 6.2 to 4.5 and samples from the low-CO 2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO 2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae , and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO 2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking CO 2

  16. Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites

    Directory of Open Access Journals (Sweden)

    Baknoon Ham

    2017-11-01

    Full Text Available Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO2 levels (sample groups I and II and one control site with low CO2 content (group III. Samples from sites with elevated CO2 had pH ranging from 6.2 to 4.5 and samples from the low-CO2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae, and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking

  17. Characterizing Microbial Diversity and Function in Natural Subsurface CO2 Reservoir Systems for Applied Use in Geologic Carbon Sequestration Environments

    Science.gov (United States)

    Freedman, A.; Thompson, J. R.

    2013-12-01

    The injection of CO2 into geological formations at quantities necessary to significantly reduce CO2 emissions will represent an environmental perturbation on a continental scale. The extent to which biological processes may play a role in the fate and transport of CO2 injected into geological formations has remained an open question due to the fact that at temperatures and pressures associated with reservoirs targeted for sequestration CO2 exists as a supercritical fluid (scCO2), which has generally been regarded as a sterilizing agent. Natural subsurface accumulations of CO2 serve as an excellent analogue for studying the long-term effects, implications and benefits of CO2 capture and storage (CCS). While several geologic formations bearing significant volumes of nearly pure scCO2 phases have been identified in the western United States, no study has attempted to characterize the microbial community present in these systems. Because the CO2 in the region is thought to have first accumulated millions of years ago, it is reasonable to assume that native microbial populations have undergone extensive and unique physiological and behavioral adaptations to adjust to the exceedingly high scCO2 content. Our study focuses on the microbial communities associated with the dolomite limestone McElmo Dome scCO2 Field in the Colorado Plateau region, approximately 1,000 m below the surface. Fluid samples were collected from 10 wells at an industrial CO2 production facility outside Cortez, CO. Subsamples preserved on site in 3.7% formaldehyde were treated in the lab with Syto 9 green-fluorescent nucleic acid stain, revealing 3.2E6 to 1.4E8 microbial cells per liter of produced fluid and 8.0E9 cells per liter of local pond water used in well drilling fluids. Extracted DNAs from sterivex 0.22 um filters containing 20 L of sample biomass were used as templates for PCR targeting the 16S rRNA gene. 16S rRNA amplicons from these samples were cloned, sequenced and subjected to microbial

  18. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    Science.gov (United States)

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.

  19. Monitoring of the microbial community composition of the saline aquifers during CO2 storage by fluorescence in situ hybridisation

    OpenAIRE

    Daria Morozova; M. Wandrey; Mashal Alawi; Martin Zimmer; Andrea Vieth-Hillebrand [Vieth; M. Zettlitzer; Hilke Würdemann

    2010-01-01

    This study reveals the first analyses of the composition and activity of the microbial community of a saline CO2 storage aquifer. Microbial monitoring during CO2 injection has been reported. By using fluorescence in situ hybridisation (FISH), we have shown that the microbial community was strongly influenced by the CO2 injection. Before CO2 arrival, up to 6 × 106 cells ml−1 were detected by DAPI staining at a depth of 647 m below the surface. The microbial community was dominated by the dom...

  20. The CO2-tax and its ability to reduce CO2 emissions related to oil and gas production in Norway

    International Nuclear Information System (INIS)

    Roemo, F.; Lund, M.W.

    1994-01-01

    The primary ambition of the paper is to illustrate some relevant effects of the CO 2 -tax, and draw the line from company adaptation via national ambitions and goals to global emission consequences. The CO 2 -tax is a success for oil and gas production only to the extent that the CO 2 emission per produced unit oil/gas is reduced as a consequence of the tax. If not, the CO 2 -tax is a pure fiscal tax and has no qualitative impact on the CO 2 emissions. The reduction potential is then isolated to the fact that some marginal fields will not be developed, and the accelerated close down of fields in production. The paper indicates that a significant replacement of older gas turbines at a certain level of the CO 2 -tax could be profitable for the companies. This is dependent on change in turbine energy utilization, and the investment cost. The CO 2 -tax is a political success for the nation if it is a significant contributor to achieve national emission goals. Furthermore, is the CO 2 -tax an environmental success only to the extent it contributes to reductions in the CO 2 emissions globally. The paper indicates that there are possibilities for major suboptimal adaptations in connection with national CO 2 -taxation of the oil and gas production. 13 refs., 6 figs

  1. Microbial electrolytic capture, separation and regeneration of CO2 for biogas upgrading

    DEFF Research Database (Denmark)

    Jin, Xiangdan; Zhang, Yifeng; Li, Xiaohu

    2017-01-01

    challenges. In this study, an innovative microbial electrolytic system was developed to capture, separate and regenerate CO2 for biogas upgrading without external supply of chemicals, and potentially to treat wastewater. The new system was operated at varied biogas flow rates and external applied voltages....... CO2 was effectively separated from the raw biogas and the CH4 content in the outlet reached as high as 97.0±0.2% at the external voltage of 1.2 V and gas flow rate of 19.6 mL/h. Regeneration of CO2 was also achieved in the regeneration chamber with low pH (1.34±0.04). The relatively low electric...... and potentially expands the application of microbial electrochemical technologies....

  2. Emission of CO2 from energy crop production

    International Nuclear Information System (INIS)

    Turhollow, A.F.

    1991-01-01

    The production of cellulosic energy crops (e.g., short rotation woody crops and herbaceous crops) make a net contribution of CO 2 to the atmosphere to the extent that fossil-fuel based inputs are used in their production. The CO 2 released from the use of the biomass is merely CO 2 that has recently been removed from the atmosphere by the plant growth process. Fossil inputs used in the production of energy corps include energy invested in fertilizers and pesticides, and petroleum fuels used for machinery operation such as site preparation, weed control, harvesting, and hauling. Fossil inputs used come from petroleum, natural gas, and electricity derived from fossil sources. No fossil inputs for the capital used to produce fertilizers, pesticides, or machinery is calculated in this analysis. In this paper calculations are made for the short rotation woody crop hybrid poplar (Populus spp.), the annual herbaceous crop sorghum (Sorghum biocolor [L.] Moench), and the perennial herbaceous crop switchgrass (Panicum virgatum L.). For comparison purposes, emissions of CO 2 from corn (Zea mays L.) are calculated

  3. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette

    Science.gov (United States)

    Beulig, Felix; Heuer, Verena B.; Akob, Denise M.; Viehweger, Bernhard; Elvert, Marcus; Herrmann, Martina; Hinrichs, Kai-Uwe; Küsel, Kirsten

    2015-01-01

    Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because the pore gas phase was largely hypoxic. Compared with a reference soil, the mofette was more acidic (ΔpH ~0.8), strongly enriched in organic carbon (up to 10 times), and exhibited lower prokaryotic diversity. It was dominated by methanogens and subdivision 1Acidobacteria, which likely thrived under stable hypoxia and acidic pH. Anoxic incubations revealed enhanced formation of acetate and methane (CH4) from hydrogen (H2) and CO2 consistent with elevated CH4 and acetate levels in the mofette soil. 13CO2 mofette soil incubations showed high label incorporations with ~512 ng13C g (dry weight (dw)) soil−1 d−1 into the bulk soil and up to 10.7 ng 13C g (dw) soil−1 d−1 into almost all analyzed bacterial lipids. Incorporation of CO2-derived carbon into archaeal lipids was much lower and restricted to the first 10 cm of the soil. DNA-SIP analysis revealed that acidophilic methanogens affiliated withMethanoregulaceae and hitherto unknown acetogens appeared to be involved in the chemolithoautotrophic utilization of 13CO2. Subdivision 1 Acidobacteriaceae assimilated 13CO2 likely via anaplerotic reactions because Acidobacteriaceae are not known to harbor enzymatic pathways for autotrophic CO2 assimilation. We conclude that CO2-induced geochemical changes promoted anaerobic and acidophilic organisms and altered carbon turnover in affected soils.

  4. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette.

    Science.gov (United States)

    Beulig, Felix; Heuer, Verena B; Akob, Denise M; Viehweger, Bernhard; Elvert, Marcus; Herrmann, Martina; Hinrichs, Kai-Uwe; Küsel, Kirsten

    2015-03-01

    Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because the pore gas phase was largely hypoxic. Compared with a reference soil, the mofette was more acidic (ΔpH ∼0.8), strongly enriched in organic carbon (up to 10 times), and exhibited lower prokaryotic diversity. It was dominated by methanogens and subdivision 1 Acidobacteria, which likely thrived under stable hypoxia and acidic pH. Anoxic incubations revealed enhanced formation of acetate and methane (CH4) from hydrogen (H2) and CO2 consistent with elevated CH4 and acetate levels in the mofette soil. (13)CO2 mofette soil incubations showed high label incorporations with ∼512 ng (13)C g (dry weight (dw)) soil(-1) d(-1) into the bulk soil and up to 10.7 ng (13)C g (dw) soil(-1) d(-1) into almost all analyzed bacterial lipids. Incorporation of CO2-derived carbon into archaeal lipids was much lower and restricted to the first 10 cm of the soil. DNA-SIP analysis revealed that acidophilic methanogens affiliated with Methanoregulaceae and hitherto unknown acetogens appeared to be involved in the chemolithoautotrophic utilization of (13)CO2. Subdivision 1 Acidobacteriaceae assimilated (13)CO2 likely via anaplerotic reactions because Acidobacteriaceae are not known to harbor enzymatic pathways for autotrophic CO2 assimilation. We conclude that CO2-induced geochemical changes promoted anaerobic and acidophilic organisms and altered carbon turnover in affected soils.

  5. Deep microbial life in the Altmark natural gas reservoir: baseline characterization prior CO2 injection

    Science.gov (United States)

    Morozova, Daria; Shaheed, Mina; Vieth, Andrea; Krüger, Martin; Kock, Dagmar; Würdemann, Hilke

    2010-05-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of about 3500m, is characterised by high salinity fluid and temperatures up to 127° C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery) the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results of the baseline survey indicate the presence of microorganisms similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that

  6. Rain-induced changes in soil CO2 flux and microbial community composition in a tropical forest of China.

    Science.gov (United States)

    Deng, Qi; Hui, Dafeng; Chu, Guowei; Han, Xi; Zhang, Quanfa

    2017-07-17

    Rain-induced soil CO 2 pulse, a rapid excitation in soil CO 2 flux after rain, is ubiquitously observed in terrestrial ecosystems, yet the underlying mechanisms in tropical forests are still not clear. We conducted a rain simulation experiment to quantify rain-induced changes in soil CO 2 flux and microbial community composition in a tropical forest. Soil CO 2 flux rapidly increased by ~83% after rains, accompanied by increases in both bacterial (~51%) and fungal (~58%) Phospholipid Fatty Acids (PLFA) biomass. However, soil CO 2 flux and microbial community in the plots without litters showed limited response to rains. Direct releases of CO 2 from litter layer only accounted for ~19% increases in soil CO 2 flux, suggesting that the leaching of dissolved organic carbon (DOC) from litter layer to the topsoil is the major cause of rain-induced soil CO 2 pulse. In addition, rain-induced changes in soil CO 2 flux and microbial PLFA biomass decreased with increasing rain sizes, but they were positively correlated with litter-leached DOC concentration rather than total DOC flux. Our findings reveal an important role of litter-leached DOC input in regulating rain-induced soil CO 2 pulses and microbial community composition, and may have significant implications for CO 2 losses from tropical forest soils under future rainfall changes.

  7. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils

    Science.gov (United States)

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui

    2016-01-01

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management. PMID:26795428

  8. Engineering cyanobacteria for direct biofuel production from CO2.

    Science.gov (United States)

    Savakis, Philipp; Hellingwerf, Klaas J

    2015-06-01

    For a sustainable future of our society it is essential to close the global carbon cycle. Oxidised forms of carbon, in particular CO2, can be used to synthesise energy-rich organic molecules. Engineered cyanobacteria have attracted attention as catalysts for the direct conversion of CO2 into reduced fuel compounds. Proof of principle for this approach has been provided for a vast range of commodity chemicals, mostly energy carriers, such as short chain and medium chain alcohols. More recently, research has focused on the photosynthetic production of compounds with higher added value, most notably terpenoids. Below we review the recent developments that have improved the state-of-the-art of this approach and speculate on future developments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak.

    Science.gov (United States)

    Morales, Sergio E; Holben, William E

    2013-01-01

    Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2) emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface and near-surface soils. Using a simulated subsurface CO2 storage leak scenario, we demonstrate how CO2 flow upward through the soil column altered both the abundance (DNA) and activity (mRNA) of microbial functional groups mediating carbon and nitrogen transformations. These microbial responses were found to be seasonally dependent and correlated to shifts in atmospheric conditions. While both DNA and mRNA levels were affected by elevated CO2, they did not react equally, suggesting two separate mechanisms for soil microbial community response to high CO2 levels. The results did not always agree with previous studies on elevated atmospheric (rather than subsurface) CO2 using FACE (Free-Air CO2 Enrichment) systems, suggesting that microbial community response to CO2 seepage from the subsurface might differ from its response to atmospheric CO2 increases.

  10. Catalytic conversion of CO2 into valuable products

    International Nuclear Information System (INIS)

    Pham-Huu, C.; Ledoux, M.J.

    2008-01-01

    Complete text of publication follows: Synthesis gas, a mixture of H 2 and CO, is an important feed-stock for several chemical processes operated in the production of methanol and synthetic fuels through a Fischer- Tropsch synthesis. Synthesis gas is produced via an endothermic steam reforming of methane (CH 4 + H 2 O → CO + 3H 2 , ΔH = +225.4 kJ.mol -1 ), catalytic or direct partial oxidation of methane (CH 4 + (1/2)O 2 → CO + 2H 2 , ΔH -38 kJ.mol -1 ) and CO 2 reforming of methane (CH 4 + CO 2 → 2CO + 2H 2 , ΔH= +247 kJ.mol -1 ). The main disadvantage of these processes is the high coke formation, essentially in the nano-filament form, which may cause severe deactivation of the catalyst by pore or active site blocking and sometimes, physical disintegration of the catalyst body causing a high pressure drop along the catalyst bed and even, in some cases, inducing damage to the reactor itself. Previous results obtained in the catalytic partial oxidation of methane have shown that due to the hot spot and carbon nano-filaments formation, especially in the case of the CO 2 reforming, the alumina-based catalyst in an extrudate form was broken into powder which induces a significant pressure drop across the catalytic bed. In the case of endothermic reactions, steam and CO 2 reforming, the temperature drop within the catalyst bed could also modified the activity of the catalyst. Silicon carbide (SiC) exhibits a high thermal conductivity, a high resistance towards oxidation, a high mechanical strength, and chemical inertness, all of which make it a good candidate for use as catalyst support in several endothermic and exothermic reactions such as dehydrogenation, selective partial oxidation, and Fischer-Tropsch synthesis. The gas-solid reaction allows the preparation of SiC with medium surface area, i.e. 10 to 40 m 2 .g -1 , and controlled macroscopic shape, i.e. grains, extrudates or foam, for it subsequence use as catalyst support. In addition, due to its chemical

  11. Possible use of Fe/CO2 fuel cells for CO2 mitigation plus H2 and electricity production

    International Nuclear Information System (INIS)

    Rau, Greg H.

    2004-01-01

    The continuous oxidation of scrap iron in the presence of a constant CO 2 -rich waste gas stream and water is evaluated as a means of sequestering anthropogenic CO 2 as well as generating hydrogen gas and electricity. The stoichiometry of the net reaction, Fe 0 + CO 2 + H 2 O → FeCO 3 + H 2 , and assumptions about reaction rates, reactant and product prices/values and overhead costs suggest that CO 2 might be mitigated at a net profit in excess of $30/tonne CO 2 . The principle profit center of the process would be hydrogen production, alone providing a gross income of >$160/tonne CO 2 reacted. However, the realization of such fuel cell economics depends on a number of parameters including: (1) the rate at which the reaction can be sustained, (2) the areal and volumetric density with which H 2 and electricity can be produced, (3) the purity of the H 2 produced, (4) the transportation costs of the reactants (Fe, CO 2 and H 2 O) and products (FeCO 3 or Fe(HCO 3 ) 2 ) to/from the cells and (5) the cost/benefit trade-offs of optimizing the preceding variables in a given market and regulatory environment. Because of the carbon intensity of conventional iron metal production, a net carbon sequestration benefit for the process can be realized only when waste (rather than new) iron and steel are used as electrodes and/or when Fe(HCO 3 ) 2 is the end product. The used electrolyte could also provide a free source of Fe 2+ ions for enhancing iron-limited marine photosynthesis and, thus, greatly increasing the CO 2 sequestration potential of the process. Alternatively, the reaction of naturally occurring iron oxides (iron ore) with CO 2 can be considered for FeCO 3 formation and sequestration, but this foregoes the benefits of hydrogen and electricity production. Use of Fe/CO 2 fuel cells would appear to be particularly relevant for fossil fuel gasification/steam reforming systems given the highly concentrated CO 2 they generate and given the existing infrastructure they

  12. Microalgal CO2 sequestering – Modeling microalgae production costs

    International Nuclear Information System (INIS)

    Bilanovic, Dragoljub; Holland, Mark; Armon, Robert

    2012-01-01

    Highlights: ► Microalgae production costs were modeled as a function of specific expenses. ► The effects of uncontrollable expenses/factors were incorporated into the model. ► Modeled microalgae production costs were in the range $102–1503 t −1 ha −1 y −1 . - Abstract: Microalgae CO 2 sequestering facilities might become an industrial reality if microalgae biomass could be produced at cost below $500.00 t −1 . We develop a model for estimation of total production costs of microalgae as a function of known production-specific expenses, and incorporate into the model the effects of uncontrollable factors which affect known production-specific expenses. Random fluctuations were intentionally incorporated into the model, consequently into generated cost/technology scenarios, because each and every logically interconnected equipment/operation that is used in design/construction/operation/maintenance of a production process is inevitably subject to random cost/price fluctuations which can neither be eliminated nor a priori controlled. A total of 152 costs/technology scenarios were evaluated to find 44 scenarios in which predicted total production costs of microalgae (PTPCM) was in the range $200–500 t −1 ha −1 y −1 . An additional 24 scenarios were found with PTCPM in the range of $102–200 t −1 ha −1 y −1 . These findings suggest that microalgae CO 2 sequestering and the production of commercial compounds from microalgal biomass can be economically viable venture even today when microalgae production technology is still far from its optimum.

  13. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem.

    Science.gov (United States)

    Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2015-03-20

    Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0-5 cm and 5-15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems.

  14. Divergent Responses of Forest Soil Microbial Communities under Elevated CO2 in Different Depths of Upper Soil Layers.

    Science.gov (United States)

    Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye

    2018-01-01

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial

  15. Soil microbial metabolic quotient (qCO2) of twelve ecosystems of Mt. Kilimanjaro

    Science.gov (United States)

    Pabst, Holger; Gerschlauer, Friederike; Kiese, Ralf; Kuzyakov, Yakov

    2014-05-01

    Soil organic carbon, microbial biomass carbon (MBC) and the metabolic quotient qCO2 - as sensitive and important parameters for soil fertility and C turnover - are strongly affected by land-use changes all over the world. These effects are particularly distinct upon conversion of natural to agricultural ecosystems due to very fast carbon (C) and nutrient cycles and high vulnerability, especially in the tropics. In this study, we used an elevational gradient on Mt. Kilimanjaro to investigate the effects of land-use change and elevation on Corg, MBC and qCO2. Down to a soil depth of 18 cm we compared 4 natural (Helichrysum, Erica forest, Podocarpus forest, Ocotea forest), 5 seminatural (disturbed Podocarpus forest, disturbed Ocotea forest, lower montane forest, grassland, savannah), 1 sustainably used (homegarden) and 2 intensively used ecosystems (coffee plantation, maize field) on an elevation gradient from 950 to 3880 m a.s.l.. Using an incubation device, soil CO2-efflux of 18 cm deep soil cores was measured under field moist conditions and mean annual temperature. MBC to Corg ratios varied between 0.7 and 2.3%. qCO2 increased with magnitude of the disturbance, albeit this effect decreased with elevation. Following the annual precipitation of the ecosystems, both, Corg and MBC showed a hum-shaped distribution with elevation, whereas their maxima were between 2500 and 3000 m a.s.l.. Additionaly, Corg and MBC contents were significantly reduced in intensively used agricultural systems. We conclude that the soil microbial biomass and its activity in Mt. Kilimanjaro ecosystems are strongly altered by land-use. This effect is more distinct in lower than in higher elevated ecosystems and strongly dependent on the magnitude of disturbance.

  16. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem.

    Science.gov (United States)

    He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2014-03-01

    The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems.

  17. Liberation of microbial substrates from macromolecular organic matter by non-supercritical CO2

    Science.gov (United States)

    Sauer, P.; Glombitza, C.; Kallmeyer, J.

    2012-12-01

    The worldwide search for suitable underground storage formations for CO2 also considers coal-bearing strata. CO2 is already injected into coal seams for enhanced recovery of coal bed methane. However, the geochemical and microbiological effects of increased CO2 concentrations on organic matter rich formations are rarely investigated. The injected CO2 will dissolve in the pore water, causing a decrease in pH and resulting in acidic formation waters. Low molecular weight organic acids (LMWOAs) are chemically bound to the macromolecular matrix of sedimentary organic matter and may be liberated by hydrolysis, which is enhanced under acidic conditions. Recent investigations outlined the importance of LMWOAs as a feedstock for subsurface microbial life [1]. Therefore, injection of CO2 into coal formations may result in enhanced nutrient supply for subsurface microbes. To investigate the effects of highly CO2-saturated waters on the release of LMWOAs from coal, we developed an inexpensive high-pressure-high-temperature system that allows manipulating the concentration of dissolved gases up to 60 MPa and 120°C, respectively. The sample is placed in a flexible, gas-tight and inert PVDF sleeve, separating it from the pressure fluid and allowing for subsampling without loss of pressure. Lignite samples from the DEBITS-1 well, Waikato Basin, NZ and the Welzow-Süd open-cast mine, Niederlausitz, Germany, were extracted at 90° C and 5 MPa, with either pure water, CO2-saturated water, CO2/NO2 or CO2/SO2-saturated water. Subsamples were taken at different time points during the 72 hrs. long extraction. Extraction of LMWOAs from coal samples with our pressurised system resulted in yields that were up to four times higher than those reported for Soxhlet extraction [2]. These higher yields may be explained by the fact that during Soxhlet extraction the sample only gets into contact with freshly distilled water, whereas in our system the extraction fluid is circulated, resulting in

  18. Bringing High-Rate, CO2-Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions.

    Science.gov (United States)

    Jourdin, Ludovic; Freguia, Stefano; Flexer, Victoria; Keller, Jurg

    2016-02-16

    The enhancement of microbial electrosynthesis (MES) of acetate from CO2 to performance levels that could potentially support practical implementations of the technology must go through the optimization of key design and operating conditions. We report that higher proton availability drastically increases the acetate production rate, with pH 5.2 found to be optimal, which will likely suppress methanogenic activity without inhibitor addition. Applied cathode potential as low as -1.1 V versus SHE still achieved 99% of electron recovery in the form of acetate at a current density of around -200 A m(-2). These current densities are leading to an exceptional acetate production rate of up to 1330 g m(-2) day(-1) at pH 6.7. Using highly open macroporous reticulated vitreous carbon electrodes with macropore sizes of about 0.6 mm in diameter was found to be optimal for achieving a good balance between total surface area available for biofilm formation and effective mass transfer between the bulk liquid and the electrode and biofilm surface. Furthermore, we also successfully demonstrated the use of a synthetic biogas mixture as carbon dioxide source, yielding similarly high MES performance as pure CO2. This would allow this process to be used effectively for both biogas quality improvement and conversion of the available CO2 to acetate.

  19. Syngas Production from CO2 Reforming and CO2-steam Reforming of Methane over Ni/Ce-SBA-15 Catalyst

    Science.gov (United States)

    Tan, J. S.; Danh, H. T.; Singh, S.; Truong, Q. D.; Setiabudi, H. D.; Vo, D.-V. N.

    2017-06-01

    This study compares the catalytic performance of mesoporous 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane reactions in syngas production. The catalytic performance of 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane was evaluated in a temperature-controlled tubular fixed-bed reactor at stoichiometric feed composition, 1023 K and atmospheric pressure for 12 h on-stream with gas hourly space velocity (GHSV) of 36 L gcat -1 h-1. The 10 Ni/Ce-SBA-15 catalyst possessed a high specific BET surface area and average pore volume of 595.04 m2 g-1. The XRD measurement revealed the presence of NiO phase with crystallite dimension of about 13.60 nm whilst H2-TPR result indicates that NiO phase was completely reduced to metallic Ni0 phase at temperature beyond 800 K and the reduction temperature relied on different degrees of metal-support interaction associated with the location and size of NiO particles. The catalytic reactivity was significantly enhanced with increasing H2O/CO2 feed ratio. Interestingly, the H2/CO ratio for CO2-steam reforming of methane varied between 1 and 3 indicated the occurrence of parallel reactions, i.e., CH4 steam reforming giving a H2/CO of 3 whilst reverse water-gas shift (RWGS) reaction consuming H2 to produce CO gaseous product.

  20. Engineering cyanobacteria for direct biofuel production from CO2

    NARCIS (Netherlands)

    Savakis, P.; Hellingwerf, K.J.

    2015-01-01

    For a sustainable future of our society it is essential to close the global carbon cycle. Oxidised forms of carbon, in particular CO2, can be used to synthesise energy-rich organic molecules. Engineered cyanobacteria have attracted attention as catalysts for the direct conversion of CO2 into reduced

  1. Elevated Atmospheric CO2 and Drought Affect Soil Microbial Community and Functional Diversity Associated with Glycine max

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2017-12-01

    Full Text Available Abstract Under the background of climate change, the increase of atmospheric CO2 and drought frequency have been considered as significant influencers on the soil microbial communities and the yield and quality of crop. In this study, impacts of increased ambient CO2 and drought on soil microbial structure and functional diversity of a Stagnic Anthrosol were investigated in phytotron growth chambers, by testing two representative CO2 levels, three soil moisture levels, and two soil cover types (with or without Glycine max. The 16S rDNA and 18S rDNA fragments were amplified to analyze the functional diversity of fungi and bacteria. Results showed that rhizosphere microbial biomass and community structure were significantly affected by drought, but effects differed between fungi and bacteria. Drought adaptation of fungi was found to be easier than that of bacteria. The diversity of fungi was less affected by drought than that of bacteria, evidenced by their higher diversity. Severe drought reduced soil microbial functional diversity and restrained the metabolic activity. Elevated CO2 alone, in the absence of crops (bare soil, did not enhance the metabolic activity of soil microorganisms. Generally, due to the co-functioning of plant and soil microorganisms in water and nutrient use, plants have major impacts on the soil microbial community, leading to atmospheric CO2 enrichment, but cannot significantly reduce the impacts of drought on soil microorganisms.

  2. Potential for CO2 sequestration and enhanced coalbed methane production in the Netherlands

    NARCIS (Netherlands)

    Hamelinck, C.N.; Schreurs, H.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, Daan; Pagnier, H.; Bergen, F. van; Wolf, K.-H.; Barzandji, O.; Bruining, H.

    2006-01-01

    This study investigated the technical and economic feasibility of using CO2 for the enhanced production of coal bed methane (ECBM) in the Netherlands. This concept could lead to both CO2 storage by adsorbing CO2 in deep coal layers that are not suitable for mining, as well as production of methane.

  3. An approach to mitigating soil CO2 emission by biochemically inhibiting cellulolytic microbial populations through mediation via the medicinal herb Isatis indigotica

    Science.gov (United States)

    Wu, Hong-Sheng; Chen, Su-Yun; Li, Ji; Liu, Dong-Yang; Zhou, Ji; Xu, Ya; Shang, Xiao-Xia; Wei, Dong-yang; Yu, Lu-ji; Fang, Xiao-hang; Li, Shun-yi; Wang, Ke-ke

    2017-06-01

    Greenhouse gases (GHGs, particularly carbon dioxide (CO2)) emissions from soil under wheat production are a significant source of agricultural carbon emissions that have not been mitigated effectively. A field experiment and a static incubation study in a lab were conducted to stimulate wheat growth and investigate its potential to reduce CO2 emissions from soil through intercropping with a traditional Chinese medicinal herb called Isatis indigotica. This work was conducted by adding I. indigotica root exudates based on the quantitative real-time PCR (qPCR) analysis of the DNA copy number of the rhizosphere or bulk soil microbial populations. This addition was performed in relation to the CO2 formation by cellulolytic microorganisms (Penicillium oxalicum, fungi and Ruminococcus albus) to elucidate the microbial ecological basis for the molecular mechanism that decreases CO2 emissions from wheat fields using I. indigotica. The results showed that the panicle weight and full grains per panicle measured through intercropping with I. indigotica (NPKWR) increased by 39% and 28.6%, respectively, compared to that of the CK (NPKW). Intercropping with I. indigotica significantly decreased the CO2 emissions from soil under wheat cultivation. Compared with CK, the total CO2 emission flux during the wheat growth period in the I. indigotica (NPKWR) intercropping treatment decreased by 29.26%. The intensity of CO2 emissions per kg of harvested wheat grain declined from 7.53 kg CO2/kg grain in the NPKW (CK) treatment to 5.55 kg CO2/kg grain in the NPKWR treatment. The qPCR analysis showed that the DNA copy number of the microbial populations of cellulolytic microorganisms (P. oxalicum, fungi and R. albus) in the field rhizosphere around I. indigotica or in the bulk soil under laboratory incubation was significantly lower than that of CK. This finding indicated that root exudates from I. indigotica inhibited the activity and number of cellulolytic microbial populations, which led

  4. Microbial association with the dynamics of particulate organic carbon in response to the amendment of elevated CO2-derived wheat residue into a Mollisol.

    Science.gov (United States)

    Wang, Yanhong; Yu, Zhenhua; Li, Yansheng; Wang, Guanghua; Liu, Junjie; Liu, Judong; Liu, Xiaobing; Jin, Jian

    2017-12-31

    As the chemical quality of crop residue is likely to be affected by elevated CO 2 (eCO 2 ), residue amendments may influence soil organic carbon (SOC) sequestration. However, in Mollisols, the dynamics of the SOC fractions in response to amendment with wheat residue produced under eCO 2 and the corresponding microbial community composition remain unknown. Such investigation is essential to residue management, which affects the soil quality and productivity of future farming systems. To narrow this knowledge gap, 13 C-labeled shoot and root residue derived from ambient CO 2 (aCO 2 ) or eCO 2 were amended into Mollisols and incubated for 200days. The soil was sampled during the incubation period to determine the residue-C retained in the three SOC fractions, i.e., coarse intra-aggregate particulate organic C (coarse iPOC), fine iPOC and mineral-associated organic C (MOC). The soil bacterial community was assessed using a MiSeq sequencing instrument. The results showed that the increase in SOC concentrations attributable to the application of the wheat residue primarily occurred in the coarse iPOC fraction. Compared with the aCO 2 -derived shoot residue, the amendment of eCO 2 -derived shoot residue resulted in greater SOC concentrations, whereas no significant differences (P>0.05) were observed between the aCO 2 - and eCO 2 -derived roots. Principal coordinates analysis (PCoA) showed that the residue amendment significantly (P≤0.05) altered the bacterial community composition compared with the non-residue amendment. Additionally, the bacterial community in the aCO 2 -derived shoot treatment differed from those in the other residue treatments until day 200 of the incubation period. The eCO 2 -derived shoot treatment significantly increased (P≤0.05) the relative abundances of the genera Acidobacteriaceae_(Subgroup_1)_uncultured, Bryobacter, Candidatus_Solibacter, Gemmatimonas and Nitrosomonadaceae_uncultured, whereas the opposite trend was observed in Nonomuraea

  5. Development of sustainable CO2 conversion processes for the methanol production

    DEFF Research Database (Denmark)

    Roh, Kosan; Nguyen, Tuan B.H.; Suriyapraphadilok, Uthaiporn

    2015-01-01

    reforming process has to be integrated with the existing conventional methanol plant to obtain a reduced CO2 emission as well as lowered production costs. On the other hand, the CO2 hydrogenation based methanol plant could achieve a reduction of net CO2 emission at a reasonable production cost only......Utilization of CO2 feedstock through CO2 conversion for producing valuable chemicals as an alternative to sequestration of the captured CO2 is attracting increasing attention in recent studies. Indeed, the methanol production process via thermochemical CO2 conversion reactions is considered a prime...... candidate for commercialization. The aim of this study is to examine two different options for a sustainable methanol plant employing the combined reforming and CO2 hydrogenation reactions, respectively. In addition, process improvement strategies for the implementation of the developed processes are also...

  6. Production of solar fuels by CO2 plasmolysis

    Directory of Open Access Journals (Sweden)

    Goede Adelbert P.H.

    2014-01-01

    Full Text Available A storage scheme for Renewable Energy (RE based on the plasmolysis of CO2into CO and O2 has been experimentally investigated, demonstrating high energy efficiency (>50% combined with high energy density, rapid start-stop and no use of scarce materials. The key parameter controlling energy efficiency has been identified as the reduced electric field. Basic plasma parameters including density and temperature are derived from a simple particle and energy balance model, allowing parameter specification of an upscale 100 kW reactor. With RE powered plasmolysis as the critical element, a CO2 neutral energy system becomes feasible when complemented by effective capture of CO2 at the input and separation of CO from the output gas stream followed by downstream chemical processing into hydrocarbon fuels.

  7. Comparative methane estimation from cattle based on total CO2 production using different techniques

    Directory of Open Access Journals (Sweden)

    Md N. Haque

    2017-06-01

    Full Text Available The objective of this study was to compare the precision of CH4 estimates using calculated CO2 (HP by the CO2 method (CO2T and measured CO2 in the respiration chamber (CO2R. The CO2R and CO2T study was conducted as a 3 × 3 Latin square design where 3 Dexter heifers were allocated to metabolic cages for 3 periods. Each period consisted of 2 weeks of adaptation followed by 1 week of measurement with the CO2R and CO2T. The average body weight of the heifer was 226 ± 11 kg (means ± SD. They were fed a total mixed ration, twice daily, with 1 of 3 supplements: wheat (W, molasses (M, or molasses mixed with sodium bicarbonate (Mbic. The dry mater intake (DMI; kg/day was significantly greater (P < 0.001 in the metabolic cage compared with that in the respiration chamber. The daily CH4 (L/day emission was strongly correlated (r = 0.78 between CO2T and CO2R. The daily CH4 (L/kg DMI emission by the CO2T was in the same magnitude as by the CO2R. The measured CO2 (L/day production in the respiration chamber was not different (P = 0.39 from the calculated CO2 production using the CO2T. This result concludes a reasonable accuracy and precision of CH4 estimation by the CO2T compared with the CO2R.

  8. Increase of atmospheric CO2 promotes phytoplankton productivity

    NARCIS (Netherlands)

    Schippers, P.; Lürling, M.F.L.L.W.; Scheffer, M.

    2004-01-01

    It is usually thought that unlike terrestrial plants, phytoplankton will not show a significant response to an increase of atmospheric CO2. Here we suggest that this view may be biased by a neglect of the effects of carbon (C) assimilation on the pH and the dissociation of the C species. We show

  9. Whole-body CO2 production as an index of the metabolic response to sepsis

    Science.gov (United States)

    Whole-body carbon dioxide (CO2) production (RaCO2) is an index of substrate oxidation and energy expenditure; therefore, it may provide information about the metabolic response to sepsis. Using stable isotope techniques, we determined RaCO2 and its relationship to protein and glucose metabolism in m...

  10. Characterization of a microalgal mutant for CO_2 biofixation and biofuel production

    International Nuclear Information System (INIS)

    Qi, Feng; Pei, Haiyan; Hu, Wenrong; Mu, Ruimin; Zhang, Shuo

    2016-01-01

    Highlights: • Combination of the isolation using 96-well microplates and traditional UV mutagenesis for screening HCT mutant. • Microalgal mutant Chlorella vulgaris SDEC-3M was screened out by modified UV mutagenesis. • SDEC-3M showed high CO_2 tolerance, high CO_2 requiring and relevant genetic stability. • LCE and carbohydrate content of SDEC-3M were significantly elevated. • SDEC-3M offers a strong candidature as CO_2 biofixation and biofuel production. - Abstract: In the present work, a Chlorella vulgaris mutant, named as SDEC-3M, was screened out through the combination of the isolation using 96-well microplates and traditional UV mutagenesis. Compared with its parent (wild type), the growth of SDEC-3M preferred higher CO_2 (15% v/v) environment to ambient air (0.038% CO_2 (v/v)), indicating that the mutant qualified with good tolerance and growth potential under high level CO_2 (high CO_2 tolerance) but was defective in directly utilizing the low level CO_2 (high CO_2 requiring). The genetic stability under ambient air and high level CO_2 was confirmed by a continuous cultivation for five generations. Higher light conversion efficiency (14.52%) and richer total carbohydrate content (42.48%) demonstrated that both solar energy and CO_2 were more effectively productively fixed into carbohydrates for bioethanol production than the parent strain. The mutant would benefit CO_2 biofixation from industrial exhaust gas to mitigate of global warming and promote biofuel production to relieve energy shortage.

  11. Efeito da adição de CO2 sobre o crescimento microbiano em macarrão tipo massa fresca Effect of CO2 addition on microbial growth in fresh pasta

    Directory of Open Access Journals (Sweden)

    Renato Souza Cruz

    2002-08-01

    Full Text Available O presente trabalho foi desenvolvido com o objetivo de avaliar o efeito da adição de CO2 sobre a qualidade do macarrão tipo massa fresca. O uso de atmosfera modificada no interior da embalagem, com concentrações mais elevadas de CO2, tem sido empregado comercialmente com a finalidade de inibir microrganismos, principalmente os aeróbios. Dessa forma, neste trabalho foi empregada uma nova técnica para a adição do CO2 no produto. Esta técnica consistiu em carbonatar a água que foi utilizada para a produção do macarrão tipo massa fresca, em substituição à injeção do gás CO2 na embalagem. Foram testadas as concentrações de 160 e 745mg/L de CO2. Os resultados mostraram, pelas análises microbiológicas, que o nível de 745mg/L de CO2 foi satisfatório para a inibição de bolores e leveduras durante os 50 dias de armazenamento a 7±1ºC. No entanto, não houve efeito na inibição de psicrotróficos e coliformes totais.The objective of this work was to evaluate CO2 addition on the inhibition of microbial growth in fresh pasta. Modified atmosphere packages using higher levels of CO2 have been commercially used to inhibit mainly aerobes microorganisms. Therefore, a new technique of adding CO2 directly to the product was tested promoting better contact between the dough and the gas. Carbon dioxide was dissolved in water at concentrations of 160 and 745mg/L and the carbonated water was mixed with the ingredients to produce the pasta. The results showed that 745mg/L of CO2 inhibited fungi and yeast growth in pasta stored at 7±1ºC up to 50 days, however, growth of psychrotrophics and coliforms was not affected.

  12. Potential for CO2 sequestration and enhanced coalbed methane production in the Netherlands

    OpenAIRE

    Hamelinck, C.N.; Schreurs, H.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, Daan; Pagnier, H.; Bergen, F. van; Wolf, K.-H.; Barzandji, O.; Bruining, H.

    2006-01-01

    This study investigated the technical and economic feasibility of using CO2 for the enhanced production of coal bed methane (ECBM) in the Netherlands. This concept could lead to both CO2 storage by adsorbing CO2 in deep coal layers that are not suitable for mining, as well as production of methane. For every two molecules of CO2 injected, roughly one molecule of methane is produced. The work included an investigation of the potential CBM reserves in the Dutch underground and the related CO2 s...

  13. Optimal scheduling for enhanced coal bed methane production through CO2 injection

    International Nuclear Information System (INIS)

    Huang, Yuping; Zheng, Qipeng P.; Fan, Neng; Aminian, Kashy

    2014-01-01

    Highlights: • A novel deterministic optimization model for CO 2 -ECBM production scheduling. • Maximize the total profit from both sales of natural gas and CO 2 credits trading in the carbon market. • A stochastic model incorporating uncertainties and dynamics of NG price and CO 2 credit. - Abstract: Enhanced coal bed methane production with CO 2 injection (CO 2 -ECBM) is an effective technology for accessing the natural gas embedded in the traditionally unmineable coal seams. The revenue via this production process is generated not only by the sales of coal bed methane, but also by trading CO 2 credits in the carbon market. As the technology of CO 2 -ECBM becomes mature, its commercialization opportunities are also springing up. This paper proposes applicable mathematical models for CO 2 -ECBM production and compares the impacts of their production schedules on the total profit. A novel basic deterministic model for CO 2 -ECBM production including the technical and chemical details is proposed and then a multistage stochastic programming model is formulated in order to address uncertainties of natural gas price and CO 2 credit. Both models are nonlinear programming problems, which are solved by commercial nonlinear programming software BARON via GAMS. Numerical experiments show the benefits (e.g., expected profit gain) of using stochastic models versus deterministic models

  14. Evaluation of hydrogen production from CO2 corrosion of steel drums in SFR, Part 2

    International Nuclear Information System (INIS)

    Dugstad, A.; Videm, K.

    1987-06-01

    An experimental program has been carried out for the investigation of the hydrogen formation due to corrosion of steel by water containing CO 2 produced by microbiologic decomposition of paper in waste drums. The hydrogen production will be limited by a limited rate of CO 2 production, as CO 2 is consumed by corrosive reactions producing carbonate containing corrosion products. Experiments indicated that also iron oxide and hydroxides were formed together with FeCO 3 at low CO 2 partial pressures but at a rate which leads to a rather slow increase in hydrogen production. Hydrogen evaluation has been overestimated in previous reports on this subject. (authors)

  15. Biomassa microbiana e produção de C-CO2 e N mineral de um podzólico vermelho-escuro submetido a diferentes sistemas de manejo: Microbial biomass and C-CO2 and mineral nitrogen production in paleudult soil cultivated under different management systems

    Directory of Open Access Journals (Sweden)

    L. K. Vargas

    2000-03-01

    Full Text Available Os sistemas de manejo, com diferenças no revolvimento do solo e na composição dos resíduos vegetais, alteram as propriedades biológicas do solo, com reflexos na qualidade do solo e na produtividade das culturas. Com vistas em medir estas alterações nas propriedades biológicas do solo, a biomassa e a atividade microbiana foram avaliadas em um Podzólico Vermelho-Escuro, em Eldorado do Sul (RS, utilizando diferentes preparos (convencional, reduzido e plantio direto e dois sistemas de sucessões de culturas (aveia preta + vica/milho + caupi e aveia/milho. As avaliações foram realizadas em quatro épocas, durante 12 meses, e em duas profundidades (0-5 e 5-15 cm. O carbono da biomassa microbiana foi analisado pelo método de fumigação-incubação, e a atividade microbiana, pela produção de C-CO2 e N mineral, após 60 dias de incubação. As diferenças na biomassa e na atividade microbiana, entre os sistemas de manejo, foram mais pronunciadas na camada de 0-5 cm. Nesta camada de solo, observaram-se os maiores valores de biomassa e de atividade nos preparos conservacionistas e no sistema aveia + vica/milho + caupi. Dentre as variáveis estudadas, a mineralização de N mostrou-se a mais sensível aos manejos, à profundidade e à época de amostragem.

  16. Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake.

    Science.gov (United States)

    Reis, P C J; Barbosa, F A R

    2014-08-01

    It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.

  17. Hydrogenation of organic matter as a terminal electron sink sustains high CO 2 :CH 4 production ratios during anaerobic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.; Keller, Jason K.; Bridgham, Scott D.; Zalman, Cassandra Medvedeff; Meredith, Laura; Hanson, Paul J.; Hines, Mark; Pfeifer-Meister, Laurel; Saleska, Scott R.; Crill, Patrick; Cooper, William T.; Chanton, Jeff P.; Kostka, Joel E.

    2017-10-01

    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios.

  18. Production of nanostructured molecular liquids by supercritical CO2 processing

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Sharma

    2017-01-01

    Full Text Available Stable molecular clusters of ibuprofen and naproxen were prepared in dry ice, by supersonic jet expansion of their supercritical CO2 drug formulations into a liquid nitrogen cooled collection vessel, with up to 80% yield. Mixing the “dry ice” in water, resulted in the solubilization of the clusters and in the case of ibuprofen, we were able to create solutions, with concentrations of up to 6 mg/ml, a 300-fold increase over previously reported values. Drop casting and ambient drying of these solutions on silicon substrate resulted in a stable, viscous liquid film, referred to as nanostructured molecular liquids. These liquids exhibited a highly aligned, fine (self-assembled super lattice features. In vitro cancer cell viability studies of these formulations exhibited similar cytotoxicity to that of the original raw materials, thus retaining their original potency. Besides its scientific importance, this invention is expected to open up new drug delivery platforms.

  19. Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production.

    Science.gov (United States)

    Zhang, Angela; Carroll, Austin L; Atsumi, Shota

    2017-09-01

    Atmospheric CO2 levels have reached an alarming level due to industrialization and the burning of fossil fuels. In order to lower the level of atmospheric carbon, strategies to sequester excess carbon need to be implemented. The CO2-fixing mechanism in photosynthetic organisms enables integration of atmospheric CO2 into biomass. Additionally, through exogenous metabolic pathways in these photosynthetic organisms, fixed CO2 can be routed to produce various commodity chemicals that are currently produced from petroleum. This review will highlight studies and modifications to different components of cyanobacterial CO2-fixing systems, as well as the application of these systems toward CO2-derived chemical production. 2,3-Butanediol is given particular focus as one of the most thoroughly studied systems for conversion of CO2 to a bioproduct. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Comparative energetic assessment of methanol production from CO_2: Chemical versus electrochemical process

    International Nuclear Information System (INIS)

    Al-Kalbani, Haitham; Xuan, Jin; García, Susana; Wang, Huizhi

    2016-01-01

    Highlights: • We model two emission-to-fuel processes which convert CO_2 to fuels. • We optimize the heat exchanger networks for the two processes. • We compare the two processes in terms of energy requirement and climate impact. • The process based on CO_2 electrolysis is more energy efficient. • Both of the processes can reduce CO_2 emissions if renewable energies are used. - Abstract: Emerging emission-to-liquid (eTL) technologies that produce liquid fuels from CO_2 are a possible solution for both the global issues of greenhouse gas emissions and fossil fuel depletion. Among those technologies, CO_2 hydrogenation and high-temperature CO_2 electrolysis are two promising options suitable for large-scale applications. In this study, two CO_2-to-methanol conversion processes, i.e., production of methanol by CO_2 hydrogenation and production of methanol based on high-temperature CO_2 electrolysis, are simulated using Aspen HYSYS. With Aspen Energy Analyzer, heat exchanger networks are optimized and minimal energy requirements are determined for the two different processes. The two processes are compared in terms of energy requirement and climate impact. It is found that the methanol production based on CO_2 electrolysis has an energy efficiency of 41%, almost double that of the CO_2 hydrogenation process provided that the required hydrogen is sourced from water electrolysis. The hydrogenation process produces more CO_2 when fossil fuel energy sources are used, but can result in more negative CO_2 emissions with renewable energies. The study reveals that both of the eTL processes can outperform the conventional fossil-fuel-based methanol production process in climate impacts as long as the renewable energy sources are implemented.

  1. Bioelectrochemical conversion of CO2 to chemicals

    NARCIS (Netherlands)

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J.N.; Strik, David P.B.T.B.; Pant, Deepak

    2017-01-01

    The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds

  2. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    OpenAIRE

    Qiao Hu; Sen-Xiang Zhang; Zhong-Hua Yang; Hao Huang; Rong Zeng

    2014-01-01

    The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accum...

  3. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress.

    Science.gov (United States)

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan

    2016-01-01

    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.

  4. Microbial products II

    Energy Technology Data Exchange (ETDEWEB)

    Pape, H; Rehm, H J [eds.

    1986-01-01

    The present volume deals mainly with compounds which have been detected as natural microbial products. Part 1 of this volume introduces the general aspects of the overproduction of metabolites and the concepts and genetics of secondary metabolism. Compounds such as nucleosides, nucleotides, coenzymes, vitamins and lipids are dealt with in part 2. Part 3 then is devoted to products and antibiotics with uses im medicine, veterinary medicine, plant protection and metabolites with antitumor activity. Several secondary metabolites have found uses in human and animal health care. With 244 figs., 109 tabs.

  5. Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification.

    Science.gov (United States)

    Rossi, Federico; Olguín, Eugenia J; Diels, Ludo; De Philippis, Roberto

    2015-01-25

    The growing concern for the increase of the global warming effects due to anthropogenic activities raises the challenge of finding novel technological approaches to stabilize CO2 emissions in the atmosphere and counteract impinging interconnected issues such as desertification and loss of biodiversity. Biological-CO2 mitigation, triggered through biological fixation, is considered a promising and eco-sustainable method, mostly owing to its downstream benefits that can be exploited. Microorganisms such as cyanobacteria, green algae and some autotrophic bacteria could potentially fix CO2 more efficiently than higher plants, due to their faster growth. Some examples of the potential of biological-CO2 mitigation are reported and discussed in this paper. In arid and semiarid environments, soil carbon sequestration (CO2 fixation) by cyanobacteria and biological soil crusts is considered an eco-friendly and natural process to increase soil C content and a viable pathway to soil restoration after one disturbance event. Another way for biological-CO2 mitigation intensively studied in the last few years is related to the possibility to perform carbon dioxide sequestration using microalgae, obtaining at the same time bioproducts of industrial interest. Another possibility under study is the exploitation of specific chemotrophic bacteria, such as Ralstonia eutropha (or picketii) and related organisms, for CO2 fixation coupled with the production chemicals such as polyhydroxyalkanoates (PHAs). In spite of the potential of these processes, multiple factors still have to be optimized for maximum rate of CO2 fixation by these microorganisms. The optimization of culture conditions, including the optimal concentration of CO2 in the provided gas, the use of metabolic engineering and of dual purpose systems for the treatment of wastewater and production of biofuels and high value products within a biorefinery concept, the design of photobioreactors in the case of phototrophs are some

  6. CO2 emission costs and Gas/Coal competition for power production

    International Nuclear Information System (INIS)

    Santi, Federico

    2005-01-01

    This paper demonstrates how a CO 2 emission reduction programme can change the competition between the two power production technologies which will probably dominate the future of the Italian power industry: the coal fired USC steam power plant and the natural gas fired CCGT power plant. An economic value of the CO 2 emission is calculated, in order to make the short-run-marginal-cost (or the long-run-marginal-cost). equal for both technologies, under a CO 2 emission trading scheme and following a single-plant specific CO 2 emission homogenizing approach [it

  7. Membrane-assisted CO2 liquefaction: performance modelling of CO2 capture from flue gas in cement production

    NARCIS (Netherlands)

    Bouma, R.H.B.; Vercauteren, F.F.; Os, P.J. van; Goetheer, E.L.V.; Berstad, D.; Anantharaman, R.

