WorldWideScience

Sample records for microbes aged crumbling

  1. Biofilms for Babies: Introducing Microbes and Biofilms to Preschool-Aged Children

    Directory of Open Access Journals (Sweden)

    Jillian M. Couto

    2017-05-01

    Full Text Available Microbes are beneficial to life on our planet as they facilitate natural processes such as global nutrient cycling in our environment. This article details a 30-minute activity to introduce pre-school children ranging from 3 to 5 years of age to microbes and biofilms in the natural environment.

  2. Lung Homeostasis: Influence of Age, Microbes, and the Immune System.

    Science.gov (United States)

    Lloyd, Clare M; Marsland, Benjamin J

    2017-04-18

    Pulmonary immune homeostasis is maintained by a network of tissue-resident cells that continually monitor the external environment, and in health, instruct tolerance to innocuous inhaled particles while ensuring that efficient and rapid immune responses can be mounted against invading pathogens. Here we review the multiple pathways that underlie effective lung immunity in health, and discuss how these may be affected by external environmental factors and contribute to chronic inflammation during disease. In this context, we examine the current understanding of the impact of the microbiota in immune development and function and in the setting of the threshold for immune responses that maintains the balance between tolerance and chronic inflammation in the lung. We propose that host interactions with microbes are critical for establishing the immune landscape of the lungs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Mechanisms of Heavy Metal Sequestration in Soils: Plant-Microbe Interactions and Organic Matter Aging

    Energy Technology Data Exchange (ETDEWEB)

    Teresa W.-M. Fan; Richard M. Higashi; David Crowley; Andrew N. Lane: Teresa A. Cassel; Peter G. Green

    2004-12-31

    For stabilization of heavy metals at contaminated sites, the three way interaction among soil organic matter (OM)-microbes-plants, and their effect on heavy metal binding is critically important for long-term sustainability, a factor that is poorly understood at the molecular level. Using a soil aging system, the humification of plant matter such as wheat straw was probed along with the effect on microbial community on soil from the former McClellan Air Force Base.

  4. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice.

    Directory of Open Access Journals (Sweden)

    Theofilos Poutahidis

    Full Text Available The decline of circulating testosterone levels in aging men is associated with adverse health effects. During studies of probiotic bacteria and obesity, we discovered that male mice routinely consuming purified lactic acid bacteria originally isolated from human milk had larger testicles and increased serum testosterone levels compared to their age-matched controls. Further investigation using microscopy-assisted histomorphometry of testicular tissue showed that mice consuming Lactobacillus reuteri in their drinking water had significantly increased seminiferous tubule cross-sectional profiles and increased spermatogenesis and Leydig cell numbers per testis when compared with matched diet counterparts This showed that criteria of gonadal aging were reduced after routinely consuming a purified microbe such as L. reuteri. We tested whether these features typical of sustained reproductive fitness may be due to anti-inflammatory properties of L. reuteri, and found that testicular mass and other indicators typical of old age were similarly restored to youthful levels using systemic administration of antibodies blocking pro-inflammatory cytokine interleukin-17A. This indicated that uncontrolled host inflammatory responses contributed to the testicular atrophy phenotype in aged mice. Reduced circulating testosterone levels have been implicated in many adverse effects; dietary L. reuteri or other probiotic supplementation may provide a viable natural approach to prevention of male hypogonadism, absent the controversy and side-effects of traditional therapies, and yield practical options for management of disorders typically associated with normal aging. These novel findings suggest a potential high impact for microbe therapy in public health by imparting hormonal and gonad features of reproductive fitness typical of much younger healthy individuals.

  5. Of Microbes and Minds: A Narrative Review on the Second Brain Aging

    Directory of Open Access Journals (Sweden)

    Riccardo Calvani

    2018-03-01

    Full Text Available In recent years, an extensive body of literature focused on the gut–brain axis and the possible role played by the gut microbiota in modulating brain morphology and function from birth to old age. Gut microbiota has been proposed as a relevant player during the early phases of neurodevelopment, with possible long-standing effects in later life. The reduction in gut microbiota diversity has also become one of the hallmarks of aging, and disturbances in its composition are associated with several (age-related neurological conditions, including depression, Alzheimer’s disease, and Parkinson’s disease. Several pathways have been evoked for gut microbiota–brain communication, including neural connections (vagus nerve, circulating mediators derived by host-bacteria cometabolism, as well as the influence exerted by gut microbiota on host gut function, metabolism, and immune system. Although the most provoking data emerged from animal studies and despite the huge debate around the possible epiphenomenal nature of those findings, the gut microbiota–brain axis still remains a fascinating target to be exploited to attenuate some of the most burdensome consequences of aging.

  6. Microbe Phobia and Kitchen Microbiology.

    Science.gov (United States)

    Williams, Robert P.; Gillen, Alan L.

    1991-01-01

    The authors present an exercise designed to help students overcome the misconception that most microbes make people sick. The activity helps students of all ages understand the important benefits of microbes such as in making bread, soy sauce, cheese, and wine. The role of microorganisms in processing cocoa and coffee and growing plants is also…

  7. Effect of the preparation of canned "crumbled anchovy" (Engraulis ringens) on polyunsaturated omega 3 fatty acids

    OpenAIRE

    Ordoñez, Lenny R.; Hernánde, Eloisa M.

    2015-01-01

    The anchoveta (Engraulis ringens) is a major fishery resources exploited in Peru. It is rich source of proteins of high biological value and polyunsaturated fatty acids omega-3: eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The objective was to determine the effect of the process of preparing the canned "crumbled anchovy" with emphasis on polyunsaturated omega-3 fatty acids and true content of them in canning. It was developed following the standardized technology by the Institu...

  8. Aging and sarcopenia associate with specific interactions between gut microbes, serum biomarkers and host physiology in rats.

    Science.gov (United States)

    Siddharth, Jay; Chakrabarti, Anirikh; Pannérec, Alice; Karaz, Sonia; Morin-Rivron, Delphine; Masoodi, Mojgan; Feige, Jerome N; Parkinson, Scott James

    2017-07-17

    The microbiome has been demonstrated to play an integral role in the maintenance of many aspects of health that are also associated with aging. In order to identify areas of potential exploration and intervention, we simultaneously characterized age-related alterations in gut microbiome, muscle physiology and serum proteomic and lipidomic profiles in aged rats to define an integrated signature of the aging phenotype. We demonstrate that aging skews the composition of the gut microbiome, in particular by altering the Sutterella to Barneseilla ratio, and alters the metabolic potential of intestinal bacteria. Age-related changes of the gut microbiome were associated with the physiological decline of musculoskeletal function, and with molecular markers of nutrient processing/availability, and inflammatory/immune status in aged versus adult rats. Altogether, our study highlights that aging leads to a complex interplay between the microbiome and host physiology, and provides candidate microbial species to target physical and metabolic decline during aging by modulating gut microbial ecology.

  9. MEMS and the microbe

    NARCIS (Netherlands)

    Ingham, C.J.; Vlieg, J.E.T.V.H.

    2008-01-01

    In recent years, relatively simple MEMS fabrications have helped accelerate our knowledge of the microbial cell. Current progress and challenges in the application of lab-on-a-chip devices to the viable microbe are reviewed. Furthermore, the degree to which microbiologists are becoming the engineers

  10. Meet the Microbes through the Microbe World Activities with Microbe the Magnificent and Mighty Microbe.

    Science.gov (United States)

    Frame, Kathy, Ed.; Ryan, Karen, Ed.

    The activities presented in this book are the product of the Community Outreach Initiative of the Microbial Literacy Collaborative (MLC). This activity book presents a balanced view of microbes, their benefits, and the diseases they cause. Each activity starts with an interesting introductory statement and includes goals, activity time, time to…

  11. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  12. Textiles and Microbes

    Science.gov (United States)

    Freney, Jean; Renaud, François N. R.

    Microbes can be carried by and even multiply on textiles. The first real, premeditated, microbiological warfare happened in 1763, during the Anglo-French wars in North America, when Native American emissaries were given blankets or handkerchiefs contaminated with smallpox. Thus, a small epidemic started and spread rapidly, causing considerable damage to the rank and file of the Native Americans. Nowadays, it could be said that textiles could be vectors of infections in hospitals or communities. The making of antimicrobial textiles could prevent them from becoming a reservoir of microbes in the transmission of infections and in cases of voluntary contamination in a terrorist threat for example. However, methods have to show that textiles are really active and do not attack the cutaneous flora they are in contact with. In this chapter, the role of textiles in the transmission of infections is summarized and the main characteristics of antimicrobial textiles are described.

  13. Barriers to Online Postsecondary Education Crumble: Enrollment in Traditional Face-to-Face Courses Declines as Enrollment in Online Courses Increases

    Science.gov (United States)

    Gray, Dahli

    2013-01-01

    Contrary to expectations, total postsecondary enrollment in the United States (US) declined in Fall 2011. In fact, it continues to decline while online enrollment continues to increase. Students can more easily cross geographic boundaries as online access causes barriers to postsecondary education to crumble, and more than 50% of the demand for…

  14. Ecological suicide in microbes.

    Science.gov (United States)

    Ratzke, Christoph; Denk, Jonas; Gore, Jeff

    2018-05-01

    The growth and survival of organisms often depend on interactions between them. In many cases, these interactions are positive and caused by a cooperative modification of the environment. Examples are the cooperative breakdown of complex nutrients in microbes or the construction of elaborate architectures in social insects, in which the individual profits from the collective actions of her peers. However, organisms can similarly display negative interactions by changing the environment in ways that are detrimental for them, for example by resource depletion or the production of toxic byproducts. Here we find an extreme type of negative interactions, in which Paenibacillus sp. bacteria modify the environmental pH to such a degree that it leads to a rapid extinction of the whole population, a phenomenon that we call ecological suicide. Modification of the pH is more pronounced at higher population densities, and thus ecological suicide is more likely to occur with increasing bacterial density. Correspondingly, promoting bacterial growth can drive populations extinct whereas inhibiting bacterial growth by the addition of harmful substances-such as antibiotics-can rescue them. Moreover, ecological suicide can cause oscillatory dynamics, even in single-species populations. We found ecological suicide in a wide variety of microbes, suggesting that it could have an important role in microbial ecology and evolution.

  15. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  16. Microbe-microbe interactions in mixed culture food fermentations

    NARCIS (Netherlands)

    Smid, E.J.; Lacroix, C.

    2013-01-01

    Most known natural and industrial food fermentation processes are driven by either simple or complex communities of microorganisms. Obviously, these fermenting microbes will not only interact with the fermentable substrate but also with each other. These microbe–microbe interactions are complex but

  17. Mining with microbes

    International Nuclear Information System (INIS)

    Rawlings., D.E.; Silver, S.

    1995-01-01

    Microbes are playing increasingly important roles in commercial mining operations, where they are being used in the open-quotes bioleachingclose quotes of copper, uranium, and gold ores. Direct leaching is when microbial metabolism changes the redox state of the metal being harvested, rendering it more soluble. Indirect leaching includes redox chemistry of other metal cations that are then coupled in chemical oxidation or reduction of the harvested metal ion and microbial attack upon and solubilization of the mineral matrix in which the metal is physically embedded. In addition, bacterial cells are used to detoxify the waste cyanide solution from gold-mining operations and as open-quotes absorbantsclose quotes of the mineral cations. Bacterial cells may replace activated carbon or alternative biomass. With an increasing understanding of microbial physiology, biochemistry and molecular genetics, rational approaches to improving these microbial activities become possible. 40 refs., 3 figs

  18. Radiation induced pesticidal microbes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants.

  19. Radiation induced pesticidal microbes

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S.

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants

  20. Age dating and flow path evaluation of groundwater by SF6 and microbe in the foot of Mt. Fuji, central Japan

    Science.gov (United States)

    Yamamoto, Chisato; Tsujimura, Maki; Kato, Kenji; Nagaosa, Kazuyo; Sakakibara, Koichi; Umei, Yohei; Ohara, Kazuma

    2016-04-01

    A variety of industries are developed at the foot of volcanic mountains in Japan and the groundwater is major source for industrial activity in those regions. The age of groundwater has been estimated to be from 10 to 30 years in Mt. Fuji regions by using 36Cl and 3H. However, the age has not been evaluated using SF6 with higher time resolution in these regions. Also, the total number of prokaryotes shows a specific value in each spring water, suggesting different path and age of the groundwater. Therefore, we aim to estimate residence time and the groundwater flow in three dimensions using the multi-tracers approach; CFCs, SF6, the total number of prokaryotes, the stable isotopes of oxygen-18, deuterium. We collected totally 25 spring water samples in Mt. Fuji and analyzed concentration of inorganic ions, the stable isotopes of oxygen-18, deuterium, CFCs, SF6. The apparent age of the spring water was estimated to be ranging from 4 to 19 years at the foot of Mt. Fuji. These results are reasonable as considering the existed age data by36Cl (Tosaki, 2008) in this region. The spring water with younger age tends to show higher total number of prokaryotes, suggesting that the groundwater flows dominantly through the shallow and young lava with the higher total number of prokaryotes, leads to younger age. Focusing on a specific spring water, the seasonal change of SF6 and total number of prokaryotes were monitored. The spring water showed a younger age and higher total number of prokaryotes during the high water flow season, whereas it showed an older age and lower total number of prokaryotes. Therefore, the total number of prokaryotes shows a good negative correlation with the residence time of the spring/ groundwater in space and time. This shows a possibility that the total number of prokaryotes could be a useful tracer of groundwater for time and space in the three dimensions information.

  1. The Microbe Directory: An annotated, searchable inventory of microbes' characteristics.

    Science.gov (United States)

    Shaaban, Heba; Westfall, David A; Mohammad, Rawhi; Danko, David; Bezdan, Daniela; Afshinnekoo, Ebrahim; Segata, Nicola; Mason, Christopher E

    2018-01-05

    The Microbe Directory is a collective research effort to profile and annotate more than 7,500 unique microbial species from the MetaPhlAn2 database that includes bacteria, archaea, viruses, fungi, and protozoa. By collecting and summarizing data on various microbes' characteristics, the project comprises a database that can be used downstream of large-scale metagenomic taxonomic analyses, allowing one to interpret and explore their taxonomic classifications to have a deeper understanding of the microbial ecosystem they are studying. Such characteristics include, but are not limited to: optimal pH, optimal temperature, Gram stain, biofilm-formation, spore-formation, antimicrobial resistance, and COGEM class risk rating. The database has been manually curated by trained student-researchers from Weill Cornell Medicine and CUNY-Hunter College, and its analysis remains an ongoing effort with open-source capabilities so others can contribute. Available in SQL, JSON, and CSV (i.e. Excel) formats, the Microbe Directory can be queried for the aforementioned parameters by a microorganism's taxonomy. In addition to the raw database, The Microbe Directory has an online counterpart ( https://microbe.directory/) that provides a user-friendly interface for storage, retrieval, and analysis into which other microbial database projects could be incorporated. The Microbe Directory was primarily designed to serve as a resource for researchers conducting metagenomic analyses, but its online web interface should also prove useful to any individual who wishes to learn more about any particular microbe.

  2. Biofuels from microbes

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, D. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Inst. of Resource and Energy Technology; Zverlov, V.V.; Schwarz, W.H. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Dept. of Microbiology

    2007-11-15

    Today, biomass covers about 10% of the world's primary energy demand. Against a backdrop of rising crude oil prices, depletion of resources, political instability in producing countries and environmental challenges, besides efficiency and intelligent use, only biomass has the potential to replace the supply of an energy hungry civilisation. Plant biomass is an abundant and renewable source of energy-rich carbohydrates which can be efficiently converted by microbes into biofuels, of which, only bioethanol is produced on an industrial scale today. Biomethane is produced on a large scale, but is not yet utilised for transportation. Biobutanol is on the agenda of several companies and may be used in the near future as a supplement for gasoline, diesel and kerosene, as well as contributing to the partially biological production of butyl-t-butylether, BTBE as does bioethanol today with ETBE. Biohydrogen, biomethanol and microbially made biodiesel still require further development. This paper reviews microbially made biofuels which have potential to replace our present day fuels, either alone, by blending, or by chemical conversion. It also summarises the history of biofuels and provides insight into the actual production in various countries, reviewing their policies and adaptivity to the energy challenges of foreseeable future. (orig.)

  3. A mixed-method evaluation of peer-education workshops for school-aged children to teach about antibiotics, microbes and hygiene.

    Science.gov (United States)

    Young, Vicki L; Cole, Amy; Lecky, Donna M; Fettis, Dennis; Pritchard, Beth; Verlander, Neville Q; Eley, Charlotte V; McNulty, Cliodna A M

    2017-07-01

    Delivering health topics in schools through peer education is known to be beneficial for all students involved. In this study, we have evaluated a peer-education workshop that aims to educate primary and secondary school students on hygiene, the spread of infection and antibiotics. Four schools in south-west England, in a range of localities, took part in peer-education workshops, with students completing before, after and knowledge-retention questionnaires. Mixed-effect logistic regression and mixed-effect linear regression were used to analyse the data. Data were analysed by topic, region and peer/non-peer-educator status. Qualitative interviews and focus groups with students and educators were conducted to assess changes in participants' skills, confidence and behaviour. Qualitative data indicated improvements in peer-educator skills and behaviour, including confidence, team-working and communication. There was a significant improvement in knowledge for all topics covered in the intervention, although this varied by region. In the antibiotics topic, peer-educators' knowledge increased in the retention questionnaire, whereas non-peer-educators' knowledge decreased. Knowledge declined in the retention questionnaires for the other topics, although this was mostly not significant. This study indicates that peer education is an effective way to educate young people on important topics around health and hygiene, and to concurrently improve communication skills. Its use should be encouraged across schools to help in the implementation of the National Institute for Health and Care Excellence (NICE) guidance that recommends children are taught in an age-appropriate manner about hygiene and antibiotics. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  4. Where the Wild Microbes Are: Education and Outreach on Sub-Seafloor Microbes

    Science.gov (United States)

    Cooper, S. K.; Kurtz, K.; Orcutt, B.; Strong, L.; Collins, J.; Feagan, A.

    2014-12-01

    Sub-seafloor microbiology has the power to spark the imaginations of children, students and the general public with its mysterious nature, cutting-edge research, and connections to the search for extraterrestrial life. These factors have been utilized to create a number of educational and outreach products to bring subsurface microbes to non-scientist audiences in creative and innovative ways. The Adopt a Microbe curriculum for middle school students provides hands-on activities and investigations for students to learn about microbes and the on-going research about them, and provides opportunities to connect with active expeditions. A new series of videos engages non-scientists with stories about research expeditions and the scientists themselves. A poster and associated activities explore the nature of science using a microbiologist and her research as examples. A new e-book for young children will engage them with age-appropriate text and illustrations. These projects are multidisciplinary, involve science and engineering practices, are available to all audiences and provide examples of high level and meaningful partnerships between scientists and educators and the kinds of products that can result. Subseafloor microbiology projects such as these, aimed at K-12 students and the general public, have the potential to entice the interest of the next generation of microbe scientists and increase general awareness of this important science.

  5. Principles of Plant-Microbe Interactions - Microbes for Sustainable Agriculture

    Science.gov (United States)

    Crops lack resistance to many soilborne pathogens and rely on antagonistic microbes recruited from the soil microbiome to protect their roots. Disease-suppressive soils, the best examples of microbial-based defense, are soils in which a pathogen does not establish or persist, establishes but causes ...

  6. The ``Adopt A Microbe'' project: Web-based interactive education connected with scientific ocean drilling

    Science.gov (United States)

    Orcutt, B. N.; Bowman, D.; Turner, A.; Inderbitzen, K. E.; Fisher, A. T.; Peart, L. W.; Iodp Expedition 327 Shipboard Party

    2010-12-01

    We launched the "Adopt a Microbe" project as part of Integrated Ocean Drilling Program (IODP) Expedition 327 in Summer 2010. This eight-week-long education and outreach effort was run by shipboard scientists and educators from the research vessel JOIDES Resolution, using a web site (https://sites.google.com/site/adoptamicrobe) to engage students of all ages in an exploration of the deep biosphere inhabiting the upper ocean crust. Participants were initially introduced to a cast of microbes (residing within an ‘Adoption Center’ on the project website) that live in the dark ocean and asked to select and virtually ‘adopt’ a microbe. A new educational activity was offered each week to encourage learning about microbiology, using the adopted microbe as a focal point. Activities included reading information and asking questions about the adopted microbes (with subsequent responses from shipboard scientists), writing haiku about the adopted microbes, making balloon and fabric models of the adopted microbes, answering math questions related to the study of microbes in the ocean, growing cultures of microbes, and examining the gases produced by microbes. In addition, the website featured regular text, photo and video updates about the science of the expedition using a toy microbe as narrator, as well as stories written by shipboard scientists from the perspective of deep ocean microbes accompanied by watercolor illustrations prepared by a shipboard artist. Assessment methods for evaluating the effectiveness of the Adopt a Microbe project included participant feedback via email and online surveys, website traffic monitoring, and online video viewing rates. Quantitative metrics suggest that the “Adope A Microbe” project was successful in reaching target audiences and helping to encourage and maintain interest in topics related to IODP Expedition 327. The “Adopt A Microbe” project mdel can be adapted for future oceanographic expeditions to help connect the

  7. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation

    OpenAIRE

    Levy, Roie; Carr, Rogan; Kreimer, Anat; Freilich, Shiri; Borenstein, Elhanan

    2015-01-01

    Background Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host...

  8. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation.

    Science.gov (United States)

    Levy, Roie; Carr, Rogan; Kreimer, Anat; Freilich, Shiri; Borenstein, Elhanan

    2015-05-17

    Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm. NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms' niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds. The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.

  9. Host-microbe and microbe-microbe interactions in the evolution of obligate plant parasitism.

    Science.gov (United States)

    Kemen, Ariane C; Agler, Matthew T; Kemen, Eric

    2015-06-01

    Research on obligate biotrophic plant parasites, which reproduce only on living hosts, has revealed a broad diversity of filamentous microbes that have independently acquired complex morphological structures, such as haustoria. Genome studies have also demonstrated a concerted loss of genes for metabolism and lytic enzymes, and gain of diversity of genes coding for effectors involved in host defense suppression. So far, these traits converge in all known obligate biotrophic parasites, but unexpected genome plasticity remains. This plasticity is manifested as transposable element (TE)-driven increases in genome size, observed to be associated with the diversification of virulence genes under selection pressure. Genome expansion could result from the governing of the pathogen response to ecological selection pressures, such as host or nutrient availability, or to microbial interactions, such as competition, hyperparasitism and beneficial cooperations. Expansion is balanced by alternating sexual and asexual cycles, as well as selfing and outcrossing, which operate to control transposon activity in populations. In turn, the prevalence of these balancing mechanisms seems to be correlated with external biotic factors, suggesting a complex, interconnected evolutionary network in host-pathogen-microbe interactions. Therefore, the next phase of obligate biotrophic pathogen research will need to uncover how this network, including multitrophic interactions, shapes the evolution and diversity of pathogens. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Cooperation and cheating in microbes

    Science.gov (United States)

    Gore, Jeff

    2011-03-01

    Understanding the cooperative and competitive dynamics within and between species is a central challenge in evolutionary biology. Microbial model systems represent a unique opportunity to experimentally test fundamental theories regarding the evolution of cooperative behaviors. In this talk I will describe our experiments probing cooperation in microbes. In particular, I will compare the cooperative growth of yeast in sucrose and the cooperative inactivation of antibiotics by bacteria. In both cases we find that cheater strains---which don't contribute to the public welfare---are able to take advantage of the cooperator strains. However, this ability of cheaters to out-compete cooperators occurs only when cheaters are present at low frequency, thus leading to steady-state coexistence. These microbial experiments provide fresh insight into the evolutionary origin of cooperation.

  11. Small crumbled diet versus powdered diet in restricted feeding management of juvenile Nile tilapia - doi: 10.4025/actascianimsci.v35i2.16767

    Directory of Open Access Journals (Sweden)

    José Nacélio Oliveira-Segundo

    2013-03-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 The pellet size of the diet can affect both fish growth performance and the water quality of the rearing units. The present work assessed the effects of feeding juvenile Nile tilapia, Oreochromis niloticus (L. a small crumbled diet (SCD; 0.8 mm on water quality and growth performance. Fish were reared for six weeks in twenty 250-L polyethylene outdoor tanks at a density of 10 juveniles tank-1 (40 fish m-3. There were two feeding rates (standard and restricted and two types of artificial fish diet (powdered and SCD. The standard feeding rates were reduced by 30% for restricted feeding. The concentrations of free CO2, reactive phosphorus, total ammonia nitrogen (TAN and nitrite were higher in the full-fed tanks relative to the restricted-fed tanks. In the standard feeding rate groups, those tanks fed SCD had lower TAN and nitrite concentrations than tanks fed a powdered diet. The final body weight and specific growth rate of fish fed a restricted SCD were higher than the full-fed tanks. The higher levels of food waste in the powdered-diet tanks lead to impairment of fish growth performance.  

  12. Effects of microbes on the immune system

    National Research Council Canada - National Science Library

    Fujinami, Robert S; Cunningham, Madeleine W

    2000-01-01

    .... The book synthesizes recent discoveries on the various mechanisms by which microbes subvert the immune response and on the role of these immunologic mechanisms in the pathogenesis of infectious diseases...

  13. A global census of marine microbes

    Digital Repository Service at National Institute of Oceanography (India)

    Amaral-Zettler, L.; Artigas, L.F.; Baross, J.; LokaBharathi, P.A; Boetius, A; Chandramohan, D.; Herndl, G.; Kogure, K.; Neal, P.; Pedros-Alio, C.; Ramette, A; Schouten, S.; Stal, L.; Thessen, A; De Leeuw, J.; Sogin, M.

    In this chapter we provide a brief history of what is known about marine microbial diversity, summarize our achievements in performing a global census of marine microbes, and reflect on the questions and priorities for the future of the marine...

  14. Microbes safely, effectively bioremediate oil field pits

    International Nuclear Information System (INIS)

    Shaw, B.; Block, C.S.; Mills, C.H.

    1995-01-01

    Natural and augmented bioremediation provides a safe, environmental, fast, and effective solution for removing hydrocarbon stains from soil. In 1992, Amoco sponsored a study with six bioremediation companies, which evaluated 14 different techniques. From this study, Amoco continued using Environmental Protection Co.'s (EPC) microbes for bioremediating more than 145 sites near Farmington, NM. EPC's microbes proved effective on various types of hydrocarbon molecules found in petroleum stained soils from heavy crude and paraffin to volatiles such as BTEX (benzene, toluene, ethylbenzene, xylene) compounds. Controlled laboratory tests have shown that these microbes can digest the hydrocarbon molecules with or without free oxygen present. It is believed that this adaptation gives these microbes their resilience. The paper describes the bioremediation process, environmental advantages, in situ and ex situ bioremediation, goals of bioremediation, temperature effects, time, cost, and example sites that were treated

  15. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review

    International Nuclear Information System (INIS)

    Xie, Yankai; Dong, Haoran; Zeng, Guangming; Tang, Lin; Jiang, Zhao; Zhang, Cong; Deng, Junmin; Zhang, Lihua; Zhang, Yi

    2017-01-01

    Highlights: • The interactions between various microbes and NZVI were summarized. • The adverse and positive effects of NZVI on the growth of microbes were reviewed. • The synergistic effects of NZVI and bacteria on pollutant removal were reviewed. • The effects of iron-reducing bacteria on the aged NZVI were reviewed. • Future challenges to study the interactions between NZVI and microbes are suggested. - Abstract: Nanoscale zero-valent iron (NZVI) particles, applied for in-situ subsurface remediation, are inevitable to interact with various microbes in the remediation sites directly or indirectly. This review summarizes their interactions, including the effects of NZVI on microbial activity and growth, the synergistic effect of NZVI and microbes on the contaminant removal, and the effects of microbes on the aging of NZVI. NZVI could exert either inhibitive or stimulative effects on the growth of microbes. The mechanisms of NZVI cytotoxicity (i.e., the inhibitive effect) include physical damage and biochemical destruction. The stimulative effects of NZVI on certain bacteria are associated with the creation of appropriate living environment, either through providing electron donor (e.g., H_2) or carbon sources (e.g., the engineered organic surface modifiers), or through eliminating the noxious substances that can cause bactericidal consequence. As a result of the positive interaction, the combination of NZVI and some microbes shows synergistic effect on contaminant removal. Additionally, the aged NZVI can be utilized by some iron-reducing bacteria, resulting in the transformation of Fe(III) to Fe(II), which can further contribute to the contaminant reduction. However, the Fe(III)-reduction process can probably induce environmental risks, such as environmental methylation and remobilization of the previously entrapped heavy metals.

  16. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yankai [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Dong, Haoran, E-mail: dongh@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Zeng, Guangming; Tang, Lin; Jiang, Zhao; Zhang, Cong; Deng, Junmin; Zhang, Lihua; Zhang, Yi [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China)

    2017-01-05

    Highlights: • The interactions between various microbes and NZVI were summarized. • The adverse and positive effects of NZVI on the growth of microbes were reviewed. • The synergistic effects of NZVI and bacteria on pollutant removal were reviewed. • The effects of iron-reducing bacteria on the aged NZVI were reviewed. • Future challenges to study the interactions between NZVI and microbes are suggested. - Abstract: Nanoscale zero-valent iron (NZVI) particles, applied for in-situ subsurface remediation, are inevitable to interact with various microbes in the remediation sites directly or indirectly. This review summarizes their interactions, including the effects of NZVI on microbial activity and growth, the synergistic effect of NZVI and microbes on the contaminant removal, and the effects of microbes on the aging of NZVI. NZVI could exert either inhibitive or stimulative effects on the growth of microbes. The mechanisms of NZVI cytotoxicity (i.e., the inhibitive effect) include physical damage and biochemical destruction. The stimulative effects of NZVI on certain bacteria are associated with the creation of appropriate living environment, either through providing electron donor (e.g., H{sub 2}) or carbon sources (e.g., the engineered organic surface modifiers), or through eliminating the noxious substances that can cause bactericidal consequence. As a result of the positive interaction, the combination of NZVI and some microbes shows synergistic effect on contaminant removal. Additionally, the aged NZVI can be utilized by some iron-reducing bacteria, resulting in the transformation of Fe(III) to Fe(II), which can further contribute to the contaminant reduction. However, the Fe(III)-reduction process can probably induce environmental risks, such as environmental methylation and remobilization of the previously entrapped heavy metals.

  17. MicrobeWorld Radio and Communications Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Hyde

    2006-11-22

    MicrobeWorld is a 90-second feature broadcast daily on more than 90 public radio stations and available from several sources as a podcast, including www.microbeworld.org. The feature has a strong focus on the use and adapatbility of microbes as alternative sources of energy, in bioremediation, their role in climate, and especially the many benefits and scientific advances that have resulting from decoding microbial genomes. These audio features are permanantly archived on an educational outreach site, microbeworld.org, where they are linked to the National Science Education Standards. They are also being used by instructors at all levels to introduce students to the multiple roles and potential of microbes, including a pilot curriculum program for middle-school students in New York.

  18. Education in a Crumbling Democracy

    Science.gov (United States)

    Straume, Ingerid S.

    2014-01-01

    From a political viewpoint, education in a modern society can be said to have two functions. On the one hand, it takes care of the social reproduction; on the other, it represents society's capacity for self-reflection and conscious (political) change. Therefore, when the members of a society deliberate on educational aims and their justification,…

  19. Crumbling UNESCO and aggregating archaeology

    Czech Academy of Sciences Publication Activity Database

    Carman, J.; Turek, Jan

    2017-01-01

    Roč. 13, č. 3 (2017), s. 387-391 ISSN 1555-8622 Institutional support: RVO:67985912 Keywords : indigenous people of Amazonia * Canaanite site in Gaza * UNESCO * world archaeology * European Association of Archaeologists Subject RIV: AC - Archeology, Anthropology, Ethnology

  20. THORP's case continues to crumble

    International Nuclear Information System (INIS)

    Roche, P.

    1990-01-01

    With a stockpile of plutonium of over 40 tonnes, there is no need to reprocess spent nuclear fuel for either military use or as fuel for fast reactors. The position of reprocessing at THORP, Sellafield's Thermal Oxide Reprocessing Plant is less secure. BNFL has contracts for the first ten years of THORP's operation but is finding it harder to sign contracts for subsequent years as many countries are now opting for on-site storage of spent fuels rather than reprocessing. The Labour Party has not made a commitment to abandon THORP, but it may not survive economically anyhow. (UK)

  1. THORP's markets begin to crumble

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    British Nuclear Fuels Ltd's (BNFL) new thermal oxide reprocessing plant, THORP, is due to come on line in 1992. THORP has contracts to cover the first 10 years of its operation (1992-2002) with the plant reprocessing about 600-700 tonnes of spent fuel a year. The largest contract is from Japanese utilities (2,300t), United Kingdom business amounts to one third (1,850t) and German utilities have contracted for 760t. Much smaller contracts are also held with Switzerland, Italy, Spain, Sweden and the Netherlands. However, future contracts may be affected by a change in policy away from reprocessing to long term storage of spent fuel elements. Such a change is being considered by Scottish Nuclear Ltd. Japan may transfer its business to its own plant planned for operation by 1998. Other countries are discontinuing their nuclear power programmes and will not need reprocessing facilities in the future. Only Germany has signed contracts beyond 2002 and some of these have gone to Cogema's new plant. Thus it may be difficult for THORP to find enough business in the longer term future. (U.K.)

  2. Natural products from microbes associated with insects

    DEFF Research Database (Denmark)

    Beemelmanns, Christine; Guo, Huijuan; Rischer, Maja

    2016-01-01

    Here we review discoveries of secondary metabolites from microbes associated with insects. We mainly focus on natural products, where the ecological role has been at least partially elucidated, and/or the pharmaceutical properties evaluated, and on compounds with unique structural features. We...

  3. MVP: a microbe-phage interaction database.

    Science.gov (United States)

    Gao, Na L; Zhang, Chengwei; Zhang, Zhanbing; Hu, Songnian; Lercher, Martin J; Zhao, Xing-Ming; Bork, Peer; Liu, Zhi; Chen, Wei-Hua

    2018-01-04

    Phages invade microbes, accomplish host lysis and are of vital importance in shaping the community structure of environmental microbiota. More importantly, most phages have very specific hosts; they are thus ideal tools to manipulate environmental microbiota at species-resolution. The main purpose of MVP (Microbe Versus Phage) is to provide a comprehensive catalog of phage-microbe interactions and assist users to select phage(s) that can target (and potentially to manipulate) specific microbes of interest. We first collected 50 782 viral sequences from various sources and clustered them into 33 097 unique viral clusters based on sequence similarity. We then identified 26 572 interactions between 18 608 viral clusters and 9245 prokaryotes (i.e. bacteria and archaea); we established these interactions based on 30 321 evidence entries that we collected from published datasets, public databases and re-analysis of genomic and metagenomic sequences. Based on these interactions, we calculated the host range for each of the phage clusters and accordingly grouped them into subgroups such as 'species-', 'genus-' and 'family-' specific phage clusters. MVP is equipped with a modern, responsive and intuitive interface, and is freely available at: http://mvp.medgenius.info. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. The mucosal firewalls against commensal intestinal microbes.

    Science.gov (United States)

    Macpherson, Andrew J; Slack, Emma; Geuking, Markus B; McCoy, Kathy D

    2009-07-01

    Mammals coexist with an extremely dense microbiota in the lower intestine. Despite the constant challenge of small numbers of microbes penetrating the intestinal surface epithelium, it is very unusual for these organisms to cause disease. In this review article, we present the different mucosal firewalls that contain and allow mutualism with the intestinal microbiota.

  5. First Foods and Gut Microbes

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Bahl, Martin Iain; Michaelsen, Kim F.

    2017-01-01

    The establishment of the human gut microbiota in early life has been associated with later health and disease. During the 1st months after birth, the microbial composition in the gut is known to be affected by the mode of delivery, use of antibiotics, geographical location and type of feeding...... of this window is currently debated, but it likely coincides with the complementary feeding period, marking the gradual transition from milk- based infant feeding to family diet usually occurring between 6 and 24 months. Furthermore, the 'first 1000 days,' i.e., the period from conception until age 2 years...... microbiota development. This perspective paper summarizes the currently very few studies addressing the effects of complementary diet on gut microbiota, and highlights the recent finding that transition to family foods greatly impacts the development of gut microbial diversity. Further, we discuss potential...

  6. First Foods and Gut Microbes

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Bahl, Martin Iain; Michaelsen, Kim F.

    2017-01-01

    , are generally recognized to be of particular importance for the healthy development of children. While dietary changes are known to affect the adult gut microbiota, there is a gap in our knowledge on how the introduction of new dietary components into the diet of infants/young children affects the gut...... microbiota development. This perspective paper summarizes the currently very few studies addressing the effects of complementary diet on gut microbiota, and highlights the recent finding that transition to family foods greatly impacts the development of gut microbial diversity. Further, we discuss potential......(breast/formula). Consequently, the neonatal period and early infancy has attracted much attention. However, after this first period the gut microbial composition continues to develop until the age of 3 years, and these 1st years have been designated "a window of opportunity" for microbial modulation. The beginning and end...

  7. Honey Bee Health: The Potential Role of Microbes

    Science.gov (United States)

    Microbes, are a diverse group of unicellular organisms that include bacteria, fungi, archaea, protists, and sometimes viruses. Bees carry a diverse assemblage of microbes (mostly bacteria and fungi). Very few are pathogenic; most microbes are likely commensal or even beneficial to the colony. Mic...

  8. The Study of the Microbes Degraded Polystyrene

    Directory of Open Access Journals (Sweden)

    Zhi-Long Tang

    2017-01-01

    Full Text Available Under the observation that Tenebrio molitor and Zophobas morio could eat polystyrene (PS, we setup the platform to screen the gut microbes of these two worms. To take advantage of that Tenebrio molitor and Zophobas morio can eat and digest polystyrene as its diet, we analyzed these special microbes with PS plate and PS turbidity system with time courses. There were two strains TM1 and ZM1 which isolated from Tenebrio molitor and Zophobas morio, and were identified by 16S rDNA sequencing. The results showed that TM1 and ZM1 were cocci-like and short rod shape Gram-negative bacteria under microscope. The PS plate and turbidity assay showed that TM1 and ZM1 could utilize polystyrene as their carbon sources. The further study of PS degraded enzyme and cloning warrants our attention that this platform will be an excellent tools to explore and solve this problem.

  9. Engineering tailored nanoparticles with microbes: quo vadis?

    Science.gov (United States)

    Prasad, Ram; Pandey, Rishikesh; Barman, Ishan

    2016-01-01

    In the quest for less toxic and cleaner methods of nanomaterials production, recent developments in the biosynthesis of nanoparticles have underscored the important role of microorganisms. Their intrinsic ability to withstand variable extremes of temperature, pressure, and pH coupled with the minimal downstream processing requirements provide an attractive route for diverse applications. Yet, controlling the dispersity and facile tuning of the morphology of the nanoparticles of desired chemical compositions remains an ongoing challenge. In this Focus Review, we critically review the advances in nanoparticle synthesis using microbes, ranging from bacteria and fungi to viruses, and discuss new insights into the cellular mechanisms of such formation that may, in the near future, allow complete control over particle morphology and functionalization. In addition to serving as paradigms for cost-effective, biocompatible, and eco-friendly synthesis, microbes hold the promise for a unique template for synthesis of tailored nanoparticles targeted at therapeutic and diagnostic platform technologies. © 2015 Wiley Periodicals, Inc.

  10. Electrifying microbes for the production of chemicals

    Directory of Open Access Journals (Sweden)

    Pier-Luc eTremblay

    2015-03-01

    Full Text Available Powering microbes with electrical energy to produce valuable chemicals such as biofuels has recently gained traction as a biosustainable strategy to reduce our dependence on oil. Microbial electrosynthesis (MES is one of the bioelectrochemical approaches developed in the last decade that could have critical impact on the current methods of chemical synthesis. MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics. Electricity necessary for MES can be harvested from renewable resources such as solar energy, wind turbine or wastewater treatment processes. The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas. This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology.

  11. Electrifying microbes for the production of chemicals

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Zhang, Tian

    2015-01-01

    have critical impact on the current methods of chemical synthesis. MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics. Electricity necessary for MES can be harvested from renewable resources such as solar energy, wind......Powering microbes with electrical energy to produce valuable chemicals such as biofuels has recently gained traction as a biosustainable strategy to reduce our dependence on oil. Microbial electrosynthesis (MES) is one of the bioelectrochemical approaches developed in the last decade that could...... turbine, or wastewater treatment processes. The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas. This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology....

  12. Visualizing conserved gene location across microbe genomes

    Science.gov (United States)

    Shaw, Chris D.

    2009-01-01

    This paper introduces an analysis-based zoomable visualization technique for displaying the location of genes across many related species of microbes. The purpose of this visualizatiuon is to enable a biologist to examine the layout of genes in the organism of interest with respect to the gene organization of related organisms. During the genomic annotation process, the ability to observe gene organization in common with previously annotated genomes can help a biologist better confirm the structure and function of newly analyzed microbe DNA sequences. We have developed a visualization and analysis tool that enables the biologist to observe and examine gene organization among genomes, in the context of the primary sequence of interest. This paper describes the visualization and analysis steps, and presents a case study using a number of Rickettsia genomes.

  13. An Astrobiology Microbes Exhibit and Education Module

    Science.gov (United States)

    Lindstrom, Marilyn M.; Allen, Jaclyn S.; Stocco, Karen; Tobola, Kay; Olendzenski, Lorraine

    2001-01-01

    Telling the story of NASA-sponsored scientific research to the public in exhibits is best done by partnerships of scientists and museum professionals. Likewise, preparing classroom activities and training teachers to use them should be done by teams of teachers and scientists. Here we describe how we used such partnerships to develop a new astrobiology augmentation to the Microbes! traveling exhibit and a companion education module. "Additional information is contained in the original extended abstract."

  14. Engineered microbes and methods for microbial oil production

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2018-01-09

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  15. Engineered microbes and methods for microbial oil production

    Science.gov (United States)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2015-02-10

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  16. Roles and Importance of Microbes in the Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Baik, Min Hoon; Lee, Seung Yeop; Roh, Yeol

    2009-01-01

    Recently the importance and interest for the microbes has been increased because several important results for the effects of microbes on the radioactive waste disposal have been published continuously. In this study, research status and major results on the various roles and effects of microbes in the radioactive waste disposal have been investigated. We investigated and summarized the roles and major results of microbes in a multi-barrier system consisting of an engineered barrier and a natural barrier which is considered in radioactive waste disposal systems. For the engineered barrier, we discussed about the effects of microbes on the corrosion of a waste container and investigated the survival possibility and roles of microbes in a compacted bentonite buffer. For the natural barrier, the roles of microbes present in groundwaters and rocks were discussed and summarized with major results from natural analogue studies. Furthermore, we investigated and summarized the roles and various interactions processes of microbes and their effects on the radionuclide migration and retardation including recent research status. Therefore, it is expected that the effects and roles of microbes on the radioactive waste disposal can be rigorously evaluated if further researches are carried out for a long-term behavior of the disposal system in the deep geological environments and for the effects of microbes on the radionuclide migration through geological media.

  17. The microbe capture experiment in space: Fluorescence microscopic detection of microbes captured by aerogel

    Science.gov (United States)

    Sugino, Tomohiro; Yokobori, Shin-Ichi; Yang, Yinjie; Kawaguchi, Yuko; Okudaira, Kyoko; Tabata, Makoto; Kawai, Hideyuki; Hasegawa, Sunao; Yamagishi, Akihiko

    Microbes have been collected at the altitude up to about 70 km in the sampling experiment done by several groups[1]. We have also collected high altitude microbes, by using an airplane and balloons[2][3][4][5]. We collected new deinococcal strain (Deinococcus aetherius and Deinococ-cus aerius) and several strains of spore-forming bacilli from stratosphere[2][4][5]. However, microbe sampling in space has never been reported. On the other hand, "Panspermia" hy-pothesis, where terrestrial life is originated from outside of Earth, has been proposed[6][7][8][9]. Recent report suggesting existence of the possible microbe fossils in the meteorite of Mars origin opened the serious debate on the possibility of migration of life embedded in meteorites (and cosmic dusts)[10][11]. If we were able to find terrestrial microbes in space, it would suggest that the terrestrial life can travel between astronomical bodies. We proposed a mission "Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments" to examine possible inter-planetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module of the International Space Station (ISS)[12]. Two of six sub themes in this mission are directly related to interplanetary migration of microbes. One is the direct capturing experi-ment of microbes (probably within the particles such as clay) in space by the exposed ultra-low density aerogel. Another is the exposure experiment to examine survivability of the microbes in harsh space environment. They will tell us the possibility of interplanetary migration of microbes (life) from Earth to outside of Earth (or vise versa). In this report, we will report whether aerogel that have been used for the collection of space debris and cosmic dusts can be used for microbe sampling in space. We will discuss how captured particles by aerogel can be detected with DNA-specific fluorescent dye, and how to distinguish microbes from other mate-rials (i.e. aerogel and

  18. Endogenous System Microbes as Treatment Process ...

    Science.gov (United States)

    Monitoring the efficacy of treatment strategies to remove pathogens in decentralized systems remains a challenge. Evaluating log reduction targets by measuring pathogen levels is hampered by their sporadic and low occurrence rates. Fecal indicator bacteria are used in centralized systems to indicate the presence of fecal pathogens, but are ineffective decentralized treatment process indicators as they generally occur at levels too low to assess log reduction targets. System challenge testing by spiking with high loads of fecal indicator organisms, like MS2 coliphage, has limitations, especially for large systems. Microbes that are endogenous to the decentralized system, occur in high abundances and mimic removal rates of bacterial, viral and/or parasitic protozoan pathogens during treatment could serve as alternative treatment process indicators to verify log reduction targets. To identify abundant microbes in wastewater, the bacterial and viral communities were examined using deep sequencing. Building infrastructure-associated bacteria, like Zoogloea, were observed as dominant members of the bacterial community in graywater. In blackwater, bacteriophage of the order Caudovirales constituted the majority of contiguous sequences from the viral community. This study identifies candidate treatment process indicators in decentralized systems that could be used to verify log removal during treatment. The association of the presence of treatment process indic

  19. Data for Figures in Rainfall-induced release of microbes from manure: model development, parameter estimation, and uncertainty evaluation on small plots

    Data.gov (United States)

    U.S. Environmental Protection Agency — • Figure 1. Ratio of cumulative released cells to cells initially present in the manure at Week 0 as they vary by time, manure type and age, microbe, and Event...

  20. Growth Rates of Microbes in the Oceans.

    Science.gov (United States)

    Kirchman, David L

    2016-01-01

    A microbe's growth rate helps to set its ecological success and its contribution to food web dynamics and biogeochemical processes. Growth rates at the community level are constrained by biomass and trophic interactions among bacteria, phytoplankton, and their grazers. Phytoplankton growth rates are approximately 1 d(-1), whereas most heterotrophic bacteria grow slowly, close to 0.1 d(-1); only a few taxa can grow ten times as fast. Data from 16S rRNA and other approaches are used to speculate about the growth rate and the life history strategy of SAR11, the most abundant clade of heterotrophic bacteria in the oceans. These strategies are also explored using genomic data. Although the methods and data are imperfect, the available data can be used to set limits on growth rates and thus on the timescale for changes in the composition and structure of microbial communities.

  1. Life Redefined: Microbes Built with Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Sam (SLAC and Felisa Wolfe-Simon, NASA and U.S. Geological Survey)

    2011-03-22

    Life can survive in many harsh environments, from extreme heat to the presence of deadly chemicals. However, life as we know it has always been based on the same six elements -- carbon, oxygen, nitrogen, hydrogen, sulfur and phosphorus. Now it appears that even this rule has an exception. In the saline and poisonous environment of Mono Lake, researchers have found a bacterium that can grow by incorporating arsenic into its structure in place of phosphorus. X-ray images taken at SLAC's synchrotron light source reveal that this microbe may even use arsenic as a building block for DNA. Please join us as we describe this discovery, which rewrites the textbook description of how living cells work.

  2. Indoor Air '93. Particles, microbes, radon

    International Nuclear Information System (INIS)

    Kalliokoski, P.; Jantunen, M.; Seppaenen, O.

    1993-01-01

    The conference was held in Helsinki, Finland, July 4-8, 1993. The proceedings of the conference were published in 6 volumes. The main topics of the volume 5 are: (1) particles, fibers and dust - their concentrations and sources in buildings, (2) Health effects of particles, (3) Need of asbestos replacement and encapsulation, (4) Seasonal and temporal variation of fungal and bacterial concentration, (5) The evaluation of microbial contamination of buildings, (6) New methods and comparison of different methods for microbial sampling and evaluation, (7) Microbes in building materials and HVAC-systems, (8) Prevention of microbial contamination in buildings, (9) Dealing with house dust mites, (10) Radon measurements and surveys in different countries, (11) The identification of homes with high radon levels, (12) The measurement methods and prediction of radon levels in buildings, and (13) Prevention of radon penetration from the soil

  3. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    International Nuclear Information System (INIS)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J.; Brey, R.F.; Wright, R.N.; Windes, W.F.

    1999-01-01

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10 3 and 6 x 10 4 rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10 4 rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10 5 rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance

  4. Why microbes will rule the world – and our industries

    DEFF Research Database (Denmark)

    Lykke, Anne Wärme; Palsson, Bernhard; Nielsen, Jens

    2017-01-01

    Microbes have ruled the world for approximately 4 billion years. But the future actually depends on their dominance, some would argue. Why? Because microbes, as well as mammalian cells, can be engineered into producing high-value chemicals and medicine. Therefore, scientists at The Novo Nordisk...... Foundation Center for Biosustainability are hard at work developing cell factories to benefit us all....

  5. Microbes as interesting source of novel insecticides: A review ...

    African Journals Online (AJOL)

    ... strains with good insecticidal properties can be identified, evaluated and utilized for pest control. This paper reviews the insecticidal properties of microbes and their potential utility in pest management. Keywords: Microbes, insecticides, metabolites, pest management. African Journal of Biotechnology, Vol 13(26) 2582- ...

  6. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J. [INEEL (US); Brey, R.F. [ISU (US); Wright, R.N.; Windes, W.F.

    1999-09-03

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.

  7. Microbes Characteristics in Groundwater Flow System in Mountainous Area

    Science.gov (United States)

    Yamamoto, Chisato; Tsujimura, Maki; Kato, Kenji; Sakakibara, Koichi; Ogawa, Mahiro; Sugiyama, Ayumi; Nagaosa, Kazuyo

    2017-04-01

    We focus on a possibility of microbes as a tracer for groundwater flow investigation. Some previous papers showed that the total number of prokaryotes in groundwater has correlation with depth and geology (Parkes et al., 1994; Griebler et al., 2009; Kato et al., 2012). However, there are few studies investigating both microbe characteristics and groundwater flow system. Therefore, we investigated a relationship between the total number of prokaryotes and age of spring water and groundwater. Intensive field survey was conducted at four mountainous areas, namely Mt. Fuji (volcano), a headwater at Mt. Setohachi, a headwater at River Oi and a headwater at River Nagano underlain by volcanic lava at Mt. Fuji, granite at Mt. Setohachi and sedimentary rock at River Oi and River Nagano. We collected totally 40 spring water/ groundwater samples in these mountainous areas in October 2015, August, October and November 2016 and analyzed concentration of inorganic ions, the stable isotopes of oxygen - 18, deuterium, CFCs and SF6. Also, we counted prokaryotic cells under the epifluorescence microscopy after fixation and filteration. The total number of prokaryotes in the spring water/ groundwater ranged from 1.0×102 to 7.0×103cells mL-1 at the Mt. Fuji, 1.3×104 to 2.7×105cells mL-1 at Mt. Setohachi, 3.1×104cells mL-1 at River Oi and 1.8×105 to 3.2×106cells mL-1 at River Nagano. The SF6 age of the spring water/ groundwater ranged from 8 to 64 years at Mt. Fuji, 2 to 32.5 years at Mt. Setohachi, 2.5 years at River Oi and 15 to 16 years at River Nagano. The total number of prokaryotes showed a clear negative correlation with residence time of spring water/ groundwater in all regions. Especially the prokaryotes number increased in the order of 102 cells mL-1 with decreasing of residence time in approximately 10 years in the groundwater and spring water with the age less than 15 years.

  8. Gut-associated microbes of Drosophila melanogaster

    Science.gov (United States)

    Broderick, Nichole; Lemaitre, Bruno

    2012-01-01

    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1–30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact. “Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment.” -James Sang, 1959 Ann NY Acad 1 PMID:22572876

  9. Acetaldehyde production by major oral microbes.

    Science.gov (United States)

    Moritani, K; Takeshita, T; Shibata, Y; Ninomiya, T; Kiyohara, Y; Yamashita, Y

    2015-09-01

    To assess acetaldehyde (ACH) production by bacteria constituting the oral microbiota and the inhibitory effects of sugar alcohols on ACH production. The predominant bacterial components of the salivary microbiota of 166 orally healthy subjects were determined by barcoded pyrosequencing analysis of the 16S rRNA gene. Bacterial ACH production from ethanol or glucose was measured using gas chromatography. In addition, inhibition by four sugars and five sugar alcohols of ACH production was assayed. Forty-one species from 16 genera were selected as predominant and prevalent bacteria based on the following criteria: identification in ≥95% of the subjects, ≥1% of mean relative abundance or ≥5% of maximum relative abundance. All Neisseria species tested produced conspicuous amounts of ACH from ethanol, as did Rothia mucilaginosa, Streptococcus mitis and Prevotella histicola exhibited the ability to produce ACH. In addition, xylitol and sorbitol inhibited ACH production by Neisseria mucosa by more than 90%. The oral microbiota of orally healthy subjects comprises considerable amounts of bacteria possessing the ability to produce ACH, an oral carcinogen. Consumption of sugar alcohols may regulate ACH production by oral microbes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Flowers and Wild Megachilid Bees Share Microbes.

    Science.gov (United States)

    McFrederick, Quinn S; Thomas, Jason M; Neff, John L; Vuong, Hoang Q; Russell, Kaleigh A; Hale, Amanda R; Mueller, Ulrich G

    2017-01-01

    Transmission pathways have fundamental influence on microbial symbiont persistence and evolution. For example, the core gut microbiome of honey bees is transmitted socially and via hive surfaces, but some non-core bacteria associated with honey bees are also found on flowers, and these bacteria may therefore be transmitted indirectly between bees via flowers. Here, we test whether multiple flower and wild megachilid bee species share microbes, which would suggest that flowers may act as hubs of microbial transmission. We sampled the microbiomes of flowers (either bagged to exclude bees or open to allow bee visitation), adults, and larvae of seven megachilid bee species and their pollen provisions. We found a Lactobacillus operational taxonomic unit (OTU) in all samples but in the highest relative and absolute abundances in adult and larval bee guts and pollen provisions. The presence of the same bacterial types in open and bagged flowers, pollen provisions, and bees supports the hypothesis that flowers act as hubs of transmission of these bacteria between bees. The presence of bee-associated bacteria in flowers that have not been visited by bees suggests that these bacteria may also be transmitted to flowers via plant surfaces, the air, or minute insect vectors such as thrips. Phylogenetic analyses of nearly full-length 16S rRNA gene sequences indicated that the Lactobacillus OTU dominating in flower- and megachilid-associated microbiomes is monophyletic, and we propose the name Lactobacillus micheneri sp. nov. for this bacterium.

  11. Chemical signaling involved in plant-microbe interactions.

    Science.gov (United States)

    Chagas, Fernanda Oliveira; Pessotti, Rita de Cassia; Caraballo-Rodríguez, Andrés Mauricio; Pupo, Mônica Tallarico

    2018-03-05

    Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.

  12. Age

    Science.gov (United States)

    ... adults? How can you reduce anesthesia risks in older patients? Age Age may bring wisdom but it also brings ... Ask your physician to conduct a pre-surgery cognitive test — an assessment of your mental function. The physician can use the results as a ...

  13. Environmental restoration using plant-microbe bioaugmentation

    International Nuclear Information System (INIS)

    Kingsley, M.T.; Fredrickson, J.K.; Metting, F.B.; Seidler, R.J.

    1993-04-01

    Land farming, for the purpose of bioremediation, refers traditionally to the spreading of contaminated soil, sediments, or other material over land; mechanically mixing it; incorporating various amendments, such as fertilizer or mulch; and sometimes inoculating with degradative microorganisms. Populations of bacteria added to soils often decline rapidly and become metabolically inactive. To efficiently degrade contaminants, microorganisms must be metabolically active. Thus, a significant obstacle to the successful use of microorganisms for environmental applications is their long-term survival and the expression of their degradative genes in situ. Rhizosphere microorganisms are known to be more metabolically active than those in bulk soil, because they obtain carbon and energy from root exudates and decaying root matter. Rhizosphere populations are also more abundant, often containing 10 8 or more culturable bacteria per gram of soil, and bacterial populations on the rhizoplane can exceed 10 9 /g root. Many of the critical parameters that influence the competitive ability of rhizosphere bacteria have not been identified, but microorganisms have frequently been introduced into soil (bioaugmentation) as part of routine or novel agronomic practices. However, the use of rhizosphere bacteria and their in situ stimulation by plant roots for degrading organic contaminants has received little attention. Published studies have demonstrated the feasibility of using rhizobacteria (Pseudomonas putida) for the rapid removal of chlorinated pesticides from contaminated soil, and to promote germination of radish seeds in the presence of otherwise phytotoxic levels of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), and phenoxyacetic acid (PAA). The present investigation was undertaken to determine if these strains (Pseudomonas putida PPO301/pRO101 and PPO301/pRO103) could be used to bioremediate 2,4-D-amended soil via plant-microbe bioaugmentation

  14. Sphingomonads in Microbe-Assisted Phytoremediation: Tackling Soil Pollution.

    Science.gov (United States)

    Gatheru Waigi, Michael; Sun, Kai; Gao, Yanzheng

    2017-09-01

    Soil pollution has become a major concern in various terrestrial ecosystems worldwide. One in situ soil bioremediation strategy that has gained popularity recently is microbe-assisted phytoremediation, which is promising for remediating pollutants. Sphingomonads, a versatile bacteria group comprising four well-known genera, are ubiquitous in vegetation grown in contaminated soils. These Gram-negative microbes have been investigated for their ability to induce innate plant growth-promoting (PGP) traits, including the formation of phytohormones, siderophores, and chelators, in addition to their evolutionary adaptations enabling biodegradation and microbe-assisted removal of contaminants. However, their capacity for bacterial-assisted phytoremediation has to date been undervalued. Here, we highlight the specific features, roles, advantages, and challenges associated with using sphingomonads in plant-microbe interactions, from the perspective of future phytotechnologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Scientists discover how deadly fungal microbes enter host cells

    OpenAIRE

    Whyte, Barry James

    2010-01-01

    A research team led by scientists at the Virginia Bioinformatics Institute at Virginia Tech has discovered a fundamental entry mechanism that allows dangerous fungal microbes to infect plants and cause disease.

  16. Volume 10 No. 11 November 2010 4340 SOIL MICROBE ...

    African Journals Online (AJOL)

    user

    2010-11-11

    Nov 11, 2010 ... SOIL MICROBE MEDIATED ZINC UPTAKE IN SOY BEAN: A REVIEW. Jefwa JM. 1* .... Porg, lipid Plp, high-energetic~P, sugar. Psuc and .... encouragement to prepare this presentation. ... Enviroquest Ltd Ontario, Canada.

  17. Aging

    International Nuclear Information System (INIS)

    Sasaki, Hideo; Kodama, Kazunori; Yamada, Michiko

    1991-01-01

    The hypothesis that exposure to ionizing radiation accelerates the aging process has been actively investigated at ABCC-RERF since 1958, when longitudinal cohort studies of the Adult Health Study (AHS) and the Life Span Study (LSS) were initiated. In their 1975 overall review of aging studies related to the atomic bomb (A-bomb) survivors, Finch and Beebe concluded that while most studies had shown no correlation between aging and radiation exposure, they had not involved the large numbers of subjects required to provide strong evidence for or against the hypothesis. Extending LSS mortality data up to 1978 did not alter the earlier conclusion that any observed life-shortening was associated primarily with cancer induction rather than with any nonspecific cause. The results of aging studies conducted during the intervening 15 years using data from the same populations are reviewed in the present paper. Using clinical, epidemiological, and laboratory techniques, a broad spectrum of aging parameters have been studied, such as postmortem morphological changes, tests of functional capacity, physical tests and measurements, laboratory tests, tissue changes, and morbidity. With respect to the aging process, the overall results have not been consistent and are generally thought to show no relation to radiation exposure. Although some preliminary results suggest a possible radiation-induced increase in atherosclerotic diseases and acceleration of aging in the T-cell-related immune system, further study is necessary to confirm these findings. In the future, applying the latest gerontological study techniques to data collected from subjects exposed 45 years ago to A-bomb radiation at relatively young ages will present a new body of data relevant to the study of late radiation effects. (author) 103 refs

  18. Aging

    International Nuclear Information System (INIS)

    Finch, S.C.; Beebe, G.W.

