WorldWideScience

Sample records for microbeam cell lysis

  1. Microbeam evolution: From single cell irradiation to preclinical studies

    DEFF Research Database (Denmark)

    Ghita, Mihaela; Fernandez-Palomo, Cristian; Fukunaga, Hisanori

    2018-01-01

    Purpose: This review follows the development of microbeam technology from the early days of single cell irradiations, to investigations of specific cellular mechanisms and to the development of new treatment modalities in vivo. A number of microbeam applications are discussed with a focus on prec...... to deliver radiotherapy using plane parallel microbeams, in Microbeam Radiotherapy (MRT)....

  2. Microfluidic device for acoustic cell lysis

    Science.gov (United States)

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe; James, Conrad D.; McClain, Jaime L.

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  3. Pressure-mediated reduction of ultrasonically induced cell lysis

    International Nuclear Information System (INIS)

    Ciaravino, V.E.; Miller, M.W.; Carstensen, E.L.

    1981-01-01

    Chinese hamster V-79 cells, exposed in polystyrene tubes for 5 min to 1-MHz continuous-wave ultrasound, were lysed more by a 10 than a 5 W/cm 2 intensity. Higher atmospheric pressure was needed to eliminate lysis with the former relative to the latter intensity, but lysis by 10 W/cm 2 was completely climinated with 2 atm of hydrostatic pressure. The reduction in lysis per unit increase in atmospheric pressure was comparable for both ultrasound intensities

  4. Electron microbeam specifications for use in cell irradiation experiments

    International Nuclear Information System (INIS)

    Kim, E.-H.; Choi, M.-C.; Lee, D.-H.; Chang, M.; Kang, C.-S.

    2003-01-01

    The microbeam irradiation system was devised originally to identify the hit and unhit cells by confining the beam within the target cell. The major achievement through the microbeam experiment studies has turned out to be the discovery of the 'bystander effect'. Microbeam experiments have been performed with alpha and proton beams in major and with soft x-rays in minor. The study with electron microbeam has been deferred mainly due to the difficulty in confining the electron tracks within a single target cell. In this paper, the electron microbeam irradiation system under development in Korea is introduced in terms of the beam specifications. The KIRAMS electron microbeam irradiation system consists of an electron gun, a vacuum chamber for beam collimation into 5 μm in diameter and a biology stage. The beam characteristics in terms of current and energy spectrum of the electrons entering a target cell and its neighbor cells were investigated by Monte Carlo simulation for the electron source energies of 25, 50, 75 and 100 keV. Energy depositions in the target cell and the neighbor cells were also calculated. The beam attenuation in current and energy occurs while electrons pass through the 2 μm-thick Mylar vacuum window, 100 μm-thick air gap and the 2 μm-thick Mylar bottom of cell dish. With 25 keV electron source, 80 % of decrease in current and 30 % of decrease in average energy were estimated before entering the target cell. With 75 keV electron source, on the other hand, 55 % of decrease in current and less than 1 % of decrease in average energy were estimated. Average dose per single collimated electron emission was 0.067 cGy to the target cell nucleus of 5 μm in diameter and 0.030 cGy to the cytoplasm of 2.5 μm in thickness with 25 keV electron source while they were 0.15 cGy and 0.019 cGy, respectively, with 75 keV electron source. The multiple scattering of electrons resulted in energy deposition in the neighbor cells as well. Dose to the first

  5. Urea enhances cell lysis of Schizosaccharomyces pombe ura4 mutants.

    Science.gov (United States)

    Nishino, Kohei; Kushima, Misaki; Kaino, Tomohiro; Matsuo, Yasuhiro; Kawamukai, Makoto

    2017-07-01

    Cell lysis is induced in Schizosaccharomyces pombe ∆ura4 cells grown in YPD medium, which contains yeast extract, polypeptone, and glucose. To identify the medium components that induce cell lysis, we first tested various kinds of yeast extracts from different suppliers. Cell lysis of ∆ura4 cells on YE medium was observed when yeast extracts from OXOID, BD, Oriental, and Difco were used, but not when using yeast extract from Kyokuto. To determine which compounds induced cell lysis, we subjected yeast extract and polypeptone to GC-MS analysis. Ten kinds of compounds were detected in OXOID and BD yeast extracts, but not in Kyokuto yeast extract. Among them was urea, which was also present in polypeptone, and it clearly induced cell lysis. Deletion of the ure2 gene, which is responsible for utilizing urea, abolished the lytic effect of urea. The effect of urea was suppressed by deletion of pub1, and a similar phenotype was observed in the presence of polypeptone. Thus, urea is an inducer of cell lysis in S. pombe ∆ura4 cells.

  6. Squamous cell carcinoma complicating an hereditary epidermo-lysis bullosa

    International Nuclear Information System (INIS)

    Mseddi, M.; Turki, H.; Marrekchi, S.; Abdelmaksoud, W.; Masmoudi, A.; Bouassida, S.; Zahaf, A.

    2004-01-01

    The dystrophic form of hereditary epidermo-lysis bullosa is associated with an increased frequency of squamous cell carcinoma. We report a new case. An 18-year-old patient, carrying a Hallopeau Siemens hereditary epidermo-lysis bullosa, presented a subcutaneous nodular lesion, for 1 year that ulcerated and budded with inguinal lymphadenopathy. The histological study ted to the conclusion of a well differentiated squamous cell carcinoma. The patient was treated surgically. Tumor and metastatic lymph nodes were excised. A radiotherapy was decided but the postoperative course was fatal due to an infection and to a deterioration of her general condition. Squamous cell carcinoma frequently occurs on the cicatricial lesion of hereditary epidermo-lysis bullosa and usually affects males with recessive hereditary epidermo-lysis bullosa. Metastases are frequent, precocious and multiple. The treatment may be surgical. The particularities of our observation are the young age of patient and the localization. (author)

  7. Attempts of local irradiation of cells by microbeam. From ultraviolet to heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yasuhiko [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    This review describes the history of attempts of local irradiation of cells by microbeam and present status of the study. Local irradiation of cells was attempted as early as in 1912 with use of short {alpha}-particle range and of focused UV beams. After the war, laser microbeams were then developed for microsurgery in embryology. In addition, microbeams of electron generated from the gun and of X-ray collimated were developed. In 1950s, the electron microbeam was generated from Van de Graaff accelerator in Chicago University and proton, deuteron and He-ion microbeams from the cyclotron, in BNL. In 1980s, Gesellschaft fuer Schwerionenforshung (Germany) used heavy ion microbeams from C to U generated from the linear accelerator and PNL, proton to {sup 4}He-ion microbeams from the tandem-electrostatic accelerator. At present in 2002, the equipments for microbeam for cell irradiation are the Van de Graaff accelerators in Gray Cancer Institute (England) and in Columbia University, and the cyclotron in TIARA in Japan. The purpose of the study in TIARA is to develop a system to generate heavy particle microbeams for cell irradiation for analysis of the biological effect of ultra-low fluence, high LET heavy particles like the galactic cosmic ray. Recently, the CHO-KI cell nucleus is irradiated by {sup 40}Ar and {sup 20}Ne ions. (K.H.)

  8. Attempts of local irradiation of cells by microbeam. From ultraviolet to heavy particles

    International Nuclear Information System (INIS)

    Kobayashi, Yasuhiko

    2002-01-01

    This review describes the history of attempts of local irradiation of cells by microbeam and present status of the study. Local irradiation of cells was attempted as early as in 1912 with use of short α-particle range and of focused UV beams. After the war, laser microbeams were then developed for microsurgery in embryology. In addition, microbeams of electron generated from the gun and of X-ray collimated were developed. In 1950s, the electron microbeam was generated from Van de Graaff accelerator in Chicago University and proton, deuteron and He-ion microbeams from the cyclotron, in BNL. In 1980s, Gesellschaft fuer Schwerionenforshung (Germany) used heavy ion microbeams from C to U generated from the linear accelerator and PNL, proton to 4 He-ion microbeams from the tandem-electrostatic accelerator. At present in 2002, the equipments for microbeam for cell irradiation are the Van de Graaff accelerators in Gray Cancer Institute (England) and in Columbia University, and the cyclotron in TIARA in Japan. The purpose of the study in TIARA is to develop a system to generate heavy particle microbeams for cell irradiation for analysis of the biological effect of ultra-low fluence, high LET heavy particles like the galactic cosmic ray. Recently, the CHO-KI cell nucleus is irradiated by 40 Ar and 20 Ne ions. (K.H.)

  9. Nitric oxide mediated bystander responses induced by microbeam targeted cells

    International Nuclear Information System (INIS)

    Shao, C.; Prise, K.M.; Folkard, M.; Michael, B.D.

    2003-01-01

    Considerable evidence has recently been accumulated in support of the existence of a 'bystander effect', which cells having received no irradiation show biological consequences from their vicinal irradiated cells. The application of microbeams is providing new insights into the radiation-induced bystander effect. The present study found that when a fraction of radioresistant human glioblastoma cells were individually targeted with a precise number of helium ions generated from the Gray Cancer Institute Charged Particle Microbeam, micronucleus (MN) induction significantly exceeded the expected value that was calculated from the number of MN observed when all of the cells were targeted assuming no bystander effect occurring. Even when only a single cell within a population was hit by one helium ion, the MN induction in the population could be increased by 16%. These results provide direct evidence of radiation-induced bystander effect. Moreover, MN was effectively induced in the unirradiated primary human fibroblasts and glioblastoma cells either co-cultured with irradiated cells or treated with the medium harvested from irradiated cells, indicating a signal molecule was produced from the irradiated cells. However, when c-PTIO, a nitric oxide (NO)-specific scavenger, was present in the medium during and after irradiation until MN analysis, the production of MN in all of the above cases was reduced to low levels. Consequently, NO plays an important role in the radiation-induced bystander effect

  10. Ion, X-ray, UV and Neutron Microbeam Systems for Cell Irradiation.

    Science.gov (United States)

    Bigelow, A W; Randers-Pehrson, G; Garty, G; Geard, C R; Xu, Y; Harken, A D; Johnson, G W; Brenner, D J

    2010-08-08

    The array of microbeam cell-irradiation systems, available to users at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University, is expanding. The HVE 5MV Singletron particle accelerator at the facility provides particles to two focused ion microbeam lines: the sub-micron microbeam II and the permanent magnetic microbeam (PMM). Both the electrostatic quadrupole lenses on the microbeam II system and the magnetic quadrupole lenses on the PMM system are arranged as compound lenses consisting of two quadrupole triplets with "Russian" symmetry. Also, the RARAF accelerator is a source for a proton-induced x-ray microbeam (undergoing testing) and is projected to supply protons to a neutron microbeam based on the (7)Li(p, n)(7)Be nuclear reaction (under development). Leveraging from the multiphoton microscope technology integrated within the microbeam II endstation, a UV microspot irradiator - based on multiphoton excitation - is available for facility users. Highlights from radiation-biology demonstrations on single living mammalian cells are included in this review of microbeam systems for cell irradiation at RARAF.

  11. effect of natural blue-green algal cells lysis on freshwater quality

    African Journals Online (AJOL)

    Compaq

    released into water due to algal cells lysis was performed by placing samples in two ... Keywords; Algae, cells lysis, Fatty acids, gas chromatography time-of-flight mass spectrometry, water quality ... Factors such as municipal and industrial.

  12. 3D mapping of individual cells using a proton microbeam

    International Nuclear Information System (INIS)

    Michelet, C.; Moretto, Ph.

    1999-01-01

    Various imaging techniques carried out with a nuclear microprobe make it possible to reveal by 2D mapping, the internal structure of isolated cells. An improvement of those techniques allows today 3D mapping of cells. STIM- and PIXE-Tomography have been recently implemented on the CENBG microbeam line. The performance offered by these methods, which are capable of resolving objects having diameters less then 100 μm, has been validated on reference specimens and on human cells from cultures. In addition to the fineness of the resolution, these techniques offer the advantage of performing volume analyses without prior cutting of the samples. The ultimate aim of this program of research is to perform 3D elemental chemical analysis of individual cells in the field of biomedicine

  13. Application of microbeam in bio-science and life science. Biological effects induced in bystander cells by particle microbeams

    International Nuclear Information System (INIS)

    Suzuki, Masao

    2006-01-01

    Biological events occurring in cells directly hit by radiation appear in bystander cells nearby not hit directly, which is called the bystander effect. This review describes the events and mechanisms of biological bystander effect yielded by the low-dose radiation including the microbeam. Bystander effects, particularly by charged particle beams, have been studied by two representative approaches by α-ray from plutonium (stochastic irradiation) and by particle microbeams (targeted irradiation), where a bystander effect like chromosome aberrations is shown to occur by communication between irradiated and non-irradiated cells through gap junction. Bystander effects that do not require the cell contact also occur in the irradiated cell-conditioned medium (ICCM), where, not only the short-life radicals like reactive oxygen species and NO, but also more long-life factors participate. Authors have shown the presence of such bystander-inducing factors in ICCM, producing the aberrations even 48 hr after irradiation of either low or high linear energy transfer (LET) radiation. Bystander effects can be important from the aspect of risk assessments of radiation in the terrestrial/spatial environment involving aircraft as well as in cancer therapy by low-dose heavy particle beams. (T.I)

  14. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis.

    Science.gov (United States)

    Seo, Moo-Jung; Yoo, Jae-Chern

    2018-02-26

    Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD) platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS)-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.