    2017-01-01

    CEMCAP is an international R&D project under the Horizon 2020 Programme preparing the ground for the large-scale implementation of CO2 capture in the European cement industry. This paper concerns the performance modeling of membraneassisted CO2 liquefaction as a possible retrofit application for

  8. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  9. An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils

    Directory of Open Access Journals (Sweden)

    M. D. Corre

    2010-08-01

    Full Text Available Soil respiration is the second largest flux in the global carbon cycle, yet the underlying below-ground process, carbon dioxide (CO2 production, is not well understood because it can not be measured in the field. CO2 production has frequently been calculated from the vertical CO2 diffusive flux divergence, known as "soil-CO2 profile method". This relatively simple model requires knowledge of soil CO2 concentration profiles and soil diffusive properties. Application of the method for a tropical lowland forest soil in Panama gave inconsistent results when using diffusion coefficients (D calculated based on relationships with soil porosity and moisture ("physically modeled" D. Our objective was to investigate whether these inconsistencies were related to (1 the applied interpolation and solution methods and/or (2 uncertainties in the physically modeled profile of D. First, we show that the calculated CO2 production strongly depends on the function used to interpolate between measured CO2 concentrations. Secondly, using an inverse analysis of the soil-CO2 profile method, we deduce which D would be required to explain the observed CO2 concentrations, assuming the model perception is valid. In the top soil, this inversely modeled D closely resembled the physically modeled D. In the deep soil, however, the inversely modeled D increased sharply while the physically modeled D did not. When imposing a constraint during the fit parameter optimization, a solution could be found where this deviation between the physically and inversely modeled D disappeared. A radon (Rn mass balance model, in which diffusion was calculated based on the physically modeled or constrained inversely modeled D, simulated observed Rn profiles reasonably well. However, the CO2 concentrations which corresponded to the constrained inversely modeled D were too small compared to the measurements. We suggest that, in well-structured soils, a missing description of steady state CO2

  10. Energy resources, CO2 production and energy conservation

    International Nuclear Information System (INIS)

    O'Callaghan, P.W.

    1993-01-01

    World fossil fuel reserves, historical and current rates of consumption are reviewed and estimates of indigeneous lives in geographical regions are made. Rates of production and accumulations of carbon dioxide and other greenhouse gases in the atmosphere are calculated and correlations made with measured global mean temperatures and concomitant sea-level rises. It is concluded that, if present rates of global fossil-fuel consumptions continue unabated, the world's fossil-fuel store will be depleted by the year 2050. This would be accompanied by a substantial rise in global mean temperature. The effects of various protocols for the reductions of emissions are examined. It is concluded that there is no alternative than to cease the production and release into the atmosphere of the more damaging man-made greenhouse gases as soon as is practicably possible and to seek a sustained reduction in the rates of combustion of fossil fuels world-wide via energy management and conservation. (author)

  11. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.

    Science.gov (United States)

    Luca, Oana R; Fenwick, Aidan Q

    2015-11-01

    The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Decentralized production of hydrogen from hydrocarbons with reduced CO2 emission

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Cunping Huang; Ali T-Raissi

    2006-01-01

    Currently, most of the industrial hydrogen production is based on steam methane reforming process that releases significant amount of CO 2 into the atmosphere. CO 2 sequestration is one approach to solving the CO 2 emission problem for large centralized hydrogen plants, but it would be impractical for decentralized H 2 production units. The objective of this paper is to explore new routes to hydrogen production from natural gas without (or drastically reduced) CO 2 emissions. One approach analyzed in this paper is based on thermo-catalytic decomposition (TCD) of hydrocarbons (e.g., methane) to hydrogen gas and elemental carbon. The paper discusses some technological aspects of the TCD process development: (1) thermodynamic analysis of TCD using AspenPlus chemical process simulator, (2) heat input options to the endothermic process, (3) catalyst activity issues, etc. Production of hydrogen and carbon via TCD of methane was experimentally verified using carbon-based catalysts. (authors)

  13. Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    2010-06-23

    Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.

  14. Does export product quality matter for CO2 emissions? Evidence from China.

    Science.gov (United States)

    Gozgor, Giray; Can, Muhlis

    2017-01-01

    This paper re-estimates the environmental Kuznets curve (EKC) in China. To this end, it uses the unit root tests with structural breaks and the autoregressive-distributed lag (ARDL) estimations over the period 1971-2010. The special role is given to the impact of export product quality on CO 2 emissions in the empirical models. The paper finds that the EKC hypothesis is applicable in China. It also observes the positive effect from energy consumption to CO 2 emissions. In addition, it finds that the export product quality is negatively associated with CO 2 emissions. The paper also argues potential implications.

  15. Production of Excess CO2 relative to methane in peatlands: a new H2 sink

    Science.gov (United States)

    Wilson, R.; Woodcroft, B. J.; Varner, R. K.; Tyson, G. W.; Tfaily, M. M.; Sebestyen, S.; Saleska, S. R.; Rogers, K.; Rich, V. I.; McFarlane, K. J.; Kostka, J. E.; Kolka, R. K.; Keller, J.; Iversen, C. M.; Hodgkins, S. B.; Hanson, P. J.; Guilderson, T. P.; Griffiths, N.; de La Cruz, F.; Crill, P. M.; Chanton, J.; Bridgham, S. D.; Barlaz, M.

    2015-12-01

    Methane is generated as the end product of anaerobic organic matter degradation following a series of reaction pathways including fermentation and syntrophy. Along with acetate and CO2, syntrophic reactions generate H2 and are only thermodynamically feasible when coupled to an exothermic reaction that consumes H2. The usual model of organic matter degradation in peatlands has assumed that methanogenesis is that exothermic H2-consuming reaction. If correct, this paradigm should ultimately result in equimolar production of CO2 and methane from the degradation of the model organic compound cellulose: i.e. C6H12O6 à 3CO2 + 3CH4. However, dissolved gas measurement and modeling results from field and incubation experiments spanning peatlands across the northern hemisphere have failed to demonstrate equimolar production of CO2 and methane. Instead, in a flagrant violation of thermodynamics, these studies show a large bias favoring CO2 production over methane generation. In this talk, we will use an array of complementary analytical techniques including FT-IR, cellulose and lignin measurements, 13C-NMR, fluorescence spectroscopy, and ultra-high resolution mass spectrometry to describe organic matter degradation within a peat column and identify the important degradation mechanisms. Hydrogenation was the most common transformation observed in the ultra-high resolution mass spectrometry data. From these results we propose a new mechanism for consuming H2 generated during CO2 production, without concomitant methane formation, consistent with observed high CO2/CH4 ratios. While homoacetogenesis is a known sink for H2 in these systems, this process also consumes CO2 and therefore does not explain the excess CO2 measured in field and incubation samples. Not only does the newly proposed mechanism consume H2 without generating methane, but it also yields enough energy to balance the coupled syntrophic reactions, thereby restoring thermodynamic order. Schematic of organic matter

  16. Optimal production resource reallocation for CO2 emissions reduction in manufacturing sectors

    OpenAIRE

    Fujii, Hidemichi; Managi, Shunsuke

    2015-01-01

    To mitigate the effects of climate change, countries worldwide are advancing technologies to reduce greenhouse gas emissions. This paper proposes and measures optimal production resource reallocation using data envelopment analysis. This research attempts to clarify the effect of optimal production resource reallocation on CO2 emissions reduction, focusing on regional and industrial characteristics. We use finance, energy, and CO2 emissions data from 13 industrial sectors in 39 countries from...

  17. Thermodynamic analysis on the CO2 conversion processes of methane dry reforming for hydrogen production and CO2 hydrogenation to dimethyl ether

    Science.gov (United States)

    He, Xinyi; Liu, Liping

    2017-12-01

    Based on the principle of Gibbs free energy minimization, the thermodynamic analysis on the CO2 conversion processes of dry reforming of methane for H2 and CO2 hydrogenation to dimethyl ether was carried out. The composition of the reaction system was determined on the basis of reaction mechanism. The effects of reaction temperature, pressure and raw material composition on the equilibrium conversion and the selectivity of products were analyzed. The results show that high temperature, low pressure, CO2/CH4 molar ratio of 1.0-1.5 and appropriate amount of oxygen are beneficial to the dry reforming of methane. For CO2 hydrogenation to dimethyl ether, low temperature, high pressure, the appropriate H2/CO2 and the proper CO addition in feed are favorable. The calculated results are compared with the relevant studies, indicating that industrial catalytic technology needs further improvement.

  18. Potential for CO2 sequestration and Enhanced Coalbed Methane production in the Netherlands

    International Nuclear Information System (INIS)

    Hamelinck, C.N.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, D.; Pagnier, H.; Van Bergen, F.; Wolf, K.H.; Barzandji, O.; Bruining, H.; Schreurs, H.

    2001-03-01

    The technical and economic feasibility of ECBM (Enhanced Coal Bed Methane) in the Netherlands are explored. The potential and the economic performance are worked out for several ECBM recovery concepts and technological issues are outlined. The research includes the following main activities: Inventory of CO2 sources in the Netherlands and techno-economic analysis of CO2 removal and transport. Several scenarios for CO2 transport of different capacities and distances will be assessed. ECBM production locations are determined by analysis of coal reserves and their characteristics. Four potential areas are assessed: one in eastern Gelderland, two in Limburg and one in Zeeland. Description of ECBM theory and production technology resulting in a time dependent model for ECBM production and CO2 injection. Selection and description of various ECBM production/CO2 sequestration systems. Systems considered include direct delivery of methane to the natural gas grid, production of power (on various scales) and hydrogen. Information from the location assessment is combined with modelling results. Costs of CO2 sequestration are calculated for various scales and configurations. Evaluation of main uncertainties, environmental impacts and sensitivity analyses. Comparison of CBM production systems with reference systems and exploration of potential implementation schemes in the Dutch context. 72 refs

  19. Impacts of CO2 Enrichment on Productivity and Light Requirements of Eelgrass.

    Science.gov (United States)

    Zimmerman, R. C.; Kohrs, D. G.; Steller, D. L.; Alberte, R. S.

    1997-10-01

    Seagrasses, although well adapted for submerged existence, are CO2-limited and photosynthetically inefficient in seawater. This leads to high light requirements for growth and survival and makes seagrasses vulnerable to light limitation. We explored the long-term impact of increased CO2 availability on light requirements, productivity, and C allocation in eelgrass (Zostera marina L.). Enrichment of seawater CO2 increased photosynthesis 3-fold, but had no long-term impact on respiration. By tripling the rate of light-saturated photosynthesis, CO2 enrichment reduced the daily period of irradiance-saturated photosynthesis (Hsat) that is required for the maintenance of positive whole-plant C balance from 7 to 2.7 h, allowing plants maintained under 4 h of Hsat to perform like plants growing in unenriched seawater with 12 h of Hsat. Eelgrass grown under 4 h of Hsat without added CO2 consumed internal C reserves as photosynthesis rates and chlorophyll levels dropped. Growth ceased after 30 d. Leaf photosynthesis, respiration, chlorophyll, and sucrose-phosphate synthase activity of CO2-enriched plants showed no acclimation to prolonged enrichment. Thus, the CO2-stimulated improvement in photosynthesis reduced light requirements in the long term, suggesting that globally increasing CO2 may enhance seagrass survival in eutrophic coastal waters, where populations have been devastated by algal proliferation and reduced water-column light transparency.

  20. Soil Conditions Rather Than Long-Term Exposure to Elevated CO2 Affect Soil Microbial Communities Associated with N-Cycling

    Directory of Open Access Journals (Sweden)

    Kristof Brenzinger

    2017-10-01

    Full Text Available Continuously rising atmospheric CO2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO2 (eCO2 concentrations (20% higher compared to current atmospheric concentrations at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE sites resulted in a more than 2-fold increase of long-term N2O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO2 (aCO2. We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected eCO2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term eCO2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing. Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot, which were fumigated with eCO2 and aCO2, respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under eCO2 differed only slightly from soil under aCO2. Wherever differences in microbial community abundance and composition were detected, they were not linked to CO2 level but rather determined by differences in soil parameters (e.g., soil moisture content due to the localization of the GiFACE sets in the experimental field. We concluded that +20% eCO2 had little to no effect on the overall microbial community involved in N-cycling in the

  1. Soil Conditions Rather Than Long-Term Exposure to Elevated CO2 Affect Soil Microbial Communities Associated with N-Cycling.

    Science.gov (United States)

    Brenzinger, Kristof; Kujala, Katharina; Horn, Marcus A; Moser, Gerald; Guillet, Cécile; Kammann, Claudia; Müller, Christoph; Braker, Gesche

    2017-01-01

    Continuously rising atmospheric CO 2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO 2 ( e CO 2 ) concentrations (20% higher compared to current atmospheric concentrations) at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE) sites resulted in a more than 2-fold increase of long-term N 2 O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO 2 ( a CO 2 ). We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected e CO 2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term e CO 2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing). Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot), which were fumigated with e CO 2 and a CO 2 , respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under e CO 2 differed only slightly from soil under a CO 2 . Wherever differences in microbial community abundance and composition were detected, they were not linked to CO 2 level but rather determined by differences in soil parameters (e.g., soil moisture content) due to the localization of the GiFACE sets in the experimental field. We concluded that +20% e CO 2 had little to no effect on the overall microbial community involved in N

  2. Microbial Propionic Acid Production

    Directory of Open Access Journals (Sweden)

    R. Axayacatl Gonzalez-Garcia

    2017-05-01

    Full Text Available Propionic acid (propionate is a commercially valuable carboxylic acid produced through microbial fermentation. Propionic acid is mainly used in the food industry but has recently found applications in the cosmetic, plastics and pharmaceutical industries. Propionate can be produced via various metabolic pathways, which can be classified into three major groups: fermentative pathways, biosynthetic pathways, and amino acid catabolic pathways. The current review provides an in-depth description of the major metabolic routes for propionate production from an energy optimization perspective. Biological propionate production is limited by high downstream purification costs which can be addressed if the target yield, productivity and titre can be achieved. Genome shuffling combined with high throughput omics and metabolic engineering is providing new opportunities, and biological propionate production is likely to enter the market in the not so distant future. In order to realise the full potential of metabolic engineering and heterologous expression, however, a greater understanding of metabolic capabilities of the native producers, the fittest producers, is required.

  3. CO2 and temperature effects on leaf area production in two annual plant species

    International Nuclear Information System (INIS)

    Ackerly, D.D.; Coleman, J.S.; Morse, S.R.; Bazzaz, F.A.

    1992-01-01

    The authors studied leaf area production in two annual plant species, Abutilon theophrasti and Amaranthus retroflexus, under three day/night temperature regimes and two concentrations of carbon dioxide. The production of whole-plant leaf area during the first 30 d of growth was analyzed in terms of the leaf initiation rate, leaf expansion, individual leaf area, and, in Amaranthus, production of branch leaves. Temperature and CO 2 influenced leaf area production through effects on the rate of development, determined by the production of nodes on the main stem, and through shifts in the relationship between whole-plant leaf area and the number of main stem nodes. In Abutilon, leaf initiation rate was highest at 38 degree, but area of individual leaves was greatest at 28 degree. Total leaf area was greatly reduced at 18 degree due to slow leaf initiation rates. Elevated CO 2 concentration increased leaf initiation rate at 28 degree, resulting in an increase in whole-part leaf area. In Amaranthus, leaf initiation rate increased with temperature, and was increased by elevated CO 2 at 28 degree. Individual leaf area was greatest at 28 degree, and was increased by elevated CO 2 at 28 degree but decreased at 38 degree. Branch leaf area displayed a similar response to CO 2 , butt was greater at 38 degree. Overall, wholeplant leaf area was slightly increased at 38 degree relative to 28 degree, and elevated CO 2 levels resulted in increased leaf area at 28 degree but decreased leaf area at 38 degree

  4. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.

    2015-08-31

    The Arctic Ocean is warming at two to three times the global rate1 and is perceived to be a bellwether for ocean acidification2, 3. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs4, and higher temperatures should lead to increased rates of planktonic primary production5. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145–2,099 μatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  5. Validation of the HTO-18 method for determination of CO2 production of lizards (genus Sceloporus)

    International Nuclear Information System (INIS)

    Congdon, J.D.; King, W.W.; Nagy, K.A.

    1978-01-01

    The accuracy of doubly-labeled water measurements of CO 2 production in lizards of the genus Sceloporus was assessed by comparison of CO 2 production rates determined simultaneously by labeled water and gas chromatography. Five lizards were weighed and given intraperitoneal injections of 55 μl of water containing 10 microcuries of tritium as HTO and 50 atom % oxygen-18 as H 2 18 O. Initial blood samples were taken from the infraorbital sinus ten hours later, and the lizards were placed in sealed metabolism chambers kept at 28 C. After 179 h the lizards were weighed and blood samples taken. Blood samples were microdistilled, assayed for tritium activity and for oxygen-18 content. Isotope measurements were used to calculate rates of CO 2 production. Gas samples were withdrawn from each chamber after 18, 63, 109, and 179 h and measured against 0.5 and 1.0% CO 2 standards with a Beckman GC-55 gas chromatograph fitted with silica gel 42-60 mesh column. These results were used to calculate rates of CO 2 production. Results supported the conclusion that the doubly-labeled water method accurately measured rates of CO 2 production in Sceloporus lizards, and could therefore be a valuable technique in field studies of lizard energetics

  6. Productivity responses of Acer rubrum and Taxodium distichum seedlings to elevated CO2 and flooding

    Science.gov (United States)

    Vann, C.D.; Megonigal, J.P.

    2002-01-01

    Elevated levels of atmospheric CO2 are expected to increase photosynthetic rates of C3 tree species, but it is uncertain whether this will result in an increase in wetland seedling productivity. Separate short-term experiments (12 and 17 weeks) were performed on two wetland tree species, Taxodium distichum and Acer rubrum, to determine if elevated CO2 would influence the biomass responses of seedlings to flooding. T. distichum were grown in replicate glasshouses (n = 2) at CO2 concentrations of 350 or 700 ppm, and A. rubrum were grown in growth chambers at CO2 concentrations of 422 or 722 ppm. Both species were grown from seed. The elevated CO2 treatment was crossed with two water table treatments, flooded and non-flooded. Elevated CO2 increased leaf-level photosynthesis, whole-plant photosynthesis, and trunk diameter of T. distichum in both flooding treatments, but did not increase biomass of T. distichum or A. rubrum. Flooding severely reduced biomass, height, and leaf area of both T. distichum and A. rubrum. Our results suggest that the absence of a CO2-induced increase in growth may have been due to an O2 limitation on root production even though there was a relatively deep (??? 10 cm) aerobic soil surface in the non-flooded treatment. ?? 2001 Elsevier Science Ltd. All rights reserved.

  7. CO2 production in animals: analysis of potential errors in the doubly labeled water method

    International Nuclear Information System (INIS)

    Nagy, K.A.

    1979-03-01

    Laboratory validation studies indicate that doubly labeled water ( 3 HH 18 O and 2 HH 18 O) measurements of CO 2 production are accurate to within +-9% in nine species of mammals and reptiles, a bird, and an insect. However, in field studies, errors can be much larger under certain circumstances. Isotopic fraction of labeled water can cause large errors in animals whose evaporative water loss comprises a major proportion of total water efflux. Input of CO 2 across lungs and skin caused errors exceeding +80% in kangaroo rats exposed to air containing 3.4% unlabeled CO 2 . Analytical errors of +-1% in isotope concentrations can cause calculated rates of CO 2 production to contain errors exceeding +-70% in some circumstances. These occur: 1) when little decline in isotope concentractions has occured during the measurement period; 2) when final isotope concentrations closely approach background levels; and 3) when the rate of water flux in an animal is high relative to its rate of CO 2 production. The following sources of error are probably negligible in most situations: 1) use of an inappropriate equation for calculating CO 2 production, 2) variations in rates of water or CO 2 flux through time, 3) use of H 2 O-18 dilution space as a measure of body water volume, 4) exchange of 0-18 between water and nonaqueous compounds in animals (including excrement), 5) incomplete mixing of isotopes in the animal, and 6) input of unlabeled water via lungs and skin. Errors in field measurements of CO 2 production can be reduced to acceptable levels (< 10%) by appropriate selection of study subjects and recapture intervals

  8. Microbial production of biovanillin

    Directory of Open Access Journals (Sweden)

    A. Converti

    2010-10-01

    Full Text Available This review aims at providing an overview on the microbial production of vanillin, a new alternative method for the production of this important flavor of the food industry, which has the potential to become economically competitive in the next future. After a brief description of the applications of vanillin in different industrial sectors and of its physicochemical properties, we described the traditional ways of providing vanillin, specifically extraction and chemical synthesis (mainly oxidation and compared them with the new biotechnological options, i.e., biotransformations of caffeic acid, veratraldehyde and mainly ferulic acid. In the second part of the review, emphasis has been addressed to the factors most influencing the bioproduction of vanillin, specifically the age of inoculum, pH, temperature, type of co-substrate, as well as the inhibitory effects exerted either by excess substrate or product. The final part of the work summarized the downstream processes and the related unit operations involved in the recovery of vanillin from the bioconversion medium.

  9. Microbial production of biovanillin.

    Science.gov (United States)

    Converti, A; Aliakbarian, B; Domínguez, J M; Bustos Vázquez, G; Perego, P

    2010-07-01

    This review aims at providing an overview on the microbial production of vanillin, a new alternative method for the production of this important flavor of the food industry, which has the potential to become economically competitive in the next future. After a brief description of the applications of vanillin in different industrial sectors and of its physicochemical properties, we described the traditional ways of providing vanillin, specifically extraction and chemical synthesis (mainly oxidation) and compared them with the new biotechnological options, i.e., biotransformations of caffeic acid, veratraldehyde and mainly ferulic acid. In the second part of the review, emphasis has been addressed to the factors most influencing the bioproduction of vanillin, specifically the age of inoculum, pH, temperature, type of co-substrate, as well as the inhibitory effects exerted either by excess substrate or product. The final part of the work summarized the downstream processes and the related unit operations involved in the recovery of vanillin from the bioconversion medium.

  10. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef.

    Science.gov (United States)

    Marcelino, Vanessa Rossetto; Morrow, Kathleen M; van Oppen, Madeleine J H; Bourne, David G; Verbruggen, Heroen

    2017-10-01

    The health and functioning of reef-building corals is dependent on a balanced association with prokaryotic and eukaryotic microbes. The coral skeleton harbours numerous endolithic microbes, but their diversity, ecological roles and responses to environmental stress, including ocean acidification (OA), are not well characterized. This study tests whether pH affects the diversity and structure of prokaryotic and eukaryotic algal communities associated with skeletons of Porites spp. using targeted amplicon (16S rRNA gene, UPA and tufA) sequencing. We found that the composition of endolithic communities in the massive coral Porites spp. inhabiting a naturally high pCO 2 reef (avg. pCO 2 811 μatm) is not significantly different from corals inhabiting reference sites (avg. pCO 2 357 μatm), suggesting that these microbiomes are less disturbed by OA than previously thought. Possible explanations may be that the endolithic microhabitat is highly homeostatic or that the endolithic micro-organisms are well adapted to a wide pH range. Some of the microbial taxa identified include nitrogen-fixing bacteria (Rhizobiales and cyanobacteria), algicidal bacteria in the phylum Bacteroidetes, symbiotic bacteria in the family Endozoicomoniaceae, and endolithic green algae, considered the major microbial agent of reef bioerosion. Additionally, we test whether host species has an effect on the endolithic community structure. We show that the endolithic community of massive Porites spp. is substantially different and more diverse than that found in skeletons of the branching species Seriatopora hystrix and Pocillopora damicornis. This study reveals highly diverse and structured microbial communities in Porites spp. skeletons that are possibly resilient to OA. © 2017 John Wiley & Sons Ltd.

  11. Sequestering CO2 by mineralization into useful nesquehonite-based products

    Directory of Open Access Journals (Sweden)

    Fredrik Paul Glasser

    2016-02-01

    Full Text Available The precipitation of magnesium hydroxy-carbonate hydrates has been suggested as a route to sequester CO2 into solids. We report the development of self-cementing compositions based on nesquehonite, MgCO3·3H2O, that are made from CO2-containing gas streams, the CO2 being separated from other gases by its high solubility in alkaline water, while magnesium is typically provided by waste desalination brines. Precipitation conditions are adjusted to optimize the formation of nesquehonite and the crystalline solid can readily be washed free of chloride. Products can be prepared to achieve self-cementation following two routes: (i thermal activation of the nesquehonite then rehydration of the precursor or (ii direct curing of a slurry of nesquehonite. The products thus obtained contain ~ 30 wt% CO2 and could form the basis for a new generation of lightweight, thermally insulating boards, blocks and panels, with sufficient strength for general construction.

  12. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean

    Science.gov (United States)

    Gray, William R.; Rae, James W. B.; Wills, Robert C. J.; Shevenell, Amelia E.; Taylor, Ben; Burke, Andrea; Foster, Gavin L.; Lear, Caroline H.

    2018-05-01

    The interplay between ocean circulation and biological productivity affects atmospheric CO2 levels and marine oxygen concentrations. During the warming of the last deglaciation, the North Pacific experienced a peak in productivity and widespread hypoxia, with changes in circulation, iron supply and light limitation all proposed as potential drivers. Here we use the boron-isotope composition of planktic foraminifera from a sediment core in the western North Pacific to reconstruct pH and dissolved CO2 concentrations from 24,000 to 8,000 years ago. We find that the productivity peak during the Bølling-Allerød warm interval, 14,700 to 12,900 years ago, was associated with a decrease in near-surface pH and an increase in pCO2, and must therefore have been driven by increased supply of nutrient- and CO2-rich waters. In a climate model ensemble (PMIP3), the presence of large ice sheets over North America results in high rates of wind-driven upwelling within the subpolar North Pacific. We suggest that this process, combined with collapse of North Pacific Intermediate Water formation at the onset of the Bølling-Allerød, led to high rates of upwelling of water rich in nutrients and CO2, and supported the peak in productivity. The respiration of this organic matter, along with poor ventilation, probably caused the regional hypoxia. We suggest that CO2 outgassing from the North Pacific helped to maintain high atmospheric CO2 concentrations during the Bølling-Allerød and contributed to the deglacial CO2 rise.

  13. Synthetic gas production from dry black liquor gasification process using direct causticization with CO2 capture

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2012-01-01

    Highlights: ► We study synthetic gas production from dry black liquor gasification system. ► Direct causticization eliminates energy intensive lime kiln reducing biomass use. ► Results show large SNG production potential at significant energy efficiency (58%). ► Substantial CO 2 capture potential plus CO 2 reductions from natural gas replacement. ► Significant transport fuel replacement especially in Sweden and Europe. -- Abstract: Synthetic natural gas (SNG) production from dry black liquor gasification (DBLG) system is an attractive option to reduce CO 2 emissions replacing natural gas. This article evaluates the energy conversion performance of SNG production from oxygen blown circulating fluidized bed (CFB) black liquor gasification process with direct causticization by investigating system integration with a reference pulp mill producing 1000 air dried tonnes (ADt) of pulp per day. The direct causticization process eliminates use of energy intensive lime kiln that is a main component required in the conventional black liquor recovery cycle with the recovery boiler. The paper has estimated SNG production potential, the process energy ratio of black liquor (BL) conversion to SNG, and quantified the potential CO 2 abatement. Based on reference pulp mill capacity, the results indicate a large potential of SNG production (about 162 MW) from black liquor but at a cost of additional biomass import (36.7 MW) to compensate the total energy deficit. The process shows cold gas energy efficiency of about 58% considering black liquor and biomass import as major energy inputs. About 700 ktonnes per year of CO 2 abatement i.e. both possible CO 2 capture and CO 2 offset from bio-fuel use replacing natural gas, is estimated. Moreover, the SNG production offers a significant fuel replacement in transport sector especially in countries with large pulp and paper industry e.g. in Sweden, about 72% of motor gasoline and 40% of total motor fuel could be replaced.

  14. H2 production by reforming route in reducing CO2 emissions

    International Nuclear Information System (INIS)

    Raphaelle Imbault

    2006-01-01

    Nowadays the most common way to produce hydrogen is the Steam Methane Reforming route from natural gas. With the pressure of new environmental rules, reducing CO 2 emissions becomes a key issue. The European project Ulcos (Ultra Low CO 2 Steelmaking) has targeted to reduce of at least 50% the CO 2 emissions in steelmaking. The H 2 route (and in particular the reforming process) is one of the solutions which have been explored. The results of this study have shown that the two main ways (which can be combined) of limiting CO 2 emissions in H 2 production are to improve the energetic efficiency of the plant or to capture CO 2 . With the first way, a reduction of 20% of emissions compared to conventional plant can be reached. The second one enables to achieve a decrease of 90%. However the CO 2 capture is much more expensive and this kind of solution can be economically competitive only if high CO 2 taxes are implemented (≥40 Euros/ton). (author)

  15. Advances and bottlenecks in microbial hydrogen production.

    Science.gov (United States)

    Stephen, Alan J; Archer, Sophie A; Orozco, Rafael L; Macaskie, Lynne E

    2017-09-01

    Biological production of hydrogen is poised to become a significant player in the future energy mix. This review highlights recent advances and bottlenecks in various approaches to biohydrogen processes, often in concert with management of organic wastes or waste CO 2 . Some key bottlenecks are highlighted in terms of the overall energy balance of the process and highlighting the need for economic and environmental life cycle analyses with regard also to socio-economic and geographical issues. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction.

    Science.gov (United States)

    Huo, Shengjuan; Weng, Zhe; Wu, Zishan; Zhong, Yiren; Wu, Yueshen; Fang, Jianhui; Wang, Hailiang

    2017-08-30

    One major challenge to the electrochemical conversion of CO 2 to useful fuels and chemical products is the lack of efficient catalysts that can selectively direct the reaction to one desirable product and avoid the other possible side products. Making use of strong metal/oxide interactions has recently been demonstrated to be effective in enhancing electrocatalysis in the liquid phase. Here, we report one of the first systematic studies on composition-dependent influences of metal/oxide interactions on electrocatalytic CO 2 reduction, utilizing Cu/SnO x heterostructured nanoparticles supported on carbon nanotubes (CNTs) as a model catalyst system. By adjusting the Cu/Sn ratio in the catalyst material structure, we can tune the products of the CO 2 electrocatalytic reduction reaction from hydrocarbon-favorable to CO-selective to formic acid-dominant. In the Cu-rich regime, SnO x dramatically alters the catalytic behavior of Cu. The Cu/SnO x -CNT catalyst containing 6.2% of SnO x converts CO 2 to CO with a high faradaic efficiency (FE) of 89% and a j CO of 11.3 mA·cm -2 at -0.99 V versus reversible hydrogen electrode, in stark contrast to the Cu-CNT catalyst on which ethylene and methane are the main products for CO 2 reduction. In the Sn-rich regime, Cu modifies the catalytic properties of SnO x . The Cu/SnO x -CNT catalyst containing 30.2% of SnO x reduces CO 2 to formic acid with an FE of 77% and a j HCOOH of 4.0 mA·cm -2 at -0.99 V, outperforming the SnO x -CNT catalyst which only converts CO 2 to formic acid in an FE of 48%.

  17. The effect of CO2 regulations on the cost of corn ethanol production

    Science.gov (United States)

    Plevin, R. J.; Mueller, S.

    2008-04-01

    To explore the effect of CO2 price on the effective cost of ethanol production we have developed a model that integrates financial and emissions accounting for dry-mill corn ethanol plants. Three policy options are modeled: (1) a charge per unit of life cycle CO2 emissions, (2) a charge per unit of direct biorefinery emissions only, and (3) a low carbon fuel standard (LCFS). A CO2 charge on life cycle emissions increases production costs by between 0.005 and 0.008 l-1 per 10 Mg-1 CO2 price increment, across all modeled plant energy systems, with increases under direct emissions somewhat lower in all cases. In contrast, a LCFS increases the cost of production for selected plant energy systems only: a LCFS requiring reductions in average fuel global warming intensity (GWI) with a target of 10% below the 2005 baseline increases the production costs for coal-fired plants only. For all other plant types, the LCFS operates as a subsidy. The findings depend strongly on the magnitude of a land use change adder. Some land use change adders currently discussed in the literature will push the GWI of all modeled production systems above the LCFS target, flipping the CO2 price from a subsidy to a tax.

  18. Vegetative biomass predicts inflorescence production along a CO2 concentration gradient in mesic grassland

    Science.gov (United States)

    Fay, P. A.; Collins, H.; Polley, W.

    2016-12-01

    Atmospheric CO2 concentration will likely exceed 500 µL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA . Whether increased abundance translates to increased inflorescence production is poorly understood, and is important because it indicates the potential effects of CO2 enrichment on genetic variability and the potential for evolutionary change in future generations. We examined whether the responses of inflorescence production to CO2 enrichment in four C4 grasses and a C3 forb were predicted their vegetative biomass, and by soil moisture, soil nitrogen, or light availability. Inflorescence production was studied in a long-term CO2 concentration gradient spanning pre-industrial to anticipated mid-21st century values (250 - 500 µL L-1) maintained on clay, silty clay and sandy loam soils common in the U.S. Southern Plains. We expected that CO2 enrichment would increase inflorescence production, and more so with higher water, nitrogen, or light availability. However, structural equation modeling revealed that vegetative biomass was the single consistent direct predictor of flowering for all species (p grass) and Solidago canadensis (C3 forb), direct CO2 effects on flowering were only weakly mediated by indirect effects of soil water content and soil NO3-N availability. For the decreasing species (Bouteloua curtipendula, C4 grass), the negative CO2-flowering relationship was cancelled (p = 0.39) by indirect effects of increased SWC and NO3-N on clay and silty clay soils. For the species with no CO2 response, inflorescence production was predicted only by direct water content (p grass) or vegetative biomass (p = 0.0009, Tridens albescens, C4 grass) effects. Light availability was unrelated to inflorescence production. Changes in inflorescence production are thus closely tied to direct and indirect effects of CO2 enrichment on vegetative biomass, and may either increase, decrease, or leave

  19. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Qiao Hu

    2014-01-01

    Full Text Available The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accumulation in C. vulgaris. With 5 % CO2, 0.75 g/L of NaNO3 and 18:6 h of light/dark cycle, the lipid content and overall lipid productivity reached 14.5 % and 33.2 mg/(L·day, respectively. Furthermore, we proposed a technique to enhance the microalgal lipid productivity by activating acetyl-CoA carboxylase (ACCase with an enzyme activator. Citric acid and Mg2+ were found to be efficient enzyme activators of ACCase. With the addition of 150 mg/L of citric acid or 1.5 mmol/L of MgCl2, the lipid productivity reached 39.1 and 38.0 mg/(L·day, respectively, which was almost twofold of the control. This work shows that it is practicable to produce lipids by freshwater microalgae that can fixate CO2, and provides a potential route to solving the global warming and energy shortage problems.

  20. Vegetative biomass predicts inflorescence production along a CO2 concentration gradient in mesic grassland

    Science.gov (United States)

    Atmospheric CO2 concentration will likely exceed 500 uL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA. Whether increased abundance translates to increased inflorescence production is poorly understood, and is important ...

  1. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria

    Science.gov (United States)

    Kanno, Masahiro; Carroll, Austin L.; Atsumi, Shota

    2017-03-01

    Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l-1 of 2,3-butanediol with a rate of 1.1 g l-1 d-1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  2. Automatic measurement and analysis of neonatal O2 consumption and CO2 production

    Science.gov (United States)

    Chang, Jyh-Liang; Luo, Ching-Hsing; Yeh, Tsu-Fuh

    1996-02-01

    It is difficult to estimate daily energy expenditure unless continuous O2 consumption (VO2) and CO2 production (VCO2) can be measured. This study describes a simple method for calculating daily and interim changes in O2 consumption and CO2 production for neonates, especially for premature infants. Oxygen consumption and CO2 production are measured using a flow-through technique in which the total VO2 and VCO2 over a given period of time are determined through a computerized system. This system can automatically calculate VO2 and VCO2 not only minute to minute but also over a period of time, e.g., 24 h. As a result, it provides a better indirect reflection of the accurate energy expenditure in an infant's daily life and can be used at the bedside of infants during their ongoing nursery care.

  3. Short-term responses and resistance of soil microbial community structure to elevated CO2 and N addition in grassland mesocosms.

    Science.gov (United States)

    Simonin, Marie; Nunan, Naoise; Bloor, Juliette M G; Pouteau, Valérie; Niboyet, Audrey

    2017-05-01

    Nitrogen (N) addition is known to affect soil microbial communities, but the interactive effects of N addition with other drivers of global change remain unclear. The impacts of multiple global changes on the structure of microbial communities may be mediated by specific microbial groups with different life-history strategies. Here, we investigated the combined effects of elevated CO2 and N addition on soil microbial communities using PLFA profiling in a short-term grassland mesocosm experiment. We also examined the linkages between the relative abundance of r- and K-strategist microorganisms and resistance of the microbial community structure to experimental treatments. N addition had a significant effect on microbial community structure, likely driven by concurrent increases in plant biomass and in soil labile C and N. In contrast, microbial community structure did not change under elevated CO2 or show significant CO2 × N interactions. Resistance of soil microbial community structure decreased with increasing fungal/bacterial ratio, but showed a positive relationship with the Gram-positive/Gram-negative bacterial ratio. Our findings suggest that the Gram-positive/Gram-negative bacteria ratio may be a useful indicator of microbial community resistance and that K-strategist abundance may play a role in the short-term stability of microbial communities under global change. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  5. Production of H2 from aluminium/water reaction and its potential for CO2 methanation

    Science.gov (United States)

    Khai Phung, Khor; Sethupathi, Sumathi; Siang Piao, Chai

    2018-04-01

    Carbon dioxide (CO2) is a natural gas that presents in excess in the atmosphere. Owing to its ability to cause global warming, capturing and conversion of CO2 have attracted much attention worldwide. CO2 methanation using hydrogen (H2) is believed to be a promising route for CO2 removal. In the present work, H2 is produced using aluminum-water reaction and tested for its ability to convert CO2 to methane (CH4). Different type of water i.e. tap water, distilled water, deionized water and ultrapure water, concentration of sodium hydroxide (NaOH) (0.2 M to 1.0 M) and particle size of aluminum (45 m to 500 μm) were varied as parameter study. It was found that the highest yield of H2 was obtained using distilled water, 1.0 M of NaOH and 45μm particle size of aluminium. However, the highest yield of methane was achieved using a moderate and progressive H2 production (distilled water, 0.6 M of NaOH and 45 μm particle size of aluminium) which allowed sufficient time for H2 to react with CO2. It was concluded that 1130 ml of H2 can produce about 560 ppm of CH4 within 25 min of batch reaction using nickel catalyst.

  6. Towards explaining excess CO2 production in wetlands - the roles of solid and dissolved organic matter as electron acceptors and of substrate quality

    Science.gov (United States)

    Knorr, Klaus-Holger; Gao, Chuanyu; Agethen, Svenja; Sander, Michael

    2017-04-01

    To understand carbon storage in water logged, anaerobic peatlands, factors controlling mineralization have been studied for decades. Temperature, substrate quality, water table position and the availability of electron acceptors for oxidation of organic carbon have been identified as major factors. However, many studies reported an excess carbon dioxide (CO2) production over methane (CH4) that cannot be explained by available electron acceptors, and peat soils did not reach strictly methanogenic conditions (i.e., a stoichiometric formation ratio of 1:1 of CO2 to CH4). It has been hypothesized that peat organic matter (OM) provides a previously unrecognized electron acceptor for microbial respiration, elevating CO2 to CH4 ratios. Microbial reduction of dissolved OM has been shown in the mid 90's, but only recently mediated electrochemical techniques opened the possibility to access stocks and changes in electron accepting capacities (EAC) of OM in dissolved and solid form. While it was shown that the EAC of OM follows redox cycles of microbial reduction and O2 reoxidation, changes in the EAC of OM were so far not related quantitatively to CO2 production. We therefore tested if CO2 production in anoxic peat incubations is balanced by the consumption of electron acceptors if EAC of OM is included. We set up anoxic incubations with peat and monitored production of CO2 and CH4, and changes in EAC of OM in the dissolved and solid phase over time. Interestingly, in all incubations, the EAC of dissolved OM was poorly related to CO2 and CH4 production. Instead, dissolved OM was rapidly reduced at the onset of the incubations and thereafter remained in reduced form. In contrast, the decrease in the EAC of particulate (i.e. non-dissolved) OM was closely linked to the observed production of non-methanogenic CO2. Thereby, the total EAC of the solid OM pool by far exceeded the EAC of the dissolved OM pool. Over the course of eight week incubations, measured decreases in the EAC

  7. Gross primary production controls the subsequent winter CO2 exchange in a boreal peatland.

    Science.gov (United States)

    Zhao, Junbin; Peichl, Matthias; Öquist, Mats; Nilsson, Mats B

    2016-12-01

    In high-latitude regions, carbon dioxide (CO 2 ) emissions during the winter represent an important component of the annual ecosystem carbon budget; however, the mechanisms that control the winter CO 2 emissions are currently not well understood. It has been suggested that substrate availability from soil labile carbon pools is a main driver of winter CO 2 emissions. In ecosystems that are dominated by annual herbaceous plants, much of the biomass produced during the summer is likely to contribute to the soil labile carbon pool through litter fall and root senescence in the autumn. Thus, the summer carbon uptake in the ecosystem may have a significant influence on the subsequent winter CO 2 emissions. To test this hypothesis, we conducted a plot-scale shading experiment in a boreal peatland to reduce the gross primary production (GPP) during the growing season. At the growing season peak, vascular plant biomass in the shaded plots was half that in the control plots. During the subsequent winter, the mean CO 2 emission rates were 21% lower in the shaded plots than in the control plots. In addition, long-term (2001-2012) eddy covariance data from the same site showed a strong correlation between the GPP (particularly the late summer and autumn GPP) and the subsequent winter net ecosystem CO 2 exchange (NEE). In contrast, abiotic factors during the winter could not explain the interannual variation in the cumulative winter NEE. Our study demonstrates the presence of a cross-seasonal link between the growing season biotic processes and winter CO 2 emissions, which has important implications for predicting winter CO 2 emission dynamics in response to future climate change. © 2016 John Wiley & Sons Ltd.

  8. Effects of elevated atmospheric CO2 on competition between the mosquitoes Aedes albopictus and Ae. triseriatus via changes in litter quality and production.

    Science.gov (United States)

    Smith, C; Baldwin, A H; Sullivan, J; Leisnham, P T

    2013-05-01

    Elevated atmospheric CO2 can alter aquatic communities via changes in allochthonous litter inputs. We tested effects of atmospheric CO2 on the invasive Aedes albopictus (Skuse) and native Aedes triseriatus (Say) (Diptera: Culicidae) via changes in competition for microbial food or resource inhibition/toxicity. Quercus alba L. litter was produced under elevated (879 ppm) and ambient (388 ppm) atmospheric CO2. Saplings grown at elevated CO2 produced greater litter biomass, which decayed faster and leached more tannins than saplings at ambient CO2. Competition was tested by raising larvae in different species and density combinations provisioned with elevated- or ambient-CO2 litter. Species-specific performance to water conditions was tested by providing single-species larval cohorts with increasing amounts of elevated- or ambient-CO2 litter, or increasing concentrations of tannic acid. Larval densities affected some fitness parameters of Ae. albopictus and Ae. triseriatus, but elevated-CO2 litter did not modify the effects of competition on population growth rates or any fitness parameters. Population growth rates and survival of each species generally were affected negatively by increasing amounts of both elevated- and ambient-CO2 litter from 0.252 to 2.016 g/liter, and tannic acid concentrations above 100 mg/liter were entirely lethal to both species. Aedes albopictus had consistently higher population growth rates than Ae. triseriatus. These results suggest that changes to litter production and chemistry from elevated CO2 are unlikely to affect the competitive outcome between Ae. albopictus and Ae. triseriatus, but that moderate increases in litter production increase population growth rates of both species until a threshold is exceeded that results in resource inhibition and toxicity.

  9. Utilization of CO2 in High Performance Building and Infrastructure Products

    Energy Technology Data Exchange (ETDEWEB)

    DeCristofaro, Nicholas [Solidia Technologies Inc., Piscataway, NJ (United States)

    2015-11-01

    The overall objective of DE-FE0004222 was to demonstrate that calcium silicate phases, in the form of either naturally-occuring minerals or synthetic compounds, could replace Portland cement in concrete manufacturing. The calcium silicate phases would be reacted with gaseous CO2 to create a carbonated concrete end-product. If successful, the project would offer a pathway to a significant reduction in the carbon footprint associated with the manufacture of cement and its use in concrete (approximately 816 kg of CO2 is emitted in the production of one tonne of Portland cement). In the initial phases of the Technical Evaluation, Rutgers University teamed with Solidia Technologies to demonstrate that natural wollastonite (CaSiO3), milled to a particle size distribution consistent with that of Portland cement, could indeed fit this bill. The use of mineral wollastonite as a cementitious material would potentially eliminate the CO2 emitted during cement production altogether, and store an additional 250 kg of CO2 during concrete curing. However, it was recognized that mineral wollastonite was not available in volumes that could meaningfully impact the carbon footprint associated with the cement and concrete industries. At this crucial juncture, DE-FE0004222 was redirected to use a synthetic version of wollastonite, hereafter referred to as Solidia Cement™, which could be manufactured in conventional cement making facilities. This approach enables the new cementitious material to be made using existing cement industry raw material supply chains, capital equipment, and distribution channels. It would also offer faster and more complete access to the concrete marketplace. The latter phases of the Technical Evaluation, conducted with Solidia Cement made in research rotary kilns, would demonstrate that industrially viable CO2-curing practices were possible. Prototypes of full-scale precast concrete products such as pavers, concrete masonry units, railroad ties, hollow

  10. Effect of headspace CO2 concentration on toxin production by Clostridium botulinum in MAP, irradiated fresh pork

    International Nuclear Information System (INIS)

    Lambert, A.D.; Smith, J.P.; Dodds, K.L.

    1991-01-01

    The effects of five initial levels of CO2 (15, 30, 45, 60, and 75%) and three irradiation doses (0, 0.5, and 1.0 kGy) on toxin production by Clostridium botulinum in inoculated fresh pork were studied using factorial design experiments. Headspace CO2 levels increased in all samples during storage at 15 degrees C. In most treatments, spoilage preceded toxigenesis. Toxin production occurred faster in samples initially packaged with 15 to 30% of CO2 while higher levels of CO2 (45-75%) delayed toxin production. Low-dose irradiation delayed toxin production at all levels of CO2 in the package headspace. Contrary to expectations, including a CO2 absorbent in the package enhanced toxin production by C. botulinum. This was attributed to production of H2 by the CO2 absorbent, possibly resulting in a decrease in the oxido-reduction potential of the meat

  11. A review on optimization production and upgrading biogas through CO2 removal using various techniques.

    Science.gov (United States)

    Andriani, Dian; Wresta, Arini; Atmaja, Tinton Dwi; Saepudin, Aep

    2014-02-01

    Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality.

  12. The Potential for Electrofuels Production in Sweden Utilizing Fossil and Biogenic CO2 Point Sources

    International Nuclear Information System (INIS)

    Hansson, Julia; Hackl, Roman; Taljegard, Maria; Brynolf, Selma; Grahn, Maria

    2017-01-01

    This paper maps, categorizes, and quantifies all major point sources of carbon dioxide (CO 2 ) emissions from industrial and combustion processes in Sweden. The paper also estimates the Swedish technical potential for electrofuels (power-to-gas/fuels) based on carbon capture and utilization. With our bottom-up approach using European databases, we find that Sweden emits approximately 50 million metric tons of CO 2 per year from different types of point sources, with 65% (or about 32 million tons) from biogenic sources. The major sources are the pulp and paper industry (46%), heat and power production (23%), and waste treatment and incineration (8%). Most of the CO 2 is emitted at low concentrations (<15%) from sources in the southern part of Sweden where power demand generally exceeds in-region supply. The potentially recoverable emissions from all the included point sources amount to 45 million tons. If all the recoverable CO 2 were used to produce electrofuels, the yield would correspond to 2–3 times the current Swedish demand for transportation fuels. The electricity required would correspond to about 3 times the current Swedish electricity supply. The current relatively few emission sources with high concentrations of CO 2 (>90%, biofuel operations) would yield electrofuels corresponding to approximately 2% of the current demand for transportation fuels (corresponding to 1.5–2 TWh/year). In a 2030 scenario with large-scale biofuels operations based on lignocellulosic feedstocks, the potential for electrofuels production from high-concentration sources increases to 8–11 TWh/year. Finally, renewable electricity and production costs, rather than CO 2 supply, limit the potential for production of electrofuels in Sweden.