    1975-01-01

    The hypothesis that ionizing radiation accelerates natural aging has been under investigation at the Atomic Bomb Casualty Commission since 1959. Postmortem observations of morphologic and chemical changes, tests of functional capacity, physical tests and measurements, clinical laboratory tests, tissue changes, morbidity, and mortality have all been examined by ABCC investigators interested in this hypothesis. These studies have been beset with conceptual difficulties centered on the definition and measurement of aging. An empirical approach early led to the calculation of an index of physiologic age as a linear combination of age-related tests of various organ systems. Most studies have been negative but have not involved the large numbers that might be required to provide strong evidence for or against the hypothesis. Mortality, however, has been examined on the basis of a large sample and over the period 1950-1972 had provided no support for the hypothesis of radiation-accelerated aging. Ionizing radiation dose, of course shorten human life, but its life-shortening effect appears to be the result of specific radiation-induced disease, especially neoplasms. The hypothesis is now much less attractive than it was 10-20 years ago but still has some value in stimulating research on aging. The experience of the A-bomb survivors provides an unusual opportunity for a definitive test of the hypothesis. (auth.)

  19. Anti-radiation microbe separated from traditional Chinese medicine

    International Nuclear Information System (INIS)

    Zou Zhaohui; Zhao Junqi; Deng Gangqiao; Wang Qian; Li Wenge; Peng Ling; Luo Zhiping

    2007-01-01

    One batch of Jinsuo pills, a kind of Chinese herbal medicine, treated by standardized irradiation process but failed to meet the sanitation requirement. Radiation resistant microbe was separated from the pills sample and the Gram stain showed positive, the colony of the microbe is milky white and concentric circle shape. It is observed as one of bacillus by microscope, its D 10 values in physiological saline and filter paper are 6.75 and 7.18 kGy, respectively. (authors)

  20. A Molecular Study of Microbe Transfer between Distant Environments

    OpenAIRE

    Hooper, Sean D.; Raes, Jeroen; Foerstner, Konrad U.; Harrington, Eoghan D.; Dalevi, Daniel; Bork, Peer

    2008-01-01

    BACKGROUND: Environments and their organic content are generally not static and isolated, but in a constant state of exchange and interaction with each other. Through physical or biological processes, organisms, especially microbes, may be transferred between environments whose characteristics may be quite different. The transferred microbes may not survive in their new environment, but their DNA will be deposited. In this study, we compare two environmental sequencing projects to find molecu...

  1. The Microbe Directory: An annotated, searchable inventory of microbes’ characteristics

    Science.gov (United States)

    Mohammad, Rawhi; Danko, David; Bezdan, Daniela; Afshinnekoo, Ebrahim; Segata, Nicola; Mason, Christopher E.

    2018-01-01

    The Microbe Directory is a collective research effort to profile and annotate more than 7,500 unique microbial species from the MetaPhlAn2 database that includes bacteria, archaea, viruses, fungi, and protozoa. By collecting and summarizing data on various microbes’ characteristics, the project comprises a database that can be used downstream of large-scale metagenomic taxonomic analyses, allowing one to interpret and explore their taxonomic classifications to have a deeper understanding of the microbial ecosystem they are studying. Such characteristics include, but are not limited to: optimal pH, optimal temperature, Gram stain, biofilm-formation, spore-formation, antimicrobial resistance, and COGEM class risk rating. The database has been manually curated by trained student-researchers from Weill Cornell Medicine and CUNY—Hunter College, and its analysis remains an ongoing effort with open-source capabilities so others can contribute. Available in SQL, JSON, and CSV (i.e. Excel) formats, the Microbe Directory can be queried for the aforementioned parameters by a microorganism’s taxonomy. In addition to the raw database, The Microbe Directory has an online counterpart ( https://microbe.directory/) that provides a user-friendly interface for storage, retrieval, and analysis into which other microbial database projects could be incorporated. The Microbe Directory was primarily designed to serve as a resource for researchers conducting metagenomic analyses, but its online web interface should also prove useful to any individual who wishes to learn more about any particular microbe. PMID:29630066

  2. [Development of a microenvironment test chamber for airborne microbe research].

    Science.gov (United States)

    Zhan, Ningbo; Chen, Feng; Du, Yaohua; Cheng, Zhi; Li, Chenyu; Wu, Jinlong; Wu, Taihu

    2017-10-01

    One of the most important environmental cleanliness indicators is airborne microbe. However, the particularity of clean operating environment and controlled experimental environment often leads to the limitation of the airborne microbe research. This paper designed and implemented a microenvironment test chamber for airborne microbe research in normal test conditions. Numerical simulation by Fluent showed that airborne microbes were evenly dispersed in the upper part of test chamber, and had a bottom-up concentration growth distribution. According to the simulation results, the verification experiment was carried out by selecting 5 sampling points in different space positions in the test chamber. Experimental results showed that average particle concentrations of all sampling points reached 10 7 counts/m 3 after 5 minutes' distributing of Staphylococcus aureus , and all sampling points showed the accordant mapping of concentration distribution. The concentration of airborne microbe in the upper chamber was slightly higher than that in the middle chamber, and that was also slightly higher than that in the bottom chamber. It is consistent with the results of numerical simulation, and it proves that the system can be well used for airborne microbe research.

  3. Recent Research Status on the Microbes in the Radioactive Waste Disposal and Identification of Aerobic Microbes in a Groundwater Sampled from the KAERI Underground Research Tunnel(KURT)

    International Nuclear Information System (INIS)

    Baik, Min Hoon; Lee, Seung Yeop; Cho, Won Jin

    2006-11-01

    In this report, a comprehensive review on the research results and status for the various effects of microbes in the radioactive waste disposal including definition and classification of microbes, and researches related with the waste containers, engineered barriers, natural barriers, natural analogue studies, and radionuclide migration and retardation. Cultivation, isolation, and classification of aerobic microbes found in a groundwater sampled from the KAERI Underground Research Tunnel (KURT) located in the KAERI site have carried out and over 20 microbes were found to be present in the groundwater. Microbial identification by a 16S rDNA genetic analysis of the selected major 10 aerobic microbes was performed and the identified microbes were characterized

  4. Explorative analysis of microbes, colloids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H{sub 2}O/O{sub 2}, NO{sub 3}-/N{sub 2}, Mn2+/Mn(IV), Fe2+/Fe(III), S2-/SO{sub 4}2-, CH{sub 4}/CO{sub 2}, CH{sub 3}COOH/CO{sub 2}, and H{sub 2}/H+. The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10-3 mum are regarded as colloids. Their small size prohibits them from settling, which gives them the

  5. Explorative analysis of microbes, colloids and gases

    International Nuclear Information System (INIS)

    Hallbeck, Lotta; Pedersen, Karsten

    2008-08-01

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H 2 O/O 2 , NO 3 - /N 2 , Mn 2+ /Mn(IV), Fe 2+ /Fe(III), S 2- /SO 4 2- , CH 4 /CO 2 , CH 3 COOH/CO 2 , and H 2 /H + . The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10 -3 μm are regarded as colloids. Their small size prohibits them from settling, which gives them the potential to transport

  6. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods

    OpenAIRE

    Biere, A.; Tack, A.J.M.

    2013-01-01

    Evolutionary adaptations in interactions between plants, microbes and arthropods are generally studied in interactions that involve only two of these groups, that is, plants and microbes, plants and arthropods or arthropods and microbes. We review the accumulating evidence from a wide variety of systems, including plant- and arthropod-associated microbes, and symbionts as well as antagonists, that selection and adaptation in seemingly two-way interactions between plants and microbes, plants a...

  7. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development.

    Science.gov (United States)

    Bing, XiaoLi; Gerlach, Joseph; Loeb, Gregory; Buchon, Nicolas

    2018-03-20

    Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR) and germ-free (GF) flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions. IMPORTANCE Animals are commonly associated with specific microbes, which play important roles in host development and fitness. However, little information about the function of microbes has been available for the important invasive pest Drosophila suzukii , also known as Spotted

  8. A molecular study of microbe transfer between distant environments.

    Science.gov (United States)

    Hooper, Sean D; Raes, Jeroen; Foerstner, Konrad U; Harrington, Eoghan D; Dalevi, Daniel; Bork, Peer

    2008-07-09

    Environments and their organic content are generally not static and isolated, but in a constant state of exchange and interaction with each other. Through physical or biological processes, organisms, especially microbes, may be transferred between environments whose characteristics may be quite different. The transferred microbes may not survive in their new environment, but their DNA will be deposited. In this study, we compare two environmental sequencing projects to find molecular evidence of transfer of microbes over vast geographical distances. By studying synonymous nucleotide composition, oligomer frequency and orthology between predicted genes in metagenomics data from two environments, terrestrial and aquatic, and by correlating with phylogenetic mappings, we find that both environments are likely to contain trace amounts of microbes which have been far removed from their original habitat. We also suggest a bias in direction from soil to sea, which is consistent with the cycles of planetary wind and water. Our findings support the Baas-Becking hypothesis formulated in 1934, which states that due to dispersion and population sizes, microbes are likely to be found in widely disparate environments. Furthermore, the availability of genetic material from distant environments is a possible font of novel gene functions for lateral gene transfer.

  9. A molecular study of microbe transfer between distant environments.

    Directory of Open Access Journals (Sweden)

    Sean D Hooper

    Full Text Available BACKGROUND: Environments and their organic content are generally not static and isolated, but in a constant state of exchange and interaction with each other. Through physical or biological processes, organisms, especially microbes, may be transferred between environments whose characteristics may be quite different. The transferred microbes may not survive in their new environment, but their DNA will be deposited. In this study, we compare two environmental sequencing projects to find molecular evidence of transfer of microbes over vast geographical distances. METHODOLOGY: By studying synonymous nucleotide composition, oligomer frequency and orthology between predicted genes in metagenomics data from two environments, terrestrial and aquatic, and by correlating with phylogenetic mappings, we find that both environments are likely to contain trace amounts of microbes which have been far removed from their original habitat. We also suggest a bias in direction from soil to sea, which is consistent with the cycles of planetary wind and water. CONCLUSIONS: Our findings support the Baas-Becking hypothesis formulated in 1934, which states that due to dispersion and population sizes, microbes are likely to be found in widely disparate environments. Furthermore, the availability of genetic material from distant environments is a possible font of novel gene functions for lateral gene transfer.

  10. TANPOPO: Microbe and micrometeoroid capture experiments on International Space Station.

    Science.gov (United States)

    Yamagishi, Akihiko; Kobayashi, Kensei; Yano, Hajime; Yokobori, Shinichi; Hashimoto, Hirofumi; Kawai, Hideyuki; Yamashita, Masamichi

    There is a long history of the microbe-collection experiments at high altitude. Microbes have been collected using balloons, aircraft and meteorological rockets from 1936 to 1976. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments. It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. TANPOPO, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. The Tanpopo mission was accepted as a candidate experiments on Exposed Facility of ISS-JEM.

  11. Microfabricated microbial fuel cell arrays reveal electrochemically active microbes.

    Directory of Open Access Journals (Sweden)

    Huijie Hou

    Full Text Available Microbial fuel cells (MFCs are remarkable "green energy" devices that exploit microbes to generate electricity from organic compounds. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications. Hence, research has focused on strategies to enhance the power output of the MFC devices, including exploring more electrochemically active microbes to expand the few already known electricigen families. However, most of the MFC devices are not compatible with high throughput screening for finding microbes with higher electricity generation capabilities. Here, we describe the development of a microfabricated MFC array, a compact and user-friendly platform for the identification and characterization of electrochemically active microbes. The MFC array consists of 24 integrated anode and cathode chambers, which function as 24 independent miniature MFCs and support direct and parallel comparisons of microbial electrochemical activities. The electricity generation profiles of spatially distinct MFC chambers on the array loaded with Shewanella oneidensis MR-1 differed by less than 8%. A screen of environmental microbes using the array identified an isolate that was related to Shewanella putrefaciens IR-1 and Shewanella sp. MR-7, and displayed 2.3-fold higher power output than the S. oneidensis MR-1 reference strain. Therefore, the utility of the MFC array was demonstrated.

  12. The microbes we eat: abundance and taxonomy of microbes consumed in a day's worth of meals for three diet types.

    Science.gov (United States)

    Lang, Jenna M; Eisen, Jonathan A; Zivkovic, Angela M

    2014-01-01

    Far more attention has been paid to the microbes in our feces than the microbes in our food. Research efforts dedicated to the microbes that we eat have historically been focused on a fairly narrow range of species, namely those which cause disease and those which are thought to confer some "probiotic" health benefit. Little is known about the effects of ingested microbial communities that are present in typical American diets, and even the basic questions of which microbes, how many of them, and how much they vary from diet to diet and meal to meal, have not been answered. We characterized the microbiota of three different dietary patterns in order to estimate: the average total amount of daily microbes ingested via food and beverages, and their composition in three daily meal plans representing three different dietary patterns. The three dietary patterns analyzed were: (1) the Average American (AMERICAN): focused on convenience foods, (2) USDA recommended (USDA): emphasizing fruits and vegetables, lean meat, dairy, and whole grains, and (3) Vegan (VEGAN): excluding all animal products. Meals were prepared in a home kitchen or purchased at restaurants and blended, followed by microbial analysis including aerobic, anaerobic, yeast and mold plate counts as well as 16S rRNA PCR survey analysis. Based on plate counts, the USDA meal plan had the highest total amount of microbes at 1.3 × 10(9) CFU per day, followed by the VEGAN meal plan and the AMERICAN meal plan at 6 × 10(6) and 1.4 × 10(6) CFU per day respectively. There was no significant difference in diversity among the three dietary patterns. Individual meals clustered based on taxonomic composition independent of dietary pattern. For example, meals that were abundant in Lactic Acid Bacteria were from all three dietary patterns. Some taxonomic groups were correlated with the nutritional content of the meals. Predictive metagenome analysis using PICRUSt indicated differences in some functional KEGG categories

  13. Microbial electrosynthesis: understanding and strengthening microbe-electrode interactions

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Höglund, Daniel; Ammam, Fariza

    2014-01-01

    in the last decade that could significantly change the current ways of synthesizing chemicals. MES is a process in which electroautotrophic microbes reduce CO2 to multicarbon organics using electrical current as a source of electron. Electricity necessary for MES can be harvested from renewable resources...... relying on co-cultures and investigating extracellular electron transfer from the cathode to the microbes are some of the strategies that we are implementing to transform MES into a commercially viable technology....... such as solar energy, wind turbine or wastewater treatment processes. The net outcome is that renewable energy get store in the covalent bonds of valuable chemicals synthesized from greenhouse gas. However, low electron transferrates from the electrode to microbes, poor adherence of cells on the electrode...

  14. Towards a systems understanding of plant-microbe interactions

    Directory of Open Access Journals (Sweden)

    Akira eMine

    2014-08-01

    Full Text Available Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant-microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial mutants is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant-microbe interactions, with a special emphasis on reconstruction strategies.

  15. The microbe-free plant: fact or artefact?

    Directory of Open Access Journals (Sweden)

    Laila P. Pamela Partida-Martinez

    2011-12-01

    Full Text Available Plant-microbe interactions are ubiquitous. Plants are often colonized by pathogens but even more commonly engaged in neutral or mutualistic interactions with microbes: below-ground microbial plant associates are mycorrhizal fungi, Rhizobia and rhizosphere bacteria, above-ground plant parts are colonized by bacterial and fungal endophytes and by microbes in the phyllosphere. We emphasize here that a completely microbe-free plant is an exotic exception rather than the biologically relevant rule. The complex interplay of such microbial communities with the host plant affects plant nutrition, growth rate, resistance to biotic and abiotic stress, and plant survival and distribution. The mechanisms involved reach from nutrient acquisition, the production of plant hormones or direct antibiosis to effects on host resistance genes or interactions at higher trophic levels. Plant-associated microbes are heterotrophic and cause costs to their host plant, whereas the benefits depend on the environment. Thus, the outcome of the interaction is highly context-dependent. Considering the microbe-free plant as the ‘normal’ or control stage significantly impairs research into important phenomena such as (1 phenotypic and epigenetic plasticity, (2 the ‘normal’ ecological outcome of a given interaction and (3 the evolution of plants. For the future, we suggest cultivation-independent screening methods using direct PCR from plant tissue of more than one fungal and bacterial gene to collect data on the true microbial diversity in wild plants. The patterns found could be correlated to host species and environmental conditions, in order to formulate testable hypotheses on the biological roles of plant endophytes in nature. Experimental approaches should compare different host-endophyte combinations under various environmental conditions and study at the genetic, transcriptional and physiological level the parameters that shift the interaction along the mutualism

  16. Musing over Microbes in Microgravity: Microbial Physiology Flight Experiment

    Science.gov (United States)

    Schweickart, Randolph; McGinnis, Michael; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    New York City, the most populated city in the United States, is home to over 8 million humans. This means over 26,000 people per square mile! Imagine, though, what the view would be if you peeked into the world of microscopic organisms. Scientists estimate that a gram of soil may contain up to 1 billion of these microbes, which is as much as the entire human population of China! Scientists also know that the world of microbes is incredibly diverse-possibly 10,000 different species in one gram of soil - more than all the different types of mammals in the world. Microbes fill every niche in the world - from 20 miles below the Earth's surface to 20 miles above, and at temperatures from less than -20 C to hotter than water's boiling point. These organisms are ubiquitous because they can adapt quickly to changing environments, an effective strategy for survival. Although we may not realize it, microbes impact every aspect of our lives. Bacteria and fungi help us break down the food in our bodies, and they help clean the air and water around us. They can also cause the dark, filmy buildup on the shower curtain as well as, more seriously, illness and disease. Since humans and microbes share space on Earth, we can benefit tremendously from a better understanding of the workings and physiology of the microbes. This insight can help prevent any harmful effects on humans, on Earth and in space, as well as reap the benefits they provide. Space flight is a unique environment to study how microbes adapt to changing environmental conditions. To advance ground-based research in the field of microbiology, this STS-107 experiment will investigate how microgravity affects bacteria and fungi. Of particular interest are the growth rates and how they respond to certain antimicrobial substances that will be tested; the same tests will be conducted on Earth at the same times. Comparing the results obtained in flight to those on Earth, we will be able to examine how microgravity induces

  17. Host-microbe interactions in the gut of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Takayuki eKuraishi

    2013-12-01

    Full Text Available Many insect species subsist on decaying and contaminated matter and are thus exposed to large quantities of microorganisms. To control beneficial commensals and combat infectious pathogens, insects must be armed with efficient systems for microbial recognition, signaling pathways, and effector molecules. The molecular mechanisms regulating these host-microbe interactions in insects have been largely clarified in Drosophila melanogaster with its powerful genetic and genomic tools. Here we review recent advances in this field, focusing mainly on the relationships between microbes and epithelial cells in the intestinal tract where the host exposure to the external environment is most frequent.

  18. Spatial distribution of residence time, microbe and storage volume of groundwater in headwater catchments

    Science.gov (United States)

    Tsujimura, Maki; Ogawa, Mahiro; Yamamoto, Chisato; Sakakibara, Koichi; Sugiyama, Ayumi; Kato, Kenji; Nagaosa, Kazuyo; Yano, Shinjiro

    2017-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, and time and stock information of the water is principal to understand hydrological processes in the catchments. Also, a variety of microbes are included in the groundwater and spring water, and those varies in time and space, suggesting that information of microbe could be used as tracer for groundwater flow system. However, there have been few researches to evaluate the relationship among the residence time, microbe and storage volume of the groundwater in headwater catchments. We performed an investigation on age dating using SF6 and CFCs, microbe counting in the spring water, and evaluation of groundwater storage volume based on water budget analysis in 8 regions underlain by different lithology, those are granite, dacite, sedimentary rocks, serpentinite, basalt and volcanic lava all over Japan. We conducted hydrometric measurements and sampling of spring water in base flow conditions during the rainless periods 2015 and 2016 in those regions, and SF6, CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute concentrations and total number of prokaryotes were determined on all water samples. Residence time of spring water ranged from 0 to 16 years in all regions, and storage volume of the groundwater within topographical watershed was estimated to be 0.1 m to 222 m in water height. The spring with the longer residence time tends to have larger storage volume in the watershed, and the spring underlain by dacite tends to have larger storage volume as compared with that underlain by sand stone and chert. Also, total number of prokaryotes in the spring water ranged from 103 to 105 cells/mL, and the spring tends to show clear increasing of total number of prokaryotes with decreasing of residence time. Thus, we observed a certain relationship among residence time, storage volume and total number of prokaryotes in the spring water, and

  19. Terrestrial microbes in martian and chondritic meteorites

    Science.gov (United States)

    Airieau, S.; Picenco, Y.; Andersen, G.

    2007-08-01

    Bank sequences using the BLAST program. The closest matches were in the genus Microbacterium. Soil and plant isolates were close relatives by sequence comparison. Los Angeles. After 11 months of incubation in a fridge, a yellow colony grew at the center of a culture plate of Los Angeles dust grains (1:1000 R2A). There was no cell activity in the other agars. A DNA extraction yielded no usable results [7]. Sequencing was not performed because the culture plate became contaminated with outside organisms that overtook the colony of interest. Conclusions: The sequences for EET 87770 and Leoville were of a good quality and the sequence reads were long, so the data are clear that these are typical soil and/or plant-related bacteria commonly found in Earth habitats. Microbial species present in a dozen chondritic samples from isolates are not yet identified, and the contaminant in Los Angeles needs to be recovered. In addition, isotopic analyses of samples with various amounts of microbial contamination could help quantified isotopic impact of microbes on protoplanetary chemistry in these rocks. References : [1] Gounelle, M. and Zolensky M. LPS, (2001) LPS XXXII, Abstract #999. [2] Fries, M. et al. (2005) Meteoritical Society Meeting 68, Abstract # 5201. [3] Burckle, L. H. and Delaney, J. S (1999) Meteoritics & Planet. Sci., 32, 475-478. [4] Whitby, C. et al. (2000) ) LPS XXXI, Abstract #1732. [5] Airieau, S. A. et al (2005) Geochim. Cosmochim. Acta, 69, 4166-4171. [6] Unpublished data, with H. J. Cleaves, A. Aubrey, J. Bada (Scripps Institution of Oceanography), M. Thiemens (UC San Diego) and M. Fogel (Carnegie Institution of Washington). [7] Unpublished data, with A. Steele (CIW), and N. Wainwright (Marine Biological Laboratory). Acknowledgements: Lisa Welleberger for access to SNC samples at USNM; Ralph Harvey for organizing ANSMET; Denise C. Thiry and Andrew Steele for long term storage of samples, NormWainwright for LAL measurements. A small portion of this work was funded with a

  20. Population dynamics of soil microbes and diversity of Bacillus ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Population dynamics of soil microbes and diversity of ... 25.78, 25.78, 86.26, 24.73, 68.0, 26.8 and 26.8 kDa proteins and equivalent to Cyt, Cry5 and Cry2 toxins ..... Molecular weight (kDa) of protein fractions of the BT isolates.

  1. Comparative gut physiology symposium: The microbe-gut-brain axis

    Science.gov (United States)

    The Comparative Gut Physiology Symposium titled “The Microbe-Gut-Brain Axis” was held at the Joint Annual Meeting of the American Society of Animal Science and the American Dairy Science Association on Thursday, July 21, 2016, in Salt Lake City Utah. The goal of the symposium was to present basic r...

  2. Microbes, molecules, maladies and man | Duse | South African ...

    African Journals Online (AJOL)

    South African Medical Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 92, No 3 (2002) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Microbes, molecules, maladies and man. AG Duse. Abstract.

  3. Host-Microbe Interactions in Microgravity: Assessment and Implications

    Directory of Open Access Journals (Sweden)

    Jamie S. Foster

    2014-05-01

    Full Text Available Spaceflight imposes several unique stresses on biological life that together can have a profound impact on the homeostasis between eukaryotes and their associated microbes. One such stressor, microgravity, has been shown to alter host-microbe interactions at the genetic and physiological levels. Recent sequencing of the microbiomes associated with plants and animals have shown that these interactions are essential for maintaining host health through the regulation of several metabolic and immune responses. Disruptions to various environmental parameters or community characteristics may impact the resiliency of the microbiome, thus potentially driving host-microbe associations towards disease. In this review, we discuss our current understanding of host-microbe interactions in microgravity and assess the impact of this unique environmental stress on the normal physiological and genetic responses of both pathogenic and mutualistic associations. As humans move beyond our biosphere and undergo longer duration space flights, it will be essential to more fully understand microbial fitness in microgravity conditions in order to maintain a healthy homeostasis between humans, plants and their respective microbiomes.

  4. Host-microbe interactions in microgravity: assessment and implications.

    Science.gov (United States)

    Foster, Jamie S; Wheeler, Raymond M; Pamphile, Regine

    2014-05-26

    Spaceflight imposes several unique stresses on biological life that together can have a profound impact on the homeostasis between eukaryotes and their associated microbes. One such stressor, microgravity, has been shown to alter host-microbe interactions at the genetic and physiological levels. Recent sequencing of the microbiomes associated with plants and animals have shown that these interactions are essential for maintaining host health through the regulation of several metabolic and immune responses. Disruptions to various environmental parameters or community characteristics may impact the resiliency of the microbiome, thus potentially driving host-microbe associations towards disease. In this review, we discuss our current understanding of host-microbe interactions in microgravity and assess the impact of this unique environmental stress on the normal physiological and genetic responses of both pathogenic and mutualistic associations. As humans move beyond our biosphere and undergo longer duration space flights, it will be essential to more fully understand microbial fitness in microgravity conditions in order to maintain a healthy homeostasis between humans, plants and their respective microbiomes.

  5. The high life: Transport of microbes in the atmosphere

    Science.gov (United States)

    Smith, David J.; Griffin, Dale W.; Jaffe, Daniel A.

    2011-07-01

    Microbes (bacteria, fungi, algae, and viruses) are the most successful types of life on Earth because of their ability to adapt to new environments, reproduce quickly, and disperse globally. Dispersal occurs through a number of vectors, such as migrating animals or the hydrological cycle, but transport by wind may be the most common way microbes spread. General awareness of airborne microbes predates the science of microbiology. People took advantage of wild airborne yeasts to cultivate lighter, more desirable bread as far back as ancient Egypt by simply leaving a mixture of grain and liquids near an open window. In 1862, Louis Pasteur's quest to disprove spontaneous generation resulted in the discovery that microbes were actually single-celled, living creatures, prevalent in the environment and easily killed with heat (pasteurization). His rudimentary experiments determined that any nutrient medium left open to the air would eventually teem with microbial life because of free-floating, colonizing cells. The same can happen in a kitchen: Opportunistic fungal and bacterial cells cause food items exposed to the air to eventually spoil.

  6. Preliminary biological screening of microbes isolated from cow dung ...

    African Journals Online (AJOL)

    Preliminary biological screening of microbes isolated from cow dung in Kampar. KC Teo, SM Teoh. Abstract. Five distinct morphologically and physiologically isolates were isolated from cow dung at Kampar, Perak, Malaysia and cultured on nutrient agar (NA) plates. Morphological studies including microscopic examination ...

  7. Microbes from raw milk for fermented dairy products

    NARCIS (Netherlands)

    Wouters, J.T.M.; Ayad, E.H.E.; Hugenholtz, J.; Smit, G.

    2002-01-01

    Milk has a high nutritive value, not only For the new-born mammal and for the human consumer, but also for microbes. Raw milk kept at roam temperature will be liable to microbial spoilage. After some days, the milk will spontaneously become sour. This is generally due to the activity of lactic acid

  8. A microbent fiber optic pH sensor

    NARCIS (Netherlands)

    Thomas Lee, S.; Aneeshkumar, B.N.; Radhakrishnan, P.; Vallabhan, C.P.G.; Nampoori, V.P.N.

    2002-01-01

    Optical fiber sensors developed for measuring pH values usually employ an unclad and unstrained section of the fiber. In this paper, we describe the design and fabrication of a microbent fiber optic sensor that can be used for pH sensing. In order to obtain the desired performance, a permanently

  9. Fuel Fracture (Crumbling) Safety Impact (OCRWM)

    International Nuclear Information System (INIS)

    DUNCAN, D.R.

    1999-01-01

    The safety impact of experimentally observed N Reactor fuel sample fracture and fragmentation is evaluated using an average reaction rate enhancement derived from data from thermo-gravimetric analysis (TGA) experiments on fuel samples. The enhanced reaction rates attributed to fragmentation were within the existing safety basis

  10. The crumbling case for nuclear power

    International Nuclear Information System (INIS)

    Bunyard, P.

    1983-01-01

    In connection with the Public Inquiry into the CEGB proposal to build a pressurised water reactor at Sizewell in Suffolk, the case for nuclear power is examined under the headings: the economics of nuclear power - how they would like them to be; systems analysis - net effective cost; CEGB prejudices the results (comparison with coal-fired plants; forecasting on various assumptions); discounting future costs; back-end costs soar (reprocessing); real reprocessing costs; AGR costs balloon. (U.K.)

  11. Spatial heterogeneity in soil microbes alters outcomes of plant competition.

    Directory of Open Access Journals (Sweden)

    Karen C Abbott

    Full Text Available Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical

  12. Spatial heterogeneity in soil microbes alters outcomes of plant competition.

    Science.gov (United States)

    Abbott, Karen C; Karst, Justine; Biederman, Lori A; Borrett, Stuart R; Hastings, Alan; Walsh, Vonda; Bever, James D

    2015-01-01

    Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical results constitute an

  13. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods

    NARCIS (Netherlands)

    Biere, A.; Tack, A.J.M.

    2013-01-01

    Evolutionary adaptations in interactions between plants, microbes and arthropods are generally studied in interactions that involve only two of these groups, that is, plants and microbes, plants and arthropods or arthropods and microbes. We review the accumulating evidence from a wide variety of

  14. Dual oxidase in mucosal immunity and host-microbe homeostasis.

    Science.gov (United States)

    Bae, Yun Soo; Choi, Myoung Kwon; Lee, Won-Jae

    2010-07-01

    Mucosal epithelia are in direct contact with microbes, which range from beneficial symbionts to pathogens. Accordingly, hosts must have a conflicting strategy to combat pathogens efficiently while tolerating symbionts. Recent progress has revealed that dual oxidase (DUOX) plays a key role in mucosal immunity in organisms that range from flies to humans. Information from the genetic model of Drosophila has advanced our understanding of the regulatory mechanism of DUOX and its role in mucosal immunity. Further investigations of DUOX regulation in response to symbiotic or non-symbiotic bacteria and the in vivo consequences in host physiology will give a novel insight into the microbe-controlling system of the mucosa. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Macrophage–Microbe Interactions: Lessons from the Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Nagisa Yoshida

    2017-12-01

    Full Text Available Macrophages provide front line defense against infections. The study of macrophage–microbe interplay is thus crucial for understanding pathogenesis and infection control. Zebrafish (Danio rerio larvae provide a unique platform to study macrophage–microbe interactions in vivo, from the level of the single cell to the whole organism. Studies using zebrafish allow non-invasive, real-time visualization of macrophage recruitment and phagocytosis. Furthermore, the chemical and genetic tractability of zebrafish has been central to decipher the complex role of macrophages during infection. Here, we discuss the latest developments using zebrafish models of bacterial and fungal infection. We also review novel aspects of macrophage biology revealed by zebrafish, which can potentiate development of new therapeutic strategies for humans.

  16. Deep-Sea Microbes: Linking Biogeochemical Rates to -Omics Approaches

    Science.gov (United States)

    Herndl, G. J.; Sintes, E.; Bayer, B.; Bergauer, K.; Amano, C.; Hansman, R.; Garcia, J.; Reinthaler, T.

    2016-02-01

    Over the past decade substantial progress has been made in determining deep ocean microbial activity and resolving some of the enigmas in understanding the deep ocean carbon flux. Also, metagenomics approaches have shed light onto the dark ocean's microbes but linking -omics approaches to biogeochemical rate measurements are generally rare in microbial oceanography and even more so for the deep ocean. In this presentation, we will show by combining metagenomics, -proteomics and biogeochemical rate measurements on the bulk and single-cell level that deep-sea microbes exhibit characteristics of generalists with a large genome repertoire, versatile in utilizing substrate as revealed by metaproteomics. This is in striking contrast with the apparently rather uniform dissolved organic matter pool in the deep ocean. Combining the different -omics approaches with metabolic rate measurements, we will highlight some major inconsistencies and enigmas in our understanding of the carbon cycling and microbial food web structure in the dark ocean.

  17. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly......, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations....... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...

  18. Characteristics of the repair - deficient mutants 1435 plague microbe strain

    International Nuclear Information System (INIS)

    Temiralieva, G.A.

    1977-01-01

    Repair-deficient mutants 1435 A uvr - hcr - , 1435-17 uvr - hcr + and 1435-35 lon have been obtained from 1435 plague microbe strain, isolated from a large gerbil living in the Central Asian desert region. The mutants have the same cultural-morphological and enzymatic characteristics, the same need in growth factors and similar virulence determinants as the original strain, but they do not cause death of the experimental animals

  19. Do airborne microbes matter for atmospheric chemistry and cloud formation?

    Science.gov (United States)

    Konstantinidis, Konstantinos T

    2014-06-01

    The role of airborne microbial cells in the chemistry of the atmosphere and cloud formation remains essentially speculative. Recent studies have indicated that microbes might be more important than previously anticipated for atmospheric processes. However, more work and direct communication between microbiologists and atmospheric scientists and modellers are necessary to better understand and model bioaerosol-cloud-precipitation-climate interactions. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Effects of Gut Microbes on Nutrient Absorption and Energy Regulation

    OpenAIRE

    Krajmalnik-Brown, Rosa; Ilhan, Zehra-Esra; Kang, Dae-Wook; DiBaise, John K.

    2012-01-01

    Malnutrition may manifest as either obesity or undernutrition. Accumulating evidence suggests that the gut microbiota plays an important role in the harvest, storage, and expenditure of energy obtained from the diet. The composition of the gut microbiota has been shown to differ between lean and obese humans and mice; however, the specific roles that individual gut microbes play in energy harvest remain uncertain. The gut microbiota may also influence the development of conditions characteriz...

  1. Soil Microbes and soil microbial proteins: interactions with clay minerals

    International Nuclear Information System (INIS)

    Spence, A.; Kelleher, B. P.

    2009-01-01

    Bacterial enumeration in soil environments estimates that the population may reach approximately 10 1 0 g - 1 of soil and comprise up to 90% of the total soil microbial biomass. Bacteria are present in soils as single cells or multicell colonies and often strongly adsorb onto mineral surfaces such as sand and clay. The interactions of microbes and microbial biomolecules with these minerals have profound impacts on the physical, chemical and biological properties of soils. (Author)

  2. Three-dimensional optofluidic device for isolating microbes

    Science.gov (United States)

    Keloth, A.; Paterson, L.; Markx, G. H.; Kar, A. K.

    2015-03-01

    Development of efficient methods for isolation and manipulation of microorganisms is essential to study unidentified and yet-to-be cultured microbes originating from a variety of environments. The discovery of novel microbes and their products have the potential to contribute to the development of new medicines and other industrially important bioactive compounds. In this paper we describe the design, fabrication and validation of an optofluidic device capable of redirecting microbes within a flow using optical forces. The device holds promise to enable the high throughput isolation of single microbes for downstream culture and analysis. Optofluidic devices are widely used in clinical research, cell biology and biomedical engineering as they are capable of performing analytical functions such as controlled transportation, compact and rapid processing of nanolitres to millilitres of clinical or biological samples. We have designed and fabricated a three dimensional optofluidic device to control and manipulate microorganisms within a microfluidic channel. The device was fabricated in fused silica by ultrafast laser inscription (ULI) followed by selective chemical etching. The unique three-dimensional capability of ULI is utilized to integrate microfluidic channels and waveguides within the same substrate. The main microfluidic channel in the device constitutes the path of the sample. Optical waveguides are fabricated at right angles to the main microfluidic channel. The potential of the optical scattering force to control and manipulate microorganisms is discussed in this paper. A 980 nm continuous wave (CW) laser source, coupled to the waveguide, is used to exert radiation pressure on the particle and particle migrations at different flow velocities are recorded. As a first demonstration, device functionality is validated using fluorescent microbeads and initial trials with microalgae are presented.

  3. Sterilization of microbes by using various plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Han S.; Choi, Eun H.; Cho, Guang S. [Kwangwoon University, Seoul (Korea, Republic of); Hong, Yong C. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Sterilization of various microbes was carried out by using several plasma jets. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes including spores. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological agents. The key element of the sterilization is oxygen radicals. The penciltype configuration produces a long, cold plasma jet capable of reaching 3.5 cm and having various excited plasma species shown through the optical emission spectrum. Operation of an air plasma jet at 2 W in a pencil-type electrode provides an excellent opportunity for sterilization of microbes. An electron microscope was used to observe the effects of the plasma on bacterial cell morphology. Transmission electron micrographs showed morphological changes in E. coli cells treated with an atmospheric plasma at 75 W for 2 min. The treated cells had severe cytoplasmic deformations and leakage of bacterial chromosome. The chromosomal DNA was either attached to the bacterial cells or released freely into the surrounding medium. The results clearly explain the loss of viability of bacterial cells after plasma treatment.

  4. Rarity in aquatic microbes: placing protists on the map.

    Science.gov (United States)

    Logares, Ramiro; Mangot, Jean-François; Massana, Ramon

    2015-12-01

    Most microbial richness at any given time tends to be represented by low-abundance (rare) taxa, which are collectively referred to as the "rare biosphere". Here we review works on the rare biosphere using high-throughput sequencing (HTS), with a particular focus on unicellular eukaryotes or protists. Evidence thus far indicates that the rare biosphere encompasses dormant as well as metabolically active microbes that could potentially play key roles in ecosystem functioning. Rare microbes appear to have biogeography, and sometimes the observed patterns can be similar to what is observed among abundant taxa, suggesting similar community-structuring mechanisms. There is limited evidence indicating that the rare biosphere contains taxa that are phylogenetically distantly related to abundant counterparts; therefore, the rare biosphere may act as a reservoir of deep-branching phylogenetic diversity. The potential role of the rare biosphere as a bank of redundant functions that can help to maintain continuous ecosystem function following oscillations in taxonomic abundances is hypothesized as its main ecological role. Future studies focusing on rare microbes are crucial for advancing our knowledge of microbial ecology and evolution and unveiling their links with ecosystem function. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Food microbe tracker: a web-based tool for storage and comparison of food-associated microbes.

    Science.gov (United States)

    Vangay, Pajau; Fugett, Eric B; Sun, Qi; Wiedmann, Martin

    2013-02-01

    Large amounts of molecular subtyping information are generated by the private sector, academia, and government agencies. However, use of subtype data is limited by a lack of effective data storage and sharing mechanisms that allow comparison of subtype data from multiple sources. Currently available subtype databases are generally limited in scope to a few data types (e.g., MLST. net) or are not publicly available (e.g., PulseNet). We describe the development and initial implementation of Food Microbe Tracker, a public Web-based database that allows archiving and exchange of a variety of molecular subtype data that can be cross-referenced with isolate source data, genetic data, and phenotypic characteristics. Data can be queried with a variety of search criteria, including DNA sequences and banding pattern data (e.g., ribotype or pulsed-field gel electrophoresis type). Food Microbe Tracker allows the deposition of data on any bacterial genus and species, bacteriophages, and other viruses. The bacterial genera and species that currently have the most entries in this database are Listeria monocytogenes, Salmonella, Streptococcus spp., Pseudomonas spp., Bacillus spp., and Paenibacillus spp., with over 40,000 isolates. The combination of pathogen and spoilage microorganism data in the database will facilitate source tracking and outbreak detection, improve discovery of emerging subtypes, and increase our understanding of transmission and ecology of these microbes. Continued addition of subtyping, genetic or phenotypic data for a variety of microbial species will broaden the database and facilitate large-scale studies on the diversity of food-associated microbes.

  6. Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris

    OpenAIRE

    Carter, Dee A.; Oberbeckmann, Sonja; Osborn, A. Mark; Duhaime, Melissa B.

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial com...

  7. A metasystem of framework model organisms to study emergence of new host-microbe adaptations.

    Science.gov (United States)

    Gopalan, Suresh; Ausubel, Frederick M

    2008-01-01

    An unintended consequence of global industrialization and associated societal rearrangements is new interactions of microbes and potential hosts (especially mammals and plants), providing an opportunity for the rapid emergence of host-microbe adaptation and eventual establishment of new microbe-related diseases. We describe a new model system comprising the model plant Arabidopsis thaliana and several microbes, each representing different modes of interaction, to study such "maladaptations". The model microbes include human and agricultural pathogens and microbes that are commonly considered innocuous. The system has a large knowledge base corresponding to each component organism and is amenable to high-throughput automation assisted perturbation screens for identifying components that modulate host-pathogen interactions. This would aid in the study of emergence and progression of host-microbe maladaptations in a controlled environment.

  8. Application of RNA-seq and Bioimaging Methods to Study Microbe-Microbe Interactions and Their Effects on Biofilm Formation and Gene Expression

    DEFF Research Database (Denmark)

    Amador Hierro, Cristina Isabel; Sternberg, Claus; Jelsbak, Lars

    2017-01-01

    Complex interactions between pathogenic bacteria, the microbiota, and the host can modify pathogen physiology and behavior. We describe two different experimental approaches to study microbe-microbe interactions in in vitro systems containing surface-associated microbial populations. One method i...

  9. Microbe participation in aroma production during soy sauce fermentation.

    Science.gov (United States)

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2018-06-01

    Soy sauce is a traditional Japanese fermented seasoning that contains various constituents such as amino acids, organic acids, and volatiles that are produced during the long fermentation process. Although studies regarding the correlation between microbes and aroma constituents have been performed, there are no reports about the influences of the microbial products, such as lactic acid, acetic acid, and ethanol, during fermentation. Because it is known that these compounds contribute to microbial growth and to changes in the constituent profile by altering the moromi environment, understanding the influence of these compounds is important. Metabolomics, the comprehensive study of low molecular weight metabolites, is a promising strategy for the deep understanding of constituent contributions to food characteristics. Therefore, the influences of microbes and their products such as lactic acid, acetic acid, and ethanol on aroma profiles were investigated using gas chromatography/mass spectrometry (GC/MS)-based metabolic profiling. The presence of aroma constituents influenced by microbes and chemically influenced by lactic acid, acetic acid, and ethanol were proposed. Most of the aroma constituents were not produced by adding ethanol alone, confirming the participation of yeast in aroma production. It was suggested that lactic acid bacterium relates to a key aromatic compound, 2,5-dimethyl-4-hydroxy-3(2H)-furanone. However, most of the measured aroma constituents changed similarly in both samples with lactic acid bacterium and acids. Thus, it was clear that the effect of lactic acid and acetic acid on the aroma profile was significant. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Big Data Approaches To Coral-Microbe Symbiosis

    Science.gov (United States)

    Zaneveld, J.; Pollock, F. J.; McMinds, R.; Smith, S.; Payet, J.; Hanna, B.; Welsh, R.; Foster, A.; Ohdera, A.; Shantz, A. A.; Burkepile, D. E.; Maynard, J. A.; Medina, M.; Vega Thurber, R.

    2016-02-01

    Coral reefs face increasing challenges worldwide, threatened by overfishing and nutrient pollution, which drive growth of algal competitors of corals, and periods of extreme temperature, which drive mass coral bleaching. I will discuss two projects that examine how coral's complex relationships with microorganisms affect the response of coral colonies and coral species to environmental challenge. Microbiological studies have documented key roles for coral's microbial symbionts in energy harvest and defense against pathogens. However, the evolutionary history of corals and their microbes is little studied. As part of the Global Coral Microbiome Project, we are characterizing bacterial, archaeal, fungal, and Symbiodinium diversity across >1400 DNA samples from all major groups of corals, collected from 15 locations worldwide. This collection will allow us to ask how coral- microbe associations evolved over evolutionary time, and to determine whether microbial symbiosis helps predict the relative vulnerability of certain coral species to environmental stress. In the second project, we experimentally characterized how the long-term effects of human impacts such as overfishing and nutrient pollution influence coral-microbe symbiosis. We conducted a three-year field experiment in the Florida Keys applying nutrient pollution or simulated overfishing to reef plots, and traced the effects on reef communities, coral microbiomes, and coral health. The results show that extremes of temperature and algal competition destabilize coral microbiomes, increasing pathogen blooms, coral disease, and coral death. Surprisingly, these local stressors interacted strongly with thermal stress: the greatest microbiome disruption, and >80% of coral mortality happened in the hottest periods. Thus, overfishing and nutrient pollution may interact with increased climate-driven episodes of sub-bleaching thermal stress to increase coral mortality by disrupt reef communities down to microbial scales.

  11. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development

    Directory of Open Access Journals (Sweden)

    XiaoLi Bing

    2018-03-01

    Full Text Available Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR and germ-free (GF flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions.

  12. Nutrient-Dependent Impact of Microbes on Drosophila suzukii Development

    Science.gov (United States)

    Bing, XiaoLi; Gerlach, Joseph; Loeb, Gregory

    2018-01-01

    ABSTRACT Drosophila suzukii Matsumura is an invasive species of vinegar fly that has become a prominent pest of berries and other soft-skinned fruits. Unlike most other Drosophila species, female D. suzukii flies lay their eggs in ripening and ripe fruits and larvae develop within the fruit. To understand how D. suzukii larvae utilize ripe and ripening fruits, which usually have low levels of protein, we investigated the microbiota of field-captured and laboratory-reared D. suzukii flies and further examined the combined influence of diet and microbes on host fitness. Field-captured flies were associated with diverse microbiota, which varied significantly with sampling location and season. In contrast, laboratory-reared flies possessed strikingly lower bacterial abundance and diversity. A comparison of conventionally reared (CR) and germ-free (GF) flies revealed that the microbiota of D. suzukii does not alter its development significantly but decreases its life span under conditions of a nutrient-sufficient diet. However, the microbiota is essential for D. suzukii development on strawberry-based or blueberry-based fruit diets. This developmental failure could be rescued by reassociation with single bacterial or fungal species or by the addition of a high quantity of heat-killed microbes. In addition, we found that proteins are limiting with respect to fly development on fruit-based diets and that GF flies show signs of protein starvation. Taken together, our study results demonstrate that the microbiota provides key proteins required for the development of D. suzukii reared on fresh fruit. Our work shows that the impact of microbes on fly fitness depends strongly on nutritional conditions. PMID:29559576

  13. Gut microbes may facilitate insect herbivory of chemically defended plants.

    Science.gov (United States)

    Hammer, Tobin J; Bowers, M Deane

    2015-09-01

    The majority of insect species consume plants, many of which produce chemical toxins that defend their tissues from attack. How then are herbivorous insects able to develop on a potentially poisonous diet? While numerous studies have focused on the biochemical counter-adaptations to plant toxins rooted in the insect genome, a separate body of research has recently emphasized the role of microbial symbionts, particularly those inhabiting the gut, in plant-insect interactions. Here we outline the "gut microbial facilitation hypothesis," which proposes that variation among herbivores in their ability to consume chemically defended plants can be due, in part, to variation in their associated microbial communities. More specifically, different microbes may be differentially able to detoxify compounds toxic to the insect, or be differentially resistant to the potential antimicrobial effects of some compounds. Studies directly addressing this hypothesis are relatively few, but microbe-plant allelochemical interactions have been frequently documented from non-insect systems-such as soil and the human gut-and thus illustrate their potential importance for insect herbivory. We discuss the implications of this hypothesis for insect diversification and coevolution with plants; for example, evolutionary transitions to host plant groups with novel allelochemicals could be initiated by heritable changes to the insect microbiome. Furthermore, the ecological implications extend beyond the plant and insect herbivore to higher trophic levels. Although the hidden nature of microbes and plant allelochemicals make their interactions difficult to detect, recent molecular and experimental techniques should enable research on this neglected, but likely important, aspect of insect-plant biology.

  14. Turbidity and microbes removal from water using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.; Belapurkar, A.D.; Kumbhar, A.G.; Balaji, V.

    2004-01-01

    An in-house designed and fabricated Electrochemical fibrous graphite filter (ECF) was used to remove turbidity and microbes. The filter was found to be effective in removing sub micron size indium turbidity from RAPS-1 moderator water, iron turbidity from Active Process Cooling Water (APCW) of Kaiga Generating Station and microbial reduction from process cooling water RAPS-2. Unlike conventional turbidity removal by addition of coagulants and biocide chemical additions for purification, ECF is a clean way to remove the turbidity without contaminating the system and is best suited for close loop systems

  15. Drone Transport of Microbes in Blood and Sputum Laboratory Specimens.

    Science.gov (United States)

    Amukele, Timothy K; Street, Jeff; Carroll, Karen; Miller, Heather; Zhang, Sean X

    2016-10-01

    Unmanned aerial vehicles (UAVs) could potentially be used to transport microbiological specimens. To examine the impact of UAVs on microbiological specimens, blood and sputum culture specimens were seeded with usual pathogens and flown in a UAV for 30 ± 2 min. Times to recovery, colony counts, morphologies, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based identifications of the flown and stationary specimens were similar for all microbes studied. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds.

    Science.gov (United States)

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-05-02

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.

  17. Evolution, human-microbe interactions, and life history plasticity.

    Science.gov (United States)

    Rook, Graham; Bäckhed, Fredrik; Levin, Bruce R; McFall-Ngai, Margaret J; McLean, Angela R

    2017-07-29

    A bacterium was once a component of the ancestor of all eukaryotic cells, and much of the human genome originated in microorganisms. Today, all vertebrates harbour large communities of microorganisms (microbiota), particularly in the gut, and at least 20% of the small molecules in human blood are products of the microbiota. Changing human lifestyles and medical practices are disturbing the content and diversity of the microbiota, while simultaneously reducing our exposures to the so-called old infections and to organisms from the natural environment with which human beings co-evolved. Meanwhile, population growth is increasing the exposure of human beings to novel pathogens, particularly the crowd infections that were not part of our evolutionary history. Thus some microbes have co-evolved with human beings and play crucial roles in our physiology and metabolism, whereas others are entirely intrusive. Human metabolism is therefore a tug-of-war between managing beneficial microbes, excluding detrimental ones, and channelling as much energy as is available into other essential functions (eg, growth, maintenance, reproduction). This tug-of-war shapes the passage of each individual through life history decision nodes (eg, how fast to grow, when to mature, and how long to live). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Genetic engineering microbes for bioremediation/ biorecovery of uranium

    International Nuclear Information System (INIS)

    Apte, S.K.; Rao, A.S.; Appukuttan, D.; Nilgiriwala, K.S.; Acharya, C.

    2005-01-01

    Bioremediation (both bioremoval and biorecovery) of metals is considered a feasible, economic and eco-friendly alternative to chemical methods of metal extraction, particularly when the metal concentration is very low. Scanty distribution along with poor ore quality makes biomining of uranium an attractive preposition. Biosorption, bioprecipitation or bioaccumulation of uranium, aided by recombinant DNA technology, offer a promising technology for recovery of uranium from acidic or alkaline nuclear waste, tailings or from sea-water. Genetic engineering of bacteria, with a gene encoding an acid phosphatase, has yielded strains that can bioprecipitate uranium from very low concentrations at acidic-neutral pH, in a relatively short time. Organisms overproducing alkaline phosphatase have been selected for uranium precipitation from alkaline waste. Such abilities have now been transferred to the radioresistant microbe Deinococcus radiodurans to facilitate in situ bioremediation of nuclear waste, with some success. Sulfate-reducing bacteria are being characterized for bioremediation of uranium in tailings with the dual objective of uranium precipitation and reduction of sulfate to sulphide. Certain marine cyanobacteria have shown promise for uranium biosorption to extracellular polysaccharides, and intracellular accumulation involving metal sequestering metallothionin proteins. Future work is aimed at understanding the genetic basis of these abilities and to engineer them into suitable organisms subsequently. As photosynthetic, nitrogen-fixing microbes, which are considerably resistant to ionizing radiations, cyanobacteria hold considerable potential for bioremediation of nuclear waste. (author)

  19. Nitrilase enzymes and their role in plant–microbe interactions

    Science.gov (United States)

    Howden, Andrew J. M.; Preston, Gail M.

    2009-01-01

    Summary Nitrilase enzymes (nitrilases) catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have a wide range of industrial and biotechnological applications, including the synthesis of industrially important carboxylic acids and bioremediation of cyanide and toxic nitriles. Nitrilases are produced by a wide range of organisms, including plants, bacteria and fungi, but despite their biotechnological importance, the role of these enzymes in living organisms is relatively underexplored. Current research suggests that nitrilases play important roles in a range of biological processes. In the context of plant–microbe interactions they may have roles in hormone synthesis, nutrient assimilation and detoxification of exogenous and endogenous nitriles. Nitrilases are produced by both plant pathogenic and plant growth‐promoting microorganisms, and their activities may have a significant impact on the outcome of plant–microbe interactions. In this paper we review current knowledge of the role of nitriles and nitrilases in plants and plant‐associated microorganisms, and discuss how greater understanding of the natural functions of nitrilases could be applied to benefit both industry and agriculture. PMID:21255276

  20. Environmental bacteriophages : viruses of microbes in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Télesphore eSIME - NGANDO

    2014-07-01

    Full Text Available Since the discovery 2-3 decades ago that viruses of microbes are abundant in marine ecosystems, viral ecology has grown increasingly to reach the status of a full scientific discipline in environmental sciences. A dedicated ISVM society, the International Society for Viruses of Microorganisms (http://www.isvm.org/, was recently launched. Increasing studies in viral ecology are sources of novel knowledge related to the biodiversity of living things, the functioning of ecosystems, and the evolution of the cellular world. This is because viruses are perhaps the most diverse, abundant, and ubiquitous biological entities in the biosphere, although local environmental conditions enrich for certain viral types through selective pressure. They exhibit various lifestyles that intimately depend on the deep-cellular mechanisms, and are ultimately replicated by members of all three domains of cellular life (Bacteria, Eukarya, Archaea, as well as by giant viruses of some eukaryotic cells. This establishes viral parasites as microbial killers but also as cell partners or metabolic manipulators in microbial ecology. The present chapter sought to review the literature on the diversity and functional roles of viruses of microbes in environmental microbiology, focusing primarily on prokaryotic viruses (i.e. phages in aquatic ecosystems, which form the bulk of our knowledge in modern environmental viral ecology.

  1. Induction of abiotic stress tolerance in plants by endophytic microbes.

    Science.gov (United States)

    Lata, R; Chowdhury, S; Gond, S K; White, J F

    2018-04-01

    Endophytes are micro-organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions. Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress-tolerant plants. © 2018 The Society for Applied Microbiology.

  2. Utilizing thermophilic microbe in lignocelluloses based bioethanol production: Review

    Science.gov (United States)

    Sriharti, Agustina, Wawan; Ratnawati, Lia; Rahman, Taufik; Salim, Takiyah

    2017-01-01

    The utilization of thermophilic microbe has attracted many parties, particularly in producing an alternative fuel like ethanol. Bioethanol is one of the alternative energy sources substituting for earth oil in the future. The advantage of using bioethanol is that it can reduce pollution levels and global warming because the result of bioethanol burning doesn't bring in a net addition of CO2 into environment. Moreover, decrease in the reserves of earth oil globally has also contributed to the notion on searching renewable energy resources such as bioethanol. Indonesia has a high biomass potential and can be used as raw material for bioethanol. The utilization of these raw materials will reduce fears of competition foodstuffs for energy production. The enzymes that play a role in degrading lignocelluloses are cellulolytic, hemicellulolytic, and lignolytic in nature. The main enzyme with an important role in bioethanol production is a complex enzyme capable of degrading lignocelluloses. The enzyme can be produced by the thermophilik microbes of the groups of bacteria and fungi such as Trichoderma viride, Clostridium thermocellum, Bacillus sp. Bioethanol production is heavily affected by raw material composition, microorganism type, and the condition of fermentation used.

  3. Fluorogenic Cell-Based Biosensors for Monitoring Microbes

    Science.gov (United States)

    Curtis, Theresa; Salazar, Noe; Tabb, Joel; Chase, Chris

    2010-01-01

    Fluorogenic cell-based sensor systems for detecting microbes (especially pathogenic ones) and some toxins and allergens are undergoing development. These systems harness the natural signaltransduction and amplification cascades that occur in mast cells upon activation with antigens. These systems include (1) fluidic biochips for automated containment of samples, reagents, and wastes and (2) sensitive, compact fluorometers for monitoring the fluorescent responses of mast cells engineered to contain fluorescent dyes. It should be possible to observe responses within minutes of adding immune complexes. The systems have been shown to work when utilizing either immunoglobulin E (IgE) antibodies or traditionally generated rat antibodies - a promising result in that it indicates that the systems could be developed to detect many target microbes. Chimeric IgE antibodies and rat immunoglobulin G (IgG) antibodies could be genetically engineered for recognizing biological and chemical warfare agents and airborne and food-borne allergens. Genetic engineering efforts thus far have yielded (1) CD14 chimeric antibodies that recognize both Grampositive and Gram-negative bacteria and bind to the surfaces of mast cells, eliciting a degranulation response and (2) rat IgG2a antibodies that act similarly in response to low levels of canine parvovirus.

  4. Nitrilase enzymes and their role in plant-microbe interactions.

    Science.gov (United States)

    Howden, Andrew J M; Preston, Gail M

    2009-07-01

    Nitrilase enzymes (nitrilases) catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have a wide range of industrial and biotechnological applications, including the synthesis of industrially important carboxylic acids and bioremediation of cyanide and toxic nitriles. Nitrilases are produced by a wide range of organisms, including plants, bacteria and fungi, but despite their biotechnological importance, the role of these enzymes in living organisms is relatively underexplored. Current research suggests that nitrilases play important roles in a range of biological processes. In the context of plant-microbe interactions they may have roles in hormone synthesis, nutrient assimilation and detoxification of exogenous and endogenous nitriles. Nitrilases are produced by both plant pathogenic and plant growth-promoting microorganisms, and their activities may have a significant impact on the outcome of plant-microbe interactions. In this paper we review current knowledge of the role of nitriles and nitrilases in plants and plant-associated microorganisms, and discuss how greater understanding of the natural functions of nitrilases could be applied to benefit both industry and agriculture. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases.

    Science.gov (United States)

    Dolan, Kyle T; Chang, Eugene B

    2017-01-01

    The rising incidence of inflammatory bowel diseases in recent decades has notably paralleled changing lifestyle habits in Western nations, which are now making their way into more traditional societies. Diet plays a key role in IBD pathogenesis, and there is a growing appreciation that the interaction between diet and microbes in a susceptible person contributes significantly to the onset of disease. In this review, we examine what is known about dietary and microbial factors that promote IBD. We summarize recent findings regarding the effects of diet in IBD epidemiology from prospective population cohort studies, as well as new insights into IBD-associated dysbiosis. Microbial metabolism of dietary components can influence the epithelial barrier and the mucosal immune system, and understanding how these interactions generate or suppress inflammation will be a significant focus of IBD research. Our knowledge of dietary and microbial risk factors for IBD provides important considerations for developing therapeutic approaches through dietary modification or re-shaping the microbiota. We conclude by calling for increased sophistication in designing studies on the role of diet and microbes in IBD pathogenesis and disease resolution in order to accelerate progress in response to the growing challenge posed by these complex disorders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Uncharted Microbial World: Microbes and Their Activities in the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, Caroline; Buckley, Merry

    2007-12-31

    Microbes are the foundation for all of life. From the air we breathe to the soil we rely on for farming to the water we drink, everything humans need to survive is intimately coupled with the activities of microbes. Major advances have been made in the understanding of disease and the use of microorganisms in the industrial production of drugs, food products and wastewater treatment. However, our understanding of many complicated microbial environments (the gut and teeth), soil fertility, and biogeochemical cycles of the elements is lagging behind due to their enormous complexity. Inadequate technology and limited resources have stymied many lines of investigation. Today, most environmental microorganisms have yet to be isolated and identified, let alone rigorously studied. The American Academy of Microbiology convened a colloquium in Seattle, Washington, in February 2007, to deliberate the way forward in the study of microorganisms and microbial activities in the environment. Researchers in microbiology, marine science, pathobiology, evolutionary biology, medicine, engineering, and other fields discussed ways to build on and extend recent successes in microbiology. The participants made specific recommendations for targeting future research, improving methodologies and techniques, and enhancing training and collaboration in the field. Microbiology has made a great deal of progress in the past 100 years, and the useful applications for these new discoveries are numerous. Microorganisms and microbial products are now used in industrial capacities ranging from bioremediation of toxic chemicals to probiotic therapies for humans and livestock. On the medical front, studies of microbial communities have revealed, among other things, new ways for controlling human pathogens. The immediate future for research in this field is extremely promising. In order to optimize the effectiveness of community research efforts in the future, scientists should include manageable

  7. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila

    Directory of Open Access Journals (Sweden)

    Patrice D. Cani

    2017-09-01

    Full Text Available Metabolic disorders associated with obesity and cardiometabolic disorders are worldwide epidemic. Among the different environmental factors, the gut microbiota is now considered as a key player interfering with energy metabolism and host susceptibility to several non-communicable diseases. Among the next-generation beneficial microbes that have been identified, Akkermansia muciniphila is a promising candidate. Indeed, A. muciniphila is inversely associated with obesity, diabetes, cardiometabolic diseases and low-grade inflammation. Besides the numerous correlations observed, a large body of evidence has demonstrated the causal beneficial impact of this bacterium in a variety of preclinical models. Translating these exciting observations to human would be the next logic step and it now appears that several obstacles that would prevent the use of A. muciniphila administration in humans have been overcome. Moreover, several lines of evidence indicate that pasteurization of A. muciniphila not only increases its stability but more importantly increases its efficacy. This strongly positions A. muciniphila in the forefront of next-generation candidates for developing novel food or pharma supplements with beneficial effects. Finally, a specific protein present on the outer membrane of A. muciniphila, termed Amuc_1100, could be strong candidate for future drug development. In conclusion, as plants and its related knowledge, known as pharmacognosy, have been the source for designing drugs over the last century, we propose that microbes and microbiomegnosy, or knowledge of our gut microbiome, can become a novel source of future therapies.