  15. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis

    Directory of Open Access Journals (Sweden)

    Moo-Jung Seo

    2018-02-01

    Full Text Available Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.

  16. Chemical Cell Lysis System Applicable to Lab-on-a-Disc.

    Science.gov (United States)

    Lim, Dayeseul; Yoo, Jae Chern

    2017-09-01

    The design and fabrication of a heating system has been a significant challenge in implementing chemical lysis on a lab-on-a-disc (LOD). The proposed system contains a sample inlet, phase change material (PCM) array, heating chamber, and valve in a single disc, providing cost-effective, rapid, and fully automated chemical cell lysis. Compared to the conventional cell lysis system, our cell lysis system has many advantages, such as a compact structure that is easily integrated into the LOD and reduced processing time and labor. The experiments are conducted with Salmonella typhimurium strains to demonstrate the performance. The experimental results show that the proposed approach is greatly effective in realizing a chemical cell lysis system on an LOD with higher throughput in terms of purity and yield of DNA.

  17. Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation.

    Science.gov (United States)

    Di Carlo, Dino; Jeong, Ki-Hun; Lee, Luke P

    2003-11-01

    A highly effective, reagentless, mechanical cell lysis device integrated in microfluidic channels is reported. Sample preparation, specifically cell lysis, is a critical element in 'lab-on-chip' applications. However, traditional methods of cell lysis require purification steps or complicated fabrication steps that a simple mechanical method of lysis may avoid. A simple and effective mechanical cell lysis system is designed, microfabricated, and characterized to quantify the efficiency of cell lysis and biomolecule accessibility. The device functionality is based on a microfluidic filter region with nanostructured barbs created using a modified deep reactive ion etching process. Mechanical lysis is characterized by using a membrane impermeable dye. Three main mechanisms of micro-mechanical lysis are described. Quantitative measurements of accessible protein as compared to a chemically lysed sample are acquired with optical absorption measurements at 280 and 414 nm. At a flow rate of 300 microL min(-1) within the filter region total protein and hemoglobin accessibilities of 4.8% and 7.5% are observed respectively as compared to 1.9% and 3.2% for a filter without nanostructured barbs.

  18. Hypochlorite- and hypobromite-mediated radical formation and its role in cell lysis

    DEFF Research Database (Denmark)

    Hawkins, C L; Brown, B E; Davies, Michael Jonathan

    2001-01-01

    . In this study it is shown that HOBr induces red blood cell lysis at approximately 10-fold lower concentrations than HOCl, whereas with monocyte (THP1) and macrophage (J774) cells HOCl and HOBr induce lysis at similar concentrations. The role of radical formation during lysis has been investigated by EPR spin...... trapping, and it is shown that reaction of both oxidants with each cell type generates cell-derived radicals. Red blood cells exposed to nonlytic doses of HOCl generate novel nitrogen-centered radicals whose formation is GSH dependent. In contrast, HOBr gives rise to nitrogen-centered, membrane......-derived protein radicals. With lytic doses of either oxidant, protein (probably hemoglobin)-derived, nitrogen-centered radicals are observed. Unlike the red blood cells, treatment of monocytes and macrophages with HOCl gives significant radical formation only under conditions where cell lysis occurs concurrently...

  19. The Columbia University microbeam II endstation for cell imaging and irradiation

    International Nuclear Information System (INIS)

    Bigelow, A.W.; Ross, G.J.; Randers-Pehrson, G.; Brenner, D.J.

    2005-01-01

    The Columbia University Microbeam II has been built to provide a focused ion beam for irradiating designated mammalian cells with single particles. With the interest in irradiating non-stained cells and cells in three-dimensional tissue samples, the endstation was designed to accommodate a variety of imaging techniques, in addition to fluorescent microscopy. Non-stained cells are imaged either by quantitative phase microscopy (QPm) [IATIA, Box Hill North, Victoria, 3129, Australia [1

  20. Microfluidic systems and methods for transport and lysis of cells and analysis of cell lysate

    Science.gov (United States)

    Culbertson, Christopher T [Oak Ridge, TN; Jacobson, Stephen C [Knoxville, TN; McClain, Maxine A [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2008-09-02

    Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.

  1. Live cell imaging at the Munich ion microbeam SNAKE – a status report

    International Nuclear Information System (INIS)

    Drexler, Guido A; Siebenwirth, Christian; Drexler, Sophie E; Girst, Stefanie; Greubel, Christoph; Dollinger, Günther; Friedl, Anna A

    2015-01-01

    Ion microbeams are important tools in radiobiological research. Still, the worldwide number of ion microbeam facilities where biological experiments can be performed is limited. Even fewer facilities combine ion microirradiation with live-cell imaging to allow microscopic observation of cellular response reactions starting very fast after irradiation and continuing for many hours. At SNAKE, the ion microbeam facility at the Munich 14 MV tandem accelerator, a large variety of biological experiments are performed on a regular basis. Here, recent developments and ongoing research projects at the ion microbeam SNAKE are presented with specific emphasis on live-cell imaging experiments. An overview of the technical details of the setup is given, including examples of suitable biological samples. By ion beam focusing to submicrometer beam spot size and single ion detection it is possible to target subcellular structures with defined numbers of ions. Focusing of high numbers of ions to single spots allows studying the influence of high local damage density on recruitment of damage response proteins. The online version of this article (doi:10.1186/s13014-015-0350-7) contains supplementary material, which is available to authorized users

  2. Live cell imaging at the Munich ion microbeam SNAKE - a status report.

    Science.gov (United States)

    Drexler, Guido A; Siebenwirth, Christian; Drexler, Sophie E; Girst, Stefanie; Greubel, Christoph; Dollinger, Günther; Friedl, Anna A

    2015-02-18

    Ion microbeams are important tools in radiobiological research. Still, the worldwide number of ion microbeam facilities where biological experiments can be performed is limited. Even fewer facilities combine ion microirradiation with live-cell imaging to allow microscopic observation of cellular response reactions starting very fast after irradiation and continuing for many hours. At SNAKE, the ion microbeam facility at the Munich 14 MV tandem accelerator, a large variety of biological experiments are performed on a regular basis. Here, recent developments and ongoing research projects at the ion microbeam SNAKE are presented with specific emphasis on live-cell imaging experiments. An overview of the technical details of the setup is given, including examples of suitable biological samples. By ion beam focusing to submicrometer beam spot size and single ion detection it is possible to target subcellular structures with defined numbers of ions. Focusing of high numbers of ions to single spots allows studying the influence of high local damage density on recruitment of damage response proteins.

  3. Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips

    KAUST Repository

    Riaz, Kashif

    2017-05-04

    Electric cell lysis (ECL) is a promising technique to be integrated with portable lab-on-a-chip without lysing agent due to its simplicity and fast processing. ECL is usually limited by the requirements of high power/voltage and costly fabrication. In this paper, we present low-cost 3-D nano-spikes-based ECL (NSP-ECL) chips for efficient cell lysis at low power consumption. Highly ordered High-Aspect-Ratio (HAR). NSP arrays with controllable dimensions were fabricated on commercial aluminum foils through scalable and electrochemical anodization and etching. The optimized multiple pulse protocols with minimized undesirable electrochemical reactions (gas and bubble generation), common on micro parallel-plate ECL chips. Due to the scalability of fabrication process, 3-D NSPs were fabricated on small chips as well as on 4-in wafers. Phase diagram was constructed by defining critical electric field to induce cell lysis and for cell lysis saturation Esat to define non-ECL and ECL regions for different pulse parameters. NSP-ECL chips have achieved excellent cell lysis efficiencies ηlysis (ca 100%) at low applied voltages (2 V), 2~3 orders of magnitude lower than that of conventional systems. The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 3~9 orders of magnitude lower as compared with the other methods (5J/mL-540kJ/mL). [2016-0305

  4. Radiation-induced enhancement of enzymatic cell lysis of Micrococcus radiodurans

    International Nuclear Information System (INIS)

    Watanabe, H.; Takehisa, M.; Iizuka, H.

    1981-01-01

    The intact cells of M. radiodurans were rendered sensitive to the action of lytic enzyme (P2-2 enzyme) by irradiation. The radiation-induced enhancement of cell lysis with P2-2 enzyme was completely prevented by the addition of t-butanol and irradiation at liquid nitrogen temperature. These results indicate that the enhancement is due to indirect action resulting from OH radicals. Cell lysis by lysozyme was enhanced only when the cells were irradiated under N 2 O. The enhancement of cell lysis with lysozyme was also prevented by adding alcohols. On the other hand, when lipid components in cells were removed by extraction with n-butanol, the radiation-induced enhancement of cell lysis with P2-2 enzyme and lysozyme was not observed. From these results it is concluded that the enhancement of enzymatic cell lysis by irradiation is attributable to alteration in the lipid-rich layer of the cell wall caused by OH radicals

  5. Radiation-induced enhancement of enzymatic cell lysis of Micrococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H.; Takehisa, M. [Japan Atomic Energy Research Inst., Takasaki, Gunma, Takasaki Radiation Chemistry Research Establishment (Japan); Iizuka, H.

    1981-10-15

    The intact cells of M. radiodurans were rendered sensitive to the action of lytic enzyme (P2-2 enzyme) by irradiation. The radiation-induced enhancement of cell lysis with P2-2 enzyme was completely prevented by the addition of t-butanol and irradiation at liquid nitrogen temperature. These results indicate that the enhancement is due to indirect action resulting from OH radicals. Cell lysis by lysozyme was enhanced only when the cells were irradiated under N{sub 2}O. The enhancement of cell lysis with lysozyme was also prevented by adding alcohols. On the other hand, when lipid components in cells were removed by extraction with n-butanol, the radiation-induced enhancement of cell lysis with P2-2 enzyme and lysozyme was not observed. From these results it is concluded that the enhancement of enzymatic cell lysis by irradiation is attributable to alteration in the lipid-rich layer of the cell wall caused by OH radicals.

  6. Laser-induced radiation microbeam technology and simultaneous real-time fluorescence imaging in live cells.

    Science.gov (United States)

    Botchway, Stanley W; Reynolds, Pamela; Parker, Anthony W; O'Neill, Peter

    2012-01-01

    The use of nano- and microbeam techniques to induce and identify subcellular localized energy deposition within a region of a living cell provides a means to investigate the effects of low radiation doses. Particularly within the nucleus where the propagation and processing of deoxyribonucleic acid (DNA) damage (and repair) in both targeted and nontargeted cells, the latter being able to study cell-cell (bystander) effects. We have pioneered a near infrared (NIR) femtosecond laser microbeam to mimic ionizing radiation through multiphoton absorption within a 3D femtoliter volume of a highly focused Gaussian laser beam. The novel optical microbeam mimics both complex ionizing and UV-radiation-type cell damage including double strand breaks (DSBs). Using the microbeam technology, we have been able to investigate the formation of DNA DSB and subsequent recruitment of repair proteins to the submicrometer size site of damage introduced in viable cells. The use of a phosphorylated H2AX (γ-H2AX a marker for DSBs, visualized by immunofluorescent staining) and real-time imaging of fluorescently labeling proteins, the dynamics of recruitment of repair proteins in viable mammalian cells can be observed. Here we show the recruitment of ATM, p53 binding protein 1 (53BP1), and RAD51, an integral protein of the homologous recombination process in the DNA repair pathway and Ku-80-GFP involved in the nonhomologous end joining (NHEJ) pathway as exemplar repair process to show differences in the repair kinetics of DNA DSBs. The laser NIR multiphoton microbeam technology shows persistent DSBs at later times post laser irradiation which are indicative of DSBs arising at replication presumably from UV photoproducts or clustered damage containing single strand breaks (SSBs) that are also observed. Effects of the cell cycle may also be investigated in real time. Postirradiation and fixed cells studies show that in G1 cells a fraction of multiphoton laser-induced DSBs is persistent for >6h

  7. Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis

    Science.gov (United States)

    Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2015-04-01

    DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of

  8. Cell-density-dependent lysis and sporulation of Myxococcus xanthus in agarose microbeads.

    OpenAIRE

    Rosenbluh, A; Nir, R; Sahar, E; Rosenberg, E

    1989-01-01

    Vegetative cells of Myxococcus xanthus were immobilized in 25-microns-diameter agarose microbeads and incubated in either growth medium or sporulation buffer. In growth medium, the cells multiplied, glided to the periphery, and then filled the beads. In sporulation buffer, up to 90% of the cells lysed and ca. 50% of the surviving cells formed resistant spores. A strong correlation between sporulation and cell lysis was observed; both phenomena were cell density dependent. Sporulation proficie...

  9. Nucleolus degradation and growth induced by uv-microbeam irradiation of interphase cells grown in culture

    International Nuclear Information System (INIS)

    Sakharov, V.N.; Voronkova, N.

    1976-01-01

    In contrast to total cell irradiation, local UV-microbeam irradiation can stimulate a significant diminution in the irradiated mature nucleoli in interphase mammalian cells in culture. This diminution is accompanied by the concomitant expansion of the unirradiated nucleoli within the same nucleus, and the total nucleolar volume per nucleus does not change appreciably. It is suggested that these nucleolar volume changes are the result of the dispersion, migration, and redistribution of the nucleolar material between competitive nucleolar organizer regions of the interphase nucleus

  10. Rapid kinetics of lysis in human natural cell-mediated cytotoxicity: some implications

    International Nuclear Information System (INIS)

    Bloom, E.T.; Babbitt, J.T.