  13. Estimation of CO2 emissions from China’s cement production: Methodologies and uncertainties

    International Nuclear Information System (INIS)

    Ke, Jing; McNeil, Michael; Price, Lynn; Khanna, Nina Zheng; Zhou, Nan

    2013-01-01

    In 2010, China’s cement output was 1.9 Gt, which accounted for 56% of world cement production. Total carbon dioxide (CO 2 ) emissions from Chinese cement production could therefore exceed 1.2 Gt. The magnitude of emissions from this single industrial sector in one country underscores the need to understand the uncertainty of current estimates of cement emissions in China. This paper compares several methodologies for calculating CO 2 emissions from cement production, including the three main components of emissions: direct emissions from the calcination process for clinker production, direct emissions from fossil fuel combustion and indirect emissions from electricity consumption. This paper examines in detail the differences between common methodologies for each emission component, and considers their effect on total emissions. We then evaluate the overall level of uncertainty implied by the differences among methodologies according to recommendations of the Joint Committee for Guides in Metrology. We find a relative uncertainty in China’s cement-related emissions in the range of 10 to 18%. This result highlights the importance of understanding and refining methods of estimating emissions in this important industrial sector. - Highlights: ► CO 2 emission estimates are critical given China’s cement production scale. ► Methodological differences for emission components are compared. ► Results show relative uncertainty in China’s cement-related emissions of about 10%. ► IPCC Guidelines and CSI Cement CO 2 and Energy Protocol are recommended

  14. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Directory of Open Access Journals (Sweden)

    Uttam Kumar

    Full Text Available Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv. Crop geometry and management emulated field conditions. In two wet (WS and two dry (DS seasons, final aboveground dry weight (agdw was measured. At 390 ppmv [CO2] (current ambient level, agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE, increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv, 719 mm (390 ppmv, 928 mm (780 ppmv and 803 mm (1560 ppmv. With increasing [CO2], crop water use efficiency (WUE gradually increased from 1.59 g kg-1 (195 ppmv to 2.88 g kg-1 (1560 ppmv. Transpiration efficiency (TE measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  15. Constraining Ecosystem Gross Primary Production and Transpiration with Measurements of Photosynthetic 13CO2 Discrimination

    Science.gov (United States)

    Blonquist, J. M.; Wingate, L.; Ogeé, J.; Bowling, D. R.

    2011-12-01

    The stable carbon isotope composition of atmospheric CO2 (δ13Ca) can provide useful information on water use efficiency (WUE) dynamics of terrestrial ecosystems and potentially constrain models of CO2 and water fluxes at the land surface. This is due to the leaf-level relationship between photosynthetic 13CO2 discrimination (Δ), which influences δ13Ca, and the ratio of leaf intercellular to atmospheric CO2 mole fractions (Ci / Ca), which is related to WUE and is determined by the balance between C assimilation (CO2 demand) and stomatal conductance (CO2 supply). We used branch-scale Δ derived from tunable diode laser absorption spectroscopy measurements collected in a Maritime pine forest to estimate Ci / Ca variations over an entire growing season. We combined Ci / Ca estimates with rates of gross primary production (GPP) derived from eddy covariance (EC) to estimate canopy-scale stomatal conductance (Gs) and transpiration (T). Estimates of T were highly correlated to T estimates derived from sapflow data (y = 1.22x + 0.08; r2 = 0.61; slope P MuSICA) (y = 0.88x - 0.05; r2 = 0.64; slope P MuSICA (y = 1.10 + 0.42; r2 = 0.50; slope P < 0.001). Results demonstrate that the leaf-level relationship between Δ and Ci / Ca can be extended to the canopy-scale and that Δ measurements have utility for partitioning ecosystem-scale CO2 and water fluxes.

  16. Effect of gas field production and CO2 injection on brine flow and salt precipitation

    NARCIS (Netherlands)

    Loeve, D.; Tambach, T.J.; Hofstee, C.; Plug, W.J.; Maas, J.

    2012-01-01

    This paper reports modeling of gas field produc-tion and CO2 injection from a theoretical reser-voir based on characteristics of the P18 gas field in the Dutch offshore, which consists of four geological deposits with different petrophysical properties. We especially focus on the brine flow during

  17. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.; Duarte, Carlos M.; Sanz-Martí n, M.; Mesa, E.; Arrieta, J M; Chierici, M.; Hendriks, I.  E.; Garcí a-Corral, L. S.; Regaudie-de-Gioux, A.; Delgado, A.; Reigstad, M.; Wassmann, P.; Agusti, Susana

    2015-01-01

    production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range

  18. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    OpenAIRE

    Santos, Roberta Machado; Voltolini, Tadeu Vinhas; Angelotti, Francislene; Aidar, Saulo de Tarso; Chaves, Agnaldo Rodrigues de Melo

    2014-01-01

    The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian) were compared. Cultivars were grown in growth chambers at three temperatures (day/night): 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × ...

  19. Supersaturation of dissolved H(2) and CO (2) during fermentative hydrogen production with N(2) sparging.

    Science.gov (United States)

    Kraemer, Jeremy T; Bagley, David M

    2006-09-01

    Dissolved H(2) and CO(2) were measured by an improved manual headspace-gas chromatographic method during fermentative H(2) production with N(2) sparging. Sparging increased the yield from 1.3 to 1.8 mol H(2)/mol glucose converted, although H(2) and CO(2) were still supersaturated regardless of sparging. The common assumption that sparging increases the H(2) yield because of lower dissolved H(2) concentrations may be incorrect, because H(2) was not lowered into the range necessary to affect the relevant enzymes. More likely, N(2) sparging decreased the rate of H(2) consumption via lower substrate concentrations.

  20. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation

    International Nuclear Information System (INIS)

    Monroe, Morgan M; Lobaccaro, Peter; Lum, Yanwei; Ager, Joel W

    2017-01-01

    The production of liquid fuel products via electrochemical reduction of CO 2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O 2 ) from reaching the cathode. Ion-conducting membranes have been applied in CO 2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flow cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO 2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved. (paper)

  1. Carbon Dioxide Production Responsibility on the Basis of comparing in Situ and mean CO2 Atmosphere Concentration Data

    OpenAIRE

    Mavrodiev, S. Cht.; Pekevski, L.; Vachev, B.

    2008-01-01

    The method is proposed for estimation of regional CO2 and other greenhouses and pollutants production responcibility. The comparison of CO2 local emissions reduction data with world CO2 atmosphere data will permit easy to judge for overall effect in curbing not only global warming but also chemical polution.

  2. CO2 emissions from the production and combustion of fuel ethanol from corn

    International Nuclear Information System (INIS)

    Marland, G.; Turhollow, A.F.

    1991-01-01

    This paper deals with the carbon dioxide fluxes associated with the use of one biomass fuel, ethanol derived from corn. In a sustainable agricultural system, there is no net CO 2 flux to the atmosphere from the corn itself but there is a net CO 2 flux due to the fossil-fuel supplements currently used to produce and process corn. A comparison between ethanol from corn and gasoline from crude oil becomes very complex because of the variability of corn yield, the lack of available data on corn processing, and the complexity of treating the multiple products from corn processing. When the comparison is made on an energy content basis only, with no consideration of how the products are to be used, and at the margin of the current U.S. energy system, it appears that there is a net CO 2 saving associated with ethanol from corn. This net saving in CO 2 emissions may be as large as 40% or as small as 20%, depending on how one chooses to evaluate the by-product credits. This analysis also demonstrates that the frequently posed question, whether the energy inputs to ethanol exceed the energy outputs, would not be an over-riding consideration even if it were true, because most of the inputs are as coal and natural gas, whereas the output is as a high-quality liquid fuel. (author)

  3. Closing CO2 Loop in Biogas Production: Recycling Ammonia As Fertilizer.

    Science.gov (United States)

    He, Qingyao; Yu, Ge; Tu, Te; Yan, Shuiping; Zhang, Yanlin; Zhao, Shuaifei

    2017-08-01

    We propose and demonstrate a novel system for simultaneous ammonia recovery, carbon capture, biogas upgrading, and fertilizer production in biogas production. Biogas slurry pretreatment (adjusting the solution pH, turbidity, and chemical oxygen demand) plays an important role in the system as it significantly affects the performance of ammonia recovery. Vacuum membrane distillation is used to recover ammonia from biogas slurry at various conditions. The ammonia removal efficiency in vacuum membrane distillation is around 75% regardless of the ammonia concentration of the biogas slurry. The recovered ammonia is used for CO 2 absorption to realize simultaneous biogas upgrading and fertilizer generation. CO 2 absorption performance of the recovered ammonia (absorption capacity and rate) is compared with a conventional model absorbent. Theoretical results on biogas upgrading are also provided. After ammonia recovery, the treated biogas slurry has significantly reduced phytotoxicity, improving the applicability for agricultural irrigation. The novel concept demonstrated in this study shows great potential in closing the CO 2 loop in biogas production by recycling ammonia as an absorbent for CO 2 absorption associated with producing fertilizers.

  4. Reduce, reuse, recycle: Acceptance of CO_2-utilization for plastic products

    International Nuclear Information System (INIS)

    Heek, Julia van; Arning, Katrin; Ziefle, Martina

    2017-01-01

    Global warming is a central threat for today's society caused by greenhouse gas emissions, mostly carbon dioxide emissions. Carbon dioxide capture and utilization (CCU) is a promising approach to reduce emissions and the use of expensive and limited fossil resources. Applying CCU, carbon dioxide (CO_2) can be incorporated as raw material during the manufacture of plastic products. While most of the studies address technical feasibilities, hardly any systematic research on public perception and acceptance of those specific products exists so far. This study empirically investigates the acceptance of CCU plastic products (mattress as example). First, interviews with experts and lay people revealed critical acceptance factors (CO_2 proportion, saving of fossil resources, disposal conditions, perceived health complaints). Their relative importance was detailed in two consecutive conjoint studies. Study 1 revealed disposal conditions and saving of fossil resources as essential for product selection, while the products’ CO_2 proportion was less important. In study 2, potential health complaints were integrated as well as individual levels of domain knowledge and risk perception, which significantly affected acceptance of CCU products. Recommendations concerning communication strategies for policy and industry were derived. - Highlights: • Study provides insights into the acceptance of specific CCU products. • Disposal conditions and savings of fossil resource are main drivers of acceptance. • Concerns about potential health effects act as major barrier especially for laypeople. • Perceived knowledge and risk perception affect CCU product acceptance. • Communication strategy recommendations for policy and industry are derived.

  5. Combining Microbial Enzyme Kinetics Models with Light Use Efficiency Models to Predict CO2 and CH4 Ecosystem Exchange from Flooded and Drained Peatland Systems

    Science.gov (United States)

    Oikawa, P. Y.; Jenerette, D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Baldocchi, D. D.

    2014-12-01

    Under California's Cap-and-Trade program, companies are looking to invest in land-use practices that will reduce greenhouse gas (GHG) emissions. The Sacramento-San Joaquin River Delta is a drained cultivated peatland system and a large source of CO2. To slow soil subsidence and reduce CO2 emissions, there is growing interest in converting drained peatlands to wetlands. However, wetlands are large sources of CH4 that could offset CO2-based GHG reductions. The goal of our research is to provide accurate measurements and model predictions of the changes in GHG budgets that occur when drained peatlands are restored to wetland conditions. We have installed a network of eddy covariance towers across multiple land use types in the Delta and have been measuring CO2 and CH4 ecosystem exchange for multiple years. In order to upscale these measurements through space and time we are using these data to parameterize and validate a process-based biogeochemical model. To predict gross primary productivity (GPP), we are using a simple light use efficiency (LUE) model which requires estimates of light, leaf area index and air temperature and can explain 90% of the observed variation in GPP in a mature wetland. To predict ecosystem respiration we have adapted the Dual Arrhenius Michaelis-Menten (DAMM) model. The LUE-DAMM model allows accurate simulation of half-hourly net ecosystem exchange (NEE) in a mature wetland (r2=0.85). We are working to expand the model to pasture, rice and alfalfa systems in the Delta. To predict methanogenesis, we again apply a modified DAMM model, using simple enzyme kinetics. However CH4 exchange is complex and we have thus expanded the model to predict not only microbial CH4 production, but also CH4 oxidation, CH4 storage and the physical processes regulating the release of CH4 to the atmosphere. The CH4-DAMM model allows accurate simulation of daily CH4 ecosystem exchange in a mature wetland (r2=0.55) and robust estimates of annual CH4 budgets. The LUE

  6. Artificial versus Natural Reuse of CO2 for DME Production: Are We Any Closer?

    Directory of Open Access Journals (Sweden)

    Mariano Martín

    2017-04-01

    Full Text Available This work uses a mathematical optimization approach to analyze and compare facilities that either capture carbon dioxide (CO2 artificially or use naturally captured CO2 in the form of lignocellulosic biomass toward the production of the same product, dimethyl ether (DME. In nature, plants capture CO2 via photosynthesis in order to grow. The design of the first process discussed here is based on a superstructure optimization approach in order to select technologies that transform lignocellulosic biomass into DME. Biomass is gasified; next, the raw syngas must be purified using reforming, scrubbing, and carbon capture technologies before it can be used to directly produce DME. Alternatively, CO2 can be captured and used to produce DME via hydrogenation. Hydrogen (H2 is produced by splitting water using solar energy. Facilities based on both photovoltaic (PV solar or concentrated solar power (CSP technologies have been designed; their monthly operation, which is based on solar availability, is determined using a multi-period approach. The current level of technological development gives biomass an advantage as a carbon capture technology, since both water consumption and economic parameters are in its favor. However, due to the area required for growing biomass and the total amount of water consumed (if plant growing is also accounted for, the decision to use biomass is not a straightforward one.

  7. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations

    Science.gov (United States)

    Treat, C.C.; Natali, Susan M.; Ernakovich, Jessica; Iverson, Colleen M.; Lupasco, Massimo; McGuire, A. David; Norby, Richard J.; Roy Chowdhury, Taniya; Richter, Andreas; Šantrůčková, Hana; Schädel, C.; Schuur, Edward A.G.; Sloan, Victoria L.; Turetsky, Merritt R.; Waldrop, Mark P.

    2015-01-01

    Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large-scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape-level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer-term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased

  8. Reducing CO2 Emissions in the Production of Porous Fired Clay Bricksks

    Directory of Open Access Journals (Sweden)

    Mikuláš ŠVEDA

    2017-08-01

    Full Text Available A plan to reduce CO2 emissions is a priority these days. Brick industry contributes to the increase of these emissions mainly through the use of combustible pore-forming agents such as sawdust, cellulose, and coal sludge. These agents are used to improve the thermal insulation properties of brick products, and the suppliers regularly increase the prices of these agents based on their high consumption. Therefore, in an effort to reduce raw material expenses and CO2 emissions, brick manufacturers are looking for new possibilities while maintaining the quality of their products. This article discusses the possibility of using industrially manufactured product Vuppor as an additive as a replacement for combustible pore-forming agents. The presence of this additive in the fired clay body increases the proportion of pores, especially with a size range between 0.1 and 5 µm, having a positive impact on the reduction of its thermal conductivity. With a 0.5 wt.% dose of Vuppor additive, the brick production costs and thermal conductivity can be reduced by 20 % and 12 %, respectively, while also achieving reductions in CO2 emissions over 60 %. Consequently, the combustible pore-forming agents can be used in a more environmentally friendly manner, for example in the furniture industry, the biogas production, and the like.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.15103

  9. Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms

    Science.gov (United States)

    Tang, Guoping; Zheng, Jianqiu; Xu, Xiaofeng; Yang, Ziming; Graham, David E.; Gu, Baohua; Painter, Scott L.; Thornton, Peter E.

    2016-09-01

    Soil organic carbon turnover to CO2 and CH4 is sensitive to soil redox potential and pH conditions. However, land surface models do not consider redox and pH in the aqueous phase explicitly, thereby limiting their use for making predictions in anoxic environments. Using recent data from incubations of Arctic soils, we extend the Community Land Model with coupled carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) enables us to approximately describe the observed pH evolution without additional parameterization. Although Fe(III) reduction is normally assumed to compete with methanogenesis, the model predicts that Fe(III) reduction raises the pH from acidic to neutral, thereby reducing environmental stress to methanogens and accelerating methane production when substrates are not limiting. The equilibrium speciation predicts a substantial increase in CO2 solubility as pH increases, and taking into account CO2 adsorption to surface sites of metal oxides further decreases the predicted headspace gas-phase fraction at low pH. Without adequate representation of these speciation reactions, as well as the impacts of pH, temperature, and pressure, the CO2 production from closed microcosms can be substantially underestimated based on headspace CO2 measurements only. Our results demonstrate the efficacy of geochemical models for simulating soil biogeochemistry and provide predictive understanding and mechanistic representations that can be incorporated into land surface models to improve climate predictions.

  10. Microbial community changes at a terrestrial volcanic CO2 vent induced by soil acidification and anaerobic microhabitats within the soil column.

    Science.gov (United States)

    Frerichs, Janin; Oppermann, Birte I; Gwosdz, Simone; Möller, Ingo; Herrmann, Martina; Krüger, Martin

    2013-04-01

    CO2 capture and storage (CCS) in deep geological formations is one option currently evaluated to reduce greenhouse gas emissions. Consequently, the impact of a possible CO2 leakage from a storage site into surface environments has to be evaluated. During such a hypothetical leakage event, the CO2 migrates upwards along fractures entering surface soils, a scenario similar to naturally occurring CO2 vents. Therefore, such a natural analogue site at the Laacher See was chosen for an ecosystem study on the effects of high CO2 concentrations on soil chemistry and microbiology. The microbial activities revealed differences in their spatial distribution and temporal variability for CO2 -rich and reference soils. Furthermore, the abundance of several functional and group-specific gene markers revealed further differences, for example, a decrease in Geobacteraceae and an increase in sulphate-reducing prokaryotes in the vent centre. Molecular-biological fingerprinting of the microbial communities with DGGE indicated a shift in the environmental conditions within the Laacher See soil column leading to anaerobic and potentially acidic microenvironments. Furthermore, the distribution and phylogenetic affiliation of the archaeal 16S rRNA genes, the presence of ammonia-oxidizing Archaea and the biomarker analysis revealed a predominance of Thaumarchaeota as possible indicator organisms for elevated CO2 concentrations in soils. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. On the mechanism of high product selectivity for HCOOH using Pb in CO2 electroreduction.

    Science.gov (United States)

    Back, Seoin; Kim, Jun-Hyuk; Kim, Yong-Tae; Jung, Yousung

    2016-04-14

    While achieving high product selectivity is one of the major challenges of the CO2 electroreduction technology in general, Pb is one of the few examples with high selectivity that produces formic acid almost exclusively (versus H2, CO, or other byproducts). In this work, we study the mechanism of CO2 electroreduction reactions using Pb to understand the origin of high formic acid selectivity. In particular, we first assess the proton-assisted mechanism proposed in the literature using density functional calculations and find that it cannot fully explain the previous selectivity experiments for the Pb electrode. We then suggest an alternative proton-coupled-electron-transfer mechanism consistent with existing observations, and further validate a new mechanism by experimentally measuring and comparing the onset potentials for CO2 reduction vs. H2 production. We find that the origin of a high selectivity of the Pb catalyst for HCOOH production over CO and H2 lies in the strong O-affinitive and weak C-, H-affinitive characteristics of Pb, leading to the involvement of the *OCHO species as a key intermediate to produce HCOOH exclusively and preventing unwanted H2 production at the same time.

  12. BioCO2 - a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products.

    Science.gov (United States)

    Skjånes, Kari; Lindblad, Peter; Muller, Jiri

    2007-10-01

    Many areas of algae technology have developed over the last decades, and there is an established market for products derived from algae, dominated by health food and aquaculture. In addition, the interest for active biomolecules from algae is increasing rapidly. The need for CO(2) management, in particular capture and storage is currently an important technological, economical and global political issue and will continue to be so until alternative energy sources and energy carriers diminish the need for fossil fuels. This review summarizes in an integrated manner different technologies for use of algae, demonstrating the possibility of combining different areas of algae technology to capture CO(2) and using the obtained algal biomass for various industrial applications thus bringing added value to the capturing and storage processes. Furthermore, we emphasize the use of algae in a novel biological process which produces H(2) directly from solar energy in contrast to the conventional CO(2) neutral biological methods. This biological process is a part of the proposed integrated CO(2) management scheme.

  13. Production of [11C]CO2 with gas target at low proton energies

    International Nuclear Information System (INIS)

    Sansaloni, Francesc; Lagares, Juan Ignacio; Llop, Jordi; Arce, Pedro; Díaz, Carlos; Pérez-Morales, José Manuel

    2013-01-01

    Nowadays the demand and the installation of self-shielded low-energy cyclotrons is growing, allowing the use of 11 C in many more centers. The aim of this study was the design of a new target and the evaluation of the production of 11 C as [ 11 C]CO 2 at low proton energies. The target was coupled to an IBA Cyclone-18/9 and the energy was decreased to 4–16 MeV. The newly designed target allowed the production of [ 11 C]CO 2 at different proton energies, and the results suggest that the cyclotron energy of Cyclone-18/9 is slightly higher than the nominal 18 MeV

  14. Caprock Integrity during Hydrocarbon Production and CO2 Injection in the Goldeneye Reservoir

    Science.gov (United States)

    Salimzadeh, Saeed; Paluszny, Adriana; Zimmerman, Robert

    2016-04-01

    Carbon Capture and Storage (CCS) is a key technology for addressing climate change and maintaining security of energy supplies, while potentially offering important economic benefits. UK offshore, depleted hydrocarbon reservoirs have the potential capacity to store significant quantities of carbon dioxide, produced during power generation from fossil fuels. The Goldeneye depleted gas condensate field, located offshore in the UK North Sea at a depth of ~ 2600 m, is a candidate for the storage of at least 10 million tons of CO2. In this research, a fully coupled, full-scale model (50×20×8 km), based on the Goldeneye reservoir, is built and used for hydro-carbon production and CO2 injection simulations. The model accounts for fluid flow, heat transfer, and deformation of the fractured reservoir. Flow through fractures is defined as two-dimensional laminar flow within the three-dimensional poroelastic medium. The local thermal non-equilibrium between injected CO2 and host reservoir has been considered with convective (conduction and advection) heat transfer. The numerical model has been developed using standard finite element method with Galerkin spatial discretisation, and finite difference temporal discretisation. The geomechanical model has been implemented into the object-oriented Imperial College Geomechanics Toolkit, in close interaction with the Complex Systems Modelling Platform (CSMP), and validated with several benchmark examples. Fifteen major faults are mapped from the Goldeneye field into the model. Modal stress intensity factors, for the three modes of fracture opening during hydrocarbon production and CO2 injection phases, are computed at the tips of the faults by computing the I-Integral over a virtual disk. Contact stresses -normal and shear- on the fault surfaces are iteratively computed using a gap-based augmented Lagrangian-Uzawa method. Results show fault activation during the production phase that may affect the fault's hydraulic conductivity

  15. CO2 Energy Reactor - Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization

    OpenAIRE

    Rafael M Santos; Pol CM Knops; Keesjan L Rijnsburger; Yi Wai eChiang

    2016-01-01

    To overcome the challenges of mineral CO2 sequestration, Innovation Concepts B.V. is developing a unique proprietary gravity pressure vessel (GPV) reactor technology and has focussed on generating reaction products of high economic value. The GPV provides intense process conditions through hydrostatic pressurization and heat exchange integration that harvests exothermic reaction energy, thereby reducing energy demand of conventional reactor designs, in addition to offering other benefits. In ...

  16. Production of hydrogen through the carbonation-calcination reaction applied to CH4/CO2 mixtures

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Corradetti, A.; Desideri, U.

    2007-01-01

    The production of hydrogen combined with carbon capture represents a possible option for reducing CO 2 emissions in atmosphere and anthropogenic greenhouse effect. Nowadays the worldwide hydrogen production is based mainly on natural gas reforming, but the attention of the scientific community is focused also on other gas mixtures with significant methane content. In particular mixtures constituted mainly by methane and carbon dioxide are extensively used in energy conversion applications, as they include land-fill gas, digester gas and natural gas. The present paper addresses the development of an innovative system for hydrogen production and CO 2 capture starting from these mixtures. The plant is based on steam methane reforming, coupled with the carbonation and calcination reactions for CO 2 absorption and desorption, respectively. A thermodynamic approach is proposed to investigate the plant performance in relation to the CH 4 content in the feeding gas. The results suggest that, in order to optimize the hydrogen purity and the efficiency, two different methodologies can be adopted involving both the system layout and operating parameters. In particular such methodologies are suitable for a methane content, respectively, higher and lower than 65%

  17. Oxygen isotope anomaly in tropospheric CO2 and implications for CO2 residence time in the atmosphere and gross primary productivity.

    Science.gov (United States)

    Liang, Mao-Chang; Mahata, Sasadhar; Laskar, Amzad H; Thiemens, Mark H; Newman, Sally

    2017-10-13

    The abundance variations of near surface atmospheric CO 2 isotopologues (primarily 16 O 12 C 16 O, 16 O 13 C 16 O, 17 O 12 C 16 O, and 18 O 12 C 16 O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO 2 biogeochemical cycles, Δ 17 O (=ln(1 + δ 17 O) - 0.516 × ln(1 + δ 18 O)) provides an alternative constraint on the strengths of the associated cycles involving CO 2 . Here, we analyze Δ 17 O data from four places (Taipei, Taiwan; South China Sea; La Jolla, United States; Jerusalem, Israel) in the northern hemisphere (with a total of 455 measurements) and find a rather narrow range (0.326 ± 0.005‰). A conservative estimate places a lower limit of 345 ± 70 PgC year -1 on the cycling flux between the terrestrial biosphere and atmosphere and infers a residence time of CO 2 of 1.9 ± 0.3 years (upper limit) in the atmosphere. A Monte Carlo simulation that takes various plant uptake scenarios into account yields a terrestrial gross primary productivity of 120 ± 30 PgC year -1 and soil invasion of 110 ± 30 PgC year -1 , providing a quantitative assessment utilizing the oxygen isotope anomaly for quantifying CO 2 cycling.

  18. Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2

    Science.gov (United States)

    Donald R. Zak; Kurt S. Pregitzer; Mark E. Kubiske; Andrew J. Burton

    2011-01-01

    The accumulation of anthropogenic CO2 in the Earth's atmosphere, and hence the rate of climate warming, is sensitive to stimulation of plant growth by higher concentrations of atmospheric CO2. Here, we synthesise data from a field experiment in which three developing northern forest communities have been exposed to...

  19. Products of Dark CO2 Fixation in Pea Root Nodules Support Bacteroid Metabolism 1

    Science.gov (United States)

    Rosendahl, Lis; Vance, Carroll P.; Pedersen, Walther B.

    1990-01-01

    Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix−) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate

  20. Spectral Analysis of CO2 Corrosion Product Scales on 13Cr Tubing Steel

    International Nuclear Information System (INIS)

    Guan-fa, Lin; Zhen-quan, Bai; Yao-rong, Feng; Xun-yuan, Xu

    2008-01-01

    CO 2 corrosion product scales formed on 13 Cr tubing steel in autoclave and in the simulated corrosion environment of oil field are investigated in the paper. The surface and cross-section profiles of the scales were observed by scanning electron microscopy (SEM), the chemical compositions of the scales were analyzed using energy dispersion analyzer of X-ray (EDAX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to confirm the corrosion mechanism of the 13 Cr steel in the simulated CO 2 corrosion environment. The results show that the corrosion scales are formed by the way of fashion corrosion, consist mainly of four elements, i.e. Fe, Cr, C and O, and with a double-layer structure, in which the surface layer is constituted of bulky and incompact crystals of FeCO 3 , and the inner layer is composed of compact fine FeCO 3 crystals and amorphous Cr(OH) 3 . Because of the characteristics of compactness and ionic permeating selectivity of the inner layer of the corrosion product scales, 13 Cr steel is more resistant in CO 2 corrosion environment

  1. Production of activated carbons from coffee endocarp by CO2 and steam activation

    International Nuclear Information System (INIS)

    Nabais, Joao M. Valente; Nunes, Pedro; Carrott, Peter J.M.; Ribeiro Carrott, M. Manuela L.; Garcia, A. Macias; Diaz-Diez, M.A.

    2008-01-01

    In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO 2 was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO 2 activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si-H bonds. (author)

  2. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Roberta Machado Santos

    2014-08-01

    Full Text Available The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian were compared. Cultivars were grown in growth chambers at three temperatures (day/night: 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × 2 factorial arrangement with three replications. There were interactions between buffel grass cultivars and air temperatures on leaf elongation rate (LER, leaf appearance rate (LAR, leaf lifespan (LL and senescence rate (SR, whereas cultivars vs. carbon dioxide concentration affected forage mass (FM, root mass (RM, shoot/root ratio, LL and SR. Leaf elongation rate and SR were higher as the air temperature was raised. Increasing air temperature also promoted an increase in LAR, except for West Australian. High CO2 concentration provided greater SR of plants, except for Biloela. Cultivar West Australian had higher FM in relation to Biloela and Aridus when the CO2 concentration was increased to 550 µmol mol-1. West Australian was the only cultivar that responded with more forage mass when it was exposed to higher carbon dioxide concentrations, whereas Aridus had depression in forage mass. The increase in air temperatures affects morphogenetic responses of buffel grass, accelerating its vegetative development without increasing forage mass. Elevated carbon dioxide concentration changes productive responses of buffel grass.

  3. CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel

    2003-12-15

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane

  4. Understorey productivity in temperate grassy woodland responds to soil water availability but not to elevated [CO2 ].

    Science.gov (United States)

    Collins, Luke; Bradstock, Ross A; Resco de Dios, Victor; Duursma, Remko A; Velasco, Sabrina; Boer, Matthias M

    2018-06-01

    Rising atmospheric [CO 2 ] and associated climate change are expected to modify primary productivity across a range of ecosystems globally. Increasing aridity is predicted to reduce grassland productivity, although rising [CO 2 ] and associated increases in plant water use efficiency may partially offset the effect of drying on growth. Difficulties arise in predicting the direction and magnitude of future changes in ecosystem productivity, due to limited field experimentation investigating climate and CO 2 interactions. We use repeat near-surface digital photography to quantify the effects of water availability and experimentally manipulated elevated [CO 2 ] (eCO 2 ) on understorey live foliage cover and biomass over three growing seasons in a temperate grassy woodland in south-eastern Australia. We hypothesised that (i) understorey herbaceous productivity is dependent upon soil water availability, and (ii) that eCO 2 will increase productivity, with greatest stimulation occurring under conditions of low water availability. Soil volumetric water content (VWC) determined foliage cover and growth rates over the length of the growing season (August to March), with low VWC (productivity. However, eCO 2 did not increase herbaceous cover and biomass over the duration of the experiment, or mitigate the effects of low water availability on understorey growth rates and cover. Our findings suggest that projected increases in aridity in temperate woodlands are likely to lead to reduced understorey productivity, with little scope for eCO 2 to offset these changes. © 2018 John Wiley & Sons Ltd.

  5. Steelmaking plants: towards lower energy consumption and lower CO2 production using more electricity

    International Nuclear Information System (INIS)

    Nicolle, R.

    2010-01-01

    Production processes of integrated steel plants, mostly based on coal as an energy source, produce about 2 tons of CO 2 per ton of steel. As specific CO 2 production has to be decreased by 20% in the mid-term (2020), immediate action is required to further decrease the specific energy consumption. The integrated plant is not energy self-sufficient as extra electricity must be bought from outside, but on the other hand, produces an excess of process gas that has to be used within the plant. Optimisation of the use of the internally produced gases is a key issue as either they are burned at the power plant with a conversion yield to electricity of about 40% and often much lower, or might be valued in the plant internal heat exchangers with a much higher efficiency such as ∼90% in the hot stoves or ∼65% or more in the present reheating furnaces. This paper shows that using the high-value coke oven gas as a chemical reactant (for DRI production) leads to significant extra metal production. From a global viewpoint, this extra metal production is almost carbon-free, as it requires only electricity for its manufacture. (author)

  6. Climate dependence of the CO2 fertilization effect on terrestrial net primary production

    International Nuclear Information System (INIS)

    Alexandrov, G.A.; Yamagata, Y.; Oikawa, T.

    2003-01-01

    The quantitative formulation of the fertilization effect of CO 2 enrichment on net primary production (NPP) introduced by Keeling and Bacastow in 1970s (known as Keeling's formula) has been recognized as a summary of experimental data and has been used in various assessments of the industrial impact on atmospheric chemistry. Nevertheless, the magnitude of the formula's key coefficient, the so-called growth factor, has remained open to question. Some of the global carbon cycle modelers avoid this question by tuning growth factor and choosing the value that fits the observed course of atmospheric CO 2 changes. However, for mapping terrestrial sinks induced by the CO 2 fertilization effect one needs a geographical pattern of the growth factor rather than its globally averaged value. The earlier approach to this problem involved formulating the climate dependence of the growth factor and the derivation of its global pattern from climatic variables (whose geographical distribution is known). We use a process-based model (TsuBiMo) for this purpose and derive the values of growth factor for major biomes for comparison our approach with the earlier studies. Contrary to the earlier prevailing opinion, TsuBiMo predicts that these values decrease with mean annual temperature (excluding biomes of limited water supply). We attribute this result to the effect of light limitation caused by mutual shading inside a canopy, which was considered earlier as unimportant, and conclude that current hypotheses about CO 2 fertilization effect (and thus projections of the related carbon sink) are very sensitive to the choice of driving forces taken into account

  7. Hydrogen production from food wastes and gas post-treatment by CO2 adsorption

    International Nuclear Information System (INIS)

    Redondas, V.; Gómez, X.; García, S.; Pevida, C.; Rubiera, F.; Morán, A.; Pis, J.J.

    2012-01-01

    Highlights: ► The dark fermentation process of food wastes was studied over an extended period. ► Decreasing the HRT of the process negatively affected the specific gas production. ► Adsorption of CO 2 was successfully attained using a biomass type activated carbon. ► H 2 concentration in the range of 85–95% was obtained for the treated gas-stream. - Abstract: The production of H 2 by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H 2 streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO 2 from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H 2 yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H 2 producing microflora leading to a reduction in specific H 2 production. Adsorption of CO 2 from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H 2 S onto the activated carbon also took place, there being no evidence of H 2 S present in the bio-H 2 exiting the column. Nevertheless, the concentration of H 2 S was very low, and this co-adsorption did not affect the CO 2

  8. Does Export Product Quality Matter for CO2 Emissions? Evidence from China

    OpenAIRE

    Gozgor, Giray; Can, Muhlis

    2016-01-01

    This paper re-estimates the environmental Kuznets curve over the period 1971–2010 in China. To this end, it uses the unit root tests with one structural break and the autoregressive-distributed lag (ARDL) estimations. The special role is given to the impacts of export product quality and energy consumption on CO2 emissions in the empirical models. The paper finds that the environmental Kuznets curve hypothesis is valid in China. It also observes the positive effect from energy consumption to ...

  9. Highly efficient photochemical HCOOH production from CO2 and water using an inorganic system

    Directory of Open Access Journals (Sweden)

    Satoshi Yotsuhashi

    2012-12-01

    Full Text Available We have constructed a system that uses solar energy to react CO2 with water to generate formic acid (HCOOH at an energy conversion efficiency of 0.15%. It consists of an AlGaN/GaN anode photoelectrode and indium (In cathode that are electrically connected outside of the reactor cell. High energy conversion efficiency is realized due to a high quantum efficiency of 28% at 300 nm, attributable to efficient electron-hole separation in the semiconductor's heterostructure. The efficiency is close to that of natural photosynthesis in plants, and what is more, the reaction product (HCOOH can be used as a renewable energy source.

  10. Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation

    Science.gov (United States)

    Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.

    1999-01-01

    Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.

  11. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil.

    Science.gov (United States)

    Hayden, Helen L; Mele, Pauline M; Bougoure, Damian S; Allan, Claire Y; Norng, Sorn; Piceno, Yvette M; Brodie, Eoin L; Desantis, Todd Z; Andersen, Gary L; Williams, Amity L; Hovenden, Mark J

    2012-12-01

    The microbial community structure of bacteria, archaea and fungi is described in an Australian native grassland soil after more than 5 years exposure to different atmospheric CO2 concentrations ([CO2]) (ambient, +550 ppm) and temperatures (ambient, + 2°C) under different plant functional types (C3 and C4 grasses) and at two soil depths (0-5 cm and 5-10 cm). Archaeal community diversity was influenced by elevated [CO2], while under warming archaeal 16S rRNA gene copy numbers increased for C4 plant Themeda triandra and decreased for the C3 plant community (P fungi in soil responded differently to elevated [CO2], warming and their interaction. Taxa identified as significantly climate-responsive could show differing trends in the direction of response ('+' or '-') under elevated CO2 or warming, which could then not be used to predict their interactive effects supporting the need to investigate interactive effects for climate change. The approach of focusing on specific taxonomic groups provides greater potential for understanding complex microbial community changes in ecosystems under climate change. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Relative estimates of TCA cycle pool size from 14CO2 production profiles

    International Nuclear Information System (INIS)

    Kelleher, J.K.; Cesta, M.L.; Holleran, A.L.

    1986-01-01

    In metabolic and isotopic steady state, the rate of 14 CO 2 production by TCA cycle intermediates labeled at different positions is linear. However, before the system reaches isotopic steady state, the rate of 14 CO 2 production is non-linear. The x-intercept extrapolated from the linear phase indicates the turnover rate of all metabolic pools the tracer must pass through. By exposing identical systems to 14 C succinate labeled in different positions, the contribution of TCA cycle pools to the non-linear phase may be considered. Specifically, the extrapolated x-intercept for [2,3 14 C] succinate will be greater than the x-intercept for [1,4 14 C] succinate if the TCA cycle pools are a contributing factor to the non-linear phase. The authors have used this method to analyze pyruvate oxidation in AS 30D hepatoma cells. They found that the extrapolated x-intercepts for the two tracers were identical. This indicates that the non-linear phase resulted from equilibration of the tracer with pools prior to entering the TCA cycle, i.e. lactate. Using this technique, it may be possible to estimate the variations in TCA cycle pool sizes in vivo

  13. Production of CO2 in crude oil bioremediation in clay soil

    Directory of Open Access Journals (Sweden)

    Sandro José Baptista

    2005-06-01

    Full Text Available The aim of the present work was to evaluate the biodegradation of petroleum hydrocarbons in clay soil a 45-days experiment. The experiment was conducted using an aerobic fixed bed reactor, containing 300g of contaminated soil at room temperature with an air rate of 6 L/h. The growth medium was supplemented with 2.5% (w/w (NH42SO4 and 0.035% (w/w KH2PO4. Biodegradation of the crude oil in the contaminated clay soil was monitored by measuring CO2 production and removal of organic matter (OM, oil and grease (OandG, and total petroleum hydrocarbons (TPH, measured before and after the 45-days experiment, together with total heterotrophic and hydrocarbon-degrading bacterial count. The best removals of OM (50%, OandG (37% and TPH (45% were obtained in the bioreactors in which the highest CO2 production was achieved.O objetivo do trabalho foi avaliar a biodegradação de petróleo em solo argiloso durante 45 dias de ensaios. Os ensaios de biodegradação foram conduzidos em biorreatores aeróbios de leito fixo, com 300 g de solo contaminado, à temperatura ambiente e com uma vazão de ar de 6 L/h. As deficiências nutricionais foram corrigidas com 2,5% (p/p (NH42SO4 e com 0,035% (p/p KH2PO4. O monitoramento foi realizado em função da produção de CO2, da remoção de matéria orgânica (OM, de óleos e graxas (OandG e de hidrocarbonetos totais de petróleo (TPH, além bactérias heterotróficas totais (BHT e hidrocarbonoclásticas (BHc, no início e após 45 dias. Nos biorreatores onde houve maior crescimento de bactérias hidrocarbonoclásticas e maior produção de CO2, obteve-se os melhores percentuais de remoções de MO (50%, OandG (37% e TPH (45%.

  14. Novel CO2 Separation and Methanation for Oxygen and Fuel Production, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes a novel efficient, compact, and lightweight MicrolithREG-based CO2 separator and methanation reactor to separate CO2 from...

  15. High-frequency productivity estimates for a lake from free-water CO2 concentration measurements

    Science.gov (United States)

    Provenzale, Maria; Ojala, Anne; Heiskanen, Jouni; Erkkilä, Kukka-Maaria; Mammarella, Ivan; Hari, Pertti; Vesala, Timo

    2018-04-01

    Lakes are important actors in biogeochemical cycles and a powerful natural source of CO2. However, they are not yet fully integrated in carbon global budgets, and the carbon cycle in the water is still poorly understood. In freshwater ecosystems, productivity studies have usually been carried out with traditional methods (bottle incubations, 14C technique), which are imprecise and have a poor temporal resolution. Consequently, our ability to quantify and predict the net ecosystem productivity (NEP) is limited: the estimates are prone to errors and the NEP cannot be parameterised from environmental variables. Here we expand the testing of a free-water method based on the direct measurement of the CO2 concentration in the water. The approach was first proposed in 2008, but was tested on a very short data set (3 days) under specific conditions (autumn turnover); despite showing promising results, this method has been neglected by the scientific community. We tested the method under different conditions (summer stratification, typical summer conditions for boreal dark-water lakes) and on a much longer data set (40 days), and quantitatively validated it comparing our data and productivity models. We were able to evaluate the NEP with a high temporal resolution (minutes) and found a very good agreement (R2 ≥ 0.71) with the models. We also estimated the parameters of the productivity-irradiance (PI) curves that allow the calculation of the NEP from irradiance and water temperature. Overall, our work shows that the approach is suitable for productivity studies under a wider range of conditions, and is an important step towards developing this method so that it becomes more widely used.

  16. Electricity production from microbial fuel cell by using yeast

    International Nuclear Information System (INIS)

    Vorasingha, A.; Souvakon, C.; Boonchom, K.

    2006-01-01

    The continuous search for methods to generate electricity from renewable sources such as water, solar energy, wind, nuclear or chemicals was discussed with particular focus on attaining the full power of the microbial fuel cell (MFC). Under ideal environmental conditions, the only byproducts of a biofuel cell would be water and carbon dioxide (CO 2 ). The production of energy from renewables such as biomass is important for sustainable development and reducing global emissions of CO 2 . Hydrogen can also be an important component of an energy infrastructure that reduces CO 2 emissions if the hydrogen is produced from renewable sources and used in fuel cells. Hydrogen gas can be biologically produced at high concentration from the fermentation of high sugar substrates such as glucose and sucrose. Some of the issues of MFC design were addressed, including the use of cheap substrates to derive microbial electricity. In the MFC, yeast donates electrons to a chemical electron mediator, which in turn transfers the electrons to an electrode, producing electricity. Experimental results showed that glucose yielded the highest peak voltage, but a semi-processed sugar and molasses were similar to glucose in the electricity production pattern. It was noted that this technology is only at the research stages, and more research is needed before household microbial fuel cells can be made available for producing power for prolonged periods of time. Future research efforts will focus on increasing the efficiency, finding alternatives to hazardous electron mediators and finding new microbes. 12 refs., 6 figs

  17. Some non-thermal microbial inactivation methods in dairy products

    International Nuclear Information System (INIS)

    Yangilar, F.; Kabil, E.

    2013-01-01

    During the production of dairy products, some thermal processes such as pasteurization and sterilization are used commonly to inactive microorganisms. But as a result of thermal processes, loss of nutrient and aroma, non-enzymatic browning and organoleptic differentiation especially in dairy products are seen. Because of this, alternative methods are needed to provide microbial inactivation and as major problems are caused by high temperatures, non-thermal processes are focused on. For this purpose, some methods such as high pressure (HP), pulsed light (PL), ultraviolet radiation (UV), supercritical carbon dioxide (SC-CO2) or pulsed electric field (PEF) are used in food. These methods products are processed in ambient temperature and so not only mentioned losses are minimized but also freshness and naturality of products can be preserved. In this work, we will try to be given information about methods of non-thermal microbial inactivation of dairy products. (author) [tr

  18. Enhanced simulations of CH4 and CO2 production in permafrost-affected soils address soil moisture controls on anaerobic decomposition

    Science.gov (United States)

    Graham, D. E.; Zheng, J.; Moon, J. W.; Painter, S. L.; Thornton, P. E.; Gu, B.; Wullschleger, S. D.

    2017-12-01

    Rapid warming of Arctic ecosystems exposes soil organic carbon (SOC) to accelerated microbial decomposition, leading to increased emissions of carbon dioxide (CO2) and methane (CH4) that have a positive feedback on global warming. The magnitude, timing, and form of carbon release will depend not only on changes in temperature, but also on biogeochemical and hydrological properties of soils. In this synthesis study, we assessed the decomposability of thawed organic carbon from active layer soils and permafrost from the Barrow Environmental Observatory across different microtopographic positions under anoxic conditions. The main objectives of this study were to (i) examine environmental conditions and soil properties that control anaerobic carbon decomposition and carbon release (as both CO2 and CH4); (ii) develop a common set of parameters to simulate anaerobic CO2 and CH4 production; and (iii) evaluate uncertainties generated from representations of pH and temperature effects in the current model framework. A newly developed anaerobic carbon decomposition framework simulated incubation experiment results across a range of soil water contents. Anaerobic CO2 and CH4 production have different temperature and pH sensitivities, which are not well represented in current biogeochemical models. Distinct dynamics of CH4 production at -2° C suggest methanogen biomass and growth rate limit activity in these near-frozen soils, compared to warmer temperatures. Anaerobic CO2 production is well constrained by the model using data-informed labile carbon pool and fermentation rate initialization to accurately simulate its temperature sensitivity. On the other hand, CH4 production is controlled by water content, methanogenesis biomass, and the presence of alternative electron acceptors, producing a high temperature sensitivity with large uncertainties for methanogenesis. This set of environmental constraints to methanogenesis is likely to undergo drastic changes due to permafrost

  19. Evaluation of the influence of CO2 on hydrogen production by Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Willquist, K.; Claassen, P.A.M.; Niel, van E.W.J.

    2009-01-01

    Stripping gas is generally used to improve hydrogen yields in fermentations. Since CO2 is relatively easy to separate from hydrogen it could be an interesting stripping gas. However, a higher partial CO2 pressure is accompanied with an increased CO2 uptake in the liquid, where it hydrolyses and

  20. Modeling soil CO2 production and transport to investigate the intra-day variability of surface efflux and soil CO2 concentration measurements in a scots pine forest (Pinus Sylvestris, L.)

    OpenAIRE

    Goffin, Stéphanie; Wylock, Christophe; Haut, Benoît; Maier, Martin; Longdoz, Bernard; Aubinet, Marc

    2015-01-01

    Aimed:The main aim of this study is to improve the mechanistic understanding of soil CO2 efflux (Fs), especially its temporal variation at short-time scales, by investigating, through modeling, which underlying process among CO2 production and its transport up to the atmosphere is responsible for observed intra-day variation of Fs and soil CO2 concentration [CO2].Methods:In this study, a measurement campaign of Fs and vertical soil [CO2] profiles was conducted in a Scots Pine Forest soil in H...

  1. High-frequency productivity estimates for a lake from free-water CO2 concentration measurements

    Directory of Open Access Journals (Sweden)

    M. Provenzale

    2018-04-01

    Full Text Available Lakes are important actors in biogeochemical cycles and a powerful natural source of CO2. However, they are not yet fully integrated in carbon global budgets, and the carbon cycle in the water is still poorly understood. In freshwater ecosystems, productivity studies have usually been carried out with traditional methods (bottle incubations, 14C technique, which are imprecise and have a poor temporal resolution. Consequently, our ability to quantify and predict the net ecosystem productivity (NEP is limited: the estimates are prone to errors and the NEP cannot be parameterised from environmental variables. Here we expand the testing of a free-water method based on the direct measurement of the CO2 concentration in the water. The approach was first proposed in 2008, but was tested on a very short data set (3 days under specific conditions (autumn turnover; despite showing promising results, this method has been neglected by the scientific community. We tested the method under different conditions (summer stratification, typical summer conditions for boreal dark-water lakes and on a much longer data set (40 days, and quantitatively validated it comparing our data and productivity models. We were able to evaluate the NEP with a high temporal resolution (minutes and found a very good agreement (R2 ≥ 0.71 with the models. We also estimated the parameters of the productivity–irradiance (PI curves that allow the calculation of the NEP from irradiance and water temperature. Overall, our work shows that the approach is suitable for productivity studies under a wider range of conditions, and is an important step towards developing this method so that it becomes more widely used.

  2. Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination

    Science.gov (United States)

    Tao, Fulu; Feng, Zhaozhong; Tang, Haoye; Chen, Yi; Kobayashi, Kazuhiko

    2017-03-01

    Air pollution and climate change are increasing threats to agricultural production and food security. Extensive studies have focused on the effect of climate change, but the interactive effects of multiple global change factors are poorly understood. Here, we incorporate the interactions between climate change, carbon dioxide (CO2) and ozone (O3) into an eco-physiological mechanistic model based on three years of O3 Free-Air Concentration Elevation (O3-FACE) experiments. We then investigate the effects of climate change, elevated CO2 concentration ([CO2]) and rising O3 concentration ([O3]) on wheat growth and productivity in eastern China in 1996-2005 (2000s) and 2016-2025 (2020s) under two climate change scenarios, singly and in combination. We find the interactive effects of climate change, CO2 and O3 on wheat productivity have spatially explicit patterns; the effect of climate change dominates the general pattern, which is however subject to the large uncertainties of climate change scenarios. Wheat productivity is estimated to increase by 2.8-9.0% due to elevated [CO2] however decline by 2.8-11.7% due to rising [O3] in the 2020s, relative to the 2000s. The combined effects of CO2 and O3 are less than that of O3 only, on average by 4.6-5.2%, however with O3 damage outweighing CO2 benefit in most of the region. This study demonstrates a more biologically meaningful and appropriate approach for assessing the interactive effects of climate change, CO2 and O3 on crop growth and productivity. Our findings promote the understanding on the interactive effects of multiple global change factors across contrasting climate conditions, cast doubt on the potential of CO2 fertilization effect in offsetting possible negative effect of climate change on crop productivity as suggested by many previous studies.

  3. Production of Polystyrene Open-celled Microcellular Foam in Batch Process by Super Critical CO2

    Directory of Open Access Journals (Sweden)

    M.S. Enayati

    2010-12-01

    Full Text Available Open-celled foams are capable to allow the passage of fluids through their structure, because of interconnections between the open cells or bubbles and therefore these structures can be used as a membrane and filter. In thiswork, we have studied the production of polystyrene open-celled microcellular foam by using CO2 as blowing agent. To achieve such structures, it is necessary to control the stages of growth in such a way that the cells would connect to each other through the pores without any coalescence. The required processing condition to achieve open-celled structures is predictable by a model theory of opened-cell. This model suggests that at least a 130 bar saturation pressure and foaming time between 9 and 58 s are required for this system. The temperature range has been selected for to be both higher than polymer glass transition temperature and facilitating the foaming process. Experimental results in the batch foaming process has verified the model quite well. The SEM and mercury porousimetry tests show the presence of pores between the cells with open-celled structure. Experimental results show that by increasing the saturation pressure and the foaming temperature, there is a drop in the time required for open-celled structure formation. A 130 bar saturation pressure, 150o C foaming temperature and 60 s foaming time, suggest the attainment of open-celled microcellular foam based on polystyrene/CO2 system in the batch process.