  8. Clinical laboratory evaluation of the Auto-Microbic system for rapid identification of Enterobacteriaceae.

    OpenAIRE

    Hasyn, J J; Cundy, K R; Dietz, C C; Wong, W

    1981-01-01

    The capability of the Auto-Microbic system (Vitek Systems, Inc., Hazelwood, Mo.) has been expanded to identify members of the family Enterobacteriaceae with the use of a sealed, disposable accessory card (the Enterobacteriaceae Biochemical Card) containing 26 biochemical tests. To judge the accuracy of the AutoMicrobic system's identification in a hospital laboratory, 933 Enterobacteriaceae isolates were studied. The AutoMicrobic system provided the correct identification for 905 of the isola...

  9. Synchrotron X-ray Investigations of Mineral-Microbe-Metal Interactions

    International Nuclear Information System (INIS)

    Kemner, Kenneth M.; O'Loughlin, Edward J.; Kelly, Shelly D.; Boyanov, Maxim I.

    2005-01-01

    Interactions between microbes and minerals can play an important role in metal transformations (i.e. changes to an element's valence state, coordination chemistry, or both), which can ultimately affect that element's mobility. Mineralogy affects microbial metabolism and ecology in a system; microbes, in turn, can affect the system's mineralogy. Increasingly, synchrotron-based X-ray experiments are in routine use for determining an element's valence state and coordination chemistry, as well as for examining the role of microbes in metal transformations.

  10. An ultrasonic method for separation of epiphytic microbes from freshwater submerged macrophytes.

    Science.gov (United States)

    Cai, Xianlei; Gao, Guang; Yang, Jing; Tang, Xiangming; Dai, Jiangyu; Chen, Dan; Song, Yuzhi

    2014-07-01

    Epiphytic microbes are common inhabitants of freshwater submerged macrophytes, which play an important role in aquatic ecosystems. An important precondition for studying the epiphytic microbes is having an effective method of separating the attached microbes from the host macrophytes. We developed an ultrasound-based method for separating epiphytic microbes from freshwater submerged macrophytes, optimized the conditions of ultrasonic separation with an orthogonal experimental design, and compared the optimized ultrasonic method with manual separation. This method can be particularly useful for freshwater submerged macrophytes having a complex morphology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Toward design-based engineering of industrial microbes.

    Science.gov (United States)

    Tyo, Keith E J; Kocharin, Kanokarn; Nielsen, Jens

    2010-06-01

    Engineering industrial microbes has been hampered by incomplete knowledge of cell biology. Thus an iterative engineering cycle of modeling, implementation, and analysis has been used to increase knowledge of the underlying biology while achieving engineering goals. Recent advances in Systems Biology technologies have drastically improved the amount of information that can be collected in each iteration. As well, Synthetic Biology tools are melding modeling and molecular implementation. These advances promise to move microbial engineering from the iterative approach to a design-oriented paradigm, similar to electrical circuits and architectural design. Genome-scale metabolic models, new tools for controlling expression, and integrated -omics analysis are described as key contributors in moving the field toward Design-based Engineering. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes

    DEFF Research Database (Denmark)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca

    2018-01-01

    , we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical......Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational...... engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined...

  13. Arsenic-Microbe-Mineral Interactions in Mining-Affected Environments

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson-Edwards

    2013-10-01

    Full Text Available The toxic element arsenic (As occurs widely in solid and liquid mine wastes. Aqueous forms of arsenic are taken up in As-bearing sulfides, arsenides, sulfosalts, oxides, oxyhydroxides, Fe-oxides, -hydroxides, -oxyhydroxides and -sulfates, and Fe-, Ca-Fe- and other arsenates. Although a considerable body of research has demonstrated that microbes play a significant role in the precipitation and dissolution of these As-bearing minerals, and in the alteration of the redox state of As, in natural and simulated mining environments, the molecular-scale mechanisms of these interactions are still not well understood. Further research is required using traditional and novel mineralogical, spectroscopic and microbiological techniques to further advance this field, and to help design remediation schemes.

  14. Busting dust: from cosmic grains to terrestrial microbes

    International Nuclear Information System (INIS)

    Mendis, D.A.

    2001-01-01

    Electrostatic charging can have important consequences for both the growth and disruption of microparticulates immersed in a plasma. In this topical review, my emphasis is on the latter process, while I extend the term microparticulates not only to include ordinary inanimate cosmic or terrestrial dust but also to include terrestrial microbes whose sizes range from tens of nanometers (viruses) to tens of micrometers (bacteria). Following a description of the basic mechanism of electrostatic disruption of a solid body, I will discuss the role of size, shape and surface irregularity on the process. I will also consider the mitigating role of electric field emission of electrons on the disruption process of a negatively charged grain as its size falls below a critical size. I will conclude by reviewing some early evidence for the electrostatic disruption of cosmic grains, and the very recent evidence for the electrostatic disruption of the bacterial cell membranes in terrestrial sterilization experiments. (orig.)

  15. Aminoacid composition of wheat grain gluten under microbe impact

    Directory of Open Access Journals (Sweden)

    Sokolova М. G.

    2012-11-01

    Full Text Available The study was focused on characteristics of gluten, protein and aminoacids content in wheat grain under the impact of microbe preparations including bacteria of Azotobacter and Bacillus geni, which inhabit plant rhizosphere. The increase of aminoacids leveland particularly the level of essential aminoacids in wheat grain under bacterization was demonstrated, this fact accounting for the quality of grain as an important protein source. Increase of aminoacids content with the use of biopreparations on low-fertile soil ensures acquisition of biologically valuable grain with the decrease of mineral fertilizers dosage and emphasizes the role of biopreparations in the production of ecologically pure high quality products. The latter is due to introdcution of environmentally safe agricultural methods.

  16. New CRISPR-Cas systems from uncultivated microbes

    Science.gov (United States)

    Burstein, David; Harrington, Lucas B.; Strutt, Steven C.; Probst, Alexander J.; Anantharaman, Karthik; Thomas, Brian C.; Doudna, Jennifer A.; Banfield, Jillian F.

    2017-02-01

    CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.

  17. Functional metagenomics to decipher food-microbe-host crosstalk.

    Science.gov (United States)

    Larraufie, Pierre; de Wouters, Tomas; Potocki-Veronese, Gabrielle; Blottière, Hervé M; Doré, Joël

    2015-02-01

    The recent developments of metagenomics permit an extremely high-resolution molecular scan of the intestinal microbiota giving new insights and opening perspectives for clinical applications. Beyond the unprecedented vision of the intestinal microbiota given by large-scale quantitative metagenomics studies, such as the EU MetaHIT project, functional metagenomics tools allow the exploration of fine interactions between food constituents, microbiota and host, leading to the identification of signals and intimate mechanisms of crosstalk, especially between bacteria and human cells. Cloning of large genome fragments, either from complex intestinal communities or from selected bacteria, allows the screening of these biological resources for bioactivity towards complex plant polymers or functional food such as prebiotics. This permitted identification of novel carbohydrate-active enzyme families involved in dietary fibre and host glycan breakdown, and highlighted unsuspected bacterial players at the top of the intestinal microbial food chain. Similarly, exposure of fractions from genomic and metagenomic clones onto human cells engineered with reporter systems to track modulation of immune response, cell proliferation or cell metabolism has allowed the identification of bioactive clones modulating key cell signalling pathways or the induction of specific genes. This opens the possibility to decipher mechanisms by which commensal bacteria or candidate probiotics can modulate the activity of cells in the intestinal epithelium or even in distal organs such as the liver, adipose tissue or the brain. Hence, in spite of our inability to culture many of the dominant microbes of the human intestine, functional metagenomics open a new window for the exploration of food-microbe-host crosstalk.

  18. Exploring the Optimal Strategy to Predict Essential Genes in Microbes

    Directory of Open Access Journals (Sweden)

    Yao Lu

    2011-12-01

    Full Text Available Accurately predicting essential genes is important in many aspects of biology, medicine and bioengineering. In previous research, we have developed a machine learning based integrative algorithm to predict essential genes in bacterial species. This algorithm lends itself to two approaches for predicting essential genes: learning the traits from known essential genes in the target organism, or transferring essential gene annotations from a closely related model organism. However, for an understudied microbe, each approach has its potential limitations. The first is constricted by the often small number of known essential genes. The second is limited by the availability of model organisms and by evolutionary distance. In this study, we aim to determine the optimal strategy for predicting essential genes by examining four microbes with well-characterized essential genes. Our results suggest that, unless the known essential genes are few, learning from the known essential genes in the target organism usually outperforms transferring essential gene annotations from a related model organism. In fact, the required number of known essential genes is surprisingly small to make accurate predictions. In prokaryotes, when the number of known essential genes is greater than 2% of total genes, this approach already comes close to its optimal performance. In eukaryotes, achieving the same best performance requires over 4% of total genes, reflecting the increased complexity of eukaryotic organisms. Combining the two approaches resulted in an increased performance when the known essential genes are few. Our investigation thus provides key information on accurately predicting essential genes and will greatly facilitate annotations of microbial genomes.

  19. Planetary protection protecting earth and planets against alien microbes

    International Nuclear Information System (INIS)

    Leys, N.

    2006-01-01

    Protecting Earth and planets against the invasion of 'alien life forms' is not military science fiction, but it is the peaceful daily job of engineers and scientists of space agencies. 'Planetary Protection' is preventing microbial contamination of both the target planet and the Earth when sending robots on interplanetary space mission. It is important to preserve the 'natural' conditions of other planets and to not bring with robots 'earthly microbes' (forward contamination) when looking for 'spores of extra terrestrial life'. The Earth and its biosphere must be protected from potential extraterrestrial biological contamination when returning samples of other planets to the Earth (backward contamination). The NASA-Caltech Laboratory for Planetary Protection of Dr. Kasthuri Venkateswaran at the Jet Propulsion Laboratory (JPL) (California, USA) routinely monitors and characterizes the microbes of NASA spacecraft assembly rooms and space robots prior to flight. They have repeatedly isolated Cupriavidus and Ralstonia strains pre-flight from spacecraft assembly rooms (floor and air) and surfaces of space robots such as the Mars Odyssey Orbiter (La Duc et al., 2003). Cupriavidus and Ralstonia strains have also been found in-flight, in ISS cooling water and Shuttle drinking water (Venkateswaran et al., Pyle et al., Ott et al., all unpublished). The main objective of this study is to characterise the Cupriavidus and Ralstonia strains isolated at JPL and compare them to the Cupriavidus metallidurans CH34T model strain, isolated from a Belgian contaminated soil and studied since 25 years at SCK-CEN and to enhance our knowledge by performing additional tests at JPL and gathering information regarding the environmental conditions and the cleaning and isolation methods used in such spacecraft assembling facilities

  20. Climate change driven plant-metal-microbe interactions.

    Science.gov (United States)

    Rajkumar, Mani; Prasad, Majeti Narasimha Vara; Swaminathan, Sandhya; Freitas, Helena

    2013-03-01

    Various biotic and abiotic stress factors affect the growth and productivity of crop plants. Particularly, the climatic and/or heavy metal stress influence various processes including growth, physiology, biochemistry, and yield of crops. Climatic changes particularly the elevated atmospheric CO₂ enhance the biomass production and metal accumulation in plants and help plants to support greater microbial populations and/or protect the microorganisms against the impacts of heavy metals. Besides, the indirect effects of climatic change (e.g., changes in the function and structure of plant roots and diversity and activity of rhizosphere microbes) would lead to altered metal bioavailability in soils and concomitantly affect plant growth. However, the effects of warming, drought or combined climatic stress on plant growth and metal accumulation vary substantially across physico-chemico-biological properties of the environment (e.g., soil pH, heavy metal type and its bio-available concentrations, microbial diversity, and interactive effects of climatic factors) and plant used. Overall, direct and/or indirect effects of climate change on heavy metal mobility in soils may further hinder the ability of plants to adapt and make them more susceptible to stress. Here, we review and discuss how the climatic parameters including atmospheric CO₂, temperature and drought influence the plant-metal interaction in polluted soils. Other aspects including the effects of climate change and heavy metals on plant-microbe interaction, heavy metal phytoremediation and safety of food and feed are also discussed. This review shows that predicting how plant-metal interaction responds to altering climatic change is critical to select suitable crop plants that would be able to produce more yields and tolerate multi-stress conditions without accumulating toxic heavy metals for future food security. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Microfluidic Experiments Studying Pore Scale Interactions of Microbes and Geochemistry

    Science.gov (United States)

    Chen, M.; Kocar, B. D.

    2016-12-01

    Understanding how physical phenomena, chemical reactions, and microbial behavior interact at the pore-scale is crucial to understanding larger scale trends in groundwater chemistry. Recent studies illustrate the utility of microfluidic devices for illuminating pore-scale physical-biogeochemical processes and their control(s) on the cycling of iron, uranium, and other important elements 1-3. These experimental systems are ideal for examining geochemical reactions mediated by microbes, which include processes governed by complex biological phenomenon (e.g. biofilm formation, etc.)4. We present results of microfluidic experiments using a model metal reducing bacteria and varying pore geometries, exploring the limitations of the microorganisms' ability to access tight pore spaces, and examining coupled biogeochemical-physical controls on the cycling of redox sensitive metals. Experimental results will provide an enhanced understanding of coupled physical-biogeochemical processes transpiring at the pore-scale, and will constrain and compliment continuum models used to predict and describe the subsurface cycling of redox-sensitive elements5. 1. Vrionis, H. A. et al. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71, 6308-6318 (2005). 2. Pearce, C. I. et al. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions. Environ. Sci. Technol. 46, 7992-8000 (2012). 3. Zhang, C., Liu, C. & Shi, Z. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite. Environ. Sci. Technol. 47, 4131-4139 (2013). 4. Ginn, T. R. et al. Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25, 1017-1042 (2002). 5. Scheibe, T. D. et al. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2, 274-286 (2009).

  2. Ortholog - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us MicrobeDB.jp Ortholog Data detail Data name Ortholog DOI 10.18908/lsdba.nbdc01181-010.V002 V...814 triples - About This Database Database Description Download License Update History of This Database Site Policy | Contact Us Ortholog - MicrobeDB.jp | LSDB Archive ...

  3. Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge

    DEFF Research Database (Denmark)

    Aslam, Shazia N.; Erbs, Gitte; Morrissey, Kate L.

    2009-01-01

    Triggering of defences by microbes has mainly been investigated using single elicitors or microbe-associated molecular patterns (MAMPs), but MAMPs are released in planta as complex mixtures together with endogenous oligogalacturonan (OGA) elicitor. We investigated the early responses in Arabidops...

  4. Plant-microbe and plant-insect interactions meet common grounds

    NARCIS (Netherlands)

    Schenk, P.; McGrath, K.C.; Lorito, M.; Pieterse, C.M.J.

    2008-01-01

    Plant–microbe and plant–insect interactions are of global importance for agriculture and of high interest to many plant scientists, microbiologists and entomologists. Traditionally, plant–microbe and plant–insect interactions have been looked at as two separate issues, but in recent years it has

  5. Life under the Microscope: Children's Ideas about Microbes

    Science.gov (United States)

    Allen, Michael; Bridle, Georgina; Briten, Elizabeth

    2015-01-01

    Microbes (by definition) are tiny living things that are only visible through a microscope and include bacteria, viruses, fungi, and protoctists (mainly single-celled life forms such as amoebae and algae). Although people are familiar with the effects of microbes, such as infectious disease and food spoilage, because of their lack of visibility,…

  6. Biogeographical diversity of plant associated microbes in arcto-alpine plants

    NARCIS (Netherlands)

    Kumar, Manoj Gopala Krishnan

    2016-01-01

    Terrestrial plants and microbes have co-evolved since the emergence of the former on Earth. Associations with microorganisms can be either beneficial or detrimental for plants. Microbes can be found in the soil surrounding the plant roots, but also in all plant tissues, including seeds. In

  7. Expanding Single Particle Mass Spectrometer Analyses for the Identification of Microbe Signatures in Sea Spray Aerosol.

    Science.gov (United States)

    Sultana, Camille M; Al-Mashat, Hashim; Prather, Kimberly A

    2017-10-03

    Ocean-derived microbes in sea spray aersosol (SSA) have the potential to influence climate and weather by acting as ice nucleating particles in clouds. Single particle mass spectrometers (SPMSs), which generate in situ single particle composition data, are excellent tools for characterizing aerosols under changing environmental conditions as they can provide high temporal resolution and require no sample preparation. While SPMSs have proven capable of detecting microbes, these instruments have never been utilized to definitively identify aerosolized microbes in ambient sea spray aersosol. In this study, an aerosol time-of-flight mass spectrometer was used to analyze laboratory generated SSA produced from natural seawater in a marine aerosol reference tank. We present the first description of a population of biological SSA mass spectra (BioSS), which closely match the ion signatures observed in previous terrestrial microbe studies. The fraction of BioSS dramatically increased in the largest supermicron particles, consistent with field and laboratory measurements of microbes ejected by bubble bursting, further supporting the assignment of BioSS mass spectra as microbes. Finally, as supported by analysis of inorganic ion signals, we propose that dry BioSS particles have heterogeneous structures, with microbes adhered to sodium chloride nodules surrounded by magnesium-enriched coatings. Consistent with this structure, chlorine-containing ion markers were ubiquitous in BioSS spectra and identified as possible tracers for distinguishing recently aerosolized marine from terrestrial microbes.

  8. Coercion in the Evolution of Plant-Microbe Communication: A Perspective.

    Science.gov (United States)

    Rowe, S L; Norman, J S; Friesen, M L

    2018-06-06

    Plants and microbes are dependent on chemical signals as a means of interkingdom communication. There are two predicted paths for the evolution of these signals. Ritualization is the oft-assumed pathway for the evolution of plant-microbe communication systems. In this process, chemical signals, which benefit both receiver and sender, evolve from chemical cues, which benefit only the receiver. However, plant-microbe signaling may evolve from coercive interactions as well, a process known as sensory manipulation. Here, we aim to highlight the prevalence of coercive interactions and discuss sensory manipulation in the context of plant-microbe interactions. We present two examples of stabilized coercion: microbial coercion of plants via the release of phytohormones and plant coercion of microbes via manipulation of quorum-sensing compounds. Furthermore, we provide an evolutionary framework for the emergence of signaling from coercive plant-microbe interactions through the process of sensory manipulation. We hope that researchers will recognize the relevance of coercive interactions in plant-microbe systems and consider sensory manipulation as a plausible evolutionary trajectory for the emergence of plant-microbe signaling.

  9. Earthworms, Microbes and the Release of C and N in Biochar Amended Soil

    Science.gov (United States)

    Land application of biochar has the potential to increase soil fertility and sequester carbon. It is unclear how soil microbes and earthworms interact with biochar and affect release or retention of nutrients. In order to determine the effects and interactions among soil microbes, earthworms, and bi...

  10. Microbes versus microbes

    DEFF Research Database (Denmark)

    Jordan, Kieran; Dalmasso, Marion; Zentek, Juergen

    2014-01-01

    been used in food processing to improve food safety. An understanding of the mode of action of this microbial antagonism has been gained in recent years and potential applications in food and feed safety are now being explored. This review focuses on the potential opportunities presented......Foodborne illness continues as a considerable threat to public health. Despite improved hygiene management systems and increased regulation, pathogenic bacteria still contaminate food, causing sporadic cases of illness and disease outbreaks worldwide. For many centuries, microbial antagonism has......, and the limitations, of using microbial antagonism as a biocontrol mechanism to reduce contamination along the food chain; including animal feed as its first link. © 2014 Society of Chemical Industry....

  11. The microbes we eat: abundance and taxonomy of microbes consumed in a day’s worth of meals for three diet types

    Directory of Open Access Journals (Sweden)

    Jenna M. Lang

    2014-12-01

    Full Text Available Far more attention has been paid to the microbes in our feces than the microbes in our food. Research efforts dedicated to the microbes that we eat have historically been focused on a fairly narrow range of species, namely those which cause disease and those which are thought to confer some “probiotic” health benefit. Little is known about the effects of ingested microbial communities that are present in typical American diets, and even the basic questions of which microbes, how many of them, and how much they vary from diet to diet and meal to meal, have not been answered.We characterized the microbiota of three different dietary patterns in order to estimate: the average total amount of daily microbes ingested via food and beverages, and their composition in three daily meal plans representing three different dietary patterns. The three dietary patterns analyzed were: (1 the Average American (AMERICAN: focused on convenience foods, (2 USDA recommended (USDA: emphasizing fruits and vegetables, lean meat, dairy, and whole grains, and (3 Vegan (VEGAN: excluding all animal products. Meals were prepared in a home kitchen or purchased at restaurants and blended, followed by microbial analysis including aerobic, anaerobic, yeast and mold plate counts as well as 16S rRNA PCR survey analysis.Based on plate counts, the USDA meal plan had the highest total amount of microbes at 1.3 × 109 CFU per day, followed by the VEGAN meal plan and the AMERICAN meal plan at 6 × 106 and 1.4 × 106 CFU per day respectively. There was no significant difference in diversity among the three dietary patterns. Individual meals clustered based on taxonomic composition independent of dietary pattern. For example, meals that were abundant in Lactic Acid Bacteria were from all three dietary patterns. Some taxonomic groups were correlated with the nutritional content of the meals. Predictive metagenome analysis using PICRUSt indicated differences in some functional KEGG

  12. Linking plant nutritional status to plant-microbe interactions.

    Science.gov (United States)

    Carvalhais, Lilia C; Dennis, Paul G; Fan, Ben; Fedoseyenko, Dmitri; Kierul, Kinga; Becker, Anke; von Wiren, Nicolaus; Borriss, Rainer

    2013-01-01

    Plants have developed a wide-range of adaptations to overcome nutrient limitation, including changes to the quantity and composition of carbon-containing compounds released by roots. Root-associated bacteria are largely influenced by these compounds which can be perceived as signals or substrates. Here, we evaluate the effect of root exudates collected from maize plants grown under nitrogen (N), phosphate (P), iron (Fe) and potassium (K) deficiencies on the transcriptome of the plant growth promoting rhizobacterium (PGPR) Bacillus amyloliquefaciens FZB42. The largest shifts in gene expression patterns were observed in cells exposed to exudates from N-, followed by P-deficient plants. Exudates from N-deprived maize triggered a general stress response in FZB42 in the exponential growth phase, which was evidenced by the suppression of numerous genes involved in protein synthesis. Exudates from P-deficient plants induced bacterial genes involved in chemotaxis and motility whilst exudates released by Fe and K deficient plants did not cause dramatic changes in the bacterial transcriptome during exponential growth phase. Global transcriptional changes in bacteria elicited by nutrient deficient maize exudates were significantly correlated with concentrations of the amino acids aspartate, valine and glutamate in root exudates suggesting that transcriptional profiling of FZB42 associated with metabolomics of N, P, Fe and K-deficient maize root exudates is a powerful approach to better understand plant-microbe interactions under conditions of nutritional stress.

  13. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    Science.gov (United States)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  14. Metabolic engineering of volatile isoprenoids in plants and microbes.

    Science.gov (United States)

    Vickers, Claudia E; Bongers, Mareike; Liu, Qing; Delatte, Thierry; Bouwmeester, Harro

    2014-08-01

    The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural functions include roles as insect attractants and repellents, abiotic stress protectants in pathogen defense, etc. Industrial applications include use as pharmaceuticals, flavours, fragrances, fuels, fuel additives, etc. Here we will examine the ways in which researchers have so far found to exploit volatile isoprenoids using biotechnology. Production and/or modification of volatiles using metabolic engineering in both plants and microorganisms are reviewed, including engineering through both mevalonate and methylerythritol diphosphate pathways. Recent advances are illustrated using several case studies (herbivores and bodyguards, isoprene, and monoterpene production in microbes). Systems and synthetic biology tools with particular utility for metabolic engineering are also reviewed. Finally, we discuss the practical realities of various applications in modern biotechnology, explore possible future applications, and examine the challenges of moving these technologies forward so that they can deliver tangible benefits. While this review focuses on volatile isoprenoids, many of the engineering approaches described here are also applicable to non-isoprenoid volatiles and to non-volatile isoprenoids. © 2014 John Wiley & Sons Ltd.

  15. Anaerobic Probiotics: The Key Microbes for Human Health.

    Science.gov (United States)

    El Enshasy, Hesham; Malik, Khairuddin; Malek, Roslinda Abd; Othman, Nor Zalina; Elsayed, Elsayed Ahmed; Wadaan, Mohammad

    Human gastrointestinal microbiota (HGIM) incorporate a large number of microbes from different species. Anaerobic bacteria are the dominant organisms in this microbial consortium and play a crucial role in human health. In addition to their functional role as the main source of many essential metabolites for human health, they are considered as biotherapeutic agents in the regulation of different human metabolites. They are also important in the prevention and in the treatment of different physical and mental diseases. Bifidobacteria are the dominant anaerobic bacteria in HGIM and are widely used in the development of probiotic products for infants, children and adults. To develop bifidobacteria-based bioproducts, therefore, it is necessary to develop a large-scale biomass production platform based on a good understanding of the ideal medium and bioprocessing parameters for their growth and viability. In addition, high cell viability should be maintained during downstream processing and storage of probiotic cell powder or the final formulated product. In this work we review the latest information about the biology, therapeutic activities, cultivation and industrial production of bifidobacteria.

  16. Diet, genes, and microbes: complexities of colon cancer prevention.

    Science.gov (United States)

    Birt, Diane F; Phillips, Gregory J

    2014-01-01

    Colorectal cancer is one of the leading causes of cancer-related deaths in the United States, and generally, as countries climb the economic ladder, their rates of colon cancer increase. Colon cancer was an early disease where key genetic mutations were identified as important in disease progression, and there is considerable interest in determining whether specific mutations sensitize the colon to cancer prevention strategies. Epidemiological studies have revealed that fiber- and vegetable-rich diets and physical activity are associated with reduced rates of colon cancer, while consumption of red and processed meat, or alcoholic beverages, and overconsumption as reflected in obesity are associated with increased rates. Animal studies have probed these effects and suggested directions for further refinement of diet in colon cancer prevention. Recently a central role for the microorganisms in the gastrointestinal tract in colon cancer development is being probed, and it is hypothesized that the microbes may integrate diet and host genetics in the etiology of the disease. This review provides background on dietary, genetic, and microbial impacts on colon cancer and describes an ongoing project using rodent models to assess the ability of digestion-resistant starch in the integration of these factors with the goal of furthering colon cancer prevention.

  17. The role of lipids in host microbe interactions.

    Science.gov (United States)

    Lang, Roland; Mattner, Jochen

    2017-06-01

    Lipids are one of the major subcellular constituents and serve as signal molecules, energy sources, metabolic precursors and structural membrane components in various organisms. The function of lipids can be modified by multiple biochemical processes such as (de-)phosphorylation or (de-)glycosylation, and the organization of fatty acids into distinct cellular pools and subcellular compartments plays a pivotal role for the morphology and function of various cell populations. Thus, lipids regulate, for example, phagosome formation and maturation within host cells and thus, are critical for the elimination of microbial pathogens. Vice versa, microbial pathogens can manipulate the lipid composition of phagosomal membranes in host cells, and thus avoid their delivery to phagolysosomes. Lipids of microbial origin belong also to the strongest and most versatile inducers of mammalian immune responses upon engagement of distinct receptors on myeloid and lymphoid cells. Furthermore, microbial lipid toxins can induce membrane injuries and cell death. Thus, we will review here selected examples for mutual host-microbe interactions within the broad and divergent universe of lipids in microbial defense, tissue injury and immune evasion.

  18. Utilization of waste as biogas substrateby dominan microbes identified

    Science.gov (United States)

    Nurlina, E.; Sambasri, S.; Hartati, E.; Safitri, R.; Hodijat, A.

    2018-05-01

    Indonesia as the tropics have a source of biomass feedstock which is very large, so the waste biomass can be used optimally as an energy source in the form of biogas. This study was conducted to obtain alternative energy from domestic waste materials, given the limited availability of petroleum and natural gas sourced from fossil fuels. This methodology is an experimental method, the process conditions at room temperature 25-27 °C, pH adjusted to the growth of microbes to produce biogas, retention time 20-60 days, the bioreactor is operated with a batch system, the volume of waste in the bioreactor is made permanent, so that the production of biogas in large scale will increase the pressure inside the bioreactor. Biogas is formed accommodated then distributed to the stove. Factors that determine the formation of biogas is a microbial species capable methanogens convert acetate into biogas. From the results of microbial identification of the isolates in the bioreactor, has identified three types of bacteria methanogens namely Methanospirillum hungatei, Methanobacterium polustre and Methanolacinapoynteri. The results of this study, domestic waste can be utilized as a substrate in biogas production, with the highest methane composition reaches 50.79%. This result is expected to increase public knowledge to utilize the waste into biogas as a renewable energy to sufficient the energy needs of household, so it does not depend on the energy derived from fossil fuels.

  19. Detoxification of Fusaric Acid by the Soil Microbe Mucor rouxii.

    Science.gov (United States)

    Crutcher, Frankie K; Puckhaber, Lorraine S; Bell, Alois A; Liu, Jinggao; Duke, Sara E; Stipanovic, Robert D; Nichols, Robert L

    2017-06-21

    Fusarium oxysporum f. sp. vasinfectum race 4 (VCG0114), which causes root rot and wilt of cotton (Gossypium hirsutum and G. barbadense), has been identified recently for the first time in the western hemisphere in certain fields in the San Joaquin Valley of California. This pathotype produces copious quantities of the plant toxin fusaric acid (5-butyl-2-pyridinecarboxylic acid) compared to other isolates of F. oxysporum f. sp. vasinfectum (Fov) that are indigenous to the United States. Fusaric acid is toxic to cotton plants and may help the pathogen compete with other microbes in the soil. We found that a laboratory strain of the fungus Mucor rouxii converts fusaric acid into a newly identified compound, 8-hydroxyfusaric acid. The latter compound is significantly less phytotoxic to cotton than the parent compound. On the basis of bioassays of hydroxylated analogues of fusaric acid, hydroxylation of the butyl side chain of fusaric acid may affect a general detoxification of fusaric acid. Genes that control this hydroxylation may be useful in developing biocontrol agents to manage Fov.

  20. Microbe-surface interactions in biofouling and biocorrosion processes.

    Science.gov (United States)

    Beech, Iwona B; Sunner, Jan A; Hiraoka, Kenzo

    2005-09-01

    The presence of microorganisms on material surfaces can have a profound effect on materials performance. Surface-associated microbial growth, i.e. a biofilm, is known to instigate biofouling. The presence of biofilms may promote interfacial physico-chemical reactions that are not favored under abiotic conditions. In the case of metallic materials, undesirable changes in material properties due to a biofilm (or a biofouling layer) are referred to as biocorrosion or microbially influenced corrosion (MIC). Biofouling and biocorrosion occur in aquatic and terrestrial habitats varying in nutrient content, temperature, pressure and pH. Interfacial chemistry in such systems reflects a wide variety of physiological activities carried out by diverse microbial populations thriving within biofilms. Biocorrosion can be viewed as a consequence of coupled biological and abiotic electron-transfer reactions, i.e. redox reactions of metals, enabled by microbial ecology. Microbially produced extracellular polymeric substances (EPS), which comprise different macromolecules, mediate initial cell adhesion to the material surface and constitute a biofilm matrix. Despite their unquestionable importance in biofilm development, the extent to which EPS contribute to biocorrosion is not well-understood. This review offers a current perspective on material/microbe interactions pertinent to biocorrosion and biofouling, with EPS as a focal point, while emphasizing the role atomic force spectroscopy and mass spectrometry techniques can play in elucidating such interactions.

  1. Of genes and microbes: solving the intricacies in host genomes.

    Science.gov (United States)

    Wang, Jun; Chen, Liang; Zhao, Na; Xu, Xizhan; Xu, Yakun; Zhu, Baoli

    2018-05-01

    Microbiome research is a quickly developing field in biomedical research, and we have witnessed its potential in understanding the physiology, metabolism and immunology, its critical role in understanding the health and disease of the host, and its vast capacity in disease prediction, intervention and treatment. However, many of the fundamental questions still need to be addressed, including the shaping forces of microbial diversity between individuals and across time. Microbiome research falls into the classical nature vs. nurture scenario, such that host genetics shape part of the microbiome, while environmental influences change the original course of microbiome development. In this review, we focus on the nature, i.e., the genetic part of the equation, and summarize the recent efforts in understanding which parts of the genome, especially the human and mouse genome, play important roles in determining the composition and functions of microbial communities, primarily in the gut but also on the skin. We aim to present an overview of different approaches in studying the intricate relationships between host genetic variations and microbes, its underlying philosophy and methodology, and we aim to highlight a few key discoveries along this exploration, as well as current pitfalls. More evidence and results will surely appear in upcoming studies, and the accumulating knowledge will lead to a deeper understanding of what we could finally term a "hologenome", that is, the organized, closely interacting genome of the host and the microbiome.

  2. Designer cells programming quorum-sensing interference with microbes.

    Science.gov (United States)

    Sedlmayer, Ferdinand; Hell, Dennis; Müller, Marius; Ausländer, David; Fussenegger, Martin

    2018-05-08

    Quorum sensing is a promising target for next-generation anti-infectives designed to address evolving bacterial drug resistance. The autoinducer-2 (AI-2) is a key quorum-sensing signal molecule which regulates bacterial group behaviors and is recognized by many Gram-negative and Gram-positive bacteria. Here we report a synthetic mammalian cell-based microbial-control device that detects microbial chemotactic formyl peptides through a formyl peptide sensor (FPS) and responds by releasing AI-2. The microbial-control device was designed by rewiring an artificial receptor-based signaling cascade to a modular biosynthetic AI-2 production platform. Mammalian cells equipped with the microbial-control gene circuit detect formyl peptides secreted from various microbes with high sensitivity and respond with robust AI-2 production, resulting in control of quorum sensing-related behavior of pathogenic Vibrio harveyi and attenuation of biofilm formation by the human pathogen Candida albicans. The ability to manipulate mixed microbial populations through fine-tuning of AI-2 levels may provide opportunities for future anti-infective strategies.

  3. How Do Small Things Make a Big Difference? Activities to Teach about Human-Microbe Interactions.

    Science.gov (United States)

    Jasti, Chandana; Hug, Barbara; Waters, Jillian L; Whitaker, Rachel J

    2014-11-01

    Recent scientific studies are providing increasing evidence for how microbes living in and on us are essential to our good health. However, many students still think of microbes only as germs that harm us. The classroom activities presented here are designed to shift student thinking on this topic. In these guided inquiry activities, students investigate human-microbe interactions as they work together to interpret and analyze authentic data from published articles and develop scientific models. Through the activities, students learn and apply ecological concepts as they come to see the human body as a fascinatingly complex ecosystem.

  4. How Do Small Things Make a Big Difference? Activities to Teach about Human–Microbe Interactions

    Science.gov (United States)

    JASTI, CHANDANA; HUG, BARBARA; WATERS, JILLIAN L.; WHITAKER, RACHEL J.

    2014-01-01

    Recent scientific studies are providing increasing evidence for how microbes living in and on us are essential to our good health. However, many students still think of microbes only as germs that harm us. The classroom activities presented here are designed to shift student thinking on this topic. In these guided inquiry activities, students investigate human–microbe interactions as they work together to interpret and analyze authentic data from published articles and develop scientific models. Through the activities, students learn and apply ecological concepts as they come to see the human body as a fascinatingly complex ecosystem. PMID:25520526

  5. Biosurfactant Producing Microbes from Oil Contaminated Soil - Isolation, Screening and Characterization

    OpenAIRE

    , A Pandey; , D Nandi; , N Prasad; , S Arora

    2016-01-01

    Th1s paper bas1cally deals W1th 1solat10n, productıon and characterızatıon of biosurfactant producing microbes from oil contaminated soil sample. In this paper, we are comparing and discussing different methods to screen & characterize microbes from soil which can degrade oil due to their biosurfactant producing activity which helps in reduction of surface tension of oil. Oils used to check the biosurfactant activity of microbes, were engine oil and vegetable oil. Further isolation of...

  6. The effects of packaging materials on microbe population in irradiated traditional herbal medicines

    International Nuclear Information System (INIS)

    Bagiawati, Sri; Hilmy, Nazly

    1983-01-01

    Microbial population and moisture content of traditional herbal medicines contaminated with 3 kinds of aerobic microbes, packed in 5 kinds of plastic packaging materials, followed by irradiation at minimum dose of 5 kGy and stored for 6 months were investigated. The highest reduction of microbial counts during storage was observed on samples packed in polyethylene bags. All of packaging materials used were found to be impermeable to microbes and water vapour. Radiation and packaging materials used acted synergistically to inactivate microbes durind storage. The microbial counts decreased as much as 2 to 4 log cycles during storage. (author)

  7. Small bugs, big business: the economic power of the microbe.

    Science.gov (United States)

    Demain, A L

    2000-10-01

    The versatility of microbial biosynthesis is enormous. The most industrially important primary metabolites are the amino acids, nucleotides, vitamins, solvents, and organic acids. Millions of tons of amino acids are produced each year with a total multibillion dollar market. Many synthetic vitamin production processes are being replaced by microbial fermentations. In addition to the multiple reaction sequences of fermentations, microorganisms are extremely useful in carrying out biotransformation processes. These are becoming essential to the fine chemical industry in the production of single-isomer intermediates. Microbially produced secondary metabolites are extremely important to our health and nutrition. As a group, they have tremendous economic importance. The antibiotic market amounts to almost 30 billion dollars and includes about 160 antibiotics and derivatives such as the beta-lactam peptide antibiotics, the macrolide polyketide erythromycin, tetracyclines, aminoglycosides and others. Other important pharmaceutical products produced by microrganisms are hypocholesterolemic agents, enzyme inhibitors, immunosuppressants and antitumor compounds, some having markets of over 1 billion dollars per year. Agriculturally important secondary metabolites include coccidiostats, animal growth promotants, antihelmintics and biopesticides. The modern biotechnology industry has made a major impact in the business world, biopharmaceuticals (recombinant protein drugs, vaccines and monoclonal antibodies) having a market of 15 billion dollars. Recombinant DNA technology has also produced a revolution in agriculture and has markedly increased markets for microbial enzymes. Molecular manipulations have been added to mutational techniques as means of increasing titers and yields of microbial procresses and in discovery of new drugs. Today, microbiology is a major participant in global industry. The best is yet to come as microbes move into the environmental and energy sectors.

  8. Insight and analysis problem solving in microbes to machines.

    Science.gov (United States)

    Clark, Kevin B

    2015-11-01

    A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices. Copyright

  9. Scaling Soil Microbe-Water Interactions from Pores to Ecosystems

    Science.gov (United States)

    Manzoni, S.; Katul, G. G.

    2014-12-01

    The spatial scales relevant to soil microbial activity are much finer than scales relevant to whole-ecosystem function and biogeochemical cycling. On the one hand, how to link such different scales and develop scale-aware biogeochemical and ecohydrological models remains a major challenge. On the other hand, resolving these linkages is becoming necessary for testing ecological hypotheses and resolving data-theory inconsistencies. Here, the relation between microbial respiration and soil moisture expressed in water potential is explored. Such relation mediates the water availability effects on ecosystem-level heterotrophic respiration and is of paramount importance for understanding CO2 emissions under increasingly variable rainfall regimes. Respiration has been shown to decline as the soil dries in a remarkably consistent way across climates and soil types (open triangles in Figure). Empirical models based on these respiration-moisture relations are routinely used in Earth System Models to predict moisture effects on ecosystem respiration. It has been hypothesized that this consistency in microbial respiration decline is due to breakage of water film continuity causing in turn solute diffusion limitations in dry conditions. However, this hypothesis appears to be at odds with what is known about soil hydraulic properties. Water film continuity estimated from soil water retention (SWR) measurements at the 'Darcy' scale breaks at far less negative water potential (micro-level relevant to microbial activity. Such downscaling resolves the inconsistency between respiration thresholds and hydrological thresholds. This result, together with observations of residual microbial activity well below -15 MPa (dashed back curve in Figure), lends support to the hypothesis that soil microbes are substrate-limited in dry conditions.

  10. Universal ligation-detection-reaction microarray applied for compost microbes

    Directory of Open Access Journals (Sweden)

    Romantschuk Martin

    2008-12-01

    Full Text Available Abstract Background Composting is one of the methods utilised in recycling organic communal waste. The composting process is dependent on aerobic microbial activity and proceeds through a succession of different phases each dominated by certain microorganisms. In this study, a ligation-detection-reaction (LDR based microarray method was adapted for species-level detection of compost microbes characteristic of each stage of the composting process. LDR utilises the specificity of the ligase enzyme to covalently join two adjacently hybridised probes. A zip-oligo is attached to the 3'-end of one probe and fluorescent label to the 5'-end of the other probe. Upon ligation, the probes are combined in the same molecule and can be detected in a specific location on a universal microarray with complementary zip-oligos enabling equivalent hybridisation conditions for all probes. The method was applied to samples from Nordic composting facilities after testing and optimisation with fungal pure cultures and environmental clones. Results Probes targeted for fungi were able to detect 0.1 fmol of target ribosomal PCR product in an artificial reaction mixture containing 100 ng competing fungal ribosomal internal transcribed spacer (ITS area or herring sperm DNA. The detection level was therefore approximately 0.04% of total DNA. Clone libraries were constructed from eight compost samples. The LDR microarray results were in concordance with the clone library sequencing results. In addition a control probe was used to monitor the per-spot hybridisation efficiency on the array. Conclusion This study demonstrates that the LDR microarray method is capable of sensitive and accurate species-level detection from a complex microbial community. The method can detect key species from compost samples, making it a basis for a tool for compost process monitoring in industrial facilities.

  11. How do natural, uncultivated microbes interact with organic matter? Insights from single cell genomics and metagenomics

    DEFF Research Database (Denmark)

    Lloyd, Karen; Bird, Jordan; Schreiber, Lars

    Abstract Since most of the microbes in marine sediments remain uncultured, little is known about the mechanisms by which these natural communities degrade organic matter (OM). Likewise, little is known about the make-up of labile OM in marine sediments beyond general functional classes such as pr......Abstract Since most of the microbes in marine sediments remain uncultured, little is known about the mechanisms by which these natural communities degrade organic matter (OM). Likewise, little is known about the make-up of labile OM in marine sediments beyond general functional classes...... such as proteins, carbohydrates, and lipids, measured as monomers. However, microbes have complex interactions with specific polymers within these functional classes, which can be indicated by a microbe's enzymatic toolkit. We ...

  12. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species

    National Research Council Canada - National Science Library

    Pimentel, David

    2011-01-01

    ...: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, this reference discusses how non-native species invade new ecosystems and the subsequent economic and environmental effects of these species...

  13. Grow Plants the Organic Way: Give Them the Soil Microbes They Crave

    Directory of Open Access Journals (Sweden)

    Phil Mixter

    2013-03-01

    Full Text Available Review of: Teaming with Microbes: The Organic Gardener’s Guide to the Soil Food Web, revised ed.; Jeff Lowenfels and Wayne Lewis; (2010. Timber Press Inc., Portland, OR. 220 pages.

  14. Research progress and application prospect of radiation-resistant prokaryotic microbe

    International Nuclear Information System (INIS)

    Wang Wei; Zhu Jing; Zhang Zhidong; Tang Qiyong; Chen Ming

    2013-01-01

    Radiation-resistant microbe is becoming the research hotspot because of its special life phenomenon and physiological mechanism. Radiation-resistant bacteria are one kind of the most studied radiation-resistant microbe. This article summarized some aspects of the research on radiation-resistant bacteria, including the radiation resistant bacteria resources, and discussed its potential application prospects in the environmental engineering, biotechnology, human health, military and space et al. (authors)

  15. MicrobesOnline: an integrated portal for comparative and functional genomics

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir; Joachimiak, Marcin; Price, Morgan; Bates, John; Baumohl, Jason; Chivian, Dylan; Friedland, Greg; Huang, Kathleen; Keller, Keith; Novichkov, Pavel; Dubchak, Inna; Alm, Eric; Arkin, Adam

    2011-07-14

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  16. Turning the table: plants consume microbes as a source of nutrients.

    Directory of Open Access Journals (Sweden)

    Chanyarat Paungfoo-Lonhienne

    Full Text Available Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively, we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles.

  17. MicrobesOnline: an integrated portal for comparative and functional genomics

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir S.; Joachimiak, Marcin P.; Price, Morgan N.; Bates, John T.; Baumohl, Jason K.; Chivian, Dylan; Friedland, Greg D.; Huang, Katherine H.; Keller, Keith; Novichkov, Pavel S.; Dubchak, Inna L.; Alm, Eric J.; Arkin, Adam P.

    2009-09-17

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  18. Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems.

    Science.gov (United States)

    Beck, John J; Vannette, Rachel L

    2017-01-11

    Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.

  19. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris.

    Science.gov (United States)

    Oberbeckmann, Sonja; Osborn, A Mark; Duhaime, Melissa B

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET

  20. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris

    Science.gov (United States)

    Osborn, A. Mark

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5–6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae—all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the

  1. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris.

    Directory of Open Access Journals (Sweden)

    Sonja Oberbeckmann

    Full Text Available Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate (PET drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates and diatoms (e.g. Coscinodiscophytina, Bacillariophytina. The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact

  2. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms

    Directory of Open Access Journals (Sweden)

    Nurmi ePangesti

    2013-10-01

    Full Text Available Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the host plant that influence interactions between plants and aboveground insects at several trophic levels. Aboveground, plants are under continuous attack by insect herbivores and mount multiple responses that also have systemic effects on belowground microbes. Until recently, both ecological and mechanistic studies have mostly focused on exploring these below- and above-ground interactions using simplified systems involving both single microbe and herbivore species, which is far from the naturally occurring interactions. Increasing the complexity of the systems studied is required to increase our understanding of microbe - plant - insect interactions and to gain more benefit from the use of non-pathogenic microbes in agriculture. In this review, we explore how colonization by either single non-pathogenic microbe species or a community of such microbes belowground affects plant growth and defense and how this affects the interactions of plants with aboveground insects at different trophic levels. Moreover, we review how plant responses to foliar herbivory by insects belonging to different feeding guilds affect interactions of plants with non-pathogenic soil-borne microbes. The role of phytohormones in coordinating plant growth, plant defenses against foliar herbivores while simultaneously establishing associations with non-pathogenic soil microbes is discussed.

  3. Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review

    Institute of Scientific and Technical Information of China (English)

    Shobhit Raj VIMAL; Jay Shankar SINGH; Naveen Kumar ARORA; Surendra SINGH

    2017-01-01

    The expected rise in temperature and decreased precipitation owing to climate change and unabated anthropogenic activities add complexity and uncertainty to agro-industry.The impact of soil nutrient imbalance,mismanaged use of chemicals,high temperature,flood or drought,soil salinity,and heavy metal pollutions,with regard to food security,is increasingly being explored worldwide.This review describes the role of soil-plant-microbe interactions along with organic manure in solving stressed agriculture problems.Beneficial microbes associated with plants are known to stimulate plant growth and enhance plant resistance to biotic (diseases) and abiotic (salinity,drought,pollutions,etc.) stresses.The plant growth-promoting rhizobacteria (PGPR) and mycorrhizae,a key component of soil microbiota,could play vital roles in the maintenance of plant fitness and soil health under stressed environments.The application of organic manure as a soil conditioner to stressed soils along with suitable microbial strains could further enhance the plant-microbe associations and increase the crop yield.A combination of plant,stress-tolerant microbe,and organic amendment represents the tripartite association to offer a favourable environment to the proliferation of beneficial rhizosphere microbes that in turn enhance the plant growth performance in disturbed agro-ecosystem.Agriculture land use patterns with the proper exploitation of plant-microbe associations,with compatible beneficial microbial agents,could be one of the most effective strategies in the management of the concerned agriculture lands owing to climate change resilience.However,the association of such microbes with plants for stressed agriculture management still needs to be explored in greater depth.

  4. Polythene and Plastics-degrading microbes from the mangrove soil

    Directory of Open Access Journals (Sweden)

    K Kathiresan

    2003-09-01

    Full Text Available Biodegradation of polythene bags and plastic cups was analyzed after 2, 4, 6, and 9 months of incubation in the mangrove soil. The biodegradation of polythene bags was significantly higher (up to 4.21% in 9 months than that of plastic cups (up to 0.25% in 9 months. Microbial counts in the degrading materials were recorded up to 79.67 x 10 4 per gram for total heterotrophic bacteria, and up to 55.33 x 10 2 per gram for fungi. The microbial species found associated with the degrading materials were identified as five Gram positive and two Gram negative bacteria, and eight fungal species of Aspergillus. The species that were predominant were Streptococcus, Staphylococcus, Micrococcus (Gram +ve, Moraxella, and Pseudomonas (Gram -ve and two species of fungi (Aspergillus glaucus and A. niger. Efficacy of the microbial species in degradation of plastics and polythene was analyzed in shaker cultures. Among the bacteria, Pseudomonas species degraded 20.54% of polythene and 8.16% of plastics in one-month period. Among the fungal species, Aspergillus glaucus degraded 28.80% of polythene and 7.26% of plastics in one-month period. This work reveals that the mangrove soil is a good source of microbes capable of degrading polythene and plasticsLa biodegradación de las bolsas de polietileno y vasos de plástico fue analizada después de 2, 4, 6 y 9 meses de incubación en suelo de manglar. La biodegradación de las bolsas fue significativamente más alta (hasta 4.21% en 9 meses que los vasos plásticos (hasta 0.25% en 9 meses. Los conteos microbianos en los materiales degradados mostraron hasta 79.67 x 10(4 por gramo para las bacterias heterotroficas totales, y hasta 55.33 x 10² por gramo para los hongos. Se identificó 5 especies microbianas Gram positivas, 2 Gram negativas, y 8 especies de hongos del género Aspergillus en asociación con materiales degradados. Las especies predominantes fueron Streptococcus, Staphylococcus, Micrococcus (Gram +, Moraxella

  5. Dipteran larvae and microbes facilitate nutrient sequestration in the Nepenthes gracilis pitcher plant host.

    Science.gov (United States)

    Lam, Weng Ngai; Chong, Kwek Yan; Anand, Ganesh S; Tan, Hugh Tiang Wah

    2017-03-01

    The fluid-containing traps of Nepenthes carnivorous pitcher plants (Nepenthaceae) are often inhabited by organisms known as inquilines. Dipteran larvae are key components of such communities and are thought to facilitate pitcher nitrogen sequestration by converting prey protein into inorganic nitrogen, although this has never been demonstrated in Nepenthes Pitcher fluids are also inhabited by microbes, although the relationship(s) between these and the plant is still unclear. In this study, we examined the hypothesis of digestive mutualism between N. gracilis pitchers and both dipteran larvae and fluid microbes. Using dipteran larvae, prey and fluid volumes mimicking in situ pitcher conditions, we conducted in vitro experiments and measured changes in available fluid nitrogen in response to dipteran larvae and microbe presence. We showed that the presence of dipteran larvae resulted in significantly higher and faster releases of ammonium and soluble protein into fluids in artificial pitchers, and that the presence of fluid microbes did likewise for ammonium. We showed also that niche segregation occurs between phorid and culicid larvae, with the former fragmenting prey carcasses and the latter suppressing fluid microbe levels. These results clarify the relationships between several key pitcher-dwelling organisms, and show that pitcher communities facilitate nutrient sequestration in their host. © 2017 The Author(s).

  6. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield

    Science.gov (United States)

    Ganey, Gerard Q.; Loso, Michael G.; Burgess, Annie Bryant; Dial, Roman J.

    2017-10-01

    A lack of liquid water limits life on glaciers worldwide but specialized microbes still colonize these environments. These microbes reduce surface albedo, which, in turn, could lead to warming and enhanced glacier melt. Here we present results from a replicated, controlled field experiment to quantify the impact of microbes on snowmelt in red-snow communities. Addition of nitrogen-phosphorous-potassium fertilizer increased alga cell counts nearly fourfold, to levels similar to nitrogen-phosphorus-enriched lakes; water alone increased counts by half. The manipulated alga abundance explained a third of the observed variability in snowmelt. Using a normalized-difference spectral index we estimated alga abundance from satellite imagery and calculated microbial contribution to snowmelt on an icefield of 1,900 km2. The red-snow area extended over about 700 km2, and in this area we determined that microbial communities were responsible for 17% of the total snowmelt there. Our results support hypotheses that snow-dwelling microbes increase glacier melt directly in a bio-geophysical feedback by lowering albedo and indirectly by exposing low-albedo glacier ice. Radiative forcing due to perennial populations of microbes may match that of non-living particulates at high latitudes. Their contribution to climate warming is likely to grow with increased melt and nutrient input.

  7. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.

    Science.gov (United States)

    Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2009-02-01

    In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.

  8. Role of intestinal microbes on body nitrogen accumulation in germfree, gnotobiotic and conventional mice

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, M; Nomura, T [Central Inst. for Experimental Animals, Tokyo (Japan); Kametka, M

    1974-10-01

    In order to observe the influence of intestinal microbes, nitrogen (N) of the carcasses and of the gut contents of 80-day-old germfree (GF), Escherichia coli (E. coli) or Staphylococcus epidermidis (Staph.) monocontaminated (at 56 days of age) gnotobiotic (GB) and conventional (CV) mice was estimated. The body weight of CV mice was greater than that of GF and both GB mice. The same tendencies were also shown in the weights of liver and kidney. However, there were no remarkable differences between GF and GB mice. Total N of the whole carcass per 100 g of body weight (except for intestinal contents) of CV mice was higher than that of other mice. The rank was CV, Staph., E. coli and GF mice. There was no major difference in /sup 15/N accumulation in the whole carcass, liver and leg muscles of three mice in each group two days after they were given a 0.2% /sup 15/N-labelled secondary ammonium phosphate-supplemented diet in any group, but accumulation in CV mice tended to be higher than in GF and GB mice. Total N of the whole intestinal contents per 100 g of body weight was high in GF, E. coli, Staph. and CV mice in that order. N in cecal contents in GF and both GB mice was remarkably higher than that in CV mice. The ratio of protein N to total N of gut contents showed almost the same tendencies in all groups until the lower part of the small intestine, however from the cecum the tendencies were different. CV mice showed an especially high protein N ratio and high total N per unit chromic oxide of intestinal contents until the cecum, but they decreased in the colon and rectum, which might suggest more reabsorption of non-protein N in the cecum, colon and rectum than in GF and both GB mice.

  9. Role of intestinal microbes on body nitrogen accumulation in germfree, gnotobiotic and conventional mice

    International Nuclear Information System (INIS)

    Yamanaka, Masanori; Nomura, Tatsuji; Kametka, Masao.

    1974-01-01

    In order to observe the influence of intestinal microbes, nitrogen (N) of the carcasses and of the gut contents of 80-day-old germfree (GF), Escherichia coli (E. coli) or Staphylococcus epidermidis (Staph.) monocontaminated (at 56 days of age) gnotobiotic (GB) and conventional (CV) mice was estimated. The body weight of CV mice was greater than that of GF and both GB mice. The same tendencies were also shown in the weights of liver and kidney. However, there were no remarkable differences between GF and GB mice. Total N of the whole carcass per 100 g of body weight (except for intestinal contents) of CV mice was higher than that of other mice. The rank was CV, Staph., E. coli and GF mice. There was no major difference in 15 N accumulation in the whole carcass, liver and leg muscles of three mice in each group two days after they were given a 0.2% 15 N-labelled secondary ammonium phosphate-supplemented diet in any group, but accumulation in CV mice tended to be higher than in GF and GB mice. Total N of the whole intestinal contents per 100 g of body weight was high in GF, E. coli, Staph. and CV mice in that order. N in cecal contents in GF and both GB mice was remarkably higher than that in CV mice. The ratio of protein N to total N of gut contents showed almost the same tendencies in all groups until the lower part of the small intestine, however from the cecum the tendencies were different. CV mice showed an especially high protein N ratio and high total N per unit chromic oxide of intestinal contents until the cecum, but they decreased in the colon and rectum, which might suggest more reabsorption of non-protein N in the cecum, colon and rectum than in GF and both GB mice. (auth.)

  10. Quantitative Analysis of Microbes in Water Tank of G.A. Siwabessy Reactor

    International Nuclear Information System (INIS)

    Itjeu Karliana; Diah Dwiana Lestiani

    2003-01-01

    The quality of water in reactor system has an important role because it could effect the function as a coolant and the operation of reactor indirectly. The study of microbe analyzes has been carried out to detect the existence of microbes in water tank and quantitative analyzes of microbes also has been applied as a continuation of the previous study. The samples is taken out from the end side of reactor GA Siwabessy's tank, inoculated in TSA (Tripcase Soy Agar) medium, put in incubator at 30 - 35 o C for 4 days. The results of experiment show the reconfirmation for the existence of bacteria and the un-existence of yield. The quantitative analysis with TPC method show the growth rate of bacteria is twice in 24 hours. (author)

  11. Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes

    Directory of Open Access Journals (Sweden)

    Md. Harun-Or Rashid

    2017-10-01

    Full Text Available Soil microorganisms with growth-promoting activities in plants, including rhizobacteria and rhizofungi, can improve plant health in a variety of different ways. These beneficial microbes may confer broad-spectrum resistance to insect herbivores. Here, we provide evidence that beneficial microbes modulate plant defenses against insect herbivores. Beneficial soil microorganisms can regulate hormone signaling including the jasmonic acid, ethylene and salicylic acid pathways, thereby leading to gene expression, biosynthesis of secondary metabolites, plant defensive proteins and different enzymes and volatile compounds, that may induce defenses against leaf-chewing as well as phloem-feeding insects. In this review, we discuss how beneficial microbes trigger induced systemic resistance against insects by promoting plant growth and highlight changes in plant molecular mechanisms and biochemical profiles.

  12. [Origin of the plague microbe Yersinia pestis: structure of the process of speciation].

    Science.gov (United States)

    Suntsov, V V

    2012-01-01

    The origin and evolution of the plague microbe Yersinia pestis are considered in the context of propositions of modern Darwinism. It was shown that the plague pathogen diverged from the pseudotuberculous microbe Yersinia pseudotuberculosis O:1b in the mountain steppe landscapes of Central Asia in the Sartan: 22000-15000 years ago. Speciation occurred in the tarbagan (Marmota sibirica)--flea (Oropsylla silantiewi) parasitic system. The structure of the speciation process included six stages: isolation, genetic drift, enhancement of intrapopulational polymorphism, the beginning of pesticin synthesis (genetic conflict and emergence of hiatus), specialization (stabilization of characteristics), and adaptive irradiation (transformation of the monotypic species Y. pestis tarbagani into a polytypic species). The scenario opens up wide prospects for construction of the molecular phylogeny of the plague microbe Y. pestis and for investigation of the biochemical and molecular-genetic aspects of "Darwinian" evolution of pathogens from many other nature-focal infections.