    1983-01-01

    The entire lytic process of natural cell-mediated cytotoxicity against sensitive target cells can occur rapidly, within minutes. This was demonstrated by 51 chromium release and in single-cell assays. At the cellular level, most of the target cell lysis occurred within 15-30 min after binding to effector cells. The enriched natural killer cell subpopulation of lymphocytes obtained by Percoll density gradient centrifugation (containing greater than 70% large granular lymphocytes (LGL)) was the most rapidly lytic population by 51 chromium release. However, in the single-cell assay, the rate of lysis of bound target cells was quite similar for the LGL-enriched effector subpopulation and the higher density subpopulation of effector cells recognized previously. Both the light and dense effector cells contained similar numbers of target binding cells. Therefore, that the light subpopulation effected lysis more rapidly and to a greater extent than the dense subpopulation suggested that the low-density effector cells probably recycled more rapidly than those of higher density. This was corroborated by the finding that when conjugates were formed at 29 degrees C for the single-cell assay, a significant number of dead unconjugated targets could be observed only on the slides made with the LGL-enriched effector cells but not on those made with dense effector cell. Lysis continued to increase in the chromium-release assay probably because of recycling, recruitment, and/or heterogeneity of the effector cells, and/or because of heterogeneity or delayed death of the target cells

  11. Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips

    KAUST Repository

    Riaz, Kashif; Leung, Siu; Fan, Zhiyong; Lee, Yi-Kuen

    2017-01-01

    Electric cell lysis (ECL) is a promising technique to be integrated with portable lab-on-a-chip without lysing agent due to its simplicity and fast processing. ECL is usually limited by the requirements of high power/voltage and costly fabrication

  12. Integration of nanoparticle cell lysis and microchip PCR for one-step rapid detection of bacteria.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2012-04-01

    This paper describes an integrated microchip system as an efficient and cost-effective solution involving Nanotechnology and Lab-on-a-Chip technology for the rapid detection of bacteria. The system is based on using surface-modified gold nanoparticles for efficient cell lysis followed by microchip PCR without having to remove the nanoparticles from the PCR solution. Poly(quaternary ammonium) modified gold nanoparticles are used to provide a novel and efficient cell lysis method without the need to go through time-consuming, expensive and complicated microfabrication processes as most of current cell lysis methods for Lab-on-a-Chip applications do. It also facilitates the integration of cell lysis and PCR by sharing the same reaction chamber as PCR uses. It is integrated with a prototype microchip PCR system consisting of a physical microchip PCR device and an automated temperature control mechanism. The research work explores solutions for the problem of PCR inhibition caused by gold nanoparticles as well as for the problem of non-specific PCR amplification in the integrated microchip system. It also explores the possibility of greatly reducing PCR cycling time to achieve the same result compared to the protocol for a regular PCR machine. The simplicity of the setup makes it easy to be integrated with other Lab-on-a-Chip functional modules to create customized solutions for target applications.

  13. Laser microbeams for the manipulation of plant cells and subcellular structures

    International Nuclear Information System (INIS)

    Hoffmann, F.

    1996-01-01

    Laser microsurgery has been used in plants to study physiological, cell biological and genetical questions for over 10 years. More recently, the optical trap became available as an additional tool. Specific areas of research include membrane physiology, motility, transformation and protoplast fusion. Compared to the data reported in animal systems, the contributions of laser microbeam manipulations in plant biology are rather limited. However, with increased awareness of the enormous potential of the technology and better accessibility to less expensive and more user-friendly equipment, the next decade should be more productive. (author)

  14. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells.

    Science.gov (United States)

    Gornalusse, Germán G; Hirata, Roli K; Funk, Sarah E; Riolobos, Laura; Lopes, Vanda S; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G; Hanafi, Laïla-Aïcha; Clegg, Dennis O; Turtle, Cameron; Russell, David W

    2017-08-01

    Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this 'missing-self' response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8 + T cells, do not bind anti-HLA antibodies and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression.

  15. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells

    Science.gov (United States)

    Gornalusse, Germán G.; Hirata, Roli K.; Funk, Sarah; Riolobos, Laura; Lopes, Vanda S.; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G.; Hanafi, Laïla-Aïcha; Clegg, Dennis O.; Turtle, Cameron; Russell, David W.

    2017-01-01

    Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this ‘missing self’ response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8+ T cells, do not bind anti-HLA antibodies, and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression. PMID:28504668

  16. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    Science.gov (United States)

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Mass entrapment and lysis of Mesodinium rubrum cells in mucus threads observed in cultures with Dinophysis

    DEFF Research Database (Denmark)

    Ojamäe, Karin; Hansen, Per Juel; Lips, Inga

    2016-01-01

    The entrapment and death of the ciliate Mesodinium rubrum in the mucus threads in cultures with Dinophysis is described and quantified. Feeding experiments with different concentrations and predator–prey ratios of Dinophysis acuta, Dinophysis acuminata and M. rubrum to study the motility loss...... and aggregate formation of the ciliates and the feeding behaviour of Dinophysis were carried out. In cultures of either Dinophysis species, the ciliates became entrapped in the mucus, which led to the formation of immobile aggregates of M. rubrum and subsequent cell lysis. The proportion of entrapped ciliates...... was influenced by the concentration of Dinophysis and the ratio of predator and prey in the cultures. At high cell concentrations of prey (136 cells mL−1) and predator (100 cells mL−1), a maximum of 17% of M. rubrum cells became immobile and went through cell lysis. Ciliates were observed trapped in the mucus...

  18. Droplet Microfluidics for Compartmentalized Cell Lysis and Extension of DNA from Single-Cells

    Science.gov (United States)

    Zimny, Philip; Juncker, David; Reisner, Walter

    Current single cell DNA analysis methods suffer from (i) bias introduced by the need for molecular amplification and (ii) limited ability to sequence repetitive elements, resulting in (iii) an inability to obtain information regarding long range genomic features. Recent efforts to circumvent these limitations rely on techniques for sensing single molecules of DNA extracted from single-cells. Here we demonstrate a droplet microfluidic approach for encapsulation and biochemical processing of single-cells inside alginate microparticles. In our approach, single-cells are first packaged inside the alginate microparticles followed by cell lysis, DNA purification, and labeling steps performed off-chip inside this microparticle system. The alginate microparticles are then introduced inside a micro/nanofluidic system where the alginate is broken down via a chelating buffer, releasing long DNA molecules which are then extended inside nanofluidic channels for analysis via standard mapping protocols.

  19. X-ray microbeam stand-alone facility for cultured cells irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bożek, Sebastian, E-mail: sebastian.bozek@yahoo.com [Jagiellonian University Medical College, Department of Pharmaceutical Biophysics, Krakow (Poland); Bielecki, Jakub; Wiecheć, Anna; Lekki, Janusz; Stachura, Zbigniew; Pogoda, Katarzyna; Lipiec, Ewelina; Tkocz, Konrad; Kwiatek, Wojciech M. [Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow (Poland)

    2017-03-01

    Highlights: • An X-ray microbeam line for irradiation of living cultured cells was constructed. • A step by step explanation of working principles with engineering details, procedures and calculations is presented. • A model of beam and cell interaction is presented. • A method of uniform irradiation of living cells with an exact dose per a cell is presented. • Results of preliminary experiments are presented. - Abstract: The article describes an X-ray microbeam standalone facility dedicated for irradiation of living cultured cells. The article can serve as an advice for such facilities construction, as it begins from engineering details, through mathematical modeling and experimental procedures, ending up with preliminary experimental results and conclusions. The presented system consists of an open type X-ray tube with microfocusing down to about 2 μm, an X-ray focusing system with optical elements arranged in the nested Kirckpatrick-Baez (or Montel) geometry, a sample stand and an optical microscope with a scientific digital CCD camera. For the beam visualisation an X-ray sensitive CCD camera and a spectral detector are used, as well as a scintillator screen combined with the microscope. A method of precise one by one irradiation of previously chosen cells is presented, as well as a fast method of uniform irradiation of a chosen sample area. Mathematical models of beam and cell with calculations of kerma and dose are presented. The experiments on dose-effect relationship, kinetics of DNA double strand breaks repair, as well as micronuclei observation were performed on PC-3 (Prostate Cancer) cultured cells. The cells were seeded and irradiated on Mylar foil, which covered a hole drilled in the Petri dish. DNA lesions were visualised with γ-H2AX marker combined with Alexa Fluor 488 fluorescent dye.

  20. Influence of the environment and phototoxicity of the live cell imaging system at IMP microbeam facility

    Science.gov (United States)

    Liu, Wenjing; Du, Guanghua; Guo, Jinlong; Wu, Ruqun; Wei, Junzhe; Chen, Hao; Li, Yaning; Zhao, Jing; Li, Xiaoyue

    2017-08-01

    To investigate the spatiotemporal dynamics of DNA damage and repair after the ion irradiation, an online live cell imaging system has been established based on the microbeam facility at Institute of Modern Physics (IMP). The system could provide a sterile and physiological environment by making use of heating plate and live cell imaging solution. The phototoxicity was investigated through the evaluation of DNA repair protein XRCC1 foci formed in HT1080-RFP cells during the imaging exposure. The intensity of the foci induced by phototoxicity was much lower compared with that of the foci induced by heavy ion hits. The results showed that although spontaneous foci were formed due to RFP exposure during live cell imaging, they had little impact on the analysis of the recruitment kinetics of XRCC1 in the foci induced by the ion irradiation.

  1. Cell lysis and superoxide dismutase activities of highly radioresistant bacteria

    International Nuclear Information System (INIS)

    Yoshinaka, Taeko; Yano, Keiji; Yamaguchi, Hikoyuki

    1976-01-01

    The highly radioresistant bacterium, Arthrobacter radiotolerans, has been isolated from the radioactive hot spring of Misasa, and it does not sporulate, it is Gram-positive, and its color is pink to red. This bacterium shows the highest resistance to gamma-ray among Gram-positive resistants, but the lytic enzyme capable of lysing the cells of strong radioresistants and the surface structure of the cells are little known except those about Micrococcus radiodurans. The cells of the M. radiodurans can be lysed by Achramobacter lyticus enzyme, and electron microscopic observation and chemical analysis revealed the mutilayered surface structure of the cells consisting of an inner membrane, a mucopeptide wall layer and a very outer layer. The superoxide dismutase (SOD) activity of aerobic and anaerobic bacteria was studied, and the relatively high SOD activity of the M. radiodurans was found. The SOD function acts against the threat posed by the reactive superoxide radical being generated biologically, photochemically and radiochemically in the presence of molecular oxygen. In this paper, it is reported that the lytic enzyme No.2 obtained from Cytophaga sp., containing N-acetyl-muramyl-L-alanine amidase, peptidase and endopeptidase, and showing broad lytic spectra, was able to lyse the cells of A. radiotolerans and four radioresistant micrococci, and the radioresistant bacteria showed relatively high SOD activity except M. sp. 248. It is well known that superoxide anions are generated by aerobic irradiation, and are toxic to microbial cells. (Kako, I.)

  2. Cell lysis and superoxide dismutase activities of highly radioresistant bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaka, T; Yano, K; Yamaguchi, H [Tokyo Univ. (Japan). Faculty of Agriculture

    1976-01-01

    The highly radioresistant bacterium, Arthrobacter radiotolerans, has been isolated from the radioactive hot spring of Misasa, and it does not sporulate, it is Gram-positive, and its color is pink to red. This bacterium shows the highest resistance to gamma-ray among Gram-positive resistants, but the lytic enzyme capable of lysing the cells of strong radioresistants and the surface structure of the cells are little known except those about Micrococcus radiodurans. The cells of the M. radiodurans can be lysed by Achramobacter lyticus enzyme, and electron microscopic observation and chemical analysis revealed the mutilayered surface structure of the cells consisting of an inner membrane, a mucopeptide wall layer and a very outer layer. The superoxide dismutase (SOD) activity of aerobic and anaerobic bacteria was studied, and the relatively high SOD activity of the M. radiodurans was found. The SOD function acts against the threat posed by the reactive superoxide radical being generated biologically, photochemically and radiochemically in the presence of molecular oxygen. In this paper, it is reported that the lytic enzyme No.2 obtained from Cytophaga sp., containing N-acetyl-muramyl-L-alanine amidase, peptidase and endopeptidase, and showing broad lytic spectra, was able to lyse the cells of A. radiotolerans and four radioresistant micrococci, and the radioresistant bacteria showedrelatively high SOD activity except M. sp. 248. It is well known that superoxide anions are generated by aerobic irradiation, and are toxic to microbial cells.

  3. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  4. Live cell imaging combined with high-energy single-ion microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Na; Du, Guanghua, E-mail: gh-du@impcas.ac.cn; Liu, Wenjing; Wu, Ruqun; Wei, Junzhe [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Guo, Jinlong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Northwest Normal University, Lanzhou (China); Chen, Hao [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Institute of Nuclear Science and Technology, University of Lanzhou, Lanzhou (China)

    2016-03-15

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10{sup −3} s{sup −1} and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10{sup −2} s{sup −1}.

  5. Live cell imaging combined with high-energy single-ion microbeam

    International Nuclear Information System (INIS)

    Guo, Na; Du, Guanghua; Liu, Wenjing; Wu, Ruqun; Wei, Junzhe; Guo, Jinlong; Chen, Hao

    2016-01-01

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10"−"3 s"−"1 and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10"−"2 s"−"1.