  4. Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O

    DEFF Research Database (Denmark)

    Johansen, Anders; Carter, Mette Sustmann; Jensen, Erik S.

    2013-01-01

    ) anaerobically digested cattle slurry/grass-clover, or (5) fresh grass-clover was applied to soil at arable realistic rates. Experimental unites were sequentially sampled destructively after 1, 3 and 9 days of incubation and the soil assayed for content of mineral N, available organic C, emission of CO2 and N2O......, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (functional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO3− ca. 30–40% compared to when raw cattle slurry was applied. Grass-clover contributed...... with four times more readily degradable organic C than the other materials, causing an increased microbial biomass which depleted the soil for mineral N and probably also O2. Consequently, grass-clover also caused a ∼10 times increase in emissions of CO2 and N2O greenhouse gasses compared to any...

  5. Productivity and CO2 exchange of Great Plains ecoregions. I. Shortgrass steppe: Flux tower estimates

    Science.gov (United States)

    Gilmanov, Tagir G.; Morgan, Jack A.; Hanan, Niall P.; Wylie, Bruce K.; Rajan, Nithya; Smith, David P.; Howard, Daniel M.

    2017-01-01

    The shortgrass steppe (SGS) occupies the southwestern part of the Great Plains. Half of the land is cultivated, but significant areas remain under natural vegetation. Despite previous studies of the SGS carbon cycle, not all aspects have been completely addressed, including gross productivity, ecosystem respiration, and ecophysiological parameters. Our analysis of 1998 − 2007 flux tower measurements at five Bowen ratio–energy balance (BREB) and three eddy covariance (EC) sites characterized seasonal and interannual variability of gross photosynthesis and ecosystem respiration. Identification of the nonrectangular hyperbolic equation for the diurnal CO2 exchange, with vapor pressure deficit (VPD) limitation and exponential temperature response, quantified quantum yield α, photosynthetic capacity Amax, and respiration rate rd with variation ranges (19 \\production from − 900 to + 700 g CO2 m− 2 yr− 1, indicating that SGS may switch from a sink to a source depending on weather. Comparison of the 2004 − 2006 measurements at two BREB and two parallel EC flux towers located at comparable SGS sites showed moderately higher photosynthesis, lower respiration, and higher net production at the BREB than EC sites. However, the difference was not related only to methodologies, as the normalized difference vegetation index at the BREB sites was higher than at the EC sites. Overall magnitudes and seasonal patterns at the BREB and the EC sites during the 3-yr period were similar, with trajectories within the ± 1.5 standard deviation around the mean of the four sites and mostly reflecting the effects of meteorology.

  6. Relating Nimbus-7 37 GHz data to global land-surface evaporation, primary productivity and the atmospheric CO2 concentration

    Science.gov (United States)

    Choudhury, B. J.

    1988-01-01

    Global observations at 37 GHz by the Nimbus-7 SMMR are related to zonal variations of land surface evaporation and primary productivity, as well as to temporal variations of atmospheric CO2 concentration. The temporal variation of CO2 concentration and the zonal variations of evaporation and primary productivity are shown to be highly correlated with the satellite sensor data. The potential usefulness of the 37-GHz data for global biospheric and climate studies is noted.

  7. Effect of different CO2 concentrations on biomass, pigment content, and lipid production of the marine diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Sabia, Alessandra; Clavero, Esther; Pancaldi, Simonetta; Salvadó Rovira, Joan

    2018-02-01

    The marine diatom Thalassiosira pseudonana grown under air (0.04% CO 2 ) and 1 and 5% CO 2 concentrations was evaluated to determine its potential for CO 2 mitigation coupled with biodiesel production. Results indicated that the diatom cultures grown at 1 and 5% CO 2 showed higher growth rates (1.14 and 1.29 div day -1 , respectively) and biomass productivities (44 and 48 mg AFDW L -1  day -1 ) than air grown cultures (with 1.13 div day -1 and 26 mg AFDW L -1  day -1 ). The increase of CO 2 resulted in higher cell volume and pigment content per cell of T. pseudonana. Interestingly, lipid content doubled when air was enriched with 1-5% CO 2 . Moreover, the analysis of the fatty acid composition of T. pseudonana revealed the predominance of monounsaturated acids (palmitoleic-16:1 and oleic-18:1) and a decrease of the saturated myristic acid-14:0 and polyunsaturated fatty acids under high CO 2 levels. These results suggested that T. pseudonana seems to be an ideal candidate for biodiesel production using flue gases.

  8. CO_2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index

    International Nuclear Information System (INIS)

    Emrouznejad, Ali; Yang, Guo-liang

    2016-01-01

    Climate change has become one of the most challenging issues facing the world. Chinese government has realized the importance of energy conservation and prevention of the climate changes for sustainable development of China's economy and set targets for CO_2 emissions reduction in China. In China industry contributes 84.2% of the total CO_2 emissions, especially manufacturing industries. Data envelopment analysis (DEA) and Malmquist productivity (MP) index are the widely used mathematical techniques to address the relative efficiency and productivity of a group of homogenous decision making units, e.g. industries or countries. However, in many real applications, especially those related to energy efficiency, there are often undesirable outputs, e.g. the pollutions, waste and CO_2 emissions, which are produced inevitably with desirable outputs in the production. This paper introduces a novel Malmquist–Luenberger productivity (MLP) index based on directional distance function (DDF) to address the issue of productivity evolution of DMUs in the presence of undesirable outputs. The new RAM (Range-adjusted measure)-based global MLP index has been applied to evaluate CO_2 emissions reduction in Chinese light manufacturing industries. Recommendations for policy makers have been discussed. - Highlights: •CO_2 emissions reduction in Chinese light manufacturing industries are measured. •A novel RAM based Malmquist–Luenberger productivity index has been developed. •Recommendation to policy makers for reducing CO_2 reduction in China are given.

  9. Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal

    Science.gov (United States)

    Acetone butanol ethanol (ABE) was produced in an integrated continuous fermentation and product recovery system using a microbial strain Clostridium beijerinckii BA101 for ABE production and fermentation gases (CO2 and H2) for product removal by gas stripping. This represents a continuation of our ...

  10. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for methane hydrate production using N2/CO2 injection

    International Nuclear Information System (INIS)

    Lim, Dongwook; Ro, Hyeyoon; Seo, Yongwon; Seo, Young-ju; Lee, Joo Yong; Kim, Se-Joon; Lee, Jaehyoung; Lee, Huen

    2017-01-01

    Highlights: • We examine the thermodynamic stability and guest distribution of CH 4 /N 2 /CO 2 mixed hydrates. • Phase equilibria of the CH 4 /N 2 /CO 2 mixed hydrates were measured to determine the thermodynamic stability. • The N 2 /CO 2 ratio of the hydrate phase is almost constant despite the enrichment of CO 2 in the hydrate phase. • 13 C NMR results indicate the preferential occupation of N 2 and CO 2 in the small and large cages of sI hydrates, respectively. - Abstract: In this study, thermodynamic stability and cage occupation behavior in the CH 4 – CO 2 replacement, which occurs in natural gas hydrate reservoirs by injecting flue gas, were investigated with a primary focus on phase equilibria and composition analysis. The phase equilibria of CH 4 /N 2 /CO 2 mixed hydrates with various compositions were measured to determine the thermodynamic stability of gas hydrate deposits replaced by N 2 /CO 2 gas mixtures. The fractional experimental pressure differences (Δp/p) with respect to the CSMGem predictions were found to range from −0.11 to −0.02. The composition analysis for various feed gas mixtures with a fixed N 2 /CO 2 ratio (4.0) shows that CO 2 is enriched in the hydrate phase, and the N 2 /CO 2 ratio in the hydrate phase is independent of the feed CH 4 fractions. Moreover, 13 C NMR measurements indicate that N 2 molecules preferentially occupy the small 5 12 cages of sI hydrates while the CO 2 molecules preferentially occupy the large 5 12 6 2 cages, resulting in an almost constant area ratio of CH 4 molecules in the large to small cages of the CH 4 /N 2 /CO 2 mixed hydrates. The overall experimental results provide a better understanding of stability conditions and guest distributions in natural gas hydrate deposits during CH 4 – flue gas replacement.

  11. A CO2 laser based system for the production of nanoscaled powders

    International Nuclear Information System (INIS)

    Kurland, H.-D.; Schindler, K.; Staupendahl, G.; Oestreich, Ch.; Loogk, M.; Mueller, E.

    2002-01-01

    Nowadays the world-wide industrial competition is increasingly determined by the use of new materials which allow optimised and in part totally new qualities of products or the production of more compact components. Thereby the importance of ultrafine ceramic powders with grain sizes of only a few nanometers rises rapidly. These powders show some interesting physical and chemical features which result from the extremely small dimensions of their particles, for example very high specific surfaces, high surface energy or special behaviour in the phase transformation. Their thermodynamic and kinetic (short diffusion lengths) parameters are mirrored in high sintering activities and hence relatively low sintering temperatures as well as very special properties of the sintered materials, especially the possibility of super plasticity. Nanoscaled powders also have a broad potential for the production of thin layers for example in the electronics industry or as part of composite materials with components of lower thermal stability. At present different technologies for the manufacturing of nanoscaled powders are intensively used and developed. In this paper a technique for the production of ceramic nanopowders by evaporation of solid starting materials with CO 2 laser radiation is presented

  12. Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions

    Science.gov (United States)

    Wang, Ning; Yu, Jian-Guang; Zhao, Ya-Hui; Chang, Zhi-Zhou; Shi, Xiao-Xia; Ma, Lena Q.; Li, Hong-Bo

    2018-02-01

    To explore microbial mechanisms of straw-induced changes in CO2, CH4, and N2O emissions from paddy field, wheat straw was amended to two paddy soils from Taizhou (TZ) and Yixing (YX), China for 60 d under flooded condition. Illumia sequencing was used to characterize shift in bacterial community compositions. Compared to control, 1-5% straw amendment significantly elevated CO2 and CH4 emissions with higher increase at higher application rates, mainly due to increased soil DOC concentrations. In contrast, straw amendment decreased N2O emission. Considering CO2, CH4, and N2O emissions as a whole, an overall increase in global warming potential was observed with straw amendment. Total CO2 and CH4 emissions from straw-amended soils were significantly higher for YX than TZ soil, suggesting that straw-induced greenhouse gas emissions depended on soil characteristics. The abundance of C-turnover bacteria Firmicutes increased from 28-41% to 54-77% with straw amendment, thereby increasing CO2 and CH4 emissions. However, straw amendment reduced the abundance of denitrifying bacteria Proteobacteria from 18% to 7.2-13% or increased the abundance of N2O reducing bacteria Clostridium from 7.6-11% to 13-30%, thereby decreasing N2O emission. The results suggested straw amendment strongly influenced greenhouse gas emissions via alerting soil properties and bacterial community compositions. Future field application is needed to ascertain the effects of straw return on greenhouse gas emissions.

  13. Assessing the techno-environmental performance of CO2 utilization via dry reforming of methane for the production of dimethyl ether

    NARCIS (Netherlands)

    Schakel, Wouter|info:eu-repo/dai/nl/369280784; Oreggioni, Gabriel; Singh, Bhawna; Strømman, Anders; Ramírez, Andrea|info:eu-repo/dai/nl/284852414

    2016-01-01

    Abstract CO2 utilization is gaining attention as a greenhouse gas abatement strategy complementary to CO2 storage. This study explores the techno-environmental performance of CO2 utilization trough dry reforming of methane into syngas for the production of dimethyl ether (DME). The CO2 source is a

  14. The effect of methyl jasmonate on ethylene production and CO2 evolution in Jonagold apples

    Directory of Open Access Journals (Sweden)

    Artur Miszczak

    2013-12-01

    Full Text Available Apples cv. Jonagold were harvested at the beginning of October and stored at 0°C until treatment between the beginning of December and the end of January. Methyl jasmonate (JA-Me at the concentration of l,0, 0,5, 0,1, 0,05, and 0,01% in lanolin paste were applied to the surface ofintact apples. During five days from treatment, samples of cortex with skin (area about 2,0 cm2 were cut off at a depth of about 2 mm and used for determination of ethylene production, ACC oxidase activity and respiration determined as CO2 evolution. The production of endogenous ethylene was highest at mid-January ( 100, 280, and 250 nl/g*h at December, mid-January, and the end of January, respectively. During December and at the beginning of January, JA-Me initially ( 1 -2 days after treatment stimulated ethylene production and then the production was inhibited. The lower concentration of JA-Me caused initially the greater stimulation and then Iower inhibition of ethylene production. However, at the time of maximum production of endogenous ethylene (mid-January and later. stimulatory effect of JA-Me disappeared. The effect of various concentrations and time of application of JA-Me on ACC oxidase activity had similar trend as endogenous ethylene production. Methyl jasmonate stimulated respiration and this effect was dependent on JA-Me concentration and independent on time of application. The metabolic significance of these findings is discussed.

  15. Future production and utilisation of biomass in Sweden: potentials and CO2 mitigation

    International Nuclear Information System (INIS)

    Boerjesson, P.; Gustavsson, L.; Christersson, L.; Linder, S.

    1997-01-01

    Swedish biomass production potential could be increased significantly if new production methods, such as optimised fertilisation, were to be used. Optimised fertilisation on 25% of Swedish forest land and the use of stem wood could almost double the biomass potential from forestry compared with no fertilisation, as both logging residues and large quantities of excess stem wood not needed for industrial purposes could be used for energy purposes. Together with energy crops and straw from agriculture, the total Swedish biomass potential would be about 230 TWh/yr or half the current Swedish energy supply if the demand for stem wood for building and industrial purposes were the same as today. The new production methods are assumed not to cause any significant negative impact on the local environment. The cost of utilising stem wood produced with optimised fertilisation for energy purposes has not been analysed and needs further investigation. Besides replacing fossil fuels and, thus, reducing current Swedish CO 2 emissions by about 65%, this amount of biomass is enough to produce electricity equivalent to 20% of current power production. Biomass-based electricity is produced preferably through co-generation using district heating systems in densely populated regions, and pulp industries in forest regions. Alcohols for transportation and stand-alone power production are preferably produced in less densely populated regions with excess biomass. A high intensity in biomass production would reduce biomass transportation demands. There are uncertainties regarding the future demand for stem wood for building and industrial purposes, the amount of arable land available for energy crop production and future yields. These factors will influence Swedish biomass potential and earlier estimates of the potential vary from 15 to 125 TWh/yr. (author)

  16. Microbial Insights into Shifting Methane Production Potential in Thawing Permafrost

    Science.gov (United States)

    Crossen, K.; Wilson, R.; Raab, N.; Neumann, R.; Chanton, J.; Saleska, S. R.; Rich, V. I.

    2017-12-01

    Permafrost, which stores 50% of global soil carbon, is thawing rapidly due to climate change, and resident microbes are contributing to changing carbon gas emissions. Predictions of the fate of carbon in these regions is poorly constrained; however, improved, careful mapping of microbial community members influencing CO2 and CH4 emissions will help clarify the system response to continued change. In order to more fully understand connections between the microbial communities, major geochemical transformations, and CO2 and CH4 emissions, peat cores were collected from the active layers of three permafrost habitats spanning a thaw gradient (collapsed palsa, bog, and fen) at Stordalen Mire, Abisko, Sweden. Anaerobic incubations of shallow and deep subsamples from these sites were performed, with time-course characterization of the changes in microbial communities, peat geochemistry, and carbon gas production. The latter were profiled with 16S rRNA amplicon sequencing, and targeted metagenomes. The communities within each habitat and depth were statistically distinct, and changed significantly over the course of the incubations. Acidobacteria was consistently the dominant bacterial phylum in all three habitat types. With increased thaw, the relative abundance of Actinobacteria tended to decrease, while Chloroflexi and Bacteroidetes increased with thaw. The relative abundance of methanogens increased with thaw and with depth within each habitat. Over time in the incubations, the richness of the communities tended to decrease. Homoacetogenesis (CO2 + H2 -> CH3COOH) has been documented in other peatlands, and homoacetogens can influence CH4 production by interacting with methanogens, competing with hydrogenotrophs while providing substrate for acetoclasts. Modelling of microbial reaction networks suggests potential for highest homoacetogenesis rates in the collapsed palsa, which also contains the highest relative abundances of lineages taxonomically affiliated with known

  17. The fate of pelagic CaCO3 production in a high CO2 ocean: a model study

    Directory of Open Access Journals (Sweden)

    C. Ethe

    2007-07-01

    Full Text Available This model study addresses the change in pelagic calcium carbonate production (CaCO3, as calcite in the model and dissolution in response to rising atmospheric CO2. The parameterization of CaCO3 production includes a dependency on the saturation state of seawater with respect to calcite. It was derived from laboratory and mesocosm studies on particulate organic and inorganic carbon production in Emiliania huxleyi as a function of pCO2. The model predicts values of CaCO3 production and dissolution in line with recent estimates. The effect of rising pCO2 on CaCO3 production and dissolution was quantified by means of model simulations forced with atmospheric CO2 increasing at a rate of 1% per year from 286 ppm to 1144 ppm over a 140 year time-period. The simulation predicts a decrease of CaCO3 production by 27%. The combined change in production and dissolution of CaCO3 yields an excess uptake of CO2 from the atmosphere by the ocean of 5.9 GtC over the period of 140 years.

  18. Response of potato gas exchange and productivity to phosphorus deficiency and CO2 enrichment

    Science.gov (United States)

    The degree to which crops respond to atmospheric carbon dioxide enrichment (CO2) may be influenced by their nutrition level. While the majority of CO2 and plant nutrition studies focus on nitrogen, phosphorus (P) is also required in relatively high amounts for important crops such as potato. To de...

  19. Forest response to elevated CO2 is conserved across a broad range of productivity

    Science.gov (United States)

    R. Norby; E. DeLucia; B. Gielen; C. Calfapietra; C. Giardina; J. King; J. Ledford; H. McCarthy; D. Moore; R. Ceulemans; P. De Angelis; A. C. Finzi; D. F. Karnosky; M. E. Kubiske; M. Lukac; K. S. Pregitzer; G. E. Scarascia-Mugnozza; W. Schlesinger and R. Oren.

    2005-01-01

    Climate change predictions derived from coupled carbon-climate models are highly dependent on assumptions about feedbacks between the biosphere and atmosphere. One critical feedback occurs if C uptake by the biosphere increases in response to the fossil-fuel driven increase in atmospheric [CO2] ("CO2 fertilization...

  20. Daily dynamics of bacterial numbers, CO2 emissions from soil and relationships between their wavelike fluctuations and succession of the microbial community

    Science.gov (United States)

    Semenov, A. M.; Bubnov, I. A.; Semenov, V. M.; Semenova, E. V.; Zelenev, V. V.; Semenova, N. A.

    2013-08-01

    The daily dynamics of the number of copiotrophic and oligotrophic bacteria (in colony-forming units) and CO2 emissions from cultivated soils after short- and long-term disturbances were studied for 25-27 days in a microfield experiment. The relationship of the wavelike fluctuations of the bacterial number and CO2 emission with the succession of the soil microbial community was determined by the polymerase chain reaction method—denaturing gradient gel electrophoresis (PCR-DGGE). Short-term disturbances involved the application of organic or mineral fertilizers, pesticides, and plant residues to the soils of different plots. The long-term effect was a result of using biological and intensive farming systems for three years. The short-term disturbances resulted in increased peaks of the bacterial number, the significance of which was confirmed by harmonics analysis. The daily dynamics of the structure of the soil microbial community, which was studied for 27 days by the DGGE method, also had an oscillatory pattern. Statistical processing of the data (principal components analysis, harmonics and cross-correlation analyses) has revealed significant fluctuations in the structure of microbial communities coinciding with those of the bacterial populations. The structure of the microbial community changed within each peak of the dynamics of the bacterial number (but not from peak to peak), pointing to the cyclical character of the short-term succession. The long-term effects resulted in a less intense response of the microbiota—a lower rate of CO2 emission from the soil cultivated according to the organic farming system.

  1. Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy

    Energy Technology Data Exchange (ETDEWEB)

    UOP; Honeywell Resins & Chemicals; Honeywell Process Solutions; Aquaflow Bionomics Ltd

    2010-09-30

    For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale was determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point during daylight hours can be beneficial in an algae cultivation stage with high algae biomass concentration to maximize the rate of CO2 uptake. The limited enhancement of algal growth by CO2 addition to Hopewell wastewater was due at least in part to the high endogenous CO2 evolution from bacterial degradation of dissolved organic carbon present at high levels in the wastewater. It was found that the high level of bacterial activity was somewhat inhibitory to algal growth in the Hopewell wastewater. The project demonstrated that the Honeywell automation and control system, in combination with the accuracy of the online pH, dissolved O2, dissolved CO2, turbidity, Chlorophyll A and

  2. Microbial Glycosidases for Wine Production

    Directory of Open Access Journals (Sweden)

    Sergi Maicas

    2016-08-01

    Full Text Available Winemaking is a complex process involving the interaction of different microbes. The two main groups of microorganisms involved are yeasts and bacteria. The yeasts present in spontaneous fermentation may be divided into two groups: the Saccharomyces yeasts, particularly S. cerevisiae; and the non-Saccharomyces yeasts, which include members of the genera Rhodotorula, Pichia, Candida, Debaryomyces, Metschtnikowia, Hansenula, and Hanseniaspora. S. cerevisiae yeasts are able to convert sugar into ethanol and CO2 via fermentation. They have been used by humans for thousands of years for the production of fermented beverages and foods, including wine. Their enzymes provide interesting organoleptic characteristics in wine. Glycosidases with oenological implications have been widely reported in yeasts, bacteria, and fungi. β-Glucosidase activity is involved in the release of terpenes to wine, thus contributing to varietal aroma. α-Rhamnosidase, α-arabinosidase, or β-apiosidase activities have also been reported to contribute to the wine production process. Oenococcus oeni (a lactic acid bacteria present in wine also has numerous glycosidases, and their activities contribute to the liberation of several aromatic compounds which contribute to floral and fruity wine characteristics.

  3. Prediction of the viscosity reduction due to dissolved CO2 of and an elementary approach in the supercritical CO2 assisted continuous particle production of a polyester resin

    NARCIS (Netherlands)

    Nalawade, Sameer P.; Nieborg, Vincent H. J.; Picchioni, Francesco; Janssen, L. P. B. M.

    2006-01-01

    The dissolution of CO2 in a polymer causes plasticization of the polymer and hence, its viscosity is reduced. A model based on the free volume theory has been used for a polyester resin, which shows a considerable reduction in the viscosity due to dissolved M. Therefore, superctitical CO2 has been

  4. Hydrothermal Valorization of Steel Slags—Part I: Coupled H2 Production and CO2 Mineral Sequestration

    Directory of Open Access Journals (Sweden)

    Camille Crouzet

    2017-10-01

    Full Text Available A new process route for the valorization of BOF steel slags combining H2 production and CO2 mineral sequestration is investigated at 300°C (HT under hydrothermal conditions. A BOF steel slag stored several weeks outdoor on the production site was used as starting material. To serve as a reference, room temperature (RT carbonation of the same BOF steel slag has been monitored with in situ Raman spectroscopy and by measuring pH and PCO2 on a time-resolved basis. CO2 uptake under RT and HT are, respectively, 243 and 327 kg CO2/t of fresh steel slag, which add up with the 63 kg of atmospheric CO2 per ton already uptaken by the starting steel slag on the storage site. The CO2 gained by the sample at HT is bounded to the carbonation of brownmillerite. H2 yield decreased by about 30% in comparison to the same experiment performed without added CO2, due to sequestration of ferrous iron in a Mg-rich siderite phase. Ferric iron, initially present in brownmillerite, is partitioned between an Fe-rich clay mineral of saponite type and metastable hematite. Saponite is likely stabilized by the presence of Al, whereas hematite may represent a metastable product of brownmillerite carbonation. Mg-rich wüstite is involved in at least two competing reactions, i.e., oxidation into magnetite and carbonation into siderite. Results of both water-slag and water-CO2-slag experiments after 72 h are consistent with a kinetics enhancement of the former reaction when a CO2 partial pressure imposes a pH between 5 and 6. Three possible valorization routes, (1 RT carbonation prior to hydrothermal oxidation, (2 RT carbonation after hydrothermal treatment, and (3 combined HT carbonation and oxidation are discussed in light of the present results and literature data.

  5. Effect of ecosystems substitutions and CO2 increase of the atmosphere on the microbial ecosystems of forests

    International Nuclear Information System (INIS)

    Martin, F.

    2007-01-01

    Biological diversity is often exclusively considered at the level of plants and animals, whereas the bulk of global biodiversity is in fact at the microbial level. Although it is clear that the ecology of our planet is driven by microbial ecosystems, we are severely hampered by our limited understanding of the diversity and function of such microbial ecosystems. In the present project, teams in the disciplines of geochemistry, soil microbiology, genomics and ecosystem processes are assembled to study the relationship between environmental change, land use changes, biodiversity, and functioning of forest ecosystems. The network has a strong focus on developing and applying biochemical and genotyping methodologies to address key scientific issues in soil microbial ecology. These include assessing the impact of environmental- and land use changes on microbial diversity and function and exploring the evolutionary and mechanistic links between biological diversity and ecosystem function. In the present study, we have shown that: (1) The native mixed forest showed the highest microbial diversity (2) The mono specific plantations of tree species (e.g., oak, beech, pine, spruce) strikingly alter genetic and functional diversities of soil bacterial and fungal species. (3) Bacterial denitrification rates were dramatically modified by the planted species. Only by taking into account the impact of forest management on below-ground microbial diversity can one hope to get a full ecosystem-based understanding, and this must be addressed via modelling in order to provide relevant and useful information for conservation and policy making. (author)

  6. Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India

    Institute of Scientific and Technical Information of China (English)

    Sushree Sagarika Satapathy; Dillip Kumar Swain; Surendranath Pasupalak; Pratap Bhanu Singh Bhadoria

    2015-01-01

    The present experiment was conducted to evaluate the effect of elevated [CO2] with varying nutrient management on rice–rice production system. The experiment was conducted in the open field and inside open-top chambers (OTCs) of ambient [CO2] (≈390μmol L−1) and elevated [CO2] environment (25%above ambient) during wet and dry seasons in 2011–2013 at Kharagpur, India. The nutrient management included recommended doses of N, P, and K as chemical fertilizer (CF), integration of chemical and organic sources, and application of increased (25%higher) doses of CF. The higher [CO2] level in the OTC increased aboveground biomass but marginally decreased filled grains per panicle and grain yield of rice, compared to the ambient environment. However, crop root biomass was increased significantly under elevated [CO2]. With respect to nutrient management, increasing the dose of CF increased grain yield significantly in both seasons. At the recommended dose of nutrients, integrated nutrient management was comparable to CF in the wet season, but significantly inferior in the dry season, in its effect on growth and yield of rice. The [CO2] elevation in OTC led to a marginal increase in organic C and available P content of soil, but a decrease in available N content. It was concluded that increased doses of nutrients via integration of chemical and organic sources in the wet season and chemical sources alone in the dry season will minimize the adverse effect of future climate on rice production in subtropical India.

  7. Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki

    OpenAIRE

    Hashimoto, Shizuka; Fujita, Tsuyoshi; Geng, Yong; Nagasawa, Emiri

    2010-01-01

    This article is one effort to examine the present and potential performances of CO2 emission reduction though industrial symbiosis by employing a case study approach and life cycle CO2 analysis for alternative industrial symbiosis scenarios. As one of the first and the best-known eco-town projects, Kawasaki Eco-town was chosen as a case study area. First, the current industrial symbiosis practices in this area are introduced. To evaluate the potential of reducing the total CO2 emission throug...

  8. Impact of CO2 and pH on the distribution and stable carbon isotopic composition of microbial biomarker lipids

    NARCIS (Netherlands)

    Schoon, P.L.

    2013-01-01

    In addition to the more acknowledged consequences of climate change, such as global warming, the current human-induced increase of CO2 into the atmosphere is also responsible for a change in the chemical composition of seawater. Since 1750, the initiation of the industrial revolution, approximately

  9. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh Iyer; Shwetha Ramkumar; Liang-Shih Fan

    2006-09-30

    Enhancement in the production of high purity hydrogen from fuel gas, obtained from coal gasification, is limited by thermodynamics of the Water Gas Shift Reaction. However, this constraint can be overcome by concurrent water-gas shift (WGS) and carbonation reactions to enhance H{sub 2} production by incessantly driving the equilibrium-limited WGS reaction forward and in-situ removing the CO2 product from the gas mixture. The spent sorbent is then regenerated by calcining it to produce a pure stream of CO{sub 2} and CaO which can be reused. However while performing the cyclic carbonation and calcination it was observed that the CO{sub 2} released during the in-situ calcination causes the deactivation of the iron oxide WGS catalyst. Detailed understanding of the iron oxide phase diagram helped in developing a catalyst pretreatment procedure using a H{sub 2}/H{sub 2}O system to convert the deactivated catalyst back to its active magnetite (Fe{sub 3}O{sub 4}) form. The water gas shift reaction was studied at different temperatures, different steam to carbon monoxide ratios (S/C) 3:1, 2:1, 1:1 and different total pressures ranging from 0-300 psig. The combined water gas shift and carbonation reaction was investigated at temperatures ranging from 600-700C, S/C ratio of 3:1 to 1:1 and at different pressures of 0-300 psig and the calcium looping process was found to produce high purity hydrogen with in-situ CO{sub 2} capture.

  10. Elevated CO2 increases Cs uptake and alters microbial communities and biomass in the rhizosphere of Phytolacca americana Linn (pokeweed) and Amaranthus cruentus L. (purple amaranth) grown on soils spiked with various levels of Cs

    International Nuclear Information System (INIS)

    Song, Ningning; Zhang, Ximei; Wang, Fangli; Zhang, Changbo; Tang, Shirong

    2012-01-01

    General concern about increasing global atmospheric CO 2 levels owing to the ongoing fossil fuel combustion and elevated levels of radionuclides in the environment, has led to growing interest in the responses of plants to interactive effects of elevated CO 2 and radionuclides in terms of phytoremediation and food safety. To assess the combined effects of elevated CO 2 and cesium contamination on plant biomass, microbial activities in the rhizosphere soil and Cs uptake, Phytolacca americana Linn (pokeweed, C3 specie) and Amaranthus cruentus L. (purple amaranth, C4 specie) were grown in pots of soils containing five levels of cesium (0, 100, 300, 500 and 1000 mg Cs kg −1 ) under two levels of CO 2 (360 and 860 μL L −1 , respectively). Shoot and root biomass of P. americana and Amaranthus crentus was generally higher under elevated CO 2 than under ambient CO 2 for all treatments. Both plant species exhibited higher Cs concentration in the shoots and roots under elevated CO 2 than ambient CO 2 . For P. americana grown at 0, 100, 300, 500 and 1000 mg Cs kg −1 , the increase magnitude of Cs concentration due to elevated CO 2 was 140, 18, 11, 34 and 15% in the shoots, and 150, 20, 14, 15 and 19% in the roots, respectively. For A. cruentus, the corresponding value was 118, 28, 21, 14 and 17% in the shoots, and 126, 6, 11, 17 and 22% in the roots, respectively. Higher bioaccumulation factors were noted for both species grown under elevated CO 2 than ambient CO 2 . The populations of bacteria, actinomycetes and fungi, and the microbial C and N in the rhizosphere soils of both species were higher at elevated CO 2 than at ambient CO 2 with the same concentration of Cs. The results suggested that elevated CO 2 significantly affected plant biomass, Cs uptake, soil C and N concentrations, and community composition of soil microbes associated with P. americana and A. cruentus roots. The knowledge gained from this investigation constitutes an important advancement in

  11. Plasma production and heating by a laser TEA-CO2

    International Nuclear Information System (INIS)

    Goes, L.C.S.; Sudano, J.P.; Rodrigues, N.A.S.

    1987-01-01

    Preliminary experiments of plasma production and heating by laser irradiation of gases and solid targets have been performed with a laser TEA-CO 2 (1 MW, 80 ns, monomode), developed and built at the IEAv/Laser Laboratory. The laser beam was focused in the interior of a vacuum chamber (100 1) with a base pressure of 10 1 torr, and recolimated by a system of confocal lenses. The breakdown theresholds for nitrogen gas was investigated by varying the laser power, the neutral gas density and the focal lenght of the lenses. Plasma breakdown observed in the range of pressures between 100-720 torr was in good agreement with calculations of cascade ionization theory and classical absorption by inverse-Bremsstrahlung. The laser absorption was inferred by measuring the power transmitted in the presence and absence of plasma. The light emitted by the plasma was detected by a fast photo-diode, indicating that the plasma expansion phase lasted for several microseconds. These investigations have been applied in the development of plasma shutters for laser pulse compression. (author) [pt

  12. Aspen-associated mycorrhizal fungal production and respiration as a function of changing CO2, O3 and climatic variables

    Science.gov (United States)

    Carrie J. Andrew; Linda T.A. van Diepen; R. Michael Miller; Erik A. Lilleskov

    2014-01-01

    The relationships of mycorrhizal fungal respiration and productivity to climate and atmospheric chemistry remain under characterized. We quantified mycorrhizal sporocarp and hyphal respiration, as well as growing season net hyphal production, under ambient and elevated carbon dioxide (CO2) and ozone (O3) in relation to...

  13. Impact of the evolution of petroleum products demand on the energy consumption and CO2 emissions of refineries

    International Nuclear Information System (INIS)

    Tehrani Nejad Moghaddam, A.

    2008-01-01

    The French refining industry is in a paradoxical situation. Although the energy efficiency of the refineries have been significantly improved their CO 2 emissions are continuously increasing and this trend will be kept in future. The origin of this paradox steams in the profound modification in the demand structure (in terms of quantity and quality) of the oil products. The objective of this dissertation is to provide answers to these paradoxical questions. This objective is achieved and can be summarized in three points: (1) the introduction of linear programming to the prospective and retrospective life cycle assessment analysis (2) the evaluation of the impact of tightening the sulfur specification on the marginal cost and marginal CO 2 contribution of oil products (3) the assessment of the average CO 2 coefficients for oil products useful in the life cycle assessment studies. (author)

  14. The effects of environmental physical factors on the microbial communities and the distribution of different CO2 fixation pathways in a limestone landscape

    Science.gov (United States)

    Wun, S. R.; Huang, T. Y.; Hsu, B. M.; Fan, C. W.

    2017-12-01

    We aimed to study the effects of physical factors on the relative abundance of bacteria and their preferential admissions of autotrophic CO2 fixation pathways after subjected to environmental long-term influence. The Narrow-Sky located in upper part of Takangshan is a small gulch of Pleistocene coralline limestone formation in southern Taiwan. The physical parameters such as illumination, humidity, and temperature were varied largely in habitats around the gulch, namely on the limestone wall at the opening of gulch, on the coordinate ground soil, on the wall inside the gulch, and the water drip from limestone wall. The total organic carbon was measured in solid samples to evaluate the biomass of the habitats. A metagenomic approach was carried out to reveal their microbial community structure. After the metagenomic library of operational taxonomic units (OTUs) was constructed, a BLAST search by "nomenclature of bacteria" instead of sequences between the OTU libraries and KEGG database was carried out to generate libraries of "model microbial communities", which the complete genomes of the entire bacterial populations were available. Our results showed the biomass of habitats in the opening of gulch was twice higher than the inside, suggesting the illumination played an important role in biosynthesis. In quantitative comparison in key enzymes of CO2 fixation pathways by model communities, 70% to 90% of bacteria possessed key enzymes of Fuchs-Holo cycle, while only 5% to 20% of bacteria contained key enzymes of Calvin-Benson cycle. The key enzymes for hydroxypropionate/ hydroxybutyrate and dicarboxylate/ 4-hydroxybutyrate cycles were not found in this study. In the water sample, approximate 10% of bacteria consisted of the key enzyme for Arnon-Buchanan cycle. Less than 2% of bacteria in all habitats take the reductive acetyl-CoA cycle for CO2 fixation. This study provides a novel method to study biosynthetic process of microbial communities in natural habitats.

  15. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part B: Chain analysis of promising CCS options

    NARCIS (Netherlands)

    Damen, K.J.; van Troost, M.M.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X; Turkenburg, W.C.|info:eu-repo/dai/nl/073416355

    2007-01-01

    Promising electricity and hydrogen production chains with CO2 capture, transport and storage (CCS) and energy carrier transmission, distribution and end-use are analysed to assess (avoided) CO2 emissions, energy production costs and CO2 mitigation costs. For electricity chains, the performance is

  16. Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity

    OpenAIRE

    Delucchi, Mark

    1997-01-01

    The use of energy accounts for a major fraction of all anthropogenic emissions of greenhouse gases (IPCC, 1995) , and in most industrialized countries the use of transportation fuels and electricity accounts for a major fraction of all energy-related emissions. In the transportation sector alone, emissions of carbon dioxide (CO2) from the production and use of motor-vehicle fuels account for as much as 30% of CO2 emissions from the use of all fossil fuels (DeLuchi, 1991). The production and...

  17. New Technologies for Dealing with CO2 Emission and Carbonate Discharge Control Issues Associated with Energy Production

    Science.gov (United States)

    Tuwati, Abdulwahab

    Carbonates and bicarbonates as two water contaminants and CO2 as an air pollutant are the byproducts of a number of fossil fuel based energy production processes. It is well known that the eco-environmental impacts of the carbon based compounds are rather negative. Discharge of co-produced waters containing carbonates and bicarbonates can lead to the significant increase of alkalinity and sodicity and eventual degradation of the quality of soils. In addition, many studies have indicated that huge CO2 emission into the atmosphere can result in disastrous climate changes in the future. Therefore, people are increasingly interested in controlling these carbon compounds. A number of technologies such as ion exchange and electrodialysis have been developed for removal of carbonates and bicarbonates from co-produced waters. However, they are too expensive to be widely used by energy producers, farmers and ranchers. Although many approaches including membrane filtration have been explored for CO2 emission control, their costs are not acceptable to fossil fuel generating companies at all. Therefore, searching cost-effective methods for control of the carbon compounds have attracted many researchers' attentions. New technologies have been developed in this research to overcome the abovementioned challenges. For example, a regenerable solid sorbent (KTi) synthesized with K2CO3 and nanoporous TiO(OH)2 can be used to capture CO2. The CO2 sorption capacity of KTi is about 36 times higher than that of conventional K2CO3. The highest CO2 sorption capacity achieved with KTi is 1.69 mmol-CO2/g-KTi. It should be noted that the theoretical sorption capacity of the KTi can be as high as 3.32 mmol-CO 2/g-KTi. Therefore, the potential and improvement in CO2 sorption capacity with the use of nanoporous TiO(OH)2 is significant. Moreover, nanostructured KTi based CO2 separation (from flue gas) does not need additional high specific-heat capacity and high vaporization-enthalpy H2O. This

  18. Late winter under ice pelagic microbial communities in the high Arctic Ocean and the impact of short-term exposure to elevated CO2 levels

    Directory of Open Access Journals (Sweden)

    Adam eMonier

    2014-09-01

    Full Text Available Polar Oceans are natural CO2 sinks because of the enhanced solubility of CO2 in cold water. The Arctic Ocean is at additional risk of accelerated ocean acidification (OA because of freshwater inputs from sea ice and rivers, which influence the carbonate system. Winter conditions in the Arctic are of interest because of both cold temperatures and limited CO2 venting to the atmosphere when sea ice is present. Earlier OA experiments on Arctic microbial communities conducted in the absence of ice cover, hinted at shifts in taxa dominance and diversity under lowered pH. The Catlin Arctic Survey provided an opportunity to conduct in situ, under-ice, OA experiments during late Arctic winter. Seawater was collected from under the sea ice off Ellef Ringnes Island, and communities were exposed to three CO2 levels for 6 days. Phylogenetic diversity was greater in the attached fraction compared to the free-living fraction in situ, in the controls and in the treatments. The dominant taxa in all cases were Gammaproteobacteria but acidification had little effect compared to the effects of containment. Phylogenetic net relatedness indices suggested that acidification may have decreased the diversity within some bacterial orders, but overall there was no clear trend. Within the experimental communities, alkalinity best explained the variance among samples and replicates, suggesting subtle changes in the carbonate system need to be considered in such experiments. We conclude that under ice communities have the capacity to respond either by selection or phenotypic plasticity to heightened CO2 levels over the short term.

  19. Depth-Dependent Mineral Soil CO2 Production Processes: Sensitivity to Harvesting-Induced Changes in Soil Climate.

    Science.gov (United States)

    Kellman, Lisa; Myette, Amy; Beltrami, Hugo

    2015-01-01

    Forest harvesting induces a step change in the climatic variables (temperature and moisture), that control carbon dioxide (CO2) production arising from soil organic matter decomposition within soils. Efforts to examine these vertically complex relationships in situ within soil profiles are lacking. In this study we examined how the climatic controls on CO2 production change within vertically distinct layers of the soil profile in intact and clearcut forest soils of a humid temperate forest system of Atlantic Canada. We measured mineral soil temperature (0, 5, 10, 20, 50 and 100 cm depth) and moisture (0-15 cm and 30-60 cm depth), along with CO2 surface efflux and subsurface concentrations (0, 2.5, 5, 10, 20, 35, 50, 75 and 100 cm depth) in 1 m deep soil pits at 4 sites represented by two forest-clearcut pairs over a complete annual cycle. We examined relationships between surface efflux at each site, and soil heat, moisture, and mineral soil CO2 production. Following clearcut harvesting we observed increases in temperature through depth (1-2°C annually; often in excess of 4°C in summer and spring), alongside increases in soil moisture (30%). We observed a systematic breakdown in the expected exponential relationship between CO2 production and heat with mineral soil depth, consistent with an increase in the role moisture plays in constraining CO2 production. These findings should be considered in efforts to model and characterize mineral soil organic matter decomposition in harvested forest soils.

  20. Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms.

    Science.gov (United States)

    González-López, C V; Acién Fernández, F G; Fernández-Sevilla, J M; Sánchez Fernández, J F; Molina Grima, E

    2012-07-01

    A new methodology to use efficiently flue gases as CO(2) source in the production of photosynthetic microorganisms is proposed. The CO(2) is absorbed in an aqueous phase that is then regenerated by microalgae. Carbonated solutions could absorb up to 80% of the CO(2) from diluted gas reaching total inorganic carbon (TIC) concentrations up to 2.0 g/L. The pH of the solution was maintained at 8.0-10.0 by the bicarbonate/carbonate buffer, so it is compatible with biological regeneration. The absorption process was modeled and the kinetic parameters were determined. Anabaena sp. demonstrated to tolerate pH (8.0-10.0) and TIC (up to 2.0 g/L) conditions imposed by the absorption step. Experiments of regeneration of the liquid phase demonstrated the feasibility of the overall process, converting CO(2) into organic matter. The developed process avoids heating to regenerate the liquid whereas maximizing the efficiency of CO(2) use, which is relevant to achieve the commercial production of biofuels from microalgae. Copyright © 2012 Wiley Periodicals, Inc.

  1. Temperature versus plant effects on diel dynamics of soil CO2 production and efflux: a controlled environment study

    Science.gov (United States)

    Reinthaler, David; Roy, Jacques; Landais, Damien; Piel, Clement; Resco de Dios, Victor; Bahn, Michael

    2015-04-01

    Soil respiration (Rs) is the biggest source of CO2 emitted from terrestrial ecosystems to the atmosphere. Therefore the understanding of its drivers is of major importance for models of carbon cycling. Next to temperature as a major abiotic factor, photosynthesis has been suggested as an important driver influencing diel patterns in Rs. Under natural conditions it is difficult to disentangle abiotic and biotic effects on soil CO2 production, as fluctuating light intensity affects both photosynthetic activity and soil temperature. To analyse individual and combined effects of soil temperature and light on the dynamics of soil CO2 production and efflux, we performed a controlled environment study at the ECOTRON facility in Montpellier. The study manipulated temperature and photosynthetically active radiation independently and was carried out in large macrocosms, hosting canopies of either a woody (cotton) or a herbaceous (bean) crop. In each macrocosm membrane tubes had been installed across the soil profile for continuous measurement of soil CO2 concentrations. In addition, an automated soil respiration system was installed in each macrocosm, whose data were also used for validating a model of soil CO2 production and transport based on the concentration profiles. Both for cotton and for bean canopies, under conditions of naturally fluctuating temperature and light conditions, soil CO2 production and efflux followed a clear diel pattern. Under constantly dark conditions (excluding immediate effects of photosynthesis) and constant temperature, no significant diel changes in Rs could be observed. Furthermore, soil CO2 production and efflux did not increase significantly upon exposure of previously darkened macrocosms to light. Under constant temperature and fluctuating light conditions, we observed a dampened diel pattern of Rs, which did not match diurnal solar cycles. A detailed residual analysis accounting for temporal trends in soil moisture suggested a significant

  2. Inversely estimating the vertical profile of the soil CO2 production rate in a deciduous broadleaf forest using a particle filtering method.

    Science.gov (United States)

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the "actual" values by decreasing the variance of the posterior distribution of the values.

  3. Tail gas treatment of sour-SEWGS CO2 product. Public version

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, H.A.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-06-15

    This literature review covers the technologies suitable for the CO2-H2S separation within the context of CO2 purification of a pre-combustion captured stream intended for storage or reuse. The technologies considered cover existing industrially applied processes, emerging processes as well as processes in development. Several technologies capable of achieving the desired CO2-H2S separation were identified. Among them are liquid scrubbing processes Thiopaq and CrystaSulf producing elemental sulphur, selective oxidation to elemental sulphur such as MODOP or based on novel catalysts and sorbent-based (reactive) separations using low-, medium- or high-temperature (reactive) sorbents. SEWGS stands for Sorption Enhanced Water Gas Shift process.

  4. Determination of the equation parameters of carbon flow curves and estimated carbon flow and CO2 emissions from broiler production.

    Science.gov (United States)

    Henn, J D; Bockor, L; Borille, R; Coldebella, A; Ribeiro, A M L; Kessler, A M

    2015-09-01

    The objective of this study was to determine the equation parameters of carbon (i.e., C) flow curves and to estimate C flow and carbon dioxide (i.e., CO2) emissions from the production of 1- to 49-day-old broilers from different genetic strains. In total, 384 1-day-old chicks were used, distributed into 4 groups: high-performance males (Cobb-M) and females (Cobb-F), and intermediate-performance males (C44-M) and females (C44-F), with 6 replicates/treatment according to a completely randomized study design. Carbon intake and retention were calculated based on diet and body C composition, and expired C was stoichiometrically estimated as digestible C intake-C retention-C in the urine. Litter C emission was estimated as initial litter C+C in the excreta-final litter C. Carbon flow curves were determined fitting data by nonlinear regression using the Gompertz function. Expired CO2 was calculated based on expired C. The applied nonlinear model presented goodness-of-fit for all responses (R2>0.99). Carbon dioxide production was highly correlated with growth rate. At 42 d age, CO2 expiration (g/bird) was 3,384.4 for Cobb-M, 2,947.9 for Cobb-F, 2,512.5 for C44-M, and 2185.1 for C44-F. Age also significantly affected CO2 production: to achieve 2.0 kg BW, CO2 expiration (g/bird) was 1,794.3 for Cobb-M, 2,016.5 for Cobb-F, 2617.7 for C44-M, and 3,092.3 for C44-F. The obtained equations present high predictability to estimate individual CO2 emissions in strains of Cobb and C44 broilers of any weight, or age, reared between 1 and 49 d age. © 2015 Poultry Science Association Inc.

  5. Taxes for energy products, electricity and CO2. Consequences of the revision of the Energy Taxation Directive for the Netherlands

    International Nuclear Information System (INIS)

    Blom, M.J.; Schroten, A.; Geurts, F.

    2011-07-01

    Taxes on energy products, electricity and CO2 are compared for a number of EU countries (Germany, Belgium, Denmark, United Kingdom, France, Luxembourg, Spain, Sweden and the Netherlands) with special focus on the fiscal, economic and environmental impacts of the revision of the European Energy Directive for the Netherlands. [nl

  6. Cofactor and CO2 donor regulation involved in reductive routes for polymalic acid production by Aureobasidium pullulans CCTCC M2012223.

    Science.gov (United States)

    Zou, Xiang; Tu, Guangwei; Zan, Zhanquan

    2014-10-01

    Polymalic acid (PMA) is a water-soluble polyester with many attractive properties for biomedical application. Its monomer L-malic acid is widely used in the food industry and also a potential C4 platform chemical. Cofactor and CO2 donor involved in the reductive routes were investigated for PMA production by Aureobasidium pullulans. Biotin as the key cofactor of pyruvate carboxylase was favor for the PMA biosynthesis. Na2CO3 as CO2 donor can obviously improved PMA titer when compared with no CO2 supplier NaOH, and also exhibit more advantages than the other donor CaCO3 because of its water-soluble characteristic. A combinational process with addition of biotin 70 mg/L and Na2CO3 as the CO2 donor was scaled-up in 50 L fermentor, achieving the high product 34.3 g/L of PMA and productivity of 0.41 g/L h. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application.

  7. Closing carbon cycles : Evaluating the performance of multi-product CO2 utilisation and storage configurations in a refinery

    NARCIS (Netherlands)

    Fernández-Dacosta, Cora; Stojcheva, Viktorija; Ramirez, Andrea

    2018-01-01

    Carbon capture and utilisation (CCU) has the potential to provide business cases as CO2 waste streams are turned into feedstock for the synthesis of marketable products. Although CCU could reduce fossil resource demand, its capability as a climate change mitigation option is under debate. In

  8. Biotechnological Processes in Microbial Amylase Production.

    Science.gov (United States)

    Gopinath, Subash C B; Anbu, Periasamy; Arshad, M K Md; Lakshmipriya, Thangavel; Voon, Chun Hong; Hashim, Uda; Chinni, Suresh V

    2017-01-01

    Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.

  9. Biotechnological Processes in Microbial Amylase Production

    Directory of Open Access Journals (Sweden)

    Subash C. B. Gopinath

    2017-01-01

    Full Text Available Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi amylase is discussed along with its production methods from the laboratory to industrial scales.