  13. Wars between microbes on roots and fruits [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Ben Lugtenberg

    2017-03-01

    Full Text Available Microbes in nature often live in unfavorable conditions. To survive, they have to occupy niches close to food sources and efficiently utilize nutrients that are often present in very low concentrations. Moreover, they have to possess an arsenal of attack and defense mechanisms against competing bacteria. In this review, we will discuss strategies used by microbes to compete with each other in the rhizosphere and on fruits, with a focus on mechanisms of inter- and intra-species antagonism. Special attention will be paid to the recently discovered roles of volatile organic compounds. Several microbes with proven capabilities in the art of warfare are being applied in products used for the biological control of plant diseases, including post-harvest control of fruits and vegetables.

  14. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential

    Directory of Open Access Journals (Sweden)

    Shivankar Agrawal

    2017-11-01

    Full Text Available Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs. Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs.

  15. Filthy lucre: A metagenomic pilot study of microbes found on circulating currency in New York City.

    Directory of Open Access Journals (Sweden)

    Julia M Maritz

    Full Text Available Paper currency by its very nature is frequently transferred from one person to another and represents an important medium for human contact with-and potential exchange of-microbes. In this pilot study, we swabbed circulating $1 bills obtained from a New York City bank in February (Winter and June (Summer 2013 and used shotgun metagenomic sequencing to profile the communities found on their surface. Using basic culture conditions, we also tested whether viable microbes could be recovered from bills.Shotgun metagenomics identified eukaryotes as the most abundant sequences on money, followed by bacteria, viruses and archaea. Eukaryotic assemblages were dominated by human, other metazoan and fungal taxa. The currency investigated harbored a diverse microbial population that was dominated by human skin and oral commensals, including Propionibacterium acnes, Staphylococcus epidermidis and Micrococcus luteus. Other taxa detected not associated with humans included Lactococcus lactis and Streptococcus thermophilus, microbes typically associated with dairy production and fermentation. Culturing results indicated that viable microbes can be isolated from paper currency.We conducted the first metagenomic characterization of the surface of paper money in the United States, establishing a baseline for microbes found on $1 bills circulating in New York City. Our results suggest that money amalgamates DNA from sources inhabiting the human microbiome, food, and other environmental inputs, some of which can be recovered as viable organisms. These monetary communities may be maintained through contact with human skin, and DNA obtained from money may provide a record of human behavior and health. Understanding these microbial profiles is especially relevant to public health as money could potentially mediate interpersonal transfer of microbes.

  16. Companion animals symposium: role of microbes in canine and feline health.

    Science.gov (United States)

    Kil, D Y; Swanson, K S

    2011-05-01

    Whether in an ocean reef, a landfill, or a gastrointestinal tract (GIT), invisible communities of highly active and adaptable microbes prosper. Over time, mammals have developed a symbiosis with microbes that are important inhabitants not only in the GIT, but also in the mouth, skin, and urogenital tract. In the GIT, the number of commensal microbes exceeds the total number of host cells by at least 10 times. The GIT microbes play a critical role in nutritional, developmental, defensive, and physiologic processes in the host. Recent evidence also suggests a role of GIT microbes in metabolic phenotype and disease risk (e.g., obesity, metabolic syndrome) of the host. Proper balance is a key to maintaining GIT health. Balanced microbial colonization is also important for other body regions such as the oral cavity, the region with the greatest prevalence of disease in dogs and cats. A significant obstruction to studying microbial populations has been the lack of tools to identify and quantify microbial communities accurately and efficiently. Most of the current knowledge of microbial populations has been established by traditional cultivation methods that are not only laborious, time-consuming, and often inaccurate, but also greatly limited in scope. However, recent advances in molecular-based techniques have resulted in a dramatic improvement in studying microbial communities. These DNA-based high-throughput technologies have enabled us to more clearly characterize the identity and metabolic activity of microbes living in the host and their association with health and diseases. Despite this recent progress, however, published data pertaining to microbial communities of dogs and cats are still lacking in comparison with data in humans and other animals. More research is required to provide a more detailed description of the canine and feline microbiome and its role in health and disease.

  17. Soil microbes and successful invasions of an exotic weed Eupatorium adenophorum

    International Nuclear Information System (INIS)

    Zhou, P.; Tang, T.; Zhao, P.; Chen, J.

    2016-01-01

    The effects of soil microbes collected from the two invasive species Eupatorium adenophorum and E. odoratum and the two native species E. japonicum and E. chinense on the growth and biomass of E. adenophorum was examined to explore a possible link between soil microbes and successful invasions of the weed species E. adenophorum. In most cases, plant height, stem diameter, root number and root length were significantly enhanced when E. adenophorum was grown in sterilized soils compared with those when one was grown in non-sterilized soils collected from the rhizosphere of E. adenophorum, E. japonicum and E. chinense. In contrast, the growth and biomass of E. adenophorum were apparently inhibited when grown in soils collected from the rhizosphere of E. odoratum. Plant height, stem diameter, leaf area per plant and root length of E. adenophorum was greater when it was grown in soils collected from the rhizosphere of E. adenophorum compared with those when it was grown in soils collected from the rhizosphere of E. odoratum, but the enhancement considerably greater when it was grown in soils collected from the rhizosphere of E. japonicum and E. chinense compared with those when it was grown in soils collected from the rhizosphere of E. adenophorum. In addition, the biomass allocation of E. adenophorum was not significantly affected by soil microbes and soil sources. These Results suggest that although the competitive advantage of the invasive weed E. adenophorum is not achieved solely by soil microbes, successful invasions of E. adenophorum may result partly from its release from the harmful soil microbes in its native range and the positive feedbacks of soil microbes from itself and the native species in its invading range. (author)

  18. Microbes in biological processes for municipal landfill leachate treatment: Community, function and interaction

    DEFF Research Database (Denmark)

    Zhang, Duoying; Vahala, Riku; Wang, Yu

    2016-01-01

    Landfill leachate (LFL) contains high strength of ammonium and complex organic substances including biodegradable volatile fatty acids (VFAs), refractory aquatic humic substances (AHS) and micro-scale xenobiotic organic chemicals (XOCs), which promotes the diverse microbial community in LFL...... treatment bioreactors. These microbes cooperate to remove nitrogen, biodegrade organic matters, eliminate the toxicity of XOCs and produce energy. In these diverse microbes, some show dominant in the bioreactor and are prevalent in many kinds of LFL treatment bio-processes, such as Brocadia from the phylum...

  19. The Physical Microbe; An introduction to noise, control, and communication in the prokaryotic cell

    Science.gov (United States)

    Hagen, Stephen J.

    2017-10-01

    Physical biology is a fusion of biology and physics. This book narrows down the scope of physical biology by focusing on the microbial cell; exploring the physical phenomena of noise, feedback, and variability that arise in the cellular information-processing circuits used by bacteria. It looks at the microbe from a physics perspective, asking how the cell optimizes its function to live within the constraints of physics. It introduces a physical and information-based (as opposed to microbiological) perspective on communication and signalling between microbes.

  20. The Use of Stuffed Microbes in an Undergraduate Microbiology Course Increases Engagement and Student Learning

    Directory of Open Access Journals (Sweden)

    Ginny Webb

    2015-08-01

    Full Text Available Student engagement, attention, and attendance during a microbiology lecture are crucial for student learning.  In addition, it is challenging to cover a large number of infectious diseases during a one-semester introductory microbiology course.  The use of visual aids helps students retain the information presented during a lecture.  Here, I discuss the use of stuffed, plush microbes as visual aids during an introductory microbiology course.  The incorporation of these stuffed microbes during a microbiology lecture results in an increase in engagement, interest, attendance, and retention of material.

  1. Performance of duckweed and effective microbes in reducing arsenic in paddy and paddy soil

    Science.gov (United States)

    Ng, C. A.; Wong, L. Y.; Lo, P. K.; Bashir, M. J. K.; Chin, S. J.; Tan, S. P.; Chong, C. Y.; Yong, L. K.

    2017-04-01

    In this study phytoremediation plant (duckweed) and effective microbes were used to investigate their effectiveness in reducing arsenic concentration in paddy soil and paddy grain. The results show that using duckweed alone is a better choice as it could decrease the arsenic concentration in paddy by 27.697 % and 8.268 % in paddy grain and paddy husk respectively. The study also found out that the concentration of arsenic in soil would affect the performance of duckweed and also delayed the reproduction rate of duckweed. Using the mixture of effective microbes and duckweed together to decrease arsenic in paddy was noticed having the least potential in reducing the arsenic concentration in paddy.

  2. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms

    NARCIS (Netherlands)

    Pangesti, N.P.D.; Pineda Gomez, A.M.; Pieterse, C.M.J.; Dicke, M.; Loon, van J.J.A.

    2013-01-01

    Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the

  3. Formation of a symbiotic host-microbe interface: the role of SNARE-mediated regulation of exocytosis

    NARCIS (Netherlands)

    Huisman, Rik

    2018-01-01

    At the heart of endosymbiosis microbes are hosted inside living cells in specialized membrane compartments that from a host-microbe interface, where nutrients and signal are efficiently exchanged. Such symbiotic interfaces include arbuscules produced by arbuscular mycorrhiza (AM) and

  4. Metagenomics, metaMicrobesOnline and Kbase Data Integration (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir

    2011-10-12

    Berkeley Lab's Paramvir Dehal on "Managing and Storing large Datasets in MicrobesOnline, metaMicrobesOnline and the DOE Knowledgebase" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  5. Eavesdropping on plant-insect-microbe chemical communications in agricultural ecology: a virtual issue on semiochemicals

    Science.gov (United States)

    Studies of plant-insect interactions, and more recently the interactions among plants, insects, and microbes, have revealed that volatiles often facilitate insect movement, aggregation, and host location by herbivores, predators and parasitoids, all of which could be used to help protect agriculture...

  6. The Hsp90 Complex in Microbes and Man | Center for Cancer Research

    Science.gov (United States)

    Why would cancer researchers be interested in how a bacteria named Escherichia coli (E. coli) rebuilds its cellular proteins after they have been inactivated by environmental stress such as heat?  The answer lies in a protein remodeling mechanism that is shared by microbes and man.

  7. Microstructured Block Copolymer Surfaces for Control of Microbe Adhesion and Aggregation

    Directory of Open Access Journals (Sweden)

    Ryan R. Hansen

    2014-03-01

    Full Text Available The attachment and arrangement of microbes onto a substrate is influenced by both the biochemical and physical surface properties. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe immobilization. Films of poly(glycidyl methacrylate-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA were patterned on silicon surfaces into line arrays or square grid patterns with 5 μm wide features and varied pitch. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates immobilized was dependent on the pattern dimensions. Films patterned as parallel lines or square grids with a pitch of 10 μm or less led to the immobilization of individual microbes with minimal formation of aggregates. Both geometries allowed for incremental increases in aggregate size distribution with each increase in pitch. These engineered surfaces combine spatial confinement with affinity-based capture to control the extent of microbe adhesion and aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.

  8. BRC - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...table). Data file File name: brc.tar.gz File URL: ftp://ftp.biosciencedbc.jp/archive/microbedb/LATEST/brc.ta...rains in JCM. About This Database Database Description Download License Update History of This Database Site Policy | Contact Us BRC - MicrobeDB.jp | LSDB Archive ...

  9. SRA - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...e following table). Data file File name: sra.tar.gz File URL: ftp://ftp.biosciencedbc.jp/archive/microbedb/L...t This Database Database Description Download License Update History of This Database Site Policy | Contact Us SRA - MicrobeDB.jp | LSDB Archive ...

  10. Experimental Activities in Primary School to Learn about Microbes in an Oral Health Education Context

    Science.gov (United States)

    Mafra, Paulo; Lima, Nelson; Carvalho, Graça S.

    2015-01-01

    Experimental science activities in primary school enable important cross-curricular learning. In this study, experimental activities on microbiology were carried out by 16 pupils in a Portuguese grade-4 classroom (9-10?years old) and were focused on two problem-questions related to microbiology and health: (1) do your teeth carry microbes? (2) why…

  11. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    Science.gov (United States)

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  12. Progress of CRISPR-Cas based genome editing in Photosynthetic microbes

    NARCIS (Netherlands)

    Naduthodi, M.I.S.; Barbosa, M.J.; Oost, van der J.

    2018-01-01

    The carbon footprint caused by unsustainable development and its environmental and economic impact has become a major concern in the past few decades. Photosynthetic microbes such as microalgae and cyanobacteria are capable of accumulating value-added compounds from carbon dioxide, and have been

  13. Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes

    Science.gov (United States)

    Fructans are an important nonfiber carbohydrate in cool-season grasses. Their fermentation by ruminal microbes is not well described, though such information is needed to understand their nutritional value to ruminants. Our objective was to compare kinetics and product formation of orchardgrass fruc...

  14. Fungal innate immunity induced by bacterial microbe-associated molecular patterns (MAMPs)

    DEFF Research Database (Denmark)

    Ip Cho, Simon; Sundelin, Thomas; Erbs, Gitte

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposin...

  15. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review

    Science.gov (United States)

    Tripathi, Durgesh K.; Tripathi, Ashutosh; Shweta; Singh, Swati; Singh, Yashwant; Vishwakarma, Kanchan; Yadav, Gaurav; Sharma, Shivesh; Singh, Vivek K.; Mishra, Rohit K.; Upadhyay, R. G.; Dubey, Nawal K.; Lee, Yonghoon; Chauhan, Devendra K.

    2017-01-01

    Nanotechnology is a cutting-edge field of science with the potential to revolutionize today’s technological advances including industrial applications. It is being utilized for the welfare of mankind; but at the same time, the unprecedented use and uncontrolled release of nanomaterials into the environment poses enormous threat to living organisms. Silver nanoparticles (AgNPs) are used in several industries and its continuous release may hamper many physiological and biochemical processes in the living organisms including autotrophs and heterotrophs. The present review gives a concentric know-how of the effects of AgNPs on the lower and higher autotrophic plants as well as on heterotrophic microbes so as to have better understanding of the differences in effects among these two groups. It also focuses on the mechanism of uptake, translocation, accumulation in the plants and microbes, and resulting toxicity as well as tolerance mechanisms by which these microorganisms are able to survive and reduce the effects of AgNPs. This review differentiates the impact of silver nanoparticles at various levels between autotrophs and heterotrophs and signifies the prevailing tolerance mechanisms. With this background, a comprehensive idea can be made with respect to the influence of AgNPs on lower and higher autotrophic plants together with heterotrophic microbes and new insights can be generated for the researchers to understand the toxicity and tolerance mechanisms of AgNPs in plants and microbes. PMID:28184215

  16. Long-range transport of airborne microbes over the global tropical and subtropical ocean

    KAUST Repository

    Mayol, Eva; Arrieta, J M; Jimé nez, Maria A.; Martí nez-Asensio, Adriá n; Garcias Bonet, Neus; Dachs, Jordi; Gonzá lez-Gaya, Belé n; Royer, Sarah-J.; Bení tez-Barrios, Veró nica M.; Fraile-Nuez, Eugenio; Duarte, Carlos M.

    2017-01-01

    The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth's surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33-68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.The extent to which the ocean acts as a sink and source of airborne particles to the atmosphere is unresolved. Here, the authors report high microbial loads over the tropical Atlantic, Pacific and Indian oceans and propose islands as stepping stones for the transoceanic transport of terrestrial microbes..

  17. Plant interactions with microbes and insects: from molecular mechanisms to ecology

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Dicke, M.

    2007-01-01

    Plants are members of complex communities and interact both with antagonists and beneficial organisms. An important question in plant defense-signaling research is how plants integrate signals induced by pathogens, beneficial microbes and insects into the most appropriate adaptive response.

  18. Isolation and cultivation of planktonic freshwater microbes is essential for a comprehensive understanding of their ecology.

    Czech Academy of Sciences Publication Activity Database

    Salcher, Michaela M.; Šimek, Karel

    2016-01-01

    Roč. 77, č. 3 (2016), s. 183-196 ISSN 0948-3055 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : autecology * axenic cultures * dilution to extinction * ecophysiology * genomics * isolation of freshwater microbes * targeted enrichment Subject RIV: EE - Microbiology, Virology Impact factor: 1.633, year: 2016

  19. Do volatiles produced by nectar-dwelling microbes affect honey bee preferences?

    Science.gov (United States)

    The microbiome of plants mediates many interactions in natural and managed systems. Among these, plant-pollinator interactions are important for ensuring high crop yields, pollinator health and successful plant reproduction. Despite initial work demonstrating effects of floral microbes on pollinatio...

  20. The MICROBE Project, A Report from the Interagency Working Group on Microbial Genomics

    Science.gov (United States)

    2001-01-01

    functional genomics tools (gene chips, technologies, etc.), comparative genomics, proteomics tools, novel culture techniques, in situ analyses, and...interested in supporting microarray/chip development for gene expression analysis for agricultural microbes, bioinformatics, and proteomics , and the...including one fungus ) in various stages of progress. The closely integrated Natural and Accelerated Bioremediation Research Program in the Office of

  1. Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition

    Science.gov (United States)

    Beth Cheever; Erika Kratzer; Jackson Webster

    2012-01-01

    According to theory, the rate and stoichiometry of microbial mineralization depend, in part, on nutrient availability. For microbes associated with leaves in streams, nutrients are available from both the water column and the leaf. Therefore, microbial nutrient cycling may change with nutrient availability and during leaf decomposition. We explored spatial and temporal...

  2. LINKING MICROBES TO CLIMATE: INCORPORATING MICROBIAL ACTIVITY INTO CLIMATE MODELS COLLOQUIUM

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, Edward; Harwood, Caroline; Reid, Ann

    2011-01-01

    This report explains the connection between microbes and climate, discusses in general terms what modeling is and how it applied to climate, and discusses the need for knowledge in microbial physiology, evolution, and ecology to contribute to the determination of fluxes and rates in climate models. It recommends with a multi-pronged approach to address the gaps.

  3. Disease - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...File name: disease.tar.gz File URL: ftp://ftp.biosciencedbc.jp/archive/microbedb/...iption Download License Update History of This Database Site Policy | Contact Us Disease - MicrobeDB.jp | LSDB Archive ...

  4. Long-range transport of airborne microbes over the global tropical and subtropical ocean

    KAUST Repository

    Mayol, Eva

    2017-07-28

    The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth\\'s surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33-68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.The extent to which the ocean acts as a sink and source of airborne particles to the atmosphere is unresolved. Here, the authors report high microbial loads over the tropical Atlantic, Pacific and Indian oceans and propose islands as stepping stones for the transoceanic transport of terrestrial microbes..

  5. Burstiness in Viral Bursts: How Stochasticity Affects Spatial Patterns in Virus-Microbe Dynamics

    Science.gov (United States)

    Lin, Yu-Hui; Taylor, Bradford P.; Weitz, Joshua S.

    Spatial patterns emerge in living systems at the scale of microbes to metazoans. These patterns can be driven, in part, by the stochasticity inherent to the birth and death of individuals. For microbe-virus systems, infection and lysis of hosts by viruses results in both mortality of hosts and production of viral progeny. Here, we study how variation in the number of viral progeny per lysis event affects the spatial clustering of both viruses and microbes. Each viral ''burst'' is initially localized at a near-cellular scale. The number of progeny in a single lysis event can vary in magnitude between tens and thousands. These perturbations are not accounted for in mean-field models. Here we developed individual-based models to investigate how stochasticity affects spatial patterns in virus-microbe systems. We measured the spatial clustering of individuals using pair correlation functions. We found that increasing the burst size of viruses while maintaining the same production rate led to enhanced clustering. In this poster we also report on preliminary analysis on the evolution of the burstiness of viral bursts given a spatially distributed host community.

  6. A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions.

    Science.gov (United States)

    Zhu, Qing; Riley, William J; Tang, Jinyun

    2017-04-01

    Terrestrial plants assimilate anthropogenic CO 2 through photosynthesis and synthesizing new tissues. However, sustaining these processes requires plants to compete with microbes for soil nutrients, which therefore calls for an appropriate understanding and modeling of nutrient competition mechanisms in Earth System Models (ESMs). Here, we survey existing plant-microbe competition theories and their implementations in ESMs. We found no consensus regarding the representation of nutrient competition and that observational and theoretical support for current implementations are weak. To reconcile this situation, we applied the Equilibrium Chemistry Approximation (ECA) theory to plant-microbe nitrogen competition in a detailed grassland 15 N tracer study and found that competition theories in current ESMs fail to capture observed patterns and the ECA prediction simplifies the complex nature of nutrient competition and quantitatively matches the 15 N observations. Since plant carbon dynamics are strongly modulated by soil nutrient acquisition, we conclude that (1) predicted nutrient limitation effects on terrestrial carbon accumulation by existing ESMs may be biased and (2) our ECA-based approach may improve predictions by mechanistically representing plant-microbe nutrient competition. © 2016 by the Ecological Society of America.

  7. Dietary inclusion of direct fed microbe on the growth performance of ...

    African Journals Online (AJOL)

    The birds were obtained from a reputable hatchery and randomly assigned to four dietary treatments, each with three replicate of ten birds. ... The results show that the growth performance of the broiler chicken fed diet containing different level of direct fed microbes did not differ significantly (P>0.05) in initial weight, final ...

  8. Prominent Human Health Impacts from Several Marine Microbes: History, Ecology, and Public Health Implications

    Directory of Open Access Journals (Sweden)

    P. K. Bienfang

    2011-01-01

    Full Text Available This paper overviews several examples of important public health impacts by marine microbes and directs readers to the extensive literature germane to these maladies. These examples include three types of dinoflagellates (Gambierdiscus spp., Karenia brevis, and Alexandrium fundyense, BMAA-producing cyanobacteria, and infectious microbes. The dinoflagellates are responsible for ciguatera fish poisoning, neurotoxic shellfish poisoning, and paralytic shellfish poisoning, respectively, that have plagued coastal populations over time. Research interest on the potential for marine cyanobacteria to contribute BMAA into human food supplies has been derived by BMAA's discovery in cycad seeds and subsequent implication as the putative cause of amyotrophic lateral sclerosis/parkinsonism dementia complex among the Chamorro people of Guam. Recent UPLC/MS analyses indicate that recent reports that BMAA is prolifically distributed among marine cyanobacteria at high concentrations may be due to analyte misidentification in the analytical protocols being applied for BMAA. Common infectious microbes (including enterovirus, norovirus, Salmonella, Campylobacter, Shigella, Staphylococcus aureus, Cryptosporidium, and Giardia cause gastrointestinal and skin-related illness. These microbes can be introduced from external human and animal sources, or they can be indigenous to the marine environment.

  9. Wired to the roots: impact of root-beneficial microbe interactions on aboveground plant physiology and protection.

    Science.gov (United States)

    Kumar, Amutha Sampath; Bais, Harsh P

    2012-12-01

    Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don't know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses.

  10. A place for host-microbe symbiosis in the comparative physiologist's toolbox.

    Science.gov (United States)

    Kohl, Kevin D; Carey, Hannah V

    2016-11-15

    Although scientists have long appreciated that metazoans evolved in a microbial world, we are just beginning to appreciate the profound impact that host-associated microbes have on diverse aspects of animal biology. The enormous growth in our understanding of host-microbe symbioses is rapidly expanding the study of animal physiology, both technically and conceptually. Microbes associate functionally with various body surfaces of their hosts, although most reside in the gastrointestinal tract. Gut microbes convert dietary and host-derived substrates to metabolites such as short-chain fatty acids, thereby providing energy and nutrients to the host. Bacterial metabolites incorporated into the host metabolome can activate receptors on a variety of cell types and, in doing so, alter host physiology (including metabolism, organ function, biological rhythms, neural activity and behavior). Given that host-microbe interactions affect diverse aspects of host physiology, it is likely that they influence animal ecology and, if they confer fitness benefits, the evolutionary trajectory of a species. Multiple variables - including sampling regime, environmental parameters, host metadata and analytical methods - can influence experimental outcomes in host-microbiome studies, making careful experimental design and execution crucial to ensure reproducible and informative studies in the laboratory and field. Integration of microbiomes into comparative physiology and ecophysiological investigations can reveal the potential impacts of the microbiota on physiological responses to changing environments, and is likely to bring valuable insights to the study of host-microbiome interactions among a broad range of metazoans, including humans. © 2016. Published by The Company of Biologists Ltd.

  11. Extracellular vesicles modulate host-microbe responses by altering TLR2 activity and phagocytosis.

    Directory of Open Access Journals (Sweden)

    Jeroen van Bergenhenegouwen

    Full Text Available Oral delivery of Gram positive bacteria, often derived from the genera Lactobacillus or Bifidobacterium, can modulate immune function. Although the exact mechanisms remain unclear, immunomodulatory effects may be elicited through the direct interaction of these bacteria with the intestinal epithelium or resident dendritic cell (DC populations. We analyzed the immune activation properties of Lactobacilli and Bifidobacterium species and made the surprising observation that cellular responses in vitro were differentially influenced by the presence of serum, specifically the extracellular vesicle (EV fraction. In contrast to the tested Lactobacilli species, tested Bifidobacterium species induce TLR2/6 activity which is inhibited by the presence of EVs. Using specific TLR ligands, EVs were found to enhance cellular TLR2/1 and TLR4 responses while TLR2/6 responses were suppressed. No effect could be observed on cellular TLR5 responses. We determined that EVs play a role in bacterial aggregation, suggesting that EVs interact with bacterial surfaces. EVs were found to slightly enhance DC phagocytosis of Bifidobacterium breve whereas phagocytosis of Lactobacillus rhamnosus was virtually absent upon serum EV depletion. DC uptake of a non-microbial substance (dextran was not affected by the different serum fractions suggesting that EVs do not interfere with DC phagocytic capacity but rather modify the DC-microbe interaction. Depending on the microbe, combined effects of EVs on TLR activity and phagocytosis result in a differential proinflammatory DC cytokine release. Overall, these data suggest that EVs play a yet unrecognized role in host-microbe responses, not by interfering in recipient cellular responses but via attachment to, or scavenging of, microbe-associated molecular patterns. EVs can be found in any tissue or bodily fluid, therefore insights into EV-microbe interactions are important in understanding the mechanism of action of potential

  12. Plant traits related to nitrogen uptake influence plant-microbe competition.

    Science.gov (United States)

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  13. Crumbling Ivory Towers: Academic Organizing and its Gender Effects

    NARCIS (Netherlands)

    Benschop, Y.W.M.; Brouns, M.R.

    2003-01-01

    The under-representation of women at the top of the academy is a persistent and fascinating issue, mostly analysed as a result of women's choices or as an issue of personnel management. In this article, the focus is on the functioning of universities as social institutions, where gender is ‘done’ in

  14. Concrete Walls Crumble as Tunnel TI8 Breaks Through

    CERN Multimedia

    2001-01-01

    On Wednesday, October 3rd, the excitement in the tunnels deep beneath CERN was high as an exuberant crowd watched the second and last transfer tunnel (TI8) from the SPS break through to the LHC. The Director-General with the Mayors of Meyrin and Prévessin at the breakthrough point. The area where the break through was to occur did not look particularly special, just a concrete wall with bright orange paint sprayed in the centre. But the austere surroundings quickly faded from importance as a tremendous ruckus filled the corridor. Just minutes later the first pieces of the wall started popping off. The suspense in the room grew and eventually the spinning drill became readily visible to the entire crowd.... and that's when the real noise started, the noise of applause! 'This is the second time I have seen this happen but it is always moving because it shows our steps forward.' said Prof. Luciano Maiani. Technicians, physicists, and engineers chatted excitedly as the tunnel team climbed through...

  15. Where the Sidewalk Crumbles: Children's Own Experiences and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Patricia Elaine Smith

    then, children feel the direct impact of politics in their daily lives. .... approach which will provide insight into approaches for working with children. ..... interviews took roughly two hours each, which was too long for the children to sit .... The questions then were divided into sections about family, being a parent, religion, and a.

  16. Simulated microbe removal around finger rings using different hand sanitation methods.

    Science.gov (United States)

    Alur, Archana A; Rane, Madhavi J; Scheetz, James P; Lorenz, Douglas J; Gettleman, Lawrence

    2009-09-01

    It is our opinion that the CDC and the WHO have underestimated cross-contamination under examination gloves in dental clinics while wearing jewelry, such as finger rings. These agencies only "recommend" removing jewelry, and only washing hands for 15 seconds with soap and warm water before donning gloves. This study examined several washing procedures and finger rings using simulated microbes. A gloved rubber hand manikin was made and fitted with a fresh disposable vinyl glove. Four fingers were fitted with rings or no ring, dusted with simulated microbes, and washed with a scrub brush for 5, 15, and 25 seconds under 20 degrees C and 40 degrees C water alone, or with liquid hand soap. Light levels (in lux) of fluorescent powder before and after washing were measured and delta scores calculated for changes in light levels, equivalent to effectiveness of hand washing procedures. A full-factorial, 3-factor analysis of variance (ANOVA) was used to test for differences among levels of the three study factors-time, temperature, and soap use. Tukey's post hoc honestly significant difference (HSD) test was applied to significant factors to examine pair-wise differences between factor levels. It was found that the longer the hands with rings were washed with a scrub brush under flowing water, the more simulated microbes were removed. By 25 seconds, all methods were essentially the same. Simulated microbes were more difficult to remove from the palm compared to the back of the hand. The liquid hand soap used in this study was more effective with warm water than cold. When given a choice of washing with cold water up to 15 seconds, it would be preferable not to use soap to remove simulated microbes. Qualitatively, the outer surface of finger rings were more effectively cleaned than the crevice below the ring, and the ring with a stone setting appeared to accumulate and retain simulated microbes more than other rings. The most effective treatment was washing with warm water

  17. MicrobesFlux: a web platform for drafting metabolic models from the KEGG database

    Directory of Open Access Journals (Sweden)

    Feng Xueyang

    2012-08-01

    Full Text Available Abstract Background Concurrent with the efforts currently underway in mapping microbial genomes using high-throughput sequencing methods, systems biologists are building metabolic models to characterize and predict cell metabolisms. One of the key steps in building a metabolic model is using multiple databases to collect and assemble essential information about genome-annotations and the architecture of the metabolic network for a specific organism. To speed up metabolic model development for a large number of microorganisms, we need a user-friendly platform to construct metabolic networks and to perform constraint-based flux balance analysis based on genome databases and experimental results. Results We have developed a semi-automatic, web-based platform (MicrobesFlux for generating and reconstructing metabolic models for annotated microorganisms. MicrobesFlux is able to automatically download the metabolic network (including enzymatic reactions and metabolites of ~1,200 species from the KEGG database (Kyoto Encyclopedia of Genes and Genomes and then convert it to a metabolic model draft. The platform also provides diverse customized tools, such as gene knockouts and the introduction of heterologous pathways, for users to reconstruct the model network. The reconstructed metabolic network can be formulated to a constraint-based flux model to predict and analyze the carbon fluxes in microbial metabolisms. The simulation results can be exported in the SBML format (The Systems Biology Markup Language. Furthermore, we also demonstrated the platform functionalities by developing an FBA model (including 229 reactions for a recent annotated bioethanol producer, Thermoanaerobacter sp. strain X514, to predict its biomass growth and ethanol production. Conclusion MicrobesFlux is an installation-free and open-source platform that enables biologists without prior programming knowledge to develop metabolic models for annotated microorganisms in the KEGG

  18. Avaliação de rações fareladas e micropeletizadas para larvas de tilápia do Nilo (Oreochromis niloticus - desempenho e efetividade da reversão sexual - DOI: 10.4025/actascianimsci.v26i2.1865 Crumble and meal ration evaluate to Nile tilapia (Oreochromis niloticus larvae during sexual reversion phase - DOI: 10.4025/actascianimsci.v26i2.1865

    Directory of Open Access Journals (Sweden)

    Fábio Meurer

    2004-04-01

    Full Text Available O objetivo do presente trabalho foi avaliar o efeito do processamento da ração de larvas de Oreochromis niloticus L. utilizada durante o processo de reversão sexual, sobre a sobrevivência, desempenho e proporção sexual. O período experimental foi de 30 dias, o delineamento foi inteiramente casualizado com 3 tratamentos e 6 repetições, considerando uma unidade experimental um aquário de 12L, contendo 20 larvas. No primeiro tratamento, utilizou-se ração farelada por 30 dias; no segundo, ração farelada durante os primeiros 10 dias e micropeletizada durante os 20 dias restantes; no terceiro, ração farelada durante os primeiros 20 dias e micropeletizada durante os 10 dias restantes. Ao final do experimento, os parâmetros de peso, comprimento, sobrevivência e proporção sexual foram submetidos à análise de variância a 5% de significância. Os parâmetros avaliados não apresentaram diferença significativa entre os tratamentos. A utilização da ração farelada ou micropeletizada pode ser feita sem prejuízo do desempenho, sobrevivência ou masculinização da tilápia nesta fase.The objective from this work was evaluate the effect of ration processing to Oreochromis niloticus L. larvae, on survival, performance and sexual reversal efficiency in sex revert phase. The experimental period were 30 days, and it was utilized a completely randomized design with tree treatments and six replications. An experimental unit was consist of 12L aquarium, with 20 larvae. The first treatment was consist of only meal ration utilization; the second treatment utilized a meal ration until 10th day and after crumble ration; and the third treatment utilized meal ration until 20th day and after crumble ration. At the end of the experiment, there were analysed weight, lenght, mortality and sex reversal. The data were submitted to analysis of variance and didn’t present differences (P>0.05 among treatments. The meal ration can be utilized without

  19. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation?

    KAUST Repository

    Bang, Corinna

    2018-02-15

    From protists to humans, all animals and plants are inhabited by microbial organisms. There is an increasing appreciation that these resident microbes influence the fitness of their plant and animal hosts, ultimately forming a metaorganism consisting of a uni- or multicellular host and a community of associated microorganisms. Research on host–microbe interactions has become an emerging cross-disciplinary field. In both vertebrates and invertebrates a complex microbiome confers immunological, metabolic and behavioural benefits; conversely, its disturbance can contribute to the development of disease states. However, the molecular and cellular mechanisms controlling the interactions within a metaorganism are poorly understood and many key interactions between the associated organisms remain unknown. In this perspective article, we outline some of the issues in interspecies interactions and in particular address the question of how metaorganisms react and adapt to inputs from extreme environments such as deserts, the intertidal zone, oligothrophic seas, and hydrothermal vents.

  20. Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe.

    Science.gov (United States)

    Lamichhane, Santosh; Sen, Partho; Dickens, Alex M; Orešič, Matej; Bertram, Hanne Christine

    2018-04-30

    It is well established that gut microbes and their metabolic products regulate host metabolism. The interactions between the host and its gut microbiota are highly dynamic and complex. In this review we present and discuss the metabolomic strategies to study the gut microbial ecosystem. We highlight the metabolic profiling approaches to study faecal samples aimed at deciphering the metabolic product derived from gut microbiota. We also discuss how metabolomics data can be integrated with metagenomics data derived from gut microbiota and how such approaches may lead to better understanding of the microbial functions. Finally, the emerging approaches of genome-scale metabolic modelling to study microbial co-metabolism and host-microbe interactions are highlighted. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes

    International Nuclear Information System (INIS)

    Xuegang Wang; Zhongkui Zhou

    2017-01-01

    We evaluated uranium bioleaching from low-grade, granite-type uranium ore using mixed acidophilic microbes from uranium mine leachate. A 4854-ton plant-scale heap bioleaching process achieved sustained leaching with a uranium leaching efficiency of 88.3% using a pH of 1.0-2.0 and an Fe"3"+ dosage of 3.0-5.5 g/L. Acid consumption amounted to 25.8 g H_2SO_4 kg"-"1 ore. Uranium bioleaching follows a diffusion-controlled kinetic model with a correlation coefficient of 0.9136. Almost all uranium was dissolved in aqueous solution, except those encapsulated in quartz particles. Therefore, heap bioleaching by mixed acidophilic microbes enables efficient, economical, large-scale recovery of uranium from low-grade ores. (author)

  2. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  3. Profiling the metabolic signals involved in chemical communication between microbes using imaging mass spectrometry.

    Science.gov (United States)

    Stasulli, Nikolas M; Shank, Elizabeth A

    2016-11-01

    The ability of microbes to secrete bioactive chemical signals into their environment has been known for over a century. However, it is only in the last decade that imaging mass spectrometry has provided us with the ability to directly visualize the spatial distributions of these microbial metabolites. This technology involves collecting mass spectra from multiple discrete locations across a biological sample, yielding chemical ‘maps’ that simultaneously reveal the distributions of hundreds of metabolites in two dimensions. Advances in microbial imaging mass spectrometry summarized here have included the identification of novel strain- or coculture-specific compounds, the visualization of biotransformation events (where one metabolite is converted into another by a neighboring microbe), and the implementation of a method to reconstruct the 3D subsurface distributions of metabolites, among others. Here we review the recent literature and discuss how imaging mass spectrometry has spurred novel insights regarding the chemical consequences of microbial interactions.

  4. Towards a General Equation for the Survival of Microbes Transferred between Solar System Bodies

    Science.gov (United States)

    Fries, M.; Steele, A.

    2014-01-01

    It should be possible to construct a general equation describing the survival of microbes transferred between Solar System bodies. Such an equation will be useful for constraining the likelihood of transfer of viable organisms between bodies throughout the lifetime of the Solar System, and for refining Planetary Protection constraints placed on future missions. We will discuss the construction of such an equation, present a plan for definition of pertinent factors, and will describe what research will be necessary to quantify those factors. Description: We will examine the case of microbes transferred between Solar System bodies as residents in meteorite material ejected from one body (the "intial body") and deposited on another (the "target body"). Any microbes transferred in this fashion will experience four distinct phases between their initial state on the initial body, up to the point where they colonize the target body. Each of these phases features phenomena capable of reducing or exterminating the initial microbial population. They are: 1) Ejection: Material is ejected from the initial body, imparting shock followed by rapid desiccation and cooling. 2) Transport: Material travels through interplanetary space to the target body, exposing a hypothetical microbial population to extended desiccation, irradiation, and temperature extremes. 3) Infall: Material is deposited on the target body, diminishing the microbial population through shock, mass loss, and heating. 4) Adaptation: Any microbes which survive the previous three phases must then adapt to new chemophysical conditions of the target body. Differences in habitability between the initial and target bodies dominate this phase. A suitable general-form equation can be assembled from the above factors by defining the initial number of microbes in an ejected mass and applying multiplicitive factors based on the physical phenomena inherent to each phase. It should be possible to present the resulting equation

  5. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation?

    KAUST Repository

    Bang, Corinna; Dagan, Tal; Deines, Peter; Dubilier, Nicole; Duschl, Wolfgang J.; Fraune, Sebastian; Hentschel, Ute; Hirt, Heribert; Hü lter, Nils; Lachnit, Tim; Picazo, Devani; Pita, Lucia; Pogoreutz, Claudia; Radecker, Nils; Saad, Maged; Schmitz, Ruth A.; Schulenburg, Hinrich; Voolstra, Christian R.; Weiland-Brä uer, Nancy; Ziegler, Maren; Bosch, Thomas C.G.

    2018-01-01

    From protists to humans, all animals and plants are inhabited by microbial organisms. There is an increasing appreciation that these resident microbes influence the fitness of their plant and animal hosts, ultimately forming a metaorganism consisting of a uni- or multicellular host and a community of associated microorganisms. Research on host–microbe interactions has become an emerging cross-disciplinary field. In both vertebrates and invertebrates a complex microbiome confers immunological, metabolic and behavioural benefits; conversely, its disturbance can contribute to the development of disease states. However, the molecular and cellular mechanisms controlling the interactions within a metaorganism are poorly understood and many key interactions between the associated organisms remain unknown. In this perspective article, we outline some of the issues in interspecies interactions and in particular address the question of how metaorganisms react and adapt to inputs from extreme environments such as deserts, the intertidal zone, oligothrophic seas, and hydrothermal vents.

  6. Digestion of crude protein and organic matter of leaves by rumen microbes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ciszuk, A.; Murphy, M.

    1982-01-01

    22 leaf specimens, of which 6 were from an energy-woods project, were studied by incubation in vitro with rumen microbes or pepsin-hydrochloric acid. Several were also examined in situ using the nylon-bag technique. Many leaves, despite their low fiber and high crude protein content, gave low values for organic matter digestibility. The crude protein degradation by rumen microbes or pepsin-hydrochloric acid was low, on average, compared with hay. There was a wide variation among leaf specimens. Variation was also found as regards ammonia production in short-term (4 hours) incubation. No close correlation was found between crude protein content and crude protein degradation, or between the estimates of ruminal degradation and of pepsin-hydrochloric acid digestibility. This suggest that there are leaves that gives ruminants substantial amounts of digestible protein yet escape ruminal fermentation. (Refs. 12).

  7. Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions.

    Science.gov (United States)

    Dörmann, Peter; Kim, Hyeran; Ott, Thomas; Schulze-Lefert, Paul; Trujillo, Marco; Wewer, Vera; Hückelhoven, Ralph

    2014-12-01

    Plant cells dynamically change their architecture and molecular composition following encounters with beneficial or parasitic microbes, a process referred to as host cell reprogramming. Cell-autonomous defense reactions are typically polarized to the plant cell periphery underneath microbial contact sites, including de novo cell wall biosynthesis. Alternatively, host cell reprogramming converges in the biogenesis of membrane-enveloped compartments for accommodation of beneficial bacteria or invasive infection structures of filamentous microbes. Recent advances have revealed that, in response to microbial encounters, plasma membrane symmetry is broken, membrane tethering and SNARE complexes are recruited, lipid composition changes and plasma membrane-to-cytoskeleton signaling is activated, either for pre-invasive defense or for microbial entry. We provide a critical appraisal on recent studies with a focus on how plant cells re-structure membranes and the associated cytoskeleton in interactions with microbial pathogens, nitrogen-fixing rhizobia and mycorrhiza fungi. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought

    DEFF Research Database (Denmark)

    Andresen, Luise C.; Michelsen, Anders; Jonasson, Sven

    2009-01-01

    the responses to single factors treatments. The soil microbes were superior to plants in the short-term competition for the added glycine, as indicated by an 18 times larger 15N recovery in the microbial biomass compared to the plant biomass. The soil microbes acquired glycine largely as an intact compound (87...... here present results from a field experiment in which the effects of these three climate change factors are investigated solely and in all combinations at a temperate heath dominated by heather (Calluna vulgaris) and wavy hair-grass (Deschampsia flexuosa). Climate induced increases in plant production...... may increase plant root exudation of dissolved organic compounds such as amino acids, and the release of amino acids during decomposition of organic matter. Such free amino acids in soil serve as substrates for soil microorganisms and are also acquired as nutrients directly by plants. We investigated...

  9. Microbe and Mineral Mediated Transformation of Heavy Metals, Radionuclides, and Organic Contaminants

    Science.gov (United States)

    Gerlach, R.

    2011-12-01

    Microorganisms influence their surroundings in many ways and humans have utilized microbially catalyzed reactions for benefit for centuries. Over the past few decades, microorganisms have been used for the control of contaminant transport in subsurface environments where many microbe mineral interactions occur. This presentation will discuss microbially influenced mineral formation and transformation as well as their influence on the fate of organic contaminants such as chlorinated aliphatics & 2,4,6-trinitrotoluene (TNT), heavy metals such as chromium, and radionuclides such as uranium & strontium. Both, batch and flow experiments have been performed, which monitor the net effect of microbe mineral interactions on the fate of these contaminants. This invited presentation will place an emphasis on the relative importance of direct microbial (i.e. biotic) transformations, mineral-mediated transformations as well as other abiotic reactions influencing the fate of environmental contaminants. Experiments will be summarized and placed in context of past and future engineered applications for the control of subsurface contaminants.

  10. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes

    OpenAIRE

    Hamblin, Michael R

    2016-01-01

    Photodynamic therapy (PDT) uses photosensitizers (non-toxic dyes) that are activated by absorption of visible light to form reactive oxygen species (including singlet oxygen) that can oxidize biomolecules and destroy cells. Antimicrobial photodynamic inactivation (aPDI) can treat localized infections. aPDI neither causes any resistance to develop in microbes, nor is affected by existing drug resistance status. We discuss some recent developments in aPDI. New photosensitizers including polycat...

  11. Safety of Novel Microbes for Human Consumption: Practical Examples of Assessment in the European Union

    Directory of Open Access Journals (Sweden)

    Theodor Brodmann

    2017-09-01

    Full Text Available Novel microbes are either newly isolated genera and species from natural sources or bacterial strains derived from existing bacteria. Novel microbes are gaining increasing attention for the general aims to preserve and modify foods and to modulate gut microbiota. The use of novel microbes to improve health outcomes is of particular interest because growing evidence points to the importance of gut microbiota in human health. As well, some recently isolated microorganisms have promise for use as probiotics, although in-depth assessment of their safety is necessary. Recent examples of microorganisms calling for more detailed evaluation include Bacteroides xylanisolvens, Akkermansia muciniphila, fructophilic lactic acid bacteria (FLAB, and Faecalibacterium prausnitzii. This paper discusses each candidate's safety evaluation for novel food or novel food ingredient approval according to European Union (EU regulations. The factors evaluated include their beneficial properties, antibiotic resistance profiling, history of safe use (if available, publication of the genomic sequence, toxicological studies in agreement with novel food regulations, and the qualified presumptions of safety. Sufficient evidences have made possible to support and authorize the use of heat-inactivated B. xylanisolvens in the European Union. In the case of A. muciniphila, the discussion focuses on earlier safety studies and the strain's suitability. FLAB are also subjected to standard safety assessments, which, along with their proximity to lactic acid bacteria generally considered to be safe, may lead to novel food authorization in the future. Further research with F. prausnitzii will increase knowledge about its safety and probiotic properties and may lead to its future use as novel food. Upcoming changes in EUU Regulation 2015/2283 on novel food will facilitate the authorization of future novel products and might increase the presence of novel microbes in the food market.

  12. Effects of the fungicide metiram in outdoor freshwater microcosms: responses of invertebrates, primany producers and microbes

    OpenAIRE

    Ronghua, Lin; Buijse-Bogdan, L.L.; Rocha Dimitrov, M.; Dohmen, P.; Kosol, Sujitra; Maltby, L.; Roessink, I.; Sinkeldam, J.A.; Smidt, H.; Wijngaarden, van, R.P.A.; Brock, T.C.M.

    2012-01-01

    The ecological impact of the dithiocarbamate fungicide metiram was studied in outdoor freshwater microcosms, consisting of 14 enclosures placed in an experimental ditch. The microcosms were treated three times (interval 7 days) with the formulated product BAS 222 28F (Polyram®). Intended metiram concentrations in the overlying water were 0, 4, 12, 36, 108 and 324 μg a.i./L. Responses of zooplankton, macroinvertebrates, phytoplankton, macrophytes, microbes and community metabolism endpoints we...

  13. Microbiology and Biodegradation: Deep Ultraviolet Microscopy for the Detection, Quantification, and Characterization of Microbes

    Science.gov (United States)

    2015-11-16

    Approved for Public Release; Distribution Unlimited Final Report: 14.3 Microbiology and Biodegradation: Deep Ultraviolet Microscopy for the Detection...Fluroesence; Raman Spectroscopy; Microbiology REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO...14.3 Microbiology and Biodegradation: Deep Ultraviolet Microscopy for the Detection, Quantification, and Characterization of Microbes Report Title

  14. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2

    Science.gov (United States)

    Benjamin N. Sulman; Richard P. Phillips; A. Christopher Oishi; Elena Shevliakova; Stephen W. Pacala

    2014-01-01

    The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle–climate models1.Much of this uncertainty arises from our limited understanding of the extent to which root–microbe interactions induce SOC losses (through accelerated decomposition or ‘priming’2) or indirectly promote SOC gains (...

  15. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview

    Science.gov (United States)

    Tiwari, Shalini; Lata, Charu

    2018-01-01

    Several anthropogenic activities including mining, modern agricultural practices, and industrialization have long-term detrimental effect on our environment. All these factors lead to increase in heavy metal concentration in soil, water, and air. Soil contamination with heavy metals cause several environmental problems and imparts toxic effect on plant as well as animals. In response to these adverse conditions, plants evolve complex molecular and physiological mechanisms for better adaptability, tolerance, and survival. Nowadays conventional breeding and transgenic technology are being used for development of metal stress resistant varieties which, however, are time consuming and labor intensive. Interestingly the use of microbes as an alternate technology for improving metal tolerance of plants is gaining momentum recently. The use of these beneficial microorganisms is considered as one of the most promising methods for safe crop-management practices. Interaction of plants with soil microorganisms can play a vital role in acclimatizing plants to metalliferous environments, and can thus be explored to improve microbe-assisted metal tolerance. Plant-associated microbes decrease metal accumulation in plant tissues and also help to reduce metal bioavailability in soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e., genetically transformed bacteria has been used to increase remediation of heavy metals and stress tolerance in plants. This review takes into account our current state of knowledge of the harmful effects of heavy metal stress, the signaling responses to metal stress, and the role of plant-associated microbes in metal stress tolerance. The review also highlights the challenges and opportunities in this continued area of research on plant–microbe–metal interaction. PMID:29681916

  16. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview

    Directory of Open Access Journals (Sweden)

    Shalini Tiwari

    2018-04-01

    Full Text Available Several anthropogenic activities including mining, modern agricultural practices, and industrialization have long-term detrimental effect on our environment. All these factors lead to increase in heavy metal concentration in soil, water, and air. Soil contamination with heavy metals cause several environmental problems and imparts toxic effect on plant as well as animals. In response to these adverse conditions, plants evolve complex molecular and physiological mechanisms for better adaptability, tolerance, and survival. Nowadays conventional breeding and transgenic technology are being used for development of metal stress resistant varieties which, however, are time consuming and labor intensive. Interestingly the use of microbes as an alternate technology for improving metal tolerance of plants is gaining momentum recently. The use of these beneficial microorganisms is considered as one of the most promising methods for safe crop-management practices. Interaction of plants with soil microorganisms can play a vital role in acclimatizing plants to metalliferous environments, and can thus be explored to improve microbe-assisted metal tolerance. Plant-associated microbes decrease metal accumulation in plant tissues and also help to reduce metal bioavailability in soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e., genetically transformed bacteria has been used to increase remediation of heavy metals and stress tolerance in plants. This review takes into account our current state of knowledge of the harmful effects of heavy metal stress, the signaling responses to metal stress, and the role of plant-associated microbes in metal stress tolerance. The review also highlights the challenges and opportunities in this continued area of research on plant–microbe–metal interaction.

  17. A Hair & a Fungus: Showing Kids the Size of a Microbe

    Science.gov (United States)

    Richter, Dana L.

    2013-01-01

    A simple method is presented to show kids the size of a microbe--a fungus hypha--compared to a human hair. Common household items are used to make sterile medium on a stove or hotplate, which is dispensed in the cells of a weekly plastic pill box. Mold fungi can be easily and safely grown on the medium from the classroom environment. A microscope…

  18. Soil microbes shift C-degrading activity along an ambient and experimental nitrogen gradient

    Science.gov (United States)

    Moore, J.; Frey, S. D.

    2017-12-01

    The balance between soil carbon (C) accumulation and decomposition is determined in large part by the activity and biomass of soil microbes, and yet their sensitivity to global changes remains unresolved. Atmospheric nitrogen (N) deposition has increased 22% (for NH4+) in the last two decades despite initiation of the Clean Air Act. Nitrogen deposition alters ecosystem processes by changing nutrient availability and soil pH, creating physiologically stressful environments that select for stress tolerant microbes. The functional fungal community may switch from domination by species with traits associated with decomposition via oxidative enzymes to traits associated with stress tolerance if global changes push fungal physiological limits. We examined changes in soil microbial activity across seven sites representing a gradient of ambient atmospheric N deposition, and five of these sites also had long-term N addition experiments. We measured changes in abundance of decomposition genes and C mineralization rates as indicators of microbial activity. We expected microbes to be less active with high N deposition, thus decreasing C mineralization rates. We found that C mineralization rates declined with total N deposition (ambient plus experimental additions), and this decline was more sensitive to N deposition where it occurred naturally compared to experimental treatments. Carbon mineralization declined by 3% in experimentally fertilized soils compared to 10% in control soils for every 1 kg/ha/y increase in ambient N deposition. Thus, microbes exposed to ambient levels of N deposition (2 - 12 kg/ha/y) had a stronger response than those exposed to fertilized soils (20 - 50 kg/ha/y). Long-term experimental N-addition seems to have selected for a microbial community that is tolerant of high N deposition. In sum, we provide evidence that soil microbial activity responded to N deposition, and may shift over time to a community capable of tolerating environmental change.

  19. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  20. Does plant-Microbe interaction confer stress tolerance in plants: A review?

    Science.gov (United States)

    Kumar, Akhilesh; Verma, Jay Prakash

    2018-03-01

    The biotic and abiotic stresses are major constraints for crop yield, food quality and global food security. A number of parameters such as physiological, biochemical, molecular of plants are affected under stress condition. Since the use of inorganic fertilizers and pesticides in agriculture practices cause degradation of soil fertility and environmental pollutions. Hence it is necessary to develop safer and sustainable means for agriculture production. The application of plant growth promoting microbes (PGPM) and mycorrhizal fungi enhance plant growth, under such conditions. It offers an economically fascinating and ecologically sound ways for protecting plants against stress condition. PGPM may promote plant growth by regulating plant hormones, improve nutrition acquisition, siderophore production and enhance the antioxidant system. While acquired systemic resistance (ASR) and induced systemic resistance (ISR) effectively deal with biotic stress. Arbuscular mycorrhiza (AM) enhance the supply of nutrients and water during stress condition and increase tolerance to stress. This plant-microbe interaction is vital for sustainable agriculture and industrial purpose, because it depends on biological processes and replaces conventional agriculture practices. Therefore, microbes may play a key role as an ecological engineer to solve environmental stress problems. So, it is a feasible and potential technology in future to feed global population at available resources with reduced impact on environmental quality. In this review, we have attempted to explore about abiotic and biotic stress tolerant beneficial microorganisms and their modes of action to enhance the sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Effects of different microbes on fermenting feed for sea cucumber ( Apostichopus japonicus)

    Science.gov (United States)

    Jiang, Yan; Wang, Yingeng; Mai, Kangsen; Zhang, Zheng; Liao, Meijie; Rong, Xiaojun

    2015-10-01

    The effects of different microbes on fermenting feed for sea cucumber ( Apostichopus japonicus) were compared to select the optimal fermentation strain in this study. Saccharomgces cerevisae, Candida utilis, Bacillus subtilis and Geotrichum candidum were independently added into the experimental compound feed, while only saline was mixed with the control feed. The fermentation treatments were inoculated with 10% seed solution under the condition of 25°C and 70% water content, which lasted for 5 days to elucidate the optimal microbe strain for fermenting effect. Physicochemical indexes and sensorial characteristics were measured per day during the fermentation. The indexes included dry matter recovery (DMR), crude protein (CP), the percentage of amino acid nitrogen to total nitrogen (AA-N/tN), the percentage of ammonia nitrogen to total nitrogen (NH3-N/tN), and the ratio of fermentation strains and vibrios to the total microbes, color, smell and viscosity. The results showed that DMR, CP and AA-N/tN of the S. cerevisae group reached the highest level on day 3, but the ratio of fermentation strain was second to C. utilis group. In addition, its NH3-N/tN and the ratio of vibrios were maintained at low levels, and the sensory evaluation score including smell, color and viscosity was the highest in S. cerevisae group on day 3. Therefore, S. cerevisae could be the optimal strain for the feed fermentation for sea cucumber. This research developed a new production method of fermentation feed for sea cucumber.

  2. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells.

    Science.gov (United States)

    Atarashi, Koji; Tanoue, Takeshi; Ando, Minoru; Kamada, Nobuhiko; Nagano, Yuji; Narushima, Seiko; Suda, Wataru; Imaoka, Akemi; Setoyama, Hiromi; Nagamori, Takashi; Ishikawa, Eiji; Shima, Tatsuichiro; Hara, Taeko; Kado, Shoichi; Jinnohara, Toshi; Ohno, Hiroshi; Kondo, Takashi; Toyooka, Kiminori; Watanabe, Eiichiro; Yokoyama, Shin-Ichiro; Tokoro, Shunji; Mori, Hiroshi; Noguchi, Yurika; Morita, Hidetoshi; Ivanov, Ivaylo I; Sugiyama, Tsuyoshi; Nuñez, Gabriel; Camp, J Gray; Hattori, Masahira; Umesaki, Yoshinori; Honda, Kenya

    2015-10-08

    Intestinal Th17 cells are induced and accumulate in response to colonization with a subgroup of intestinal microbes such as segmented filamentous bacteria (SFB) and certain extracellular pathogens. Here, we show that adhesion of microbes to intestinal epithelial cells (ECs) is a critical cue for Th17 induction. Upon monocolonization of germ-free mice or rats with SFB indigenous to mice (M-SFB) or rats (R-SFB), M-SFB and R-SFB showed host-specific adhesion to small intestinal ECs, accompanied by host-specific induction of Th17 cells. Citrobacter rodentium and Escherichia coli O157 triggered similar Th17 responses, whereas adhesion-defective mutants of these microbes failed to do so. Moreover, a mixture of 20 bacterial strains, which were selected and isolated from fecal samples of a patient with ulcerative colitis on the basis of their ability to cause a robust induction of Th17 cells in the mouse colon, also exhibited EC-adhesive characteristics. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast

    Science.gov (United States)

    Libkind, Diego; Hittinger, Chris Todd; Valério, Elisabete; Gonçalves, Carla; Dover, Jim; Johnston, Mark; Gonçalves, Paula; Sampaio, José Paulo

    2011-01-01

    Domestication of plants and animals promoted humanity's transition from nomadic to sedentary lifestyles, demographic expansion, and the emergence of civilizations. In contrast to the well-documented successes of crop and livestock breeding, processes of microbe domestication remain obscure, despite the importance of microbes to the production of food, beverages, and biofuels. Lager-beer, first brewed in the 15th century, employs an allotetraploid hybrid yeast, Saccharomyces pastorianus (syn. Saccharomyces carlsbergensis), a domesticated species created by the fusion of a Saccharomyces cerevisiae ale-yeast with an unknown cryotolerant Saccharomyces species. We report the isolation of that species and designate it Saccharomyces eubayanus sp. nov. because of its resemblance to Saccharomyces bayanus (a complex hybrid of S. eubayanus, Saccharomyces uvarum, and S. cerevisiae found only in the brewing environment). Individuals from populations of S. eubayanus and its sister species, S. uvarum, exist in apparent sympatry in Nothofagus (Southern beech) forests in Patagonia, but are isolated genetically through intrinsic postzygotic barriers, and ecologically through host-preference. The draft genome sequence of S. eubayanus is 99.5% identical to the non-S. cerevisiae portion of the S. pastorianus genome sequence and suggests specific changes in sugar and sulfite metabolism that were crucial for domestication in the lager-brewing environment. This study shows that combining microbial ecology with comparative genomics facilitates the discovery and preservation of wild genetic stocks of domesticated microbes to trace their history, identify genetic changes, and suggest paths to further industrial improvement. PMID:21873232

  4. The Effect of Antibacterial Formula Hand Cleaners on the Elimination of Microbes on Hands

    Science.gov (United States)

    Coleman, J. R.

    2002-05-01

    : The purpose of this project is to find out which one of the antibacterial hand cleanser (antibacterial bar soap, antibacterial liquid hand soap, and liquid hand sanitizer) is more effective in eliminating microbes. If antibacterial- formula liquid hand soap is used on soiled hands, then it will be more effective in eliminating microbes. Germs are microorganisms that cause disease and can spread from person-to-person. Bacteria are a kind of microbe, an example of which is Transient Flora that is often found on hands. Hand washing prevents germs from spreading to others. During the procedure, swabs were used to take samples before and after the soiled hands had been washed with one of the antibacterial hand cleansers. Nutrient Easygel was poured into petri dishes to harden for 1 day, and then samples were swabbed on the gel. The Petri dishes were placed in an incubator for 24 hours, and then data was recorded accordingly. The antibacterial liquid hand soap was sufficient in eliminating the majority of bacteria. The hands had 65% of the bacteria on them, and after the liquid hand soap was used only 37% of the bacteria remained.

  5. Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators.

    Science.gov (United States)

    Vannette, Rachel L; Fukami, Tadashi

    2016-06-01

    Secondary metabolites that are present in floral nectar have been hypothesized to enhance specificity in plant-pollinator mutualism by reducing larceny by non-pollinators, including microorganisms that colonize nectar. However, few studies have tested this hypothesis. Using synthetic nectar, we conducted laboratory and field experiments to examine the effects of five chemical compounds found in nectar on the growth and metabolism of nectar-colonizing yeasts and bacteria, and the interactive effects of these compounds and nectar microbes on the consumption of nectar by pollinators. In most cases, focal compounds inhibited microbial growth, but the extent of these effects depended on compound identity, concentration, and microbial species. Moreover, most compounds did not substantially decrease sugar metabolism by microbes, and microbes reduced the concentration of some compounds in nectar. Using artificial flowers in the field, we also found that the common nectar yeast Metschnikowia reukaufii altered nectar consumption by small floral visitors, but only in nectar containing catalpol. This effect was likely mediated by a mechanism independent of catalpol metabolism. Despite strong compound-specific effects on microbial growth, our results suggest that the secondary metabolites tested here are unlikely to be an effective general defense mechanism for preserving nectar sugars for pollinators. Instead, our results indicate that microbial colonization of nectar could reduce the concentration of secondary compounds in nectar and, in some cases, reduce deterrence to pollinators.