  6. Live cell imaging combined with high-energy single-ion microbeam

    Science.gov (United States)

    Guo, Na; Du, Guanghua; Liu, Wenjing; Guo, Jinlong; Wu, Ruqun; Chen, Hao; Wei, Junzhe

    2016-03-01

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10-3 s-1 and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10-2 s-1.

  7. Normal human serum (HS) prevents oxidant-induced lysis of cultured endothelial cells (ECs)

    International Nuclear Information System (INIS)

    Callahan, K.S.; Harlan, J.M.

    1986-01-01

    Most studies demonstrating oxidant lysis of cultured ECs are performed in serum-free media or media containing low concentrations of bovine serum. The authors found that HS protects human and bovine ECs from lysis caused by reagent H 2 O 2 or glucose/glucose oxidase (GO)-generated H 2 O 2 . EC injury was assessed by 51 Cr release, cell detachment, or trypan blue dye exclusion. Protective HS activity was dose-dependent with concentrations greater than or equal to 25% preventing lethal injury. Cytotoxicity at 24 hrs, induced by 20 mU/ml GO, was 90.1 +/- 5.2% without HS vs 1.7 +/- 4.6% with 25% HS present (20 exp). Similar protection was observed with heparinized plasma. Of note, comparable concentrations of bovine serum were devoid of protective activity. Addition of fatty acid-free albumin to the media was also without protective effect. Preliminary characterization showed HS activity was stable to 60 0 C for 30 min, non-dialyzable at 25,000 MW cutoff, and retained in delipidated serum. The HS protection was not merely due to scavenging of exogenous H 2 O 2 as A23187-induced EC lysis was also prevented by HS. Protective activity was not reproduced by purified cerruloplasmin or transferrin. In conclusion, unidentified factor(s) present in HS protect cultured ECs from oxidant-induced lysis. Since endothelium is normally exposed to 100% plasma, the authors suggest that in vitro studies of oxidant-mediated injury be performed in the presence of HS. Factor(s) in HS may play an important role in modulating oxidant-induced vascular injury in vivo

  8. Resistance of some leukemic blasts to lysis by lymphokine activated killer (LAK) cells

    Energy Technology Data Exchange (ETDEWEB)

    Panayotides, P; Sjoegren, A -M; Reizenstein, P; Porwit, A. Immunopathology Lab., Dept. of Pathology, Karolinska Hospital, Stockholm; Wasserman, J

    1988-01-01

    Peripheral blood mononuclear cells (PBMC) from healthy donors and AML patients in remission were stimulated with phytohemagglutinin (PHA) and recombinant interleukin-2 (IL-2). These stimulated cells (lymphokine activated killer (LAK) cells) showed increased DNA synthesis as measured by /sup 3/H-Thymidine uptake. A synergistic effect of PHA and IL-2 was found. LAK cells' ability to kill acute myeloid leukemia (AML) blasts was investigated by the /sup 51/Cr release assay. LAK cells showed a cytotoxicity (over 10% specific /sup 51/Cr release) against 9/12 leukemic blasts, even at effector/target (E/T) ratios as low as 5:1. However, on average only 22.2% (SD 11.8) and 36.5% (SD 12.5) /sup 51/Cr release were obtained in 4- and 18-hour cytotoxicity assays, respectively, at an E/T ratio of 20:1. Leukemic blasts in 3/12 AML cases and normal PBMC were entirely resistant to lysis, even at an E/T ratio of 80:1. Susceptibility to lysis was not correlated to peanut-agglutinin receptor expression. LAK cells were more cytotoxic towards the K-562 cell line (natural killer activity) than unstimulated PBMC.

  9. Biological studies using mammalian cell lines and the current status of the microbeam irradiation system, SPICE

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, T. [Dept. of Technical Support and Development, Fundamental Technology Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)], E-mail: tkonishi@nirs.go.jp; Ishikawa, T. [Dept. of Technical Support and Development, Fundamental Technology Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Iso, H. [Dept. of Technical Support and Development, Fundamental Technology Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Neos-Tech Co. Ltd., Benten 4-11-13-202, Chuo-ku, Chiba 206-0045 (Japan); Yasuda, N.; Oikawa, M. [Dept. of Technical Support and Development, Fundamental Technology Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Higuchi, Y. [Dept. of Technical Support and Development, Fundamental Technology Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Neos-Tech Co. Ltd., Benten 4-11-13-202, Chuo-ku, Chiba 206-0045 (Japan); Kato, T. [Dept. of Technical Support and Development, Fundamental Technology Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshimaku, Tokyo 171-8501 (Japan); Hafer, K. [Department of Radiation Oncology, UCLA School of Medicine, Los Angeles, CA (United States); Kodama, K. [Dept. of Technical Support and Development, Fundamental Technology Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Neos-Tech Co. Ltd., Benten 4-11-13-202, Chuo-ku, Chiba 206-0045 (Japan); Hamano, T.; Suya, N.; Imaseki, H. [Dept. of Technical Support and Development, Fundamental Technology Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2009-06-15

    The development of SPICE (single-particle irradiation system to cell), a microbeam irradiation system, has been completed at the National Institute of Radiological Sciences (NIRS). The beam size has been improved to approximately 5 {mu}m in diameter, and the cell targeting system can irradiate up to 400-500 cells per minute. Two cell dishes have been specially designed: one a Si{sub 3}N{sub 4} plate (2.5 mm x 2.5 mm area with 1 {mu}m thickness) supported by a 7.5 mm x 7.5 mm frame of 200 {mu}m thickness, and the other a Mylar film stretched by pressing with a metal ring. Both dish types may be placed on a voice coil stage equipped on the cell targeting system, which includes a fluorescent microscope and a CCD camera for capturing cell images. This microscope system captures images of dyed cell nuclei, computes the location coordinates of individual cells, and synchronizes this with the voice coil motor stage and single-particle irradiation system consisting of a scintillation counter and a beam deflector. Irradiation of selected cells with a programmable number of protons is now automatable. We employed the simultaneous detection method for visualizing the position of mammalian cells and proton traversal through CR-39 to determine whether the targeted cells are actually irradiated. An immuno-assay was also performed against {gamma}-H2AX, to confirm the induction of DNA double-strand breaks in the target cells.

  10. Capacity of tumor necrosis factor to augment lymphocyte-mediated tumor cell lysis of malignant mesothelioma

    International Nuclear Information System (INIS)

    Bowman, R.V.; Manning, L.S.; Davis, M.R.; Robinson, B.W.

    1991-01-01

    Recombinant human tumor necrosis factor (rHuTNF) was evaluated both for direct anti-tumor action against human malignant mesothelioma and for its capacity to augment the generation and lytic phases of lymphocyte-mediated cytotoxicity against this tumor. rHuTNF was directly toxic by MTT assay to one of two mesothelioma cell lines evaluated, but had no effect on susceptibility to subsequent lymphocyte-mediated lysis of either line. TNF alone was incapable of generating anti-mesothelioma lymphokine-activated killer cell (LAK) activity. Furthermore, it did not augment the degree or LAK activity produced by submaximal interleukin-2 (IL-2) concentrations nor did it augment lysis of mesothelioma cells by natural killer (NK) or LAK effector cells during the 4-hr 51chromium release cytolytic reaction. The studies also suggest that mesothelioma targets are less responsive to TNF plus submaximal IL-2 concentrations than the standard LAK sensitive target Daudi, raising the possibility that intermediate LAK sensitive tumors such as mesothelioma may require separate and specific evaluation in immunomodulation studies. This in vitro study indicates that use of low-dose rHuTNF and IL-2 is unlikely to be an effective substitute for high-dose IL-2 in generation and maintenance of LAK activity in adoptive immunotherapy for mesothelioma

  11. Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages.

    Directory of Open Access Journals (Sweden)

    Katja Schäfer

    Full Text Available Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host.

  12. Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages.

    Science.gov (United States)

    Schäfer, Katja; Bain, Judith M; Di Pietro, Antonio; Gow, Neil A R; Erwig, Lars P

    2014-01-01

    Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host.

  13. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus

    Science.gov (United States)

    Mashruwala, Ameya A; van de Guchte, Adriana; Boyd, Jeffrey M

    2017-01-01

    Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI: http://dx.doi.org/10.7554/eLife.23845.001 PMID:28221135

  14. The INFN-LNL single-ion horizontal microbeam facility for cell irradiation

    International Nuclear Information System (INIS)

    Gerardi, S.; Galeazzi, G.; Cherubini, R.

    2003-01-01

    Full text: Charged particle microbeams provide a unique method to control precisely the dose and its localisation within the cell. Such a kind of tool allows studying a number of important radiobiological processes in ways that cannot be achieved using conventional broad beam irradiation, which has the inherent experimental limitation imposed by the random Poisson-distributed particle hitting. We have designed and developed an apparatus for the micro-collimation in air of low-energy light ion beams, able to deliver targeted and counted particles to individual cells with an overall spatial resolution of few micrometers. The apparatus has been built up at the 7MV Van de Graaff CN accelerator, delivering protons, deuterons, helium-3 and helium-4 ion beams in an LET range from 7 to 180 keV/μm. The beam section is reduced down to 3-7 μm 2 by means of a tantalum pinhole microcollimator. A semi-automatic cell visualization and an automatic cell positioning and (after irradiation) cell revisiting system, based on an inverted phase contrast optical microscope and on X-Y micro-positioning stages with 0.1μm positioning precision, has been developed. Cell recognition is performed without using fluorescent staining and UV light. Particle detection in air is based on a silicon detector while beam profile and precise hit position measurements are accomplished by a high resolution and high sensibility cooled-CCD camera and Solid State Nuclear Track detectors, respectively. A dedicated software program, CELLView named, has been developed by using the LabView 6.0 package (National Instruments) to control all the irradiation protocol operations of sample holder movement, cell visualization, image acquisition and processing, cell data logging, cell positioning and revisiting. Facility performances and preliminary experimental results will be presented

  15. Investigation of an optimal cell lysis method for the study of the zinc metalloproteome of Histoplasma capsulatum.

    Science.gov (United States)

    Donnell, Anna M; Lewis, Stephanie; Abraham, Sami; Subramanian, Kavitha; Figueroa, Julio Landero; Deepe, George S; Vonderheide, Anne P

    2017-10-01

    This work sought to assess optimal extraction conditions in the study of the metalloproteome of the dimorphic fungus Histoplasma capsulatum. One of the body's responses to H. capsulatum infection is sequestration of zinc within host macrophage (MØ), as reported by Vignesh et al. (Immunity 39:697-710, 2013) and Vignesh et al. (PLOS Pathog 9:E1003815, 2013). Thus, metalloproteins containing zinc were of greatest interest as it plays a critical role in survival of the fungus. One challenge in metalloproteomics is the preservation of the native structure of proteins to retain non-covalently bound metals. Many of the conventional cell lysis, separation, and identification techniques in proteomics are carried out under conditions that could lead to protein denaturation. Various cell lysis techniques were investigated in an effort to both maintain the metalloproteins during lysis and subsequent analysis while, at the same time, serving to be strong enough to break the cell wall, allowing access to cytosolic metalloproteins. The addition of 1% Triton x-100, a non-ionic detergent, to the lysis buffer was also studied. Seven lysis methods were considered and these included: Glass Homogenizer (H), Bead Beater (BB), Sonication Probe (SP), Vortex with 1% Triton x-100 (V, T), Vortex with no Triton x-100 (V, NT), Sonication Bath, Vortex, and 1% Triton x-100 (SB, V, T) and Sonication Bath, Vortex, and no Triton x-100 (SB, V, NT). A Qubit® Assay was used to compare total protein concentration and inductively coupled plasma-mass spectrometry (ICP-MS) was utilized for total metal analysis of cell lysates. Size exclusion chromatography coupled to ICP-MS (SEC-HPLC-ICP-MS) was used for separation of the metalloproteins in the cell lysate and the concentration of Zn over a wide molecular weight range was examined. Additional factors such as potential contamination sources were also considered. A cell lysis method involving vortexing H. capsulatum yeast cells with 500 μm glass beads

  16. Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform.

    Science.gov (United States)

    Huang, Shih-Hsuan; Hung, Lien-Yu; Lee, Gwo-Bin

    2016-04-21

    The extraction of a cell's nucleus is an essential technique required for a number of procedures, such as disease diagnosis, genetic replication, and animal cloning. However, existing nucleus extraction techniques are relatively inefficient and labor-intensive. Therefore, this study presents an innovative, microfluidics-based approach featuring optically-induced cell lysis (OICL) for nucleus extraction and collection in an automatic format. In comparison to previous micro-devices designed for nucleus extraction, the new OICL device designed herein is superior in terms of flexibility, selectivity, and efficiency. To facilitate this OICL module for continuous nucleus extraction, we further integrated an optically-induced dielectrophoresis (ODEP) module with the OICL device within the microfluidic chip. This on-chip integration circumvents the need for highly trained personnel and expensive, cumbersome equipment. Specifically, this microfluidic system automates four steps by 1) automatically focusing and transporting cells, 2) releasing the nuclei on the OICL module, 3) isolating the nuclei on the ODEP module, and 4) collecting the nuclei in the outlet chamber. The efficiency of cell membrane lysis and the ODEP nucleus separation was measured to be 78.04 ± 5.70% and 80.90 ± 5.98%, respectively, leading to an overall nucleus extraction efficiency of 58.21 ± 2.21%. These results demonstrate that this microfluidics-based system can successfully perform nucleus extraction, and the integrated platform is therefore promising in cell fusion technology with the goal of achieving genetic replication, or even animal cloning, in the near future.