  10. Modeling soil CO2 production and transport with dynamic source and diffusion terms: testing the steady-state assumption using DETECT v1.0

    Science.gov (United States)

    Ryan, Edmund M.; Ogle, Kiona; Kropp, Heather; Samuels-Crow, Kimberly E.; Carrillo, Yolima; Pendall, Elise

    2018-05-01

    The flux of CO2 from the soil to the atmosphere (soil respiration, Rsoil) is a major component of the global carbon (C) cycle. Methods to measure and model Rsoil, or partition it into different components, often rely on the assumption that soil CO2 concentrations and fluxes are in steady state, implying that Rsoil is equal to the rate at which CO2 is produced by soil microbial and root respiration. Recent research, however, questions the validity of this assumption. Thus, the aim of this work was two-fold: (1) to describe a non-steady state (NSS) soil CO2 transport and production model, DETECT, and (2) to use this model to evaluate the environmental conditions under which Rsoil and CO2 production are likely in NSS. The backbone of DETECT is a non-homogeneous, partial differential equation (PDE) that describes production and transport of soil CO2, which we solve numerically at fine spatial and temporal resolution (e.g., 0.01 m increments down to 1 m, every 6 h). Production of soil CO2 is simulated for every depth and time increment as the sum of root respiration and microbial decomposition of soil organic matter. Both of these factors can be driven by current and antecedent soil water content and temperature, which can also vary by time and depth. We also analytically solved the ordinary differential equation (ODE) corresponding to the steady-state (SS) solution to the PDE model. We applied the DETECT NSS and SS models to the six-month growing season period representative of a native grassland in Wyoming. Simulation experiments were conducted with both model versions to evaluate factors that could affect departure from SS, such as (1) varying soil texture; (2) shifting the timing or frequency of precipitation; and (3) with and without the environmental antecedent drivers. For a coarse-textured soil, Rsoil from the SS model closely matched that of the NSS model. However, in a fine-textured (clay) soil, growing season Rsoil was ˜ 3 % higher under the assumption of

  11. Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs

    NARCIS (Netherlands)

    Ren, T.; Patel, M.K.|info:eu-repo/dai/nl/18988097X; Blok, K.|info:eu-repo/dai/nl/07170275X

    2008-01-01

    While most olefins (e.g., ethylene and propylene) are currently produced through steam cracking routes, they can also possibly be produced from natural gas (i.e., methane) via methanol and oxidative coupling routes. We reviewed recent data in the literature and then compared the energy use, CO2

  12. Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.

    2006-01-01

    Carbonation of industrial alkaline residues can be used as a CO2 sequestration technology to reduce carbon dioxide emissions. In this study, steel slag samples were carbonated to a varying extent. Leaching experiments and geochemical modeling were used to identify solubility-controlling processes of

  13. Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production

    DEFF Research Database (Denmark)

    Kongpanna, Pichayapan; Pavarajarn, Varong; Gani, Rafiqul

    2015-01-01

    carbonate route is found to give the best performance in terms of energy consumption (11.4% improvement), net CO2 emission (13.4% improvement), in global warming potential (58.6% improvement) and in human toxicity-carcinogenic (99.9% improvement) compared to the BAYER process. Also, the ethylene carbonate...

  14. Soil CO2 production in upland tundra where permafrost is thawing

    Science.gov (United States)

    Hanna Lee; Edward A.G. Schuur; Jason G. Vogel

    2010-01-01

    Permafrost soils store nearly half of global soil carbon (C), and therefore permafrost thawing could lead to large amounts of greenhouse gas emissions via decomposition of soil organic matter. When ice-rich permafrost thaws, it creates a localized surface subsidence called thermokarst terrain, which changes the soil microenvironment. We used soil profile CO2...

  15. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations.

    Science.gov (United States)

    Schindlbacher, Andreas; Schnecker, Jörg; Takriti, Mounir; Borken, Werner; Wanek, Wolfgang

    2015-11-01

    Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2)  s(-1) , control: 2.34 ± 0.29 μmol m(-2)  s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  16. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    KAUST Repository

    Álvarez, Andrea

    2017-06-28

    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions.

  17. Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world

    NARCIS (Netherlands)

    Liberloo, M.; Calfapietra, C.; Lukac, M.; Godbold, D.; Luos, Z.B.; Polles, A.; Hoosbeek, M.R.; Kull, O.; Marek, M.; Rianes, Chr.; Rubino, M.; Taylors, G.; Scarascia-Mugnozza, G.; Ceulemans, R.

    2006-01-01

    The quickly rising atmospheric carbon dioxide (CO2)-levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO2 increase. Here, we report the likely impact of future increases in atmospheric CO2 on woody biomass production of three poplar

  18. Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India

    Institute of Scientific and Technical Information of China (English)

    Sushree Sagarika Satapathy; Dillip Kumar Swain; Surendranath Pasupalak; Pratap Bhanu Singh Bhadoria

    2015-01-01

    The present experiment was conducted to evaluate the effect of elevated [CO2] with varying nutrient management on rice–rice production system. The experiment was conducted in the open field and inside open-top chambers(OTCs) of ambient [CO2](≈ 390 μmol L-1) and elevated [CO2] environment(25% above ambient) during wet and dry seasons in 2011–2013at Kharagpur, India. The nutrient management included recommended doses of N, P, and K as chemical fertilizer(CF), integration of chemical and organic sources, and application of increased(25% higher) doses of CF. The higher [CO2] level in the OTC increased aboveground biomass but marginally decreased filled grains per panicle and grain yield of rice, compared to the ambient environment. However, crop root biomass was increased significantly under elevated [CO2]. With respect to nutrient management, increasing the dose of CF increased grain yield significantly in both seasons. At the recommended dose of nutrients, integrated nutrient management was comparable to CF in the wet season, but significantly inferior in the dry season, in its effect on growth and yield of rice. The [CO2] elevation in OTC led to a marginal increase in organic C and available P content of soil, but a decrease in available N content. It was concluded that increased doses of nutrients via integration of chemical and organic sources in the wet season and chemical sources alone in the dry season will minimize the adverse effect of future climate on rice production in subtropical India.

  19. Response of Nodularia spumigena to pCO2 – Part 1: Growth, production and nitrogen cycling

    Directory of Open Access Journals (Sweden)

    M. Nausch

    2012-08-01

    Full Text Available Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2 concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C and dinitrogen (N2 fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 μatm, mid (median 353 μatm, and high (median 548 μatm CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2 and 40 ± 25% (mid vs. high pCO2, as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low and 44% (high vs. mid at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the

  20. The role of iron and reactive oxygen species in the production of CO2 in arctic soil waters

    Science.gov (United States)

    Trusiak, Adrianna; Treibergs, Lija A.; Kling, George W.; Cory, Rose M.

    2018-03-01

    Hydroxyl radical (radOH) is a highly reactive oxidant of dissolved organic carbon (DOC) in the environment. radOH production in the dark was observed through iron and DOC mediated Fenton reactions in natural environments. Specifically, when dissolved oxygen (O2) was added to low oxygen and anoxic soil waters in arctic Alaska, radOH was produced in proportion to the concentrations of reduced iron (Fe(II)) and DOC. Here we demonstrate that Fe(II) was the main electron donor to O2 to produce radOH. In addition to quantifying radOH production, hydrogen peroxide (H2O2) was detected in soil waters as a likely intermediate in radOH production from oxidation of Fe(II). For the first time in natural systems we detected carbon dioxide (CO2) production from radOH oxidation of DOC. More than half of the arctic soil waters tested showed production of CO2 under conditions conducive for production of radOH. Findings from this study strongly suggest that DOC is the main sink for radOH, and that radOH can oxidize DOC to yield CO2. Thus, this iron-mediated, dark chemical oxidation of DOC may be an important component of the arctic carbon cycle.

  1. Engineering management of gas turbine power plant co2 for microalgae biofuel production

    OpenAIRE

    Mathew, Domoyi; Pilidis, Pericles; Di Lorenzo, Giuseppina

    2013-01-01

    Fossil fuel accounts for over 80% of the world`s primary energy, particularly in areas of transportation, manufacturing and domestic heating. However, depletion of fossil reserves, frequent threats to the security of fossil fuel supply, coupled with concerns over emissions of greenhouse gases associated with fossil fuel use has motivated research towards developing renewable and sustainable sources for energy fuels. Consequently, the use of microalgae culture to convert CO2 from power plants ...

  2. Elevated CO2 and Tree Species Affect Microbial  Activity and Associated Aggregate Stability in Soil  Amended with Litter

    Directory of Open Access Journals (Sweden)

    Salwan M. J. Al‐Maliki

    2017-03-01

    Full Text Available (1 Elevated atmospheric CO2 (eCO2 may affect organic inputs to woodland soils with potential consequences for C dynamics and associated aggregation; (2 The Bangor Free Air Concentration Enrichment experiment compared ambient (330 ppmv and elevated (550 ppmv CO2 regimes over four growing seasons (2005–2008 under Alnus glutinosa, Betula pendula and Fagus sylvatica. Litter from the experiment (autumn 2008 and Lumbricus terrestris were added to mesocosm soils. Microbial properties and aggregate stability were investigated in soil and earthworm casts. Soils taken from the field experiment in spring 2009 were also investigated; (3 eCO2 litter had lower N and higher C:N ratios. F. sylvatica and B. pendula litter had lower N and P than A. glutinosa; F. sylvatica had higher cellulose. In mesocosms, eCO2 litter decreased respiration, mineralization constant (respired C:total organic C and soluble carbon in soil but not earthworm casts; microbial‐C and fungal hyphal length differed by species (A. glutinosa = B. pendula > F. sylvatica not CO2 regime. eCO2 increased respiration in field aggregates but increased stability only under F. sylvatica; (4 Lower litter quality under eCO2 may restrict its initial decomposition, affecting C stabilization in aggregates. Later resistant materials may support microbial activity and increase aggregate stability. In woodland, C and soil aggregation dynamics may alter under eCO2, but outcomes may be influenced by tree species and earthworm activity.

  3. Genome engineering for microbial natural product discovery.

    Science.gov (United States)

    Choi, Si-Sun; Katsuyama, Yohei; Bai, Linquan; Deng, Zixin; Ohnishi, Yasuo; Kim, Eung-Soo

    2018-03-03

    The discovery and development of microbial natural products (MNPs) have played pivotal roles in the fields of human medicine and its related biotechnology sectors over the past several decades. The post-genomic era has witnessed the development of microbial genome mining approaches to isolate previously unsuspected MNP biosynthetic gene clusters (BGCs) hidden in the genome, followed by various BGC awakening techniques to visualize compound production. Additional microbial genome engineering techniques have allowed higher MNP production titers, which could complement a traditional culture-based MNP chasing approach. Here, we describe recent developments in the MNP research paradigm, including microbial genome mining, NP BGC activation, and NP overproducing cell factory design. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. NREL's Cyanobacteria Engineering Shortens Biofuel Production Process, Captures CO2

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    This highlight describes NREL's work to systematically analyze the flow of energy in a photosynthetic microbe and show how the organism adjusts its metabolism to meet the increased energy demand for making ethylene. This work successfully demonstrates that the organism could cooperate by stimulating photosynthesis. The results encourage further genetic engineering for the conversion of CO2 to biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting. biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  5. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2.

    Science.gov (United States)

    Yadav, Rajesh K; Baeg, Jin-Ook; Oh, Gyu Hwan; Park, No-Joong; Kong, Ki-jeong; Kim, Jinheung; Hwang, Dong Won; Biswas, Soumya K

    2012-07-18

    The photocatalyst-enzyme coupled system for artificial photosynthesis process is one of the most promising methods of solar energy conversion for the synthesis of organic chemicals or fuel. Here we report the synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photocatalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO(2). The results not only show a benchmark example of the graphene-based material used as a photocatalyst in general artificial photosynthesis but also the benchmark example of the selective production system of solar chemicals/solar fuel directly from CO(2).

  6. Microbial amylases in the production of alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, H J

    1970-01-01

    This book is based on experiments carried out in the experimental distillery of the University of Hohenheim on the use of microbial enzyme preparations for processing wheat and maize, with particular reference to comparison of green and cured malts. The subject is divided into the following chapters: introduction (pp. -14); raw materials (pp. 5-6); enzymic dextrinizing and saccharification agents (pp. 6-10); technology of alcohol production with microbial amylses (pp. 11-27); experiments into, results of and discussion on special problems of the mashing and fermentation process with reference to application of microbial amylases (pp. 28-45); Analytical methods (pp. 46-51); and Resume (pp. 5254).

  7. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.

    Science.gov (United States)

    Yu, Ping; Chen, Xingge; Li, Peng

    2017-09-01

    Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  8. Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO(2) capture.

    Science.gov (United States)

    Naqvi, M; Yan, J; Dahlquist, E

    2012-04-01

    This paper estimates potential hydrogen production via dry black liquor gasification system with direct causticization integrated with a reference pulp mill. The advantage of using direct causticization is elimination of energy intensive lime kiln. Pressure swing adsorption is integrated in the carbon capture process for hydrogen upgrading. The energy conversion performance of the integrated system is compared with other bio-fuel alternatives and evaluated based on system performance indicators. The results indicated a significant hydrogen production potential (about 141MW) with an energy ratio of about 0.74 from the reference black liquor capacity (about 243.5MW) and extra biomass import (about 50MW) to compensate total energy deficit. About 867,000tonnes of CO(2) abatement per year is estimated i.e. combining CO(2) capture and CO(2) offset from hydrogen replacing motor gasoline. The hydrogen production offers a substantial motor fuel replacement especially in regions with large pulp and paper industry e.g. about 63% of domestic gasoline replacement in Sweden. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium.

    Science.gov (United States)

    Gao, Hanyang; Xue, Chen; Hu, Guoxin; Zhu, Kunxu

    2017-07-01

    In this research, three kinds of graphene quantum dots (GQDs)-pristine graphene quantum dots (PGQDs), expanded graphene quantum dots (EGQDs) and graphene oxide quantum dots (GOQDs)-were produced from natural graphite, expanded graphite, and oxide graphite respectively in an ultrasound-assisted supercritical CO 2 (scCO 2 )/H 2 O system. The effects of aqueous solution content ratio, system pressure, and ultrasonic power on the yields of different kinds of GQDs were investigated. According to these experiment results, the combination of the intense knocking force generated from high-pressure acoustic cavitation in a scCO 2 /H 2 O system and the superior penetration ability of scCO 2 was considered to be the key to the successful exfoliation of such tiny pieces from bulk graphite. An interesting result was found that, contrary to common experience, the yield of PGQDs from natural graphite was much higher than that of GOQDs from graphite oxide. Based on the experimental analysis, the larger interlayer resistance of natural graphite, which hindered the insertion of scCO 2 molecules, and the hydrophobic property of natural graphite surface, which made the planar more susceptible to the attack of ultrasonic collapsing bubbles, were deduced to be the two main reasons for this result. The differences in characteristics among the three kinds of GQDs were also studied and compared in this research. In our opinion, this low-cost and time-saving method may provide an alternative green route for the production of various kinds of GQDs, especially PGQDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Utilization of spent dregs for the production of activated carbon for CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Serafin Jarosław

    2017-06-01

    Full Text Available The objective of this work was preparation of activated carbon from spent dregs for carbon dioxide adsorption. A saturated solution of KOH was used as an activating agent. Samples were carbonized in the furnace at the temperature of 550°C. Textural properties of activated carbons were obtained based on the adsorption-desorption isotherms of nitrogen at −196°C and carbon dioxide at 0°C. The specific surface areas of activated carbons were calculated by the Brunauer – Emmett – Teller equation. The volumes of micropores were obtained by density functional theory method. The highest CO2 adsorption was 9.54 mmol/cm3 at 0°C – and 8.50 mmol/cm3 at 25°C.

  11. The effects of acute and long-term exposure to CO 2 on the respiratory physiology and production performance of Atlantic salmon ( Salmo salar ) in freshwater

    DEFF Research Database (Denmark)

    Khan, Javed Rafiq; Johansen, D.; Skov, Peter Vilhelm

    2018-01-01

    of recovery from stress. They also show that these effects are driven primarily by CO2 exposure, and to a much lesser extent by the associated reduction in pH. Growth and feed conversion experiments during chronic exposure suggest that there is no CO2 concentration where production performance is unaffected.......A high-level of free CO2 is a prevalent feature of intensive RAS and chronic exposure is common for most species during the production process. Currently, standard operating procedures, regulations and “safe” levels of CO2 are based on values that do not necessarily represent a point at, up...... the effects of both; acute increases in dissolved CO2 on the physiological capacity of Atlantic salmon, as well the effects of chronic exposure to different CO2 concentrations on production in freshwater. Results show that acute exposure (up to 40 mg L−1) significantly reduces aerobic capacity and the rate...

  12. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Lan, Ethan I; Chuang, Derrick S; Shen, Claire R; Lee, Annabel M; Ro, Soo Y; Liao, James C

    2015-09-01

    Photosynthetic conversion of CO2 to chemicals using cyanobacteria is an attractive approach for direct recycling of CO2 to useful products. 3-Hydroxypropionic acid (3 HP) is a valuable chemical for the synthesis of polymers and serves as a precursor to many other chemicals such as acrylic acid. 3 HP is naturally produced through glycerol metabolism. However, cyanobacteria do not possess pathways for synthesizing glycerol and converting glycerol to 3 HP. Furthermore, the latter pathway requires coenzyme B12, or an oxygen sensitive, coenzyme B12-independent enzyme. These characteristics present major challenges for production of 3 HP using cyanobacteria. To overcome such difficulties, we constructed two alternative pathways in Synechococcus elongatus PCC 7942: a malonyl-CoA dependent pathway and a β-alanine dependent pathway. Expression of the malonyl-CoA dependent pathway genes (malonyl-CoA reductase and malonate semialdehyde reductase) enabled S. elongatus to synthesize 3 HP to a final titer of 665 mg/L. β-Alanine dependent pathway expressing S. elongatus produced 3H P to final titer of 186 mg/L. These results demonstrated the feasibility of converting CO2 into 3 HP using cyanobacteria. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. A Data Base of Nutrient Use, Water Use, CO2 Exchange, and Ethylene Production by Soybeans in a Controlled Environment

    Science.gov (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Peterson, B. V.; Sager, J. C.; Knott, W. M.; Berry, W. L.; Sharifi, M. R.

    1998-01-01

    A data set is given describing daily nutrient and water uptake, carbon dioxide (CO2) exchange, ethylene production, and carbon and nutrient partitioning from a 20 sq m stand of soybeans (Glycine max (L.) Merr. cv. McCall] for use in bioregenerative life support systems. Stand CO2 exchange rates were determined from nocturnal increases in CO2 (respiration) and morning drawdowns (net photosynthesis) to a set point of 1000 micromol/ mol each day (i.e., a closed system approach). Atmospheric samples were analyzed throughout growth for ethylene using gas chromatography with photoionization detection (GC/PH)). Water use was monitored by condensate production from the humidity control system, as well as water uptake from the nutrient solution reservoirs each day. Nutrient uptake data were determined from daily additions of stock solution and acid to maintain an EC of 0.12 S/m and pH of 5.8. Dry mass yields of seeds, pods (without seeds), leaves, stems, and roots are provided, as well as elemental and proximate nutritional compositions of the tissues. A methods section is included to qualify any assumptions that might be required for the use of the data in plant growth models, along with a daily event calendar documenting set point adjustments and the occasional equipment or sensor failure.

  14. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  15. Techno-economic assessment of membrane assisted fluidized bed reactors for pure H_2 production with CO_2 capture

    International Nuclear Information System (INIS)

    Spallina, V.; Pandolfo, D.; Battistella, A.; Romano, M.C.; Van Sint Annaland, M.; Gallucci, F.

    2016-01-01

    Highlights: • Membrane reactors improve the overall efficiency of H_2 production up to 20%. • Respect to conventional reforming, the H_2 yield increases from 12% to 20%. • The COH is reduced of at least 220% using membrane reactors. • FBMR capture 72% of CO_2 with a specific cost of 8 eur/tonn_C_O_2_. • MA-CLR can reach 90% of CO_2 avoided with same cost of FTR. - Abstract: This paper addresses the techno-economic assessment of two membrane-based technologies for H_2 production from natural gas, fully integrated with CO_2 capture. In the first configuration, a fluidized bed membrane reactor (FBMR) is integrated in the H_2 plant: the natural gas reacts with steam in the catalytic bed and H_2 is simultaneously separated using Pd-based membranes, and the heat of reaction is provided to the system by feeding air as reactive sweep gas in part of the membranes and by burning part of the permeated H_2 (in order to avoid CO_2 emissions for heat supply). In the second system, named membrane assisted chemical looping reforming (MA-CLR), natural gas is converted in the fuel rector by reaction with steam and an oxygen carrier (chemical looping reforming), and the produced H_2 permeates through the membranes. The oxygen carrier is re-oxidized in a separate air reactor with air, which also provides the heat required for the endothermic reactions in the fuel reactor. The plants are optimized by varying the operating conditions of the reactors such as temperature, pressures (both at feed and permeate side), steam-to-carbon ratio and the heat recovery configuration. The plant design is carried out using Aspen Simulation, while the novel reactor concepts have been designed and their performance have been studied with a dedicated phenomenological model in Matlab. Both configurations have been designed and compared with reference technologies for H_2 production based on conventional fired tubular reforming (FTR) with and without CO_2 capture. The results of the analysis show

  16. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products

    Science.gov (United States)

    Kley, Christopher S.; Li, Yifan; Yang, Peidong

    2017-01-01

    Direct conversion of carbon dioxide to multicarbon products remains as a grand challenge in electrochemical CO2 reduction. Various forms of oxidized copper have been demonstrated as electrocatalysts that still require large overpotentials. Here, we show that an ensemble of Cu nanoparticles (NPs) enables selective formation of C2–C3 products at low overpotentials. Densely packed Cu NP ensembles underwent structural transformation during electrolysis into electrocatalytically active cube-like particles intermixed with smaller nanoparticles. Ethylene, ethanol, and n-propanol are the major C2–C3 products with onset potential at −0.53 V (vs. reversible hydrogen electrode, RHE) and C2–C3 faradaic efficiency (FE) reaching 50% at only −0.75 V. Thus, the catalyst exhibits selective generation of C2–C3 hydrocarbons and oxygenates at considerably lowered overpotentials in neutral pH aqueous media. In addition, this approach suggests new opportunities in realizing multicarbon product formation from CO2, where the majority of efforts has been to use oxidized copper-based materials. Robust catalytic performance is demonstrated by 10 h of stable operation with C2–C3 current density 10 mA/cm2 (at −0.75 V), rendering it attractive for solar-to-fuel applications. Tafel analysis suggests reductive CO coupling as a rate determining step for C2 products, while n-propanol (C3) production seems to have a discrete pathway. PMID:28923930

  17. Joint optimization of preventive maintenance and spare parts inventory for an optimal production plan with consideration of CO_2 emission

    International Nuclear Information System (INIS)

    Ba, Kader; Dellagi, Sofiene; Rezg, Nidhal; Erray, Walid

    2016-01-01

    This article presents a joint optimization of spare parts inventory and preventive maintenance. While minimizing CO_2 emissions, this approach is based on an optimal production plan achieved thanks to the HMMS model. The process which is studied in this paper only manufactures one type of product. The purpose of the paper is to determine for a random demand over a given period, a cost-effective production plan and a maintenance policy which integrates a spare parts strategy in accordance with environmental requirements and regulations. Our green spare parts management can be defined as a set of actions that are applied in order to decrease the spare parts footprint in its lifetime (Ba et al., 2015) [1]. Indeed, we take into account the spare parts characteristics (new or used) which will be used during maintenance actions (preventive or corrective) to preserve the environment. Consequently, we set up analytical models based on the effect of the production rate on the system deterioration so as to substantially cut the maintenance costs, production costs and CO_2 emissions. To evaluate the performance of our models, we give some illustrative examples. - Highlights: • Establishment of an optimal production plan for a manufacturing process. • Cost-effective maintenance strategy with a green spare parts strategy. • Possibility to choose between used and new spare parts to execute maintenance action.

  18. Microbial electrosynthesis for acetate production from carbon dioxide: innovative biocatalysts leading to enhanced performance

    DEFF Research Database (Denmark)

    Aryal, Nabin

    Production of chemicals has significant influence on the emission of greenhouse gases (GHG) in particular carbon dioxide (CO2), thereby contributing to the climate changes of our planet. There is a general acceptance that we need to reduce the emission of GHG on a global level to cope with these ......Production of chemicals has significant influence on the emission of greenhouse gases (GHG) in particular carbon dioxide (CO2), thereby contributing to the climate changes of our planet. There is a general acceptance that we need to reduce the emission of GHG on a global level to cope...... with these changes. Production of chemicals utilization of CO2 as feedstock represents a sustainable alternative to many fossil derived products, which are non-renewable and have a strong negative impact on the environment. Microbial electrosynthesis (MES) is an emerging technique utilizing electrical energy...

  19. Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances

    International Nuclear Information System (INIS)

    Johansson, Daniella; Franck, Per-Åke; Pettersson, Karin; Berntsson, Thore

    2013-01-01

    The impact on CO 2 emissions of integrating new technologies (a biomass-to-Fischer–Tropsch fuel plant and a post-combustion CO 2 capture plant) with a complex refinery has previously been investigated separately by the authors. In the present study these designs are integrated with a refinery and evaluated from the point-of-view of economics and GHG (greenhouse gas emissions) emissions and are compared to a reference refinery. Stand-alone Fischer–Tropsch fuel production is included for comparison. To account for uncertainties in the future energy market, the assessment has been conducted for different future energy market conditions. For the post-combustion CO 2 capture process to be profitable, the present study stresses the importance of a high charge for CO 2 emission. A policy support for biofuels is essential for the biomass-to-Fischer–Tropsch fuel production to be profitable. The level of the support, however, differs depending on scenario. In general, a high charge for CO 2 economically favours Fischer–Tropsch fuel production, while a low charge for CO 2 economically favours Fischer–Tropsch fuel production. Integrated Fischer–Tropsch fuel production is most profitable in scenarios with a low wood fuel price. The stand-alone alternative shows no profitability in any of the studied scenarios. Moreover, the high investment costs make all the studied cases sensitive to variations in capital costs. - Highlights: • Comparison of Fischer–Tropsch (FT) fuel production and CO 2 capture at a refinery. • Subsidies for renewable fuels are essential for FT fuel production to be profitable. • A high charge for CO 2 is essential for post-combustion CO 2 capture to be profitable. • A low charge for CO 2 economically favours FT fuel production. • Of the studied cases, CO 2 capture shows the greatest reduction in GHG emissions

  20. [Spatial temporal differentiation of product-based and consumption-based CO2 emissions and balance in the Beijing-Tianjin-Hebei region: an economic input- output analysis].

    Science.gov (United States)

    Wang, Hao; Chen, Cao-cao; Pan, Tao; Liu, Chun-lan; Chen, Long; Sun, Li

    2014-09-01

    Distinguishing product-based and consumption-based CO2 emissions in the open economic region is the basis for differentiating the emission responsibility, which is attracting increasing attention of decision-makers'attention. The spatial and temporal characteristics of product-based and consumption-based CO2 emissions, as well as carbon balance, in 1997, 2002 and 2007 of JING- JIN-JI region were analyzed by the Economic Input-Output-Life Cycle Assessment model. The results revealed that both the product- based and consumption-based CO2 emissions in the region have been increased by about 4% annually. The percentage of CO2 emissions embodied in trade was 30% -83% , to which the domestic trading added the most. The territorial and consumption-based CO2 emissions in Hebei province were the predominant emission in JING-JIN-JI region, and the increasing speed and emission intensity were stronger than those of Beijing and Tianjin. JING-JIN-JI region was a net inflow region of CO2 emissions, and parts of the emission responsibility were transferred. Beijing and Tianjin were the net importers of CO2 emissions, and Hebei was a net outflow area of CO2 emissions. The key CO2 emission departments in the region were concentrated, and the similarity was great. The inter-regional mechanisms could be set up for joint prevention and control work. - Production and distribution of electricity, gas and water and smelting and pressing of metals had the highest reliability on CO2 emissions, and took on the responsibility of other departments. The EIO-LCA model could be used to analyze the product-based and consumption-based CO2 emissions, which is helpful for the delicate management of regional CO2 emissions reduction and policies making, and stimulating the reduction cooperation at regional scale.

  1. Gluconic Acid: Properties, Applications and Microbial Production

    Directory of Open Access Journals (Sweden)

    Sumitra Ramachandran

    2006-01-01

    Full Text Available Gluconic acid is a mild organic acid derived from glucose by a simple oxidation reaction. The reaction is facilitated by the enzyme glucose oxidase (fungi and glucose dehydrogenase (bacteria such as Gluconobacter. Microbial production of gluconic acid is the preferred method and it dates back to several decades. The most studied and widely used fermentation process involves the fungus Aspergillus niger. Gluconic acid and its derivatives, the principal being sodium gluconate, have wide applications in food and pharmaceutical industry. This article gives a review of microbial gluconic acid production, its properties and applications.

  2. Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization.

    Science.gov (United States)

    Ekblad, Alf; Mikusinska, Anna; Ågren, Göran I; Menichetti, Lorenzo; Wallander, Håkan; Vilgalys, Rytas; Bahr, Adam; Eriksson, Ulrika

    2016-08-01

    Extramatrical mycelia (EMM) of ectomycorrhizal fungi are important in carbon (C) and nitrogen (N) cycling in forests, but poor knowledge about EMM biomass and necromass turnovers makes the quantification of their role problematic. We studied the impacts of elevated CO2 and N fertilization on EMM production and turnover in a Pinus taeda forest. EMM C was determined by the analysis of ergosterol (biomass), chitin (total bio- and necromass) and total organic C (TOC) of sand-filled mycelium in-growth bags. The production and turnover of EMM bio- and necromass and total C were estimated by modelling. N fertilization reduced the standing EMM biomass C to 57% and its production to 51% of the control (from 238 to 122 kg C ha(-1)  yr(-1) ), whereas elevated CO2 had no detectable effects. Biomass turnover was high (˜13 yr(-1) ) and unchanged by the treatments. Necromass turnover was slow and was reduced from 1.5 yr(-1) in the control to 0.65 yr(-1) in the N-fertilized treatment. However, TOC data did not support an N effect on necromass turnover. An estimated EMM production ranging from 2.5 to 6% of net primary production stresses the importance of its inclusion in C models. A slow EMM necromass turnover indicates an importance in building up forest humus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Combined production of synthetic liquid fuel and electricity from coal using H2S and CO2 removal systems

    Directory of Open Access Journals (Sweden)

    Elina A. Tyurina

    2015-11-01

    Full Text Available The main aim of the research is to continue the studies on promising technologies of coal conversion into synthetic liquid fuel (methanol. The object of study is the plants for combined production of electricity and synthetic liquid fuel (PCPs, which are eco-friendly and more efficient as compared to the plants for separate production. The previous studies on PCPs consider the systems for fine cleaning of gasification products in a simplified way. This study presents the detailed mathematical modeling of the aforementioned systems and determines the values of energy consumption and investment in them. The obtained values are used to carry out the optimization studies and find the optimal parameters of PCPs with different degree of CO2 removal from gasification products providing fine cleaning of gasification products from H2S.

  4. Systems biology of microbial exopolysaccharides production

    Directory of Open Access Journals (Sweden)

    Ozlem eAtes

    2015-12-01

    Full Text Available Exopolysaccharides (EPS produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture and medicine. EPSs are mainly associated with high-value applications and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore a systems-based approach constitutes an important step towards understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan and dextran.

  5. Systems Biology of Microbial Exopolysaccharides Production.

    Science.gov (United States)

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran.

  6. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation

    NARCIS (Netherlands)

    Calfapietra, C.; Gielen, B.; Galema, A.N.J.; Lukac, M.; Angelis, de P.; Moscatelli, M.C.; Ceulemans, R.; Scarascia-Mugnozza, G.

    2003-01-01

    This paper investigates the possible contribution of Short Rotation Cultures (SRC) to carbon sequestration in both current and elevated atmospheric CO2 concentrations ([CO2]). A dense poplar plantation (1 x 1 m) was exposed to a [CO2] of 550 ppm in Central Italy using the free-air CO2 enrichment

  7. CO2 Enhanced Oil Recovery from the Residual Zone - A Sustainable Vision for North Sea Oil Production

    Science.gov (United States)

    Stewart, Jamie; Haszeldine, Stuart; Wilkinson, Mark; Johnson, Gareth

    2014-05-01

    This paper presents a 'new vision for North Sea oil production' where previously unattainable residual oil can be produced with the injection of CO2 that has been captured at power stations or other large industrial emitters. Not only could this process produce incremental oil from a maturing basin, reducing imports, it also has the capability to store large volumes of CO2 which can offset the emissions of additional carbon produced. Around the world oil production from mature basins is in decline and production from UK oil fields peaked in 1998. Other basins around the world have a similar story. Although in the UK a number of tax regimes, such as 'brown field allowances' and 'new field allowances' have been put in place to re-encourage investment, it is recognised that the majority of large discoveries have already been made. However, as a nation our demand for oil remains high and in the last decade imports of crude oil have been steadily increasing. The UK is dependent on crude oil for transport and feedstock for chemical and plastics production. Combined with the necessity to provide energy security, there is a demand to re-assess the potential for CO2 Enhanced Oil Recovery (CO2-EOR) in the UK offshore. Residual oil zones (ROZ) exist where one of a number of natural conditions beyond normal capillary forces have caused the geometry of a field's oil column to be altered after filling [1]. When this re-structuring happens the primary interest to the hydrocarbon industry has in the past been in where the mobile oil has migrated to. However it is now considered that significant oil resource may exist in the residual zone play where the main oil column has been displaced. Saturations within this play are predominantly close to residual saturation (Sr) and would be similar to that of a water-flooded field [2]. Evidence from a number of hydrocarbon fairways shows that, under certain circumstances, these residual zones in US fields are comparable in thickness to the

  8. Optimization of hydrogen production with CO_2 capture by autothermal chemical-looping reforming using different bioethanol purities

    International Nuclear Information System (INIS)

    García-Díez, E.; García-Labiano, F.; De Diego, L.F.; Abad, A.; Gayán, P.; Adánez, J.; Ruíz, J.A.C.

    2016-01-01

    Highlights: • Autothermal-CLR and WGS have been considered for H_2 production with CO_2 capture. • Bioethanol was used as renewable fuel. • Mass and heat balances allow process optimization. • The use of diluted bioethanol implies energy saves in the bioethanol production. • The use of diluted bioethanol (52 vol.%) produces 4.62 mol H_2/mol ethanol. - Abstract: Autothermal Chemical-Looping Reforming (a-CLR) is a process which allows hydrogen production avoiding the environmental penalty of CO_2 emission typically produced in other processes. The major advantage of this technology is that the heat needed for syngas production is generated by the process itself. The heat necessary for the endothermic reactions is supplied by a Ni-based oxygen-carrier (OC) circulating between two reactors: the air reactor (AR), where the OC is oxidized by air, and the fuel reactor (FR), where the fuel is converted to syngas. Other important advantage is that this process also allows the production of pure N_2 in the AR outlet stream. A renewable fuel such as bioethanol was chosen in this work due to their increasing worldwide production and the current excess of this fuel presented by different countries. In this work, mass and heat balances were done to determine the auto-thermal conditions that maximize H_2 production, assuming that the product gas was in thermodynamic equilibrium. Three different types of bioethanol has been considered according to their ethanol purity; Dehydrated ethanol (≈100 vol.%), hydrated ethanol (≈96 vol.%), and diluted ethanol (≈52 vol.%). It has been observed that the higher H_2 production (4.62 mol of H_2 per mol of EtOH) has been obtained with the use of diluted ethanol and the surplus energy needed could be compensated by the energy save achieved during the purification of ethanol in the production process.

  9. Global Warming Can Negate the Expected CO2 Stimulation in Photosynthesis and Productivity for Soybean Grown in the Midwestern United States1[W][OA

    Science.gov (United States)

    Ruiz-Vera, Ursula M.; Siebers, Matthew; Gray, Sharon B.; Drag, David W.; Rosenthal, David M.; Kimball, Bruce A.; Ort, Donald R.; Bernacchi, Carl J.

    2013-01-01

    Extensive evidence shows that increasing carbon dioxide concentration ([CO2]) stimulates, and increasing temperature decreases, both net photosynthetic carbon assimilation (A) and biomass production for C3 plants. However the [CO2]-induced stimulation in A is projected to increase further with warmer temperature. While the influence of increasing temperature and [CO2], independent of each other, on A and biomass production have been widely investigated, the interaction between these two major global changes has not been tested on field-grown crops. Here, the interactive effect of both elevated [CO2] (approximately 585 μmol mol−1) and temperature (+3.5°C) on soybean (Glycine max) A, biomass, and yield were tested over two growing seasons in the Temperature by Free-Air CO2 Enrichment experiment at the Soybean Free Air CO2 Enrichment facility. Measurements of A, stomatal conductance, and intercellular [CO2] were collected along with meteorological, water potential, and growth data. Elevated temperatures caused lower A, which was largely attributed to declines in stomatal conductance and intercellular [CO2] and led in turn to lower yields. Increasing both [CO2] and temperature stimulated A relative to elevated [CO2] alone on only two sampling days during 2009 and on no days in 2011. In 2011, the warmer of the two years, there were no observed increases in yield in the elevated temperature plots regardless of whether [CO2] was elevated. All treatments lowered the harvest index for soybean, although the effect of elevated [CO2] in 2011 was not statistically significant. These results provide a better understanding of the physiological responses of soybean to future climate change conditions and suggest that the potential is limited for elevated [CO2] to mitigate the influence of rising temperatures on photosynthesis, growth, and yields of C3 crops. PMID:23512883

  10. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection

    Science.gov (United States)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.

    2015-12-01

    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  11. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  12. Bioactive natural products from novel microbial sources.

    Science.gov (United States)

    Challinor, Victoria L; Bode, Helge B

    2015-09-01

    Despite the importance of microbial natural products for human health, only a few bacterial genera have been mined for the new natural products needed to overcome the urgent threat of antibiotic resistance. This is surprising, given that genome sequencing projects have revealed that the capability to produce natural products is not a rare feature among bacteria. Even the bacteria occurring in the human microbiome produce potent antibiotics, and thus potentially are an untapped resource for novel compounds, potentially with new activities. This review highlights examples of bacteria that should be considered new sources of natural products, including anaerobes, pathogens, and symbionts of humans, insects, and nematodes. Exploitation of these producer strains, combined with advances in modern natural product research methodology, has the potential to open the way for a new golden age of microbial therapeutics. © 2015 New York Academy of Sciences.

  13. Produção de pimenta tabasco com aplicação de CO2, utilizando-se irrigação por gotejamento = Tabasco pepper production with CO2 application using drip irrigation

    Directory of Open Access Journals (Sweden)

    Fabiana Luiza Matielo de Paula

    2011-01-01

    Full Text Available A aplicação de CO2 via água de irrigação produz o rebaixamento do pH da solução do solo, causando variações na mobilidade dos nutrientes e consequentes efeitos na absorção. O objetivo deste trabalho foi analisar os efeitos de doses de dióxido de carbono (CO2, aplicadas via irrigação por gotejamento, na produção da pimenta Tabasco. O delineamento experimental foi o de blocos casualizados com quatro tratamentos e oito repetições. Os tratamentos foram quatro doses de CO2: 0 (T1, 451,95 (T2; 677,93 (T3 e 903,92 (T4 kg ha-1. Os frutos foram pesados e contados; o comprimento e o diâmetro de frutos foram obtidos com a média de 20 frutos por planta. Ocorreu efeito quadrático (p Application of CO2 through water reduces the soil solution pH, causing variations in nutrient mobility and consequent effects on the absorption. The objective of this study was to analyze the effects of carbon dioxide rates supplied by drip irrigation in the production of Capsicum frutescens L. crop. A randomized block design with four treatments and eight replications was used. The treatments were four rates of CO2: 0 (T1, 451.95 (T2; 677.93 (T3 and 903.92 (T4 kg ha-1. The fruits were counted and weighed; the length and the diameter were obtained from an average of 20 fruits per plant, randomly taken, from each treatment in the plot. The quadratic effect (p < 0.01 occurred for CO2 on the yield and there was quadratic effect (p < 0.05 of the rates on the number of fruits. There were no effects of CO2 rates on the green matter, dry matter and fruit length and diameter. The T2 treatment provided greater yield and higher number of fruits per plant with an increase of 16 and 26%, respectively in relation to T1 (without CO2. CO2 application favored the increase in the yield because of the greater number of fruits per plant in the Tabasco pepper crop.

  14. Isostructural and cage-specific replacement occurring in sII hydrate with external CO2/N2 gas and its implications for natural gas production and CO2 storage

    International Nuclear Information System (INIS)

    Seo, Young-ju; Park, Seongmin; Kang, Hyery; Ahn, Yun-Ho; Lim, Dongwook; Kim, Se-Joon; Lee, Jaehyoung; Lee, Joo Yong; Ahn, Taewoong; Seo, Yongwon; Lee, Huen

    2016-01-01

    structural sustainability and cage-specific replacement observed in the C 3 H 8 + CH 4 hydrate with external CO 2 /N 2 gas will have significant implications for suggesting target gas hydrate reservoirs and understanding the precise nature of guest exchange in gas hydrates for both safe natural gas production and long-term CO 2 sequestration.

  15. Climatic and management drivers of CO2 exchanges by a production crop: analysis over three successive 4-year cycles.

    Science.gov (United States)

    Buysse, Pauline; Moureaux, Christine; Bodson, Bernard; Aubinet, Marc

    2016-04-01

    Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (candidate ICOS site) in the Hesbaye region in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Eddy covariance, automatic and manual soil chambers, leaf diffusion and biomass measurements were performed continuously in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP), total Ecosystem Respiration (TER), Net Primary Productivity (NPP), autotrophic respiration, heterotrophic respiration and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. Climatic and seasonal evolutions of the carbon balance components were studied and crop carbon budgets were computed both at the yearly and crop rotation cycle scales. On average over the 12 years, NEE was negative but NBP was positive, i.e. as far as carbon exportation by harvest are included in the budget, the site behaved as a carbon source. Impacts of both meteorological drivers and crop management operations on CO2 exchanges were analyzed and compared between crop types, years, and rotation cycles. The uncertainties associated to the carbon fluxes were also evaluated and discussed.

  16. Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO2-controlled photoautotrophic chemostat.

    Science.gov (United States)

    Seo, Seong-Hyun; Ha, Ji-San; Yoo, Chan; Srivastava, Ankita; Ahn, Chi-Yong; Cho, Dae-Hyun; La, Hyun-Joon; Han, Myung-Soo; Oh, Hee-Mock

    2017-11-01

    The optimal culture conditions are critical factors for high microalgal biomass and lipid productivity. To optimize the photoautotrophic culture conditions, combination of the pH (regulated by CO 2 supply), dilution rate, and light intensity was systematically investigated for Ettlia sp. YC001 cultivation in a chemostat during 143days. The biomass productivity increased with the increase in dilution rate and light intensity, but decreased with increasing pH. The average lipid content was 19.8% and statistically non-variable among the tested conditions. The highest biomass and lipid productivities were 1.48gL -1 d -1 and 291.4mgL -1 d -1 with a pH of 6.5, dilution rate of 0.78d -1 , and light intensity of 1500μmolphotonsm -2 s -1 . With a sufficient supply of CO 2 and nutrients, the light intensity was the main determinant of the photosynthetic rate. Therefore, the surface-to-volume ratio of a photobioreactor should enable efficient light distribution to enhance microalgal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Non-CO2 greenhouse gas emissions associated with food production: methane (CH4) and nitrous oxide (N2O)

    International Nuclear Information System (INIS)

    Carlsson-Kanyama, Annika

    2007-01-01

    It is well known that the agriculture and livestock sectors are large contributors of N 2 O and CH 4 emissions in countries with agricultural activities and that remedial measures are needed in these sectors in order to curb contributions to global warming. This study examines non- CO 2 greenhouse gas emissions associated with the production of food. Methane (CH 4 ) and nitrous oxide (N 2 O) are the most relevant greenhouse gases in this category, and they are emitted mainly in the agricultural sector. These greenhouse gases have a Global Warming Potential much higher than CO 2 itself (25- and 298-fold higher, respectively, in a 100-year perspective). Emission intensities and the corresponding uncertainties were calculated based on the latest procedures and data published by the Intergovernmental Panel on Climate Change and used to facilitate calculations comparing greenhouse gas emissions for food products and diets. When the proposed emission intensities were applied to agricultural production, the results showed products of animal origin and the cultivation of rice under water to have high emissions compared with products of vegetable origin cultivated on upland soils, such as wheat and beans. In animal production the main source of greenhouse gas emissions was methane from enteric fermentation, while emissions of nitrous oxides from fertilisers were the main sources of greenhouse gas emissions for cereal and legume cultivation. For rice cultivation, methane emissions from flooded rice fields contributed most. Other significant sources of greenhouse gas emissions during animal production were manure storage and management. We suggest that the proposed emission factors, together with the associated uncertainties, can be a tool for better understanding the potential to mitigate emissions of greenhouse gases through changes in the diet

  18. Renewable and non-renewable exergy costs and CO2 emissions in the production of fuels for Brazilian transportation sector

    International Nuclear Information System (INIS)

    Flórez-Orrego, Daniel; Silva, Julio A.M. da; Velásquez, Héctor; Oliveira, Silvio de

    2015-01-01

    An exergy and environmental comparison between the fuel production routes for Brazilian transportation sector, including fossil fuels (natural gas, oil-derived products and hydrogen), biofuels (ethanol and biodiesel) and electricity is performed, and the percentage distribution of exergy destruction in the different units of the processing plants is characterized. An exergoeconomy methodology is developed and applied to properly allocate the renewable and non-renewable exergy costs and CO 2 emission cost among the different products of multiproduct plants. Since Brazilian electricity is consumed in the upstream processing stages of the fuels used in the generation thereof, an iterative calculation is used. The electricity mix comprises thermal (coal, natural gas and oil-fired), nuclear, wind and hydroelectric power plants, as well as bagasse-fired mills, which, besides exporting surplus electricity, also produce sugar and bioethanol. Oil and natural gas-derived fuels production and biodiesel fatty acid methyl-esters (FAME) derived from palm oil are also analyzed. It was found that in spite of the highest total unit exergy costs correspond to the production of biofuels and electricity, the ratio between the renewable to non-renewable invested exergy (cR/cNR) for those fuels is 2.69 for biodiesel, 4.39 for electricity, and 15.96 for ethanol, whereas for fossil fuels is almost negligible. - Highlights: • Total and non-renewable exergy costs of Brazilian transportation fuels are evaluated. • Specific CO 2 emissions in the production of Brazilian transportation fuels are determined. • Representative production routes for fossil fuels, biofuels and electricity are reviewed. • Exergoeconomy is used to distribute costs and emissions in multiproduct processes

  19. Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2

    Science.gov (United States)

    John S. King; Mark E. Kubiske; Kurt S. Pregitzer; George R. Hendrey; Evan P. McDonald; Christian P. Giardina; Vanessa S. Quinn; David F. Karnosky

    2005-01-01

    Concentrations of atmospheric CO2 and tropospheric ozone (O3) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO2 enrichment (FACE) technology, we exposed north...

  20. Effects of climate change on productivity of cereals and legumes; model evaluation of observed year-to-year variability of the CO2 response.

    NARCIS (Netherlands)

    Grashoff, C.; Dijkstra, P.; Nonhebel, S.; Schapendonk, A.H.C.M.; Geijn, van de S.C.

    1995-01-01

    The effect of elevated [CO2] on the productivity of spring wheat, winter wheat and faba bean was studied in experiments in climatized crop enclosures in the Wageningen Rhizolab in 1991–93. Simulation models for crop growth were used to explore possible causes for the observed differences in the CO2

  1. Microbial production of value-added nutraceuticals.

    Science.gov (United States)

    Wang, Jian; Guleria, Sanjay; Koffas, Mattheos Ag; Yan, Yajun

    2016-02-01

    Nutraceuticals are important natural bioactive compounds that confer health-promoting and medical benefits to humans. Globally growing demands for value-added nutraceuticals for prevention and treatment of human diseases have rendered nutraceuticals a multi-billion dollar market. However, supply limitations and extraction difficulties from natural sources such as plants, animals or fungi, restrict the large-scale use of nutraceuticals. Metabolic engineering via microbial production platforms has been advanced as an eco-friendly alternative approach for production of value-added nutraceuticals from simple carbon sources. Microbial platforms like the most widely used Escherichia coli and Saccharomyces cerevisiae have been engineered as versatile cell factories for production of diverse and complex value-added chemicals such as phytochemicals, prebiotics, polysaccaharides and poly amino acids. This review highlights the recent progresses in biological production of value-added nutraceuticals via metabolic engineering approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization.

    Science.gov (United States)

    Wang, Lei; Chen, Liang; Tsang, Daniel C W; Li, Jiang-Shan; Yeung, Tiffany L Y; Ding, Shiming; Poon, Chi Sun

    2018-08-01

    Navigational dredging is an excavation of marine/freshwater sediment to maintain channels of sufficient depth for shipping safety. Due to historical inputs of anthropogenic contaminants, sediments are often contaminated by metals/metalloids, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other contaminants. Its disposal can present significant environmental and financial burdens. This study developed a novel and green remediation method for contaminated sediment using stabilization/solidification with calcium-rich/low-calcium industrial by-products and CO 2 utilization. The hydration products were evaluated by quantitative X-ray diffraction analysis and thermogravimetric analysis. The incorporation of calcium carbide residue (CCR) facilitated hydration reaction and provided relatively high 7-d strength. In contrast, the addition of Class-F pulverized fly ash (PFA) and ground granulated blast furnace slag (GGBS) was beneficial to the 28-d strength development due to supplementary pozzolanic and hydration reactions. The employment of 1-d CO 2 curing was found to promote strength development (98%) and carbon sequestration (4.3wt%), while additional 7-d air curing facilitated cement rehydration and further carbonation in the sediment blocks. The leachability tests indicated that all studied binders, especially CCR binder, effectively immobilized contaminants in the sediments. The calcium-rich CCR and GGBS were regarded as promising candidates for augmenting the efficacy of CO 2 curing, whereas GGBS samples could be applicable as eco-paving blocks in view of their superior 28-d strength. This study presents a new and sustainable way to transform contaminated sediment into value-added materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  4. Engineering of cyanobacteria for the photosynthetic production of limonene from CO2.