  6. [Effects of different organic fertilizers on the microbes in rhizospheric soil of flue-cured tobacco].

    Science.gov (United States)

    Zhang, Yun-Wei; Xu, Zhi; Tang, Li; Li, Yan-Hong; Song, Jian-Qun; Xu, Jian-Qin

    2013-09-01

    A field experiment was conducted to study the effects of applying different organic fertilizers (refined organic fertilizer and bio-organic fertilizer) and their combination with 20% reduced chemical fertilizers on the microbes in rhizospheric soil of flue-cured tobacco, the resistance of the tobacco against bacterial wilt, and the tobacco yield and quality. As compared with conventional chemical fertilization (CK), applying refined organic fertilizer (ROF) or bio-organic fertilizer (BIO) in combining with 20% reduced chemical fertilization increased the bacterial number and the total microbial number in the rhizospheric soil significantly. Applying BIO in combining with 20% reduced chemical fertilization also increased the actinomyces number in the rhizospheric soil significantly, with an increment of 44.3% as compared with that under the application of ROF in combining with 20% reduced chemical fertilization, but decreased the fungal number. As compared with CK, the ROF and BIO increased the carbon use capacity of rhizospheric microbes significantly, and the BIO also increased the capacity of rhizospheric microbes in using phenols significantly. Under the application of ROF and BIO, the disease incidence and the disease index of bacterial wilt were decreased by 4% and 8%, and 23% and 15.9%, and the proportions of high grade tobacco leaves increased significantly by 10.5% and 9.7%, respectively, as compared with those in CK. BIO increased the tobacco yield and its output value by 17.1% and 18.9% , respectively, as compared with ROF.

  7. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology.

    Science.gov (United States)

    Gupta, Anshu; Khare, S K

    2009-01-01

    Solvent-tolerant microbes are a newly emerging class that possesses the unique ability to thrive in the presence of organic solvents. Their enzymes adapted to mediate cellular and metabolic processes in a solvent-rich environment and are logically stable in the presence of organic solvents. Enzyme catalysis in non-aqueous/low-water media is finding increasing applications for the synthesis of industrially important products, namely peptides, esters, and other trans-esterification products. Solvent stability, however, remains a prerequisite for employing enzymes in non-aqueous systems. Enzymes, in general, get inactivated or give very low rates of reaction in non-aqueous media. Thus, early efforts, and even some recent ones, have aimed at stabilization of enzymes in organic media by immobilization, surface modifications, mutagenesis, and protein engineering. Enzymes from solvent-tolerant microbes appear to be the choicest source for studying solvent-stable enzymes because of their unique ability to survive in the presence of a range of organic solvents. These bacteria circumvent the solvent's toxic effects by virtue of various adaptations, e.g. at the level of the cytoplasmic membrane, by degradation and transformation of solvents, and by active excretion of solvents. The recent screening of these exotic microbes has generated some naturally solvent-stable proteases, lipases, cholesterol oxidase, cholesterol esterase, cyclodextrin glucanotransferase, and other important enzymes. The unique properties of these novel biocatalysts have great potential for applications in non-aqueous enzymology for a range of industrial processes.

  8. INTERACTIONS AMONG PHOSPHATE AMENDMENTS, MICROBES AND URANIUM MOBILITY IN CONTAMINATED SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A

    2007-08-30

    The use of sequestering agents for the transformation of radionuclides in low concentrations in contaminated soils/sediments offers considerable potential for long-term environmental cleanup. This study evaluated the influence of four phosphate amendments and two microbial amendments on U availability. The synchrotron X-ray fluorescence mapping of the untreated U-contaminated sediment showed that U was closely associated with Mn. All tested phosphate amendments reduced aqueous U concentration more than 90%, likely due to formation of insoluble phosphate precipitates. The addition of A. piechaudii and P. putida alone were found to reduce U concentrations 63% and 31% respectively. Uranium sorption in phosphate treatments was significantly reduced in the presence of microbes. However, increased microbial activity in the treated sediment led to reduction of phosphate effectiveness. The average U concentration in 1 M MgCl{sub 2} extract from U amended sediment was 437 {micro}g/kg, but in the same sediment without microbes (autoclaved sediment), the extractable U concentration was only 103 {micro}g/kg. When the autoclaved amended sediment was treated with autoclaved biological apatite, U concentration in the 1 M MgCl{sub 2} extract was {approx}0 {micro}g/kg. Together these tests suggest that microbes may enhance U leaching and reduce phosphate amendment remedial effectiveness.

  9. Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level

    Directory of Open Access Journals (Sweden)

    Zixi Chen

    2017-09-01

    Full Text Available Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS, and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented.

  10. Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Shu-Hsien; Yang, Shang-Shyng [Institute of Microbiology and Biochemistry, National Taiwan University, Taipei 10617, (Taiwan); Liu, Ching-Piao [Department of Biological Science and Technology, Meiho Institute of Technology, Pingtung 91201, (Taiwan)

    2007-05-15

    Food waste is approximately one quarter of the total garbage in Taiwan. To investigate the feasibility of microbial conversion of food waste to multiple functional biofertilizer, food waste was mixed with bulking materials, inoculated with thermophilic and lipolytic microbes and incubated at 50{sup o}C in a mechanical composter. Microbial inoculation enhanced the degradation of food wastes, increased the total nitrogen and the germination rate of alfalfa seed, shortened the maturity period and improved the quality of biofertilizer. In food waste inoculated with thermophilic and lipolytic Brevibacillus borstelensis SH168 for 28 days, total nitrogen increased from 2.01% to 2.10%, ash increased from 24.94% to 29.21%, crude fat decreased from 4.88% to 1.34% and the C/N ratio decreased from 18.02 to 17.65. Each gram of final product had a higher population of thermophilic microbes than mesophilic microbes. Microbial conversion of food waste to biofertilizer is a feasible and potential technology in the future to maintain the natural resources and to reduce the impact on environmental quality. (author)

  11. Enriching Metal-Oxidizing Microbes from Marine Sediment on Cathodic Currents

    Science.gov (United States)

    Rowe, A. R.; Nealson, K. H.

    2013-12-01

    The ability of organisms to transfer electrons to and from substrates outside the cell is reshaping the way we look at microbial respiration. While this process, termed extracellular electron transport (EET), has been described in a number of metal reducing organisms, current evidence suggests that this process is widespread in nature and across physiologies. Additionally, it has been speculated that these previously overlooked electrochemical interactions may play an important role in global biogeochemical cycles. Requirements for EET could play a role in why the ';uncultured majority' have so far been resistant to culturing. As such, we are currently developing culturing techniques to target microbes capable of utilizing insoluble electron acceptors utilizing electrochemical techniques. Microbe-electrode interactions are analogous to the reactions that occur between microbes and minerals and may provide an apt way to mimic the environmental conditions (i.e., insoluble electron donor/acceptor at specific redox potentials) required for culturing specialized or EET dependent metabolisms. It has been previously demonstrated that aquatic sediments are capable of utilizing anodes as electron acceptors, thereby generating a current. While, it is known that microbes utilize electrons from a cathode for the reduction of different metals and oxygen in microbial fuel cells, currently there are no reports of environmental enrichments of microbes using cathodes. Replicate microcosms from marine sediments (sampled from Catalina Harbor, California) were incubated with ITO plated glass electrodes. Negative current production at -400mV (vs. Ag/AgCl reference electrodes) potentials was sustained for four weeks. Secondary enrichments were then constructed using the cathode as the primary electron source and a variety of anaerobic terminal electron acceptors--Nitrate, Fe3+, and SO42-. Positive current was maintained in enrichment cultures (compared to abiotic control containing

  12. Preferences for different nitrogen forms by coexisting plant species and soil microbes.

    Science.gov (United States)

    Harrison, Kathryn A; Bol, Roland; Bardgett, Richard D

    2007-04-01

    The growing awareness that plants might use a variety of nitrogen (N) forms, both organic and inorganic, has raised questions about the role of resource partitioning in plant communities. It has been proposed that coexisting plant species might be able to partition a limited N pool, thereby avoiding competition for resources, through the uptake of different chemical forms of N. In this study, we used in situ stable isotope labeling techniques to assess whether coexisting plant species of a temperate grassland (England, UK) display preferences for different chemical forms of N, including inorganic N and a range of amino acids of varying complexity. We also tested whether plants and soil microbes differ in their preference for different N forms, thereby relaxing competition for this limiting resource. We examined preferential uptake of a range of 13C15N-labeled amino acids (glycine, serine, and phenylalanine) and 15N-labeled inorganic N by coexisting grass species and soil microbes in the field. Our data show that while coexisting plant species simultaneously take up a variety of N forms, including inorganic N and amino acids, they all showed a preference for inorganic N over organic N and for simple over the more complex amino acids. Soil microbes outcompeted plants for added N after 50 hours, but in the long-term (33 days) the proportion of added 15N contained in the plant pool increased for all N forms except for phenylalanine, while the proportion in the microbial biomass declined relative to the first harvest. These findings suggest that in the longer-term plants become more effective competitors for added 15N. This might be due to microbial turnover releasing 15N back into the plant-soil system or to the mineralization and subsequent plant uptake of 15N transferred initially to the organic matter pool. We found no evidence that soil microbes preferentially utilize any of the N forms added, despite previous studies showing that microbial preferences for N forms

  13. A Hydroponic Co-cultivation System for Simultaneous and Systematic Analysis of Plant/Microbe Molecular Interactions and Signaling.

    Science.gov (United States)

    Nathoo, Naeem; Bernards, Mark A; MacDonald, Jacqueline; Yuan, Ze-Chun

    2017-07-22

    An experimental design mimicking natural plant-microbe interactions is very important to delineate the complex plant-microbe signaling processes. Arabidopsis thaliana-Agrobacterium tumefaciens provides an excellent model system to study bacterial pathogenesis and plant interactions. Previous studies of plant-Agrobacterium interactions have largely relied on plant cell suspension cultures, the artificial wounding of plants, or the artificial induction of microbial virulence factors or plant defenses by synthetic chemicals. However, these methods are distinct from the natural signaling in planta, where plants and microbes recognize and respond in spatial and temporal manners. This work presents a hydroponic cocultivation system where intact plants are supported by metal mesh screens and cocultivated with Agrobacterium. In this cocultivation system, no synthetic phytohormone or chemical that induces microbial virulence or plant defense is supplemented. The hydroponic cocultivation system closely resembles natural plant-microbe interactions and signaling homeostasis in planta. Plant roots can be separated from the medium containing Agrobacterium, and the signaling and responses of both the plant hosts and the interacting microbes can be investigated simultaneously and systematically. At any given timepoint/interval, plant tissues or bacteria can be harvested separately for various "omics" analyses, demonstrating the power and efficacy of this system. The hydroponic cocultivation system can be easily adapted to study: 1) the reciprocal signaling of diverse plant-microbe systems, 2) signaling between a plant host and multiple microbial species (i.e. microbial consortia or microbiomes), 3) how nutrients and chemicals are implicated in plant-microbe signaling, and 4) how microbes interact with plant hosts and contribute to plant tolerance to biotic or abiotic stresses.

  14. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes

    OpenAIRE

    Saad Rama; Rizkallah Mariam R; Aziz Ramy K

    2012-01-01

    Abstract The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based ph...

  15. Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that 'everything is not everywhere'.

    Science.gov (United States)

    Rout, Marnie E; Callaway, Ragan M

    2012-07-01

    The study of soil biota in the context of exotic plant invasions has led to an explosion in our understanding of the ecological roles of many different groups of microbes that function in roots or at the root-soil interface. Part of this progress has been the emergence of two biogeographic patterns involving invasive plants and soil microbes. First, in their non-native ranges invasive plants commonly interact differently with the same soil microbes than native plants. Second, in their native ranges, plants that are invasive elsewhere commonly interact functionally with soil microbes differently in their home ranges than they do in their non-native ranges. These studies pose a challenge to a long-held paradigm about microbial biogeography - the idea that microbes are not limited by dispersal and are thus free from the basic taxonomic, biogeographical and evolutionary framework that characterizes all other life on Earth. As an analogy, the global distribution of animals that function as carnivores does not negate the fascinating evolutionary biogeographic patterns of carnivores. Other challenges to this notion come from new measurements of genetic differences among microbes across geographic boundaries, which also suggest that meaningful biogeographic patterns exist for microorganisms. We expand this discussion of whether or not 'everything is everywhere' by using the inherently biogeographic context of plant invasions by reviewing the literature on interactions among invasive plants and the microorganisms in the rhizosphere. We find that these interactions can be delineated at multiple scales: from individual plants to continents. Thus the microbes that regulate major aspects of plant biology do not appear to be exempt from the fundamental evolutionary processes of geographical isolation and natural selection. At the important scales of taxonomy, ecotype and ecosystem functions, the fundamental ecology of invaders and soil microbes indicates that everything might

  16. Aging and immortality in unicellular species.

    Science.gov (United States)

    Florea, Michael

    2017-10-01

    It has been historically thought that in conditions that permit growth, most unicellular species do not to age. This was particularly thought to be the case for symmetrically dividing species, as such species lack a clear distinction between the soma and the germline. Despite this, studies of the symmetrically dividing species Escherichia coli and Schizosaccharomyces pombe have recently started to challenge this notion. They indicate that E. coli and S. pombe do age, but only when subjected to environmental stress. If true, this suggests that aging may be widespread among microbial species in general, and that studying aging in microbes may inform other long-standing questions in aging. This review examines the recent evidence for and against replicative aging in symmetrically dividing unicellular organisms, the mechanisms that underlie aging, why aging evolved in these species, and how microbial aging fits into the context of other questions in aging. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and Drosophila-microbe interactions.

    Science.gov (United States)

    Broderick, Nichole A

    2016-05-26

    Drosophila melanogaster lives, breeds and feeds on fermenting fruit, an environment that supports a high density, and often a diversity, of microorganisms. This association with such dense microbe-rich environments has been proposed as a reason that D. melanogaster evolved a diverse and potent antimicrobial peptide (AMP) response to microorganisms, especially to combat potential pathogens that might occupy this niche. Yet, like most animals, D. melanogaster also lives in close association with the beneficial microbes that comprise its microbiota, or microbiome, and recent studies have shown that antimicrobial peptides (AMPs) of the epithelial immune response play an important role in dictating these interactions and controlling the host response to gut microbiota. Moreover, D. melanogaster also eats microbes for food, consuming fermentative microbes of decaying plant material and their by-products as both larvae and adults. The processes of nutrient acquisition and host defence are remarkably similar and use shared functions for microbe detection and response, an observation that has led to the proposal that the digestive and immune systems have a common evolutionary origin. In this manner, D. melanogaster provides a powerful model to understand how, and whether, hosts differentiate between the microbes they encounter across this spectrum of associations.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  18. Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and Drosophila–microbe interactions

    Science.gov (United States)

    2016-01-01

    Drosophila melanogaster lives, breeds and feeds on fermenting fruit, an environment that supports a high density, and often a diversity, of microorganisms. This association with such dense microbe-rich environments has been proposed as a reason that D. melanogaster evolved a diverse and potent antimicrobial peptide (AMP) response to microorganisms, especially to combat potential pathogens that might occupy this niche. Yet, like most animals, D. melanogaster also lives in close association with the beneficial microbes that comprise its microbiota, or microbiome, and recent studies have shown that antimicrobial peptides (AMPs) of the epithelial immune response play an important role in dictating these interactions and controlling the host response to gut microbiota. Moreover, D. melanogaster also eats microbes for food, consuming fermentative microbes of decaying plant material and their by-products as both larvae and adults. The processes of nutrient acquisition and host defence are remarkably similar and use shared functions for microbe detection and response, an observation that has led to the proposal that the digestive and immune systems have a common evolutionary origin. In this manner, D. melanogaster provides a powerful model to understand how, and whether, hosts differentiate between the microbes they encounter across this spectrum of associations. This article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160597

  19. Tropical forest soil microbes and climate warming: An Andean-Amazon gradient and `SWELTR'

    Science.gov (United States)

    Nottingham, A.; Turner, B. L.; Fierer, N.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R.; Silman, M.; Bååth, E.; Salinas, N.; Meir, P.

    2017-12-01

    Climate warming predicted for the tropics in the coming century will result in average temperatures under which no closed canopy forest exists today. There is, therefore, great uncertainty associated with the direction and magnitude of feedbacks between tropical forests and our future climate - especially relating to the response of soil microbes and the third of global soil carbon contained in tropical forests. While warming experiments are yet to be performed in tropical forests, natural temperature gradients are powerful tools to investigate temperature effects on soil microbes. Here we draw on studies from a 3.5 km elevation gradient - and 20oC mean annual temperature gradient - in Peruvian tropical forest, to investigate how temperature affects the structure of microbial communities, microbial metabolism, enzymatic activity and soil organic matter cycling. With decreased elevation, soil microbial diversity increased and community composition shifted, from taxa associated with oligotrophic towards copiotrophic traits. A key role for temperature in shaping these patterns was demonstrated by a soil translocation experiment, where temperature-manipulation altered the relative abundance of specific taxa. Functional implications of these community composition shifts were indicated by changes in enzyme activities, the temperature sensitivity of bacterial and fungal growth rates, and the presence of temperature-adapted iso-enzymes at different elevations. Studies from a Peruvian elevation transect indicated that soil microbial communities are adapted to long-term (differences with elevation) and short-term (translocation responses) temperature changes. These findings indicate the potential for adaptation of soil microbes in tropical soils to future climate warming. However, in order to evaluate the sensitivity of these processes to climate warming in lowland forests, in situ experimentation is required. Finally, we describe SWELTR (Soil Warming Experiment in Lowland

  20. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    Science.gov (United States)

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  1. Flavor Profile of Chinese Liquor Is Altered by Interactions of Intrinsic and Extrinsic Microbes.

    Science.gov (United States)

    Wu, Qun; Kong, Yu; Xu, Yan

    2016-01-15

    The flavor profile of Chinese liquor is the result of the metabolic activity of its microbial community. Given the importance of the microbial interaction, a novel way to control the liquor's flavor is by regulating the composition of the community. In this study, we efficiently improved the liquor's flavor by perturbing the intrinsic microbial metabolism with extrinsic microbes. We first constructed a basic microbial group (intrinsic) containing Saccharomyces cerevisiae, Wickerhamomyces anomalus, and Issatchenkia orientalis and added special flavor producers (extrinsic), Saccharomyces uvarum and Saccharomyces servazzii, to this intrinsic group. Upon the addition of the extrinsic microbes, the maximum specific growth rates of S. cerevisiae and I. orientalis increased from 6.19 to 43.28/day and from 1.15 to 14.32/day, respectively, but that of W. anomalus changed from 1.00 to 0.96/day. In addition, most volatile compounds known to be produced by the extrinsic strains were not produced. However, more esters, alcohols, and acids were produced by S. cerevisiae and I. orientalis. Six compounds were significantly different by random forest analysis after perturbation. Among them, increases in ethyl hexanoate, isobutanol, and 3-methylbutyric acid were correlated with S. cerevisiae and I. orientalis, and a decrease in geranyl acetone was correlated with W. anomalus. Variations in ethyl acetate and 2-phenylethanol might be due to the varied activity of W. anomalus and S. cerevisiae. This work showed the effect of the interaction between the intrinsic and extrinsic microbes on liquor flavor, which would be beneficial for improving the quality of Chinese liquor. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Effects of atrazine, metolachlor, carbaryl and chlorothalonil on benthic microbes and their nutrient dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel Elias

    Full Text Available Atrazine, metolachlor, carbaryl, and chlorothalonil are detected in streams throughout the U.S. at concentrations that may have adverse effects on benthic microbes. Sediment samples were exposed to these pesticides to quantify responses of ammonium, nitrate, and phosphate uptake by the benthic microbial community. Control uptake rates of sediments had net remineralization of nitrate (-1.58 NO3 µg gdm⁻¹ h⁻¹, and net assimilation of phosphate (1.34 PO4 µg gdm⁻¹ h⁻¹ and ammonium (0.03 NH4 µg gdm⁻¹ h⁻¹. Metolachlor decreased ammonium and phosphate uptake. Chlorothalonil decreased nitrate remineralization and phosphate uptake. Nitrate, ammonium, and phosphate uptake rates are more pronounced in the presence of these pesticides due to microbial adaptations to toxicants. Our interpretation of pesticide availability based on their water/solid affinities supports no effects for atrazine and carbaryl, decreasing nitrate remineralization, and phosphate assimilation in response to chlorothalonil. Further, decreased ammonium and phosphate uptake in response to metolachlor is likely due to affinity. Because atrazine target autotrophs, and carbaryl synaptic activity, effects on benthic microbes were not hypothesized, consistent with results. Metolachlor and chlorothalonil (non-specific modes of action had significant effects on sediment microbial nutrient dynamics. Thus, pesticides with a higher affinity to sediments and/or broad modes of action are likely to affect sediment microbes' nutrient dynamics than pesticides dissolved in water or specific modes of action. Predicted nutrient uptake rates were calculated at mean and peak concentrations of metolachlor and chlorothalonil in freshwaters using polynomial equations generated in this experiment. We concluded that in natural ecosystems, peak chlorothalonil and metolachlor concentrations could affect phosphate and ammonium by decreasing net assimilation, and nitrate uptake rates by

  3. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes.

    Science.gov (United States)

    Bircher, Lea; Geirnaert, Annelies; Hammes, Frederik; Lacroix, Christophe; Schwab, Clarissa

    2018-04-17

    Strict anaerobic gut microbes have been suggested as 'next-generation probiotics' for treating several intestinal disorders. The development of preservation techniques is of major importance for therapeutic application. This study investigated cryopreservation (-80°C) and lyophilization survival and storage stability (4°C for 3 months) of the strict anaerobic gut microbes Bacteroides thetaiotaomicron, Faecalibacterium prausnitzii, Roseburia intestinalis, Anaerostipes caccae, Eubacterium hallii and Blautia obeum. To improve preservation survival, protectants sucrose and inulin (both 5% w/v) were added for lyophilization and were also combined with glycerol (15% v/v) for cryopreservation. Bacterial fitness, evaluated by maximum growth rate and lag phase, viability and membrane integrity were determined using a standardized growth assay and by flow cytometry as markers for preservation resistance. Lyophilization was more detrimental to viability and fitness than cryopreservation, but led to better storage stability. Adding sucrose and inulin enhanced viability and the proportion of intact cells during lyophilization of all strains. Viability of protectant-free B. thetaiotaomicron, A. caccae and F. prausnitzii was above 50% after cryopreservation and storage and increased to above 80% if protectants were present. The addition of glycerol, sucrose and inulin strongly enhanced the viability of B. obeum, E. hallii and R. intestinalis from 0.03-2% in protectant-free cultures to 11-37%. This is the first study that quantitatively compared the effect of cryopreservation and lyophilization and the addition of selected protectants on viability and fitness of six strict anaerobic gut microbes. Our results suggest that efficiency of protectants is process- and species-specific. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Bioprospecting of South African Plants as a Unique Resource for Bioactive Endophytic Microbes

    Directory of Open Access Journals (Sweden)

    Muna Ali Abdalla

    2018-05-01

    Full Text Available South Africa has a long history and strong belief in traditional herbal medicines. Using ethnobotanical knowledge as a lead, a large number of South African medicinal plants have been discovered to possess a wide spectrum of pharmacological properties. In this review, bioprospecting of endophytes is highlighted by following the advantages of the ethnomedicinal approach together with identifying unique medicinal plants where biological activity may be due to endophytes. This review focuses on the current status of South African medicinal plants to motivate the research community to harness the benefits of ethnobotanical knowledge to investigate the presence of endophytic microbes from the most potent South African medicinal plants. The potential chemical diversity and subsequent putative medicinal value of endophytes is deserving of further research. A timely and comprehensive review of literature on recently isolated endophytes and their metabolites was conducted. Worldwide literature from the last 2 years demonstrating the importance of ethnobotanical knowledge as a useful approach to discover endophytic microbes was documented. Information was obtained from scientific databases such as Pubmed, Scopus, Scirus, Google Scholar, Dictionary of Natural Products, Chemical Abstracts Services, official websites, and scientific databases on ethnomedicines. Primary sources such as books, reports, dissertations, and thesises were accessed where available. Recently published information on isolated endophytes with promising bioactivity and their bioactive natural products worldwide (2015-2017 was summarized. The potential value of South African medicinal plants as sources of endophytes is discussed. The insights provided through this study indicate that medicinal plants in South Africa are highly under-investigated sources of potentially useful endophytic microbes. New approaches may be used by medicinal plant scientists for further exploration of natural

  5. Is there a role for modified probiotics as beneficial microbes: a systematic review of the literature.

    Science.gov (United States)

    Zorzela, L; Ardestani, S K; McFarland, L V; Vohra, S

    2017-10-13

    Our objective was to conduct a systematic review and meta-analysis for the use of modified (heat-killed or sonicated) probiotics for the efficacy and safety to prevent and treat various diseases. Recent clinical research has focused on living strains of probiotics, but use in high-risk patients and potential adverse reactions including bacteremia has focused interest on alternatives to the use of live probiotics. We searched MEDLINE/PubMed, Embase, Cochrane Central Register of Controlled Trials, CINAHL, Alt Health Watch, Web of Science, Scopus, PubMed, from inception to February 14, 2017 for randomised controlled trials involving modified probiotic strains. The primary outcome was efficacy to prevent or treat disease and the secondary outcome was incidence of adverse events. A total of 40 trials were included (n=3,913): 14 trials (15 arms with modified probiotics and 20 control arms) for the prevention of diseases and 26 trials (29 arms with modified probiotics and 32 control arms) for treatment of various diseases. Modified microbes were compared to either placebo (44%), or the same living probiotic strain (39%) or to only standard therapies (17%). Modified microbes were not significantly more or less effective than the living probiotic in 86% of the preventive trials and 69% of the treatment trials. Modified probiotic strains were significantly more effective in 15% of the treatment trials. Incidence rates of adverse events were similar for modified and living probiotics and other control groups, but many trials did not collect adequate safety data. Although several types of modified probiotics showed significant efficacy over living strains of probiotics, firm conclusions could not be reached due to the limited number of trials using the same type of modified microbe (strain, daily dose and duration) for a specific disease indication. Further research may illuminate other strains of modified probiotics that may have potential as clinical biotherapeutics.

  6. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    Science.gov (United States)

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  7. License - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us MicrobeDB.jp License License to Use This Database Last updated : 2017/06/29 You may use this database...the license terms regarding the use of this database and the requirements you must follow in using this database.... The license for this database is specified in the Creative Commons Attribut...ion-Share Alike 4.0 International . If you use data from this database, please be sure attribute this database... Creative Commons Attribution-Share Alike 4.0 International is found here . With regard to this database, yo

  8. Research Advances and Detection Methodologies for Microbe-Derived Acetylcholinesterase Inhibitors: A Systemic Review

    Directory of Open Access Journals (Sweden)

    Jingqian Su

    2017-01-01

    Full Text Available Acetylcholinesterase inhibitors (AChEIs are an attractive research subject owing to their potential applications in the treatment of neurodegenerative diseases. Fungi and bacteria are major producers of AChEIs. Their active ingredients of fermentation products include alkaloids, terpenoids, phenylpropanoids, and steroids. A variety of in vitro acetylcholinesterase inhibitor assays have been developed and used to measure the activity of acetylcholinesterases, including modified Ellman’s method, thin layer chromatography bioautography, and the combined liquid chromatography-mass spectrometry/modified Ellman’s method. In this review, we provide an overview of the different detection methodologies, the microbe-derived AChEIs, and their producing strains.

  9. Pilot tests of microbe-soil combined treatment of waste drilling sludge

    OpenAIRE

    Lirong Chen; Min Huang; Xuebin Jiang; Hui Li; Qiang Chen; Min Zhang; Shenglin Li

    2015-01-01

    Microbe-soil combined treatment is a newly developed technology in view of the defects of the curing process and waste drilling mud slag properties. In particular, 0.3%–0.5% bioremediation reagents were fully mixed with the waste drilling sludge according to its wet and dry degree, and 1.5 folds to twice weight of more finely ground soil was added in the mix, which was covered by soil of 5–15 cm thick and thereby grasses or greeneries were planted on the soil. The process was successfully app...

  10. Microbes and associated soluble and volatile chemicals on periodically wet household surfaces.

    Science.gov (United States)

    Adams, Rachel I; Lymperopoulou, Despoina S; Misztal, Pawel K; De Cassia Pessotti, Rita; Behie, Scott W; Tian, Yilin; Goldstein, Allen H; Lindow, Steven E; Nazaroff, William W; Taylor, John W; Traxler, Matt F; Bruns, Thomas D

    2017-09-26

    Microorganisms influence the chemical milieu of their environment, and chemical metabolites can affect ecological processes. In built environments, where people spend the majority of their time, very little is known about how surface-borne microorganisms influence the chemistry of the indoor spaces. Here, we applied multidisciplinary approaches to investigate aspects of chemical microbiology in a house. We characterized the microbial and chemical composition of two common and frequently wet surfaces in a residential setting: kitchen sink and bathroom shower. Microbial communities were studied using culture-dependent and independent techniques, including targeting RNA for amplicon sequencing. Volatile and soluble chemicals from paired samples were analyzed using state-of-the-art techniques to explore the links between the observed microbiota and chemical exudates. Microbial analysis revealed a rich biological presence on the surfaces exposed in kitchen sinks and bathroom shower stalls. Microbial composition, matched for DNA and RNA targets, varied by surface type and sampling period. Bacteria were found to have an average of 25× more gene copies than fungi. Biomass estimates based on qPCR were well correlated with measured total volatile organic compound (VOC) emissions. Abundant VOCs included products associated with fatty acid production. Molecular networking revealed a diversity of surface-borne compounds that likely originate from microbes and from household products. Microbes played a role in structuring the chemical profiles on and emitted from kitchen sinks and shower stalls. Microbial VOCs (mVOCs) were predominately associated with the processing of fatty acids. The mVOC composition may be more stable than that of microbial communities, which can show temporal and spatial variation in their responses to changing environmental conditions. The mVOC output from microbial metabolism on kitchen sinks and bathroom showers should be apparent through careful

  11. Ontology - MicrobeDB.jp | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available gzip) consists of some directories (see the following table). Data file File name: ontology....tar.gz File URL: ftp://ftp.biosciencedbc.jp/archive/microbedb/LATEST/ontology.tar.gz File size: 9...he NCBI Taxonomy and INSDC ontology files were obtained from the DDBJ web site. O...ples Data item Description ontology/meo/meo.ttl An ontology for describing organismal habitats (especially focused on microbes). onto...logy/meo/meo_fma_mapping.ttl An ontology mapping files t

  12. Utilization of oil palm empty bunches waste as biochar-microbes for improving availibity of soil nutrients

    Directory of Open Access Journals (Sweden)

    G . I . Ichriani

    2016-01-01

    Full Text Available There are about 23% waste oil palm empty fruit bunches (OPEFB of total waste generated from the production of crude palm oil in oil palm plantations. Pyrolysis technology can be used to convert waste into biochar and further can be utilized for the improvement of soil. Biochar-microbes of OPEFB are biochar from OPEFB biomass that enriched with soil microbes. Biochar-microbes is expected to be used for the improvement of the soil and plants. Therefore the purpose of this research was to study the ability of biochar-microbes OPEFB to increase availability of the nutrients in sandy soils. The process of making biochar done by using slow pyrolysis technology by heating 300oC and 400oC for 2 and 3 hours, and with sizes 40 and 80 mesh, as well as indigenous microbial Bulkhorderia nodosa G.52.Rif1 and Trichoderma sp. added. The biochar production and research were conducted in the Department of Forestry Laboratory and in the Department of Agronomy Laboratory, Faculty of Agriculture, Palangka Raya University. In general, the study showed that biochar-microbes could maintain the soil pH value and tends to increase the soil pH, increasing the holding capacity of sandy soil to the elements of P and K as well as increasing the availability of nutrients N, P and K. Furthermore, this study showed that the biochar process by 400oC heating for 3 hours and 40 mesh with microbes or without microbes were the best effect on the improvement of the quality of holding capacity and the nutrients supply in sandy soils.

  13. Prediction of microbe-disease association from the integration of neighbor and graph with collaborative recommendation model.

    Science.gov (United States)

    Huang, Yu-An; You, Zhu-Hong; Chen, Xing; Huang, Zhi-An; Zhang, Shanwen; Yan, Gui-Ying

    2017-10-16

    Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale. In this work, we developed a new computational model for predicting microbe-disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe-disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity. To evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe-disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa. Compared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe-disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore

  14. Application of slightly acidic electrolyzed water for inactivating microbes in a layer breeding house.

    Science.gov (United States)

    Hao, X X; Li, B M; Wang, C Y; Zhang, Q; Cao, W

    2013-10-01

    Lots of microorganisms exist in layer houses can cause bird diseases and worker health concerns. Spraying chemical disinfectants is an effective way to decontaminate pathogenic microorganisms in the air and on surfaces in poultry houses. Slightly acidic electrolyzed water (SAEW, pH 5.0-6.5) is an ideal, environmentally friendly broad-spectrum disinfectant to prevent and control bacterial or viral infection in layer farms. The purpose of this work was to investigate the cleaning effectiveness of SAEW for inactivating the microbes in layer houses. The effect of SAEW was evaluated by solid materials and surface disinfection in a hen house. Results indicate that SAEW with an available chlorine concentration of 250 mg/L, pH value of 6.19, and oxygen reduction potential of 974 mV inactivated 100% of bacteria and fungi in solid materials (dusts, feces, feather, and feed), which is more efficient than common chemical disinfectant such as benzalkonium chloride solution (1:1,000 vol/vol) and povidone-iodine solution (1:1,000 vol/vol). Also, it significantly reduced the microbes on the equipment or facility surfaces (P < 0.05), including floor, wall, feed trough, and water pipe surfaces. Moreover, SAEW effectively decreased the survival rates of Salmonella and Escherichia coli by 21 and 16 percentage points. In addition, spraying the target with tap water before disinfection plays an important role in spray disinfection.

  15. Diversity of Cellulolytic Microbes and the Biodegradation of Municipal Solid Waste by a Potential Strain

    Science.gov (United States)

    Gautam, S. P.; Bundela, P. S.; Pandey, A. K.; Jamaluddin; Awasthi, M. K.; Sarsaiya, S.

    2012-01-01

    Municipal solid waste contains high amounts of cellulose, which is an ideal organic waste for the growth of most of microorganism as well as composting by potential microbes. In the present study, Congo red test was performed for screening of microorganism, and, after selecting a potential strains, it was further used for biodegradation of organic municipal solid waste. Forty nine out of the 250 different microbes tested (165 belong to fungi and 85 to bacteria) produced cellulase enzyme and among these Trichoderma viride was found to be a potential strain in the secondary screening. During the biodegradation of organic waste, after 60 days, the average weight losses were 20.10% in the plates and 33.35% in the piles. There was an increase in pH until 20 days. pH however, stabilized after 30 days in the piles. Temperature also stabilized as the composting process progressed in the piles. The high temperature continued until 30 days of decomposition, after which the temperature dropped to 40°C and below during the maturation. Good quality compost was obtained in 60 days. PMID:22518141

  16. Recent developments in systems biology and metabolic engineering of plant microbe interactions

    Directory of Open Access Journals (Sweden)

    Vishal Kumar

    2016-09-01

    Full Text Available Microorganisms play a crucial role in the sustainability of the various ecosystems. The characterization of various interactions between microorganisms and other biotic factors is a necessary footstep to understand the association and functions of microbial communities. Among the different microbial interactions in an ecosystem, plant-microbe interaction plays an important role to balance the ecosystem. The present review explores plant microbe interactions using gene editing and system biology tools towards the comprehension in improvement of plant traits. Further, system biology tools like FBA, OptKnock and constrain based modeling helps in understanding such interactions as a whole. In addition, various gene editing tools have been summarized and a strategy has been hypothesized for the development of disease free plants. Furthermore, we have tried to summarize the predictions through data retrieved from various types of sources such as high throughput sequencing data (e.g. single nucleotide polymorphism (SNP detection, RNA-seq, proteomics and metabolic models have been reconstructed from such sequences for species communities. It is well known fact that systems biology approaches and modeling of biological networks will enable us to learn the insight of such network and will also help further in understanding these interactions.

  17. Friends with Social Benefits: Host-Microbe Interactions as a Driver of Brain Evolution and Development?

    Directory of Open Access Journals (Sweden)

    Roman M Stilling

    2014-10-01

    Full Text Available The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behaviour. Here in this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a ‘social triangle’ that drives human social behaviour and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective.

  18. Antimicrobial blue light: a drug-free approach for inactivating pathogenic microbes

    Science.gov (United States)

    Wang, Ying; Dai, Tianhong

    2018-02-01

    Due to the growing global threat of antibiotic resistance, there is a critical need for the development of alternative therapeutics for infectious diseases. Antimicrobial blue light (aBL), as an innovative non-antibiotic approach, has attracted increasing attention. This paper discussed the basic concepts of aBL and recent findings in the studies of aBL. It is commonly hypothesized that the antimicrobial property of aBL is attributed to the presence of endogenous photosensitizing chromophores in microbial cells, which produce cytotoxic reactive oxygen species upon light irradiation. A wide range of important microbes are found to be susceptible to aBL inactivation. Studies have also shown there exist therapeutic windows where microbes are selectively inactivated by aBL while host cells are preserved. The combination of aBL with some other agents result in synergistically improved antimicrobial efficacy. Future efforts should be exerted on the standardization of study design for evaluating aBL efficacy, further elucidation of the mechanism of action, optimization of the technical parameters, and translation of this technique to clinic.

  19. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    Science.gov (United States)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  20. Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes.

    Science.gov (United States)

    Naduthodi, Mihris Ibnu Saleem; Barbosa, Maria J; van der Oost, John

    2018-02-03

    The carbon footprint caused by unsustainable development and its environmental and economic impact has become a major concern in the past few decades. Photosynthetic microbes such as microalgae and cyanobacteria are capable of accumulating value-added compounds from carbon dioxide, and have been regarded as environmentally friendly alternatives to reduce the usage of fossil fuels, thereby contributing to reducing the carbon footprint. This light-driven generation of green chemicals and biofuels has triggered the research for metabolic engineering of these photosynthetic microbes. CRISPR-Cas systems are successfully implemented across a wide range of prokaryotic and eukaryotic species for efficient genome editing. However, the inception of this genome editing tool in microalgal and cyanobacterial species took off rather slowly due to various complications. In this review, we elaborate on the established CRISPR-Cas based genome editing in various microalgal and cyanobacterial species. The complications associated with CRISPR-Cas based genome editing in these species are addressed along with possible strategies to overcome these issues. It is anticipated that in the near future this will result in improving and expanding the microalgal and cyanobacterial genome engineering toolbox. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration.

    Science.gov (United States)

    Mull, Bonnie; Hill, Vincent R

    2012-12-01

    Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recovering MS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. Published by Elsevier B.V.

  2. Microbes and Viruses Are Bugging the Gut in Celiac Disease. Are They Friends or Foes?

    Science.gov (United States)

    Lerner, Aaron; Arleevskaya, Marina; Schmiedl, Andreas; Matthias, Torsten

    2017-01-01

    The links between microorganisms/viruses and autoimmunity are complex and multidirectional. A huge number of studies demonstrated the triggering impact of microbes and viruses as the major environmental factors on the autoimmune and inflammatory diseases. However, growing evidences suggest that infectious agents can also play a protective role or even abrogate these processes. This protective crosstalk between microbes/viruses and us might represent a mutual beneficial equilibrium relationship between two cohabiting ecosystems. The protective pathways might involve post-translational modification of proteins, decreased intestinal permeability, Th1 to Th2 immune shift, induction of apoptosis, auto-aggressive cells relocation from the target organ, immunosuppressive extracellular vesicles and down regulation of auto-reactive cells by the microbial derived proteins. Our analysis demonstrates that the interaction of the microorganisms/viruses and celiac disease (CD) is always a set of multidirectional processes. A deeper inquiry into the CD interplay with Herpes viruses and Helicobacter pylori demonstrates that the role of these infections, suggested to be potential CD protectors, is not as controversial as for the other infectious agents. The outcome of these interactions might be due to a balance between these multidirectional processes.

  3. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    International Nuclear Information System (INIS)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  4. A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity

    Directory of Open Access Journals (Sweden)

    Iago Lowe Hale

    2014-09-01

    Full Text Available Through active associations with a diverse community of largely non-pathogenic microbes, a plant may be thought of as possessing an extended genotype, an interactive cross-organismal genome with potential, exploitable implications for plant immunity. The successful enrichment of plant microbiomes with beneficial species has led to numerous commercial applications, and the hunt for new biocontrol organisms continues. Increasingly flexible and affordable sequencing technologies, supported by increasingly comprehensive taxonomic databases, make the characterization of non-model crop-associated microbiomes a widely accessible research method toward this end; and such studies are becoming more frequent. A summary of this emerging literature reveals, however, the need for a more systematic research lens in the face of what is already a metagenomics data deluge. Considering the processes and consequences of crop evolution and domestication, we assert that the judicious integration of in situ crop wild relatives into phytobiome research efforts presents a singularly powerful tool for separating signal from noise, thereby facilitating a more efficient means of identifying candidate plant-associated microbes with the potential for enhanci

  5. Metagenomic Profiling of Soil Microbes to Mine Salt Stress Tolerance Genes

    Directory of Open Access Journals (Sweden)

    Vasim Ahmed

    2018-02-01

    Full Text Available Osmotolerance is one of the critical factors for successful survival and colonization of microbes in saline environments. Nonetheless, information about these osmotolerance mechanisms is still inadequate. Exploration of the saline soil microbiome for its community structure and novel genetic elements is likely to provide information on the mechanisms involved in osmoadaptation. The present study explores the saline soil microbiome for its native structure and novel genetic elements involved in osmoadaptation. 16S rRNA gene sequence analysis has indicated the dominance of halophilic/halotolerant phylotypes affiliated to Proteobacteria, Actinobacteria, Gemmatimonadetes, Bacteroidetes, Firmicutes, and Acidobacteria. A functional metagenomics approach led to the identification of osmotolerant clones SSR1, SSR4, SSR6, SSR2 harboring BCAA_ABCtp, GSDH, STK_Pknb, and duf3445 genes. Furthermore, transposon mutagenesis, genetic, physiological and functional studies in close association has confirmed the role of these genes in osmotolerance. Enhancement in host osmotolerance possibly though the cytosolic accumulation of amino acids, reducing equivalents and osmolytes involving BCAA-ABCtp, GSDH, and STKc_PknB. Decoding of the genetic elements prevalent within these microbes can be exploited either as such for ameliorating soils or their genetically modified forms can assist crops to resist and survive in saline environment.

  6. Life in Darwin's dust: intercontinental transport and survival of microbes in the nineteenth century.

    Science.gov (United States)

    Gorbushina, Anna A; Kort, Renate; Schulte, Anette; Lazarus, David; Schnetger, Bernhard; Brumsack, Hans-Jürgen; Broughton, William J; Favet, Jocelyne

    2007-12-01

    Charles Darwin, like others before him, collected aeolian dust over the Atlantic Ocean and sent it to Christian Gottfried Ehrenberg in Berlin. Ehrenberg's collection is now housed in the Museum of Natural History and contains specimens that were gathered at the onset of the Industrial Revolution. Geochemical analyses of this resource indicated that dust collected over the Atlantic in 1838 originated from the Western Sahara, while molecular-microbiological methods demonstrated the presence of many viable microbes. Older samples sent to Ehrenberg from Barbados almost two centuries ago also contained numbers of cultivable bacteria and fungi. Many diverse ascomycetes, and eubacteria were found. Scanning electron microscopy and cultivation suggested that Bacillus megaterium, a common soil bacterium, was attached to historic sand grains, and it was inoculated onto dry sand along with a non-spore-forming control, the Gram-negative soil bacterium Rhizobium sp. NGR234. On sand B. megaterium quickly developed spores, which survived for extended periods and even though the numbers of NGR234 steadily declined, they were still considerable after months of incubation. Thus, microbes that adhere to Saharan dust can live for centuries and easily survive transport across the Atlantic.

  7. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Leong, Susanna Su Jan [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore); Singapore Institute of Technology, Singapore (Singapore); Chang, Matthew Wook, E-mail: bchcmw@nus.edu.sg [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Singapore); Synthetic Biology Research Program, National University of Singapore, Singapore (Singapore)

    2014-12-23

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  8. Diversity and community structure of marine microbes around the Benham Rise underwater plateau, northeastern Philippines.

    Science.gov (United States)

    Gajigan, Andrian P; Yñiguez, Aletta T; Villanoy, Cesar L; San Diego-McGlone, Maria Lourdes; Jacinto, Gil S; Conaco, Cecilia

    2018-01-01

    Microbes are central to the structuring and functioning of marine ecosystems. Given the remarkable diversity of the ocean microbiome, uncovering marine microbial taxa remains a fundamental challenge in microbial ecology. However, there has been little effort, thus far, to describe the diversity of marine microorganisms in the region of high marine biodiversity around the Philippines. Here, we present data on the taxonomic diversity of bacteria and archaea in Benham Rise, Philippines, Western Pacific Ocean, using 16S V4 rRNA gene sequencing. The major bacterial and archaeal phyla identified in the Benham Rise are Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Marinimicrobia, Thaumarchaeota and, Euryarchaeota. The upper mesopelagic layer exhibited greater microbial diversity and richness compared to surface waters. Vertical zonation of the microbial community is evident and may be attributed to physical stratification of the water column acting as a dispersal barrier. Canonical Correspondence Analysis (CCA) recapitulated previously known associations of taxa and physicochemical parameters in the environment, such as the association of oligotrophic clades with low nutrient surface water and deep water clades that have the capacity to oxidize ammonia or nitrite at the upper mesopelagic layer. These findings provide foundational information on the diversity of marine microbes in Philippine waters. Further studies are warranted to gain a more comprehensive picture of microbial diversity within the region.

  9. Common contaminants in next-generation sequencing that hinder discovery of low-abundance microbes.

    Directory of Open Access Journals (Sweden)

    Martin Laurence

    Full Text Available Unbiased high-throughput sequencing of whole metagenome shotgun DNA libraries is a promising new approach to identifying microbes in clinical specimens, which, unlike other techniques, is not limited to known sequences. Unlike most sequencing applications, it is highly sensitive to laboratory contaminants as these will appear to originate from the clinical specimens. To assess the extent and diversity of sequence contaminants, we aligned 57 "1000 Genomes Project" sequencing runs from six centers against the four largest NCBI BLAST databases, detecting reads of diverse contaminant species in all runs and identifying the most common of these contaminant genera (Bradyrhizobium in assembled genomes from the NCBI Genome database. Many of these microorganisms have been reported as contaminants of ultrapure water systems. Studies aiming to identify novel microbes in clinical specimens will greatly benefit from not only preventive measures such as extensive UV irradiation of water and cross-validation using independent techniques, but also a concerted effort to sequence the complete genomes of common contaminants so that they may be subtracted computationally.

  10. Potential impact of global climate change on benthic deep-sea microbes.

    Science.gov (United States)

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio

    2017-12-15

    Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Diversity of Cellulolytic Microbes and the Biodegradation of Municipal Solid Waste by a Potential Strain

    Directory of Open Access Journals (Sweden)

    S. P. Gautam

    2012-01-01

    Full Text Available Municipal solid waste contains high amounts of cellulose, which is an ideal organic waste for the growth of most of microorganism as well as composting by potential microbes. In the present study, Congo red test was performed for screening of microorganism, and, after selecting a potential strains, it was further used for biodegradation of organic municipal solid waste. Forty nine out of the 250 different microbes tested (165 belong to fungi and 85 to bacteria produced cellulase enzyme and among these Trichoderma viride was found to be a potential strain in the secondary screening. During the biodegradation of organic waste, after 60 days, the average weight losses were 20.10% in the plates and 33.35% in the piles. There was an increase in pH until 20 days. pH however, stabilized after 30 days in the piles. Temperature also stabilized as the composting process progressed in the piles. The high temperature continued until 30 days of decomposition, after which the temperature dropped to 40°C and below during the maturation. Good quality compost was obtained in 60 days.

  12. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions.

    Science.gov (United States)

    Thompson, Janelle R; Rivera, Hanny E; Closek, Collin J; Medina, Mónica

    2014-01-01

    In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health-not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history. Herein, we review the current literature on coral-microbe interactions within the context of their role in evolution, development, and ecology. We ask the following questions, first posed by McFall-Ngai et al. (2013) in their review of animal evolution, with specific attention to how coral-microbial interactions may be affected under future environmental conditions: (1) How do corals and their microbiome affect each other's genomes? (2) How does coral development depend on microbial partners? (3) How is homeostasis maintained between corals and their microbial symbionts? (4) How can ecological approaches deepen our understanding of the multiple levels of coral-microbial interactions? Elucidating the role that microorganisms play in the structure and function of the holobiont is essential for understanding how corals maintain homeostasis and acclimate to changing environmental conditions.

  13. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context.

    Science.gov (United States)

    Terhorst, Casey P; Lennon, Jay T; Lau, Jennifer A

    2014-06-22

    Evolution can occur on ecological time-scales, affecting community and ecosystem processes. However, the importance of evolutionary change relative to ecological processes remains largely unknown. Here, we analyse data from a long-term experiment in which we allowed plant populations to evolve for three generations in dry or wet soils and used a reciprocal transplant to compare the ecological effect of drought and the effect of plant evolutionary responses to drought on soil microbial communities and nutrient availability. Plants that evolved under drought tended to support higher bacterial and fungal richness, and increased fungal : bacterial ratios in the soil. Overall, the magnitudes of ecological and evolutionary effects on microbial communities were similar; however, the strength and direction of these effects depended on the context in which they were measured. For example, plants that evolved in dry environments increased bacterial abundance in dry contemporary environments, but decreased bacterial abundance in wet contemporary environments. Our results suggest that interactions between recent evolutionary history and ecological context affect both the direction and magnitude of plant effects on soil microbes. Consequently, an eco-evolutionary perspective is required to fully understand plant-microbe interactions.

  14. Microbes vs. chemistry in the origin of the anaerobic gut lumen.

    Science.gov (United States)

    Friedman, Elliot S; Bittinger, Kyle; Esipova, Tatiana V; Hou, Likai; Chau, Lillian; Jiang, Jack; Mesaros, Clementina; Lund, Peder J; Liang, Xue; FitzGerald, Garret A; Goulian, Mark; Lee, Daeyeon; Garcia, Benjamin A; Blair, Ian A; Vinogradov, Sergei A; Wu, Gary D

    2018-04-17

    The succession from aerobic and facultative anaerobic bacteria to obligate anaerobes in the infant gut along with the differences between the compositions of the mucosally adherent vs. luminal microbiota suggests that the gut microbes consume oxygen, which diffuses into the lumen from the intestinal tissue, maintaining the lumen in a deeply anaerobic state. Remarkably, measurements of luminal oxygen levels show nearly identical pO 2 (partial pressure of oxygen) profiles in conventional and germ-free mice, pointing to the existence of oxygen consumption mechanisms other than microbial respiration. In vitro experiments confirmed that the luminal contents of germ-free mice are able to chemically consume oxygen (e.g., via lipid oxidation reactions), although at rates significantly lower than those observed in the case of conventionally housed mice. For conventional mice, we also show that the taxonomic composition of the gut microbiota adherent to the gut mucosa and in the lumen throughout the length of the gut correlates with oxygen levels. At the same time, an increase in the biomass of the gut microbiota provides an explanation for the reduction of luminal oxygen in the distal vs. proximal gut. These results demonstrate how oxygen from the mammalian host is used by the gut microbiota, while both the microbes and the oxidative chemical reactions regulate luminal oxygen levels, shaping the composition of the microbial community throughout different regions of the gut.

  15. Microbes and Viruses Are Bugging the Gut in Celiac Disease. Are They Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Aaron Lerner

    2017-08-01

    Full Text Available The links between microorganisms/viruses and autoimmunity are complex and multidirectional. A huge number of studies demonstrated the triggering impact of microbes and viruses as the major environmental factors on the autoimmune and inflammatory diseases. However, growing evidences suggest that infectious agents can also play a protective role or even abrogate these processes. This protective crosstalk between microbes/viruses and us might represent a mutual beneficial equilibrium relationship between two cohabiting ecosystems. The protective pathways might involve post-translational modification of proteins, decreased intestinal permeability, Th1 to Th2 immune shift, induction of apoptosis, auto-aggressive cells relocation from the target organ, immunosuppressive extracellular vesicles and down regulation of auto-reactive cells by the microbial derived proteins. Our analysis demonstrates that the interaction of the microorganisms/viruses and celiac disease (CD is always a set of multidirectional processes. A deeper inquiry into the CD interplay with Herpes viruses and Helicobacter pylori demonstrates that the role of these infections, suggested to be potential CD protectors, is not as controversial as for the other infectious agents. The outcome of these interactions might be due to a balance between these multidirectional processes.

  16. Diverse effects of arsenic on selected enzyme activities in soil-plant-microbe interactions.

    Science.gov (United States)

    Lyubun, Yelena V; Pleshakova, Ekaterina V; Mkandawire, Martin; Turkovskaya, Olga V

    2013-11-15

    Under the influence of pollutants, enzyme activities in plant-microbe-soil systems undergo changes of great importance in predicting soil-plant-microbe interactions, regulation of metal and nutrient uptake, and, ultimately, improvement of soil health and fertility. We evaluated the influence of As on soil enzyme activities and the effectiveness of five field crops for As phytoextraction. The initial As concentration in soil was 50mg As kg(-1) soil; planted clean soil, unplanted polluted soil, and unplanted clean soil served as controls. After 10 weeks, the growth of the plants elevated soil dehydrogenase activity relative to polluted but unplanted control soils by 2.4- and 2.5-fold for sorghum and sunflower (respectively), by 3-fold for ryegrass and sudangrass, and by 5.2-fold for spring rape. Soil peroxidase activity increased by 33% with ryegrass and rape, while soil phosphatase activity was directly correlated with residual As (correlation coefficient R(2)=0.7045). We conclude that soil enzyme activities should be taken into account when selecting plants for phytoremediation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Microbes in the upper atmosphere and unique opportunities for astrobiology research.

    Science.gov (United States)

    Smith, David J

    2013-10-01

    Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.

  18. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil

    International Nuclear Information System (INIS)

    Li, G.; Huang, W.; Zhang, X.; Lerner, D.N.

    2000-01-01

    Soil at a site near Zibo City, China, is polluted with hydrocarbons at concentrations up to 200 g kg -1 dry soil. Samples contained 10 7 microbial cells g -1 dry soil, and the concentration of aerobic degradation bacteria is 10 7 cells g -1 dry soil. The most active species were Xanthomonas, Bacillus and Hyphomicrobium. The nitrogen and phosphorus contents of the polluted soil are typically 0.1 %, and are sufficient to sustain natural or enhanced biodegradation. The BAC (Biological Activated Carbon) system was used to enrich indigenous microbes to enhance bioremediation rates in the laboratory. The BAC used the large surface area and sorption characteristics to fix bacteria and media, and effectively culture and enrich the microbes. Effluent from the BAC system contained up to 4 x 10 11 cells ml -1 , and was introduced to the contaminated soil to enhance biodegradation. The results indicated that the natural biodegradation rate of the petroleum hydrocarbons is lower than the BAC enhanced bioremediation rate, 1.7% as opposed to 42% in 32 days. (Author)

  19. Structure and function of complex carbohydrates active in regulating plant-microbe interactions

    Energy Technology Data Exchange (ETDEWEB)

    Albersheim, P; Darvill, A G; McNeil, M

    1981-01-01

    A key regulatory role of complex carbohydrates in the interactions between plants and microbes has been established. The complex carbohydrates act as regulatory molecules or hormones in that the carbohydrates induce de novo protein synthesis in receptive cells. The first complex carbohydrate recognized to possess such regulatory properties is a polysaccharide (PS) present in the walls of fungi. Hormonal concentrations of this PS elicit plant cells to accumulate phytoalexins (antibiotics). More recently we have recognized that a PS in the walls of growing plant cells also elicits phytoalexin accumulation; microbes and viruses may cause the release of active fragments of this endogenous elicitor. Another PS in plant cell walls is the Proteinase Inhibitor Inducing Factor (PIIF). This hormone appears to protect plants by inducing synthesis in plants of proteins which specifically inhibit digestive enzymes of insects and bacteria. Glycoproteins secreted by incompatible races (races that do not infect the plant) of a fungal pathogen of soybeans protect seedlings from attack by compatible races. Glycoproteins from compatible races do not protect the seedlings. The acidic PS secreted by the nitrogen-fixing rhizobia appear to function in the infection of legumes by the rhizobia. W.D. Bauer and his co-workers have evidence that these PS are required for the development of root hairs capable of being infected by symbiont rhizobia. Current knowledge of the structures of these biologically active complex carbohydrates will be presented.

  20. Metagenome Analysis of Protein Domain Collocation within Cellulase Genes of Goat Rumen Microbes

    Directory of Open Access Journals (Sweden)

    SooYeon Lim

    2013-08-01

    Full Text Available In this study, protein domains with cellulase activity in goat rumen microbes were investigated using metagenomic and bioinformatic analyses. After the complete genome of goat rumen microbes was obtained using a shotgun sequencing method, 217,892,109 pair reads were filtered, including only those with 70% identity, 100-bp matches, and thresholds below E−10 using METAIDBA. These filtered contigs were assembled and annotated using blastN against the NCBI nucleotide database. As a result, a microbial community structure with 1431 species was analyzed, among which Prevotella ruminicola 23 bacteria and Butyrivibrio proteoclasticus B316 were the dominant groups. In parallel, 201 sequences related with cellulase activities (EC.3.2.1.4 were obtained through blast searches using the enzyme.dat file provided by the NCBI database. After translating the nucleotide sequence into a protein sequence using Interproscan, 28 protein domains with cellulase activity were identified using the HMMER package with threshold E values below 10−5. Cellulase activity protein domain profiling showed that the major protein domains such as lipase GDSL, cellulase, and Glyco hydro 10 were present in bacterial species with strong cellulase activities. Furthermore, correlation plots clearly displayed the strong positive correlation between some protein domain groups, which was indicative of microbial adaption in the goat rumen based on feeding habits. This is the first metagenomic analysis of cellulase activity protein domains using bioinformatics from the goat rumen.

  1. Efflux pump-deficient mutants as a platform to search for microbes that produce antibiotics.

    Science.gov (United States)

    Molina-Santiago, Carlos; Udaondo, Zulema; Daddaoua, Abdelali; Roca, Amalia; Martín, Jesús; Pérez-Victoria, Ignacio; Reyes, Fernando; Ramos, Juan-Luis

    2015-07-01

    Pseudomonas putida DOT-T1E-18 is a strain deficient in the major antibiotic efflux pump (TtgABC) that exhibits an overall increased susceptibility to a wide range of drugs when compared with the wild-type strain. We used this strain as a platform to search for microbes able to produce antibiotics that inhibit growth. A collection of 2400 isolates from soil, sediments and water was generated and a drop assay developed to identify, via growth inhibition halos, strains that prevent the growth of DOT-T1E-18 on solid Luria-Bertani plates. In this study, 35 different isolates that produced known and unknown antibiotics were identified. The most potent inhibitor of DOT-T1E-18 growth was an isolate named 250J that, through multi-locus sequence analysis, was identified as a Pseudomonas sp. strain. Culture supernatants of 250J contain four different xantholysins that prevent growth of Gram-positive bacteria, Gram-negative and fungi. Two of the xantholysins were produced in higher concentrations and purified. Xantholysin A was effective against Bacillus, Lysinibacillus and Rhodococcus strains, and the effect against these microbes was enhanced when used in combination with other antibiotics such as ampicillin, gentamicin and kanamycin. Xantholysin C was also efficient against Gram-positive bacteria and showed an interesting antimicrobial effect against Pseudomonas strains, and a synergistic inhibitory effect with ampicillin, chloramphenicol and gentamicin. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Prediction of highly expressed genes in microbes based on chromatin accessibility

    Directory of Open Access Journals (Sweden)

    Ussery David W

    2007-02-01

    Full Text Available Abstract Background It is well known that gene expression is dependent on chromatin structure in eukaryotes and it is likely that chromatin can play a role in bacterial gene expression as well. Here, we use a nucleosomal position preference measure of anisotropic DNA flexibility to predict highly expressed genes in microbial genomes. We compare these predictions with those based on codon adaptation index (CAI values, and also with experimental data for 6 different microbial genomes, with a particular interest in experimental data from Escherichia coli. Moreover, position preference is examined further in 328 sequenced microbial genomes. Results We find that absolute gene expression levels are correlated with the position preference in many microbial genomes. It is postulated that in these regions, the DNA may be more accessible to the transcriptional machinery. Moreover, ribosomal proteins and ribosomal RNA are encoded by DNA having significantly lower position preference values than other genes in fast-replicating microbes. Conclusion This insight into DNA structure-dependent gene expression in microbes may be exploited for predicting the expression of non-translated genes such as non-coding RNAs that may not be predicted by any of the conventional codon usage bias approaches.