  17. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun

    2014-11-24

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  18. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun; Lee, Kunwoo; Murthy, Niren; Pisano, Albert P

    2014-01-01

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  19. 6th International Microbeam Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dr Kevin M. Prise

    2004-01-01

    The extended abstracts which are submitted here present a summary of the proceedings of the 6th International Workshop/12th LH Gray Workshop: Microbeam Probes of Cellular Radiation Response, held at St. Catherine's College, University of Oxford, UK on March, 29th-31st, 2003. In 1993 the 4th LH Gray Workshop entitled ''Microbeam Probes of Cellular Radiation Response'' was held at the Gray Cancer Institute in Northwood. This was organized by Prof BD Michael, Dr M. Folkard and Dr KM Prise and brought together 40 participants interested in developing and applying new microbeam technology to problems in radiation biology (1). The workshop was an undoubted success and has spawned a series of subsequent workshops every two years. In the past, these workshops have been highly successful in bringing together groups interested in developing and applying micro-irradiation techniques to the study of cell and tissue damage by ionizing radiations. Following the first microbeam workshop, there has been a rapid growth in the number of centres developing radiobiology microbeams, or planning to do so and there are currently 15-20 worldwide. Much of the recent research using microbeams has used them to study low-dose effects and ''non-targeted'' responses such bystander effects, genomic instability and adaptive responses. The goal of the 6th workshop was to build on our knowledge of the development of microbeam approaches and the application to radiation biology in the future with the meeting stretching over a 3 day period. Over 80 participants reviewed the current state of radiobiology microbeam research worldwide and reported on new technological developments both in the fields of physics and biology.

  20. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation

    International Nuclear Information System (INIS)

    Desai, Sejal; Kobayashi, Alisa; Konishi, Teruaki; Oikawa, Masakazu; Pandey, Badri N.

    2014-01-01

    Graphical abstract: - Highlights: • Proton-microbeam irradiated A549 cells send damaging signals to bystander A549 cells. • Irradiated A549–A549 bystander response is through gap junctional communication. • Bystander WI38 cells exert protective signalling in irradiated A549 cells. • Rescue of irradiated A549 cells by WI38 cells is independent of gap junctions. - Abstract: Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549–A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549–WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy

  1. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Sejal [Radiation Signalling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kobayashi, Alisa; Konishi, Teruaki; Oikawa, Masakazu [Radiation System and Engineering Section, Department of Technical Support and Development, Research, Development and Support Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Pandey, Badri N., E-mail: badrinarain@yahoo.co.in [Radiation Signalling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-05-15

    Graphical abstract: - Highlights: • Proton-microbeam irradiated A549 cells send damaging signals to bystander A549 cells. • Irradiated A549–A549 bystander response is through gap junctional communication. • Bystander WI38 cells exert protective signalling in irradiated A549 cells. • Rescue of irradiated A549 cells by WI38 cells is independent of gap junctions. - Abstract: Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549–A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549–WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy.

  2. Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins.

    Directory of Open Access Journals (Sweden)

    David J Leibly

    Full Text Available Insoluble recombinant proteins are a major issue for both structural genomics and enzymology research. Greater than 30% of recombinant proteins expressed in Escherichia coli (E. coli appear to be insoluble. The prevailing view is that insolubly expressed proteins cannot be easily solubilized, and are usually sequestered into inclusion bodies. However, we hypothesize that small molecules added during the cell lysis stage can yield soluble protein from insoluble protein previously screened without additives or ligands. We present a novel screening method that utilized 144 additive conditions to increase the solubility of recombinant proteins expressed in E. coli. These selected additives are natural ligands, detergents, salts, buffers, and chemicals that have been shown to increase the stability of proteins in vivo. We present the methods used for this additive solubility screen and detailed results for 41 potential drug target recombinant proteins from infectious organisms. Increased solubility was observed for 80% of the recombinant proteins during the primary and secondary screening of lysis with the additives; that is 33 of 41 target proteins had increased solubility compared with no additive controls. Eleven additives (trehalose, glycine betaine, mannitol, L-Arginine, potassium citrate, CuCl(2, proline, xylitol, NDSB 201, CTAB and K(2PO(4 solubilized more than one of the 41 proteins; these additives can be easily screened to increase protein solubility. Large-scale purifications were attempted for 15 of the proteins using the additives identified and eight (40% were prepared for crystallization trials during the first purification attempt. Thus, this protocol allowed us to recover about a third of seemingly insoluble proteins for crystallography and structure determination. If recombinant proteins are required in smaller quantities or less purity, the final success rate may be even higher.

  3. Features of target cell lysis by class I and class II MHC restricted cytolytic T lymphocytes

    International Nuclear Information System (INIS)

    Maimone, M.M.; Morrison, L.A.; Braciale, V.L.; Braciale, T.J.

    1986-01-01

    The lytic activity of influenza virus-specific muvine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional 51 Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), the authors found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism

  4. Microbeam facility extension for single-cell irradiation experiments. Investigations about bystander effect and reactive oxygen species impact

    International Nuclear Information System (INIS)

    Hanot, M.; Khodja, H.; Daudin, L.; Hoarau, J.; Carriere, M.; Gouget, B.

    2006-01-01

    The LPS microbeam facility is based on a KN3750 Van de Graaff accelerator devoted to microbeam analysis [1]. It is equipped with two horizontal microbeam lines used in various fields such as material science, geological science, nuclear material science and biology. Since two years, a single ion hit device is being developed at the LPS. The setup is dedicated to the study of ionizing radiation effects on living cells by performing single ion irradiation at controlled doses and locations. This study will complete current researches conducted on uranium chemical toxicity on renal an d osteoblastic cells. After ingestion, most uranium is excreted from the body within a few days except small fraction that is absorbed into the blood-stream (0.2 to 5%) and then deposit and preferentially in kidneys and bones, where it can remain for many years. Uranium is a heavy metal and a primarily alpha emitter. It can lead to bone cancer as a result of the ionizing radiation associated with the radioactive decay products. The study of the response to an exposure to alpha particles will permit to distinguish radiotoxicity and chemical toxicity of uranium bone cells with a special emphasis or the bystander effect at low dose.All the beam lines at the LPS nuclear microprobe are horizontal and under vacuum. A dedicated deflecting magnet was inserted in one of the two available beam lines of the facility. The ion beam is extracted to air using a 100 nm thick silicon nitride membrane, thin enough to induce negligible effects on the ions in terms of energy loss and spatial resolution. By this way, we believe that we minimize the experimental setup impact on the living cells easing the detection of low irradiation dose impact. The atmosphere around the samples is also important to guaranty low stressed cell culture conditions. A temperature, hygrometry and CO 2 controlled atmosphere device will be implanted in the future. The irradiation microbeam is produced using a fused silica capillary

  5. Ultrastructural changes in nucleoli and fibrillar centers under the effect of local ultraviolet microbeam irradiation of interphase culture cells

    International Nuclear Information System (INIS)

    Zatsepina, O.V.; Voronkova, L.N.; Sakharov, V.N.; Chentsov, Y.S.

    1989-01-01

    As shown previously, ultraviolet (uv) microbeam irradiation of one of the two mature nucleoli within an interphase cell nucleus causes significant diminution and inactivation of the irradiated nucleolus and compensatory growth and activation of the nonirradiated one. In the present work we describe the results of an ultrastructural study of this phenomenon. The changes in the nucleoli were examined by means of complete series of ultrathin sections obtained from seven irradiated pig kidney cells. The compensatory hypertrophy of the nonirradiated nucleoli is shown to be accompanied by a nearly twofold increase in the number of fibrillar centers (FCs) and by a decrease in their linear dimensions compared with the control cells of the same ploidy. In the degraded nucleoli the number of FCs decreases, but their dimensions increase. Ultraviolet microbeam irradiation causes dramatic diminution of the dense fibrillar component within the irradiated nucleoli as well. The nucleolar capacity for compensatory hypertrophy indicates that in addition to active ribosomal genes, mature nucleoli also contain silent genes capable of being activated under extreme conditions to sustain the required level of rRNA synthesis. It is assumed that activation of latent ribosomal genes is accompanied by FC fragmentation without a considerable increase in their total volume per cell

  6. Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes

    DEFF Research Database (Denmark)

    Ronchel, M.C.; Molina, L.; Witte, A.

    1998-01-01

    Active biological containment systems are based on the controlled expression of killing genes. These systems are of interest for the Pseudomonadaceae because of the potential applications of these microbes as bioremediation agents and biopesticides, The physiological effects that lead to cell dea...... protein was the killing agent. In both cases, cell death occurred as a result of impaired respiration, altered membrane permeability, and the release of some cytoplasmic contents to the extracellular medium.......Active biological containment systems are based on the controlled expression of killing genes. These systems are of interest for the Pseudomonadaceae because of the potential applications of these microbes as bioremediation agents and biopesticides, The physiological effects that lead to cell death......, respectively. Expression of the killing genes is controlled by the LacI protein, whose expression is initiated from the XylS-dependent Pm promoter. Under induced conditions, killing of P. putida CMC12 cells mediated by phi X174 lysis protein E was faster than that observed for P. putida CMC4, for which the Gef...

  7. Study of a novel cell lysis method with titanium dioxide for Lab-on-a-Chip devices.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2011-06-01

    In this paper, a novel method is proposed and demonstrated to be able to lyse gram-negative (E. coli) bacteria cells for Lab-on-a-Chip applications. The proposed method incorporates using titanium dioxide particles as photocatalysts and a miniaturized UV LED array as an excitation light source to perform cell lysis on microchips. The experimental result demonstrates the feasibility of the proposed prototype device. The working device suggests an inexpensive, easy to be fabricated and effective way for microchip cell lysis. The miniaturized UV LED array and the microchip with a reaction chamber can be easily integrated with other functional components to form a customized whole Lab-on-a-Chip system.

  8. Demonstration of NK cell-mediated lysis of varicella-zoster virus (VZV)-infected cells: characterization of the effector cells

    Energy Technology Data Exchange (ETDEWEB)

    Tilden, A.B.; Cauda, R.; Grossi, C.E.; Balch, C.M.; Lakeman, A.D.; Whitley, R.J.

    1986-06-01

    Infection with varicella-zoster virus (VZV) rendered RAJI cells more susceptible to lysis by non-adherent blood lymphocytes. At an effector to target ratio of 80:1 the mean percentage of /sup 51/Cr release of VZV-infected RAJI cells was 41 +/- 12%, whereas that of uninfected RAJI cells was 15 +/- 6%. The increased susceptibility to lysis was associated with increased effector to target conjugate formation in immunofluorescence binding assays. The effector cells cytotoxic for VZV-infected RAJI cells were predominantly Leu-11a/sup +/ Leu-4/sup -/ granular lymphocytes as demonstrated by fluorescence-activated cell sorting. The effector cell active against VZV-infected RAJI cells appeared similar to those active against herpes simplex virus (HSV)-infected cells, because in cold target competition experiments the lysis of /sup 51/Cr-labeled VZV-infected RAJI cells was efficiently inhibited by either unlabeled VZV-infected RAJI cells (mean 71% inhibition, 2:1 ratio unlabeled to labeled target) or HSV-infected RAJI cells (mean 69% inhibition) but not by uninfected RAJI cells (mean 10% inhibition). In contrast, competition experiments revealed donor heterogeneity in the overlap between effector cells for VZV- or HSV-infected RAJI vs K-562 cells.

  9. Microbeam facility at NIRS

    International Nuclear Information System (INIS)

    Sato, Yukio; Yamaguchi, Hiroshi

    2000-01-01

    Radiation biophysics or microdosimetry has suggested radiation effect mechanism. Full understanding of it has not yet been obtained. There are vast variety of events in physical, chemical and biological processes from at the time of irradiation to biological endpoints. Analysis of RBE-LET relation for biological endpoints like survival, mutation and transformation in cultured mammalian cells is still the leading subject to study the physical processes. The biological and repair processes have been studied phenomenologically through dose rate effect or fractionation experiment. Human genome project has accelerated biological sciences as a whole taking methodology of the molecular biology, where the mechanism is explained by molecules involved. We have thus to know entity and its (biological) function in every single process. Molecular biological approach in radiation biology has started and revealed several proteins being involved in the repair processes. Quantitative relation between phenomenological data like cell survivals and molecular processes, however, has been little known yet. A promising approach to fill this gap should be the study by microbeam, which enables us to see, for example, a deletion in chromosomal level by a single particle traverse of cell nucleus and may suggest possible molecular processes. Under this motivation we started feasibility study on installation of a microbeam port in our Tandem accelerator (5.1 MeV 4 He 2+ ). We have planned to adopt a lens focusing and a scanning system developed (by the Oxford microbeam Ltd) for the existing micro PIXE system in NIRS, which has basically achieved irradiation to a cell within a position resolution of 2 micrometer. There are two practical requirements, i.e. precise positioning and faster irradiation. These are described including research subjects planned. (author)

  10. Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: the single-cell analysis of viable, dead and lysed bacteria.