    Science.gov (United States)

    Kiyota, Hiroshi; Okuda, Yukiko; Ito, Michiho; Hirai, Masami Yokota; Ikeuchi, Masahiko

    2014-09-20

    Isoprenoids, major secondary metabolites in many organisms, are utilized in various applications. We constructed a model photosynthetic production system for limonene, a volatile isoprenoid, using a unicellular cyanobacterium that expresses the plant limonene synthase. This system produces limonene photosynthetically at a nearly constant rate and that can be efficiently recovered using a gas-stripping method. This production does not affect the growth of the cyanobacteria and is markedly enhanced by overexpression of three enzymes in the intrinsic pathway to provide the precursor of limonene, geranyl pyrophosphate. The photosynthetic production of limonene in our system is more or less sustained from the linear to stationary phase of cyanobacterial growth for up to 1 month. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size

    Directory of Open Access Journals (Sweden)

    K. Sabbe

    2010-05-01

    Full Text Available The impact of ocean acidification and increased water temperature on marine ecosystems, in particular those involving calcifying organisms, has been gradually recognised. We examined the individual and combined effects of increased pCO2 (180 ppmV CO2, 380 ppmV CO2 and 750 ppmV CO2 corresponding to past, present and future CO2 conditions, respectively and temperature (13 °C and 18 °C during the exponential growth phase of the coccolithophore E. huxleyi using batch culture experiments. We showed that cellular production rate of Particulate Organic Carbon (POC increased from the present to the future CO2 treatments at 13 °C. A significant effect of pCO2 and of temperature on calcification was found, manifesting itself in a lower cellular production rate of Particulate Inorganic Carbon (PIC as well as a lower PIC:POC ratio at future CO2 levels and at 18 °C. Coccosphere-sized particles showed a size reduction with both increasing temperature and CO2 concentration. The influence of the different treatments on coccolith morphology was studied by categorizing SEM coccolith micrographs. The number of well-formed coccoliths decreased with increasing pCO2 while temperature did not have a significant impact on coccolith morphology. No interacting effects of pCO2 and temperature were observed on calcite production, coccolith morphology or on coccosphere size. Finally, our results suggest that ocean acidification might have a larger adverse impact on coccolithophorid calcification than surface water warming.

  6. Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste

    International Nuclear Information System (INIS)

    Perez-Lopez, Rafael; Castillo, Julio; Quispe, Dino; Nieto, Jose Miguel

    2010-01-01

    In this study, experiments were conducted to investigate the applicability of low-cost alkaline paper mill wastes as acidity neutralizing agents for treatment of acid mine drainage (AMD). Paper wastes include a calcium mud by-product from kraft pulping, and a calcite powder from a previous study focused on sequestering CO 2 by carbonation of calcium mud. The neutralization process consisted of increase of pH by alkaline additive dissolution, decrease of metals solubility and precipitation of gypsum and poorly crystallized Fe-Al oxy-hydroxides/oxy-hydroxysulphates, which acted as a sink for trace elements to that extent that solutions reached the pre-potability requirements of water for human consumption. This improvement was supported by geochemical modelling of solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of reaction products. According to PHREEQC simulations, the annual amount of alkaline additive is able to treat AMD (pH 3.63, sulphate 3800 mg L -1 , iron 348 mg L -1 ) with an average discharge of about 114 and 40 L s -1 for calcium mud and calcite powder, respectively. Likewise, given the high potential of calcium mud to sequester CO 2 and of resulting calcite powder to neutralize AMD, paper wastes could be a promising solution for facing this double environmental problem.

  7. Bioethanol production from cassava peels using different microbial ...

    African Journals Online (AJOL)

    Bioethanol production from cassava peels using different microbial inoculants. ... Log in or Register to get access to full text downloads. ... Abstract. The potential of bioethanol production using different microbial inoculants for the simultaneous ...

  8. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh Iyer; Himanshu Gupta; Danny Wong; Liang-Shih Fan

    2005-09-30

    Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project aims at using the OSU patented high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. Gas composition analyses show the formation of 100% pure hydrogen. Novel calcination techniques could lead to smaller reactor footprint and single-stage reactors that can achieve maximum theoretical H{sub 2} production for multicyclic applications. Sub-atmospheric calcination studies reveal the effect of vacuum level, diluent gas flow rate, thermal properties of the diluent gas and the sorbent loading on the calcination kinetics which play an important role on the sorbent morphology. Steam, which can be easily separated from CO{sub 2}, is envisioned to be a potential diluent gas due to its enhanced thermal properties. Steam calcination studies at 700-850 C reveal improved sorbent morphology over regular nitrogen calcination. A mixture of 80% steam and 20% CO{sub 2} at ambient pressure was used to calcine the spent sorbent at 820 C thus lowering the calcination temperature. Regeneration of calcium sulfide to calcium carbonate was achieved by carbonating the calcium sulfide slurry by bubbling CO{sub 2} gas at room temperature.

  9. Transport of CO2 and other combustion products in soils during slash-pile burns [Presentation

    Science.gov (United States)

    W. J. Massman; M. M. Nobles; G. Butters; S. J. Mooney

    2010-01-01

    The most obvious indication of transport of mass during a fire is flames and smoke. Furthermore it is well known that localized heating during the fire creates 3-D convective currents in the atmosphere and that these currents carry the combustion products away from the fire.

  10. Impact of organic pig production systems on CO2 emission, C sequestration and nitrate pollution

    DEFF Research Database (Denmark)

    Halberg, Niels; Hermansen, John Erik; Kristensen, Ib Sillebak

    2010-01-01

    Organic rules for grazing and access to outdoor areas in pig production may be met in different ways, which express compromises between considerations for animal welfare, feed self-reliance and negative environmental impact such as greenhouse gas emissions and nitrate pollution. This article...

  11. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature.

    Science.gov (United States)

    Vu, Joseph C V; Allen, Leon H

    2009-07-15

    Two cultivars of sugarcane (Saccharum officinarum cv. CP73-1547 and CP88-1508) were grown for 3 months in paired-companion, temperature-gradient, sunlit greenhouses under daytime [CO2] of 360 (ambient) and 720 (double ambient) micromol mol(-1) and at temperatures of 1.5 degrees C (near ambient) and 6.0 degrees C higher than outside ambient temperature. Leaf area and biomass, stem biomass and juice and CO2 exchange rate (CER) and activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) of fully developed leaves were measured at harvest. On a main stem basis, leaf area, leaf dry weight, stem dry weight and stem juice volume were increased by growth at doubled [CO2] or high temperature. Such increases were even greater under combination of doubled [CO2]/high temperature. Plants grown at doubled [CO2]/high temperature combination averaged 50%, 26%, 84% and 124% greater in leaf area, leaf dry weight, stem dry weight and stem juice volume, respectively, compared with plants grown at ambient [CO2]/near-ambient temperature combination. In addition, plants grown at doubled [CO2]/high temperature combination were 2-3-fold higher in stem soluble solids than those at ambient [CO2]/near-ambient temperature combination. Although midday CER of fully developed leaves was not affected by doubled [CO2] or high temperature, plants grown at doubled [CO2] were 41-43% less in leaf stomatal conductance and 69-79% greater in leaf water-use efficiency, compared with plants grown at ambient [CO2]. Activity of PEPC was down-regulated 23-32% at doubled [CO2], while high temperature did not have a significant impact on this enzyme. Activity of Rubisco was not affected by growth at doubled [CO2], but was reduced 15-28% at high temperature. The increases in stem juice production and stem juice soluble solids concentration for sugarcane grown at doubled [CO2] or high temperature, or at doubled [CO2]/high temperature combination, were partially

  12. Electricity production and microbial characterization of thermophilic microbial fuel cells.

    Science.gov (United States)

    Dai, Kun; Wen, Jun-Li; Zhang, Fang; Ma, Xi-Wen; Cui, Xiang-Yu; Zhang, Qi; Zhao, Ting-Jia; Zeng, Raymond J

    2017-11-01

    Thermophilic microbial fuel cell (TMFC) offers many benefits, but the investigations on the diversity of exoelectrogenic bacteria are scarce. In this study, a two-chamber TMFC was constructed using ethanol as an electron donor, and the microbial dynamics were analyzed by high-throughput sequencing and 16S rRNA clone-library sequencing. The open-circuit potential of TMFC was approximately 650mV, while the maximum voltage was around 550mV. The maximum power density was 437mW/m 2 , and the columbic efficiency in this work was 20.5±6.0%. The Firmicutes bacteria, related to the uncultured bacterium clone A55_D21_H_B_C01 with a similarity of 99%, accounted for 90.9% of all bacteria in the TMFC biofilm. This unknown bacterium has the potential to become a new thermophilic exoelectrogenic bacterium that is yet to be cultured. The development of TMFC-involved biotechnologies will be beneficial for the production of valuable chemicals and generation of energy in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Microbial community in a sediment-hosted CO(2) lake of the southern Okinawa Trough hydrothermal system RID C-8303-2011

    DEFF Research Database (Denmark)

    Inagaki, Fumio; Kuypers, Marcel M. M.; Tsunogai, Urumu

    2006-01-01

    pavements above the CO(2) lake, decreasing to strikingly low cell numbers (107 CM-3) at the liquid CO(2)/CO(2)-hydrate interface. The key groups in these sediments were as follows: (i) the anaerobic methanotrophic archaea ANME-2c and the Eel-2 group of Deltaproteobacteria and (ii) sulfur...

  14. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    Directory of Open Access Journals (Sweden)

    S. Comeau

    2017-07-01

    Full Text Available The threat represented by ocean acidification (OA for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet, and between PAR and community net calcification (Gnet, using experiments on three coral communities constructed to match (i the back reef of Mo'orea, French Polynesia, (ii the fore reef of Mo'orea, and (iii the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu. For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  15. Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity

    Science.gov (United States)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; hide

    2016-01-01

    Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.

  16. Perspectives of microbial oils for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiang; Du Wei; Liu Dehua [Tsinghua Univ., Beijing (China). Dept. of Chemical Engineering

    2008-10-15

    Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed. (orig.)

  17. CO2 chemical valorization

    International Nuclear Information System (INIS)

    Kerlero De Rosbo, Guillaume; Rakotojaona, Loic; Bucy, Jacques de; Clodic, Denis; Roger, Anne-Cecile; El Khamlichi, Aicha; Thybaud, Nathalie; Oeser, Christian; Forti, Laurent; Gimenez, Michel; Savary, David; Amouroux, Jacques

    2014-07-01

    Facing global warming, different technological solutions exist to tackle carbon dioxide (CO 2 ) emissions. Some inevitable short term emissions can be captured so as to avoid direct emissions into the atmosphere. This CO 2 must then be managed and geological storage seems to currently be the only way of dealing with the large volumes involved. However, this solution faces major economic profitability and societal acceptance challenges. In this context, alternative pathways consisting in using CO 2 instead of storing it do exist and are generating growing interest. This study ordered by the French Environment and Energy Management Agency (ADEME), aims at taking stock of the different technologies used for the chemical conversion of CO 2 in order to have a better understanding of their development potential by 2030, of the conditions in which they could be competitive and of the main actions to be implemented in France to foster their emergence. To do this, the study was broken down into two main areas of focus: The review and characterization of the main CO 2 chemical conversion routes for the synthesis of basic chemical products, energy products and inert materials. This review includes a presentation of the main principles underpinning the studied routes, a preliminary assessment of their performances, advantages and drawbacks, a list of the main R and D projects underway, a focus on emblematic projects as well as a brief analysis of the markets for the main products produced. Based on these elements, 3 routes were selected from among the most promising by 2030 for an in-depth modelling and assessment of their energy, environmental and economic performances. The study shows that the processes modelled do have favorable CO 2 balances (from 1 to 4 t-CO 2 /t-product) and effectively constitute solutions to reduce CO 2 emissions, despite limited volumes of CO 2 in question. Moreover, the profitability of certain solutions will remain difficult to reach, even with an

  18. Microbial production of citric acid

    Directory of Open Access Journals (Sweden)

    Luciana P. S Vandenberghe

    1999-01-01

    Full Text Available Citric acid is the most important organic acid produced in tonnage and is extensively used in food and pharmaceutical industries. It is produced mainly by submerged fermentation using Aspergillus niger or Candida sp. from different sources of carbohydrates, such as molasses and starch based media. However, other fermentation techniques, e.g. solid state fermentation and surface fermentation, and alternative sources of carbon such as agro-industrial residues have been intensively studied showing great perspective to its production. This paper reviews recent developments on citric acid production by presenting a brief summary of the subject, describing micro-organisms, production techniques, and substrates, etc.O ácido cítrico é o ácido mais produzido em termos de tonagem e é extensivamente utilizado pelas indústrias alimentícia e farmacêutica. É produzido principalmente por fermentação submersa utilizando o fungo Aspergillus niger e leveduras do gênero Candida sp. à partir de diferentes fontes de carbono, como a glicose e meios à base de amido. No entanto, outras técnicas de fermentação, e.g. fermentação no estado sólido e em superfície, e fontes alternativas de carbono tem sido intensamente estudadas mostrando grande perspectivas para o processo. O presente trabalho apresenta um resumo dos últimos avanços sobre a produção do ácido cítrico, descrevendo de maneira sucinta os trabalhos mais recentes, descrevendo microrganismos, técnicas de produção e substratos empregados, etc.

  19. CO2 slurry pipeline to transport solid marketable products to improve CCS economics

    Energy Technology Data Exchange (ETDEWEB)

    Luhning, Richard

    2010-09-15

    Carbon dioxide pipelines are anticipated to be a key element in CCS (Carbon Capture and Sequestration) to transport the carbon dioxide to sequestration sites or to oil fields for use in enhanced oil recovery applications. However the economics of CCS are such that the operations are economically challenged. The concept of using super critical (liquid) carbon dioxide in a slurry pipeline is to use the pipeline constructed for environmental purposes to transport marketable products such as sulphur, petroleum coke, limestone and others to market thereby generating additional income to make CCS carbon dioxide transportation economically attractive.

  20. An Integrated Hydrogen Production-CO2 Capture Process from Fossil Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhicheng Wang

    2007-03-15

    The new technology concept integrates two significant complementary hydrogen production and CO{sub 2}-sequestration approaches that have been developed at Oak Ridge National Laboratory (ORNL) and Clark Atlanta University. The process can convert biomass into hydrogen and char. Hydrogen can be efficiently used for stationary power and mobile applications, or it can be synthesized into Ammonia which can be used for CO{sub 2}-sequestration, while char can be used for making time-release fertilizers (NH{sub 4}HCO{sub 3}) by absorption of CO{sub 2} and other acid gases from exhaust flows. Fertilizers are then used for the growth of biomass back to fields. This project includes bench scale experiments and pilot scale tests. The Combustion and Emission Lab at Clark Atlanta University has conducted the bench scale experiments. The facility used for pilot scale tests was built in Athens, GA. The overall yield from this process is 7 wt% hydrogen and 32 wt% charcoal/activated carbon of feedstock (peanut shell). The value of co-product activated carbon is about $1.1/GJ and this coproduct reduced the selling price of hydrogen. And the selling price of hydrogen is estimated to be $6.95/GJ. The green house experimental results show that the samples added carbon-fertilizers have effectively growth increase of three different types of plants and improvement ability of keeping fertilizer in soil to avoid the fertilizer leaching with water.

  1. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shwetha Ramkumar; Mahesh Iyer; Danny Wong; Himanshu Gupta; Bartev Sakadjian; Liang-Lhih Fan

    2008-09-30

    High purity hydrogen is commercially produced from syngas by the Water Gas Shift Reaction (WGSR) in high and low temperature shift reactors using iron oxide and copper catalysts respectively. However, the WGSR is thermodynamically limited at high temperatures towards hydrogen production necessitating excess steam addition and catalytic operation. In the calcium looping process, the equilibrium limited WGSR is driven forward by the incessant removal of CO{sub 2} by-product through the carbonation of calcium oxide. At high pressures, this process obviates the need for a catalyst and excess steam requirement, thereby removing the costs related to the procurement and deactivation of the catalyst and steam generation. Thermodynamic analysis for the combined WGS and carbonation reaction was conducted. The combined WGS and carbonation reaction was investigated at varying pressures, temperatures and S/C ratios using a bench scale reactor system. It was found that the purity of hydrogen increases with the increase in pressure and at a pressure of 300 psig, almost 100% hydrogen is produced. It was also found that at high pressures, high purity hydrogen can be produced using stoichiometric quantities of steam. On comparing the catalytic and non catalytic modes of operation in the presence of calcium oxide, it was found that there was no difference in the purity of hydrogen produced at elevated pressures. Multicyclic reaction and regeneration experiments were also conducted and it was found that the purity of hydrogen remains almost constant after a few cycles.

  2. Optimization of Microbial Elastase Production

    International Nuclear Information System (INIS)

    Abd EI-Aziz, A.B.; Hassan, A.A.

    2010-01-01

    The extra cellular proteases (caseinase, gelatinase and elastase) and hemolytic activities of the tested microorganisms on agar plates were detected, using different substrates (gelatin, casein, hemoglobin and elastin).The proteolytic activities were detected only from Pseudomonas aeruginosa, Prevotella bivius, Bacillus subtilis and Micrococcus luteus. The production of elastase by Bacillus subtilis (has low hemolysins activity) at various temperatures (30 degree C - 37 degree C) and at exposure to different doses of gamma irradiation (0.25-1.0 kGy) was investigated in shake flask. The results indicated that the incubation temperature 37 degree C was the optimum for cell growth at earlier stage; while maximum elastase activity was obtained when the cells were cultivated at 30 degree C and irradiation dose level of 0.75 kGy. The effects of temperature, substrate content, elastase concentration, ph and different metals ions on elastolysis were investigated as well the elastase amino acids composition was detected by using amino acids analyzer

  3. Electron acceptor-based regulation of microbial greenhouse gas production from thawing permafrost

    DEFF Research Database (Denmark)

    Bak, Ebbe Norskov; Jones, Eleanor; Yde, Jacob Clement

    layer as well in the permafrost. These investigations are accompanied by characterization of the carbon, iron and sulfate content in the soil and will be followed by characterization of the microbial community structure. The aim of this study is to get a better understanding of how the availability...... of sulfate and iron and the microbial community structure regulate the production of CO2 and CH4 in thawing permafrost, and to elucidate how the rate of the organic carbon degradation changes with depth in permafrost-affected soils. This study improves our understanding of climate feedback mechanisms...

  4. Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2006-01-01

    General circulation models consistently predict that regional warming will be most rapid in the Arctic, that this warming will be predominantly in the winter season, and that it will often be accompanied by increasing snowfall. Paradoxically, despite the strong cold season emphasis in these predi...... will respond to climate change during winter because they indicate a threshold (~1 m) above which there would be little effect of increased snow accumulation on wintertime biogeochemical cycling....... in these predictions, we know relatively little about the plot and landscape-level controls on tundra biogeochemical cycling in wintertime as compared to summertime. We investigated the relative influence of vegetation type and climate on CO2 production rates and total wintertime CO2 release in the Scandinavian...... subarctic. Ecosystem respiration rates and a wide range of associated environmental and substrate pool size variables were measured in the two most common vegetation types of the region (birch understorey and heath tundra) at four paired sites along a 50 km transect through a strong snow depth gradient...

  5. Production and fractionation of 14CO2 labeled smooth cordgrass, Spartina alterniflora

    International Nuclear Information System (INIS)

    Fallon, R.D.; Pfaender, F.K.

    1976-01-01

    A simple chamber for use in radioactive carbon labeling of plants is described and used to successfully label Spartina Alterniflora. The plant material contained 5.5 +- 1.3 μCi/g (dry) mean activity after a 1-week pulse. The plant was chemically fractionated and the mean activity (+- standard error) was determined in four biochemical fractions: fiber = 2.6 +- 0.7 μCi/g (dry), organic acid 2.6 +- 0.1 μCi/g (dry), protein/nucleic acid = 2.4 +- 0.5 μCi/g (dry), and lipid = 27.3 +- 6.2 μCi/g (dry). The high activity of the lipid fraction indicates that it may serve as a carbon storage pool in the plant under the described growing conditions. The simple, low cost chamber can be used for plant biochemistry experiments, and for the production of labeled detritus and plant fractions

  6. A New Method for Production of Titanium Dioxide Pigment - Eliminating CO2 Emission

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak [University of Utah

    2013-11-05

    The objective of this project was to demonstrate the potential of a new process technology to reduce the energy consumption and CO{sub 2} emission from the production of titanium dioxide (TiO{sub 2}) pigment. TiO{sub 2} is one of the most commonly used minerals in the chemical manufacturing industry. It has been commercially processed as a pigment since the early 1900's, and has a wide variety of domestic and industrial applications. TiO{sub 2} pigment is currently produced primarily by the use of the so called chloride process. A key step of the chloride process relies on high temperature carbo-chlorination of TiO{sub 2} bearing raw materials, hence producing large quantities of CO{sub 2}. The new method uses a chemical/metallurgical sequential extraction methodology to produce pigment grade TiO{sub 2} from high-TiO{sub 2} slag. The specific project objectives were to 1) study and prove the scientific validity of the concept, 2) understand the primary chemical reactions and the efficiency of sequential extraction schemes, 3) determine the properties of TiO{sub 2} produced using the technology, and 4) model the energy consumptions and environmental benefits of the technology. These objectives were successfully met and a new process for producing commercial quality TiO{sub 2} pigment was developed and experimentally validated. The process features a unique combination of established metallurgical processes, including alkaline roasting of titania slag followed by leaching, solvent extraction, hydrolysis, and calcination. The caustic, acidic, and organic streams in the process will also be regenerated and reused in the process, greatly reducing environmental waste. The purpose and effect of each of these steps in producing purified TiO{sub 2} is detailed in the report. The levels of impurities in our pigment meet the requirements for commercial pigment, and are nearly equivalent to those of two commercial pigments. Solvent extraction with an amine extractant

  7. Ethanol production by immobilized yeast and its CO2 gas effects on a packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, G M; Choi, C Y; Choi, Y D; Han, M H

    1982-10-01

    Immobilised yeast trapped in an alginate matrix demonstrated maximum activity at 30 degrees C and showed no pH effect between 3 and 7. Substrate inhibition was observed at glucose concentrations above 8% but the immobilised cells retained 70% of their maximum activity at 20% glucose concentration. The operation stability of immobilised cells was lower in simple glucose solution than in the activation medium in which only 20% of the activity was lost after 10 days operation. Inactivated immobilised yeast beads were reactivated by incubation in activation medium without a significant increase in cell numbers in a bead. During the operation of the immobilised yeast in a packed bed reactor, CO/sub 2/ gas accumulation adversely affected the reactor performance. An ideal plus flow reactor, not taking into account the formation of CO/sub 2/ gas bubbles and the presence of mass trasnfer resistance, was simulated using a kinetic model for the production of ethanol and the simulation results were compared with the actual reactor performance to determine the CO/sub 2/ gas effect, quantitatively. Up to 45% of the substrate conversion was lost due to the accumulation of CO/sub 2/ gas bubbles in all cases. (Refs. 21).

  8. Evaluation of Energy Balance and CO2 Emissions of Wheat (Triticum aestivum L. Production

    Directory of Open Access Journals (Sweden)

    Mohammad Pazouki

    2018-02-01

    Full Text Available Introduction Among the various factors affecting agricultural production, climatic conditions of the natural environment variables are effected .On the other hand the agriculture development , the exact knowledge of environmental characteristics and management practices is anywhere special in semi-arid zone. Cotton (Gossypium hirsutum L. due to the extensive roots and permeability and also the ability to set the number of leaves and fruits when the plant is under water stress, is a suitable crop for planting in arid and semi-arid climate. South Khorasan Province has dry and desert climatic conditions in post-semi-arid and semi-arid climates in mountainous regions. South Khorasan province produces 34 thousand tons of cotton annually and planted 13 thousand hectares of irrigated cotton production ranks second in the country. Materials and Methods South Khorasan province is located in the east of Iran with an area of 149,107 square kilometers and is located between the geographical circle of 30° and 31´ to 34° and 53´of northern latitudes and 57° and 3´to 57° and 60´ of east. This study is to evaluate the climatic conditions for the cotton cultivation in the history of different cultures in South Khorasan province in a 25-year period (2015-1990 AD. For this purpose, fifteen stations of South Khorasan province and to help software environment for modeling and spatial analysis was performed by Arc GIS. By taking advantage of favorable climatic conditions at each stage of cotton growth, data layers of classification and weighting values for each zone was determined and prepared. Finally, in order to overlay layers by using multi-criteria decision-making methods based the Analytic Hierarchy Process (AHP, the final maps was set for each date based on climatic factors for the cultivation date of cotton in Khorasan South, Results and Discussion According to the results obtained in the zoning of cultivars, in the western and southern parts of the

  9. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean, supplement to: Holding, Johnna; Duarte, Carlos M; Sanz-Martín, Marina; Mesa, E; Arrieta, J M; Chierici, Melissa; Hendriks, Iris; García-Corral, L S; Regaudie-de-Gioux, A; Delgado, A; Reigstad, M; Wassmann, P; Agustí, Susana (2015): Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean. Nature Climate Change, 5(12), 1079-1082

    KAUST Repository

    Holding, Johnna; Duarte, Carlos M.; Sanz-Martí n, Marina; Mesa, E; Arrieta, J M; Chierici, Melissa; Hendriks, Iris; Garcí a-Corral, L S; Regaudie-de-Gioux, A; Delgado, A; Reigstad, M; Wassmann, P; Agusti, Susana

    2016-01-01

    should lead to increased rates of planktonic primary production. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production

  10. Production and Extraction of [10C]-CO2 From Proton Bombardment of Molten 10B2O3

    International Nuclear Information System (INIS)

    Schueller, M.J.; Nickles, R.J.; Roberts, A.D.; Jensen, M.

    2003-01-01

    This work describes the production of 10C (t (1/2) = 19 s) from an enriched 10B2O3 target using a CTI RDS-112 11 MeV proton cyclotron. Proton beam heating is used to raise the target to a molten state (∼ 1300 deg. C), enabling the activity to diffuse to the surface of the melt. An infrared thermocouple monitors the melt temperature. Helium sweep gas then transports the activity to flow-through chemistry processing for human inhalation of 10CO2 for blood flow imaging with Positron Emission Tomography. The temperature-related diffusion of activity out of the white-hot molten glass target is discussed

  11. Monthly CO2 at A4HDYD station in a productive shallow marginal sea (Yellow Sea) with a seasonal thermocline: Controlling processes

    Science.gov (United States)

    Xu, Xuemei; Zang, Kunpeng; Zhao, Huade; Zheng, Nan; Huo, Cheng; Wang, Juying

    2016-07-01

    Based upon 21 field surveys conducted from March 2011 to November 2013, monthly variation of carbon dioxide partial pressure (pCO2) and other carbon system parameters were investigated for the first time (to our knowledge) at A4HDYD station (38°40‧N, 122°10‧E) located in the North Yellow Sea, a region with a seasonal thermocline. Surface pCO2 was undersaturated from March to May and nearly in equilibrium with the atmosphere from June to August. During September and November, pCO2 declined to a lower level than that from June to August, but reached the highest level in December. In contrast, pCO2 declined to atmospheric CO2 levels in February. Overall, the study area was a net CO2 sink at a rate of 0.85 ± 0.59 mol C m- 2 yr- 1. The underlying processes governing the variation of pCO2 were also examined. In general, temperature had an important influence on the monthly variation of pCO2, but its effect was counterbalanced by biological production in spring and vertical mixing in early winter. Our study indicated that dynamic mechanism studies based on high temporal resolution observations are urgently needed to understand the complexity of the carbon cycle and detect biogeochemical changes or ecosystem responses to climate change on continental margins.

  12. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016: a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions

    Directory of Open Access Journals (Sweden)

    T. Oda

    2018-01-01

    Full Text Available The Open-source Data Inventory for Anthropogenic CO2 (ODIAC is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2 emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1  ×  1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016 and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1 the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC at the Oak Ridge National Laboratory (ORNL by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers; (2 the use of multiple spatial emissions proxies by fuel type such as (a nighttime light data specific to gas flaring and (b ship/aircraft fleet tracks; and (3 the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000–2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data

  13. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions

    Science.gov (United States)

    Oda, Tomohiro; Maksyutov, Shamil; Andres, Robert J.

    2018-01-01

    The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2) emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1 × 1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location) and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016) and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1) the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory (ORNL) by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers); (2) the use of multiple spatial emissions proxies by fuel type such as (a) nighttime light data specific to gas flaring and (b) ship/aircraft fleet tracks; and (3) the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000-2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data product could play an important

  14. Hynol: An economic process for methanol production from biomass and natural gas with reduced CO2 emission

    Science.gov (United States)

    Steinberg, M.; Dong, Yuanji

    1993-10-01

    The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (1) hydrogasification of biomass, (2) steam reforming of the produced gas with additional natural gas feedstock, and (3) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H2-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO2 emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

  15. Combined effect of CO2 enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger

    Science.gov (United States)

    2012-01-01

    Background The increase in atmospheric CO2 concentration caused by climate change and agricultural practices is likely to affect biota by producing changes in plant growth, allocation and chemical composition. This study was conducted to evaluate the combined effect of the application of salicylic acid (SA, at two levels: 0 and 10-3 M) and CO2 enrichment (at two levels: 400 and 800 μmol·mol−1) on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from two Malaysian ginger varieties, namely Halia Bentong and Halia Bara. Methods High-performance liquid chromatography (HPLC) with photodiode array detection and mass spectrometry was employed to identify and quantify the flavonoids and anthocyanins in the ginger extracts. The antioxidant activity of the leaf extracts was determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) assays. The substrate specificity of chalcone synthase, the key enzyme for flavonoid biosynthesis, was investigated using the chalcone synthase (CHS) assay. Results CO2 levels of 800 μmol·mol−1 significantly increased anthocyanin, rutin, naringenin, myricetin, apigenin, fisetin and morin contents in ginger leaves. Meanwhile, the combined effect of SA and CO2 enrichment enhanced anthocyanin and flavonoid production compared with single treatment effects. High anthocyanin content was observed in H Bara leaves treated with elevated CO2 and SA. The highest chalcone synthase (CHS) activity was observed in plants treated with SA and CO2 enrichment. Plants not treated with SA and kept under ambient CO2 conditions showed the lowest CHS activity. The highest free radical scavenging activity corresponded to H Bara treated with SA under high CO2 conditions, while the lowest activity corresponded to H Bentong without SA treatment and under atmospheric CO2 levels. As the level of CO2 increased, the DPPH activity increased. Higher TBA activity was also recorded in the extracts of H Bara

  16. Combined effect of CO2 enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger

    Directory of Open Access Journals (Sweden)

    Ghasemzadeh Ali

    2012-11-01

    Full Text Available Abstract Background The increase in atmospheric CO2 concentration caused by climate change and agricultural practices is likely to affect biota by producing changes in plant growth, allocation and chemical composition. This study was conducted to evaluate the combined effect of the application of salicylic acid (SA, at two levels: 0 and 10-3 M and CO2 enrichment (at two levels: 400 and 800 μmol·mol−1 on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from two Malaysian ginger varieties, namely Halia Bentong and Halia Bara. Methods High-performance liquid chromatography (HPLC with photodiode array detection and mass spectrometry was employed to identify and quantify the flavonoids and anthocyanins in the ginger extracts. The antioxidant activity of the leaf extracts was determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH and thiobarbituric acid (TBA assays. The substrate specificity of chalcone synthase, the key enzyme for flavonoid biosynthesis, was investigated using the chalcone synthase (CHS assay. Results CO2 levels of 800 μmol·mol−1 significantly increased anthocyanin, rutin, naringenin, myricetin, apigenin, fisetin and morin contents in ginger leaves. Meanwhile, the combined effect of SA and CO2 enrichment enhanced anthocyanin and flavonoid production compared with single treatment effects. High anthocyanin content was observed in H Bara leaves treated with elevated CO2 and SA. The highest chalcone synthase (CHS activity was observed in plants treated with SA and CO2 enrichment. Plants not treated with SA and kept under ambient CO2 conditions showed the lowest CHS activity. The highest free radical scavenging activity corresponded to H Bara treated with SA under high CO2 conditions, while the lowest activity corresponded to H Bentong without SA treatment and under atmospheric CO2 levels. As the level of CO2 increased, the DPPH activity increased. Higher TBA activity was also recorded in the

  17. Effects of Co2 Concentrations and light intensity on photosynthesis of a rootless submerged plant, ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems

    Science.gov (United States)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    Aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality in addition to green microalgae. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for plant function in aquatic food production modules including both plant culture and fish culture systems . The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known level CO 2 gas mixed with N2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 100 mmol mol-1 . Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1 , which was controlled with a metal halide lamp. Temperature was kept at 28 C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol-1 , respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 70 nmolO 2 gDW s at 3.0 mmol mol-1 CO2 and gradually decreased with increasing CO 2 levels from 3.0 to 100 mmol mol-1 . The results demonstrate that Ceratophyllum demersum L. could be an efficient CO 2 to O2 converter under a 3.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules.

  18. Microbial granulation for lactic acid production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which...... increased, reaching 67 g L-fermenter−1h−1 at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s−1 and 0...

  19. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    Science.gov (United States)

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.

  20. Microbial nitrogen cycling response to forest-based bioenergy production.

    Science.gov (United States)

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  1. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and bio-succinic acid production

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Alvarado-Morales, Merlin; Angelidaki, Irini

    2014-01-01

    Biogas is an attractive renewable energy carrier. However, it contains CO2 which limits certain applications of biogas. Here we report a novel approach for removing CO2 from biogas and capturing it as a biochemical through a biological process. This approach entails converting CO2 into bio...... and titre, CO2 consumption rate and CH4 purity. When using biogas as the only CO2 source at 140 kPa, the CO2 consumption rate corresponded to 2.59 L CO2 L-1 d-1 with a final succinic acid titre of 14.4 g L-1. Under this pressure condition the highest succinic acid yield and biogas quality reached......-succinic acid using the bacterial strain Actinobacillus succinogenes 130Z, and simultaneously producing high purity CH4 (>95%). Results showed that when pressure during fermentation was increased from 101.325 to 140 kPa, higher CO2 solubility was achieved, thereby positively affecting final succinic acid yield...

  2. Batch production of micron size particles from poly(ethylene glycol) using supercritical CO2 as a processing solvent

    NARCIS (Netherlands)

    Nalawade, Sameer P.; Picchioni, Francesco; Janssen, L. P. B. M.

    The major advantage of using supercritical carbon dioxide (CO2) as a solvent in polymer processing is an enhancement in the free volume of a polymer due to dissolved CO2, which causes a considerable reduction in the viscosity. This allows spraying the polymer melt at low temperatures to produce

  3. CO2 AND N-FERTILIZATION EFFECTS ON FINE ROOT LENGTH, PRODUCTION, AND MORTALITY: A 4-YEAR PONDEROSA PINE STUDY

    Science.gov (United States)

    We conducted a 4-year study of Pinus ponderosa fine root (<2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at 3 CO2 levels (ambient, ambient+175 mol/mol, ambient+350 mol/mol) and 3 N-fertilization levels (0, 10, 20 g?m-2?yr-1). ...

  4. Morphological and Compositional Design of Pd-Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO2 Electroreduction.

    Science.gov (United States)

    Zhu, Wenjin; Zhang, Lei; Yang, Piaoping; Chang, Xiaoxia; Dong, Hao; Li, Ang; Hu, Congling; Huang, Zhiqi; Zhao, Zhi-Jian; Gong, Jinlong

    2018-02-01

    Electrochemical conversion of carbon dioxide (electrochemical reduction of carbon dioxide) to value-added products is a promising way to solve CO 2 emission problems. This paper describes a facile one-pot approach to synthesize palladium-copper (Pd-Cu) bimetallic catalysts with different structures. Highly efficient performance and tunable product distributions are achieved due to a coordinative function of both enriched low-coordinated sites and composition effects. The concave rhombic dodecahedral Cu 3 Pd (CRD-Cu 3 Pd) decreases the onset potential for methane (CH 4 ) by 200 mV and shows a sevenfold CH 4 current density at -1.2 V (vs reversible hydrogen electrode) compared to Cu foil. The flower-like Pd 3 Cu (FL-Pd 3 Cu) exhibits high faradaic efficiency toward CO in a wide potential range from -0.7 to -1.3 V, and reaches a fourfold CO current density at -1.3 V compared to commercial Pd black. Tafel plots and density functional theory calculations suggest that both the introduction of high-index facets and alloying contribute to the enhanced CH 4 current of CRD-Cu 3 Pd, while the alloy effect is responsible for high CO selectivity of FL-Pd 3 Cu. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Production of hydrogen by microbial fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S.; Cox, D.; Levandowsky, M.

    1988-01-01

    Production of hydrogen by defined and undefined bacterial cultures was studied, using pure sugars (glucose and maltose) or natural sources rich in either pure sugars or polysaccharides. The latter included sugar cane juice, corn pulp (enzymatically treated or untreated), and enzymatically treated paper. Mixed microbial flora from sewage and landfill sediments, as well as pure and mixed cultures of known coliform bacteria produced mixtures of hydrogen and carbon dioxide at 37/sup 0/C and 55/sup 0/C, with hydrogen concentrations as high as 87%. In the case of the pure glucose substrate, an average yield of 0.7 mol hydrogen per mol glucose was obtained.

  6. Fate(s) of injected CO2 in a coal-bearing formation, Louisiana, Gulf Coast Basin: Chemical and isotopic tracers of microbial-brine-rock-CO2 interactions

    Science.gov (United States)

    Shelton, Jenna L.

    2013-01-01

    Coal beds are one of the most promising reservoirs for geologic carbon dioxide (CO₂) sequestration, as CO₂ can strongly adsorb onto organic matter and displace methane; however, little is known about the long-term fate of CO₂ sequestered in coal beds. The "2800' sand" of the Olla oil field is a coal-bearing, oil and gas-producing reservoir of the Paleocene–Eocene Wilcox Group in north-central Louisiana. In the 1980s, this field, specifically the 2800' sand, was flooded with CO₂ in an enhanced oil recovery (EOR) project, with 9.0×10⁷m³ of CO₂ remaining in the 2800' sand after injection ceased. This study utilized isotopic and geochemical tracers from co-produced natural gas, oil and brine from reservoirs located stratigraphically above, below and within the 2800' sand to determine the fate of the remaining EOR-CO₂, examining the possibilities of CO₂ migration, dissolution, mineral trapping, gas-phase trapping, and sorption to coal beds, while also testing a previous hypothesis that EOR-CO₂ may have been converted by microbes (CO₂-reducing methanogens) into methane, creating a microbial "hotspot". Reservoirs stratigraphically-comparable to the 2800' sand, but located in adjacent oil fields across a 90-km transect were sampled to investigate regional trends in gas composition, brine chemistry and microbial activity. The source field for the EOR-CO₂, the Black Lake Field, was also sampled to establish the δ¹³C-CO₂ value of the injected gas (0.9‰ +/- 0.9‰). Four samples collected from the Olla 2800' sand produced CO₂-rich gas with δ¹³C-CO₂ values (average 9.9‰) much lower than average (pre-injection) conditions (+15.9‰, average of sands located stratigraphically below the 2800' sand in the Olla Field) and at much higher CO₂ concentrations (24.9 mole %) than average (7.6 mole %, average of sands located stratigraphically below the 2800' sand in the Olla Field), suggesting the presence of EOR-CO₂ and gas-phase trapping as

  7. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.

    Science.gov (United States)

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andisheh; Israelsson-Nordstrom, Maria; Engineer, Cawas B; Bargmann, Bastiaan O R; Stephan, Aaron B; Schroeder, Julian I

    2015-08-01

    Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV '/FM' ) were comparable with wild-type plants. Time-resolved intact leaf gas-exchange analyses showed a reduction in stomatal conductance and CO2 -assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2 ] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2 ] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2 ] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a 'deflated' thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  8. CuCo2O4 nanoplate film as a low-cost, highly active and durable catalyst towards the hydrolytic dehydrogenation of ammonia borane for hydrogen production

    Science.gov (United States)

    Liu, Quanbing; Zhang, Shengjie; Liao, Jinyun; Feng, Kejun; Zheng, Yuying; Pollet, Bruno G.; Li, Hao

    2017-07-01

    Catalytic dehydrogenation of ammonia borane is one of the most promising routes for the production of clean hydrogen as it is seen as a highly efficient and safe method. However, its large-scale industrial application is either limited by the high cost of the catalyst (usually a noble metal based catalyst) or by the low activity and poor reusability (usually a non-noble metal catalyst). In this study, we have successfully prepared three low-cost CuCo2O4 nanocatalysts, namely: (i) Ti supported CuCo2O4 film made of CuCo2O4 nanoplates, (ii) Ti supported CuCo2O4 film made of CuCo2O4 nanosheets, and (iii) unsupported CuCo2O4 nanoparticles. Among the three catalysts used for the hydrolytic dehydrogeneration of ammonia borane, the CuCo2O4 nanoplate film exhibits the highest catalytic activity with a turnover frequency (TOF) of ∼44.0 molhydrogen min-1 molcat-1. This is one of the largest TOF value for noble-metal-free catalysts ever reported in the literature. Moreover, the CuCo2O4 nanoplate film almost keeps its original catalytic activity after eight cycles, indicative of its high stability and good reusability. Owing to its advantages, the CuCo2O4 nanoplate film can be a promising catalyst for the hydrolytic dehydrogenation of ammonia borane, which may find important applications in the field of hydrogen energy.

  9. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  10. Problems with the microbial production of butanol.

    Science.gov (United States)

    Zheng, Yan-Ning; Li, Liang-Zhi; Xian, Mo; Ma, Yu-Jiu; Yang, Jian-Ming; Xu, Xin; He, Dong-Zhi

    2009-09-01

    With the incessant fluctuations in oil prices and increasing stress from environmental pollution, renewed attention is being paid to the microbial production of biofuels from renewable sources. As a gasoline substitute, butanol has advantages over traditional fuel ethanol in terms of energy density and hygroscopicity. A variety of cheap substrates have been successfully applied in the production of biobutanol, highlighting the commercial potential of biobutanol development. In this review, in order to better understand the process of acetone-butanol-ethanol production, traditional clostridia fermentation is discussed. Sporulation is probably induced by solvent formation, and the molecular mechanism leading to the initiation of sporulation and solventogenesis is also investigated. Different strategies are employed in the metabolic engineering of clostridia that aim to enhancing solvent production, improve selectivity for butanol production, and increase the tolerance of clostridia to solvents. However, it will be hard to make breakthroughs in the metabolic engineering of clostridia for butanol production without gaining a deeper understanding of the genetic background of clostridia and developing more efficient genetic tools for clostridia. Therefore, increasing attention has been paid to the metabolic engineering of E. coli for butanol production. The importation and expression of a non-clostridial butanol-producing pathway in E. coli is probably the most promising strategy for butanol biosynthesis. Due to the lower butanol titers in the fermentation broth, simultaneous fermentation and product removal techniques have been developed to reduce the cost of butanol recovery. Gas stripping is the best technique for butanol recovery found so far.

  11. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic.

    Science.gov (United States)

    Mazankova, V; Torokova, L; Krcma, F; Mason, N J; Matejcik, S

    2016-11-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO 2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N 2  + CH 4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO 2 reactivity. CO 2 was introduced to the standard N 2  + CH 4 mixture at different mixing ratio up to 5 % CH 4 and 3 % CO 2 . The reaction products were characterized by FTIR spectroscopy. This work shows that CO 2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO 2 on increasing concentration other products as cyanide (HCN) and ammonia (NH 3 ).

  12. Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests

    Science.gov (United States)

    Yang, Yuting; Donohue, Randall J.; McVicar, Tim R.; Roderick, Michael L.; Beck, Hylke E.

    2016-08-01

    Understanding how tropical rainforests respond to elevated atmospheric CO2 concentration (eCO2) is essential for predicting Earth's carbon, water, and energy budgets under future climate change. Here we use long-term (1982-2010) precipitation (P) and runoff (Q) measurements to infer runoff coefficient (Q/P) and evapotranspiration (E) trends across 18 unimpaired tropical rainforest catchments. We complement that analysis by using satellite observations coupled with ecosystem process modeling (using both "top-down" and "bottom-up" perspectives) to examine trends in carbon uptake and relate that to the observed changes in Q/P and E. Our results show there have been only minor changes in the satellite-observed canopy leaf area over 1982-2010, suggesting that eCO2 has not increased vegetation leaf area in tropical rainforests and therefore any plant response to eCO2 occurs at the leaf level. Meanwhile, observed Q/P and E also remained relatively constant in the 18 catchments, implying an unchanged hydrological partitioning and thus approximately conserved transpiration under eCO2. For the same period, using a top-down model based on gas exchange theory, we predict increases in plant assimilation (A) and light use efficiency (ɛ) at the leaf level under eCO2, the magnitude of which is essentially that of eCO2 (i.e., 12% over 1982-2010). Simulations from 10 state-of-the-art bottom-up ecosystem models over the same catchments also show that the direct effect of eCO2 is to mostly increase A and ɛ with little impact on E. Our findings add to the current limited pool of knowledge regarding the long-term eCO2 impacts in tropical rainforests.

  13. Microbial electrosynthesis of biochemicals

    NARCIS (Netherlands)

    Bajracharya, S.

    2016-01-01

    Microbial electrosynthesis (MES) is an electricity-driven production of chemicals from low-value waste using microorganisms as biocatalysts. MES from CO2 comprises conversion of CO2 to multi-carbon compounds employing microbes at the cathode which use electricity as an energy source. This thesis

  14. Microbial lipases: Production, properties and biotechnological applications

    Directory of Open Access Journals (Sweden)

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  15. Assessment of hydrothermal pretreatment of various lignocellulosic biomass with CO2 catalyst for enhanced methane and hydrogen production.

    Science.gov (United States)

    Eskicioglu, Cigdem; Monlau, Florian; Barakat, Abdellatif; Ferrer, Ivet; Kaparaju, Prasad; Trably, Eric; Carrère, Hélène

    2017-09-01

    Hydrothermal pretreatment of five lignocellulosic substrates (i.e. wheat straw, rice straw, biomass sorghum, corn stover and Douglas fir bark) were conducted in the presence of CO 2 as a catalyst. To maximize disintegration and conversion into bioenergy (methane and hydrogen), pretreatment temperatures and subsequent pressures varied with a range of 26-175 °C, and 25-102 bars, respectively. Among lignin, cellulose and hemicelluloses, hydrothermal pretreatment caused the highest reduction (23-42%) in hemicelluloses while delignification was limited to only 0-12%. These reductions in structural integrity resulted in 20-30% faster hydrolysis rates during anaerobic digestion for the pretreated substrates of straws, sorghum, and corn stover while Douglas fir bark yielded 172% faster hydrolysis/digestion due to its highly refractory nature in the control. Furans and phenolic compounds formed in the pretreated hydrolyzates were below the inhibitory levels for methane and hydrogen production which had a range of 98-340 ml CH 4 /g volatile solids (VS) and 5-26 ml H 2 /g VS, respectively. Results indicated that hydrothermal pretreatment is able to accelerate the rate of biodegradation without generating high levels of inhibitory compounds while showing no discernible effect on ultimate biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.

    2015-01-01

    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  17. Gross primary production of a semiarid grassland is enhanced by six years of exposure to elevated atmospheric CO2, warming, and irrigation.

    Science.gov (United States)

    Ryan, E.; Ogle, K.; Peltier, D.; Williams, D. G.; Pendall, E.

    2014-12-01

    The goal of this study was to quantify interannual variation of gross primary production (GPP) and evaluate potential drivers of GPP with global change using the Prairie Heating and CO2 Enrichment (PHACE) experiment in semiarid grassland in southeastern Wyoming. PHACE consists of the treatments: control, warming only, elevated CO2 (eCO2) only, eCO2 and warming, and irrigation only. We expected that GPP would be most strongly influenced by interannual variability in precipitation under all PHACE treatments, soil water availability under eCO2, and nitrogen availability. GPP data were obtained from paired measurements of net ecosystem exchange (NEE) and ecosystem respiration (Reco; GPP = Reco - NEE) made on 2-4 week intervals over six growing seasons (2007-2012). Soil temperature (T), soil water content (SWC), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR) were continuously recorded at the plot (T, SWC) and site (VPD, PAR) scales. Annual, plot-level aboveground plant nitrogen content (N) was measured during peak biomass. We fit a non-linear light-response model to the GPP data within a Bayesian framework, and modeled the maximum GPP rate (Gmax) and canopy light-use efficiency (Q) as functions of N and current and antecedent SWC, T, and VPD. The model fit the GPP data well (R2 = 0.64), and regardless of the PHACE treatment the most important drivers of GPP were N (for Gmax), VPD (Gmax and Q), antecedent T (Gmax), and antecedent VPD (Q). Model simulations predicted that annual GPP increased on average by about 16% with eCO2, 14% with warming, 12% with eCO2 and warming, and 23% with irrigation. For four of the six years, annual GPP was significantly affected by either eCO2 alone or when combined with warming. The increase in annual GPP under irrigation was similar to the increase under eCO2 during a dry year (2012), but irrigation stimulated GPP to a greater degree than eCO2 during wet years (2008, 2009). Hence, increases in GPP under eCO2

  18. Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the earth

    Science.gov (United States)

    O'Keefe, John D.; Ahrens, Thomas J.

    1989-01-01

    Various observations and data demonstrate that sea level at the end of the Cretaceous was 150-200 m higher than at present, suggesting the possibility that the extinction bolide struck a shallow marine carbonate-rich sedimentary section. It is shown here that the impact of such a bolide (about 5 km in radius) onto a carbonate-rich terrane would increase the CO2 content of the atmosphere by a factor of two to ten. Additional dissolution of CO2 from the ocean's photic zone could release much larger quantities of CO2. The impact-induced release of CO2, by itself, would enhance atmospheric greenhouse heating and give rise to a worldwide increase in temperature from 2 K to 10 K for periods of 10,000 to 100,000 years.