  3. Investigating Microbe-Mineral Interactions: Recent Advances in X-Ray and Electron Microscopy and Redox-Sensitive Methods

    Science.gov (United States)

    Miot, Jennyfer; Benzerara, Karim; Kappler, Andreas

    2014-05-01

    Microbe-mineral interactions occur in diverse modern environments, from the deep sea and subsurface rocks to soils and surface aquatic environments. They may have played a central role in the geochemical cycling of major (e.g., C, Fe, Ca, Mn, S, P) and trace (e.g., Ni, Mo, As, Cr) elements over Earth's history. Such interactions include electron transfer at the microbe-mineral interface that left traces in the rock record. Geomicrobiology consists in studying interactions at these organic-mineral interfaces in modern samples and looking for traces of past microbe-mineral interactions recorded in ancient rocks. Specific tools are required to probe these interfaces and to understand the mechanisms of interaction between microbes and minerals from the scale of the biofilm to the nanometer scale. In this review, we focus on recent advances in electron microscopy, in particular in cryoelectron microscopy, and on a panel of electrochemical and synchrotron-based methods that have recently provided new understanding and imaging of the microbe-mineral interface, ultimately opening new fields to be explored.

  4. Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model

    Directory of Open Access Journals (Sweden)

    Virk Bhupinder

    2012-07-01

    Full Text Available Abstract Background Gut microbes influence animal health and thus, are potential targets for interventions that slow aging. Live E. coli provides the nematode worm Caenorhabditis elegans with vital micronutrients, such as folates that cannot be synthesized by animals. However, the microbe also limits C. elegans lifespan. Understanding these interactions may shed light on how intestinal microbes influence mammalian aging. Results Serendipitously, we isolated an E. coli mutant that slows C. elegans aging. We identified the disrupted gene to be aroD, which is required to synthesize aromatic compounds in the microbe. Adding back aromatic compounds to the media revealed that the increased C. elegans lifespan was caused by decreased availability of para-aminobenzoic acid, a precursor to folate. Consistent with this result, inhibition of folate synthesis by sulfamethoxazole, a sulfonamide, led to a dose-dependent increase in C. elegans lifespan. As expected, these treatments caused a decrease in bacterial and worm folate levels, as measured by mass spectrometry of intact folates. The folate cycle is essential for cellular biosynthesis. However, bacterial proliferation and C. elegans growth and reproduction were unaffected under the conditions that increased lifespan. Conclusions In this animal:microbe system, folates are in excess of that required for biosynthesis. This study suggests that microbial folate synthesis is a pharmacologically accessible target to slow animal aging without detrimental effects.

  5. Transcriptomic profiling of microbe-microbe interactions reveals the specific response of the biocontrol strain P. fluorescens In5 to the phytopathogen Rhizoctonia solani

    DEFF Research Database (Denmark)

    Hennessy, Rosanna Catherine; Glaring, Mikkel Andreas; Olsson, Stefan

    2017-01-01

    reads per sample. RESULTS: No significant changes in global gene expression were recorded during dual-culture of P. fluorescens In5 with any of the two pathogens but rather each pathogen appeared to induce expression of a specific set of genes. A particularly strong transcriptional response to R. solani...... and in particular the fungus R. solani. This highlights the importance of studying microbe-microbe interactions to gain a better understanding of how different systems function in vitro and ultimately in natural systems where biocontrol agents can be used for the sustainable management of plant diseases....

  6. Plant-microbe interaction in aquatic system and their role in the management of water quality: a review

    Science.gov (United States)

    Srivastava, Jatin K.; Chandra, Harish; Kalra, Swinder J. S.; Mishra, Pratibha; Khan, Hena; Yadav, Poonam

    2017-06-01

    Microbial assemblage as biofilm around the aquatic plant forms a firm association that largely depends upon the mutual supplies of nutrients, e.g., microbes interact with plants in an aquatic system most likely for organic carbon and oxygen, whereas plants receive defensive immunity and mineral exchange. Apart from the mutual benefits, plant-microbe interactions also influence the water quality especially at rhizosphere providing inherent ability to the aquatic system for the mitigation of pollution from the water column. The review presents and in-depth information along with certain research advancements made in the field of ecological and bio/chemical aspects of plant-microbe interactions and the underlying potential to improve water quality.

  7. Correlation of soil microbes and soil micro-environment under long-term safflower (Carthamus tinctorius L.) plantation in China.

    Science.gov (United States)

    Lu, Shuang; Quan, Wang; Wang, Shao-Ming; Liu, Hong-Ling; Tan, Yong; Zeng, Guang-Ping; Zhang, Xia

    2013-04-01

    Microbial community structure and ecological functions are influenced by interactions between above and belowground biota. There is an urgent need for intensive monitoring of microbes feedback of soil micro-ecosystem for setting up a good agricultural practice. Recent researches have revealed that many soils characteristic can effect microbial community structure. In the present study factors affecting microbial community structure and soil in Carthamus tinctorius plantations in arid agricultural ecosystem of northern Xinjiang, China were identified. The result of the study revealed that soil type was the key factor in safflower yield; Unscientific field management resulted high fertility level (bacteria dominant) of soil to turn to low fertility level (fungi dominant), and Detruded Canonical Correspondence Analysis (DCCA) showed that soil water content, organic matter, available N, P and K were the dominant factors affecting distribution of microbial community. Soil water content showed a significant positive correlation with soil microbes quantity (P soil microbe quantity (P < 0.05).

  8. Impact of anti-acidification microbial consortium on carbohydrate metabolism of key microbes during food waste composting.

    Science.gov (United States)

    Song, Caihong; Li, Mingxiao; Qi, Hui; Zhang, Yali; Liu, Dongming; Xia, Xunfeng; Pan, Hongwei; Xi, Beidou

    2018-07-01

    This study investigated the effect of anti-acidification microbial consortium (AAMC), which act synergistically for rapid bioconversion of organic acids on carbohydrate metabolism of key microbes in the course of food waste (FW) composting by metaproteomics. AAMC was inoculated to the composting mass and compared with treatment with alkaline compounds and the control without any amendment. Inoculating AAMC could effectively accelerate carbohydrate degradation process and improve composting efficiency. Carbohydrate metabolic network profiles showed the inoculation with AAMC could increase significantly the types of enzymes catalysing the degradation of lignin, cellulose and hemicellulose. Furthermore, AAMC inoculum could increase not only diversities of microbes producing key enzymes in metabolism pathways of acetic and propionic acids, but also the amounts of these key enzymes. The increase of diversities of microbes could disperse the pressure from acidic adversity on microorganisms which were capable to degrade acetic and propionic acids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Do forest soil microbes have the potential to resist plant invasion? A case study in Dinghushan Biosphere Reserve (South China)

    Science.gov (United States)

    Chen, Bao-Ming; Li, Song; Liao, Hui-Xuan; Peng, Shao-Lin

    2017-05-01

    Successful invaders must overcome biotic resistance, which is defined as the reduction in invasion success caused by the resident community. Soil microbes are an important source of community resistance to plant invasions, and understanding their role in this process requires urgent investigation. Therefore, three forest communities along successional stages and four exotic invasive plant species were selected to test the role of soil microbes of three forest communities in resisting the exotic invasive plant. Our results showed that soil microbes from a monsoon evergreen broadleaf forest (MEBF) (late-successional stage) had the greatest resistance to the invasive plants. Only the invasive species Ipomoea triloba was not sensitive to the three successional forest soils. Mycorrhizal fungi in early successional forest Pinus massonina forest (PMF) or mid-successional forest pine-broadleaf mixed forest (PBMF) soil promoted the growth of Mikania micrantha and Eupatorium catarium, but mycorrhizal fungi in MEBF soil had no significant effects on their growth. Pathogens plus other non-mycorrhizal microbes in MEBF soil inhibited the growth of M. micrantha and E. catarium significantly, and only inhibited root growth of E. catarium when compared with those with mycorrhizal fungi addition. The study suggest that soil mycorrhizal fungi of early-mid-successional forests benefit invasive species M. micrantha and E. catarium, while soil pathogens of late-successional forest may play an important role in resisting M. micrantha and E. catarium. The benefit and resistance of the soil microbes are dependent on invasive species and related to forest succession. The study gives a possible clue to control invasive plants by regulating soil microbes of forest community to resist plant invasion.

  10. Microbes, Minerals and Electrodes at the Sanford Underground Research Facility (SURF): Electrochemistry 4100 ft below the surface.

    Science.gov (United States)

    Rowe, A. R.; Abuyen, K.; Casar, C. P.; Osburn, M. R.; Kruger, B.; El-Naggar, M.; Amend, J.

    2017-12-01

    Little is known about the importance of mineral oxidation processes in subsurface environments. This stems, in part from our limited insight into the biochemistry of many of these metabolisms, especially where redox interactions with solid surfaces is concerned. To this aim, we have been developing electrochemical cultivation techniques, to target enrichment and isolation of microbes capable of oxidative extracellular electron transfer (oxEET)—transfer of electrons from the exterior of the cell to the interior. Our previous worked focused on marine sediments; using an electrode poised at a given redox potential to isolate mineral-oxidizing microbes. Electrode oxidizing microbes isolated from these enrichments belong to the genera Thioclava, Marinobacter, Halomonas, Idiomarina, Thalassospira, and Pseudamonas; organisms commonly detected in marine and deep sea sediments but not generally associated with mineral, sulfur and/or iron oxidation. At the Sanford Underground Research Facility (SURF) in Leed, South Dakota, we have been utilizing similar electrocultivation techniques to understand: 1) the potential for mineral oxidation by subsurface microbes, 2) their selective colonization on mineral vs. electrode surfaces, as well as 3) the community composition of microbes capable of these metabolic interactions. An electrochemical and mineral enrichment scheme was designed and installed into a sulfidic groundwater flow, located at the 4100 ft level of the former gold mine. The communities enriched on electrodes (graphite and indium tin oxide coated glass) and minerals (sulfur, pyrite, and schists from the location) were compared to the long-term ground water microbial community observed. Ultimately, these observations will help inform the potential activity of a lithotrophic microbes in situ and will in turn guide our culturing efforts.

  11. A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes

    Directory of Open Access Journals (Sweden)

    Glass John I

    2010-07-01

    Full Text Available Abstract Background Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, Mollicutes. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT. Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins. Results Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the Mollicutes. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the

  12. From where and how do plants and microbes get nitrogen? Revisiting paradigms of soil nitrogen availability

    Science.gov (United States)

    Grandy, S.

    2017-12-01

    Despite decades of research progress, soil biogeochemists are still debating in different ecosystems what pools and fluxes provide N to plants and microbes. Current concepts argue that N mineralization regulates the supply of N for plants and microorganisms, and is a `gatekeeper' for environmental N losses. The prevailing paradigm also argues that the chemistry of plant litter inputs (e.g. initial C:N ratio) primarily drives N mineralization rates, existing as a universal regulator of a switch between net N immobilization versus net N mineralization. However, decomposer community enzyme upregulation drives proteolysis, the exocellular first step in N mineralization; then, cellular carbon use efficiency and stoichiometry are internal microbial physiological processes driving ammonification rates. Further, N mineralization is only one of multiple, microbial-driven sequences in soils that regulate bioavailable N. Emerging evidence and new conceptual models from both the ecological and biogeoscience communities argue that while depolymerization is a critical first step, clay minerals may be an important and overlooked mediator of bioavailable N, and especially in the soil rhizosphere they are both a large source and sink for N. Mineral-associated organic matter (MAOM) can hold up to 20x more N than particulate fractions, is a rich reservoir of proteins, amino acids, and nucleic acids, and is mobilized by microbes and their interactions with plants. We use this and other emerging information to develop a new model of N availability in soils, highlighting: mineralization is strongly influenced by microbial physiological traits; the various steps in N mineralization have different drivers and can become decoupled; minerals are a strong sink and source for bioavailable N that is regulated by interactions between plants and microbial communities; and plants are a driving force in the soil N cycle for their ability to prime mineral N, and influence the structure and function

  13. Q&A: Friends (but sometimes foes) within: the complex evolutionary ecology of symbioses between host and microbes.

    Science.gov (United States)

    Gerardo, Nicole; Hurst, Gregory

    2017-12-27

    Over the past decade, there has been a pronounced shift in the study of host-microbe associations, with recognition that many of these associations are beneficial, and often critical, for a diverse array of hosts. There may also be pronounced benefits for the microbes, though this is less well empirically understood. Significant progress has been made in understanding how ecology and evolution shape simple associations between hosts and one or a few microbial species, and this work can serve as a foundation to study the ecology and evolution of host associations with their often complex microbial communities (microbiomes).

  14. Gamma radiation (Co60) effects on active substances and microbe burden of medicinal plants

    International Nuclear Information System (INIS)

    Dall'Agnol, L.

    2001-01-01

    In order to evaluate the effects of radioactivity on active vegetal substances, samples of Fennel (Foeniculum vulgare Miller., fructus), Guarana (Paulinia cupana, Kunth, semen), Gingko (gingko biloba, L., folium), and Kawa-Kawa (Piper methysticum G. Forst, rhizoma), were treated with scaling doses (0 to 25 KGy) of gamma radiation (Co 60 ). The 'blind test' methodology was used. The active substances from each sample were analysed by qualitative and quantitative methods after radiation. There were no significant differences seen between the control sample (0 KGy) and the irradiated samples. Microbe contamination was significantly reduced, about 10000 CFU/g, with the initial 5 KGy dose. It was concluded that gamma radiation can be used as an alternative procedure to reduce microbiologic contamination in medicinal plants. Before this procedure can be extended to other medicinal plants, more specific analytical methods are recommended to verify possible structural alterations in active vegetal molecules. (author)

  15. The utilization of microbes as a fermentation agent to reduce saponin in Trembesi leaves (Sammanea saman)

    Science.gov (United States)

    Sariri, A. K.; Mulyono, A. M. W.; Tari, A. I. N.

    2018-03-01

    This objective of this research was to observe the utilization of microbes as a fermentation agent of trembesi leaves that can increase the quality of trembesi leaves as ruminants feed. Before fermentation, trembesi leaves were divided into three treatments. They were control = non-agentic in fermentation, D-An = the addition of Aspergillus niger as fermentation agent, and D-Lp = the addition of Lactobacillus plantarum as fermentation agent. Each treatment experienced five repetitions. The experimental design used a randomized direct pattern group design. The analysis included proximate analysis consisting of water content, crude protein content, crude fiber content, lipid content, mineral content (ash) and saponin content after fermentation. It could be concluded that the utilization of Aspergillus niger and Lactobacillus plantarum in fermentation could decrease saponin content and could increase the nutrient content of trembesi leaves by increasing crude protein content otherwise by decreasing crude fiber content of trembesi leaves.

  16. Membrane trafficking pathways and their roles in plant-microbe interactions.

    Science.gov (United States)

    Inada, Noriko; Ueda, Takashi

    2014-04-01

    Membrane trafficking functions in the delivery of proteins that are newly synthesized in the endoplasmic reticulum (ER) to their final destinations, such as the plasma membrane (PM) and the vacuole, and in the internalization of extracellular components or PM-associated proteins for recycling or degradative regulation. These trafficking pathways play pivotal roles in the rapid responses to environmental stimuli such as challenges by microorganisms. In this review, we provide an overview of the current knowledge of plant membrane trafficking and its roles in plant-microbe interactions. Although there is little information regarding the mechanism of pathogenic modulation of plant membrane trafficking thus far, recent research has identified many membrane trafficking factors as possible targets of microbial modulation.

  17. Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view

    Directory of Open Access Journals (Sweden)

    Nathalie eLeborgne-Castel

    2014-12-01

    Full Text Available In order to ensure their physiological and cellular functions, plasma membrane (PM proteins must be properly conveyed from their site of synthesis, i.e. the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formation of intracellular perimicrobial compartments, the PM protein trafficking machinery of the host, and the delivery or retrieval of signaling and transport proteins such as pattern-recognition receptors, producers of reactive oxygen species, and sugar transporters.

  18. Molecular detection of drug resistance in microbes by isotopic techniques: The IAEA experience

    International Nuclear Information System (INIS)

    Dar, L.; Boussaha, A.; Padhy, A.K.; Khan, B.

    2003-01-01

    The International Atomic Energy Agency (IAEA) supports various programmes on the uses of radionuclide techniques in the management of human communicable diseases. An important issue, being addressed through several technology transfer projects, is the detection of drug resistance in microbes by radioisotope based molecular-biology diagnostic procedures. The techniques employed include dot blot hybridisation with P-32 labelled oligonucleotide probes to detect point mutations, associated with drug resistance, in microbial genes amplified by the polymerase chain reaction (PCR). Molecular methods have been used for the detection of drug resistance in the malarial parasite, Plasmodium falciparum, and in Mycobacterium tuberculosis. Radioisotope based molecular-biology methods have been demonstrated to have comparative advantages in being sensitive, specific, cost-effective, and suitable for application to large-scale molecular surveillance for drug resistance. (author)

  19. Microbe-Induced Inflammatory Signals Triggering Acquired Bone Marrow Failure Syndromes.

    Science.gov (United States)

    Espinoza, J Luis; Kotecha, Ritesh; Nakao, Shinji

    2017-01-01

    Acquired bone marrow failure syndromes encompass a unique set of disorders characterized by a reduction in the effective production of mature cells by the bone marrow (BM). In the majority of cases, these syndromes are the result of the immune-mediated destruction of hematopoietic stem cells or their progenitors at various stages of differentiation. Microbial infection has also been associated with hematopoietic stem cell injury and may lead to associated transient or persistent BM failure, and recent evidence has highlighted the potential impact of commensal microbes and their metabolites on hematopoiesis. We summarize the interactions between microorganisms and the host immune system and emphasize how they may impact the development of acquired BM failure.

  20. Humans as Superorganisms: How Microbes, Viruses, Imprinted Genes, and Other Selfish Entities Shape Our Behavior.

    Science.gov (United States)

    Kramer, Peter; Bressan, Paola

    2015-07-01

    Psychologists and psychiatrists tend to be little aware that (a) microbes in our brains and guts are capable of altering our behavior; (b) viral DNA that was incorporated into our DNA millions of years ago is implicated in mental disorders; (c) many of us carry the cells of another human in our brains; and (d) under the regulation of viruslike elements, the paternally inherited and maternally inherited copies of some genes compete for domination in the offspring, on whom they have opposite physical and behavioral effects. This article provides a broad overview, aimed at a wide readership, of the consequences of our coexistence with these selfish entities. The overarching message is that we are not unitary individuals but superorganisms, built out of both human and nonhuman elements; it is their interaction that determines who we are. © The Author(s) 2015.

  1. Natural antifouling compound production by microbes associated with marine macroorganisms — A review

    Directory of Open Access Journals (Sweden)

    Sathianeson Satheesh

    2016-05-01

    Full Text Available In the marine environment, all hard surfaces including marine macroorganims are colonized by microorganisms mainly from the surrounding environment. The microorganisms associated with marine macroorganisms offer tremendous potential for exploitation of bioactive metabolites. Biofouling is a continuous problem in marine sectors which needs huge economy for control and cleaning processes. Biotechnological way for searching natural product antifouling compounds gained momentum in recent years because of the environmental pollution associated with the use of toxic chemicals to control biofouling. While, natural product based antifoulants from marine organisms particularly sponges and corals attained significance due to their activities in field assays, collection of larger amount of organisms from the sea is not a viable one. The microorganisms associated with sponges, corals, ascidians, seaweeds and seagrasses showed strong antimicrobial and also antifouling activities. This review highlights the advances in natural product antifoulants research from microbes associated with marine organisms.

  2. Plant-Microbe Interactions and Water Management in Arid and Saline Soils

    KAUST Repository

    Daffonchio, Daniele; Hirt, Heribert; Berg, Gabriele

    2014-01-01

    Drought and salinity are major factors limiting agriculture in many regions in the world, and their importance is predicted to even increase in the near future in parallel with the ongoing global warming and climate changes. Soil and rhizosphere microbes are potential resources for counteracting such abiotic stresses in plants. The knowledge on the roles of root microorganisms in retaining soil humidity and promoting plant growth under such abiotic stresses is analyzed in this chapter. The importance of microbial diversity in the rhizosphere for alleviating drought and salinity effects on the plant physiology is discussed in the light of “Desert Farming”, the general crop management practice that is frequently used in arid regions. The plant growth promoting functional services exerted by microorganisms within the rhizosphere in arid soils are presented in relation to the plant response under water stress.

  3. Human Skin Is the Largest Epithelial Surface for Interaction with Microbes.

    Science.gov (United States)

    Gallo, Richard L

    2017-06-01

    Human skin contains an abundant and diverse population of microbial organisms. Many of these microbes inhabit follicular structures of the skin. Furthermore, numerous studies have shown that the interaction of some members of the skin microbiome with host cells will result in changes in cell function. However, estimates of the potential for the microbiome to influence human health through skin have ignored the inner follicular surface, and therefore vastly underestimated the potential of the skin microbiome to have a systemic effect on the human body. By calculating the surface area of follicular and the interfollicular epithelial surface it is shown that skin provides a vast interface for interactions with the microbiome. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  4. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review

    DEFF Research Database (Denmark)

    Zorriehzahra, Mohammad Jalil; Delshad, Somayeh Torabi; Adel, Milad

    2016-01-01

    Wide and discriminate use of antibiotics has resulted in serious biological and ecological concerns, especially the emergence of antibiotic resistance. Probiotics, known as beneficial microbes, are being proposed as an effective and eco-friendly alternative to antibiotics. They were first applied...... in aquaculture species more than three decades ago, but considerable attention had been given only in the early 2000s. Probiotics are defined as live or dead, or even a component of the microorganisms that act under different modes of action in conferring beneficial effects to the host or to its environment....... Several probiotics have been characterized and applied in fish and a number of them are of host origin. Unlike some disease control alternatives being adapted and proposed in aquaculture where actions are unilateral, the immense potential of probiotics lies on their multiple mechanisms in conferring...

  5. Plant-Microbe Interactions and Water Management in Arid and Saline Soils

    KAUST Repository

    Daffonchio, Daniele

    2014-12-05

    Drought and salinity are major factors limiting agriculture in many regions in the world, and their importance is predicted to even increase in the near future in parallel with the ongoing global warming and climate changes. Soil and rhizosphere microbes are potential resources for counteracting such abiotic stresses in plants. The knowledge on the roles of root microorganisms in retaining soil humidity and promoting plant growth under such abiotic stresses is analyzed in this chapter. The importance of microbial diversity in the rhizosphere for alleviating drought and salinity effects on the plant physiology is discussed in the light of “Desert Farming”, the general crop management practice that is frequently used in arid regions. The plant growth promoting functional services exerted by microorganisms within the rhizosphere in arid soils are presented in relation to the plant response under water stress.

  6. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes.

    Science.gov (United States)

    Worden, Alexandra Z; Follows, Michael J; Giovannoni, Stephen J; Wilken, Susanne; Zimmerman, Amy E; Keeling, Patrick J

    2015-02-13

    The profound influence of marine plankton on the global carbon cycle has been recognized for decades, particularly for photosynthetic microbes that form the base of ocean food chains. However, a comprehensive model of the carbon cycle is challenged by unicellular eukaryotes (protists) having evolved complex behavioral strategies and organismal interactions that extend far beyond photosynthetic lifestyles. As is also true for multicellular eukaryotes, these strategies and their associated physiological changes are difficult to deduce from genome sequences or gene repertoires—a problem compounded by numerous unknown function proteins. Here, we explore protistan trophic modes in marine food webs and broader biogeochemical influences. We also evaluate approaches that could resolve their activities, link them to biotic and abiotic factors, and integrate them into an ecosystems biology framework. Copyright © 2015, American Association for the Advancement of Science.

  7. Signals and cues in the evolution of plant-microbe communication.

    Science.gov (United States)

    Padje, Anouk Van't; Whiteside, Matthew D; Kiers, E Toby

    2016-08-01

    Communication has played a key role in organismal evolution. If sender and receiver have a shared interest in propagating reliable information, such as when they are kin relatives, then effective communication can bring large fitness benefits. However, interspecific communication (among different species) is more prone to dishonesty. Over the last decade, plants and their microbial root symbionts have become a model system for studying interspecific molecular crosstalk. However, less is known about the evolutionary stability of plant-microbe communication. What prevents partners from hijacking or manipulating information to their own benefit? Here, we focus on communication between arbuscular mycorrhizal fungi and their host plants. We ask how partners use directed signals to convey specific information, and highlight research on the problem of dishonest signaling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations.

    Science.gov (United States)

    Takeshita, Kazutaka; Kikuchi, Yoshitomo

    2017-04-01

    A number of insects establish symbiotic associations with beneficial microorganisms in various manners. The bean bug Riptortus pedestris and allied stink bugs possess an environmentally acquired Burkholderia symbiont in their midgut crypts. Unlike other insect endosymbionts, the Burkholderia symbiont is easily culturable and genetically manipulatable outside the host. In conjunction with the experimental advantages of the host insect, the Riptortus-Burkholderia symbiosis is an ideal model system for elucidating the molecular bases underpinning insect-microbe symbioses, which opens a new window in the research field of insect symbiosis. This review summarizes current knowledge of this system and discusses future perspectives. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Microbes in the Anthropocene: spillover of agriculturally selected bacteria and their impact on natural ecosystems.

    Science.gov (United States)

    Bell, Thomas; Tylianakis, Jason M

    2016-12-14

    Soil microbial communities are enormously diverse, with at least millions of species and trillions of genes unknown to science or poorly described. Soil microbial communities are key components of agriculture, for example, in provisioning nitrogen and protecting crops from pathogens, providing overall ecosystem services in excess of $1000bn per year. It is important to know how humans are affecting this hidden diversity. Much is known about the negative consequences of agricultural intensification on higher organisms, but almost nothing is known about how alterations to landscapes affect microbial diversity, distributions and processes. We review what is known about spatial flows of microbes and their response to land-use change, and outline nine hypotheses to advance research of microbiomes across landscapes. We hypothesize that intensified agriculture selects for certain taxa and genes, which then 'spill over' into adjacent unmodified areas and generate a halo of genetic differentiation around agricultural fields. Consequently, the spatial configuration and management intensity of different habitats combines with the dispersal ability of individual taxa to determine the extent of spillover, which can impact the functioning of adjacent unmodified habitats. When landscapes are heterogeneous and dispersal rates are high, this will select for large genomes that allow exploitation of multiple habitats, a process that may be accelerated through horizontal gene transfer. Continued expansion of agriculture will increase genotypic similarity, making microbial community functioning increasingly variable in human-dominated landscapes, potentially also impacting the consistent provisioning of ecosystem services. While the resulting economic costs have not been calculated, it is clear that dispersal dynamics of microbes should be taken into consideration to ensure that ecosystem functioning and services are maintained in agri-ecosystem mosaics. © 2016 The Authors.

  10. Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil

    Science.gov (United States)

    Nie, Ming; Wang, Yijing; Yu, Jiayi; Xiao, Ming; Jiang, Lifen; Yang, Ji; Fang, Changming; Chen, Jiakuan; Li, Bo

    2011-01-01

    Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenced by petroleum pollution in Phragmites australis, a phytoremediating species. Generally, petroleum pollution reduced plant performance, especially at early stages of plant growth. Petroleum had negative effects on the net accumulation of inorganic nitrogen from its organic forms (net nitrogen mineralization (NNM)) most likely by decreasing the inorganic nitrogen available to the plants in petroleum-polluted soils. However, abundant dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order to overcome initial deficiency of inorganic nitrogen, plants by dint of high colonization of arbuscular mycorrhizal fungi might absorb some DON for their growth in petroleum-polluted soils. In addition, through using a real-time polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial traits based on their catabolic genes (i.e. alkB (alkane monooxygenase), nah (naphthalene dioxygenase) and tol (xylene monooxygenase) genes). This enumeration of target genes suggests that different hydrocarbon-degrading bacteria experienced different dynamic changes during phytoremediation and a greater abundance of alkB was detected during vegetative growth stages. Because phytoremediation of different components of petroleum is performed by different hydrocarbon-degrading bacteria, plants’ ability of phytoremediating different components might therefore vary during the plant life cycle. Phytoremediation might be most effective during the vegetative growth stages as greater abundances of hydrocarbon-degrading bacteria containing alkB and tol genes were observed

  11. Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment.

    Science.gov (United States)

    Islam, A B M R; Maity, Jyoti Prakash; Bundschuh, Jochen; Chen, Chien-Yen; Bhowmik, Bejon Kumar; Tazaki, Kazue

    2013-11-15

    Arsenic (As) is widely distributed in the nature as ores or minerals. It has been attracted much attention for the global public health issue, especially for groundwater As contamination. The aim of this study was to elucidate the characteristics of microbes in groundwater where As-minerals were dissolved. An ex situ experiment was conducted with 7 standard As-minerals in bacteria-free groundwater and stored in experimental vessels for 1 year without supplementary nutrients. The pH (6.7-8.4) and EhS.H.E. (24-548 mV) changed between initial (0 day) and final stages (365 days) of experiment. The dissolution of As was detected higher from arsenolite (4240 ± 8.69 mg/L) and native arsenic (4538 ± 9.02 mg/L), whereas moderately dissolved from orpiment (653 ± 3.56 mg/L) and realgar (319 ± 2.56 mg/L) in compare to arsenopyrite (85 ± 1.25mg/L) and tennantite (3 ± 0.06 mg/L). Optical microscopic, scanning electron microscopic observations and flurometric enumeration revealed the abundance of As-resistant bacillus, coccus and filamentous types of microorganisms on the surface of most of As-mineral. 4'-6-Diamidino-2-phenylindole (DAPI)-stained epifluorescence micrograph confirmed the presence of DNA and carboxyfluorescein diacetate (CFDA) staining method revealed the enzymatically active bacteria on the surface of As-minerals such as in realgar (As4S4). Therefore, the microbes enable to survive and mobilize the As in groundwater by dissolution/bioweathering of As-minerals. Copyright © 2012. Published by Elsevier B.V.

  12. In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Banik, S.; Pérez-de-Luque, A.

    2017-07-01

    Copper-based chemicals are effectively used as antimicrobials in agriculture. However, with respect to its nanoparticulate form there has been limited number of studies. In this investigation, in vitro tests on effect of copper nanoparticles (CuNPs) against plant pathogenic fungi, oomycete, bacteria, beneficial microbes Trichoderma harzianum and Rhizobium spp., and wheat seeds were conducted. Integration of CuNPs with non-nano copper like copper oxychloride (CoC) at 50 mg/L concentration each recorded 76% growth inhibition of the oomycete Phytophthora cinnamomi in vitro compared to the control. CuNPs also showed synergistic inhibitory effect with CoC on mycelial growth and sporulation of A. alternata. Pseudomonas syringae was inhibited at 200 mg/L of CuNPs. CuNPs were not significantly biocidal against Rhizobium spp. and Trichoderma harzianum compared to CoC. Evaluation of the effect of CuNP on wheat revealed that rate of germination of wheat seeds was higher in presence of CuNPs and CoC compared to control. Germination vigor index, root length, shoot dry weight and seed metabolic efficiency of wheat were negatively affected. At low concentration, CuNPs promoted the growth of the plant pathogenic fungi Botrytis fabae, Fusarium oxysporum f.sp. ciceris, F.oxysporum f.sp. melonis, Alternaria alternate and P. syringae, and sporulation of T. harzianum. Synergistic effect of CuNPs and CoC in inhibiting P. cinnamomi offers a possibility of developing new fungicide formulation for better control of the oomycetes. Non-biocidal effect of CuNPs against beneficial microbes indicates its potential use in the agri-ecosystem.

  13. Microbes from mined sites: Harnessing their potential for reclamation of derelict mine sites

    International Nuclear Information System (INIS)

    Thavamani, Palanisami; Samkumar, R. Amos; Satheesh, Viswanathan; Subashchandrabose, Suresh R.; Ramadass, Kavitha; Naidu, Ravi; Venkateswarlu, Kadiyala; Megharaj, Mallavarapu

    2017-01-01

    Derelict mines pose potential risks to environmental health. Several factors such as soil structure, organic matter, and nutrient content are the greatly affected qualities in mined soils. Soil microbial communities are an important element for successful reclamation because of their major role in nutrient cycling, plant establishment, geochemical transformations, and soil formation. Yet, microorganisms generally remain an undervalued asset in mined sites. The microbial diversity in derelict mine sites consists of diverse species belonging to four key phyla: Proteobacteria, Acidobacteria, Firmicutes, and Bacteroidetes. The activity of plant symbiotic microorganisms including root-colonizing rhizobacteria and ectomycorrhizal fungi of existing vegetation in the mined sites is very high since most of these microbes are extremophiles. This review outlines the importance of microorganisms to soil health and the rehabilitation of derelict mines and how microbial activity and diversity can be exploited to better plan the soil rehabilitation. Besides highlighting the major breakthroughs in the application of microorganisms for mined site reclamation, we provide a critical view on plant−microbiome interactions to improve revegetation at the mined sites. Also, the need has been emphasized for deciphering the molecular mechanisms of adaptation and resistance of rhizosphere and non-rhizosphere microbes in abandoned mine sites, understanding their role in remediation, and subsequent harnessing of their potential to pave the way in future rehabilitation strategies for mined sites. - Highlights: • Abandoned mines pose potential risks to human and environmental health. • Re-establishment of a self-sustaining vegetative cover at derelict mines is a major challenge. • Soil microbial communities are very important for successful reclamation of mined sites. • Role of microorganisms in soil function in derelict mines needs to be understood.

  14. In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants

    International Nuclear Information System (INIS)

    Banik, S.; Pérez-de-Luque, A.

    2017-01-01

    Copper-based chemicals are effectively used as antimicrobials in agriculture. However, with respect to its nanoparticulate form there has been limited number of studies. In this investigation, in vitro tests on effect of copper nanoparticles (CuNPs) against plant pathogenic fungi, oomycete, bacteria, beneficial microbes Trichoderma harzianum and Rhizobium spp., and wheat seeds were conducted. Integration of CuNPs with non-nano copper like copper oxychloride (CoC) at 50 mg/L concentration each recorded 76% growth inhibition of the oomycete Phytophthora cinnamomi in vitro compared to the control. CuNPs also showed synergistic inhibitory effect with CoC on mycelial growth and sporulation of A. alternata. Pseudomonas syringae was inhibited at 200 mg/L of CuNPs. CuNPs were not significantly biocidal against Rhizobium spp. and Trichoderma harzianum compared to CoC. Evaluation of the effect of CuNP on wheat revealed that rate of germination of wheat seeds was higher in presence of CuNPs and CoC compared to control. Germination vigor index, root length, shoot dry weight and seed metabolic efficiency of wheat were negatively affected. At low concentration, CuNPs promoted the growth of the plant pathogenic fungi Botrytis fabae, Fusarium oxysporum f.sp. ciceris, F.oxysporum f.sp. melonis, Alternaria alternate and P. syringae, and sporulation of T. harzianum. Synergistic effect of CuNPs and CoC in inhibiting P. cinnamomi offers a possibility of developing new fungicide formulation for better control of the oomycetes. Non-biocidal effect of CuNPs against beneficial microbes indicates its potential use in the agri-ecosystem.

  15. Multifaceted defense against antagonistic microbes in developing offspring of the parasitoid wasp Ampulex compressa (Hymenoptera, Ampulicidae.

    Directory of Open Access Journals (Sweden)

    Katharina Weiss

    Full Text Available Effective antimicrobial strategies are essential adaptations of insects to protect themselves, their offspring, and their foods from microbial pathogens and decomposers. Larvae of the emerald cockroach wasp, Ampulex compressa, sanitize their cockroach hosts, Periplaneta americana, with a cocktail of nine antimicrobials comprising mainly (R-(--mellein and micromolide. The blend of these antimicrobials has broad-spectrum antimicrobial activity. Here we explore the spatio-temporal pattern of deployment of antimicrobials during the development from egg to adult as well as their physico-chemical properties to assess how these aspects may contribute to the success of the antimicrobial strategy. Using gas chromatography/mass spectrometry (GC/MS we show that larvae start sanitizing their food as soon as they have entered their host to feed on its tissue. Subsequently, they impregnate the cockroach carcass with antimicrobials to create a hygienic substrate for cocoon spinning inside the host. Finally, the antimicrobials are incorporated into the cocoon. The antimicrobial profiles on cockroach and wasp cocoon differed markedly. While micromolide persisted on the cockroaches until emergence of the wasps, solid-phase microextraction sampling and GC/MS analysis revealed that (R-(--mellein vaporized from the cockroaches and accumulated in the enclosed nest. In microbial challenge assays (R-(--mellein in the headspace of parasitized cockroaches inhibited growth of entomopathogenic and opportunistic microbes (Serratia marcescens, Aspergillus sydowii, Metarhizium brunneum. We conclude that, in addition to food sanitation, A. compressa larvae enclose themselves in two defensive walls by impregnating the cocoon and the cockroach cuticle with antimicrobials. On top of that, they use vaporous (R-(--mellein to sanitize the nest by fumigation. This multifaceted antimicrobial defense strategy involving the spatially and temporally coordinated deployment of several

  16. Nitrogen fertilization decouples roots and microbes: Reductions in belowground carbon allocation limit microbial activity

    Science.gov (United States)

    Carrara, J.; Walter, C. A.; Govindarajulu, R.; Hawkins, J.; Brzostek, E. R.

    2017-12-01

    Nitrogen (N) deposition has enhanced the ability of trees to capture atmospheric carbon (C). The effect of elevated N on belowground C cycling, however, is variable and response mechanisms are largely unknown. Recent research has highlighted distinct differences between ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees in the strength of root-microbial interactions. In particular, ECM trees send more C to rhizosphere microbes to stimulate enzyme activity and nutrient mobilization than AM trees, which primarily rely on saprotrophic microbes to mobilize N. As such, we hypothesized that N fertilization would weaken root-microbial interactions and soil decomposition in ECM stands more than in AM stands. To test this hypothesis, we measured root-microbial interactions in ECM and AM plots in two long-term N fertilization studies, the Fernow Experimental Forest, WV and Bear Brook Watershed, ME. We found that N fertilization led to declines in plant C allocation belowground to fine root biomass, branching, and root exudation in ECM stands to a greater extent than in AM stands. As ECM roots are tightly coupled to the soil microbiome through energy and nutrient exchange, reductions in belowground C allocation were mirrored by shifts in microbial community composition and reductions in fungal gene expression. These shifts were accompanied by larger reductions in fungal-derived lignolytic and hydrolytic enzyme activity in ECM stands than in AM stands. In contrast, as the AM soil microbiome is less reliant on trees for C and are more adapted to high inorganic nutrient environments, the soil metagenome and transcriptome were more resilient to decreases in belowground C allocation. Collectively, our results indicate the N fertilization decoupled root-microbial interactions by reducing belowground carbon allocation in ECM stands. Thus, N fertilization may reduce soil turnover and increase soil C storage to a greater extent in forests dominated by ECM than AM trees.

  17. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean's surface.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Morris

    2011-02-01

    Full Text Available The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH. In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co

  18. Soil Minerals: AN Overlooked Mediator of Plant-Microbe Competition for Organic Nitrogen in the Rhizosphere

    Science.gov (United States)

    Grandy, S.; Jilling, A.; Keiluweit, M.

    2016-12-01

    Recent research on the rate limiting steps in soil nitrogen (N) availability have shifted in focus from mineralization to soil organic matter (SOM) depolymerization. To that end, Schimel and Bennett (2004) argued that together with enzymatic breakdown of polymers to monomers, microsite processes and plant-microbial competition collectively drive N cycling. Here we present new conceptual models arguing that while depolymerization is a critical first step, mineral-organic associations may ultimately regulate the provisioning of bioavailable organic N, especially in the rhizosphere. Mineral-associated organic matter (MAOM) is a rich reservoir for N in soils and often holds 5-7x more N than particulate or labile fractions. However, MAOM is considered largely unavailable to plants as a source of N due to the physicochemical forces on mineral surfaces that stabilize organic matter. We argue that in rhizosphere hotspots, MAOM is in fact a potentially mineralizable and important source of nitrogen for plants. Several biochemical strategies enable plants and microbes to compete with mineral-organic interactions and effectively access MAOM. In particular, root-deposited low molecular weight compounds in the form of root exudates facilitate the biotic and abiotic destabilization and subsequent bioavailability of MAOM. We believe that the competitive balance between the potential fates of assimilable organic N — bound to mineral surfaces or dissolved and available for assimilation — depends on the specific interaction between and properties of the clay, soil solution, mineral-bound organic matter, and microbial community. For this reason, the plant-soil-MAOM interplay is enhanced in rhizosphere hotspots relative to non-rhizosphere environments, and likely strongly regulates plant-microbe competition for N. If these hypotheses are true, we need to reconsider potential soil N cycle responses to changes in climate and land use intensity, focusing on the processes by which

  19. Rapid Reactivation of Deep Subsurface Microbes in the Presence of C-1 Compounds

    Directory of Open Access Journals (Sweden)

    Pauliina Rajala

    2015-02-01

    Full Text Available Microorganisms in the deep biosphere are believed to conduct little metabolic activity due to low nutrient availability in these environments. However, destructive penetration to long-isolated bedrock environments during construction of underground waste repositories can lead to increased nutrient availability and potentially affect the long-term stability of the repository systems, Here, we studied how microorganisms present in fracture fluid from a depth of 500 m in Outokumpu, Finland, respond to simple carbon compounds (C-1 compounds in the presence or absence of sulphate as an electron acceptor. C-1 compounds such as methane and methanol are important intermediates in the deep subsurface carbon cycle, and electron acceptors such as sulphate are critical components of oxidation processes. Fracture fluid samples were incubated in vitro with either methane or methanol in the presence or absence of sulphate as an electron acceptor. Metabolic response was measured by staining the microbial cells with fluorescent dyes that indicate metabolic activity and transcriptional response with RT-qPCR. Our results show that deep subsurface microbes exist in dormant states but rapidly reactivate their transcription and respiration systems in the presence of C-1 substrates, particularly methane. Microbial activity was further enhanced by the addition of sulphate as an electron acceptor. Sulphate- and nitrate-reducing microbes were particularly responsive to the addition of C-1 compounds and sulphate. These taxa are common in deep biosphere environments and may be affected by conditions disturbed by bedrock intrusion, as from drilling and excavation for long-term storage of hazardous waste.

  20. Native plants fare better against an introduced competitor with native microbes and lower nitrogen availability.

    Science.gov (United States)

    Gaya Shivega, W; Aldrich-Wolfe, Laura

    2017-01-24

    While the soil environment is generally acknowledged as playing a role in plant competition, the relative importance of soil resources and soil microbes in determining outcomes of competition between native and exotic plants has rarely been tested. Resilience of plant communities to invasion by exotic species may depend on the extent to which native and exotic plant performance are mediated by abiotic and biotic components of the soil. We used a greenhouse experiment to compare performance of two native prairie plant species and one exotic species, when grown in intraspecific competition and when each native was grown in interspecific competition with the exotic species, in the presence and absence of a native prairie soil community, and when nitrogen availability was elevated or was maintained at native prairie levels. We found that elevated nitrogen availability was beneficial to the exotic species and had no effect on or was detrimental to the native plant species, that the native microbial community was beneficial to the native plant species and either had no effect or was detrimental to the exotic species, and that intraspecific competition was stronger than interspecific competition for the exotic plant species and vice-versa for the natives. Our results demonstrate that soil nitrogen availability and the soil microbial community can mediate the strength of competition between native and exotic plant species. We found no evidence for native microbes enhancing the performance of the exotic plant species. Instead, loss of the native soil microbial community appears to reinforce the negative effects of elevated N on native plant communities and its benefits to exotic invasive species. Resilience of plant communities to invasion by exotic plant species is facilitated by the presence of an intact native soil microbial community and weakened by anthropogenic inputs of nitrogen. Published by Oxford University Press on behalf of the Annals of Botany Company.

  1. Microbes in the Anthropocene: spillover of agriculturally selected bacteria and their impact on natural ecosystems

    Science.gov (United States)

    2016-01-01

    Soil microbial communities are enormously diverse, with at least millions of species and trillions of genes unknown to science or poorly described. Soil microbial communities are key components of agriculture, for example, in provisioning nitrogen and protecting crops from pathogens, providing overall ecosystem services in excess of $1000bn per year. It is important to know how humans are affecting this hidden diversity. Much is known about the negative consequences of agricultural intensification on higher organisms, but almost nothing is known about how alterations to landscapes affect microbial diversity, distributions and processes. We review what is known about spatial flows of microbes and their response to land-use change, and outline nine hypotheses to advance research of microbiomes across landscapes. We hypothesize that intensified agriculture selects for certain taxa and genes, which then ‘spill over’ into adjacent unmodified areas and generate a halo of genetic differentiation around agricultural fields. Consequently, the spatial configuration and management intensity of different habitats combines with the dispersal ability of individual taxa to determine the extent of spillover, which can impact the functioning of adjacent unmodified habitats. When landscapes are heterogeneous and dispersal rates are high, this will select for large genomes that allow exploitation of multiple habitats, a process that may be accelerated through horizontal gene transfer. Continued expansion of agriculture will increase genotypic similarity, making microbial community functioning increasingly variable in human-dominated landscapes, potentially also impacting the consistent provisioning of ecosystem services. While the resulting economic costs have not been calculated, it is clear that dispersal dynamics of microbes should be taken into consideration to ensure that ecosystem functioning and services are maintained in agri-ecosystem mosaics. PMID:27928044

  2. Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.H.; Bernard, S.; Andersen, G.L.; Chen, W.

    2009-03-01

    Interactions between plants and microbes are an integral part of our terrestrial ecosystem. Microbe-plant interactions are being applied in many areas. In this review, we present recent reports of applications in the areas of plant-growth promotion, biocontrol, bioactive compound and biomaterial production, remediation and carbon sequestration. Challenges, limitations and future outlook for each field are discussed.

  3. The microbe, creator of the pathologist: an inter-related history of pathology, microbiology, and infectious disease.

    Science.gov (United States)

    Rosati, L A

    2001-06-01

    This brief historical review of pathology stresses the impact of microbial discovery on the development of pathology as a medical specialty. If, as it has been said, the microscope invented the pathologist, it was the microbe, especially the pathogenic bacterium, that gave him his name and made him clinically relevant.

  4. Encapsulation of the therapeutic microbe Akkermansia muciniphila in a double emulsion enhances survival in simulated gastric conditions

    NARCIS (Netherlands)

    Ark, van der Kees C.H.; Nugroho, Avis Dwi Wahyu; Berton-Carabin, Claire; Wang, Che; Belzer, Clara; Vos, de Willem M.; Schroen, Karin

    2017-01-01

    There is considerable attention for developing Akkermansia muciniphila as a new therapeutic microbe since it has shown to prevent diet-induced obesity and type 2 diabetes in mice. However, A. muciniphila is sensitive to gastric conditions such as low pH and oxygen. Therefore, we explored the

  5. Ecosystem Fabrication (EcoFAB) Protocols for The Construction of Laboratory Ecosystems Designed to Study Plant-microbe Interactions.

    Science.gov (United States)

    Gao, Jian; Sasse, Joelle; Lewald, Kyle M; Zhalnina, Kateryna; Cornmesser, Lloyd T; Duncombe, Todd A; Yoshikuni, Yasuo; Vogel, John P; Firestone, Mary K; Northen, Trent R

    2018-04-10

    Beneficial plant-microbe interactions offer a sustainable biological solution with the potential to boost low-input food and bioenergy production. A better mechanistic understanding of these complex plant-microbe interactions will be crucial to improving plant production as well as performing basic ecological studies investigating plant-soil-microbe interactions. Here, a detailed description for ecosystem fabrication is presented, using widely available 3D printing technologies, to create controlled laboratory habitats (EcoFABs) for mechanistic studies of plant-microbe interactions within specific environmental conditions. Two sizes of EcoFABs are described that are suited for the investigation of microbial interactions with various plant species, including Arabidopsis thaliana, Brachypodium distachyon, and Panicum virgatum. These flow-through devices allow for controlled manipulation and sampling of root microbiomes, root chemistry as well as imaging of root morphology and microbial localization. This protocol includes the details for maintaining sterile conditions inside EcoFABs and mounting independent LED light systems onto EcoFABs. Detailed methods for addition of different forms of media, including soils, sand, and liquid growth media coupled to the characterization of these systems using imaging and metabolomics are described. Together, these systems enable dynamic and detailed investigation of plant and plant-microbial consortia including the manipulation of microbiome composition (including mutants), the monitoring of plant growth, root morphology, exudate composition, and microbial localization under controlled environmental conditions. We anticipate that these detailed protocols will serve as an important starting point for other researchers, ideally helping create standardized experimental systems for investigating plant-microbe interactions.

  6. Influence of humic substances on plant-microbes interactions in the rhizosphere

    Science.gov (United States)

    Puglisi, Edoardo; Pascazio, Silvia; Spaccini, Riccardo; Crecchio, Carmine; Trevisan, Marco; Piccolo, Alessandro

    2013-04-01

    Humic substances are known to play a wide range of effects on the physiology of plant and microbes. This is of particular relevance in the rhizosphere of terrestrial environments, where the reciprocal interactions between plants roots, soil constituents and microorganisms strongly influence the plants acquisition of nutrients. Chemical advances are constantly improving our knowledge on humic substances: their supra-molecular architecture, as well as the moltitude of their chemical constituents, many of which are biologically active. An approach for linking the structure of humic substances with their biological activity in the rhizosphere is the use of rhizoboxes, which allow applying a treatment (e.g., an amendment with humic substances) in an upper soil-plant compartment and take measurements in a lower isolated rhizosphere compartment that can be sampled at desired distances from the rhizoplane. This approach can be adopted to assess the effects of several humic substances, as well as composted materials, on maize plants rhizodeposition of carbon, and in turn on the structure and activity of rhizosphere microbial communities. In order to gain a complete understanding of processes occurring in the complex soil-plant-microorganisms tripartite system, rhizobox experiments can be coupled with bacterial biosensors for the detection and quantification of bioavailable nutrients, chemical analyses of main rhizodeposits constituents, advanced chemical characterizations of humic substances, DNA-fingerprinting of microbial communities, and multivariate statistical approaches to manage the dataset produced and to infer general conclusions. By such an approach it was found that humic substances are significantly affecting the amount of carbon deposited by plant roots. This induction effect is more evident for substances with more hydrophobic and complex structure, thus supporting the scientific hypothesis of the "microbial loop model", which assumes that plants feed

  7. The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation.

    Science.gov (United States)

    Engels, Christina; Ruscheweyh, Hans-Joachim; Beerenwinkel, Niko; Lacroix, Christophe; Schwab, Clarissa

    2016-01-01

    Eubacterium hallii is considered an important microbe in regard to intestinal metabolic balance due to its ability to utilize glucose and the fermentation intermediates acetate and lactate, to form butyrate and hydrogen. Recently, we observed that E. hallii is capable of metabolizing glycerol to 3-hydroxypropionaldehyde (3-HPA, reuterin) with reported antimicrobial properties. The key enzyme for glycerol to 3-HPA conversion is the cobalamin-dependent glycerol/diol dehydratase PduCDE which also utilizes 1,2-propanediol (1,2-PD) to form propionate. Therefore our primary goal was to investigate glycerol to 3-HPA metabolism and 1,2-PD utilization by E. hallii along with its ability to produce cobalamin. We also investigated the relative abundance of E. hallii in stool of adults using 16S rRNA and pduCDE based gene screening to determine the contribution of E. hallii to intestinal propionate formation. We found that E. hallii utilizes glycerol to produce up to 9 mM 3-HPA but did not further metabolize 3-HPA to 1,3-propanediol. Utilization of 1,2-PD in the presence and absence of glucose led to the formation of propanal, propanol and propionate. E. hallii formed cobalamin and was detected in stool of 74% of adults using 16S rRNA gene as marker gene (n = 325). Relative abundance of the E. hallii 16S rRNA gene ranged from 0 to 0.59% with a mean relative abundance of 0.044%. E. hallii PduCDE was detected in 63 to 81% of the metagenomes depending on which subunit was investigated beside other taxons such as Ruminococcus obeum, R. gnavus, Flavonifractor plautii, Intestinimonas butyriciproducens, and Veillonella spp. In conclusion, we identified E. hallii as a common gut microbe with the ability to convert glycerol to 3-HPA, a step that requires the production of cobalamin, and to utilize 1,2-PD to form propionate. Our results along with its ability to use a broad range of substrates point at E. hallii as a key species within the intestinal trophic chain with the potential to

  8. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation

    Directory of Open Access Journals (Sweden)

    Christina eEngels

    2016-05-01

    Full Text Available Eubacterium hallii is considered an important microbe in regard to intestinal metabolic balance due to its ability to utilize glucose and the fermentation intermediates acetate and lactate, to form butyrate and hydrogen. Recently, we observed that E. hallii is capable of metabolizing glycerol to 3-hydroxypropionaldehyde (3-HPA, reuterin with reported antimicrobial properties. The key enzyme for glycerol to 3-HPA conversion is the cobalamin-dependent glycerol/diol dehydratase PduCDE which also utilizes 1,2-propanediol (1,2-PD to form propionate. Therefore our primary goal was to investigate glycerol to 3-HPA metabolism and 1,2-PD utilization by E. hallii along with its ability to produce cobalamin. We also investigated the relative abundance of E. hallii in stool of adults using 16S rRNA and pduCDE based gene screening to determine the contribution of E. hallii to intestinal propionate formation. We found that E. hallii utilizes glycerol to produce up to 9 mM 3-HPA but did not further metabolize 3-HPA to 1,3-propanediol (1,3-PD. Utilization of 1,2-PD in the presence and absence of glucose led to the formation of propanal, propanol and propionate. E. hallii formed cobalamin and was detected in stool of 74% of adults using 16S rRNA gene as marker gene (n = 325. Relative abundance of the E. hallii 16S rRNA gene ranged from 0 to 0.59% with a mean relative abundance of 0.044%. E. hallii PduCDE was detected in 63 to 81% of the metagenomes depending on which subunit was investigated beside other taxons such as Ruminococcus obeum, Ruminococcus gnavus, Flavonifractor prautii, Intestinimonas butyriciproducens, and Veillonella spp. In conclusion, we identified E. hallii as a common gut microbe with the ability to convert glycerol to 3-HPA, a step that requires the production of cobalamin, and to utilize 1,2-PD to form propionate. Our results along with its ability to use a broad range of substrates point at E. hallii as a key species within the intestinal

  9. Aging Brain, Aging Mind.

    Science.gov (United States)

    Selkoe, Dennis J.

    1992-01-01

    Discusses the aging process related to physical changes of the human neural structure involved in learning, memory, and reasoning. Presents evidence that indicates such alterations do not necessarily signal the decline in cognitive function. Vignettes provide images of brain structures involved in learning, memory, and reasoning; hippocampal…

  10. Respiratory microbes present in the nasopharynx of children hospitalised with suspected pulmonary tuberculosis in Cape Town, South Africa

    Directory of Open Access Journals (Sweden)

    Felix S. Dube

    2016-10-01

    Full Text Available Abstract Background Lower respiratory tract infection in children is increasingly thought to be polymicrobial in origin. Children with symptoms suggestive of pulmonary tuberculosis (PTB may have tuberculosis, other respiratory tract infections or co-infection with Mycobacterium tuberculosis and other pathogens. We aimed to identify the presence of potential respiratory pathogens in nasopharyngeal (NP samples from children with suspected PTB. Method NP samples collected from consecutive children presenting with suspected PTB at Red Cross Children’s Hospital (Cape Town, South Africa were tested by multiplex real-time RT-PCR. Mycobacterial liquid culture and Xpert MTB/RIF was performed on 2 induced sputa obtained from each participant. Children were categorised as definite-TB (culture or qPCR [Xpert MTB/RIF] confirmed, unlikely-TB (improvement of symptoms without TB treatment on follow-up and unconfirmed-TB (all other children. Results Amongst 214 children with a median age of 36 months (interquartile range, [IQR] 19–66 months, 34 (16 % had definite-TB, 86 (40 % had unconfirmed-TB and 94 (44 % were classified as unlikely-TB. Moraxella catarrhalis (64 %, Streptococcus pneumoniae (42 %, Haemophilus influenzae spp (29 % and Staphylococcus aureus (22 % were the most common bacteria detected in NP samples. Other bacteria detected included Mycoplasma pneumoniae (9 %, Bordetella pertussis (7 % and Chlamydophila pneumoniae (4 %. The most common viruses detected included metapneumovirus (19 %, rhinovirus (15 %, influenza virus C (9 %, adenovirus (7 %, cytomegalovirus (7 % and coronavirus O43 (5.6 %. Both bacteria and viruses were detected in 73, 55 and 56 % of the definite, unconfirmed and unlikely-TB groups, respectively. There were no significant differences in the distribution of respiratory microbes between children with and without TB. Using quadratic discriminant analysis, human metapneumovirus, C. pneumoniae, coronavirus 043

  11. Tiny and Hidden but Changing Your World: The Importance of Soil Microbes to Climate Change

    Science.gov (United States)

    Waldo, N.; Neumann, R. B.

    2017-12-01

    When most people think about global climate change they think about massive power plants billowing smoke and expansive glaciers melting to nothingness. What the public often overlooks is how natural processes invisible to the naked eye can be changed by the climate, and the fact that the natural response to those changes can further alter the climate. Scientists call these reactions "feedback cycles", and understanding them is crucial to predicting the true impact of human activities. In our research, we study one particular feedback cycle: the effect of increased plant productivity on methane emissions from wetlands. Globally, wetlands account for about a third of annual emissions of methane, the second most important greenhouse gas after carbon dioxide. This heat-trapping gas is generated in the soil of wetlands by microscopic organisms that consume, among other things, proteins and sugars released by the roots of plants. As the atmosphere becomes warmer and richer in carbon dioxide, these plants will grow larger and faster, releasing more of this microbe food into the soil. Our current research seeks to understand how that will affect the microbial ecosystem, and through it the emissions of methane gas.

  12. One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity.

    Science.gov (United States)

    Rittmann, Simon K-M R; Lee, Hyun Sook; Lim, Jae Kyu; Kim, Tae Wan; Lee, Jung-Hyun; Kang, Sung Gyun

    2015-01-01

    Among four basic mechanisms for biological hydrogen (H2) production, dark fermentation has been considered to show the highest hydrogen evolution rate (HER). H2 production from one-carbon (C1) compounds such as formate and carbon monoxide (CO) is promising because formate is an efficient H2 carrier, and the utilization of CO-containing syngas or industrial waste gas may render the industrial biohydrogen production process cost-effective. A variety of microbes with the formate hydrogen lyase (FHL) system have been identified from phylogenetically diverse groups of archaea and bacteria, and numerous efforts have been undertaken to improve the HER for formate through strain optimization and bioprocess development. CO-dependent H2 production has been investigated to enhance the H2 productivity of various carboxydotrophs via an increase in CO gas-liquid mass transfer rates and the construction of genetically modified strains. Hydrogenogenic CO-conversion has been applied to syngas and by-product gas of the steel-mill process, and this low-cost feedstock has shown to be promising in the production of biomass and H2. Here, we focus on recent advances in the isolation of novel phylogenetic groups utilizing formate or CO, the remarkable genetic engineering that enhances H2 productivity, and the practical implementation of H2 production from C1 substrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

    Science.gov (United States)

    Lubieniechi, Simona; Peranantham, Thinesh; Levin, David B

    2013-04-01

    Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but pre-treatment of the biomass to release sugars for microbial conversion is a significant barrier to commercial success of lignocellulosic biofuel production. Strategies to reduce the energy and cost inputs required for biomass pre-treatment include genetic modification of plant materials to reduce lignin content. Significant efforts are also underway to create recombinant microorganisms capable of converting sugars derived from lignocellulosic biomass to a variety of biofuels. An alternative strategy to reduce the costs of cellulosic biofuel production is the use of cellulolytic microorganisms capable of direct microbial conversion of ligno-cellulosic biomass to fuels. This paper reviews recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.