    Science.gov (United States)

    Foladori, P; Velho, V F; Costa, R H R; Bruni, L; Quaranta, A; Andreottola, G

    2015-05-01

    In the Anaerobic Side-Stream Reactor (ASSR), part of the return sludge undergoes alternating aerobic and anaerobic conditions with the aim of reducing sludge production. In this paper, viability, enzymatic activity, death and lysis of bacterial cells exposed to aerobic and anaerobic conditions for 16 d were investigated at single-cell level by flow cytometry, with the objective of contributing to the understanding of the mechanisms of sludge reduction in the ASSR systems. Results indicated that total and viable bacteria did not decrease during the anaerobic phase, indicating that anaerobiosis at ambient temperature does not produce a significant cell lysis. Bacteria decay and lysis occurred principally under aerobic conditions. The aerobic decay rate of total bacteria (bTB) was considered as the rate of generation of lysed bacteria. Values of bTB of 0.07-0.11 d(-1) were measured in anaerobic + aerobic sequence. The enzymatic activity was not particularly affected by the transition from anaerobiosis to aerobiosis. Large solubilisation of COD and NH4(+) was observed only under anaerobic conditions, as a consequence of hydrolysis of organic matter, but not due to cell lysis. The observations supported the proposal of two independent mechanisms contributing equally to sludge reduction: (1) under anaerobic conditions: sludge hydrolysis of non-bacterial material, (2) under aerobic conditions: bacterial cell lysis and oxidation of released biodegradable compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Enhanced lysis of herpes simplex virus type 1-infected mouse cell lines by NC and NK effectors

    Energy Technology Data Exchange (ETDEWEB)

    Colmenares, C.; Lopez, C.

    1986-05-01

    Spontaneously cytotoxic murine lymphocytes lysed certain cell types infected by herpes simplex virus type 1 (HSV-1) better than uninfected cells. Although HSV-1 adsorbed to the surface of all the target cells, those in which the virus replicated more efficiently were lysed to a greater extent. As targets, the authors used cell lines that, when uninfected, were spontaneously lysed by NK cells (YAC-1) or by NC cells (WEHI-164). They also used a fibroblastoid cell line (M50) and a monocytic tumor line (PU51R), which were not spontaneously killed. NK cells lysed HSV-1-infected YAC cells better than uninfected cells, and an NC-like activity selectively lysed HSV-1-infected WEHI cells. These findings were consistent with the results of experiments performed to define the role of interferon in induction of virus-augmented cytolysis. Increased lysis of YAC-HSV and PU51R-HSV was entirely due to interferon activation and was completely abolished by performing the /sup 51/Cr-release assay in the presence of anti-interferon serum. The data show that HSV-1 infection of NK/NC targets induces increased cytotoxity, but the effector cell responsible for lysis is determined by the uninfected target, or by an interaction between the virus and target cell, rather than by a viral determinant alone.

  12. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis.

    Science.gov (United States)

    Mucci, Maíra; Noyma, Natalia Pessoa; de Magalhães, Leonardo; Miranda, Marcela; van Oosterhout, Frank; Guedes, Iamê Alves; Huszar, Vera L M; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-07-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show that chitosan may rapidly compromise membrane integrity and kill certain cyanobacteria leading to release of cell contents in the water. A strain of Cylindrospermopsis raciborskii and one strain of Planktothrix agardhii were most sensitive. A 1.3 h exposure to a low dose of 0.5 mg l -1 chitosan already almost completely killed these cultures resulting in release of cell contents. After 24 h, reductions in PSII efficiencies of all cyanobacteria tested were observed. EC50 values varied from around 0.5 mg l -1 chitosan for the two sensitive strains, via about 5 mg l -1 chitosan for an Aphanizomenon flos-aquae strain, a toxic P. agardhii strain and two Anabaena cylindrica cultures, to more than 8 mg l -1 chitosan for a Microcystis aeruginosa strain and another A. flos-aquae strain. Differences in sensitivity to chitosan might be related to polymeric substances that surround cyanobacteria. Rapid lysis of toxic strains is likely and when chitosan flocking and sinking of cyanobacteria is considered in lake restoration, flocculation efficacy studies should be complemented with investigation on the effects of chitosan on the cyanobacteria assemblage being targeted. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Real-time observation of irradiated Hela-cell Modified by Fluorescent ubiquitination-based Cell Cycle Indicator Using Synchrotron X-Ray Microbeam

    International Nuclear Information System (INIS)

    Narita, A.; Noguchi, M.; Kaminaga, K.; Yokoya, A.; Kobayashi, K.; Usami, N.; Fujii, K.

    2015-01-01

    Fluorescent ubiquitination-based cell-cycle indicator (FUCCI) human cancer (HeLa) cells (red indicates G1; green, S/G2) were exposed to a synchrotron X-ray microbeam. Cells in either G1 or S/G2 were irradiated selectively according to their colour in the same microscopic field. Time-lapse micrographs of the irradiated cells were acquired for 24 h after irradiation. For fluorescent immunostaining, phosphorylated histone proteins (γ-H2AX) indicated the induction of DNA double-strand breaks. The cell cycle was arrested by irradiation at S/G2. In contrast, cells irradiated at G1 progressed to S/G2. The foci were induced in cells irradiated at both G1 and S/G2, suggesting that the G1-S (or S) checkpoint pathway does not function in HeLa cells due to the fact that the cells are functionally p53 deficient, even though X-ray microbeam irradiation significantly induces double-strand breaks. These results demonstrate that single FUCCI cell exposure and live cell imaging are powerful methods for studying the effects of radiation on the cell cycle. (authors)

  14. Artificial intelligence versus statistical modeling and optimization of continuous bead milling process for bacterial cell lysis

    Directory of Open Access Journals (Sweden)

    Shafiul Haque

    2016-11-01

    Full Text Available AbstractFor a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD was studied in a continuous bead milling process. A full factorial Response Surface Model (RSM design was employed and compared to Artificial Neural Networks coupled with Genetic Algorithm (ANN-GA. Significant process variables, cell slurry feed rate (A, bead load (B, cell load (C and run time (D, were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v, cell loading OD600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN coupled with GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h: 258.08, bead loading (%, v/v: 80%, cell loading (OD600 nm: 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN in combination with evolutionary optimization (GA for representing undefined biological functions which is the case for common industrial processes involving biological moieties.

  15. Sub-apoptotic dosages of pro-oxidant vitamin cocktails sensitize human melanoma cells to NK cell lysis.

    Science.gov (United States)

    Tremante, Elisa; Santarelli, Lory; Lo Monaco, Elisa; Sampaoli, Camilla; Ingegnere, Tiziano; Guerrieri, Roberto; Tomasetti, Marco; Giacomini, Patrizio

    2015-10-13

    Alpha-tocopheryl succinate (αTOS), vitamin K3 (VK3) and vitamin C (ascorbic acid, AA) were previously shown to synergistically promote different death pathways in carcinoma cells, depending on their concentrations and combinations. Similar effects were observed herein in melanoma cells, although αTOS behaved as an antagonist. Interestingly, suboptimal cell death-inducing concentrations (1.5 μM αTOS/20 μM AA/0.2 μM VK3) effectively up-regulated activating Natural Killer (NK) cell ligands, including MICA (the stress-signaling ligand of the NKG2D receptor), and/or the ligands of at least one of the natural cytotoxicity receptors (NKp30, NKp44 and NKp46) in 5/6 melanoma cell lines. Only an isolated MICA down-regulation was seen. HLA class I, HLA class II, ULBP1, ULBP2, ULBP3, Nectin-2, and PVR displayed little, if any, change in expression. Ligand up-regulation resulted in improved lysis by polyclonal NK cells armed with the corresponding activating receptors. These results provide the first evidence for concerted induction of cell death by cell-autonomous and extrinsic (immune) mechanisms. Alarming the immune system much below the cell damage threshold may have evolved as a sensitive readout of neoplastic transformation and oxidative stress. Cocktails of vitamin analogues at slightly supra-physiological dosages may find application as mild complements of melanoma treatment, and in chemoprevention.

  16. Mingled Mortality: the Interplay Between Protist Grazing and Viral Lysis on Emiliania huxleyi Cell Fate

    Science.gov (United States)

    Harvey, E.; Bidle, K. D.; Johnson, M. D.

    2016-02-01

    The coccolithophore, Emiliania huxleyi plays a prominent role in global carbon cycling, as their calcite coccoliths account for a third of all oceanic calcite production. Mortality due to grazing by microzooplankton is the largest contributor to phytoplankton loss in the marine environment. However, viral infection of E. huxleyi is now thought to be as important as grazing pressure in contributing to its mortality. To understand the influence of viral infection on grazing dynamics, we examined the response of the dinoflagellate predator, Oxyrrhis marina to E. huxleyi infected with four different strains of the E. huxleyi virus (EhV). Grazing rate was significantly slower on E. huxleyi cultures that had been infected for 48 h compared to an uninfected control and this reduction in grazing rate was dependent on the strain identity of infecting EhVs. Additional experimentation indicated that grazing was the primary source of E. huxleyi loss ( 78-98%) during the first 24 h of exposure to both predator and virus. However, as viral infection progressed into the late lytic phase (48 h hour post infection), the relative contribution of grazing to total E. huxleyi mortality decreased ( 5-60%). These results suggest that mortality is partitioned along a gradient between predator-based consumption and virus-induced cell lysis, dependent on the timing of infection. Deciphering the relative importance and interactive nature of these alga-predator-viral interactions will help to elucidate the mechanisms that drive bulk measurements of phytoplankton loss, a necessary understanding to interpret and predict phytoplankton population dynamics and associated biogeochemical cycling.

  17. Organic and Inorganic Nitrogen Impact Chlorella variabilis Productivity and Host Quality for Viral Production and Cell Lysis.

    Science.gov (United States)

    Cheng, Yu-Shen; Labavitch, John; VanderGheynst, Jean S

    2015-05-01

    Microalgae have been proposed as a potential feedstock for biofuel production; however, cell disruption is usually required for collection and utilization of cytoplasmic polysaccharides and lipids. Virus infection might be one approach to disrupt the cell wall. The concentration of yeast extract and presence of KNO3 in algae cultivation media were investigated to observe their effects on Chlorella variabilis NC64A physiology and composition and the subsequent effect on production of Chlorella virus and disruption of infected cells. Cytoplasmic starch accumulation increased from 5% to approximately 35% of the total dry weight when yeast extract decreased from 1 to 0.25 g L(-1). When cells were cultured with the lowest nitrogen levels, the total polysaccharide accounted for more than 50% of the cell wall, which was 1.7 times higher than the content in cells cultured with the highest nitrogen levels. The C/N ratio of the algal biomass decreased by a factor of approximately 2 when yeast extract increased from 0.25 to 1 g L(-1). After virus infection, cells with a low C/N ratio produced a 7.6 times higher burst size than cells with a high C/N ratio, suggesting that the nitrogen content in C. variabilis has a large influence on viral production and cell lysis. The results have implications on management of nitrogen for both the synthesis of products from algae and product recovery via viral lysis.

  18. A horizontal multi-purpose microbeam system

    Science.gov (United States)

    Xu, Y.; Randers-Pehrson, G.; Marino, S. A.; Garty, G.; Harken, A.; Brenner, D. J.

    2018-04-01

    A horizontal multi-purpose microbeam system with a single electrostatic quadruplet focusing lens has been developed at the Columbia University Radiological Research Accelerator Facility (RARAF). It is coupled with the RARAF 5.5 MV Singleton accelerator (High Voltage Engineering Europa, the Netherlands) and provides micrometer-size beam for single cell irradiation experiments. It is also used as the primary beam for a neutron microbeam and microPIXE (particle induced x-ray emission) experiment because of its high particle fluence. The optimization of this microbeam has been investigated with ray tracing simulations and the beam spot size has been verified by different measurements.

  19. Focus small to find big - the microbeam story.

    Science.gov (United States)

    Wu, Jinhua; Hei, Tom K

    2017-08-29

    Even though the first ultraviolet microbeam was described by S. Tschachotin back in 1912, the development of sophisticated micro-irradiation facilities only began to flourish in the late 1980s. In this article, we highlight significant microbeam experiments, describe the latest microbeam irradiator configurations and critical discoveries made by using the microbeam apparatus. Modern radiological microbeams facilities are capable of producing a beam size of a few micrometers, or even tens of nanometers in size, and can deposit radiation with high precision within a cellular target. In the past three decades, a variety of microbeams has been developed to deliver a range of radiations including charged particles, X-rays, and electrons. Despite the original intention for their development to measure the effects of a single radiation track, the ability to target radiation with microbeams at sub-cellular targets has been extensively used to investigate radiation-induced biological responses within cells. Studies conducted using microbeams to target specific cells in a tissue have elucidated bystander responses, and further studies have shown reactive oxygen species (ROS) and reactive nitrogen species (RNS) play critical roles in the process. The radiation-induced abscopal effect, which has a profound impact on cancer radiotherapy, further reaffirmed the importance of bystander effects. Finally, by targeting sub-cellular compartments with a microbeam, we have reported cytoplasmic-specific biological responses. Despite the common dogma that nuclear DNA is the primary target for radiation-induced cell death and carcinogenesis, studies conducted using microbeam suggested that targeted cytoplasmic irradiation induces mitochondrial dysfunction, cellular stress, and genomic instability. A more recent development in microbeam technology includes application of mouse models to visualize in vivo DNA double-strand breaks. Microbeams are making important contributions towards our

  20. Very High Throughput Electrical Cell Lysis and Extraction of Intracellular Compounds Using 3D Carbon Electrodes in Lab-on-a-Chip Devices

    Directory of Open Access Journals (Sweden)

    Philippe Renaud

    2012-08-01

    Full Text Available Here we present an electrical lysis throughput of 600 microliters per minute at high cell density (108 yeast cells per ml with 90% efficiency, thus improving the current common throughput of one microliter per minute. We also demonstrate the extraction of intracellular luciferase from mammalian cells with efficiency comparable to off-chip bulk chemical lysis. The goal of this work is to develop a sample preparation module that can act as a stand-alone device or be integrated to other functions already demonstrated in miniaturized devices, including sorting and analysis, towards a true lab-on-a-chip.