  19. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    KAUST Repository

    Á lvarez, Andrea; Bansode, Atul; Urakawa, Atsushi; Bavykina, Anastasiya V.; Wezendonk, Tim A.; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek

    2017-01-01

    carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects

  20. The effect of feeding on CO2 production and energy expenditure in ponies measured by indirect calorimetry and the 13C-bicarbonate technique

    DEFF Research Database (Denmark)

    Jensen, Rasmus Bovbjerg; Kyrstein, T. D.; Junghans, P

    2015-01-01

    Energy expenditure (EE) can be estimated based on respiratory gas exchange measurements, traditionally done in respiration chambers by indirect calorimetry (IC). However, the (13)C-bicarbonate technique ((13)C-BT) might be an alternative minimal invasive method for estimation of CO(2) production...... and EE in the field. In this study, four Shetland ponies were used to explore the effect of feeding on CO(2) production and EE measured simultaneously by IC and (13)C-BT. The ponies were individually housed in respiration chambers and received either a single oral or intravenous (IV) bolus dose of (13)C......-bicarbonate at the three different feeding times. Feeding time affected the CO(2) production (P

  1. Performance Limits of Photoelectrochemical CO2 Reduction Based on Known Electrocatalysts and the Case for Two-Electron Reduction Products

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Seger, Brian

    2016-01-01

    Solar-drivenreduction of CO2 to solar fuels as an alternative to H2 via water splitting is an intriguing proposition. We modelthe solar-to-fuel (STF) efficiencies using realistic parameters basedon recently reported CO2 reduction catalysts with a highperformance tandem photoabsorber structure. CO...... due to excessiveoverpotentials and poor selectivity. This work considers breakingup the multielectron reduction pathway into individually optimized,separate two-electron steps as a way forward....

  2. Microbial electrolysis cells as innovative technology for hydrogen production

    International Nuclear Information System (INIS)

    Chorbadzhiyska, Elitsa; Hristov, Georgi; Mitov, Mario; Hubenova, Yolina

    2011-01-01

    Hydrogen production is becoming increasingly important in view of using hydrogen in fuel cells. However, most of the production of hydrogen so far comes from the combustion of fossil fuels and water electrolysis. Microbial Electrolysis Cell (MEC), also known as Bioelectrochemically Assisted Microbial Reactor, is an ecologically clean, renewable and innovative technology for hydrogen production. Microbial electrolysis cells produce hydrogen mainly from waste biomass assisted by various bacteria strains. The principle of MECs and their constructional elements are reviewed and discussed. Keywords: microbial Electrolysis Cells, hydrogen production, waste biomass purification

  3. The stability evaluation of lime mud as transesterification catalyst in resisting CO2 and H2O for biodiesel production

    International Nuclear Information System (INIS)

    Li, Hui; Niu, Sheng-li; Lu, Chun-mei; Cheng, Shi-qing

    2015-01-01

    Highlights: • Lime mud (LM) is pretreated with calcination, hydration and desiccation. • The alkali solubility is the amount of alkali compounds dissolved in methanol. • The soluble alkali amount in LM700-H is higher than that of CaO–H. • LM700 possesses a stronger capability than CaO in resisting H 2 O and CO 2 . - Abstract: The most outstanding property of the heterogeneous transesterification catalysts is recyclable, but their catalytic activity may be depressed for the absorption of moisture (H 2 O) and carbon dioxide (CO 2 ) in air, especially for the basic ones. Lime mud (LM) is effective in catalyzing transesterification, yet its property in resisting H 2 O and CO 2 is indistinct, which should be emphasized. In this study, the LM based transesterification catalyst is prepared through calcinations. Then, it is hydrated and desiccated to simulate the contamination by H 2 O and CO 2 . Further, the fresh and the contaminated catalysts are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Hammette indicator, Brunauer–Emmett–Teller (BET) surface area and soluble alkali examination, to reveal the mechanism of LM in resisting H 2 O and CO 2 . Meanwhile, the analytical grade calcium oxide (CaO) is chosen for comparison. Finally, to comprehensively investigate the influences of H 2 O and CO 2 on LM in catalyzing transesterification, the factors of the catalyst addition percentage, molar ratio of methanol to oil and transesterification temperature are evaluated

  4. Capture, transport and storage of CO2

    International Nuclear Information System (INIS)

    De Boer, B.

    2008-01-01

    The emission of greenhouse gas CO2 in industrial processes and electricity production can be reduced on a large scale. Available techniques include post-combustion, pre-combustion, the oxy-fuel process, CO2 fixation in industrial processes and CO2 mineralization. In the Netherlands, plans for CO2 capture are not developing rapidly (CCS - carbon capture and storage). [mk] [nl

  5. Plants increase laccase activity in soil with long-term elevated CO2 legacy

    DEFF Research Database (Denmark)

    Partavian, Asrin; Mikkelsen, Teis Nørgaard; Vestergård, Mette

    2015-01-01

    [CO2] stimulate laccase activity. We incubated soil exposed to seven years of elevated or ambient field [CO2] in ambient or elevated [CO2] chambers for six months either with or without plants (Deschampsia flexuosa). Elevated chamber [CO2] increased D. flexuosa production and belowground respiration....... Interestingly, plants also grew larger in soil with an elevated [CO2] legacy. Plants stimulated soil microbial biomass, belowground respiration and laccase activity, and the plant-induced laccase stimulation was particularly apparent in soil exposed to long-term elevated [CO2] in the field, whereas laccase......Actively growing plants can stimulate mineralization of recalcitrant soil organic matter (SOM), and increased atmospheric [CO2] can further enhance such plant-mediated SOM degradation. Laccases are central for recalcitrant SOM decomposition, and we therefore hypothesized that plants and elevated...

  6. Fermentative hydrogen production by microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Maintinguer, Sandra I.; Fernandes, Bruna S.; Duarte, Iolanda C.S.; Saavedra, Nora Katia; Adorno, M. Angela T.; Varesche, M. Bernadete [Department of Hydraulics and Sanitation, School of Engineering of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-carlense, 400, 13566-590 Sao Carlos-SP (Brazil)

    2008-08-15

    Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H{sub 2} and volatile acids' producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H{sub 2} by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H{sub 2}/mol sucrose), 20% (1.6 mol H{sub 2}/mol sucrose), 15% (1.2 mol H{sub 2}/mol sucrose) and 4% (0.3 mol H{sub 2}/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (author)

  7. Interannual variations of net community production and air-sea CO2 flux from winter to spring in the western subarctic North Pacific

    International Nuclear Information System (INIS)

    Midorikawa, Takashi; Ogawa, Kan; Nemoto, Kazuhiro; Kamiya, Hitomi; Umeda, Takafumi; Hiraishi, Naotaka; Wada, Akira; Ishii, Masao

    2003-01-01

    The role of spring biological production for the air-sea CO 2 flux was quantified in the Western Subarctic Gyre (48 deg N, 165 deg E), where the vertical profile of temperature revealed the existence of a temperature minimum (Tmin) layer in the North Pacific. The vertical profiles of temperature, salinity, dissolved oxygen, nutrients and dissolved inorganic carbon, DIC, in the upper water column were significantly variable year by year in spring, 1996-2000. Correspondingly, surface seawater at this site in spring was supersaturated with CO 2 in 1997, 1999 and 2000, but was undersaturated in 1996 and 1998. The concentrations of DIC and nutrients in the winter mixed layer were estimated from those in the Tmin layer in spring with a correction for particle decomposition based on the apparent oxygen utilization. The net community production (NCP) and air-sea CO 2 flux from winter to spring were calculated from the vertically integrated deficits of DIC and nutrients in the upper water column between the two seasons. The calculation of the carbon budget indicated large interannual variations of NCP (0-13 mmol/m 2 /d) and CO 2 efflux (4-16 mmol/m 2 /d) for this period. The CO 2 efflux was generally low in the year when NCP was high. The close coupling between biological production and CO 2 efflux suggested the important role of the changes in the mixed-layer depth, as a key process controlling both processes, especially of the timing, so that a decrease in the mixed-layer depth could result in the activation of biological production. The early biological consumption of the surface DIC concentration could shorten the period for acting as a source for atmospheric CO 2 and depress the CO 2 efflux in the Western Subarctic Gyre from winter to spring in 1996 and 1998. On the contrary, in 1997, persistently deep vertical mixing until late spring could suppress the biological activity and give rise to long-lasting CO 2 efflux

  8. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations.

    Science.gov (United States)

    Ortiz Montoya, Erika Y; Casazza, Alessandro A; Aliakbarian, Bahar; Perego, Patrizia; Converti, Attilio; de Carvalho, João C Monteiro

    2014-01-01

    To reduce CO2 emissions and simultaneously produce biomass rich in essential fatty acids, Chlorella vulgaris CCAP 211 was continuously grown in a tubular photobioreactor using air alone or air enriched with CO2 as the sole carbon source. While on one hand, nitrogen-limited conditions strongly affected biomass growth, conversely, they almost doubled its lipid fraction. Under these conditions using air enriched with 0, 2, 4, 8, and 16% (v/v) CO2 , the maximum biomass concentration was 1.4, 5.8, 6.6, 6.8, and 6.4 gDB L(-1) on a dry basis, the CO2 consumption rate 62, 380, 391, 433, and 430 mgCO2 L(-1) day(-1) , and the lipid productivity 3.7, 23.7, 24.8, 29.5, and 24.4 mg L(-1) day(-1) , respectively. C. vulgaris was able to grow effectively using CO2 -enriched air, but its chlorophyll a (3.0-3.5 g 100gDB (-1) ), chlorophyll b (2.6-3.0 g 100gDB (-1) ), and lipid contents (10.7-12.0 g 100gDB (-1) ) were not significantly influenced by the presence of CO2 in the air. Most of the fatty acids in C. vulgaris biomass were of the saturated series, mainly myristic, palmitic, and stearic acids, but a portion of no less than 45% consisted of unsaturated fatty acids, and about 80% of these were high added-value essential fatty acids belonging to the ω3 and ω6 series. These results highlight that C. vulgaris biomass could be of great importance for human health when used as food additive or for functional food production. © 2014 American Institute of Chemical Engineers.

  9. Effect of initial O2 and CO2 and low-dose irradiation on toxin production by Clostridium botulinum in MAP fresh pork

    International Nuclear Information System (INIS)

    Lambert, A.D.; Smith, J.P.; Dodds, K.L.

    1991-01-01

    The effects of irradiation, initial O2, initial CO2 and the presence of an O2 and CO2 absorbent on toxin production by Clostridium botulinum in inoculated pork stored at 15 degrees C were studied using a factorial experiment. Toxin production occurred faster in samples initially packaged with 20% O2, compared to samples packaged with 100% N2. The presence of CO2 in the package headspace was not a significant factor affecting time until toxin detection. Irradiation was significant in delaying the time until toxin detection in samples initially packaged with 20% O2 but not in other treatments. Sensory rejection, based primarily on discoloration, occurred within 7 to 14 d, irrespective of treatment. All samples were spoiled before they became toxic

  10. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH.

    Science.gov (United States)

    Ota, Masaki; Takenaka, Motohiro; Sato, Yoshiyuki; Smith, Richard L; Inomata, Hiroshi

    2015-01-01

    Photoautotrophic fatty acid production of a highly CO2 -tolerant green alga Chlorococcum littorale in the presence of inorganic carbon at 295 K and light intensity of 170 µmol-photon m(-2) s(-1) was investigated. CO2 concentration in the bubbling gas was adjusted by mixing pure gas components of CO2 and N2 to avoid photorespiration and β-oxidation of fatty acids under O2 surrounding conditions. Maximum content of total fatty acid showed pH-dependence after nitrate depletion of the culture media and increased with the corresponding inorganic carbon ratio. Namely, [HCO3 (-) ]/([CO2 ]+n[ CO32-]) ratio in the culture media was found to be a controlling factor for photoautotrophic fatty acid production after the nitrate limitation. At a CO2 concentration of 5% (vol/vol) and a pH of 6.7, the fatty acid content was 47.8 wt % (dry basis) at its maximum that is comparable with land plant seed oils. © 2015 American Institute of Chemical Engineers.

  11. Estimation of Insulin Resistance in Mexican Adults by the [13C]Glucose Breath Test Corrected for Endogenous Total CO2 Production

    Directory of Open Access Journals (Sweden)

    Erika Ibarra-Pastrana

    2012-01-01

    Full Text Available Objective. To evaluate the efficacy of the [13C]glucose breath test for measuring insulin resistance in Mexican adults with different glycemic states. Research Design and Methods. Fifty-eight adults underwent a [13C]glucose breath test with simultaneous measurement of total CO2 production by indirect calorimetry, at baseline and 90 minutes after the ingestion of 15 g of dextrose and 25 mg of [13C]glucose. HOMA was used as a marker of insulin resistance. Results. We found an inverse correlation between HOMA and the breath test δ13CO2 (‰, r=-0.41 (P=0.001. After adjusting for total CO2 production, correlations between HOMA and fasting glucose were less strong but remained significant. An ROC curve was constructed using δ13CO2 (‰ and HOMA values; the cut-off point was 9.99‰ δ13CO2, corresponding to a sensitivity of 80.0 (95% CI: 51.9, 95.7 and a specificity of 67.4 (95% CI: 51.5, 80.9. Conclusions. The [13C]glucose breath test is a simple noninvasive procedure but was not sufficiently robust for an accurate diagnosis of insulin resistance. Our findings suggest that the test might be helpful in identifying individuals who are not IR, which in turn may contribute to improved diabetes prevention.

  12. The effect of feeding on CO2 production and energy expenditure in ponies measured by indirect calorimetry and the 13C-bicarbonate technique.

    Science.gov (United States)

    Jensen, R B; Kyrstein, T D; Junghans, P; Tauson, A H

    2015-11-01

    Energy expenditure (EE) can be estimated based on respiratory gas exchange measurements, traditionally done in respiration chambers by indirect calorimetry (IC). However, the (13)C-bicarbonate technique ((13)C-BT) might be an alternative minimal invasive method for estimation of CO(2) production and EE in the field. In this study, four Shetland ponies were used to explore the effect of feeding on CO(2) production and EE measured simultaneously by IC and (13)C-BT. The ponies were individually housed in respiration chambers and received either a single oral or intravenous (IV) bolus dose of (13)C-labelled sodium bicarbonate (NaH(13)CO(3)). The ponies were fed haylage 3 h before (T(-3)), simultaneously with (T(0)) or 3 h after (T(+3)) administration of (13)C-bicarbonate. The CO(2) produced and O(2) consumed by the ponies were measured for 6 h with both administration routes of (13)C-bicarbonate at the three different feeding times. Feeding time affected the CO(2) production (P<0.001) and O(2) consumption (P<0.001), but not the respiratory quotient (RQ) measured by IC. The recovery factor (RF) of (13)C in breath CO(2) was affected by feeding time (P<0.01) and three different RF were used in the calculation of CO(2) production measured by 13C-BT. An average RQ was used for the calculations of EE. There was no difference between IC and (13)C-BT for estimation of CO(2) production. An effect of feeding time (P<0.001) on the estimated EE was found, with higher EE when feed was offered (T(0) and T(+3)) compared with when no feed was available (T -3) during measurements. In conclusion, this study showed that feeding time affects the RF and measurements of CO(2) production and EE. This should be considered when the (13)C-BT is used in the field. IV administration of (13)C-bicarbonate is recommended in future studies with horses to avoid complex (13)C enrichment-time curves with maxima and shoulders as observed in several experiments with oral administration of (13)C-bicarbonate.

  13. Microbial granulation for lactic acid production.

    Science.gov (United States)

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon; Im, Wan-Taek; Yun, Yeo-Myeong; Park, Chul; Kim, Mi-Sun

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0 ± 0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L(-1) d(-1) . As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT. Up to the HRT decrease to 0.5 h, the LA concentration was maintained at 19-20 g L(-1) with over 90% of substrate removal efficiency. However, further decrease of HRT resulted in a decrease of LA concentration with increase in residual glucose. Nevertheless, the volumetric LA productivity continuously increased, reaching 67 g L-fermenter (-1) h(-1) at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s(-1) and 0.39-0.92, respectively. © 2015 Wiley Periodicals, Inc.

  14. Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production.

    Science.gov (United States)

    Ji, Min-Kyu; Yun, Hyun-Shik; Park, Young-Tae; Kabra, Akhil N; Oh, In-Hwan; Choi, Jaeyoung

    2015-08-15

    The biomass and lipid/carbohydrate production by a green microalga Scenedesmus obliquus under mixotrophic condition using food wastewater and flue gas CO2 with municipal wastewater was investigated. Different dilution ratios (0.5-2%) of municipal wastewater with food wastewater were evaluated in the presence of 5, 10 and 14.1% CO2. The food wastewater (0.5-1%) with 10-14.1% CO2 supported the highest growth (0.42-0.44 g L(-1)), nutrient removal (21-22 mg TN L(-1)), lipid productivity (10-11 mg L(-1)day(-1)) and carbohydrate productivity (13-16 mg L(-1)day(-1)) by S. obliquus after 6 days of cultivation. Food wastewater increased the palmitic and oleic acid contents up to 8 and 6%, respectively. Thus, application of food wastewater and flue gas CO2 can be employed for enhancement of growth, lipid/carbohydrate productivity and wastewater treatment efficiency of S. obliquus under mixotrophic condition, which can lead to development of a cost effective strategy for microalgal biomass production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effects of CO 2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllumdemersum L., used for aquatic food production in bioregenerative life support systems

    Science.gov (United States)

    Kitaya, Y.; Okayama, T.; Murakami, K.; Takeuchi, T.

    In addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO 2 to O 2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O 2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO 2 gas mixed with N 2 gas before closing the vessel. The CO 2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol -1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol M -2 s -1, which was controlled with a metal halide lamp. Temperature was kept at 28°C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m -2 s -1 PPFD under CO 2 levels of 1.0 and 3.0 mmol mol -1, respectively. The net photosynthetic rate increased with increasing CO 2 levels from 0.3 to 3.0 mmol mol -1 showing the maximum value, 75 nmolO 2 gDW -1 s -1, at 2-3 mmol mol -1 CO 2 and gradually decreased with increasing CO 2 levels from 3.0 to 10 mmol mol -1. The results demonstrate that C. demersum could be an efficient CO 2 to O 2 converter under a 2.0 mmol mol -1 CO 2 level and relatively low PPFD levels in aquatic food production modules.

  16. CO2 blood test

    Science.gov (United States)

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum; Acidosis - CO2; Alkalosis - CO2 ... Many medicines can interfere with blood test results. Your health ... need to stop taking any medicines before you have this test. DO ...

  17. The Effects of Coal Switching and Improvements in Electricity Production Efficiency and Consumption on CO2 Mitigation Goals in China

    Directory of Open Access Journals (Sweden)

    Li Li

    2015-07-01

    Full Text Available Although the average CO2 emission for a person in China is only about 1/4 that of a person in the US, the government of China still made a commitment to ensure that CO2 emissions will reach their peak in 2030 because of the ever-increasing pressure of global warming. In this work, we examined the effects of coal switching, efficiency improvements in thermal power generation and the electricity consumption of economic activities on realizing this goal. An improved STIRPAT model was developed to create the scenarios. In order to make the estimated elasticities more consistent with different variables selected to construct the formulation, a double-layer STIRPAT model was constructed, and by integrating the two equations obtained by regressing the series in each layer, we finally got the equation to describe the long-run relationship among CO2 emissions (Ic, the share of coal in overall energy consumption (FMC, coal intensity of thermal power generation (CIp and electricity intensity of GDP (EIelec. The long term elasticities represented by the equation show that the growth of CO2 emissions in China is quite sensitive to FMC, CIp and EIelec. After that, five scenarios were developed in order to examine the effects of China’s possible different CO2 emission reduction policies, focusing on improving FMC, CIp and EIelec respectively. Through a rigorous analysis, we found that in order to realize the committed CO2 emissions mitigating goal, China should obviously accelerate the pace in switching from coal to low carbon fuels, coupled with a consistent improvement in electricity efficiency of economic activities and a slightly slower improvement in the coal efficiency of thermal power generation.

  18. Corn residue removal and CO2 emissions

    Science.gov (United States)

    Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) are the primary greenhouse gases (GHG) emitted from the soil due to agricultural activities. In the short-term, increases in CO2 emissions indicate increased soil microbial activity. Soil micro-organisms decompose crop residues and release...

  19. Elevated CO(2) and drought stress effects on the chemical composition of maize plants, their ruminal fermentation and microbial diversity in vitro.

    Science.gov (United States)

    Meibaum, Birgit; Riede, Susanne; Schröder, Bernd; Manderscheid, Remy; Weigel, Hans-Joachim; Breves, Gerhard

    2012-12-01

    Climate changes are supposed to influence productivity and chemical composition of plants. In the present experiments, it was hypothesised that the incubation of plants exposed to elevated atmospheric carbon dioxide concentrations ([CO₂]) and drought stress will result in different ruminal fermentation pattern and microbial diversity compared to unaffected plants. Maize plants were grown, well-watered under ambient (380 ppm CO₂, Variant A) and elevated [CO₂] (550 ppm CO₂, Variant B). Furthermore, each CO₂ treatment was also exposed to drought stress (380 ppm and 550 ppm CO₂,Variants C and D, respectively), which received only half as much water as the well-watered plants. Plant material from these treatments was incubated in a semi-continuous in vitro fermentation experiment using the rumen simulation technique. Single strand conformation polymorphism (SSCP) analysis was conducted for Bacteria and Archaea specific profiles. The analysis of crude nutrients showed higher contents of fibre fraction in drought stress Variants C and D. Crude protein content was increased by drought stress under ambient but not under elevated [CO₂]. Fermentation of drought stress variants resulted in significantly increased pH values, decreased digestibilities of organic matter and increased ammonia-N (NH₃-N) concentrations compared with well-watered variants. Additionally, the 550 ppm CO₂ Variants B and D showed significantly lower NH₃-N concentrations than Variants A and C. The Bacteria- and Archaea-specific SSCP profiles as well as the production rates of short-chain fatty acids and their molar percentages were not affected by treatments. During the first four days of equilibration period, a decrease of molar percentage of acetate and increased molar percentages of propionate were observed for all treatments. These alterations might have been induced by adaptation of the in vitro system to the new substrate. The rumen microflora appeared to be highly adaptive and

  20. Production of Microbial Protease from Selected Soil Fungal Isolates ...

    African Journals Online (AJOL)

    Production of Microbial Protease from Selected Soil Fungal Isolates. ... Nigerian Journal of Biotechnology ... and 500C. The optimal pH on the enzyme production was observed to be between pH 3.5 and 5.5 for the organisms. Keywords: Soil microorganism, fungal isolate, incubation period, microbial enzyme. Nig J. Biotech.

  1. Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America.

    Science.gov (United States)

    Rollinson, Christine R; Liu, Yao; Raiho, Ann; Moore, David J P; McLachlan, Jason; Bishop, Daniel A; Dye, Alex; Matthes, Jaclyn H; Hessl, Amy; Hickler, Thomas; Pederson, Neil; Poulter, Benjamin; Quaife, Tristan; Schaefer, Kevin; Steinkamp, Jörg; Dietze, Michael C

    2017-07-01

    Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data-based evaluations of emergent ecosystem responses to climate and CO 2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO 2 in ten ecosystem models with the sensitivities found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites. These model-data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO 2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm-growing season temperatures, while tree-ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO 2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO 2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO 2 , but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the

  2. Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production.

    Science.gov (United States)

    Aslam, Ambreen; Thomas-Hall, Skye R; Manzoor, Maleeha; Jabeen, Faiza; Iqbal, Munawar; Uz Zaman, Qamar; Schenk, Peer M; Asif Tahir, M

    2018-02-01

    Biodiesel is produced by transesterification of fatty acid methyl esters (FAME) from oleaginous microalgae feedstock. Biodiesel fuel properties were studied and compared with biodiesel standards. Qualitative analysis of FAME was done while cultivating mixed microalgae consortia under three concentrations of coal fired flue gas (1%, 3.0% and 5.5% CO 2 ). Under 1% CO 2 concentration (flue gas), the FAME content was 280.3 μg/mL, whereas the lipid content was 14.03 μg/mL/D (day). Both FAMEs and lipid contents were low at other CO 2 concentrations (3.0 and 5.5%). However, mixed consortia in the presence of phosphate buffer and flue gas (PB + FG) showed higher saturated fatty acids (SFA) (36.28%) and unsaturated fatty acids (UFA) (63.72%) versus 5.5% CO 2 concentration, which might be responsible for oxidative stability of biodiesel. Subsequently, higher cetane number (52) and low iodine value (136.3 gI 2 /100 g) biodiesel produced from mixed consortia (PB + FG) under 5.5% CO 2 along with 50 mM phosphate buffer were found in accordance with European (EN 14214) standard. Results revealed that phosphate buffer significantly enhanced the biodiesel quality, but reduced the FAME yield. This study intended to develop an integrated approach for significant improvement in biodiesel quality under surplus phosphorus by utilizing waste flue gas (as CO 2 source) using microalgae. The CO 2 sequestration from industrial flue gas not only reduced greenhouse gases, but may also ensure the sustainable and eco-benign production of biodiesel. Copyright © 2018. Published by Elsevier B.V.

  3. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  4. Combining Off-the-Job Productivity Regression Model with EPA’s NONROAD Model in Estimating CO2 Emissions from Bulldozer

    Directory of Open Access Journals (Sweden)

    Apif M. Hajji

    2017-09-01

    Full Text Available Heavy duty diesel (HDD construction equipment which includes bulldozer is important in infrastructure development. This equipment consumes large amount of diesel fuel and emits high level of carbon dioxide (CO2. The total emissions are dependent upon the fuel use, and the fuel use is dependent upon the productivity of the equipment. This paper proposes a methodology and tool for estimating CO2 emissions from bulldozer based on the productivity rate. The methodology is formulated by using the result of multiple linear regressions (MLR of CAT’s data for obtaining the productivity model and combined with the EPA’s NONROAD model. The emission factors from NONROAD model were used to quantify the CO2 emissions. To display the function of the model, a case study and sensitivity analysis for a bulldozer’s activity is also presented. MLR results indicate that the productivity model generated from CAT’s data can be used as the basis for quantifying the total CO2 emissions for an earthwork activity.

  5. Catalytic recombination of dissociation products with Pt/SnO2 for rare and common isotope long-life, closed-cycle CO2 lasers

    Science.gov (United States)

    Brown, Kenneth G.; Sidney, B. D.; Schryer, D. R.; Upchurch, B. T.; Miller, I. M.

    1986-01-01

    This paper reports results on recombination of pulsed CO2 laser dissociation products with Pt/SnO2 catalysts, and supporting studies in a surrogate laboratory catalyst reactor. The closed-cycle, pulsed CO2 laser has been continuously operated for one million pulses with an overall power degradation of less than 5 percent by flowing the laser gas mixture through a 2-percent Pt/SnO2 catalyst bed. In the surrogate laboratory reactor, experiments have been conducted to determine isotopic exchange with the catalyst when using rare-isotope gases. The effects of catalyst pretreatment, sample weight, composition, and temperature on catalyst efficiency have also been determined.

  6. ‘Fuji’ apple (Malus domestica Borkh) volatile production during high pCO2 controlled atmosphere storage

    Science.gov (United States)

    ‘Fuji’apple [Malus sylvestris var. domestica (Borkh.) Mansf.] volatile compound dynamics were characterized during cold storage in air or at low pO2 controlled atmosphere (CA) with up to 5 kPa CO2. Volatile compounds in storage chambers were adsorbed onto solid sorbent traps and analyzed by GC-MS....

  7. High-Calorific Biogas Production by Selective CO2 Retention at Autogenerated Biogas Pressures up to 20 Bar

    NARCIS (Netherlands)

    Lindeboom, R.E.F.; Weijma, J.; Lier, van J.B.

    2012-01-01

    Autogenerative high pressure digestion (AHED) is a novel configuration of anaerobic digestion, in which micro-organisms produce autogenerated biogas pressures up to 90 bar with >90% CH4-content in a single step reactor. The less than 10% CO2-content was postulated to be resulting from

  8. Effect of Carbon dioxide (CO2 on mortality and reproduction of Anagasta kuehniella (Zeller 1879, in mass rearing, aiming at the production of Trichogramma spp.

    Directory of Open Access Journals (Sweden)

    ALOISIO COELHO JUNIOR

    2013-06-01

    Full Text Available Eggs of Anagasta kuehniella (Zeller 1879 are widely used for mass rearing of Trichogramma spp. and other parasitoids and predators, largely commercialized in many countries. The aim of this study is to evaluate the effect of carbon dioxide (CO2 originated from larval metabolism on the biological parameters of A. kuehniella. For that purpose, we assess the production of carbon dioxide (CO2 per rearing tray of A. kuehniella and the effect of CO2 on the viability of egg-to-adult period and oviposition of A. kuehniella. Results allow to estimate that a rearing tray, containing 10,000 larvae between the 4th and 5th instars, produces an average of 30.67 mL of CO2 per hour. The highest egg production of A. kuehniella was obtained when the larvae were kept in rooms with lower concentration of CO2 (1,200 parts per million - ppm, producing 23% more eggs than in rooms with higher CO2 concentrations. In rooms with high density of trays (70 trays/room, CO2 concentration exceeded 4,400 ppm. The viability of the egg-to-adult period was not influenced by carbon dioxide.Ovos de Anagasta kuehniella (Zeller, 1879 são muito utilizados para a criação massal de Trichogramma spp. e de outros parasitóides e predadores, sendo comercializados em muitos países. O objetivo deste trabalho foi avaliar o efeito do dióxido de carbono (CO2, proveniente do metabolismo larval, em parâmetros biológicos de A. kuehniella, principalmente na postura. Para que este objetivo fosse atingido, foram avaliados a produção de dióxido de carbono (CO2 por bandeja de criação de A. kuehniella e o efeito do CO2 na viabilidade do período ovo-adulto e na postura de A. kuehniella. Por meio dos resultados obtidos pôde-se estimar que uma bandeja de criação, com lagartas entre o 4° e 5° ínstares, inoculada com 10.000 lagartas produz, em média, 30,67 ml de CO2 por hora. A maior produção de ovos de A. kuehniella foi obtida quando as lagartas foram mantidas em salas com concentra

  9. Comparison of global inventories of CO_2 emissions from biomass burning during 2002–2011 derived from multiple satellite products

    International Nuclear Information System (INIS)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto; Yamaguchi, Yasushi; Chen, Xuehong

    2015-01-01

    This study compared five widely used globally gridded biomass burning emissions inventories for the 2002–2011 period (Global Fire Emissions Database 3 (GFED3), Global Fire Emissions Database 4 (GFED4), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0) and Global Inventory for Chemistry-Climate studies-GFED4 (G-G)). Average annual CO_2 emissions range from 6521.3 to 9661.5 Tg year"−"1 for five inventories, with extensive amounts in Africa, South America and Southeast Asia. Coefficient of Variation for Southern America, Northern and Southern Africa are 30%, 39% and 48%. Globally, the majority of CO_2 emissions are released from savanna burnings, followed by forest and cropland burnings. The largest differences among the five inventories are mainly attributable to the overestimation of CO_2 emissions by FINN1.0 in Southeast Asia savanna and cropland burning, and underestimation in Southern Africa savanna and Amazon forest burning. The overestimation in Africa by G-G also contributes to the differences. - Highlights: • Five widely used global biomass burning emissions inventories were compared. • Global CO_2 emissions compared well while regional differences are large. • The largest differences were found in Southeast Asia and Southern Africa. • Savanna burning emission was the largest contributor to the global emissions. • Variations in savanna burning emission led to the differences among inventories. - Differences of the five biomass burning CO_2 emissions inventories were found in Southeast Asia and Southern Africa due to the variations in savanna burning emissions estimation.

  10. Development of an Efficient Methanol Production Process for Direct CO2 Hydrogenation over a Cu/ZnO/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Fereshteh Samimi

    2017-11-01

    Full Text Available Carbon capture and utilization as a raw material for methanol production are options for addressing energy problems and global warming. However, the commercial methanol synthesis catalyst offers a poor efficiency in CO2 feedstock because of a low conversion of CO2 and its deactivation resulting from high water production during the process. To overcome these barriers, an efficient process consisting of three stage heat exchanger reactors was proposed for CO2 hydrogenation. The catalyst volume in the conventional methanol reactor (CR is divided into three sections to load reactors. The product stream of each reactor is conveyed to a flash drum to remove methanol and water from the unreacted gases (H2, CO and CO2. Then, the gaseous stream enters the top of the next reactor as the inlet feed. This novel configuration increases CO2 conversion almost twice compared to one stage reactor. Also to reduce water production, a water permselective membrane was assisted in each reactor to remove water from the reaction side. The proposed process was compared with one stage reactor and CR from coal and natural gas. Methanol is produced 288, 305, 586 and 569 ton/day in CR, one-stage, three-stage and three-stage membrane reactors (MR, respectively. Although methanol production rate in three-stage MR is a bit lower than three stage reactors, the produced water, as the cause of catalyst poisoning, is notably reduced in this configuration. Results show that the proposed process is a strongly feasible way to produce methanol that can competitive with a traditional synthesis process.

  11. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell

    Science.gov (United States)

    Miceli, Joseph F.; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I.; Krajmalnik-Brown, Rosa

    2014-01-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (~11 A/m2) and Coulombic efficiency (~70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ~80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed micro bial cultures containing complementing biochemical pathways. PMID:25048958

  12. Microbial production of scleroglucan and downstream processing

    Directory of Open Access Journals (Sweden)

    Natalia Alejandra Castillo

    2015-10-01

    Full Text Available Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a beta-1,3-beta-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc., and biomedical (immunoceutical, antitumor, etc. applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high EPS concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined.

  13. Genomic Prospecting for Microbial Biodiesel Production

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Lykidis, Athanasios; Ivanova, Natalia

    2008-03-20

    Biodiesel is defined as fatty acid mono-alkylesters and is produced from triacylglycerols. In the current article we provide an overview of the structure, diversity and regulation of the metabolic pathways leading to intracellular fatty acid and triacylglycerol accumulation in three types of organisms (bacteria, algae and fungi) of potential biotechnological interest and discuss possible intervention points to increase the cellular lipid content. The key steps that regulate carbon allocation and distribution in lipids include the formation of malonyl-CoA, the synthesis of fatty acids and their attachment onto the glycerol backbone, and the formation of triacylglycerols. The lipid biosynthetic genes and pathways are largely known for select model organisms. Comparative genomics allows the examination of these pathways in organisms of biotechnological interest and reveals the evolution of divergent and yet uncharacterized regulatory mechanisms. Utilization of microbial systems for triacylglycerol and fatty acid production is in its infancy; however, genomic information and technologies combined with synthetic biology concepts provide the opportunity to further exploit microbes for the competitive production of biodiesel.

  14. The Sample at Mars Analysis (SAM) Detections of CO2 and CO in Sedimentary Material from Gale Crater, Mars: Implications for the Presence of Organic Carbon and Microbial Habitability on Mars

    Science.gov (United States)

    Sutter, Brad; Eigenbrode, Jennifer L.; Steele, Andrew; Ming, Douglas W.

    2016-01-01

    Sedimentary rock samples heated to 860 degrees Centigrade in the SAM (Sample at Mars) instrument evolved CO2 and CO indicating the presence of organic-carbon(C) in Gale Crater materials. Martian or exogenous (meteoritic, interplanetary dust) CO2 and CO could be derived from combustion of simple organics (less than 300 degrees Centigrade), complex refractory organics/amorphous carbon (300-600 degrees Centigrade), and/or magmatic carbon (greater than 600 degrees Centigrade) as result of thermal decomposition of Gale Crater perchlorates, and sulfates present that produce O2. Oxidized organic compounds could also evolve CO2 and CO over broad temperature range (150 to 800 degrees Centigrade) and such organics are expected on Mars via exogenous sources. Alternatively, organic-C could also have been oxidized to carboxylic acids [e.g, mellitic acid (RCOOH), acetate (CH3CO2-), and oxalates (C2O42-)] by oxidative radiolytic weathering, or other oxidation processes. The presence of oxidized organics is consistent with the limited detection of reduced organic-C phases by the SAM-gas chromatography. Organic-C content as determined by CO2 and CO contents could range between 800 and 2400 parts per million C indicating that substantial organic-C component is present in Gale Crater. There are contributions from SAM background however, even in worst-case scenarios, this would only account for as much as half of the detected CO2 and CO. Nevertheless, if organic-C levels were assumed to have existed in a reduced form on ancient Mars and this was bioavailable C, then less than 1 percent of C in Gale Crater sediments could have supported an exclusively heterotrophic microbial population of 1 by 10 (sup 5) cells per gram sediment (assumes 9 by 10 (sup -7) microgram per cell and 0.5 micrograms C per microgram cell). While other essential nutrients (e.g., S and P) could be limiting, organic-C contents, may have been sufficient to support limited heterotrophic microbial populations on

  15. Carbon-Supported Fe Catalysts for CO2 Electroreduction to High-Added Value Products: A DEMS Study: Effect of the Functionalization of the Support

    OpenAIRE

    Pérez-Rodríguez, S.; García, G.; Calvillo, L.; Celorrio, V.; Pastor, E.; Lázaro, M. J.

    2011-01-01

    Vulcan XC-72R-supported Fe catalysts have been synthesised for the electroreduction of CO2 to high-added value products. Catalysts were obtained by the polyol method, using ethylene glycol as solvent and reducing agent. Prior to the metal deposition, Vulcan was subjected to different oxidation treatments in order to modify its surface chemistry and study its influence on the physicochemical and electrochemical properties of the catalysts, as well as on the product distribution. The oxidation ...

  16. Modeling the CO2 and N2O Emissions From Stover Removal for Biofuel Production From Continuous Corn Production in Iowa

    Science.gov (United States)

    Paustian, K.; Killian, K.; Brenner, J.

    2003-12-01

    Corn stover, an agricultural residue, can be used as feedstock for near term bioethanol production and is available today at levels that can significantly impact energy supply. We evaluated the environmental impact of such a large-scale change in agricultural practices on green house gas production, soil erosion and soil carbon using the Century model. Estimates of soil C changes and GHG emissions were performed for the 99 counties in Iowa where previous environmental, management and erosion data was available. We employed climate, soil and historical management databases from a separate USDA-funded project as input to Century. RUSLE estimates of the residue requirements for acceptable soil loss rates under continuous corn agriculture were available from a previous study done Dr. Richard Nelson (Enersol Resources). Two mulch tillage and a no-till systems, where erosion estimates were available, were used as the basis for the simulations. Century simulations of these systems were run under a variety of stover removal rates. For each soil type within each county the model was run for 15 years (1980-1995) under continuous corn with convention tillage, and full residue return. Model simulation of crop yields and residue production were then calibrated to match those used by the Polysys model team at Oak Ridge and the simulation was repeated with the addition of the three corn tillage regimes, and several residue removal rates. County-average soil C changes (and net CO2 emissions) were calculated as area-weighted averages of the individual soil types in each county. For this study, we have utilized the IPCC approach to estimate annual N2O emissions. At low or zero residue removal rates, county-averaged soil C stocks were predicted to increase (i.e. net CO2 emissions are negative). Where the allowable residue removal rates (based on erosion tolerance) for mulch-tillage are on the order of 40-50% or more, the reduced input of C is such that the soils no longer sequester C

  17. Long-term effects of elevated atmospheric CO2 on species composition and productivity of a southern African C4 dominated grassland in the vicinity of a CO2 exhalation.

    NARCIS (Netherlands)

    Stock, W.D.; Ludwig, F.; Morrow, C.; Midgley, G.F.; Wand, S.J.E.; Allsopp, N.; Bell, T.L.

    2005-01-01

    We describe the long-term effects of a CO2 exhalation, created more than 70 years ago, on a natural C4 dominated sub-tropical grassland in terms of ecosystem structure and functioning. We tested whether long-term CO2 enrichment changes the competitive balance between plants with C3 and C4

  18. Mitigating CO2 Leakage by Immobilizing CO2 into Solid Reaction Products: 13th International Conference on Greenhouse Gas Control Technologies, GHGT 2016. 14 November 2016 through 18 November 2016

    NARCIS (Netherlands)

    Wasch, L.J.; Wollenweber, J.; Neele, F.; Fleury, M.

    2017-01-01

    In the unlikely case of CO2 leakage from a storage reservoir, it is desirable to close the leak efficiently and permanently. This could be done by injecting a reactive solution into the leak path, thereby immobilizing migrating CO2 by consuming the gas and forming solid reactants. With regard to

  19. Offshore Membrane Enclosures for Growing Algae (OMEGA: A System for Biofuel Production, Wastewater Treatment, and CO2 Sequestration

    Science.gov (United States)

    Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid; Martis, Mary

    2010-01-01

    We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinit7 gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. Thy concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.

  20. CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems

    DEFF Research Database (Denmark)

    Klank, Henning; Kutter, Jörg Peter; Geschke, Oliver

    2002-01-01

    , a three-layer polymer microstructure with included optical fibers was fabricated within two days. The use of CO2-laser systems to produce microfluidic systems has not been published before. These systems provide a cost effective alternative to UV-laser systems and they are especially useful......In this article, we focus on the enormous potential of a CO2-laser system for rapidly producing polymer microfluidic structures. The dependence was assessed of the depth and width of laser-cut channels on the laser beam power and on the number of passes of the beam along the same channel...... for microstructured PMMA [poly( methyl methacrylate)] parts were investigated, such as solvent-assisted glueing, melting, laminating and surface activation using a plasma asher. A solvent-assisted thermal bonding method proved to be the most time-efficient one. Using laser micromachining together with bonding...

  1. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  2. Effects of seawater pCO2 and temperature on calcification and productivity in the coral genus Porites spp.: an exploration of potential interaction mechanisms

    Science.gov (United States)

    Cole, C.; Finch, A. A.; Hintz, C.; Hintz, K.; Allison, N.

    2018-06-01

    Understanding how rising seawater pCO2 and temperatures impact coral aragonite accretion is essential for predicting the future of reef ecosystems. Here, we report 2 long-term (10-11 month) studies assessing the effects of temperature (25 and 28 °C) and both high and low seawater pCO2 (180-750 μatm) on the calcification, photosynthesis and respiration of individual massive Porites spp. genotypes. Calcification rates were highly variable between genotypes, but high seawater pCO2 reduced calcification significantly in 4 of 7 genotypes cultured at 25 °C but in only 1 of 4 genotypes cultured at 28 °C. Increasing seawater temperature enhanced calcification in almost all corals, but the magnitude of this effect was seawater pCO2 dependent. The 3 °C temperature increase enhanced calcification rate on average by 3% at 180 μatm, by 35% at 260 μatm and by > 300% at 750 μatm. The rate increase at high seawater pCO2 exceeds that observed in inorganic aragonites. Responses of gross/net photosynthesis and respiration to temperature and seawater pCO2 varied between genotypes, but rates of all these processes were reduced at the higher seawater temperature. Increases in seawater temperature, below the thermal stress threshold, may mitigate against ocean acidification in this coral genus, but this moderation is not mediated by an increase in net photosynthesis. The response of coral calcification to temperature cannot be explained by symbiont productivity or by thermodynamic and kinetic influences on aragonite formation.

  3. Studies of the coagulation flotation of bentonite and its application to the removal of Co2+ ions and fission products, Ce and Eu

    International Nuclear Information System (INIS)

    Kobayashi, Koichi; Sato, Hiroshi; Kachi, Kosei; Nakamura, Masao; Sasaki, Tsunetaka

    1975-01-01

    The regions of dispersion, coagulation precipitation, coagulation flotation, and redispersion were determined for aqueous bentonite-cationic surfactant and bentonite-cationic surfactant-polyacrylamide(PAA) systems. The region of coagulation flotation was markedly extended by the addition of PAA to both the lower and higher concentration regions of the cationic surfactant, hexadecyldimethylbenzylammonium chloride(HDBAC), and to the lower concentration region of bentonite. The phenomenon of coagulation flotation was investigated in detail and was applied to the removal of Co 2+ ions and nuclear fission products, 144 Ce and 155 Eu, from an aqueous solution. The composition of the reagents for the maximum efficiency of bentonite flotation corresponded to that of the maximum efficiency of Co 2+ -ion flotation. The effect of the pH on the flotation efficiency was studied in particular. The maximum flotation efficiency of 96% was obtained at pH 11 for Co 2+ ions, 86% at pH 9.7 for 144 Ce, and 93% at pH 10.5 for 155 Eu. These radioactive elements were almost completely adsorbed on the surface of bentonite particles and were floated with them in the pH region of the maximum flotation efficiency. It was confirmed that Co 2+ ions could be floated also from an extremely low concentration (10 -9 mol/l) of Co 2+ ions with nearly the same efficiency of flotation and with the additives in the same condition. Co 2+ ions could also be effectively removed by using the step-by-step flotation, showing as high a flotation efficiency as 99.8%. (auth.)

  4. Mind the gap: non-biological processes contributing to soil CO2 efflux.

    Science.gov (United States)

    Rey, Ana

    2015-05-01

    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global

  5. On-line monitoring of CO2 production in Lactococcus lactis during physiological pH decrease using membrane inlet mass spectrometry with dynamic pH calibration.

    Science.gov (United States)

    Andersen, Ann Zahle; Lauritsen, Frants Roager; Olsen, Lars Folke

    2005-12-20

    Monitoring CO2 production in systems, where pH is changing with time is hampered by the chemical behavior and pH-dependent volatility of this compound. In this article, we present the first method where the concentration and production rate of dissolved CO2 can be monitored directly, continuously, and quantitatively under conditions where pH changes rapidly ( approximately 2 units in 15 min). The method corrects membrane inlet mass spectrometry (MIMS) measurements of CO2 for pH dependency using on-line pH analysis and an experimentally established calibration model. It is valid within the pH range of 3.5 to 7, despite pH-dependent calibration constants that vary in a non-linear fashion with more than a factor of 3 in this interval. The method made it possible to determine the carbon dioxide production during Lactococcus lactis fermentations, where pH drops up to 3 units during the fermentation. The accuracy was approximately 5%. We used the method to investigate the effect of initial extracellular pH on carbon dioxide production during anarobic glucose fermentation by non-growing Lactocoocus lactis and demonstrated that the carbon dioxide production rate increases considerably, when the initial pH was increased from 6 to 6.8. (c) 2005 Wiley Periodicals, Inc.

  6. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

    KAUST Repository

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E.

    2011-01-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs

  7. CO2 leakage alters biogeochemical and ecological functions of submarine sands

    Science.gov (United States)

    Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje

    2018-01-01

    Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m−2 hour−1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (−80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (−90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2. PMID:29441359

  8. Phytoremediation, a sustainable remediation technology? II: Economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production

    International Nuclear Information System (INIS)

    Witters, N.; Mendelsohn, R.; Van Passel, S.; Van Slycken, S.; Weyens, N.; Schreurs, E.; Meers, E.; Tack, F.; Vanheusden, B.; Vangronsveld, J.

    2012-01-01

    Phytoremediation could be a sustainable remediation alternative for conventional remediation technologies. However, its implementation on a commercial scale remains disappointing. To emphasize its sustainability, this paper examines whether and how the potential economic benefit of CO 2 abatement for different crops used for phytoremediation or sustainable land management purposes could promote phytotechnologies. Our analysis is based on a case study in the Campine region, where agricultural soils are contaminated with mainly cadmium. We use Life Cycle Analysis to show for the most relevant crops (willow (Salix spp), energy maize (Zea mays), and rapeseed (Brassica napus)), that phytoremediation, used for renewable energy production, could abate CO 2 . Converting this in economic numbers through the Marginal Abatement Cost of CO 2 (€ 20 ton −1 ) we can integrate this in the economic analysis to compare phytoremediation crops among each other, and phytoremediation with conventional technologies. The external benefit of CO 2 abatement when using phytoremediation crops for land management ranges between € 55 and € 501 per hectare. The purpose of these calculations is not to calculate a subsidy for phytoremediation. There is no reason why one would prefer phytoremediation crops for renewable energy production over “normal” biomass. Moreover, subsidies for renewable energy already exist. Therefore, we should not integrate these numbers in the economic analysis again. However, these numbers could contribute to making explicit the competitive advantage of phytoremediation compared to conventional remediation technologies, but also add to a more sustainably funded decision on which crop should be grown on contaminated land. -- Highlights: ► We add CO 2 abatement for each remediation crop to the private economic analysis. ► This values the advantage of phytoremediation compared to conventional remediation. ► This leads to a crop choice that considers an

  9. Application of open-path Fourier transform infrared spectroscopy for atmospheric monitoring of a CO2 back-production experiment at the Ketzin pilot site (Germany).

    Science.gov (United States)

    Sauer, Uta; Borsdorf, H; Dietrich, P; Liebscher, A; Möller, I; Martens, S; Möller, F; Schlömer, S; Schütze, C

    2018-02-03

    During a controlled "back-production experiment" in October 2014 at the Ketzin pilot site, formerly injected CO 2 was retrieved from the storage formation and directly released to the atmosphere via a vent-off stack. Open-path Fourier transform infrared (OP FTIR) spectrometers, on-site meteorological parameter acquisition systems, and distributed CO 2 point sensors monitored gas dispersion processes in the near-surface part of the atmospheric boundary layer. The test site provides a complex and challenging mosaic-like surface setting for atmospheric monitoring which can also be found at other storage sites. The main aims of the atmospheric monitoring of this experiment were (1) to quantify temporal and spatial variations in atmospheric CO 2 concentrations around the emitting vent-off stack and (2) to test if and how atmospheric monitoring can cope with typical environmental and operational challenges. A low environmental risk was encountered during the whole CO 2 back-production experiment. The study confirms that turbulent wind conditions favor atmospheric mixing processes and are responsible for rapid dilution of the released CO 2 leading to decreased detectability at all sensors. In contrast, calm and extremely stable wind conditions (especially occurring during the night) caused an accumulation of gases in the near-ground atmospheric layer with the highest amplitudes in measured gas concentration. As an important benefit of OP FTIR spectroscopic measurements and their ability to detect multiple gas species simultaneously, emission sources could be identified to a much higher certainty. Moreover, even simulation models using simplified assumptions help to find suitable monitoring network designs and support data analysis for certain wind conditions in such a complex environment.