  14. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review.

    Science.gov (United States)

    Zhu, Xiaomin; Chen, Baoliang; Zhu, Lizhong; Xing, Baoshan

    2017-08-01

    Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. MAMP (microbe-associated molecular pattern)-induced changes in plasma membrane-associated proteins.

    Science.gov (United States)

    Uhlíková, Hana; Solanský, Martin; Hrdinová, Vendula; Šedo, Ondrej; Kašparovský, Tomáš; Hejátko, Jan; Lochman, Jan

    2017-03-01

    Plant plasma membrane associated proteins play significant roles in Microbe-Associated Molecular Pattern (MAMP) mediated defence responses including signal transduction, membrane transport or energetic metabolism. To elucidate the dynamics of proteins associated with plasma membrane in response to cryptogein, a well-known MAMP of defence reaction secreted by the oomycete Phytophthora cryptogea, 2D-Blue Native/SDS gel electrophoresis of plasma membrane fractions was employed. This approach revealed 21 up- or down-regulated protein spots of which 15 were successfully identified as proteins related to transport through plasma membrane, vesicle trafficking, and metabolic enzymes including cytosolic NADP-malic enzyme and glutamine synthetase. Observed changes in proteins were also confirmed on transcriptional level by qRT-PCR analysis. In addition, a significantly decreased accumulation of transcripts observed after employment of a mutant variant of cryptogein Leu41Phe, exhibiting a conspicuous defect in induction of resistance, sustains the contribution of identified proteins in cryptogein-triggered cellular responses. Our data provide further evidence for dynamic MAMP-induced changes in plasma membrane associated proteins. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Integrated metabolism in sponge-microbe symbiosis revealed by genome-centered metatranscriptomics.

    Science.gov (United States)

    Moitinho-Silva, Lucas; Díez-Vives, Cristina; Batani, Giampiero; Esteves, Ana Is; Jahn, Martin T; Thomas, Torsten

    2017-07-01

    Despite an increased understanding of functions in sponge microbiomes, the interactions among the symbionts and between symbionts and host are not well characterized. Here we reconstructed the metabolic interactions within the sponge Cymbastela concentrica microbiome in the context of functional features of symbiotic diatoms and the host. Three genome bins (CcPhy, CcNi and CcThau) were recovered from metagenomic data of C. concentrica, belonging to the proteobacterial family Phyllobacteriaceae, the Nitrospira genus and the thaumarchaeal order Nitrosopumilales. Gene expression was estimated by mapping C. concentrica metatranscriptomic reads. Our analyses indicated that CcPhy is heterotrophic, while CcNi and CcThau are chemolithoautotrophs. CcPhy expressed many transporters for the acquisition of dissolved organic compounds, likely available through the sponge's filtration activity and symbiotic carbon fixation. Coupled nitrification by CcThau and CcNi was reconstructed, supported by the observed close proximity of the cells in fluorescence in situ hybridization. CcPhy facultative anaerobic respiration and assimilation by diatoms may consume the resulting nitrate. Transcriptional analysis of diatom and sponge functions indicated that these organisms are likely sources of organic compounds, for example, creatine/creatinine and dissolved organic carbon, for other members of the symbiosis. Our results suggest that organic nitrogen compounds, for example, creatine, creatinine, urea and cyanate, fuel the nitrogen cycle within the sponge. This study provides an unprecedented view of the metabolic interactions within sponge-microbe symbiosis, bridging the gap between cell- and community-level knowledge.

  17. Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water

    Energy Technology Data Exchange (ETDEWEB)

    Sapkota, Ajaya; Anceno, Alfredo J; Dutta, Joydeep [Center of Excellence in Nanotechnology, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand); Baruah, Sunandan; Shipin, Oleg V, E-mail: alfredo.anceno@cemagref.fr, E-mail: joy@ait.ac.th [Environmental Engineering and Management, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand)

    2011-05-27

    The inactivation of model microbes in aqueous matrix by visible light photocatalysis as mediated by ZnO nanorods was investigated. ZnO nanorods were grown on glass substrate following a hydrothermal route and employed in the inactivation of gram-negative Escherichia coli and gram-positive Bacillus subtilis in MilliQ water. The concentration of Zn{sup 2+} ions in the aqueous matrix, bacterial cell membrane damage, and DNA degradation at post-exposure were also studied. The inactivation efficiencies for both organisms under light conditions were about two times higher than under dark conditions across the cell concentrations assayed. Anomalies in supernatant Zn{sup 2+} concentration were observed under both conditions as compared to control treatments, while cell membrane damage and DNA degradation were observed only under light conditions. Inactivation under dark conditions was hence attributed to the bactericidal effect of Zn{sup 2+} ions, while inactivation under light conditions was due to the combined effects of Zn{sup 2+} ions and photocatalytically mediated electron injection. The reduction of pathogenic bacterial densities by the photocatalytically active ZnO nanorods in the presence of visible light implies potential ex situ application in water decontamination at ambient conditions under sunlight.

  18. Asymmetric synthesis with microbes; Biseibutsu wo katsuyoshita kogaku kassei kagobutsu no koritsutekina gosei

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, S. [Ritsumeikan Univ., Tokyo (Japan). Faculty of Science and Engineering

    1996-02-01

    Use of microbial enzymes have been widely extended as an effective means for asymmetric synthesis. However, the asymmetric selectivity often decreases due to competitive catalysis among plural enzymes in a microbe. The author has been studied development of methods for control of the stereo-selectivity using subtle difference of enzyme characteristics. When Michaelis constant (Km) differs between two enzymes, one enzyme of lower Km becomes active with decrease in concentration of substrate, expressing its stereo-selectivity. Reduction of {alpha}-ketoesters in water by bread yeast (Saccharomyces cerevisiae) yields products of S-configuration, whereas those of R-configuration are obtained in an organic solvent in the presence of small amount of water. This is because reaction field of the yeast is in water and because R-configuration enzyme of lower Km works for substrate whose concentration in water has decreased due to two phase partition of organic solvent and water system. Further, use of difference of decrease in enzyme activity by inhibitors in stereo-selective synthesis of {alpha}-hydroxyketones (I) from {alpha}-diketone and use of difference of thermal endurance in improvement of formation ratio among I, are also introduced. 6 refs., 3 figs., 2 tabs.

  19. The Metronome of Symbiosis: Interactions Between Microbes and the Host Circadian Clock.

    Science.gov (United States)

    Heath-Heckman, Elizabeth A C

    2016-11-01

    The entrainment of circadian rhythms, physiological cycles with a period of about 24 h, is regulated by a variety of mechanisms, including nonvisual photoreception. While circadian rhythms have been shown to be integral to many processes in multicellular organisms, including immune regulation, the effect of circadian rhythms on symbiosis, or host-microbe interactions, has only recently begun to be studied. This review summarizes recent work in the interactions of both pathogenic and mutualistic associations with host and symbiont circadian rhythms, focusing specifically on three mutualistic systems in which this phenomenon has been best studied. One important theme taken from these studies is the fact that mutualisms are profoundly affected by the circadian rhythms of the host, but that the microbial symbionts in these associations can, in turn, manipulate host rhythms. The interplay between circadian rhythms and symbiosis is a promising new field with effects that should be kept in mind when designing future studies across biology. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  20. Aftermath of Uranium Ore Processing on Floodplains: Lasting Effects of Uranium on Soil and Microbes

    Science.gov (United States)

    Tang, H.; Boye, K.; Bargar, J.; Fendorf, S. E.

    2016-12-01

    A former uranium ore processing site located between the Wind River and the Little Wind River near the city of Riverton, Wyoming, has generated a uranium plume in the groundwater within the floodplain. Uranium is toxic and poses a threat to human health. Thus, controlling and containing the spread of uranium will benefit the human population. The primary source of uranium was removed from the processing site, but a uranium plume still exists in the groundwater. Uranium in its reduced form is relatively insoluble in water and therefore is retained in organic rich, anoxic layers in the subsurface. However, with the aid of microbes uranium becomes soluble in water which could expose people and the environment to this toxin, if it enters the groundwater and ultimately the river. In order to better understand the mechanisms controlling uranium behavior in the floodplains, we examined sediments from three sediment cores (soil surface to aquifer). We determined the soil elemental concentrations and measured microbial activity through the use of several instruments (e.g. Elemental Analyzer, X-ray Fluorescence, MicroResp System). Through the data collected, we aim to obtain a better understanding of how the interaction of geochemical factors and microbial metabolism affect uranium mobility. This knowledge will inform models used to predict uranium behavior in response to land use or climate change in floodplain environments.

  1. Immobilization of anode-attached microbes in a microbial fuel cell.

    KAUST Repository

    Wagner, Rachel C

    2012-01-03

    Current-generating (exoelectrogenic) bacteria in bioelectrochemical systems (BESs) may not be culturable using standard in vitro agar-plating techniques, making isolation of new microbes a challenge. More in vivo like conditions are needed where bacteria can be grown and directly isolated on an electrode. While colonies can be developed from single cells on an electrode, the cells must be immobilized after being placed on the surface. Here we present a proof-of-concept immobilization approach that allows exoelectrogenic activity of cells on an electrode based on applying a layer of latex to hold bacteria on surfaces. The effectiveness of this procedure to immobilize particles was first demonstrated using fluorescent microspheres as bacterial analogs. The latex coating was then shown to not substantially affect the exoelectrogenic activity of well-developed anode biofilms in two different systems. A single layer of airbrushed coating did not reduce the voltage produced by a biofilm in a microbial fuel cell (MFC), and more easily applied dip-and-blot coating reduced voltage by only 11% in a microbial electrolysis cell (MEC). This latex immobilization procedure will enable future testing of single cells for exoelectrogenic activity on electrodes in BESs.

  2. Microbes in Heavy Metal Remediation: A Review on Current Trends and Patents.

    Science.gov (United States)

    Mishra, Geetesh Kumar

    2017-01-01

    Heavy metal pollution in the environmental samples like soil, water and runoff water is a worldwide problem. Such contamination of environmental matrices by the heavy metals accumulates due to various activities involving human driven sources and industries, although agriculture and sewage disposal are the largest source for the heavy metal contamination. Disposal of heavy metals or waste products containing heavy metals in the environment postures a trivial threat to public safety and health. Heavy metals are persistence and they can also cause biomagnifications and accumulate in food chain. Microbial bioremediation of heavy metal is emerging as an effective technique. Microbial bioremediation is a highly efficient environmental friendly procedure which also reduces the cost of cleanup process associated with heavy metal contamination. New methods for removal of heavy metals from the environmental samples are under development and most recent advancements have been made in exploring the knowledge of metal-microbes interactions and its use for heavy metal remediation. This review paper will focus on the microbial bioremediation process and highlight some of the newly developed patented methods for microbial bioremediation of the heavy metals from the environmental samples using microbial populations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Lignocellulosic Fermentation of Wild Grass Employing Recombinant Hydrolytic Enzymes and Fermentative Microbes with Effective Bioethanol Recovery

    Directory of Open Access Journals (Sweden)

    Saprativ P. Das

    2013-01-01

    Full Text Available Simultaneous saccharification and fermentation (SSF studies of steam exploded and alkali pretreated different leafy biomass were accomplished by recombinant Clostridium thermocellum hydrolytic enzymes and fermentative microbes for bioethanol production. The recombinant C. thermocellum GH5 cellulase and GH43 hemicellulase genes expressed in Escherichia coli cells were grown in repetitive batch mode, with the aim of enhancing the cell biomass production and enzyme activity. In batch mode, the cell biomass (A600 nm of E. coli cells and enzyme activities of GH5 cellulase and GH43 hemicellulase were 1.4 and 1.6 with 2.8 and 2.2 U·mg−1, which were augmented to 2.8 and 2.9 with 5.6 and 3.8 U·mg−1 in repetitive batch mode, respectively. Steam exploded wild grass (Achnatherum hymenoides provided the best ethanol titres as compared to other biomasses. Mixed enzyme (GH5 cellulase, GH43 hemicellulase mixed culture (Saccharomyces cerevisiae, Candida shehatae system gave 2-fold higher ethanol titre than single enzyme (GH5 cellulase single culture (Saccharomyces cerevisiae system employing 1% (w/v pretreated substrate. 5% (w/v substrate gave 11.2 g·L−1 of ethanol at shake flask level which on scaling up to 2 L bioreactor resulted in 23 g·L−1 ethanol. 91.6% (v/v ethanol was recovered by rotary evaporator with 21.2% purification efficiency.

  4. Ecotoxicological effects of decabromodiphenyl ether and cadmium contamination on soil microbes and enzymes.

    Science.gov (United States)

    Zhang, Wei; Zhang, Meng; An, Shuai; Xiong, Bang; Li, Hui; Cui, Changzheng; Lin, Kuangfei

    2012-08-01

    The ecotoxicological effects of decabromodiphenyl ether (BDE209) and cadmium (Cd) contamination on soil culturable microbial population, enzyme activity and bacterial community structure were investigated. Results of the indoor incubation test runs performed on many series of control and contaminated soil samples have demonstrated some notable toxic effects due to long term exposure to either or both contaminants. The two contaminants produced notable yet different toxic effects on the test microbes; the population of the exposed species generally declined according to certain dose-response relationships. The soil culturable microbial population and enzyme activity data show that the sensitivity to one or both contaminants followed the order of: bacteria>fungi>actinomycete and urease>saccharase, respectively. The interaction between BDE209 and Cd was dependent on both the exposure dose and time and that the joint toxic effects were synergistic, antagonistic or additive. The PCR-DGGE analysis data of species composition and richness suggest the synergistic combined effects on bacterial community structure during the 30d exposure. Pseudomonas tuomuerensis strain CCM 7280 and Pseudomonas alcaliphila strain AL15-21 were enriched, indicating these species might be major functional populations and highly tolerant. Such observations have provided the useful information of potential ecotoxicological effects of BDE209 and Cd contamination in the environment. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The Role of Plant–Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants

    Science.gov (United States)

    Weyens, Nele; Thijs, Sofie; Popek, Robert; Witters, Nele; Przybysz, Arkadiusz; Espenshade, Jordan; Gawronska, Helena; Vangronsveld, Jaco; Gawronski, Stanislaw W.

    2015-01-01

    Since air pollution has been linked to a plethora of human health problems, strategies to improve air quality are indispensable. Despite the complexity in composition of air pollution, phytoremediation was shown to be effective in cleaning air. Plants are known to scavenge significant amounts of air pollutants on their aboveground plant parts. Leaf fall and runoff lead to transfer of (part of) the adsorbed pollutants to the soil and rhizosphere below. After uptake in the roots and leaves, plants can metabolize, sequestrate and/or excrete air pollutants. In addition, plant-associated microorganisms play an important role by degrading, detoxifying or sequestrating the pollutants and by promoting plant growth. In this review, an overview of the available knowledge about the role and potential of plant–microbe interactions to improve indoor and outdoor air quality is provided. Most importantly, common air pollutants (particulate matter, volatile organic compounds and inorganic air pollutants) and their toxicity are described. For each of these pollutant types, a concise overview of the specific contributions of the plant and its microbiome is presented. To conclude, the state of the art and its related future challenges are presented. PMID:26516837

  6. Gut microbes in correlation with mood: case study in a closed experimental human life support system.

    Science.gov (United States)

    Li, L; Su, Q; Xie, B; Duan, L; Zhao, W; Hu, D; Wu, R; Liu, H

    2016-08-01

    Gut microbial community, which may influence our mood, can be shaped by modulating the gut ecosystem through dietary strategies. Understanding the gut-brain correlationship in healthy people is important for maintenance of mental health and prevention of mental illnesses. A case study on the correlation between gut microbial alternation and mood swing of healthy adults was conducted in a closed human life support system during a 105-day experiment. Gut microbial community structures were analyzed using high-throughput sequencing every 2 weeks. A profile of mood states questionnaire was used to record the mood swings. Correlation between gut microbes and mood were identified with partial least squares discrimination analysis. Microbial community structures in the three healthy adults were strongly correlated with mood states. Bacterial genera Roseburia, Phascolarctobacterium, Lachnospira, and Prevotella had potential positive correlation with positive mood, while genera Faecalibacterium, Bifidobacterium, Bacteroides, Parabacteroides, and Anaerostipes were correlated with negative mood. Among which, Faecalibacterium spp. had the highest abundance, and showed a significant negative correlation with mood. Our results indicated that the composition of microbial community could play a role in emotional change in mentally physically healthy adults. © 2016 John Wiley & Sons Ltd.

  7. Microbe assisted phyto remediation of oil sludge and role of amendments: a mesocosm study

    International Nuclear Information System (INIS)

    Nanekar, S; Dhote, M.; Kashyap, S.; Singh, S. K.; Juwarkar, A. A.

    2015-01-01

    A mescosom study was evaluated to the influence of amendments such as microbial consortium, plant (Vetiveria zizanioides), bulking agent (wheat husk) and nutrients on remediation of oil sludge over a period of 90 days. The experiment was conducted in a 15 m2 plot which was divided into eight units comprising of soil sludge mixture (1:1) at CSIR-NEERI premises. During the experiment, oil degradation was estimated gravimetrically and poly aromatic hydrocarbons were quantified on GC-MS. Additionally, dehydrogenase activity was also monitored. The treatment integrated with bulking agent, nutrients, consortium and plant resulted in 28-fold increased dehydrogenase activity and complete mineralization of higher poly aromatic hydrocarbons. Furthermore, 72.8 % total petroleum hydrocarbons degradation was observed in bulked treatment with plant, nutrients and consortium followed by 69.6 and 65.4 % in bioaugmented treatments with and without nutrients, respectively, as compared to control (33.4 %). A lysimeter study was also conducted simultaneously using Vetiver and consortium to monitor groundwater contamination by heavy metals in oil sludge which showed a marked decrease in the concentrations of metals such as lead and cadmium in leachates. This study validates a holistic approach for remediation of oil sludge contaminated soils/sites which is a burning issue since decades by the use of microbe assisted phyto remediation technology which not only solves the problem of oil contamination but also takes care of heavy metal contamination.

  8. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation

    Science.gov (United States)

    Kaiser, Christina; Kilburn, Matt R; Clode, Peta L; Fuchslueger, Lucia; Koranda, Marianne; Cliff, John B; Solaiman, Zakaria M; Murphy, Daniel V

    2015-01-01

    Plants rapidly release photoassimilated carbon (C) to the soil via direct root exudation and associated mycorrhizal fungi, with both pathways promoting plant nutrient availability. This study aimed to explore these pathways from the root's vascular bundle to soil microbial communities. Using nanoscale secondary ion mass spectrometry (NanoSIMS) imaging and 13C-phospho- and neutral lipid fatty acids, we traced in-situ flows of recently photoassimilated C of 13CO2-exposed wheat (Triticum aestivum) through arbuscular mycorrhiza (AM) into root- and hyphae-associated soil microbial communities. Intraradical hyphae of AM fungi were significantly 13C-enriched compared to other root-cortex areas after 8 h of labelling. Immature fine root areas close to the root tip, where AM features were absent, showed signs of passive C loss and co-location of photoassimilates with nitrogen taken up from the soil solution. A significant and exclusively fresh proportion of 13C-photosynthates was delivered through the AM pathway and was utilised by different microbial groups compared to C directly released by roots. Our results indicate that a major release of recent photosynthates into soil leave plant roots via AM intraradical hyphae already upstream of passive root exudations. AM fungi may act as a rapid hub for translocating fresh plant C to soil microbes. PMID:25382456

  9. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs

    Directory of Open Access Journals (Sweden)

    Simon Ipcho

    2016-06-01

    Full Text Available Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs which induce an innate immune response. The field of fungal–bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals.

  10. Iron Oxide and Titanium Dioxide Nanoparticle Effects on Plant Performance and Root Associated Microbes

    Directory of Open Access Journals (Sweden)

    David J. Burke

    2015-10-01

    Full Text Available In this study, we investigated the effect of positively and negatively charged Fe3O4 and TiO2 nanoparticles (NPs on the growth of soybean plants (Glycine max. and their root associated soil microbes. Soybean plants were grown in a greenhouse for six weeks after application of different amounts of NPs, and plant growth and nutrient content were examined. Roots were analyzed for colonization by arbuscular mycorrhizal (AM fungi and nodule-forming nitrogen fixing bacteria using DNA-based techniques. We found that plant growth was significantly lower with the application of TiO2 as compared to Fe3O4 NPs. The leaf carbon was also marginally significant lower in plants treated with TiO2 NPs; however, leaf phosphorus was reduced in plants treated with Fe3O4. We found no effects of NP type, concentration, or charge on the community structure of either rhizobia or AM fungi colonizing plant roots. However, the charge of the Fe3O4 NPs affected both colonization of the root system by rhizobia as well as leaf phosphorus content. Our results indicate that the type of NP can affect plant growth and nutrient content in an agriculturally important crop species, and that the charge of these particles influences the colonization of the root system by nitrogen-fixing bacteria.

  11. Reduction of nutrients, microbes, and personal care products in domestic wastewater by a benchtop electrocoagulation unit

    Science.gov (United States)

    Symonds, E. M.; Cook, M. M.; McQuaig, S. M.; Ulrich, R. M.; Schenck, R. O.; Lukasik, J. O.; van Vleet, E. S.; Breitbart, M.

    2015-03-01

    To preserve environmental and human health, improved treatment processes are needed to reduce nutrients, microbes, and emerging chemical contaminants from domestic wastewater prior to discharge into the environment. Electrocoagulation (EC) treatment is increasingly used to treat industrial wastewater; however, this technology has not yet been thoroughly assessed for its potential to reduce concentrations of nutrients, a variety of microbial surrogates, and personal care products found in domestic wastewater. This investigation's objective was to determine the efficiency of a benchtop EC unit with aluminum sacrificial electrodes to reduce concentrations of the aforementioned biological and chemical pollutants from raw and tertiary-treated domestic wastewater. EC treatment resulted in significant reductions (p < 0.05, α = 0.05) in phosphate, all microbial surrogates, and several personal care products from raw and tertiary-treated domestic wastewater. When wastewater was augmented with microbial surrogates representing bacterial, viral, and protozoan pathogens to measure the extent of reduction, EC treatment resulted in up to 7-log10 reduction of microbial surrogates. Future pilot and full-scale investigations are needed to optimize EC treatment for the following: reducing nitrogen species, personal care products, and energy consumption; elucidating the mechanisms behind microbial reductions; and performing life cycle analyses to determine the appropriateness of implementation.

  12. EXPLORING OPTIMAL FEED TO MICROBES RATIO FOR ANAEROBIC ACIDOGENIC FERMENTATION OF CASSAVA RESIDUE FROM BREWERY

    Directory of Open Access Journals (Sweden)

    Xinying Wang,

    2012-01-01

    Full Text Available Cassava residue from breweries is being generated in large amounts in Guangxi Province of China, and this has potential to cause serious environmental problems if disposed of improperly. Two-stage anaerobic fermentation is a promising method for the treatment of such residue. In this study, the effect of feed to microbes ratio (F/M ratio on the anaerobic acidogenic fermentation of cassava residue was studied to determine the optimal F/M ratio and to maximize the performance in a subsequent methanogenic stage. The experiments were carried out at the F/M ratios of 0.2, 0.61, 1.02, 2.05, 3.07, and 4.09 g cassava-TS/g sludge-VSS in six laboratory-scale, completely stirred, tank reactors (CSTR at mesophilic temperature (35°C. An F/M ratio of 1.02 g cassava-TS/g sludge-VSS resulted in the highest solid removal efficiency and VFA/COD ratio, while starch removal efficiency was still near 100 percent, and acidification was relatively high. As a further benefit, the VFA distribution was more suitable for the subsequent methanogenic fermentation stage.

  13. Natural Pathogen Control Chemistry to Replace Toxic Treatment of Microbes and Biofilm in Cooling Towers

    Science.gov (United States)

    Brouse, Lon; Brouse, Richard; Brouse, Daniel

    2017-01-01

    Application of toxic antibacterial agents is considered necessary to control prevalent fresh water microorganisms that grow in evaporative cooling water systems, but can adversely affect the environment and human health. However, natural antibacterial water chemistry has been applied in industrial cooling water systems for over 10 years to inhibit microorganisms with excellent results. The water chemistry method concentrates natural minerals in highly-softened water to produce elevated pH and dissolved solids, while maintaining low calcium and magnesium content. The method provides further benefits in water conservation, and generates a small volume of non-toxic natural salt concentrate for cost efficient separation and disposal if required. This report describes the antimicrobial effects of these chemistry modifications in the cooling water environment and the resultant collective inhibition of microbes, biofilm, and pathogen growth. This article also presents a novel perspective of parasitic microbiome functional relationships, including “Trojan Protozoans” and biofilms, and the function of polyvalent metal ions in the formation and inhibition of biofilms. Reducing global dependence on toxic antibacterial agents discharged to the environment is an emerging concern due to their impact on the natural microbiome, plants, animals and humans. Concurrently, scientists have concluded that discharge of antibacterial agents plays a key role in development of pathogen resistance to antimicrobials as well as antibiotics. Use of natural antibacterial chemistry can play a key role in managing the cooling water environment in a more ecologically sustainable manner. PMID:28420074

  14. Immobilization of anode-attached microbes in a microbial fuel cell.

    KAUST Repository

    Wagner, Rachel C; Porter-Gill, Sikandar; Logan, Bruce E

    2012-01-01

    Current-generating (exoelectrogenic) bacteria in bioelectrochemical systems (BESs) may not be culturable using standard in vitro agar-plating techniques, making isolation of new microbes a challenge. More in vivo like conditions are needed where bacteria can be grown and directly isolated on an electrode. While colonies can be developed from single cells on an electrode, the cells must be immobilized after being placed on the surface. Here we present a proof-of-concept immobilization approach that allows exoelectrogenic activity of cells on an electrode based on applying a layer of latex to hold bacteria on surfaces. The effectiveness of this procedure to immobilize particles was first demonstrated using fluorescent microspheres as bacterial analogs. The latex coating was then shown to not substantially affect the exoelectrogenic activity of well-developed anode biofilms in two different systems. A single layer of airbrushed coating did not reduce the voltage produced by a biofilm in a microbial fuel cell (MFC), and more easily applied dip-and-blot coating reduced voltage by only 11% in a microbial electrolysis cell (MEC). This latex immobilization procedure will enable future testing of single cells for exoelectrogenic activity on electrodes in BESs.

  15. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2

    Science.gov (United States)

    Sulman, Benjamin N.; Phillips, Richard P.; Oishi, A. Christopher; Shevliakova, Elena; Pacala, Stephen W.

    2014-12-01

    The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle-climate models. Much of this uncertainty arises from our limited understanding of the extent to which root-microbe interactions induce SOC losses (through accelerated decomposition or `priming') or indirectly promote SOC gains (via `protection' through interactions with mineral particles). We developed a new SOC model to examine priming and protection responses to rising atmospheric CO2. The model captured disparate SOC responses at two temperate free-air CO2 enrichment (FACE) experiments. We show that stabilization of `new' carbon in protected SOC pools may equal or exceed microbial priming of `old' SOC in ecosystems with readily decomposable litter and high clay content (for example, Oak Ridge). In contrast, carbon losses induced through priming dominate the net SOC response in ecosystems with more resistant litters and lower clay content (for example, Duke). The SOC model was fully integrated into a global terrestrial carbon cycle model to run global simulations of elevated CO2 effects. Although protected carbon provides an important constraint on priming effects, priming nonetheless reduced SOC storage in the majority of terrestrial areas, partially counterbalancing SOC gains from enhanced ecosystem productivity.

  16. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture

    Science.gov (United States)

    Wu, Linkun; Wang, Juanying; Huang, Weimin; Wu, Hongmiao; Chen, Jun; Yang, Yanqiu; Zhang, Zhongyi; Lin, Wenxiong

    2015-10-01

    Under consecutive monoculture, the biomass and quality of Rehmannia glutinosa declines significantly. Consecutive monoculture of R. glutinosa in a four-year field trial led to significant growth inhibition. Most phenolic acids in root exudates had cumulative effects over time under sterile conditions, but these effects were not observed in the rhizosphere under monoculture conditions. It suggested soil microbes might be involved in the degradation and conversion of phenolic acids from the monocultured plants. T-RFLP and qPCR analysis demonstrated differences in both soil bacterial and fungal communities during monoculture. Prolonged monoculture significantly increased levels of Fusarium oxysporum, but decreased levels of Pseudomonas spp. Abundance of beneficial Pseudomonas spp. with antagonistic activity against F. oxysporum was lower in extended monoculture soils. Phenolic acid mixture at a ratio similar to that found in the rhizosphere could promote mycelial growth, sporulation, and toxin (3-Acetyldeoxynivalenol, 15-O-Acetyl-4-deoxynivalenol) production of pathogenic F. oxysporum while inhibiting growth of the beneficial Pseudomonas sp. W12. This study demonstrates that extended monoculture can alter the microbial community of the rhizosphere, leading to relatively fewer beneficial microorganisms and relatively more pathogenic and toxin-producing microorganisms, which is mediated by the root exudates.

  17. Analysis of Microbe-Associated Molecular Pattern-Responsive Synthetic Promoters with the Parsley Protoplast System.

    Science.gov (United States)

    Kanofsky, Konstantin; Lehmeyer, Mona; Schulze, Jutta; Hehl, Reinhard

    2016-01-01

    Plants recognize pathogens by microbe-associated molecular patterns (MAMPs) and subsequently induce an immune response. The regulation of gene expression during the immune response depends largely on cis-sequences conserved in promoters of MAMP-responsive genes. These cis-sequences can be analyzed by constructing synthetic promoters linked to a reporter gene and by testing these constructs in transient expression systems. Here, the use of the parsley (Petroselinum crispum) protoplast system for analyzing MAMP-responsive synthetic promoters is described. The synthetic promoter consists of four copies of a potential MAMP-responsive cis-sequence cloned upstream of a minimal promoter and the uidA reporter gene. The reporter plasmid contains a second reporter gene, which is constitutively expressed and hence eliminates the requirement of a second plasmid used as a transformation control. The reporter plasmid is transformed into parsley protoplasts that are elicited by the MAMP Pep25. The MAMP responsiveness is validated by comparing the reporter gene activity from MAMP-treated and untreated cells and by normalizing reporter gene activity using the constitutively expressed reporter gene.

  18. Effects of Medicinal Herb Extracts on Ruminal Methanogenesis, Microbe Diversity and Fermentation System

    Directory of Open Access Journals (Sweden)

    Eun Tae Kim

    2016-09-01

    Full Text Available This study was aimed to evaluate the in vitro effects of medicinal herb extracts (MHEs on ruminal fermentation characteristics and the inhibition of protozoa to reduce methane production in the rumen. A fistulated Hanwoo was used as a donor of rumen fluid. The MHEs (T1, Veratrum patulum; T2, Iris ensata var. spontanea; T3, Arisaema ringens; T4, Carduus crispus; T5, Pueraria thunbergiana were added to the in vitro fermentation bottles containing the rumen fluid and medium. Total volatile fatty acid (tVFA, total gas production, gas profiles, and the ruminal microbe communities were measured. The tVFA concentration was increased or decreased as compared to the control, and there was a significant (p<0.05 difference after 24 h incubation. pH and ruminal disappearance of dry matter did not show significant difference. As the in vitro ruminal fermentation progressed, total gas production in added MHEs was increased, while the methane production was decreased compared to the control. In particular, Arisaema ringens extract led to decrease methane production by more than 43%. In addition, the result of real-time polymerase chain reaction indicted that the protozoa population in all added MHEs decreased more than that of the control. In conclusion, the results of this study indicated that MHEs could have properties that decrease ruminal methanogenesis by inhibiting protozoa species and might be promising feed additives for ruminants.

  19. A Constant Rate of Spontaneous Mutation in DNA-Based Microbes

    Science.gov (United States)

    Drake, John W.

    1991-08-01

    In terms of evolution and fitness, the most significant spontaneous mutation rate is likely to be that for the entire genome (or its nonfrivolous fraction). Information is now available to calculate this rate for several DNA-based haploid microbes, including bacteriophages with single- or double-stranded DNA, a bacterium, a yeast, and a filamentous fungus. Their genome sizes vary by ≈6500-fold. Their average mutation rates per base pair vary by ≈16,000-fold, whereas their mutation rates per genome vary by only ≈2.5-fold, apparently randomly, around a mean value of 0.0033 per DNA replication. The average mutation rate per base pair is inversely proportional to genome size. Therefore, a nearly invariant microbial mutation rate appears to have evolved. Because this rate is uniform in such diverse organisms, it is likely to be determined by deep general forces, perhaps by a balance between the usually deleterious effects of mutation and the physiological costs of further reducing mutation rates.

  20. Combined Creutzfeldt-Jakob/ Alzheimer's Disease Cases are Important in Search for Microbes in Alzheimer's Disease.

    Science.gov (United States)

    Bastian, Frank O

    2017-01-01

    The question whether Alzheimer's disease is infectious as brought up in the recent editorial published in the Journal of Alzheimer's Disease is complicated by the controversy whether the causal agent is a microbe or a misfolded host protein (amyloid). The replicating amyloid (prion) theory, based upon data from studies of Creutzfeldt-Jakob disease (CJD) and other transmissible spongiform encephalopathies (TSEs), has been challenged since the prion can be separated from TSE infectivity, and spiroplasma, a wall-less bacterium, has been shown to be involved in the pathogenesis of CJD. Further support for a microbial cause for AD comes from occurrence of mixed CJD/AD cases involving up to 15% of AD brains submitted to brain banks. The association of CJD with AD suggests a common etiology rather than simply being a medical curiosity. A co-infection with the transmissible agent of CJD, which we propose to be a Spiroplasma sp., would explain the diversity of bacteria shown to be associated with cases of AD.

  1. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review.

    Science.gov (United States)

    Zorriehzahra, Mohammad Jalil; Delshad, Somayeh Torabi; Adel, Milad; Tiwari, Ruchi; Karthik, K; Dhama, Kuldeep; Lazado, Carlo C

    2016-12-01

    Wide and discriminate use of antibiotics has resulted in serious biological and ecological concerns, especially the emergence of antibiotic resistance. Probiotics, known as beneficial microbes, are being proposed as an effective and eco-friendly alternative to antibiotics. They were first applied in aquaculture species more than three decades ago, but considerable attention had been given only in the early 2000s. Probiotics are defined as live or dead, or even a component of the microorganisms that act under different modes of action in conferring beneficial effects to the host or to its environment. Several probiotics have been characterized and applied in fish and a number of them are of host origin. Unlike some disease control alternatives being adapted and proposed in aquaculture where actions are unilateral, the immense potential of probiotics lies on their multiple mechanisms in conferring benefits to the host fish and the rearing environment. The staggering number of probiotics papers in aquaculture highlights the multitude of advantages from these microorganisms and conspicuously position them in the dynamic search for health-promoting alternatives for cultured fish. This paper provides an update on the use of probiotics in finfish aquaculture, particularly focusing on their modes of action. It explores the contemporary understanding of their spatial and nutritional competitiveness, inhibitory metabolites, environmental modification capability, immunomodulatory potential and stress-alleviating mechanism. This timely update affirms the importance of probiotics in fostering sustainable approaches in aquaculture and provides avenues in furthering its research and development.

  2. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model.

    Science.gov (United States)

    Hellweger, Ferdi L; van Sebille, Erik; Fredrick, Neil D

    2014-09-12

    A key question in ecology and evolution is the relative role of natural selection and neutral evolution in producing biogeographic patterns. We quantify the role of neutral processes by simulating division, mutation, and death of 100,000 individual marine bacteria cells with full 1 million-base-pair genomes in a global surface ocean circulation model. The model is run for up to 100,000 years and output is analyzed using BLAST (Basic Local Alignment Search Tool) alignment and metagenomics fragment recruitment. Simulations show the production and maintenance of biogeographic patterns, characterized by distinct provinces subject to mixing and periodic takeovers by neighbors (coalescence), after which neutral evolution reestablishes the province and the patterns reorganize. The emergent patterns are substantial (e.g., down to 99.5% DNA identity between North and Central Pacific provinces) and suggest that microbes evolve faster than ocean currents can disperse them. This approach can also be used to explore environmental selection. Copyright © 2014, American Association for the Advancement of Science.

  3. Immunological Tolerance, Pregnancy, and Preeclampsia: The Roles of Semen Microbes and the Father†

    Science.gov (United States)

    Kenny, Louise C.; Kell, Douglas B.

    2018-01-01

    Although it is widely considered, in many cases, to involve two separable stages (poor placentation followed by oxidative stress/inflammation), the precise originating causes of preeclampsia (PE) remain elusive. We have previously brought together some of the considerable evidence that a (dormant) microbial component is commonly a significant part of its etiology. However, apart from recognizing, consistent with this view, that the many inflammatory markers of PE are also increased in infection, we had little to say about immunity, whether innate or adaptive. In addition, we focused on the gut, oral and female urinary tract microbiomes as the main sources of the infection. We here marshall further evidence for an infectious component in PE, focusing on the immunological tolerance characteristic of pregnancy, and the well-established fact that increased exposure to the father’s semen assists this immunological tolerance. As well as these benefits, however, semen is not sterile, microbial tolerance mechanisms may exist, and we also review the evidence that semen may be responsible for inoculating the developing conceptus (and maybe the placenta) with microbes, not all of which are benign. It is suggested that when they are not, this may be a significant cause of PE. A variety of epidemiological and other evidence is entirely consistent with this, not least correlations between semen infection, infertility and PE. Our view also leads to a series of other, testable predictions. Overall, we argue for a significant paternal role in the development of PE through microbial infection of the mother via insemination. PMID:29354635

  4. Nucleic acid purification from plants, animals and microbes in under 30 seconds.

    Directory of Open Access Journals (Sweden)

    Yiping Zou

    2017-11-01

    Full Text Available Nucleic acid amplification is a powerful molecular biology tool, although its use outside the modern laboratory environment is limited due to the relatively cumbersome methods required to extract nucleic acids from biological samples. To address this issue, we investigated a variety of materials for their suitability for nucleic acid capture and purification. We report here that untreated cellulose-based paper can rapidly capture nucleic acids within seconds and retain them during a single washing step, while contaminants present in complex biological samples are quickly removed. Building on this knowledge, we have successfully created an equipment-free nucleic acid extraction dipstick methodology that can obtain amplification-ready DNA and RNA from plants, animals, and microbes from difficult biological samples such as blood and leaves from adult trees in less than 30 seconds. The simplicity and speed of this method as well as the low cost and availability of suitable materials (e.g., common paper towelling, means that nucleic acid extraction is now more accessible and affordable for researchers and the broader community. Furthermore, when combined with recent advancements in isothermal amplification and naked eye DNA visualization techniques, the dipstick extraction technology makes performing molecular diagnostic assays achievable in limited resource settings including university and high school classrooms, field-based environments, and developing countries.

  5. [Effects of Different Reclaimed Scenarios on Soil Microbe and Enzyme Activities in Mining Areas].

    Science.gov (United States)

    Li, Jun-jian; Liu, Feng; Zhou, Xiao-mei

    2015-05-01

    Abstract: Ecological degradation in the mining areas is greatly aggravated in recent several decades, and ecological restoration has become the primary measure for the sustainable development. Soil microbe and enzyme activity are sensitive indices to evaluate soil quality. Ecological reconstruction was initiated in Antaibao mining area, and we tested soil physicochemical properties, microbial populations of azotobacteria, nitrifying-bacteria and denitrifying-bacteria, and enzyme activities (including sucrose, polyphenol oxidase, dehydrogenase and urease) under different regeneration scenarios. Regeneration scenarios had significant effects on soil physicochemical properties, microbial population and enzyme activities. Total nitrogen was strongly correlated with azotobacteria and nitrifying-bacteria, however, total nitrogen was not correlated with denitrifying-bacteria. Phenol oxidase activity was negatively correlated with soil organic carbon and total nitrogen, but other enzyme activities were positively correlated with soil organic carbon and total nitrogen. Principal Component Analysis ( PCA) was applied to analyze the integrated fertility index (IFI). The highest and lowest IFIs were in Robinia pseudoacacia-Pinus tabuliformis mixed forests and un-reclaimed area, respectively. R. pseudoacacia-P. tabuliformis mixed forests were feasible for reclaimed mining areas in semi-arid region Northwest Shanxi.

  6. Impact of Microbes on the Pathogenesis of Primary Biliary Cirrhosis (PBC and Primary Sclerosing Cholangitis (PSC

    Directory of Open Access Journals (Sweden)

    Jochen Mattner

    2016-11-01

    Full Text Available Primary biliary cirrhosis (PBC and primary sclerosing cholangitis (PSC represent the major clinical entities of chronic cholestatic liver diseases. Both disorders are characterized by portal inflammation and slowly progress to obliterative fibrosis and eventually liver cirrhosis. Although immune-pathogenic mechanisms have been implicated in the pathogenesis of PBC and PSC, neither disorder is considered to be a classical autoimmune disease, as PSC and PBC patients do not respond to immune-suppressants. Furthermore, the decreased bile flow resulting from the immune-mediated tissue assault and the subsequent accumulation of toxic bile products in PBC and PSC not only perpetuates biliary epithelial damage, but also alters the composition of the intestinal and biliary microbiota and its mutual interactions with the host. Consistent with the close association of PSC and inflammatory bowel disease (IBD, the polyclonal hyper IgM response in PBC and (auto-antibodies which cross-react to microbial antigens in both diseases, an expansion of individual microbes leads to shifts in the composition of the intestinal or biliary microbiota and a subsequent altered integrity of epithelial layers, promoting microbial translocation. These changes have been implicated in the pathogenesis of both devastating disorders. Thus, we will discuss here these recent findings in the context of novel and alternative therapeutic options.

  7. Effectiveness of Gamma Irradiation for Decontamination of Microbes on Tea Parasite Herb Scurrula atropurpurea (Bl.) Dans

    International Nuclear Information System (INIS)

    Katrin, E.; Winarno, H.; Yulianti, M.

    2011-01-01

    The purpose of this study was to find the minimum and maximum dose of gamma irradiation on dried tea parasite herb that can reduce the number of microbes without reducing the inhibitory activity against leukemia L1210 cells. Samples of tea parasite herbs were irradiated by gamma rays with doses of 0, 5, 7.5, 10, 15 and 20 kGy. The microbial contamination, cytotoxic activities and the chromatogram profiles of irradiated and unirradiated samples were observed. The results revealed that the bacteria contaminants of 7.57 x 10 9 cfu/g were eliminated after irradiation of the samples with dose of ≥ 7.5 kGy, meanwhile the mold-yeast contaminants of 5.68 x 10 8 cfu/g were eliminated after irradiation of the samples with dose of ≥ 5 kGy. Ethyl acetate extracts of irradiated samples until the dose of 10 kGy were still able to maintain its cytotoxic activity against L1210 leukemia cells proliferation with IC 50 values of 9 cfu/g and 5.68 x 10 8 cfu/g respectively. At this condition, the bacteria and mold/yeast have been killed, whereas the cytotoxic activities of active components (ethyl acetate extract and fraction 2) in tea parasite herbs decreased, but the decrease was not significant and did not remove these cytotoxic activities. (author)

  8. Does a Common Pathway Transduce Symbiotic Signals in Plant-Microbe Interactions?

    Science.gov (United States)

    Genre, Andrea; Russo, Giulia

    2016-01-01

    Recent years have witnessed major advances in our knowledge of plant mutualistic symbioses such as the rhizobium-legume symbiosis (RLS) and arbuscular mycorrhizas (AM). Some of these findings caused the revision of longstanding hypotheses, but one of the most solid theories is that a conserved set of plant proteins rules the transduction of symbiotic signals from beneficial glomeromycetes and rhizobia in a so-called common symbiotic pathway (CSP). Nevertheless, the picture still misses several elements, and a few crucial points remain unclear. How does one common pathway discriminate between - at least - two symbionts? Can we exclude that microbes other than AM fungi and rhizobia also use this pathway to communicate with their host plants? We here discuss the possibility that our current view is biased by a long-lasting focus on legumes, whose ability to develop both AM and RLS is an exception among plants and a recent innovation in their evolution; investigations in non-legumes are starting to place legume symbiotic signaling in a broader perspective. Furthermore, recent studies suggest that CSP proteins act in a wider scenario of symbiotic and non-symbiotic signaling. Overall, evidence is accumulating in favor of distinct activities for CSP proteins in AM and RLS, depending on the molecular and cellular context where they act.

  9. Glionitrin A, an antibiotic-antitumor metabolite derived from competitive interaction between abandoned mine microbes

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.B.; Kown, H.C.; Lee, C.H.; Yang, H.O. [Korean Institute of Science & Technology KIST, Kangnung (Republic of Korea)

    2009-02-15

    The nutrient conditions present in abandoned coal mine drainages create an extreme environment where defensive and offensive microbial interactions could be critical for survival and fitness. Coculture of a mine drainage-derived Sphingomonas bacterial strain, KMK-001, and a mine drainage-derived Aspergillus fumigatus fungal strain, KMC-901, resulted in isolation of a new diketopiperazine disulfide, glionitrin A (1). Compound 1 was not detected in monoculture broths of KMK-001 or KMC-901. The structure of 1, a (3S,10aS) diketopiperazine disulfide containing a nitro aromatic ring, was based on analysis of MS, NMR, and circular dichroism spectra and confirmed by X-ray crystal data. Glionitrin A displayed significant antibiotic activity against a series of microbes including methicillin-resistant Staphylococcus aureus. An in vitro MTT cytotoxicity assay revealed that 1 had potent submicromolar cytotoxic activity against four human cancer cell lines: HCT-116, A549, AGS, and DU145. The results provide further evidence that microbial coculture can produce novel biologically relevant molecules.

  10. African dust carries microbes across the ocean: are they affecting human and ecosystem health?

    Science.gov (United States)

    Kellogg, Christina A.; Griffin, Dale W.

    2003-01-01

    Atmospheric transport of dust from northwest Africa to the western Atlantic Ocean region may be responsible for a number of environmental hazards, including the demise of Caribbean corals; red tides; amphibian diseases; increased occurrence of asthma in humans; and oxygen depletion (eutrophication) in estuaries. Studies of satellite images suggest that hundreds of millions of tons of dust are trans-ported annually at relatively low altitudes across the Atlantic Ocean to the Caribbean Sea and southeastern United States. The dust emanates from the expanding Sahara/Sahel desert region in Africa and carries a wide variety of bacteria and fungi. The U.S. Geological Survey, in collaboration with the NASA/Goddard Spaceflight Center, is conducting a study to identify microbes--bacteria, fungi, viruses--transported across the Atlantic in African soil dust. Each year, millions of tons of desert dust blow off the west African coast and ride the trade winds across the ocean, affecting the entire Caribbean basin, as well as the southeastern United States. Of the dust reaching the U.S., Florida receives about 50 percent, while the rest may range as far north as Maine or as far west as Colorado. The dust storms can be tracked by satellite and take about one week to cross the Atlantic.

  11. Evaluation of early Archean volcaniclastic and volcanic flow rocks as possible sites for carbonaceous fossil microbes.

    Science.gov (United States)

    Walsh, Maud M

    2004-01-01

    Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation.

  12. Innate Immune Responses Activated in Arabidopsis Roots by Microbe-Associated Molecular Patterns[W][OA

    Science.gov (United States)

    Millet, Yves A.; Danna, Cristian H.; Clay, Nicole K.; Songnuan, Wisuwat; Simon, Matthew D.; Werck-Reichhart, Danièle; Ausubel, Frederick M.

    2010-01-01

    Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of β-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid–jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways. PMID:20348432

  13. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns.

    Science.gov (United States)

    Millet, Yves A; Danna, Cristian H; Clay, Nicole K; Songnuan, Wisuwat; Simon, Matthew D; Werck-Reichhart, Danièle; Ausubel, Frederick M

    2010-03-01

    Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of beta-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid-jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways.

  14. Utilization of mixed cellulolytic microbes from termite extract, elephant faecal solution and buffalo ruminal fluid to increase in vitro digestibility of King Grass

    Directory of Open Access Journals (Sweden)

    Agung Prabowo

    2007-06-01

    Full Text Available Cellulose is a compound of plant cell walls which is difficult to be degraded because it composed of glucose monomers linked by β-(1.4-bound. It will be hydrolysed by cellulase enzyme secreted by cellulolytic microbes. The effective digestion of cellulose needs high activity of cellulase enzyme. This research aims to increase in vitro king grass digestibility utilizing mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid. Twelve syringes contained gas test media were randomly divided into four treatments based on sources of microbe (SM, namely: S (SM: cattle ruminal fluid [S], RGK (SM: mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid [RGK], with composition 1 : 1 : 1, S-RGK (SM: S + RGK, with composition 1:1, and TM (without given treatment microbe. Digestibility was measured using gas test method. Average of gas production treatment of S-RGK (70.2 + 0.6 ml was higher and significantly different (P<0.01 compared to treatment of S (60.3 + 0.8 ml, RGK (40.8 + 2.3 ml, and TM (13.3 + 2.0 ml. Utilization of mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid (RGK that combined with microbes of cattle ruminal fluid (S could increase in vitro digestibility of king grass.

  15. Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans

    DEFF Research Database (Denmark)

    Zhang, Li; Bahl, Martin Iain; Roager, Henrik Munch

    2017-01-01

    Microbiota transplantation to germ-free animals is a powerful method to study involvement of gut microbes in the aetiology of metabolic syndrome. Owing to large interpersonal variability in gut microbiota, studies with broad coverage of donors are needed to elucidate the establishment of human......, thereby allowing us to explore the extent of microbial spread between cages in a well-controlled environment. Despite high group-wise similarity between obese and control human microbiotas, transplanted mice in the four isolators developed distinct gut bacterial composition and activity, body mass gain......, and insulin resistance. Spread of microbes between cages within isolators interacted with establishment of the transplanted microbiotas in mice, and contributed to the transmission of metabolic phenotypes. Our findings highlight the impact of donor variability and reveal that inter-individual spread...

  16. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2012-01-01

    innate immune system through the action of pattern recognition receptors (PRRs). A greater insight into the mechanisms of MAMP recognition and the description of PRRs for different microbial glycoconjugates will have considerable impact on the improvement of plant health and disease resistance. Here...... to as ‘innate immunity’. Innate immunity is the first line of defence against invading microorganisms in vertebrates and the only line of defence in invertebrates and plants. Bacterial glycoconjugates, such as lipopolysaccharides (LPSs) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN......) from the cell walls of both Gram-positive and Gram-negative bacteria, have been found to act as elicitors of plant innate immunity. These conserved, indispensable, microbe-specific molecules are also referred to as ‘microbe-associated molecular patterns’ (MAMPs). MAMPs are recognized by the plant...

  17. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin

    DEFF Research Database (Denmark)

    Inagaki, F.; Nunoura, T.; Nakagawa, S.

    2006-01-01

    The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their ......The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes...... of the uncultivated Deep-Sea Archaeal Group were consistently the dominant phylotype in sediments associated with methane hydrate. Sediment cores lacking methane hydrates displayed few or no Deep-Sea Archaeal Group phylotypes. Bacterial communities in the methane hydrate-bearing sediments were dominated by members...

  18. MiDAS Field Guide – a Comprehensive Online Source of Information About the Microbes of Activated Sludge

    DEFF Research Database (Denmark)

    Nierychlo, Marta; McIlroy, Simon Jon; Saunders, Aaron Marc

    this information in MiDAS field guide (www.midasfieldguide.org). MiDAS taxonomy gives a solid foundation for the study of microbial ecology of the wastewater treatment processes. The online MiDAS field guide links the identity of genera that are important for the wastewater treatment process to details about...... guide to the microbes of activated sludge by comparing microbial community composition in 32 WWTPs located worldwide. This will facilitate a better understanding of the ecology of the ecosystem of activated sludge. Reference: McIlroy et al. MiDAS: the field guide to the microbes of activated sludge...... on a survey of 25 full-scale Danish wastewater treatment plants over 6 years and using MiDAS taxonomy, we have collected more than 150 key organisms in activated sludge wastewater treatment systems, linked their identity with available information on their function and distribution and included...

  19. Effect of repeated pesticide applications on soil properties in cotton fields: I. Impact on microbes, iron reduction capacity and respiration

    International Nuclear Information System (INIS)

    Vig, K.; Singh, D.K.; Agarwal, H.C.; Dhawan, A.K.; Dureja, P.

    2001-01-01

    Soil microorganisms have a primary catabolic role in the environment through degradation of plant and animal residues. The activities of microorganisms in soil are thus, essential to the global cycling of nutrients. As these pesticides are designed to be biologically active, their continuous use might affect soil microflora either by changing their properties or their numbers, which may lead to impairment in soil fertility. Soil was analyzed for microbial numbers, iron reduction capacity and respiration. Stimulatory, inhibitory or no effects of insecticide treatments were observed on microbes and microbial activities. The insecticides used had only temporary effects on microbes and their activities which disappeared either before the next insecticide treatment was carried out or at the end of experimental period. (author)

  20. Teasing apart plant community responses to N enrichment: the roles of resource limitation, competition and soil microbes.

    Science.gov (United States)

    Farrer, Emily C; Suding, Katharine N

    2016-10-01

    Although ecologists have documented the effects of nitrogen enrichment on productivity, diversity and species composition, we know little about the relative importance of the mechanisms driving these effects. We propose that distinct aspects of environmental change associated with N enrichment (resource limitation, asymmetric competition, and interactions with soil microbes) drive different aspects of plant response. We test this in greenhouse mesocosms, experimentally manipulating each factor across three ecosystems: tallgrass prairie, alpine tundra and desert grassland. We found that resource limitation controlled productivity responses to N enrichment in all systems. Asymmetric competition was responsible for diversity declines in two systems. Plant community composition was impacted by both asymmetric competition and altered soil microbes, with some contributions from resource limitation. Results suggest there may be generality in the mechanisms of plant community change with N enrichment. Understanding these links can help us better predict N response across a wide range of ecosystems. © 2016 John Wiley & Sons Ltd/CNRS.

  1. Using microbes as a key tool to unravel the mechanism of autophagy and the functions of the ATG proteins

    Directory of Open Access Journals (Sweden)

    Mario Mauthe

    2016-12-01

    Full Text Available The study of microbe infections has always been a very effective approach to unveil and dissect cellular pathways. Autophagy is not an exception. Although some of the breakthrough discoveries in the field were obtained using yeast, pathogens have been and still are a great tool to discover and characterize new molecular and functional aspects of autophagy. Research on pathogens has helped to acquire knowledge about selective types of autophagy and the assembly of the autophagy machinery, i.e the autophagy-related (ATG proteins, but also about alternative cellular roles of this pathway, such as secretion. Finally, microbes have also served to discover and characterize unconventional functions of the ATG proteins, which are uncoupled from their role in autophagy. In our recent study, we have taken advantage of viruses as a screening tool to determine the extent of the unconventional functions of the ATG proteome and characterize one of them.

  2. Disease susceptibiliy in the zig-zag model of host-microbe Interactions: only a consequence of immune suppression?

    OpenAIRE

    Keller, Harald; Boyer, Laurent; Abad, Pierre

    2016-01-01

    For almost ten years, the Zig-Zag model has provided a convenient framework for explaining the molecular bases of compatibility and incompatibility in plant-microbe interactions (Jones and Dangl, 2006). According to the Zig-Zag model, disease susceptibility is a consequence of the suppression of host immunity during the evolutionary arms race between plants and pathogens. The Zig-Zag model thus fits well with biotrophic interactions, but is less applicable to interactions involving pathogens ...

  3. A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss

    OpenAIRE

    Schauer, S; Kutschera, U

    2011-01-01

    Land plants (embryophytes) evolved in the presence of prokaryotic microbes. As a result, numerous mutually beneficial associations (symbioses) developed that can be analyzed using a variety of methods. Here we describe the isolation and characterization of a new pink-pigmented facultatively methylotrophic symbiotic bacterium of the genus Methylobacterium (laboratory strain F3.2) that was isolated from the gametophytic phylloids of the common cord moss Funaria hygrometrica Hedw. Plantlets were...

  4. Exploiting fine-scale genetic and physiological variation of closely related microbes to reveal unknown enzyme functions.

    Science.gov (United States)

    Badur, Ahmet H; Plutz, Matthew J; Yalamanchili, Geethika; Jagtap, Sujit Sadashiv; Schweder, Thomas; Unfried, Frank; Markert, Stephanie; Polz, Martin F; Hehemann, Jan-Hendrik; Rao, Christopher V

    2017-08-04

    Polysaccharide degradation by marine microbes represents one of the largest and most rapid heterotrophic transformations of organic matter in the environment. Microbes employ systems of complementary carbohydrate-specific enzymes to deconstruct algal or plant polysaccharides (glycans) into monosaccharides. Because of the high diversity of glycan substrates, the functions of these enzymes are often difficult to establish. One solution to this problem may lie within naturally occurring microdiversity; varying numbers of enzymes, due to gene loss, duplication, or transfer, among closely related environmental microbes create metabolic differences akin to those generated by knock-out strains engineered in the laboratory used to establish the functions of unknown genes. Inspired by this natural fine-scale microbial diversity, we show here that it can be used to develop hypotheses guiding biochemical experiments for establishing the role of these enzymes in nature. In this work, we investigated alginate degradation among closely related strains of the marine bacterium Vibrio splendidus One strain, V. splendidus 13B01, exhibited high extracellular alginate lyase activity compared with other V. splendidus strains. To identify the enzymes responsible for this high extracellular activity, we compared V. splendidus 13B01 with the previously characterized V. splendidus 12B01, which has low extracellular activity and lacks two alginate lyase genes present in V. splendidus 13B01. Using a combination of genomics, proteomics, biochemical, and functional screening, we identified a polysaccharide lyase family 7 enzyme that is unique to V. splendidus 13B01, secreted, and responsible for the rapid digestion of extracellular alginate. These results demonstrate the value of querying the enzymatic repertoires of closely related microbes to rapidly pinpoint key proteins with beneficial functions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Corruption of host seven-transmembrane proteins by pathogenic microbes: a common theme in animals and plants?

    Science.gov (United States)

    Panstruga, Ralph; Schulze-Lefert, Paul

    2003-04-01

    Human diseases like AIDS, malaria, and pneumonia are caused by pathogens that corrupt host chemokine G-protein coupled receptors for molecular docking. Comparatively, little is known about plant host factors that are required for pathogenesis and that may serve as receptors for the entry of pathogenic microbes. Here, we review potential analogies between human chemokine receptors and the plant seven-transmembrane MLO protein, a candidate serving a dual role as docking molecule and defence modulator for the phytopathogenic powdery mildew fungus.

  6. Minimizing mixing intensity to improve the performance of rice straw anaerobic digestion via enhanced development of microbe-substrate aggregates.

    Science.gov (United States)

    Kim, Moonkyung; Kim, Byung-Chul; Choi, Yongju; Nam, Kyoungphile

    2017-12-01

    The aim of this work was to study the effect of the differential development of microbe-substrate aggregates at different mixing intensities on the performance of anaerobic digestion of rice straw. Batch and semi-continuous reactors were operated for up to 50 and 300days, respectively, under different mixing intensities. In both batch and semi-continuous reactors, minimal mixing conditions exhibited maximum methane production and lignocellulose biodegradability, which both had strong correlations with the development of microbe-substrate aggregates. The results implied that the aggregated microorganisms on the particulate substrate played a key role in rice straw hydrolysis, determining the performance of anaerobic digestion. Increasing the mixing speed from 50 to 150rpm significantly reduced the methane production rate by disintegrating the microbe-substrate aggregates in the semi-continuous reactor. A temporary stress of high-speed mixing fundamentally affected the microbial communities, increasing the possibility of chronic reactor failure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Difference of nitrogen-cycling microbes between shallow bay and deep-sea sediments in the South China Sea.

    Science.gov (United States)

    Yu, Tiantian; Li, Meng; Niu, Mingyang; Fan, Xibei; Liang, Wenyue; Wang, Fengping

    2018-01-01

    In marine sediments, microorganisms are known to play important roles in nitrogen cycling; however, the composition and quantity of microbes taking part in each process of nitrogen cycling are currently unclear. In this study, two different types of marine sediment samples (shallow bay and deep-sea sediments) in the South China Sea (SCS) were selected to investigate the microbial community involved in nitrogen cycling. The abundance and composition of prokaryotes and seven key functional genes involved in five processes of the nitrogen cycle [nitrogen fixation, nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and anaerobic ammonia oxidation (anammox)] were presented. The results showed that a higher abundance of denitrifiers was detected in shallow bay sediments, while a higher abundance of microbes involved in ammonia oxidation, anammox, and DNRA was found in the deep-sea sediments. Moreover, phylogenetic differentiation of bacterial amoA, nirS, nosZ, and nrfA sequences between the two types of sediments was also presented, suggesting environmental selection of microbes with the same geochemical functions but varying physiological properties.