  1. Lysis of cells infected with typhus group rickettsiae by a human cytotoxic T cell clone

    International Nuclear Information System (INIS)

    Carl, M.; Robbins, F.; Hartzman, R.J.; Dasch, G.A.

    1987-01-01

    Cytolytic human T cells clones generated in response to the intracellular bacterium Rickettsia typhi were characterized. Growing clones were tested for their ability to proliferate specifically in response to antigens derived from typhus group rickettsiae or to lyse targets infected with R. typhi or Rickettsia prowazekii, as measured by 51 Cr-release from target cells. Two clones were able to lyse targets infected with typhus group rickettsiae. One of these clones was more fully characterized because of its rapid growth characteristics. This cytolytic clone was capable of lysing an autologous infected target as well as a target matched for class I and II histocompatibility leukocyte antigens (HLA). It was not capable, however, of lysing either a target mismatched for both class I and II HLA or a target partially matched for class I HLA. In addition, the clone exhibited specificity in that it was able to lyse an autologous target infected with typhus group rickettsiae, but did not lyse an autologous target infected with an antigenically distinct rickettsial species, Rickettsia tsutsugamushi. These results demonstrate, for the first time, that cells infected with intracellular bacteria can be lysed by human cytotoxic T lymphocytes

  2. Proliferative and phenotypical characteristics of human adipose tissue-derived stem cells: comparison of Ficoll gradient centrifugation and red blood cell lysis buffer treatment purification methods.

    Science.gov (United States)

    Najar, Mehdi; Rodrigues, Robim M; Buyl, Karolien; Branson, Steven; Vanhaecke, Tamara; Lagneaux, Laurence; Rogiers, Vera; De Kock, Joery

    2014-09-01

    Adult human subcutaneous adipose tissue harbors a multipotent stem cell population, the so-called human adipose tissue-derived mesenchymal stromal cells (AT-MSCs). These cells are able to differentiate in vitro into various cell types and possess immunomodulatory features. Yet procedures to obtain AT-MSCs can vary significantly. The two most extensively used AT-MSC purification techniques are (i) density gradient centrifugation using Ficoll and (ii) red blood cell (RBC) lysis buffer treatment of the stromal vascular fraction. In the context of potential clinical cell therapy, the stem cell yield after purification and upon consecutive passages, as well as the purity of the obtained cell population, are of utmost importance. We investigated the expansion capacity and purity of AT-MSCs purified by both procedures immediately after isolation and upon consecutive passages. We also investigated possible purification-dependent differences in their expression of immune-inhibitory factors and cell adhesion molecules. We found that RBC lysis buffer treatment is a more robust and easier method to purify AT-MSCs than density gradient fractionation. However, the resulting AT-MSC-RBC population contains a significantly higher number of CD34(+) cells, particularly during the first passages after plating. From passage 4 onward, no significant differences could be observed between both populations with respect to the immunophenotype, expansion capacity and expression of immune inhibitory factors and cell adhesion molecules. Our data show that RBC lysis buffer treatment may be a good alternative to density fractionation, providing a faster, more robust and easier method to purify AT-MSCs with biologically preserved characteristics. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. The Amsterdam proton microbeam

    International Nuclear Information System (INIS)

    Bos, A.J.J.

    1984-01-01

    The aim of the work presented in this thesis is to develop a microbeam setup such that small beam spot sizes can be produced routinely, and to investigate the capabilities of the setup for micro-PIXE analysis. The development and performance of the Amsterdam proton microbeam setup are described. The capabilities of the setup for micro-PIXE are shown with an investigation into the presence of trace elements in human hair. (Auth.)

  4. Tumor lysis syndrome in children

    International Nuclear Information System (INIS)

    Suarez, Amaranto

    2004-01-01

    Tumor lysis syndrome is a metabolic emergency characterized by electrolyte alteration with or without acute renal failure. It occurs mainly in patients with malignant tumors that have a high growth fraction, or after cytotoxic therapy, as a result of the massive degradation of malignant cells and the release of high amounts of intracellular elements that exceed the capacity of renal excretion. The objective of the treatment is the prevention of nephropathy due to uric acid deposits, and the correction of metabolic acidosis and electrolyte alterations. This paper reviews the incidence, the physiopathology, and the treatment of tumor lysis syndrome in children

  5. Evaluation of cell lysis procedures and use of a micro fluidic system for an automated DNA-based cell identification in interplanetary missions

    Science.gov (United States)

    Hall, J. A.; Felnagle, E.; Fries, M.; Spearing, S.; Monaco, L.; Steele, A.

    2006-12-01

    A Modular Assay System for Solar System Exploration (MASSE) is being developed to include sample handling, pre-treatment, separation and analysis of biological target compounds by both DNA and protein microarrays. To better design sensitive and accurate initial upstream sample handling of the MASSE instrument, experiments investigating the sensitivity and potential extraction bias of commercially available DNA extraction kits between classes of environmentally relevant prokaryotes such as gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Bacillus megatarium), and Archaea ( Haloarcula marismortui) were performed. For extractions of both planktonic cultures and spiked Mars simulated regolith, FTA ® paper demonstrated the highest sensitivity, with detection as low as ˜1×10 1 cells and ˜3.3×10 2 cells, respectively. In addition to the highest sensitivity, custom modified application of FTA ® paper extraction protocol is the simplest in terms of incorporation into MASSE and displayed little bias in sensitivity with respect to prokaryotic cell type. The implementation of FTA paper for environmental microbiology investigations appears to be a viable and effective option potentially negating the need for other pre-concentration steps such as filtration and negating concerns regarding extraction efficiency of cells. In addition to investigations on useful technology for upstream sample handling in MASSE, we have also evaluated the potential for μTAS to be employed in the MASSE instrument by employing proprietary lab-on-a-chip development technology to investigate the potential for microfluidic cell lysis of different prokaryotic cells employing both chemical and biological lysis agents. Real-time bright-field microscopy and quantitative PMT detection indicated that that gram positive, gram negative and archaeal cells were effectively lyzed in a few seconds using the microfluidic chip protocol developed. This included employing a lysis buffer with

  6. Consequences of cytoplasmic irradiation. Studies from microbeam

    International Nuclear Information System (INIS)

    Zhou, Hongning; Hong, Mei; Chai, Yunfei; Hei, Tom K.

    2009-01-01

    The prevailing dogma for radiation biology is that genotoxic effects of ionizing radiation such as mutations and carcinogenesis are attributed mainly to direct damage to the nucleus. However, with the development of microbeam that can target precise positions inside the cells, accumulating evidences have shown that energy deposit by radiation in nuclear DNA is not required to trigger the damage, extra-nuclear or extra-cellular radiation could induce the similar biological effects as well. This review will summarize the biological responses after cytoplasm irradiated by microbeam, and the possible mechanisms involved in cytoplasmic irradiation. (author)

  7. Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide

    DEFF Research Database (Denmark)

    Nijhof, I. S.; Lammerts van Bueren, J. J.; van Kessel, B.

    2015-01-01

    Despite recent treatment improvements, multiple myeloma remains an incurable disease. Since antibody-dependent cell-mediated cytotoxicity is an important effector mechanism of daratumumab, we explored the possibility of improving daratumumab-mediated cell-mediated cytotoxicity by blocking natural...... killer cell inhibitory receptors with the human monoclonal anti-KIR antibody IPH2102, next to activation of natural killer cells with the immune modulatory drug lenalidomide. In 4-hour antibody-dependent cell-mediated cytotoxicity assays, IPH2102 did not induce lysis of multiple myeloma cell lines...... effective treatment strategies can be designed for multiple myeloma by combining daratumumab with agents that independently modulate natural killer cell function....

  8. Conceptual design for real time monitoring of electron microbeam

    International Nuclear Information System (INIS)

    Kim, Ji Seok; Kim, Hyun Ki; Jang, Mee; Choi, Chang Woon; Sun, Gwang Min; Lee, Jai Ki

    2008-01-01

    It is recognized that the microbeam is powerful system to understand the interaction of ionizing radiation with cells. Especially, electron microbeam system is useful to investigate the effect of low-LET radiation for cells. Electron microbeam has been developed in KIRAMS. It can irradiate the small volume in cell level by collimator and electromagnetic field and give local dose to individual cell by controlling the number of electrons. When the electron microbeam irradiates the individual cell, however, there is a possibility to change the current and intended trajectory of electron beam. Because this possibility introduces the uncertainty of dose, it is necessary to monitor the trajectory and current of electron beam. This study deals with development of real time monitoring device to confirm beam quality and to control if necessary during experiment. Consequently we designed dual monitoring device to solve various factors. And we optimize the design by simulation. (author)

  9. Tumour-infiltrating lymphocytes mediate lysis of autologous squamous cell carcinomas of the head and neck

    DEFF Research Database (Denmark)

    Hald, Jeppe; Rasmussen, N; Claesson, Mogens Helweg

    1995-01-01

    Tumour-infiltrating lymphocytes (TIL) and tumours from six patients with squamous cell carcinomas of the head and neck (SCCHN) were investigated. The six tumours all expressed major histocompatibility complex (MHC) class I antigens both in vivo and as tumor cell lines grown in vitro. In addition...

  10. Microbeams, microdosimetry and specific dose

    International Nuclear Information System (INIS)

    Randers-Pehrson, H.

    2002-01-01

    Dose and its usefulness as a single parameter to describe the amount of radiation absorbed are well established for most situations. The conditions where the concept of dose starts to break down are well known, mostly from the study of microdosimetry. For low doses of high LET radiation it is noted that the process of taking the limiting value of the energy absorbed within a test volume divided by the mass within that volume yields either zero or a relatively large value. The problem is further exacerbated with microbeam irradiations where the uniformity of the energy deposition is experimentally manipulated on the spatial scale of cells being irradiated. Booz introduced a quantity to deal with these problems: the unfortunately named 'mean specific energy in affected volumes'. This quantity multiplied by the probability that a test volume has received an energy deposit is equal to dose (in situations where dose can be defined). I propose that Booz's quantity be renamed 'specific dose', that is the mean energy deposited divided by the mass within a specified volume. If we believe for instance that the nucleus of a cell is the critical volume for biological effects, we can refer to the nuclear specific dose. A microbeam experiment wherein 10 per cent of the cell nuclei were targeted with 10 alpha particles would be described as delivering a nuclear specific dose of 1.6 Gy to 10 per cent of the population. (author)

  11. Prevention of red cell lysis in artesunate-treated rats: A role for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... mice caused a decrease in the nucleated cell counts in the peripheral blood, the .... Society of hematology, annual meeting abstracts; abstract 1049: p. 106. Salman 141. Leopold J ... Trans Res. Soc. London B. Biol. Sci. 354:.

  12. Soil pretreatment and fast cell lysis for direct polymerase chain reaction from forest soils for terminal restriction fragment length polymorphism analysis of fungal communities

    Directory of Open Access Journals (Sweden)

    Fei Cheng

    Full Text Available Abstract Humic substances in soil DNA samples can influence the assessment of microbial diversity and community composition. Using multiple steps during or after cell lysis adds expenses, is time-consuming, and causes DNA loss. A pretreatment of soil samples and a single step DNA extraction may improve experimental results. In order to optimize a protocol for obtaining high purity DNA from soil microbiota, five prewashing agents were compared in terms of their efficiency and effectiveness in removing soil contaminants. Residual contaminants were precipitated by adding 0.6 mL of 0.5 M CaCl2. Four cell lysis methods were applied to test their compatibility with the pretreatment (prewashing + Ca2+ flocculation and to ultimately identify the optimal cell lysis method for analyzing fungal communities in forest soils. The results showed that pretreatment with TNP + Triton X-100 + skim milk (100 mM Tris, 100 mM Na4P2O7, 1% polyvinylpyrrolidone, 100 mM NaCl, 0.05% Triton X-100, 4% skim milk, pH 10.0 removed most soil humic contaminants. When the pretreatment was combined with Ca2+ flocculation, the purity of all soil DNA samples was further improved. DNA samples obtained by the fast glass bead-beating method (MethodFGB had the highest purity. The resulting DNA was successfully used, without further purification steps, as a template for polymerase chain reaction targeting fungal internal transcribed spacer regions. The results obtained by terminal restriction fragment length polymorphism analysis indicated that the MethodFGB revealed greater fungal diversity and more distinctive community structure compared with the other methods tested. Our study provides a protocol for fungal cell lysis in soil, which is fast, convenient, and effective for analyzing fungal communities in forest soils.

  13. Stretching single fibrin fibers hampers their lysis.

    Science.gov (United States)

    Li, Wei; Lucioni, Tomas; Li, Rongzhong; Bonin, Keith; Cho, Samuel S; Guthold, Martin

    2017-09-15

    Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.