  10. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1

    International Nuclear Information System (INIS)

    Aspelund, Audun; Gundersen, Truls

    2009-01-01

    A novel transport chain for stranded natural gas utilized for power production with CO 2 capture and storage is developed. It includes an offshore section, a combined gas carrier, and an onshore integrated receiving terminal. Due to utilization of the cold exergy both in the offshore and onshore processes, and combined use of the gas carrier, the transport chain is both energy and cost effective. In this paper, the liquefied energy chain (LEC) is explained, including novel processes for both the offshore field site and onshore market site. In the offshore section, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO 2 ) and liquid inert nitrogen (LIN), which are used as cold carriers. The LNG is transported in a combined gas carrier to the receiving terminal where it is used as a cooling agent to liquefy CO 2 and nitrogen. The LCO 2 and LIN are transported offshore using the same combined carrier. Pinch and Exergy Analyses are used to determine the optimal offshore and onshore processes and the best transport conditions. The exergy efficiency for a thermodynamically optimized process is 87% and 71% for the offshore and onshore processes, respectively, yielding a total efficiency of 52%. The offshore process is self-supported with power and can operate with few units of rotating equipment and without flammable refrigerants. The loss of natural gas due to power generation for the energy requirements in the LEC processes is roughly one third of the loss in a conventional transport chain for stranded natural gas with CO 2 sequestration. The LEC has several configurations and can be used for small scale ( 5 MTPA LNG) transport. In the example in this paper, the total costs for the simple LEC including transport of natural gas to a 400 MW net power plant and return of 85% of the corresponding carbon as CO 2 for a total sailing distance of 24 h are 58.1 EUR/tonne LNG excluding or including the cost of power. The total power requirements are 319 k

  11. Syngas production by gasification of aquatic biomass with CO2/O2 and simultaneous removal of H2S and COS using char obtained in the gasification

    International Nuclear Information System (INIS)

    Hanaoka, Toshiaki; Hiasa, Shou; Edashige, Yusuke

    2013-01-01

    Applicability of gulfweed as feedstock for a biomass-to-liquid (BTL) process was studied for both production of gas with high syngas (CO + H 2 ) content via gasification of gulfweed and removal of gaseous impurities using char obtained in the gasification. Gulfweed as aqueous biomass was gasified with He/CO 2 /O 2 using a downdraft fixed-bed gasifier at ambient pressure and 900 °C at equivalence ratios (ER) of 0.1–0.3. The syngas content increased while the conversion to gas on a carbon basis decreased with decreasing ER. At an ER of 0.1 and He/CO 2 /O 2 = 0/85/15%, the syngas content was maximized at 67.6% and conversion to gas on a carbon basis was 94.2%. The behavior of the desulfurization using char obtained during the gasification process at ER = 0.1 and He/CO 2 /O 2 = 0/85/15% was investigated using a downdraft fixed-bed reactor at 250–550 °C under 3 atmospheres (H 2 S/N 2 , COS/N 2 , and a mixture of gases composed of CO, CO 2 , H 2 , N 2 , CH 4 , H 2 S, COS, and steam). The char had a higher COS removal capacity at 350 °C than commercial activated carbon because (Ca,Mg)S crystals were formed during desulfurization. The char simultaneously removed H 2 S and COS from the mixture of gases at 450 °C more efficiently than did activated carbon. These results support this novel BTL process consisting of gasification of gulfweed with CO 2 /O 2 and dry gas cleaning using self-supplied bed material. -- Highlights: • A product gas with high syngas content was produced from the gasification of gulfweed with CO 2 /O 2 . • The syngas content increased with decreasing the equivalence ratio. • The syngas content was maximized at 67.6% at an ER of 0.1 and He/CO 2 /O 2 = 0/85/15%. • The char simultaneously removed H 2 S and COS from a mixture of gases at 450 °C efficiently

  12. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna

    2015-01-01

    , and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results...... to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol...

  13. Synthetic biology for microbial production of lipid-based biofuels

    Energy Technology Data Exchange (ETDEWEB)

    d' Espaux, L; Mendez-Perez, D; Li, R; Keasling, JD

    2015-10-23

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  14. Technological advances in CO2 conversion electro-biorefinery: A step toward commercialization.

    Science.gov (United States)

    ElMekawy, Ahmed; Hegab, Hanaa M; Mohanakrishna, Gunda; Elbaz, Ashraf F; Bulut, Metin; Pant, Deepak

    2016-09-01

    The global atmospheric warming due to increased emissions of carbon dioxide (CO2) has attracted great attention in the last two decades. Although different CO2 capture and storage platforms have been proposed, the utilization of captured CO2 from industrial plants is progressively prevalent strategy due to concerns about the safety of terrestrial and aquatic CO2 storage. Two utilization forms were proposed, direct utilization of CO2 and conversion of CO2 to chemicals and energy products. The latter strategy includes the bioelectrochemical techniques in which electricity can be used as an energy source for the microbial catalytic production of fuels and other organic products from CO2. This approach is a potential technique in which CO2 emissions are not only reduced, but it also produce more value-added products. This review article highlights the different methodologies for the bioelectrochemical utilization of CO2, with distinctive focus on the potential opportunities for the commercialization of these techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Growing Azolla to produce sustainable protein feed: the effect of differing species and CO2 concentrations on biomass productivity and chemical composition.

    Science.gov (United States)

    Brouwer, Paul; Schluepmann, Henriette; Nierop, Klaas Gj; Elderson, Janneke; Bijl, Peter K; van der Meer, Ingrid; de Visser, Willem; Reichart, Gert-Jan; Smeekens, Sjef; van der Werf, Adrie

    2018-03-24

    Since available arable land is limited and nitrogen fertilizers pollute the environment, cropping systems ought to be developed that do not rely on them. Here we investigate the rapidly growing, N 2 -fixing Azolla/Nostoc symbiosis for its potential productivity and chemical composition to determine its potential as protein feed. In a small production system, cultures of Azolla pinnata and Azolla filiculoides were continuously harvested for over 100 days, yielding an average productivity of 90.0-97.2 kg dry weight (DW) ha -1  d -1 . Under ambient CO 2 levels, N 2 fixation by the fern's cyanobacterial symbionts accounted for all nitrogen in the biomass. Proteins made up 176-208 g kg -1 DW (4.9 × total nitrogen), depending on species and CO 2 treatment, and contained more essential amino acids than protein from soybean. Elevated atmospheric CO 2 concentrations (800 ppm) significantly boosted biomass production by 36-47%, without decreasing protein content. Choice of species and CO 2 concentrations further affected the biomass content of lipids (79-100 g kg -1 DW) and (poly)phenols (21-69 g kg -1 DW). By continuous harvesting, high protein yields can be obtained from Azolla cultures, without the need for nitrogen fertilization. High levels of (poly)phenols likely contribute to limitations in the inclusion rate of Azolla in animal diets and need further investigation. © 2018 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2018 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  16. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei

    2017-11-23

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction, transmission electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and H2 temperature programmed reduction. In comparison with Cu-SBA-15 based catalysts, Ga promoted catalysts prepared by the urea deposition method (CuGa/SBA-15-UDP) was found active and selective for CO2 hydrogenation to oxygenates. The use of Ga as the promoter showed increased acidic sites as confirmed by the NH3-TPD, Pyridine-IR and 2,6-lutidine-IR studies. The favorable effect of Ga on CO2 conversion and selectivity to oxygenate may come from the strong interaction of Ga with silica, which is responsible for the enhanced metal surface area, formation of nanocomposite and metal dispersion. Notably, incorporation of Ga to Cu/SiO2 showed a several-fold higher rate for methanol formation (13.12 mol/gCu·sec) with a reasonable rate for the DME formation (2.15 mol/gCu·sec) as compared to those of Cu/SiO2 catalysts.

  17. Alberta industrial synergy CO2 programs initiative

    International Nuclear Information System (INIS)

    Yildirim, E.

    1998-01-01

    The various industrial sectors within Alberta produce about 350,000 tonnes of CO 2 per day. This presentation was concerned with how this large volume and high concentration of CO 2 can be used in industrial and agricultural applications, because every tonne of CO 2 used for such purposes is a tonne that does not end up in the atmosphere. There is a good potential for an industrial synergy between the producers and users of CO 2 . The Alberta Industrial Synergy CO 2 Programs Initiative was established to ultimately achieve a balance between the producers of CO 2 and the users of CO 2 by creating ways to use the massive quantities of CO 2 produced by Alberta's hydrocarbon-based economy. The Alberta CO 2 Research Steering Committee was created to initiate and support CO 2 programs such as: (1) CO 2 use in enhanced oil recovery, (2) creation of a CO 2 production inventory, (3) survey of CO 2 users and potential users, (4) investigation of process issues such as power generation, oil sands and cement manufacturing, and (5) biofixation by plants, (6) other disposal options (e.g. in depleted oil and gas reservoirs, in aquifers, in tailings ponds, in coal beds). The single most important challenge was identified as 'rationalizing the formation of the necessary infrastructure'. Failing to do that will greatly impede efforts directed towards CO 2 utilization

  18. Elevated tropospheric CO2 and O3 concentrations impair organic pollutant removal from grassland soil.

    Science.gov (United States)

    Ai, Fuxun; Eisenhauer, Nico; Jousset, Alexandre; Butenschoen, Olaf; Ji, Rong; Guo, Hongyan

    2018-04-03

    The concentrations of tropospheric CO 2 and O 3 have been rising due to human activities. These rising concentrations may have strong impacts on soil functions as changes in plant physiology may lead to altered plant-soil interactions. Here, the effects of eCO 2 and eO 3 on the removal of polycyclic aromatic hydrocarbon (PAH) pollutants in grassland soil were studied. Both elevated CO 2 and O 3 concentrations decreased PAH removal with lowest removal rates at elevated CO 2 and elevated O 3 concentrations. This effect was linked to a shift in soil microbial community structure by structural equation modeling. Elevated CO 2 and O 3 concentrations reduced the abundance of gram-positive bacteria, which were tightly linked to soil enzyme production and PAH degradation. Although plant diversity did not buffer CO 2 and O 3 effects, certain soil microbial communities and functions were affected by plant communities, indicating the potential for longer-term phytoremediation approaches. Results of this study show that elevated CO 2 and O 3 concentrations may compromise the ability of soils to degrade organic pollutants. On the other hand, the present study also indicates that the targeted assembly of plant communities may be a promising tool to shape soil microbial communities for the degradation of organic pollutants in a changing world.

  19. Carbon coated (carbonous) catalyst in ebullated bed reactor for production of oxygenated chemicals from syngas/CO2

    International Nuclear Information System (INIS)

    Peizheng Zhou

    2002-01-01

    This report summarizes the work completed under DOE's Support of Advanced Fuel Research program, Contract No. DE-FG26-99FT40681. The contract period was October 2000 through September 2002. This R and D program investigated the modification of the mechanical strength of catalyst extrudates using Hydrocarbon Technologies, Inc. (HTI) carbon-coated catalyst technology so that the ebullated bed technology can be utilized to produce valuable oxygenated chemicals from syngas/CO 2 efficiently and economically. Exothermic chemical reactions benefit from the temperature control and freedom from catalyst fouling provided by the ebullated bed reactor technology. The carbon-coated extrudates prepared using these procedures had sufficient attrition resistance and surface area for use in ebullated bed operation. The low cost of carbon coating makes the carbon-coated catalysts highly competitive in the market of catalyst extrudates

  20. Dynamic ikaite production and dissolution in sea ice - control by temperature, salinity and pCO2 conditions

    Science.gov (United States)

    Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Papakyriakou, T.; Sørensen, L. L.; Sievers, J.; Notz, D.

    2013-12-01

    Ikaite is a hydrous calcium carbonate mineral (CaCO3 · 6H2O). It is only found in a metastable state, and decomposes rapidly once removed from near-freezing water. Recently, ikaite crystals have been found in sea ice and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an out-door pool of the Sea-ice Environmental Research Facility (SERF). During the experiment, ikaite precipitated in sea ice with temperatures below -3 °C, creating three distinct zones of ikaite concentrations: (1) a mm to cm thin surface layer containing frost flowers and brine skim with bulk concentrations of > 2000 μmol kg-1, (2) an internal layer with concentrations of 200-400 μmol kg-1 and (3) a~bottom layer with concentrations of ikaite crystals under acidic conditions. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The modeled (FREZCHEM) ikaite concentrations were in the same order of magnitude as observations and suggest that ikaite concentration in sea ice increase with decreasing temperatures. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This will have implications for CO2 exchange with the atmosphere and ocean.

  1. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2015-01-01

    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  2. CO2 Capture and Reuse

    International Nuclear Information System (INIS)

    Thambimuthu, K.; Gupta, M.; Davison, J.

    2003-01-01

    CO2 capture and storage including its utilization or reuse presents an opportunity to achieve deep reductions in greenhouse gas emissions from fossil energy use. The development and deployment of this option could significantly assist in meeting a future goal of achieving stabilization of the presently rising atmospheric concentration of greenhouse gases. CO2 capture from process streams is an established concept that has achieved industrial practice. Examples of current applications include the use of primarily, solvent based capture technologies for the recovery of pure CO2 streams for chemical synthesis, for utilization as a food additive, for use as a miscible agent in enhanced oil recovery operations and removal of CO2 as an undesired contaminant from gaseous process streams for the production of fuel gases such as hydrogen and methane. In these applications, the technologies deployed for CO2 capture have focused on gas separation from high purity, high pressure streams and in reducing (or oxygen deficient) environments, where the energy penalties and cost for capture are moderately low. However, application of the same capture technologies for large scale abatement of greenhouse gas emissions from fossil fuel use poses significant challenges in achieving (at comparably low energy penalty and cost) gas separation in large volume, dilute concentration and/or low pressure flue gas streams. This paper will focus on a review of existing commercial methods of CO2 capture and the technology stretch, process integration and energy system pathways needed for their large scale deployment in fossil fueled processes. The assessment of potential capture technologies for the latter purpose will also be based on published literature data that are both 'transparent' and 'systematic' in their evaluation of the overall cost and energy penalties of CO2 capture. In view of the of the fact that many of the existing commercial processes for CO2 capture have seen applications in

  3. Scale-up and large-scale production of Tetraselmis sp. CTP4 (Chlorophyta) for CO2 mitigation: from an agar plate to 100-m3 industrial photobioreactors.

    Science.gov (United States)

    Pereira, Hugo; Páramo, Jaime; Silva, Joana; Marques, Ana; Barros, Ana; Maurício, Dinis; Santos, Tamára; Schulze, Peter; Barros, Raúl; Gouveia, Luísa; Barreira, Luísa; Varela, João

    2018-03-23

    Industrial production of novel microalgal isolates is key to improving the current portfolio of available strains that are able to grow in large-scale production systems for different biotechnological applications, including carbon mitigation. In this context, Tetraselmis sp. CTP4 was successfully scaled up from an agar plate to 35- and 100-m 3 industrial scale tubular photobioreactors (PBR). Growth was performed semi-continuously for 60 days in the autumn-winter season (17 th October - 14 th December). Optimisation of tubular PBR operations showed that improved productivities were obtained at a culture velocity of 0.65-1.35 m s -1 and a pH set-point for CO 2 injection of 8.0. Highest volumetric (0.08 ± 0.01 g L -1 d -1 ) and areal (20.3 ± 3.2 g m -2 d -1 ) biomass productivities were attained in the 100-m 3 PBR compared to those of the 35-m 3 PBR (0.05 ± 0.02 g L -1 d -1 and 13.5 ± 4.3 g m -2 d -1 , respectively). Lipid contents were similar in both PBRs (9-10% of ash free dry weight). CO 2 sequestration was followed in the 100-m 3 PBR, revealing a mean CO 2 mitigation efficiency of 65% and a biomass to carbon ratio of 1.80. Tetraselmis sp. CTP4 is thus a robust candidate for industrial-scale production with promising biomass productivities and photosynthetic efficiencies up to 3.5% of total solar irradiance.

  4. Feasibility of biodiesel production and CO2 emission reduction by Monoraphidium dybowskii LB50 under semi-continuous culture with open raceway ponds in the desert area.

    Science.gov (United States)

    Yang, Haijian; He, Qiaoning; Hu, Chunxiang

    2018-01-01

    Compared with other general energy crops, microalgae are more compatible with desert conditions. In addition, microalgae cultivated in desert regions can be used to develop biodiesel. Therefore, screening oil-rich microalgae, and researching the algae growth, CO 2 fixation and oil yield in desert areas not only effectively utilize the idle desertification lands and other resources, but also reduce CO 2 emission. Monoraphidium dybowskii LB50 can be efficiently cultured in the desert area using light resources, and lipid yield can be effectively improved using two-stage induction and semi-continuous culture modes in open raceway ponds (ORPs). Lipid content (LC) and lipid productivity (LP) were increased by 20% under two-stage industrial salt induction, whereas biomass productivity (BP) increased by 80% to enhance LP under semi-continuous mode in 5 m 2 ORPs. After 3 years of operation, M. dybowskii LB50 was successfully and stably cultivated under semi-continuous mode for a month during five cycles of repeated culture in a 200 m 2 ORP in the desert area. This culture mode reduced the supply of the original species. The BP and CO 2 fixation rate were maintained at 18 and 33 g m -2  day -1 , respectively. Moreover, LC decreased only during the fifth cycle of repeated culture. Evaporation occurred at 0.9-1.8 L m -2  day -1 , which corresponded to 6.5-13% of evaporation loss rate. Semi-continuous and two-stage salt induction culture modes can reduce energy consumption and increase energy balance through the energy consumption analysis of life cycle. This study demonstrates the feasibility of combining biodiesel production and CO 2 fixation using microalgae grown as feedstock under culture modes with ORPs by using the resources in the desert area. The understanding of evaporation loss and the sustainability of semi-continuous culture render this approach practically viable. The novel strategy may be a promising alternative to existing technology for CO 2 emission

  5. A Small Decrease in Rubisco Content by Individual Suppression of RBCS Genes Leads to Improvement of Photosynthesis and Greater Biomass Production in Rice Under Conditions of Elevated CO2.

    Science.gov (United States)

    Kanno, Keiichi; Suzuki, Yuji; Makino, Amane

    2017-03-01

    Rubisco limits photosynthesis at low CO2 concentrations ([CO2]), but does not limit it at elevated [CO2]. This means that the amount of Rubisco is excessive for photosynthesis at elevated [CO2]. Therefore, we examined whether a small decrease in Rubisco content by individual suppression of the RBCS multigene family leads to increases in photosynthesis and biomass production at elevated [CO2] in rice (Oryza sativa L.). Our previous studies indicated that the individual suppression of RBCS decreased Rubisco content in rice by 10-25%. Three lines of BC2F2 progeny were selected from transgenic plants with individual suppression of OsRBCS2, 3 and 5. Rubisco content in the selected lines was 71-90% that of wild-type plants. These three transgenic lines showed lower rates of CO2 assimilation at low [CO2] (28 Pa) but higher rates of CO2 assimilation at elevated [CO2] (120 Pa). Similarly, the biomass production and relative growth rate (RGR) of the two lines were also smaller at low [CO2] but greater than that of wild-type plants at elevated [CO2]. This greater RGR was caused by the higher net assimilation rate (NAR). When the nitrogen use efficiency (NUE) for the NAR was estimated by dividing the NAR by whole-plant leaf N content, the NUE for NAR at elevated [CO2] was higher in these two lines. Thus, a small decrease in Rubisco content leads to improvements of photosynthesis and greater biomass production in rice under conditions of elevated CO2. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Isolating and Quantifying the Effects of Climate and CO2 Changes (1980–2014 on the Net Primary Productivity in Arid and Semiarid China

    Directory of Open Access Journals (Sweden)

    Xia Fang

    2017-02-01

    Full Text Available Although the net primary productivity (NPP of arid/semiarid ecosystem is generally thought to be controlled by precipitation, other factors like CO2 fertilization effect and temperature change may also have important impacts, especially in the cold temperate areas of the northern China, where significant warming was reported in the recent decades. However, the impacts of climate and atmospheric CO2 changes to the NPP dynamics in the arid and semiarid areas of China (ASA-China is still unclear, hindering the development of climate adaptation strategy. Based on numeric experiments and factorial analysis, this study isolated and quantified the effects of climate and CO2 changes between 1980–2014 on ASA-China’s NPP, using the Arid Ecosystem Model (AEM that performed well in predicting ecosystems’ responses to climate/CO2 change according to our evaluation based on 21 field experiments. Our results showed that the annual variation in NPP was dominated by changes in precipitation, which reduced the regional NPP by 10.9 g·C/(m2·year. The precipitation-induced loss, however, has been compensated by the CO2 fertilization effect that increased the regional NPP by 14.9 g·C/(m2·year. The CO2 fertilization effect particularly benefited the extensive croplands in the Northern China Plain, but was weakened in the dry grassland of the central Tibetan Plateau due to suppressed plant activity as induced by a drier climate. Our study showed that the climate change in ASA-China and the ecosystem’s responses were highly heterogeneous in space and time. There were complex interactive effects among the climate factors, and different plant functional types (e.g., phreatophyte vs. non-phreatophyte could have distinct responses to similar climate change. Therefore, effective climate-adaptive strategies should be based on careful analysis of local climate pattern and understanding of the characteristic responses of the dominant species. Particularly, China

  7. Chemical changes to leaf litter from trees grown under elevated CO2 and the implications for microbial utilization in a stream ecosystem

    International Nuclear Information System (INIS)

    Rier, S. T.; Tuchman, N. C.; Wetzel, R. G.

    2005-01-01

    The effects of elevated carbon dioxide on the chemistry and subsequent response of stream microorganisms growing on leaf litter of three riparian tree species (quaking aspen, white willow and sugar maple) were studied. Results showed that the effects were species-specific, i.e. aspen leaves contained high concentrations of lignin, maple leafs contained higher concentrations of soluble phenolic compounds and willow leaves contained higher concentrations of carbohydrate-bound condensed tannins. Initially, the higher concentrations of soluble phenolic compounds in maple leaves were rapidly leached in stream water, but overall, the impact of altered leaf chemistry on riparian trees grown under elevated carbon dioxide was clearly variable; no strongly suppressed microbial activity during stream incubation was observed. Any evidence of suppression observed, was species-specific. 49 refs., 2 tabs., 3 figs

  8. Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in Microbial Enhanced Oil Recovery (MEOR

    Directory of Open Access Journals (Sweden)

    Astri Nugroho

    2009-11-01

    Full Text Available Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in MicrobialEnhanced Oil Recovery (MEOR. The objective of this study is to observe the capacity of gas production generatedfrom crude oil degradation by the isolated bacteria. The gas in the MEOR could increase pressure in the reservoir,decrease oil viscosity, increase oil permeability-due to the increase of the porosity and viscosity, and also increase oilvolume due to the amount of dissolved gas. A research on gas analysis of oil degradation by 6 isolated bacteria has beenconducted. The bacteria isolates including Bacillus badius (A, Bacillus circulans (B, Bacillus coagulans (C, Bacillusfirmus (D, Pasteurella avium (E and Streptobacillus moniliformis (F. The trial on gas production, gas analysis and oildegradation analysis, was carried out by using SMSS medium. The test of gas production was done by usingmicrorespirometer at 40°C. The result shows that B, C, D, E produce more gas than A and F. Gas of CO2, O2, CO, N2,CH4, and H2 were analyzed by using GC. The results show that only three gases were detected by GC i.e. CO2, N2, andO2. The concentration of CO2 and N2 gas increased while the concentration of O2 decreased over an 8th day ofobservation. CO2 gas producted by mix culture was higher than by the pure culture. On the 8th day of incubation, theproduction of CO2 gas by mix culture was 4,0452% while pure culture C and D only produced 2,4543% and 2,8729%.The mix culture increase simple hydrocarbon by 12.03% and the formation of a complex hydrocarbon by 3.07%. Themix culture (C-D generated the highest concentration of CO2 gas as well as a synergistic concortium that has ability todegrade crude oil.

  9. Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production.

    Science.gov (United States)

    Lanzafame, Paola; Centi, Gabriele; Perathoner, Siglinda

    2014-11-21

    The use of biomass, bio-waste and CO2 derived raw materials, the latter synthesized using H2 produced using renewable energy sources, opens new scenarios to develop a sustainable and low carbon chemical production, particularly in regions such as Europe lacking in other resources. This tutorial review discusses first this new scenario with the aim to point out, between the different possible options, those more relevant to enable this new future scenario for the chemical production, commenting in particular the different drivers (economic, technological and strategic, environmental and sustainability and socio-political) which guide the selection. The case of the use of non-fossil fuel based raw materials for the sustainable production of light olefins is discussed in more detail, but the production of other olefins and polyolefins, of drop-in intermediates and other platform molecules are also analysed. The final part discusses the role of catalysis in establishing this new scenario, summarizing the development of catalysts with respect to industrial targets, for (i) the production of light olefins by catalytic dehydration of ethanol and by CO2 conversion via FTO process, (ii) the catalytic synthesis of butadiene from ethanol, butanol and butanediols, and (iii) the catalytic synthesis of HMF and its conversion to 2,5-FDCA, adipic acid, caprolactam and 1,6-hexanediol.

  10. Review on production, characterization and applications of microbial levan.

    Science.gov (United States)

    Srikanth, Rapala; Reddy, Chinta H S S Sundhar; Siddartha, Gudimalla; Ramaiah, M Janaki; Uppuluri, Kiran Babu

    2015-04-20

    Levan is a homopolymer of fructose naturally obtained from both plants and microorganisms. Microbial levans are more advantageous, economical and industrially feasible with numerous applications. Bacterial levans are much larger than those produced by plants with multiple branches and molecular weights ranging from 2 to 100 million Da. However levans from plants generally have molecular weights ranging from about 2000 to 33,000 Da. Microbial levans have wide range of applications in food, medicine, pharmaceutical, cosmetic and commercial industrial sectors. With excellent polymeric medicinal properties and ease of production, microbial levan appear as a valuable and versatile biopolymer of the future. The present article summarizes and discusses the most essential properties of bioactive microbial levan and recent developments in its production, characterization and the emerging applications in health and industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  12. Net sea–air CO2 flux uncertainties in the Bay of Biscay based on the choice of wind speed products and gas transfer parameterizations

    Directory of Open Access Journals (Sweden)

    P. Otero

    2013-05-01

    Full Text Available The estimation of sea–air CO2 fluxes is largely dependent on wind speed through the gas transfer velocity parameterization. In this paper, we quantify uncertainties in the estimation of the CO2 uptake in the Bay of Biscay resulting from the use of different sources of wind speed such as three different global reanalysis meteorological models (NCEP/NCAR 1, NCEP/DOE 2 and ERA-Interim, one high-resolution regional forecast model (HIRLAM-AEMet, winds derived under the Cross-Calibrated Multi-Platform (CCMP project, and QuikSCAT winds in combination with some of the most widely used gas transfer velocity parameterizations. Results show that net CO2 flux estimations during an entire seasonal cycle (September 2002–September 2003 may vary by a factor of ~ 3 depending on the selected wind speed product and the gas exchange parameterization, with the highest impact due to the last one. The comparison of satellite- and model-derived winds with observations at buoys advises against the systematic overestimation of NCEP-2 and the underestimation of NCEP-1. In the coastal region, the presence of land and the time resolution are the main constraints of QuikSCAT, which turns CCMP and ERA-Interim in the preferred options.

  13. Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop

    International Nuclear Information System (INIS)

    Martínez, I.; Romano, M.C.; Fernández, J.R.; Chiesa, P.; Murillo, R.; Abanades, J.C.

    2014-01-01

    Highlights: • Process design of a H 2 production plant based on a novel Ca/Cu looping process is presented. • CuO reduction with syngas provides energy for CaCO 3 calcination. • The effect of operating conditions on plant performance indexes is analysed. • Carbon capture efficiencies of around 94% are obtained. • Around 6% points of equivalent H 2 efficiency improvement on conventional reforming. - Abstract: A detailed and comprehensive design of a H 2 production plant based on a novel Ca/Cu chemical looping process is presented in this work. This H 2 production process is based on the sorption-enhanced reforming concept using natural gas together with a CaO/CaCO 3 chemical loop. A second Cu/CuO loop is incorporated to supply energy for the calcination of the CaCO 3 via the reduction of CuO with a fuel gas. A comprehensive energy integration description of the different gas streams available in the plant is provided to allow a thermodynamic assessment of the process and to highlight its advantages and drawbacks. Hydrogen equivalent efficiencies of up to 77% are feasible with this novel Ca/Cu looping process, using an active reforming catalyst based on Pt, high oxidation temperatures and moderate gas velocities in the fixed bed system, which are around 6% points above the efficiency of a reference H 2 production plant based on conventional steam reforming including CO 2 capture with MDEA. Non-converted carbon compounds in the reforming stage are removed as CO 2 in the calcination stage of the Ca/Cu looping process, which will be compressed and sent for storage. Carbon capture efficiencies of around 94% can be obtained with this Ca/Cu looping process, which are significantly higher than those obtained in the reference plant that uses MDEA absorption (around 85%). Additional advantages, such as its compact design and the use of cheaper materials compared to other commercial processes for H 2 production with CO 2 capture, confirm the potential of the Ca

  14. An updated observation-based global monthly gridded sea surface pCO2 and air-sea CO2 flux product from 1982 through 2015 and its monthly climatology (NCEI Accession 0160558)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The observation-based pCO2 fields were created using a 2-step neural network method extensively described and validated in Landschützer et al. 2013, 2014, 2016. The...

  15. Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions

    Science.gov (United States)

    Kiaitsi, Elsa; Magan, Naresh

    2018-01-01

    Zearalenone (ZEN) contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (aw; 0.95–0.90) and temperature (10–25 °C) in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a) respiration rate; (b) dry matter losses (DML); (c) ZEN production and (d) relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO2 production. There was an increase in temporal CO2 production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 aw treatments + F. graminearum inoculation. This was reflected in the total accumulated CO2 in the treatments. The maximum DMLs were in the 0.95 aw/20–25 °C treatments and at 10 °C/0.95 aw. The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95–0.93 aw and 20 °C/0.95 aw. ZEN contamination levels plotted against DMLs for all the treatments showed that at ca. 1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins. PMID:29462982

  16. Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Esther Garcia-Cela

    2018-02-01

    Full Text Available Zearalenone (ZEN contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (aw; 0.95–0.90 and temperature (10–25 °C in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a respiration rate; (b dry matter losses (DML; (c ZEN production and (d relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO2 production. There was an increase in temporal CO2 production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 aw treatments + F. graminearum inoculation. This was reflected in the total accumulated CO2 in the treatments. The maximum DMLs were in the 0.95 aw/20–25 °C treatments and at 10 °C/0.95 aw. The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95–0.93 aw and 20 °C/0.95 aw. ZEN contamination levels plotted against DMLs for all the treatments showed that at ca. <1.0% DML, there was a low risk of ZEN contamination exceeding EU legislative limits, while at >1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins.

  17. Consequences of flexible electricity production from biogas on the conventional power plant fleet and the CO2 emission

    International Nuclear Information System (INIS)

    Holzhammer, Uwe

    2013-01-01

    Electricity production using biogas is rather homogeneous throughout the year due to the compensational regulations. As a consequence of the fluctuating energy production from renewable energy sources a more flexible electricity production is needed. The contribution deals with the regulations and measures of the new renewable energy law 2012 and their impact on the conventional power plant fleet and the carbon dioxide emissions and their impact on an improvement of demand-oriented electricity production.

  18. In-situ growing NiCo2O4 nanoplatelets on carbon cloth as binder-free catalyst air-cathode for high-performance microbial fuel cells

    International Nuclear Information System (INIS)

    Cao, Chun; Wei, Liling; Wang, Gang; Shen, Jianquan

    2017-01-01

    Highlights: • NiCo 2 O 4 nanoplatelets were in-situ growing on carbon cloth as ORR catalyst in biofuel cells. • Binder-free cathode with the lower internal resistance. • Binder-free cathode was low-cost. • NiCo 2 O 4 -CFC shows better power generation performance than Pt/C. - Abstract: Air-cathode microbial fuel cells (MFCs) was one of most promising sustainable new energy device as well as an advanced sewage treatment technology, and thoroughly studies have been devoted to lower its cost and enhance its power generation. Herein, a binder-free and low-cost catalyst air-cathode was fabricated by in-situ electro-deposition of NiCo 2 O 4 nanoplatelets on carbon cloth, followed by feasible calcinations. The catalytic activity of catalyst air-cathode was optimized by varying the deposition time. And the optimal air-cathode was installed in real MFCs and exhibited distinct maximum out-put power density (645 ± 6 mW m −2 ), which was 12.96% higher than commercial Pt/C (571 ± 11 mW m −2 ). Noted that its remarkable electricity generation performance in MFCs should absolutely attributed to the well catalytic activity for oxygen reduction reaction, and more likely ascribed to its low internal resistance since binder-free catalyst air-cathode can facilitate the electron/charge transfer process. Therefore, it was an efficient strategy to improve the electricity generation performance of MFCs by using this binder-free catalyst air-cathode, which was also potential for application in many other electrochemical devices.

  19. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth; Bernadette Luna; Morgan B. Abney

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developed and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon

  20. Aboveground net primary productivity and rainfall use efficiency of grassland on three soils after two years of exposure to a subambient to superambient CO2 gradient.

    Science.gov (United States)

    Fay, P. A.; Polley, H. W.; Jin, V. L.

    2008-12-01

    Atmospheric CO2 concentrations (CA) have increased by about 100 μL L-1 over the last 250 years to ~ 380 μL L-1, the highest values in the last half-million years, and CA is expected to continue to increase to greater than 500 μL L-1 by 2100. CO2 enrichment has been shown to affect many ecosystem processes, but experiments typically examine only two or a few levels of CA, and are typically constrained to one soil type. However, soil hydrologic properties differ across the landscape. Therefore, variation in the impacts of increasing CA on ecosystem function on different soil types must be understood to model and forecast ecosystem function under future CA and climate scenarios. Here we evaluate the aboveground net primary productivity (ANPP) of grassland plots receiving equal rainfall inputs (from irrigation) and exposed to a continuous gradient (250 to 500 μL L-1) of CA in the Lysimeter CO2 Gradient Experiment in central Texas, USA. Sixty intact soil monoliths (1 m2 x 1.5 m deep) taken from three soil types (Austin silty clay, Bastrop sandy loam, Houston clay) and planted to seven native tallgrass prairie grasses and forbs were exposed to the CA gradient beginning in 2006. Aboveground net primary productivity was assessed by end of season (November) harvest of each species in each monolith. Total ANPP of all species was 35 to 50% greater on Bastrop and Houston soils compared to Austin soils in both years (p Solidago canadensis strongly increased with increasing CA, with S. nutans responding more strongly on Bastrop and Houston soils (p = 0.053), indicating that increased greater rainfall use efficiency at high CA on these productive soils was associated with increased dominance by these species. In contrast, the grass Bouteloua curtipendula decreased in biomass with increasing CA, especially on Austin and Bastrop soils. The least productive species were the grass Tridens albescens, the legume Desmanthus illinoensis, and the forb Salvia azurea, and these showed

  1. Soil [N] modulates soil C cycling in CO2-fumigated tree stands: a meta-analysis

    Czech Academy of Sciences Publication Activity Database

    Dieleman, W. I. J.; Luyssaert, S.; Rey, A.; De Angelis, P.; Barton, C. V. M.; Broadmeadow, M.; Broadmeadow, S. B.; Chigwerewe, K. S.; Crookshanks, M.; Dufrene, E.; Jarvis, P. G.; Kasurinen, A.; Kellomäki, S.; Le Dantec, V.; Liberloo, M.; Marek, Michal V.; Medlyn, B.; Pokorný, Radek; Scarascia-Mugnozza, G.; Temperton, V. M.; Tingey, D.; Urban, Otmar; Ceulemans, R.; Janssens, I. A.

    2010-01-01

    Roč. 33, č. 12 (2010), s. 2001-2011 ISSN 0140-7791 Institutional research plan: CEZ:AV0Z60870520 Keywords : [CO2] enrichment * fine root production * microbial respiration * N fertilization * root biomass Subject RIV: EH - Ecology, Behaviour Impact factor: 5.145, year: 2010

  2. Methods for Detecting Microbial Methane Production and Consumption by Gas Chromatography.

    Science.gov (United States)

    Aldridge, Jared T; Catlett, Jennie L; Smith, Megan L; Buan, Nicole R

    2016-04-05

    Methane is an energy-dense fuel but is also a greenhouse gas 25 times more detrimental to the environment than CO 2 . Methane can be produced abiotically by serpentinization, chemically by Sabatier or Fisher-Tropsh chemistry, or biotically by microbes (Berndt et al. , 1996; Horita and Berndt, 1999; Dry, 2002; Wolfe, 1982; Thauer, 1998; Metcalf et al. , 2002). Methanogens are anaerobic archaea that grow by producing methane gas as a metabolic byproduct (Wolfe, 1982; Thauer, 1998). Our lab has developed and optimized three different gas chromatograph-utilizing assays to characterize methanogen metabolism (Catlett et al. , 2015). Here we describe the end point and kinetic assays that can be used to measure methane production by methanogens or methane consumption by methanotrophic microbes. The protocols can be used for measuring methane production or consumption by microbial pure cultures or by enrichment cultures.

  3. Optimized microbial cells for production of melatonin and other compounds

    DEFF Research Database (Denmark)

    2017-01-01

    Described herein are recombinant microbial host cells comprising biosynthetic pathways and their use in producing oxidation products and downstream products, e.g., melatonin and related compounds, as well as enzyme variants, nucleic acids, vectors and methods useful for preparing and using...

  4. Microbial production of bulk chemicals: development of anaerobic processes

    NARCIS (Netherlands)

    Weusthuis, R.A.; Lamot, I.; Oost, van der J.; Sanders, J.P.M.

    2011-01-01

    nnovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role

  5. CO2 efflux from soils with seasonal water repellency

    Science.gov (United States)

    Urbanek, Emilia; Doerr, Stefan H.

    2017-10-01

    Soil carbon dioxide (CO2) emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR), which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C) dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity, but facilitating O2

  6. Impact of climate and CO2 change on net primary productivity of Pinus tabulaeformis forest in Beijing mountain area%气候和CO2变化对北京山区油松林NPP的影响

    Institute of Scientific and Technical Information of China (English)

    张文海; 吕锡芝; 余新晓; 范敏锐

    2012-01-01

    应用BIOME-BGC模型模拟估算了1974-2010年北京十三陵油松林的净初级生产力(NPP),并分析了不同CO2浓度和气候变化情景对NPP的影响.结果表明:模型模拟所得NPP与实际测定值相差8.9%,变化趋势基本一致;表现出低值高值的波浪形年际变化,年际变动率为30.69%;油松林模拟NPP与降水量呈现显著的线性相关关系(相关系数为0.85),与平均温度无线性相关关系(相关系数为-0.18);油松林NPP对单独的CO2的浓度加倍、降水增加表现出正向响应,而单独的温度增加不利于油松林NPP的积累:CO2浓度加倍、降水增加和温度增加三因子共同作用降低了油松林NPP,各因子之间表现出较强的交互作用.

  7. Photosynthetic induction in a C4, Flaveria trinervia. I. Initial products of 14CO2 assimilation and levels of whole leaf C4 metabolites

    International Nuclear Information System (INIS)

    Moore, B.D.; Edwards, G.E.

    1986-01-01

    Labeling patterns from 14 CO 2 pulses to leaves and whole leaf metabolite contents were examined during photosynthetic induction in Flaveria trinervia, a C 4 dicot of the NADP-malic enzyme subgroup. During the first one to two minutes of illumination, malate was the primary initial product of 14 CO 2 assimilation (about 77% of total 14 C incorporated). After about 5 minutes of illumination, the proportion of initial label to aspartate increased from 16 to 66%, and then gradually declined during the following 7 to 10 minutes of illumination. Nutrition experiments showed that the increase in 14 CO 2 partitioning to aspartate was delayed about 2.5 minutes in plants grown with limiting N, and was highly dampened in plants previously treated 10 to 12 days with ammonia as the sole N source. Measurements of C 4 leaf metabolites revealed several transients in metabolite pools during the first few minutes of illumination, and subsequently, more gradual adjustments in pool sizes. These include a large initial decrease in malate (about 1.6 micromoles per milligram chlorophyll) and a small initial decrease in pyruvate. There was a transient increase in alanine levels after 1 minute of illumination, which was followed by a gradual, prolonged decrease during the remainder of the induction period. Total leaf aspartate decreased initially, but temporarily doubled in amount between 5 and 10 minutes of illumination (after its surge as a primary product). These results are discussed in terms of a plausible sequence of metabolic events which lead to the formation of the intercellular metabolite gradients required in C 4 photosynthesis

  8. Variable production of transparent exopolymeric particles by haploid and diploid life stages of coccolithophores grown under different CO2 concentrations

    NARCIS (Netherlands)

    Pedrotti, M.L.; Fiorini, S.; Kerros, M.E.; Middelburg, J.J.; Gattuso, J.P.

    2012-01-01

    The production of transparent exopolymeric particles (TEP) by the coccolithophores, Emiliania huxleyi, Calcidiscus leptoporus and Syracosphaera pulchra was investigated in batch cultures. The abundance, size spectra and carbon content of TEP were examined during the exponential growth phase of both

  9. Measurement of the Residual Gases O2 and CO2 in Meat Products Packed in Modified Atmosphere

    Directory of Open Access Journals (Sweden)

    Jozef Čapla

    2013-02-01

    Full Text Available Nowadays, consumers have increased demand for quality and food safety and also rising demand for natural foods without chemical additives. There are many ways to presserve freshness of these products, one of them is modified atmosphere packaging, which can mean elimination and/or replacement surrounding the product before closing it in package with a mixture of gases other than the original ambient air atmosphere. for replacement of atmosphere are generally used three types of gases such as carbon dioxide, oxygen and nitrogen. this type of packaging is often used for meat and meat products, which belongs to foods that are under normal conditions perishable and for increasing the shelf life of meat products are also used various other preservation methods or their combinations. Packaging of meat and meat products in modified atmosphere is usually made with a high content of carbon dioxide, which has good bacteriostatic and fungistatic effect and is also an effective mean for increasing the shelf life of packaged products during storage and sale.

  10. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2014-01-01

    Full Text Available We report the semicontinuous, direct (anaerobic sequencing batch reactor operation hydrogen fermentation of de-oiled jatropha waste (DJW. The effect of hydraulic retention time (HRT was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L*d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L*d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR.

  11. Biodiesel production and Environmental CO2 cleanup using Oleaginous Microorganisms from Al-Hassa area in Saudi Arabia

    Science.gov (United States)

    El-Sinawi, Abdulaziz; Shathele, Mohammad

    2014-12-01

    Biodiesel production is rapidly moving towards the mainstream as an alternative source of energy. Algae oil is one of the viable feed stocks among others to produce Biodiesel. However the difficulties in efficient biodiesel production from algae lie not in the extraction of the oil, but in finding an algal strain with a high lipid content and fast growth rate. This paper presents an experimental work performed to study the production of biodiesel from local algae strains in Al-Hassa territory of the eastern province in Saudi Arabia which was found to contain high lipid contents and show rapid growth. The collected results predict that those types of desert algae are promising and are considered to be a potential feedstock for biofuels.

  12. A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis

    Science.gov (United States)

    Menon, Vikram; Fu, Qingxi; Janardhanan, Vinod M.; Deutschmann, Olaf

    2015-01-01

    High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified Butler-Volmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.

  13. A Simplified Method to Estimate Sc-CO2 Extraction of Bioactive Compounds from Different Matrices: Chili Pepper vs. Tomato By-Products

    Directory of Open Access Journals (Sweden)

    Francesca Venturi

    2017-04-01

    Full Text Available In the last few decades, the search for bioactive compounds or “target molecules” from natural sources or their by-products has become the most important application of the supercritical fluid extraction (SFE process. In this context, the present research had two main objectives: (i to verify the effectiveness of a two-step SFE process (namely, a preliminary Sc-CO2 extraction of carotenoids followed by the recovery of polyphenols by ethanol coupled with Sc-CO2 in order to obtain bioactive extracts from two widespread different matrices (chili pepper and tomato by-products, and (ii to test the validity of the mathematical model proposed to describe the kinetics of SFE of carotenoids from different matrices, the knowledge of which is required also for the definition of the role played in the extraction process by the characteristics of the sample matrix. On the basis of the results obtained, it was possible to introduce a simplified kinetic model that was able to describe the time evolution of the extraction of bioactive compounds (mainly carotenoids and phenols from different substrates. In particular, while both chili pepper and tomato were confirmed to be good sources of bioactive antioxidant compounds, the extraction process from chili pepper was faster than from tomato under identical operating conditions.

  14. Estimating CO2 Emission Reduction of Non-capture CO2 Utilization (NCCU) Technology

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Lee, Dong Woog; Gyu, Jang Se; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo; Choi, Jong Shin

    2015-01-01

    Estimating potential of CO 2 emission reduction of non-capture CO 2 utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue gas. For the estimating the CO 2 emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle CO 2 of 100 tons per day was performed, Also for the estimation of the indirect CO 2 reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall CO 2 emission was estimated as 48,862 ton per year based on the energy consumption for the production of NaHCO 3 (7.4 GJ/tNaHCO 3 ). While for the NCCU technology, the direct CO 2 reduction through the CO 2 carbonation was estimated as 36,500 ton per year and the indirect CO 2 reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue was energy efficient and could be one of the promising technology for the low CO 2 emission technology.

  15. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2.

    Science.gov (United States)

    Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali; Archontoulis, Sotirios V; Zobel, Zachary; Kotamarthi, Veerabhadra R

    2017-07-01

    Heat and drought are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO 2 concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and future US rainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high-resolution (12 km) dynamically downscaled climate projections for 1995-2004 and 2085-2094. Results show that maize and soybean yield losses are prominent in the US Midwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmospheric CO 2 partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat to US rainfed maize production under RCP4.5 and soybean production under both RCP scenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize under RCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for the US Midwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems. © 2017 John Wiley & Sons Ltd.

  16. Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) II. Energy production and CO2 emission reduction potential

    International Nuclear Information System (INIS)

    Walle, Inge van de; Camp, Nancy van; Casteele, Liesbet van de; Verheyen, Kris; Lemeur, Raoul

    2007-01-01

    Belgium, being an EU country, has committed itself to a 7.5% reduction of greenhouse gas emissions during the first commitment period of the Kyoto Protocol. Within this framework, the Flemish government aims at reaching a share of 6% of renewable electricity in the total electricity production by 2010. In this work, the biomass production of birch, maple, poplar and willow in a short-rotation forestry (SRF) plantation after a 4-year growth period served as the base to calculate the amount of (electrical) energy that could be produced by this type of bioenergy crop in Flanders. The maximum amount of electricity that could be provided by SRF biomass was estimated at 72.9 GWh e year -1 , which only accounts for 0.16% of the total electricity production in this region. Although the energy output was rather low, the bioenergy production process under consideration appeared to be more energy efficient than energy production processes based on fossil fuels. The high efficiency of birch compared to the other species was mainly due to the high calorific value of the birch wood. The maximum CO 2 emission reduction potential of SRF plantations in Flanders was estimated at only 0.09% of the total annual CO 2 emission. The most interesting application of SRF in Flanders seemed to be the establishment of small-scale plantations, linked to a local combined heat and power plant. These plantations could be established on marginal arable soils or on polluted sites, and they could be of importance in the densely populated area of Flanders because of other environmental benefits, among which their function as (temporary) habitat for many species

  17. Microbial Transformations of Actinides and Fission Products in Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A. J. [Pohang Univ. Science and Technology, Pohang (Korea, Republic of)

    2011-07-01

    The environmental factors that can affect microbial growth and activity include moisture, temperature, ph, Eh, availability of organic and inorganic nutrients, and radiation. The microbial activity in a specific repository is influenced by the ambient environment of the repository, and the materials to be emplaced. For example, a repository in unsaturated igneous rock formations such as volcanic tuff rocks at Yucca Mountain is generally expected to be oxidizing; a repository in a hydrologically expected to be oxidizing; a repository in a hydrologically saturated zone, especially in sedimentary rocks, could be reducing. Sedimentary rocks contain a certain amount of organic matter, which may stimulate microbial activities and, thus maintain the repository and its surrounding areas at reducing conditions. Although the impacts of microbial activity on high-level nuclear waste and the long-term performance of the repository have not fully investigated, little microbial activity is expected in the near-field because of the radiation, lack of nutrients and the harsh conditions. However in the far-field microbial effects could be significant. Much of our understanding of the microbial effects on radionuclides stems from studies conducted with selected transuranic elements and fission products and limited studies with low-level radioactive wastes. Significant aerobic- and anaerobic-microbial activity is expected to occur in the waste because of the presence of electron donors and acceptors. The actinides initially may be present as soluble- or insoluble-forms but, after disposal, may be converted from one to the other by microorganisms. The direct enzymatic or indirect non-enzymatic actions of microbes could alter the speciation, solubility, and sorption properties of the actinides, thereby increasing or decreasing their concentrations in solution.

  18. Acid Gas to Syngas (AG2S™) technology applied to solid fuel gasification: Cutting H_2S and CO_2 emissions by improving syngas production

    International Nuclear Information System (INIS)

    Bassani, Andrea; Pirola, Carlo; Maggio, Enrico; Pettinau, Alberto; Frau, Caterina; Bozzano, Giulia; Pierucci, Sauro; Ranzi, Eliseo; Manenti, Flavio

    2016-01-01

    Highlights: • Coal gasification with improved yield and reduced emissions. • AG2S™ process converts H_2S and CO_2 into syngas, elemental sulfur and water. • Techno-economic simulation of AG2S™ process is carried out. • Industrial case-study on the Sotacarbo S.p.A. gasification pilot plant is proposed. - Abstract: The paper deals with the application of the novel Acid Gas To Syngas (AG2S™) technology to the gasification of solid fuels. The AG2S technology is a completely new effective route of processing acid gases: H_2S and CO_2 are converted into syngas (CO and H_2) by means of a regenerative thermal reactor. To show the application of the AG2S technology, modeling and simulation advances for gasification systems are initially discussed. The multi-scale, multi-phase, and multi-component coal gasification system is described by means of detailed kinetic mechanisms for coal pyrolysis, char heterogeneous reactions and for successive gas-phase reactions. These kinetic mechanisms are then coupled with transport resistances resulting in first-principles dynamic modeling of non-ideal reactors of different types (e.g., downdraft, updraft, traveling grate), also including the catalytic effect of ashes. The generalized approach pursued in developing the model allows characterizing the main phenomena involved in the coal gasification process, including t