  8. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions

    Science.gov (United States)

    Engel, Philipp; Kwong, Waldan K.; McFrederick, Quinn; Anderson, Kirk E.; Barribeau, Seth Michael; Chandler, James Angus; Cornman, Robert S.; Dainat, Jacques; de Miranda, Joachim R.; Doublet, Vincent; Emery, Olivier; Evans, Jay D.; Farinelli, Laurent; Flenniken, Michelle L.; Granberg, Fredrik; Grasis, Juris A.; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G.; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J.; Powell, Eli; Sadd, Ben M.; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S.; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-01-01

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.

  9. Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp.

    Science.gov (United States)

    Gomez, Andres; Rothman, Jessica M; Petrzelkova, Klara; Yeoman, Carl J; Vlckova, Klara; Umaña, Juan D; Carr, Monica; Modry, David; Todd, Angelique; Torralba, Manolito; Nelson, Karen E; Stumpf, Rebecca M; Wilson, Brenda A; Blekhman, Ran; White, Bryan A; Leigh, Steven R

    2016-02-01

    Although the critical role that our gastrointestinal microbes play in host physiology is now well established, we know little about the factors that influenced the evolution of primate gut microbiomes. To further understand current gut microbiome configurations and diet-microbe co-metabolic fingerprints in primates, from an evolutionary perspective, we characterized fecal bacterial communities and metabolomic profiles in 228 fecal samples of lowland and mountain gorillas (G. g. gorilla and G. b. beringei, respectively), our closest evolutionary relatives after chimpanzees. Our results demonstrate that the gut microbiomes and metabolomes of these two species exhibit significantly different patterns. This is supported by increased abundance of metabolites and bacterial taxa associated with fiber metabolism in mountain gorillas, and enrichment of markers associated with simple sugar, lipid and sterol turnover in the lowland species. However, longitudinal sampling shows that both species' microbiomes and metabolomes converge when hosts face similar dietary constraints, associated with low fruit availability in their habitats. By showing differences and convergence of diet-microbe co-metabolic fingerprints in two geographically isolated primate species, under specific dietary stimuli, we suggest that dietary constraints triggered during their adaptive radiation were potential factors behind the species-specific microbiome patterns observed in primates today.

  10. Temporal variation selects for diet–microbe co-metabolic traits in the gut of Gorilla spp

    Science.gov (United States)

    Gomez, Andres; Rothman, Jessica M; Petrzelkova, Klara; Yeoman, Carl J; Vlckova, Klara; Umaña, Juan D; Carr, Monica; Modry, David; Todd, Angelique; Torralba, Manolito; Nelson, Karen E; Stumpf, Rebecca M; Wilson, Brenda A; Blekhman, Ran; White, Bryan A; Leigh, Steven R

    2016-01-01

    Although the critical role that our gastrointestinal microbes play in host physiology is now well established, we know little about the factors that influenced the evolution of primate gut microbiomes. To further understand current gut microbiome configurations and diet–microbe co-metabolic fingerprints in primates, from an evolutionary perspective, we characterized fecal bacterial communities and metabolomic profiles in 228 fecal samples of lowland and mountain gorillas (G. g. gorilla and G. b. beringei, respectively), our closest evolutionary relatives after chimpanzees. Our results demonstrate that the gut microbiomes and metabolomes of these two species exhibit significantly different patterns. This is supported by increased abundance of metabolites and bacterial taxa associated with fiber metabolism in mountain gorillas, and enrichment of markers associated with simple sugar, lipid and sterol turnover in the lowland species. However, longitudinal sampling shows that both species' microbiomes and metabolomes converge when hosts face similar dietary constraints, associated with low fruit availability in their habitats. By showing differences and convergence of diet–microbe co-metabolic fingerprints in two geographically isolated primate species, under specific dietary stimuli, we suggest that dietary constraints triggered during their adaptive radiation were potential factors behind the species-specific microbiome patterns observed in primates today. PMID:26315972

  11. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes.

    Science.gov (United States)

    Meyer, Susan L F

    2003-01-01

    Restrictions on the use of conventional nematicides have increased the need for new methods of managing plant-parasitic nematodes. Consequently, nematode-antagonistic microbes, and active compounds produced by such organisms, are being explored as potential additions to management practices. Programs in this area at the USDA Agricultural Research Service investigate applied biocontrol agents, naturally occurring beneficial soil microbes and natural compounds. Specific research topics include use of plant growth-promoting rhizobacteria and cultural practices for management of root-knot and ring nematodes, determination of management strategies that enhance activity of naturally occurring Pasteuria species (bacterial obligate parasites of nematodes), studies on interactions between biocontrol bacteria and bacterial-feeding nematodes, and screening of microbes for compounds active against plant-parasitic nematodes. Some studies involve biocontrol agents that are active against nematodes and soil-borne plant-pathogenic fungi, or combinations of beneficial bacteria and fungi, to manage a spectrum of plant diseases or to increase efficacy over a broader range of environmental conditions. Effective methods or agents identified in the research programs are investigated as additions to existing management systems for plant-parasitic nematodes.

  12. Survey of Hawksbill Turtle (Eretmochelys imbricate Health Condition in Terms of Parasites and Microbes in Alas Purwo National Park, Indonesia

    Directory of Open Access Journals (Sweden)

    Qurrota A'yunin

    2017-07-01

    Full Text Available Indonesian waters have six types of turtles that can live, spawn and breed. Sea turtle conservation becomes an important and urgent program to be done in order to protect and save sea turtle population in Indonesia. One of the factors that most affect the turtle population is the cause of degradation of pathogenic factors. Alas Purwo National Park, East Java, there is some communities that have activities turtle conservation. Conservation is done by securing and protecting turtle eggs. Turtle eggs that have hatched are released into the sea once it is ready. This study aims was to determine the type of bacteria and fungi that infect hatchlings and environmental factors that influence. This research is descriptive method to Hawksbill turtle (Eretmochelys imbricate is by way of random sampling. Sampling of microbes in sea turtle was conducted using cotton swab method and then microbes was cultured and indentified in laboratory. The results showed The kind of parasites and microbes which were indentified in hatching and adult Hawksbill sea turtles were fungus with genus Aspergillus sp., Geotrichum sp., Fusarium sp., and Gliocladium sp. ; bacteria are Pseudomonas aeruginosa and Enterobacter cloaceae; and parasite is Chelonibia testudinaria barnacles.  The parameter average value of water in pond indicated 28.1 – 29.2°C for temperature, 32 - 34 ‰ for salinity, 7.78 – 8.2 for pH, and 3.86 – 4.21 mg/L for DO.

  13. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions

    Directory of Open Access Journals (Sweden)

    Philipp Engel

    2016-05-01

    Full Text Available As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.

  14. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production.

    Science.gov (United States)

    Streit, W R; Entcheva, P

    2003-03-01

    Biotin (vitamin H) is one of the most fascinating cofactors involved in central pathways in pro- and eukaryotic cell metabolism. Since its original discovery in 1901, research has led to the discovery of the complete biotin biosynthesis pathways in many different microbes and much work has been done on the highly intriguing and complex biochemistry of biotin biosynthesis. While humans and animals require several hundred micrograms of biotin per day, most microbes, plants and fungi appear to be able to synthesize the cofactor themselves. Biotin is added to many food, feed and cosmetic products, creating a world market of 10-30 t/year. However, the majority of the biotin sold is synthesized in a chemical process. Since the chemical synthesis is linked with a high environmental burden, much effort has been put into the development of biotin-overproducing microbes. A summary of biotin biosynthesis and its biological role is presented; and current strategies for the improvement of microbial biotin production using modern biotechnological techniques are discussed.

  15. Screening assays of termite gut microbes that potentially as probiotic for human to digest cellulose as new food source

    Science.gov (United States)

    Abdullah, R.; Ananda, K. R. T.; Wijanarka

    2018-05-01

    According to UN, earth population will increase approximately 7.3 billion people up to 11.2 billion from 2015 until 2100. On the other side, food needs are not balance with the availability of food on earth. People of the world need solution for a new food source. By cellulose digesting ability, people analyzed can consume cellulose as the new food source to get glucose. The aims of research is obtaining termite gut cellulase bacteria selected which is potential as probiotic to split cellulose. Method used was as follows; isolation of termite gut microbes, microbial cellulase purification by screening method and probiotic test includes microbial pathogenicity test and human stomach acid and salt osmotic concentration resistance test. The result shows, 3 pure isolates of termite gut microbes can break down cellulose in the medium 1% CMC and 0.1% congo red (indicator of cellulose degradation activity) and life at pH 2- 2.5 and osmotic salt condition. Two isolates show the activity of gamma hemolysis (non-pathogenic in terms of pathogenicity on human blood). In conclusion, there are isolated termite gut microbes can be used as probiotic candidate for human to digest cellulose of the new food source for global food scarcity era.

  16. Microbe observation and cultivation array (MOCA) for cultivating and analyzing environmental microbiota.

    Science.gov (United States)

    Gao, Weimin; Navarroli, Dena; Naimark, Jared; Zhang, Weiwen; Chao, Shih-Hui; Meldrum, Deirdre R

    2013-01-09

    The use of culture-independent nucleic acid techniques, such as ribosomal RNA gene cloning library analysis, has unveiled the tremendous microbial diversity that exists in natural environments. In sharp contrast to this great achievement is the current difficulty in cultivating the majority of bacterial species or phylotypes revealed by molecular approaches. Although recent new technologies such as metagenomics and metatranscriptomics can provide more functionality information about the microbial communities, it is still important to develop the capacity to isolate and cultivate individual microbial species or strains in order to gain a better understanding of microbial physiology and to apply isolates for various biotechnological applications. We have developed a new system to cultivate bacteria in an array of droplets. The key component of the system is the microbe observation and cultivation array (MOCA), which consists of a Petri dish that contains an array of droplets as cultivation chambers. MOCA exploits the dominance of surface tension in small amounts of liquid to spontaneously trap cells in well-defined droplets on hydrophilic patterns. During cultivation, the growth of the bacterial cells across the droplet array can be monitored using an automated microscope, which can produce a real-time record of the growth. When bacterial cells grow to a visible microcolony level in the system, they can be transferred using a micropipette for further cultivation or analysis. MOCA is a flexible system that is easy to set up, and provides the sensitivity to monitor growth of single bacterial cells. It is a cost-efficient technical platform for bioassay screening and for cultivation and isolation of bacteria from natural environments.

  17. Immunological Tolerance, Pregnancy, and Preeclampsia: The Roles of Semen Microbes and the Father†

    Directory of Open Access Journals (Sweden)

    Louise C. Kenny

    2018-01-01

    Full Text Available Although it is widely considered, in many cases, to involve two separable stages (poor placentation followed by oxidative stress/inflammation, the precise originating causes of preeclampsia (PE remain elusive. We have previously brought together some of the considerable evidence that a (dormant microbial component is commonly a significant part of its etiology. However, apart from recognizing, consistent with this view, that the many inflammatory markers of PE are also increased in infection, we had little to say about immunity, whether innate or adaptive. In addition, we focused on the gut, oral and female urinary tract microbiomes as the main sources of the infection. We here marshall further evidence for an infectious component in PE, focusing on the immunological tolerance characteristic of pregnancy, and the well-established fact that increased exposure to the father’s semen assists this immunological tolerance. As well as these benefits, however, semen is not sterile, microbial tolerance mechanisms may exist, and we also review the evidence that semen may be responsible for inoculating the developing conceptus (and maybe the placenta with microbes, not all of which are benign. It is suggested that when they are not, this may be a significant cause of PE. A variety of epidemiological and other evidence is entirely consistent with this, not least correlations between semen infection, infertility and PE. Our view also leads to a series of other, testable predictions. Overall, we argue for a significant paternal role in the development of PE through microbial infection of the mother via insemination.

  18. MECHANISMS OF MICROBE-HOST-INTERACTION IN CROHN'S DISEASE: DYSBIOSIS VS. PATHOBIONT SELECTION

    Directory of Open Access Journals (Sweden)

    Ludovica F. Buttó

    2015-11-01

    Full Text Available Crohn’s disease (CD is a systemic chronic inflammatory condition mainly characterized by discontinuous transmural pathology of the gastrointestinal tract and frequent extra-intestinal manifestations with intermittent episodes of remission and relapse. Genome-wide association studies identified a number of risk loci that, catalyzed by environmental triggers, result in the loss of tolerance towards commensal bacteria based on dysregulated innate effector functions and anti-microbial defense, leading to exacerbated adaptive immune responses responsible for chronic immune-mediated tissue damage. In this review, we discuss the interrelated role of changes in the intestinal microbiota, epithelial barrier integrity and immune cell functions on the pathogenesis of CD, describing the current approaches available to investigate the molecular mechanisms underlying the disease. Substantial effort has been dedicated to define disease-associated changes in the intestinal microbiota (dysbiosis and to link pathobionts to the aetiology of IBD. A cogent definition of dysbiosis is lacking, as well as an agreement of whether pathobionts or complex shifts in the microbiota trigger inflammation in the host. Among the rarely available animal models, SAMP/Yit and TNFdeltaARE mice are the best known displaying a transmural CD-like phenotype. New hypothesis-driven mouse models e.g. epithelial-specific Caspase8-/-, ATG16L1-/- and XBP-1-/- mice validate pathway-focused function of specific CD-associated risk genes highlighting the role of Paneth cells in antimicrobial defense. To study the causal role of bacteria in initiating inflammation in the host, the use of germfree mouse models is indispensable. Unraveling the interactions of genes, immune cells and microbes constitute a criterion for the development of safe, reliable and effective treatment options for CD.

  19. Viral lysis of photosynthesizing microbes as a mechanism for calcium carbonate nucleation in seawater

    Science.gov (United States)

    Lisle, John T.; Robbins, Lisa L.

    2016-01-01

    Removal of carbon through the precipitation and burial of calcium carbonate in marine sediments constitutes over 70% of the total carbon on Earth and is partitioned between coastal and pelagic zones. The precipitation of authigenic calcium carbonate in seawater, however, has been hotly debated because despite being in a supersaturated state, there is an absence of persistent precipitation. One of the explanations for this paradox is the geochemical conditions in seawater cannot overcome the activation energy barrier for the first step in any precipitation reaction; nucleation. Here we show that virally induced rupturing of photosynthetic cyanobacterial cells releases cytoplasmic-associated bicarbonate at concentrations ~23-fold greater than in the surrounding seawater, thereby shifting the carbonate chemistry toward the homogenous nucleation of one or more of the calcium carbonate polymorphs. Using geochemical reaction energetics, we show the saturation states (Ω) in typical seawater for calcite (Ω = 4.3), aragonite (Ω = 3.1), and vaterite (Ω = 1.2) are significantly elevated following the release and diffusion of the cytoplasmic bicarbonate (Ωcalcite = 95.7; Ωaragonite = 68.5; Ωvaterite = 25.9). These increases in Ω significantly reduce the activation energy for nuclei formation thresholds for all three polymorphs, but only vaterite nucleation is energetically favored. In the post-lysis seawater, vaterite's nuclei formation activation energy is significantly reduced from 1.85 × 10−17 J to 3.85 × 10−20 J, which increases the nuclei formation rate from highly improbable (nucleation of calcium carbonate in seawater describes a mechanism through which the initial step in the production of carbonate sediments may proceed. It also presents an additional role of photosynthesizing microbes and their viruses in marine carbon cycles and reveals these microorganisms are a collective repository for concentrated and reactive dissolved inorganic carbon (DIC

  20. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction.

    Science.gov (United States)

    Thiebaut, Flávia; Rojas, Cristian A; Grativol, Clícia; Calixto, Edmundo P da R; Motta, Mariana R; Ballesteros, Helkin G F; Peixoto, Barbara; de Lima, Berenice N S; Vieira, Lucas M; Walter, Maria Emilia; de Armas, Elvismary M; Entenza, Júlio O P; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S; Ferreira, Paulo C G

    2017-12-20

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae . Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae , while the siRNAs were repressed in the presence of A. avenae . Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408-a copper-microRNA-was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5'RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly.

  1. Diversification of Type VI Secretion System Toxins Reveals Ancient Antagonism among Bee Gut Microbes

    Directory of Open Access Journals (Sweden)

    Margaret I. Steele

    2017-12-01

    Full Text Available Microbial communities are shaped by interactions among their constituent members. Some Gram-negative bacteria employ type VI secretion systems (T6SSs to inject protein toxins into neighboring cells. These interactions have been theorized to affect the composition of host-associated microbiomes, but the role of T6SSs in the evolution of gut communities is not well understood. We report the discovery of two T6SSs and numerous T6SS-associated Rhs toxins within the gut bacteria of honey bees and bumble bees. We sequenced the genomes of 28 strains of Snodgrassella alvi, a characteristic bee gut microbe, and found tremendous variability in their Rhs toxin complements: altogether, these strains appear to encode hundreds of unique toxins. Some toxins are shared with Gilliamella apicola, a coresident gut symbiont, implicating horizontal gene transfer as a source of toxin diversity in the bee gut. We use data from a transposon mutagenesis screen to identify toxins with antibacterial function in the bee gut and validate the function and specificity of a subset of these toxin and immunity genes in Escherichia coli. Using transcriptome sequencing, we demonstrate that S. alvi T6SSs and associated toxins are upregulated in the gut environment. We find that S. alvi Rhs loci have a conserved architecture, consistent with the C-terminal displacement model of toxin diversification, with Rhs toxins, toxin fragments, and cognate immunity genes that are expressed and confer strong fitness effects in vivo. Our findings of T6SS activity and Rhs toxin diversity suggest that T6SS-mediated competition may be an important driver of coevolution within the bee gut microbiota.

  2. Diversity and community structure of cyanobacteria and other microbes in recycling irrigation reservoirs.

    Science.gov (United States)

    Kong, Ping; Richardson, Patricia; Hong, Chuanxue

    2017-01-01

    Recycling irrigation reservoirs (RIRs) are emerging aquatic environments of global significance to crop production, water conservation and environmental sustainability. This study characterized the diversity and population structure of cyanobacteria and other detected microbes in water samples from eight RIRs and one adjacent runoff-free stream at three ornamental crop nurseries in eastern (VA1 and VA3) and central (VA2) Virginia after cloning and sequencing the 16S rRNA gene targeting cyanobacteria and chloroplast of eukaryotic phytoplankton. VA1 and VA2 utilize a multi-reservoir recycling irrigation system with runoff channeled to a sedimentation reservoir which then overflows into transition and retention reservoirs where water was pumped for irrigation. VA3 has a single sedimentation reservoir which was also used for irrigation. A total of 208 operational taxonomic units (OTU) were identified from clone libraries of the water samples. Among them, 53 OTUs (358 clones) were cyanobacteria comprising at least 12 genera dominated by Synechococcus species; 59 OTUs (387 clones) were eukaryotic phytoplankton including green algae and diatoms; and 96 were other bacteria (111 clones). Overall, cyanobacteria were dominant in sedimentation reservoirs, while eukaryotic phytoplankton and other bacteria were dominant in transition/retention reservoirs and the stream, respectively. These results are direct evidence demonstrating the negative impact of nutrient-rich horticultural runoff, if not contained, on natural water resources. They also help in understanding the dynamics of water quality in RIRs and have practical implications. Although both single- and multi-reservoir recycling irrigation systems reduce the environmental footprint of horticultural production, the former is expected to have more cyanobacterial blooming, and consequently water quality issues, than the latter. Thus, a multi-reservoir recycling irrigation system should be preferred where feasible.

  3. Effect of polydextrose on intestinal microbes and immune functions in pigs.

    Science.gov (United States)

    Fava, Francesca; Mäkivuokko, Harri; Siljander-Rasi, Hilkka; Putaala, Heli; Tiihonen, Kirsti; Stowell, Julian; Tuohy, Kieran; Gibson, Glenn; Rautonen, Nina

    2007-07-01

    Dietary fibre has been proposed to decrease risk for colon cancer by altering the composition of intestinal microbes or their activity. In the present study, the changes in intestinal microbiota and its activity, and immunological characteristics, such as cyclo-oxygenase (COX)-2 gene expression in mucosa, in pigs fed with a high-energy-density diet, with and without supplementation of a soluble fibre (polydextrose; PDX) (30 g/d) were assessed in different intestinal compartments. PDX was gradually fermented throughout the intestine, and was still present in the distal colon. Irrespective of the diet throughout the intestine, of the four microbial groups determined by fluorescent in situ hybridisation, lactobacilli were found to be dominating, followed by clostridia and Bacteroides. Bifidobacteria represented a minority of the total intestinal microbiota. The numbers of bacteria increased approximately ten-fold from the distal small intestine to the distal colon. Concomitantly, also concentrations of SCFA and biogenic amines increased in the large intestine. In contrast, concentrations of luminal IgA decreased distally but the expression of mucosal COX-2 had a tendency to increase in the mucosa towards the distal colon. Addition of PDX to the diet significantly changed the fermentation endproducts, especially in the distal colon, whereas effects on bacterial composition were rather minor. There was a reduction in concentrations of SCFA and tryptamine, and an increase in concentrations of spermidine in the colon upon PDX supplementation. Furthermore, PDX tended to decrease the expression of mucosal COX-2, therefore possibly reducing the risk of developing colon cancer-promoting conditions in the distal intestine.

  4. Memory in microbes: quantifying history-dependent behavior in a bacterium.

    Directory of Open Access Journals (Sweden)

    Denise M Wolf

    2008-02-01

    Full Text Available Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These "memory" effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenological measure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE synthesis and estimate the capacity of these systems and growth dynamics to 'remember' 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy.

  5. Effects of the fungicide metiram in outdoor freshwater microcosms: responses of invertebrates, primary producers and microbes.

    Science.gov (United States)

    Lin, Ronghua; Buijse, Laura; Dimitrov, Mauricio R; Dohmen, Peter; Kosol, Sujitra; Maltby, Lorraine; Roessink, Ivo; Sinkeldam, Jos A; Smidt, Hauke; Van Wijngaarden, René P A; Brock, Theo C M

    2012-07-01

    The ecological impact of the dithiocarbamate fungicide metiram was studied in outdoor freshwater microcosms, consisting of 14 enclosures placed in an experimental ditch. The microcosms were treated three times (interval 7 days) with the formulated product BAS 222 28F (Polyram®). Intended metiram concentrations in the overlying water were 0, 4, 12, 36, 108 and 324 μg a.i./L. Responses of zooplankton, macroinvertebrates, phytoplankton, macrophytes, microbes and community metabolism endpoints were investigated. Dissipation half-life (DT₅₀) of metiram was approximately 1-6 h in the water column of the microcosm test system and the metabolites formed were not persistent. Multivariate analysis indicated treatment-related effects on the zooplankton (NOEC(community) = 36 μg a.i./L). Consistent treatment-related effects on the phytoplankton and macroinvertebrate communities and on the sediment microbial community could not be demonstrated or were minor. There was no evidence that metiram affected the biomass, abundance or functioning of aquatic hyphomycetes on decomposing alder leaves. The most sensitive populations in the microcosms comprised representatives of Rotifera with a NOEC of 12 μg a.i./L on isolated sampling days and a NOEC of 36 μg a.i./L on consecutive samplings. At the highest treatment-level populations of Copepoda (zooplankton) and the blue-green alga Anabaena (phytoplankton) also showed a short-term decline on consecutive sampling days (NOEC = 108 μg a.i./L). Indirect effects in the form of short-term increases in the abundance of a few macroinvertebrate and several phytoplankton taxa were also observed. The overall community and population level no-observed-effect concentration (NOEC(microcosm)) was 12-36 μg a.i./L. At higher treatment levels, including the test systems that received the highest dose, ecological recovery of affected measurement endpoints was fast (effect period < 8 weeks).

  6. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    Energy Technology Data Exchange (ETDEWEB)

    Kirchman, David L. [Univ. of Delaware, Lewes, DE (United States)

    2012-03-29

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (Methane in the Arctic Shelf or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (metagenomes ). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in

  7. Evolution of microbes and viruses: A paradigm shift in evolutionary biology?

    Directory of Open Access Journals (Sweden)

    Eugene V. Koonin

    2012-09-01

    Full Text Available When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain ‘ribosomal Tree of Life’ that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: i pervasive horizontal gene transfer (HGT, in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment of the Tree of Life concept, ii Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and iii evolution of evolvability, i.e. dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary

  8. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction

    Science.gov (United States)

    Grativol, Clícia; Motta, Mariana R.; Ballesteros, Helkin G. F.; Peixoto, Barbara; Vieira, Lucas M.; Walter, Maria Emilia; de Armas, Elvismary M.; Entenza, Júlio O. P.; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S.

    2017-01-01

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408—a copper-microRNA—was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5′RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly. PMID:29657296

  9. Saharan dust - a carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    Directory of Open Access Journals (Sweden)

    V.H Garrison

    2006-12-01

    Full Text Available An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI, Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs, trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde and the Caribbean (USVI and Trinidad & Tobago. Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs and polycyclic aromatic hydrocarbons (PAHs and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable micro-organisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable micro-organisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions. Rev. Biol. Trop. 54 (Suppl. 3: 9-21. Epub 2007 Jan. 15.

  10. Isolation and identification of microbes associated with mobile phones in Dammam in eastern Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Amira H.A Al-Abdalall

    2010-01-01

    Full Text Available Objective: This study was conducted to determine microbial contamination of mobile phones in the city of Dammam, in the eastern region of Saudi Arabia, and identify the most important microbial species associated with these phones in order to take the necessary remedial measures. Materials and Methods: The analysis of a total of 202 samples was done to identify fungal and pathogenic bacteria isolates. Sterile swabs were firmly passed on the handset, the buttons and the screens of mobile phones, then inoculated into media of bacteria and fungi. Frequency distribution of isolates were calculated. Results: There were 737 isolated of the following bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Neisseria sicca, Micrococcus luteus, Proteus mirabilis, Bacillus subtilis, and Enterobacter aerogenes at the rate of 56.58, 13.57, 8.01, 7.73, 6.51, 3.66, 2.85 and 1.09% respectively. There were fungal isolates as follows: Alternaria alternata, Aspergillus niger, Cladosporium sp., Penicillium spp., Aspergillus flavus, Aspergillus fumigatus, Rhizopus stolonifer, Aspergillus ochraceus at the rate of 29.07, 26.74, 20.93, 10.47, 6.98, 2.33, 2.33, 1.16%, respectively. Conclusions: The study showed that all mobile phones under consideration were infected by several microbes, most of which belonged to the natural flora of the human body as well as airborne fungi and soil. This means that it is necessary to sterilize hands after contact with a phone since it is a source of disease transmission.

  11. Memory in microbes: quantifying history-Dependent behavior in a bacterium.

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Denise M.; Fontaine-Bodin, Lisa; Bischofs, Ilka; Price, Gavin; Keaslin, Jay; Arkin, Adam P.

    2007-11-15

    Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These"memory" effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenological measure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis and estimate the capacity of these systems and growth dynamics to 'remember' 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy.

  12. Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Denise M.; Fontaine-Bodin, Lisa; Bischofs, Ilka; Price, Gavin; Keasling, Jay; Arkin, Adam P.

    2007-11-15

    Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These"memory" effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenologicalmeasure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesisand estimate the capacity of these systems and growth dynamics to"remember" 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cellhistory, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy.

  13. Viral lysis of photosynthesizing microbes as a mechanism for calcium carbonate nucleation in seawater

    Science.gov (United States)

    Lisle, John T.; Robbins, Lisa L.

    2016-01-01

    Removal of carbon through the precipitation and burial of calcium carbonate in marine sediments constitutes over 70% of the total carbon on Earth and is partitioned between coastal and pelagic zones. The precipitation of authigenic calcium carbonate in seawater, however, has been hotly debated because despite being in a supersaturated state, there is an absence of persistent precipitation. One of the explanations for this paradox is the geochemical conditions in seawater cannot overcome the activation energy barrier for the first step in any precipitation reaction; nucleation. Here we show that virally induced rupturing of photosynthetic cyanobacterial cells releases cytoplasmic-associated bicarbonate at concentrations ~23-fold greater than in the surrounding seawater, thereby shifting the carbonate chemistry toward the homogenous nucleation of one or more of the calcium carbonate polymorphs. Using geochemical reaction energetics, we show the saturation states (Ω) in typical seawater for calcite (Ω = 4.3), aragonite (Ω = 3.1), and vaterite (Ω = 1.2) are significantly elevated following the release and diffusion of the cytoplasmic bicarbonate (Ωcalcite = 95.7; Ωaragonite = 68.5; Ωvaterite = 25.9). These increases in Ω significantly reduce the activation energy for nuclei formation thresholds for all three polymorphs, but only vaterite nucleation is energetically favored. In the post-lysis seawater, vaterite's nuclei formation activation energy is significantly reduced from 1.85 × 10−17 J to 3.85 × 10−20 J, which increases the nuclei formation rate from highly improbable (seawater describes a mechanism through which the initial step in the production of carbonate sediments may proceed. It also presents an additional role of photosynthesizing microbes and their viruses in marine carbon cycles and reveals these microorganisms are a collective repository for concentrated and reactive dissolved inorganic carbon (DIC) that is currently not accounted for

  14. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction

    Directory of Open Access Journals (Sweden)

    Flávia Thiebaut

    2017-12-01

    Full Text Available Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR. Among these miRNAs, miR408—a copper-microRNA—was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5′RACE (rapid amplification of cDNA ends assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly.

  15. Subseafloor seawater-basalt-microbe reactions: Continuous sampling of borehole fluids in a ridge flank environment

    Science.gov (United States)

    Wheat, C. Geoffrey; Jannasch, Hans W.; Fisher, Andrew T.; Becker, Keir; Sharkey, Jessica; Hulme, Samuel

    2010-07-01

    Integrated Ocean Drilling Program (IODP) Hole 1301A was drilled, cased, and instrumented with a long-term, subseafloor observatory (CORK) on the eastern flank of the Juan de Fuca Ridge in summer 2004. This borehole is located 1 km south of ODP Hole 1026B and 5 km north of Baby Bare outcrop. Hole 1301A penetrates 262 m of sediment and 108 m of the uppermost 3.5 Ma basaltic basement in an area of warm (64°C) hydrothermal circulation. The borehole was instrumented, and those instruments were recovered 4 years later. Here we report chemical data from two continuous fluid samplers (OsmoSamplers) and temperature recording tools that monitored changes in the state of borehole (formation) fluids. These changes document the effects of drilling, fluid overpressure and flow, seawater-basalt interactions, and microbial metababolic activity. Initially, bottom seawater flowed into the borehole through a leak between concentric CORK casing strings. Eventually, the direction of flow reversed, and warm, altered formation fluid flowed into the borehole and discharged at the seafloor. This reversal occurred during 1 week in September 2007, 3 years after drilling operations ceased. The composition of the formation fluid around Hole 1301A generally lies within bounds defined by springs on Baby Bare outcrop (to the south) and fluids that discharged from Hole 1026B (to the north); deviations likely result from reactions with drilling products. Simple conservative mixing of two end-member fluids reveals reactions occurring within the crust, including nitrate reduction presumably by denitrifying microbes. The observed changes in borehole fluid composition provide the foundation for a conceptual model of chemical and microbial change during recharge of a warm ridge-flank hydrothermal system. This model can be tested through future scientific ocean drilling experiments.

  16. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model.

    Science.gov (United States)

    Miki, Takeshi; Ushio, Masayuki; Fukui, Shin; Kondoh, Michio

    2010-08-10

    Theory and empirical evidence suggest that plant-soil feedback (PSF) determines the structure of a plant community and nutrient cycling in terrestrial ecosystems. The plant community alters the nutrient pool size in soil by affecting litter decomposition processes, which in turn shapes the plant community, forming a PSF system. However, the role of microbial decomposers in PSF function is often overlooked, and it remains unclear whether decomposers reinforce or weaken litter-mediated plant control over nutrient cycling. Here, we present a theoretical model incorporating the functional diversity of both plants and microbial decomposers. Two fundamental microbial processes are included that control nutrient mineralization from plant litter: (i) assimilation of mineralized nutrient into the microbial biomass (microbial immobilization), and (ii) release of the microbial nutrients into the inorganic nutrient pool (net mineralization). With this model, we show that microbial diversity may act as a buffer that weakens plant control over the soil nutrient pool, reversing the sign of PSF from positive to negative and facilitating plant coexistence. This is explained by the decoupling of litter decomposability and nutrient pool size arising from a flexible change in the microbial community composition and decomposition processes in response to variations in plant litter decomposability. Our results suggest that the microbial community plays a central role in PSF function and the plant community structure. Furthermore, the results strongly imply that the plant-centered view of nutrient cycling should be changed to a plant-microbe-soil feedback system, by incorporating the community ecology of microbial decomposers and their functional diversity.

  17. Degradation of 2,4-D in soils by Fe₃O₄ nanoparticles combined with stimulating indigenous microbes.

    Science.gov (United States)

    Fang, Guodong; Si, Youbin; Tian, Chao; Zhang, Gangya; Zhou, Dongmei

    2012-03-01

    Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in soils by Fe₃O₄ nanoparticles combined with soil indigenous microbes was investigated, and the effects of Fe₃O₄ nanoparticles on soil microbial populations and enzyme activities were also studied. The soils contaminated with 2,4-D were treated with Fe₃O₄ nanoparticles. The microbial populations and enzyme activities were analyzed by dilution plate method and chemical assay, respectively, and the concentration of 2,4-D in soil was determined by high-performance liquid chromatography (HPLC). The results indicated that Fe₃O₄ nanoparticles combined with soil indigenous microbes led to a higher degradation efficiency of 2,4-D than the treatments with Fe₃O₄ nanoparticles or indigenous microbes alone. The degradation of 2,4-D in soils followed the pseudo first-order kinetic. The half-lives of 2,4-D degradation (DT₅₀) of the combined treatments were 0.9, 1.9 and 3.1 days in a Red soil, Vertisol and Alfisol, respectively, which implied that the DT₅₀ of the combination treatments were significantly shorter than that of the treatments Fe₃O₄ nanoparticles or indigenous microbes alone. The effects of Fe₃O₄ nanoparticles on soil microbial populations and enzyme activities were also investigated and compared with the α-Fe₂O₃ nanoparticles. The results suggested that the α-Fe₂O₃ nanoparticles had only comparatively small effects on degradation of 2,4-D in soils, while the Fe₃O₄ nanoparticles not only degraded 2,4-D in soils but also increased the soil microbial populations and enzyme activities; the maximum increase in enzyme activities were 67.8% (amylase), 53.8% (acid phosphatase), 26.5% (catalase) and 38.0% (urease), compared with the untreated soil. Moreover, the introduction of Fe₃O₄ nanoparticles at the different dosage resulted in a variable degradation efficiency of 2,4-D in soil. The method of combining Fe₃O₄ nanoparticles with indigenous soil microbes may

  18. Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany.

    Science.gov (United States)

    Briggs, Derek E G; Moore, Rachel A; Shultz, Jeffrey W; Schweigert, Günter

    2005-03-22

    A remarkable specimen of Mesolimulus from the Upper Jurassic (Kimmeridgian) of Nusplingen, Germany, preserves the musculature of the prosoma and associated microbes in three dimensions in calcium phosphate (apatite). The musculature of Mesolimulus conforms closely to that of modern horseshoe crabs. Associated with the muscles are patches of mineralized biofilm with spiral and coccoid forms. This discovery emphasizes the potential of soft-bodied fossils as a source for increasing our knowledge of the diversity of fossil microbes in particular settings.

  19. Efficient breakdown of lignocellulose using mixed-microbe populations for bioethanol production.

    Energy Technology Data Exchange (ETDEWEB)

    Murton, Jaclyn K.; Ricken, James Bryce; Powell, Amy Jo

    2009-11-01

    This report documents progress in discovering new catalytic technologies that will support the development of advanced biofuels. The global shift from petroleum-based fuels to advanced biofuels will require transformational breakthroughs in biomass deconstruction technologies, because current methods are neither cost effective nor sufficiently efficient or robust for scaleable production. Discovery and characterization of lignocellulolytic enzyme systems adapted to extreme environments will accelerate progress. Obvious extreme environments to mine for novel lignocellulolytic deconstruction technologies include aridland ecosystems (ALEs), such as those of the Sevilleta Long Term Ecological Research (LTER) site in central New Mexico (NM). ALEs represent at least 40% of the terrestrial biosphere and are classic extreme environments, with low nutrient availability, high ultraviolet radiation flux, limited and erratic precipitation, and extreme variation in temperatures. ALEs are functionally distinct from temperate environments in many respects; one salient distinction is that ALEs do not accumulate soil organic carbon (SOC), in marked contrast to temperate settings, which typically have large pools of SOC. Low productivity ALEs do not accumulate carbon (C) primarily because of extraordinarily efficient extracellular enzyme activities (EEAs) that are derived from underlying communities of diverse, largely uncharacterized microbes. Such efficient enzyme activities presumably reflect adaptation to this low productivity ecosystem, with the result that all available organic nutrients are assimilated rapidly. These communities are dominated by ascomycetous fungi, both in terms of abundance and contribution to ecosystem-scale metabolic processes, such as nitrogen and C cycling. To deliver novel, robust, efficient lignocellulolytic enzyme systems that will drive transformational advances in biomass deconstruction, we have: (1) secured an award through the Department of Energy

  20. Soil mineralogy and microbes determine forest life history strategy and carbon cycling in humid tropical forests

    Science.gov (United States)

    Soong, J.; Verbruggen, E.; Peñuelas, J.; Janssens, I. A.; Grau, O.

    2017-12-01

    microbial, soil, litter and forest metrics we describe how microbes, minerals and soil organic matter act as an ecosystem property driving forest dynamics via microbial and plant stoichiometric constraints.

  1. Effects of Ionizing Radiation on Surface Infesting Microbes of Stored Grain

    International Nuclear Information System (INIS)

    Maity, J.P.; Chanda, S.; Chakraborty, A.; Santra, S.C.

    2005-09-01

    Spoilage of nutritional value of stored grains and seeds by the surface-infesting microbes, especially those producing mycotoxins, has been a worldwide economic problem. In this perspective our present work aims at probing into the potential of gamma rays to reduce the microbial infestation on stored grain surface and additionally to focus differential radiation sensitivity, if any, of the different fungi in response to gradient of gamma exposure. Co-60 source at 250 C emitting gamma rays at 1173 and 1332 keV energy (0.12 kGy/h) was used in the range of 0.5-6 kGy (absorbed dose) for irradiating some common stored seeds in India namely rice (Oryza sativa. Cv-2233 and Oryza sativa. Cv-Shankar), Bengal gram (Cicer arietinum. Cv-local), wheat (Triticum aestivum) and Mung (Phaseolus mungo). Gamma irradiation results in dose-dependent delay in colony formation and growth inhibition of the fungi on the seed surface. Differential rate of depletion was noted for different fungi. Effective absorbed dose for depletion of Alternaria sp., Aspergillus sp was 1 to 2 kGy while that for Tricoderma sp., Curvularia sp was 0.5-1 kGy. Complete inhibition of all the selected fungi was found above 2.5 kGy. Germinating potential of the irradiated grains remained unaffected upto an absorbed dose of 2kGy while their respective nutritional value in terms of protein and carbohydrate content was not significantly altered. Higher doses of exposure however, documented delayed seed germination. Colony forming ability (CFA) of the exposed fungi documented significant variation between fungi attached to the seed surface and that when isolated from the host. Alternaria sp, Aspergillus sp or Curvularia sp exhibited total inhibition of CFA at a much lower dose (1-3 kGy) in isolated conditions than that when seed attached (>4kGy). On the other hand Trichoderma sp expressed a different trend revealing more sensitivity in seed attached condition. Such differential response possibly reflects species

  2. Molecular Phylogeny Of Microbes In The Deep-Sea Sediments From Tropical West Pacific Warm Pool

    Science.gov (United States)

    Wang, F.; Xiao, X.; Wang, P.

    2005-12-01

    The presence and phylogeny of bacteria and archaea in five deep-sea sediment samples collected from west Pacific Warm Pool area (WP-0, WP-1, WP-2, WP-3, WP-4), and in five sediment layers (1cm-, 3cm-, 6cm-, 10cm-, 12cm- layer) of the 12-cm sediment core of WP-0 were checked and compared. The microbial diversity in the five deep-sea sediments were similar as revealed by denaturing gradient gel electrophoresis, and all of them contained members of non-thermophilic marine group I crenarchaeota as the predominant archaeal group. The composition of methylotrophs including methanotrophs, sulfate reducing bacteria in the WP-0 sediment core were further investigated by molecular marker based analysis of mxaF, pmoA, dsrAB, specific anoxic methane oxidation archaeal and sulfate reducing bacterial 16S rRNA genes. From MxaF amino acid sequence analysis, it was demonstrated that microbes belonging to α - Proteobacteria most related to Hyphomicrobium and Methylobacterium were dominant aerobic methylotrophs in this deep-sea sediment; and small percentage of type II methanotrophs affiliating closest to Methylocystis and Methylosinus were also detected in this environment. mxaF quantitative PCR results showed that in the west Pacific WP sediment there existed around 3× 10 4-5 methylotrophs per gram sediment, 10-100 times more than that in samples collected from several other deep-sea Pacific sediment sample, but about 10 times less than that present in samples collected from rice and flower garden soil. Diverse groups of novel archaea (named as WPA), not belonging to any known archaeal lineages were checked out. They could be placed in the euryarchaeota kingdom, separated into two distinct groups, the main group was peripherally related with methanogens, the other group related with Thermoplasma. Possible sulfate reducing bacterial related with Desulfotomaculum, Desulfacinum, Desulfomonile and Desulfanuticus were also detected in our study. The vertical distributions of WPA

  3. Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG

    Directory of Open Access Journals (Sweden)

    Claes Ingmar JJ

    2012-12-01

    Full Text Available Abstract Background Probiotic bacteria are increasingly used as immunomodulatory agents. Yet detailed molecular knowledge on the immunomodulatory molecules of these bacteria is lagging behind. Lipoteichoic acid (LTA is considered a major microbe-associated molecular pattern (MAMP of Gram-positive bacteria. However, many details and quantitative data on its immune signalling capacity are still unknown, especially in beneficial bacteria. Recently, we have demonstrated that a dltD mutant of the model probiotic Lactobacillus rhamnosus GG (LGG, having modified LTA molecules, has an enhanced probiotic efficacy in a DSS-induced colitis model as compared to wild-type. Results In this study, the importance of D-alanylated and acylated LTA for the pro-inflammatory activity of LGG was studied in vitro. Purified native LTA of LGG wild-type exhibited a concentration-dependent activation of NF-κB signalling in HEK293T cells after interaction with TLR2/6, but not with TLR2 alone. Chemical deacylation of LTA interfered with the TLR2/6 interaction, while a moderate effect was observed with chemical dealanylation. Similarly, the dltD mutant of LGG exhibited a significantly reduced capacity to activate TLR2/6-dependent NF-κB signalling in a HEK293T reporter cell line compared to wild-type. In addition, the dltD mutant of LGG showed a reduced induction of mRNA of the chemokine IL-8 in the Caco-2 epithelial cell line compared to wild-type. Experiments with highly purified LTA of LGG confirmed that LTA is a crucial factor for IL-8 mRNA induction in Caco-2 epithelial cells. Chemical dealanylation and deacylation reduced IL-8 mRNA expression. Conclusions Taken together, our results indicate that LTA of LGG is a crucial MAMP with pro-inflammatory activities such as IL-8 induction in intestinal epithelial cells and NF-κB induction in HEK293T cells via TLR2/6 interaction. The lipid chains of LGG LTA are needed for these activities, while also the D-alanine substituents

  4. Hydrothermal Fluid Permeability, Temperature, and Nutrient Fluxes: Three Controls on the Structure and the Dynamics of Subsurface Extremophilic Microbe Communities

    Science.gov (United States)

    Ryan, M. P.; Yang, J.

    2002-05-01

    We continue to develop a set of models whose aim is to provide broad constraints on the range of possible community structures for subsurface thermally-tolerant microbes. We combine studies of the three-dimensional internal structure of the dike and sill complexes of active volcanoes, studies of the scale- and direction-dependent 3-D in-situ permeability of intrusive and extrusive rocks from in-situ and laboratory data, numerical modelling of hydrothermal convection in volcanic interiors, data on the optimal metabolic and life-limiting thermal requirements of extremophilic microbes, with the set of nutrients and nutrient pathways required for the survival of given species of thermophiles and hyperthermophiles. With this mix of data bases and analysis tools, we can begin to divine a set of broad theoretical guidelines for constraining the structure and dynamics of extremophilic communities in the subsurface environments of volcanoes. We are searching for the first-order controls on transport. The effects of mineral attachment, detachment, and microbial reproduction may be incorporated in refinements of this basic model. Critical thermal intervals and/or isotherms that correlate with (1) optimal metabolic and (2) life-limiting temperatures for thermophilic microbes are, e.g., in degrees Celcius: Thermus thermophilius [70, 85]; Thermomicrobium roseum [70-75, 85]; Thermus aquaticus [70, 79]; and Sulfolobus acidocaldarius [70-75, 90]. Numerical models of the convective migration of thermophilic (50-80 C), and hyperthermophilic (80-113 C) microbes and their macromolecular amino acid building blocks (113- ~200 C) have been developed that explicitly incorporate the roles of fractures and fluid properties. Fluid transport properties are evaluated through the optimal metabolic and life-limiting temperate ranges and beyond. These models quantify our intuition with respect to controls on community structure and dynamics. Important relationships appear to be: (1) Great

  5. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    Science.gov (United States)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  6. Effect Of Spaceflight On Microbial Gene Expression And Virulence: Preliminary Results From Microbe Payload Flown On-Board STS-115

    Science.gov (United States)

    Wilson, J. W.; HonerzuBentrup, K,; Schurr, M. J.; Buchanan, K.; Morici, L.; Hammond, T.; Allen, P.; Baker, C.; Ott, C. M.; Nelman-Gonzalez M.; hide

    2007-01-01

    Human presence in space, whether permanent or temporary, is accompanied by the presence of microbes. However, the extent of microbial changes in response to spaceflight conditions and the corresponding changes to infectious disease risk is unclear. Previous studies have indicated that spaceflight weakens the immune system in humans and animals. In addition, preflight and in-flight monitoring of the International Space Station (ISS) and other spacecraft indicates the presence of opportunistic pathogens and the potential of obligate pathogens. Altered antibiotic resistance of microbes in flight has also been shown. As astronauts and cosmonauts live for longer periods in a closed environment, especially one using recycled water and air, there is an increased risk to crewmembers of infectious disease events occurring in-flight. Therefore, understanding how the space environment affects microorganisms and their disease potential is critically important for spaceflight missions and requires further study. The goal of this flight experiment, operationally called MICROBE, is to utilize three model microbial pathogens, Salmonella typhimurium, Pseudomonas aeruginosa, and Candida albicans to examine the global effects of spaceflight on microbial gene expression and virulence attributes. Specifically, the aims are (1) to perform microarray-mediated gene expression profiling of S. typhimurium, P. aeruginosa, and C. albicans, in response to spaceflight in comparison to ground controls and (2) to determine the effect of spaceflight on the virulence potential of these microorganisms immediately following their return from spaceflight using murine models. The model microorganisms were selected as they have been isolated from preflight or in-flight monitoring, represent different degrees of pathogenic behavior, are well characterized, and have sequenced genomes with available microarrays. In particular, extensive studies of S. typhimurium by the Principal Investigator, Dr. Nickerson

  7. Community structures and activity of denitrifying microbes in a forested catchment in central Japan: survey using nitrite reductase genes

    Science.gov (United States)

    Ohte, N.; Aoki, M.; Katsuyama, C.; Suwa, Y.; Tange, T.

    2012-12-01

    To elucidate the mechanisms of denitrification processes in the forested catchment, microbial ecological approaches have been applied in an experimental watershed that has previously investigated its hydrological processes. The study catchment is located in the Chiba prefecture in central Japan under the temperate Asian monsoon climate. Potential activities of denitrification of soil samples were measured by incubation experiments under anoxic condition associated with Na15NO3 addition. Existence and variety of microbes having nitrite reductase genes were investigated by PCR amplification, cloning and sequencings of nirK and nirS fragments after DNA extraction. Contrary to our early expectation that the potential denitrification activity was higher at deeper soil horizon with consistent groundwater residence than that in the surface soil, denitrification potential was higher in shallower soil horizons than deeper soils. This suggested that the deficiency of NO3- as a respiratory substrate for denitrifier occurred in deeper soils especially in the summer. However, high denitrification activity and presence of microbes having nirK and nirS in surface soils usually under aerobic condition was explainable by the fact that the majority of denitrifying bacteria have been recognized as a facultative anaerobic bacterium. This also suggests the possibility of that denitrification occurs even in the surface soils if the wet condition is provided by rainwater during and after a storm event. Community structures of microbes having nirK were different between near surface and deeper soil horizons, and ones having nirS was different between saturated zone (under groundwater table) and unsaturated soil horizons. These imply that microbial communities with nisK are sensitive to the concentration of soil organic matters and ones with nirS is sensitive to soil moisture contents.

  8. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience

    Science.gov (United States)

    Stone, Wendy; Kroukamp, Otini; Korber, Darren R.; McKelvie, Jennifer; Wolfaardt, Gideon M.

    2016-01-01

    The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation. PMID:27746774

  9. Internalisation of microbes in vegetables: microbial load of Ghanaian vegetables and the relationship with different water sources of irrigation.

    Science.gov (United States)

    Donkor, Eric S; Lanyo, R; Kayang, Boniface B; Quaye, Jonathan; Edoh, Dominic A

    2010-09-01

    The occurrence of pathogens in the internal parts of vegetables is usually associated with irrigation water or contaminated soil and could pose risk to consumers as the internalised pathogens are unaffected by external washing. This study was carried out to assess the rate of internalisation of microbes in common Ghanaian vegetables. Standard microbiological methods were employed in microbial enumeration of vegetables collected at the market and farm levels, as well as irrigation water and soil samples. The overall mean counts of vegetables were 4.0 x 10(3) cfu g(-1); 8.1 x 10(2) cfu g(-1); 2.0 x 10(2) cfu g(-1); 3.5 x 10(2) cfu g(-1) for total bacteria, coliform counts, faecal coliform counts and yeast counts, respectively. The rate of internalisation of coliforms in vegetables irrigated with stream/well water was 2.7 times higher than those irrigated with pipe water. The mean coliform counts (4.7 x 10(7) cfu g(-1)) and faecal coliform counts (1.8 x 10(6) cfu g(-1)) of soil samples were similar to those of stream water suggesting both sources exerted similar contamination rates on the vegetables. Generally, there were no significant variations between the rates of internalisation of microbes at the market and farm levels at p vegetables mainly occurred at the farm level. The study has shown that microbial contamination of vegetables in Ghana is not limited to the external surface, but internal vegetable parts could harbour high microbial loads and pose risk to consumers. Safety practices associated with the commodity should therefore not be limited to external washing only. There is the additional need of heating vegetables to eliminate microbes both externally and internally before consumption.

  10. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions.

    Science.gov (United States)

    Engel, Philipp; Kwong, Waldan K; McFrederick, Quinn; Anderson, Kirk E; Barribeau, Seth Michael; Chandler, James Angus; Cornman, R Scott; Dainat, Jacques; de Miranda, Joachim R; Doublet, Vincent; Emery, Olivier; Evans, Jay D; Farinelli, Laurent; Flenniken, Michelle L; Granberg, Fredrik; Grasis, Juris A; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J; Powell, Eli; Sadd, Ben M; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-04-26

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health. Copyright © 2016 Engel et al.

  11. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    Science.gov (United States)

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  12. The influence of the growth conditions of the plague microbe vaccine strain colonies on the fractal dimension of biospeckles

    International Nuclear Information System (INIS)

    Ul'yanov, A S; Lyapina, A M; Ulianova, O V; Fedorova, V A; Uianov, S S

    2011-01-01

    Specific statistical characteristics of biospeckles, emerging under the diffraction of coherent beams on the bacterial colonies, are studied. The dependence of the fractal dimensions of biospeckles on the conditions of both illumination and growth of the colonies is studied theoretically and experimentally. Particular attention is paid to the fractal properties of biospeckles, emerging under the scattering of light by the colonies of the vaccinal strain of the plague microbe. The possibility in principle to classify the colonies of Yersinia pestis EV NIIEG using the fractal dimension analysis is demonstrated. (optical technologies in biophysics and medicine)

  13. Saharan dust - a carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    Directory of Open Access Journals (Sweden)

    V.H Garrison

    2006-12-01

    Full Text Available An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI, Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs, trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde and the Caribbean (USVI and Trinidad & Tobago. Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs and polycyclic aromatic hydrocarbons (PAHs and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable micro-organisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable micro-organisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions. Rev. Biol. Trop. 54 (Suppl. 3: 9-21. Epub 2007 Jan. 15.Un grupo internacional de agencias gubernamentales y universidades de los Estados Unidos, las Islas Vírgenes (EUA, Trinidad y Tobago, la República de Cabo Verde y la República de Mali (África Oeste, está trabajando en conjunto para elucidar el papel que el polvo del Sahara puede estar jugando en el deterioro de los ecosistemas caribeños. El

  14. The extreme environments and their microbes as models for extraterrestrial life

    Science.gov (United States)

    Seckbach, J.; Oren, A.; Chela-Flores, J.

    2008-09-01

    Bacteria such as the aerobic Salinibacter ruber and the anaerobic members of the Halanaerobiales) use KCl to provide the necessary osmotic balance. Some of these extreme halophiles possess light-driven proton pumps (bacteriorhodopsin, xanthorhodopsin) and chloride pumps (halorhodopsin) that enable them to use photons to drive energetically expensive reactions (Oren, 2002; Oren, 2008). Extremophiles can serve as models for extraterrestrial microbes that may live in celestial bodies. The most promising among these to contain habitable areas are Mars (where the Phoenix Lander recently discovered water) and the Jovian satellite Europa; also Titan (the moon of Saturn) has some features that resemble those that may have existed on Earth during its earliest stages. From the characteristics of extremophilic microorganisms found on the present-day Earth, we can derive some insights on the question of habitability of other planets, and learn about possible bioindicators that may be suitable when searching for extraterrestrial life (Seckbach and Chela-Flores, 2007). Compounds such as methane on Mars or traces of sulfur on Jupiter's moon Europa may have been of biogenic origin and may possibly have been endogenic (Chela-Flores, 2006; Chela-Flores and Kumar, 2008). Biogeochemical tests have been proposed for missions that are in the planning stages, such as LAPLACE (Blanc et al., 2008), a mission to Europa and the Jupiter system by ESA's Cosmic Vision Programme. The finding of elemental sulfur on Europa may be of special interest. One possibility is that such traces of sulfur might have originated from the metabolism of extremophilic sulfurreducing microorganisms. Radiation may damage traces of biogenic sulfur deposited on the surface. The stopping depth for ionic radiation in the Jovian magnetosphere is expected not to exceed 1 cm (Greenberg, 2005; Dudeja et al., 2008). Thus, organic molecules would not be destroyed below such a thin layer. Based on to the preliminary results of the

  15. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes.

    Science.gov (United States)

    Hehemann, Jan-Hendrik; Kelly, Amelia G; Pudlo, Nicholas A; Martens, Eric C; Boraston, Alisdair B

    2012-11-27

    Humans host an intestinal population of microbes--collectively referred to as the gut microbiome--which encode the carbohydrate active enzymes, or CAZymes, that are absent from the human genome. These CAZymes help to extract energy from recalcitrant polysaccharides. The question then arises as to if and how the microbiome adapts to new carbohydrate sources when modern humans change eating habits. Recent metagenome analysis of microbiomes from healthy American, Japanese, and Spanish populations identified putative CAZymes obtained by horizontal gene transfer from marine bacteria, which suggested that human gut bacteria evolved to degrade algal carbohydrates-for example, consumed in form of sushi. We approached this hypothesis by studying such a polysaccharide utilization locus (PUL) obtained by horizontal gene transfer by the gut bacterium Bacteroides plebeius. Transcriptomic and growth experiments revealed that the PUL responds to the polysaccharide porphyran from red algae, enabling growth on this carbohydrate but not related substrates like agarose and carrageenan. The X-ray crystallographic and biochemical analysis of two proteins encoded by this PUL, BACPLE_01689 and BACPLE_01693, showed that they are β-porphyranases belonging to glycoside hydrolase families 16 and 86, respectively. The product complex of the GH86 at 1.3 Å resolution highlights the molecular details of porphyran hydrolysis by this new porphyranase. Combined, these data establish experimental support for the argument that CAZymes and associated genes obtained from extrinsic microbes add new catabolic functions to the human gut microbiome.

  16. Effect of rice straw silage treated with rumen microbes of buffalo on digestibility and ecosystem of cattle rumen

    Directory of Open Access Journals (Sweden)

    Thalib A

    2000-03-01

    Full Text Available Treatment of rice straw silage with addition of buffalo rumen microbes was conducted to improve the ruminal digestion of rice straw in ongole cattle. Three fistulated cattles were each introduced to dietary treatment: I. Untreated rice straw (JPTP, II. Rice straw ensilaged with buffalo rumen microbes (SJPMR-Kr, and ID. Elephant grass (RG. All diets were formulated isonitrogeneous (14% crude protein and fed to animals over a period of 4 weeks. After 4 weeks of feeding trial, rwnen fluid of the animals were evaluated to digest its own basal diet (as substrate. The results show that cumulative gas production resulting from the substrate fermented (96 hours by rumen fluid from cattle fed diet II is 205% of the diet I and 151 % of the diet ID. Measurements of DMD of the substrates after the gas production procedure show the similar trend (ie. DM digestibilities for JPTP= 33%; SJPMR-Kr= 54% dan RG= 45%. Means of in sacco DMD (72 hours incubation confirm the results of gas production (ie. in sacco DM Digestibilities for JPTP= 35%; SJPMR-Kr= 44% and RG= 39%. All results described between treatments are highly significant different (P0.05, except for total VFA (ie. JPTP= 0.52 mg Inri; SJPMR-Kr= 3,37 mg Inri and RG= 3.15 mg Inri.

  17. Microform-related community patterns of methane-cycling microbes in boreal Sphagnum bogs are site specific.

    Science.gov (United States)

    Juottonen, Heli; Kotiaho, Mirkka; Robinson, Devin; Merilä, Päivi; Fritze, Hannu; Tuittila, Eeva-Stiina

    2015-09-01

    Vegetation and water table are important regulators of methane emission in peatlands. Microform variation encompasses these factors in small-scale topographic gradients of dry hummocks, intermediate lawns and wet hollows. We examined methane production and oxidization among microforms in four boreal bogs that showed more variation of vegetation within a bog with microform than between the bogs. Potential methane production was low and differed among bogs but not consistently with microform. Methane oxidation followed water table position with microform, showing higher rates closer to surface in lawns and hollows than in hummocks. Methanogen community, analysed by mcrA terminal restriction fragment length polymorphism and dominated by Methanoregulaceae or 'Methanoflorentaceae', varied strongly with bog. The extent of microform-related variation of methanogens depended on the bog. Methanotrophs identified as Methylocystis spp. in pmoA denaturing gradient gel electrophoresis similarly showed effect of bog, and microform patterns were stronger within individual bogs. Our results suggest that methane-cycling microbes in boreal Sphagnum bogs with seemingly uniform environmental conditions may show strong site-dependent variation. The bog-intrinsic factor may be related to carbon availability but contrary to expectations appears to be unrelated to current surface vegetation, calling attention to the origin of carbon substrates for microbes in bogs. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes.

    Science.gov (United States)

    Saad, Rama; Rizkallah, Mariam R; Aziz, Ramy K

    2012-11-30

    The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.

  19. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes

    Directory of Open Access Journals (Sweden)

    Saad Rama

    2012-11-01

    Full Text Available Abstract The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics, notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.

  20. 瘤胃微生物多样性与定量%Rumial Microbes: Diversity and Quantification

    Institute of Scientific and Technical Information of China (English)

    马涛; 刁其玉

    2015-01-01

    Ruminants are able to utilize fibrous feed as a source of energy and nutrients due to the ruminal mi-crobes, composed mainly of bacteria, fungi, and ciliate protozoa. Ruminal microbes play different roles in feed digestion and act synergistically to ferment dietary carbohydrates and proteins. This review reported the latest methods for assessment of ruminal microbial diversity, particularly molecular techniques, which allows people to gain new insights into rumen functions.%反刍动物由于瘤胃微生物的存在能够分解并利用饲料中的纤维素来提供能量和蛋白质. 瘤胃微生物主要包括细菌、真菌和原虫,三者在消化饲料过程中分工明确,共同实现碳水化合物和蛋白质的分解. 本文综述了定量瘤胃微生物群落多样性的新方法,尤其是分子生物学的应用,进一步提高人们对于瘤胃功能的认识水平.