    Science.gov (United States)

    Chapanian, Rafi; Constantinescu, Iren; Rossi, Nicholas A A; Medvedev, Nadia; Brooks, Donald E; Scott, Mark D; Kizhakkedathu, Jayachandran N

    2012-11-01

    Hyperbranched polyglycerol (HPG) and polyethylene glycol (PEG) polymers with similar hydrodynamic sizes in solution were grafted to red blood cells (RBCs) to investigate the impact of polymer architecture on the cell structure and function. The hydrodynamic sizes of polymers were calculated from the diffusion coefficients measured by pulsed field gradient NMR. The hydration of the HPG and PEG was determined by differential scanning calorimetry analyses. RBCs grafted with linear PEG had different properties compared to the compact HPG grafted RBCs. HPG grafted RBCs showed much higher electrophoretic mobility values than PEG grafted RBCs at similar grafting concentrations and hydrodynamic sizes indicating differences in the structure of the polymer exclusion layer on the cell surface. PEG grafting impacted the deformation properties of the membrane to a greater degree than HPG. The complement mediated lysis of the grafted RBCs was dependent on the type of polymer, grafting concentration and molecular size of grafted chains. At higher molecular weights and graft concentrations both HPG and PEG triggered complement activation. The magnitude of activation was higher with HPG possibly due to the presence of many hydroxyl groups per molecule. HPG grafted RBCs showed significantly higher levels of CD47 self-protein accessibility than PEG grafted RBCs at all grafting concentrations and molecular sizes. PEG grafted polymers provided, in general, a better shielding and protection to ABO and minor antigens from antibody recognition than HPG polymers, however, the compact HPGs provided greater protection of certain antigens on the RBC surface. Our data showed that HPG 20 kDa and HPG 60 kDa grafted RBCs exhibited properties that are more comparable to the native RBC than PEG 5 kDa and PEG 10 kDa grafted RBCs of comparable hydrodynamic sizes. The study shows that small compact polymers such as HPG 20 kDa have a greater potential in the generation of functional RBC for therapeutic

  15. Cell Lysis and Detoxification of Cyanotoxins Using a Novel Combination of Microbubble Generation and Plasma Microreactor Technology for Ozonation

    Directory of Open Access Journals (Sweden)

    Jagroop Pandhal

    2018-04-01

    Full Text Available There has been a steady rise in the incidences of algal blooms globally, and worryingly, there is increasing evidence that changes in the global climate are leading to a shift toward cyanobacterial blooms. Many cyanobacterial genera are harmful, producing several potent toxins, including microcystins, for which there are over 90 described analogues. There are a wide range of negative effects associated with these toxins including gastroenteritis, cytotoxicity, hepatotoxicity and neurotoxicity. Although a variety of oxidation based treatment methods have been described, ozonation and advanced oxidation are acknowledged as most effective as they readily oxidise microcystins to non-toxic degradation products. However, most ozonation technologies have challenges for scale up including high costs and sub-optimum efficiencies, hence, a low cost and scalable ozonation technology is needed. Here we designed a low temperature plasma dielectric barrier discharge (DBD reactor with an incorporated fluidic oscillator for microbubble delivery of ozone. Both technologies have the potential to drastically reduce the costs of ozonation at scale. Mass spectrometry analysis revealed very rapid (<2 min destruction of two pure microcystins (MC-LR and MC-RR, together with removal of by-products even at low flow rate 1 L min−1 where bubble size was 0.56–0.6 mm and the ozone concentration within the liquid was 20 ppm. Toxicity levels were calculated through protein phosphatase inhibition assays and indicated loss of toxicity as well as confirming the by-products were also non-toxic. Finally, treatment of whole Microcystis aeruginosa cells showed that even at these very low ozone levels, cells can be killed and toxins (MC-LR and Desmethyl MC-LR removed. Little change was observed in the first 20 min of treatment followed by rapid increase in extracellular toxins, indicating cell lysis, with most significant release at the higher 3 L min−1 flow rate compared to 1 L

  16. Factors influencing lysis time stochasticity in bacteriophage λ

    Directory of Open Access Journals (Sweden)

    Dennehy John J

    2011-08-01

    Full Text Available Abstract Background Despite identical genotypes and seemingly uniform environments, stochastic gene expression and other dynamic intracellular processes can produce considerable phenotypic diversity within clonal microbes. One trait that provides a good model to explore the molecular basis of stochastic variation is the timing of host lysis by bacteriophage (phage. Results Individual lysis events of thermally-inducible λ lysogens were observed using a temperature-controlled perfusion chamber mounted on an inverted microscope. Both mean lysis time (MLT and its associated standard deviation (SD were estimated. Using the SD as a measure of lysis time stochasticity, we showed that lysogenic cells in controlled environments varied widely in lysis times, and that the level of lysis time stochasticity depended on allelic variation in the holin sequence, late promoter (pR' activity, and host growth rate. In general, the MLT was positively correlated with the SD. Both lower pR' activities and lower host growth rates resulted in larger SDs. Results from premature lysis, induced by adding KCN at different time points after lysogen induction, showed a negative correlation between the timing of KCN addition and lysis time stochasticity. Conclusions Taken together with results published by others, we conclude that a large fraction of λ lysis time stochasticity is the result of random events following the expression and diffusion of the holin protein. Consequently, factors influencing the timing of reaching critical holin concentrations in the cell membrane, such as holin production rate, strongly influence the mean lysis time and the lysis time stochasticity.

  17. Advances in radiobiological studies using a microbeam

    International Nuclear Information System (INIS)

    Hei, Tom K.; Brenner, David J.; Geard, Charles R.; Ballas, Leslie K.

    2009-01-01

    Recent developments in microbeam technology have made drastic improvements in particle delivery, focusing, image processing and precision to allow for rapid advances in our knowledge in radiation biology. The unequivocal demonstration that targeted cytoplasmic irradiation results in mutations in the nuclei of hit cells and the presence of non-targeted effects, all made possible using a charged particle microbeam, results in a paradigm shift in our basic understanding of the target theory and other radiation-induced low dose effects. The demonstration of a bystander effect in 3D human tissue and whole organisms have shown the potential relevance of the non-targeted response in human health. The demonstration of delayed mutations in the progeny of bystander cells suggest that genomic instability induced following ionizing radiation exposure is not dependent on direct damage to cell nucleus. The identification of specific signaling pathways provides mechanistic insight on the nature of the bystander process. (author)

  18. Spontaneous Tumor Lysis Syndrome

    Directory of Open Access Journals (Sweden)

    Alicia C. Weeks MD

    2015-08-01

    Full Text Available Tumor lysis syndrome (TLS is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL, and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes.

  19. A correlation of long term effects and radiation quality in the progeny of bystander cells after microbeam radiations: The experimental study of radiotherapy for cancer risk mitigation

    Science.gov (United States)

    Autsavapromporn, N.; Konishi, T.; Liu, C.; Plante, I.; Funayama, T.; Usami, N.; Azzam, EI; Suzuki, M.

    2017-06-01

    The goal of this study is to investigate the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of delayed stressful effects in the progeny of bystander human skin fibroblasts cultures (NB1RGB). Briefly, confluent NB1RGB cells in the presence and absence of gap junction inhibitor (AGA) were exposed to ionizing radiation (IR) with a different linear energy transfer (LET) either 5.35 keV X rays (LET ∼6 keV/μm) or 18.3 MeV/u carbon (LET ∼103 keV/μm) microbeam radiations. Following 20 populations post-irradiation, the progeny of bystander NB1RGB cells were harvested and assayed for several of biological endpoints. Our results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET. The progeny of bystander cells exposed to low-LET X rays showed the persistence of oxidative stress and it was correlated with the increased mutant fraction. Such effect were not observed after high-LET carbon ions. Interestingly, inhibition of GJIC mitigated the toxic effects in the progeny of bystander cells. Together, the results contribute to the understanding of the fundamental radiation biology relating to the high-LET carbon ions to mitigate cancer risk after radiotherapy. Furthermore, GJIC be considered as a critical mediator in the bystander mutagenic effect.

  20. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  1. High resolution 3D imaging of synchrotron generated microbeams

    International Nuclear Information System (INIS)

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-01-01

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery

  2. Proceedings of 6th International Microbeam Workshop/12th L.H. Gray Workshop Microbeam Probes of Cellular Radiation Response

    International Nuclear Information System (INIS)

    Prise, Kevin M.

    2004-01-01

    The extended abstracts which are submitted here present a summary of the proceedings of the 6th International Workshop/12th LH Gray Workshop: Microbeam Probes of Cellular Radiation Response, held at St. Catherine's College, University of Oxford, UK on March, 29th-31st, 2003. In 1993 the 4th LH Gray Workshop entitled ''Microbeam Probes of Cellular Radiation Response'' was held at the Gray Cancer Institute in Northwood. This was organized by Prof BD Michael, Dr M. Folkard and Dr KM Prise and brought together 40 participants interested in developing and applying new microbeam technology to problems in radiation biology (1). The workshop was an undoubted success and has spawned a series of subsequent workshops every two years. In the past, these workshops have been highly successful in bringing together groups interested in developing and applying micro-irradiation techniques to the study of cell and tissue damage by ionizing radiations. Following the first microbeam workshop, there has been a rapid growth in the number of centres developing radiobiology microbeams, or planning to do so and there are currently 15-20 worldwide. Much of the recent research using microbeams has used them to study low-dose effects and ''non-targeted'' responses such bystander effects, genomic instability and adaptive responses. The goal of the 6th workshop was to build on our knowledge of the development of microbeam approaches and the application to radiation biology in the future with the meeting stretching over a 3 day period. Over 80 participants reviewed the current state of radiobiology microbeam research worldwide and reported on new technological developments both in the fields of physics and biology

  3. CD20-Specific Immunoligands Engaging NKG2D Enhance γδ T Cell-Mediated Lysis of Lymphoma Cells

    DEFF Research Database (Denmark)

    Peipp, M.; Wesch, D.; Oberg, H. H.

    2017-01-01

    Human γδ T cells are innate-like T cells which are able to kill a broad range of tumour cells and thus may have potential for cancer immunotherapy. The activating receptor natural killer group 2 member D (NKG2D) plays a key role in regulating immune responses driven by γδ T cells. Here, we explor...

  4. Heavy-ion microbeam system at JAEA-Takasaki for microbeam biology

    International Nuclear Information System (INIS)

    Funayama, Tomoo; Wada, Seiichi; Yokota, Yuichiro

    2008-01-01

    Research concerning cellular responses to low dose irradiation, radiation-induced bystander effects, and the biological track structure of charged particles has recently received particular attention in the field of radiation biology. Target irradiation employing a microbeam represents a useful means of advancing this research by obviating some of the disadvantages associated with the conventional irradiation strategies. The heavy-ion microbeam system at Japan Atomic Energy Agency (JAEA)-Takasaki, which was planned in 1987 and started in the early 1990's, can provide target irradiation of heavy charged particles to biological material at atmospheric pressure using a minimum beam size 5 μm in diameter. A variety of biological material has been irradiated using this microbeam system including cultured mammalian and higher plant cells, isolated fibers of mouse skeletal muscle, silkworm (Bombyx mori) embryos and larvae, Arabidopsis thaliana roots, and the nematode Caenorhabditis elegans. The system can be applied to the investigation of mechanisms within biological organisms not only in the context of radiation biology, but also in the fields of general biology such as physiology, developmental biology and neurobiology, and should help to establish and contribute to the field of 'microbeam biology'. (author)

  5. Solubilization of proteins: the importance of lysis buffer choice.

    Science.gov (United States)

    Peach, Mandy; Marsh, Noelle; Miskiewicz, Ewa I; MacPhee, Daniel J

    2015-01-01

    The efficient extraction of proteins of interest from cells and tissues is not always straightforward. Here we demonstrate the differences in extraction of the focal adhesion protein Kindlin-2 from choriocarcinoma cells using NP-40 and RIPA lysis buffer. Furthermore, we demonstrate the use of a more denaturing urea/thiourea lysis buffer for solubilization, by comparing its effectiveness for solubilization of small heat-shock proteins from smooth muscle with the often utilized RIPA lysis buffer. Overall, the results demonstrate the importance of establishing the optimal lysis buffer for specific protein solubilization within the experimental workflow.

  6. Lysis of endogenously infected CD4+ T cell blasts by rIL-2 activated autologous natural killer cells from HIV-infected viremic individuals.

    Directory of Open Access Journals (Sweden)

    Manuela Fogli

    2008-07-01

    Full Text Available Understanding the cellular mechanisms that ensure an appropriate innate immune response against viral pathogens is an important challenge of biomedical research. In vitro studies have shown that natural killer (NK cells purified from healthy donors can kill heterologous cell lines or autologous CD4+ T cell blasts exogenously infected with several strains of HIV-1. However, it is not known whether the deleterious effects of high HIV-1 viremia interferes with the NK cell-mediated cytolysis of autologous, endogenously HIV-1-infected CD4+ T cells. Here, we stimulate primary CD4+ T cells, purified ex vivo from HIV-1-infected viremic patients, with PHA and rIL2 (with or without rIL-7. This experimental procedure allows for the significant expansion and isolation of endogenously infected CD4+ T cell blasts detected by intracellular staining of p24 HIV-1 core antigen. We show that, subsequent to the selective down-modulation of MHC class-I (MHC-I molecules, HIV-1-infected p24(pos blasts become partially susceptible to lysis by rIL-2-activated NK cells, while uninfected p24(neg blasts are spared from killing. This NK cell-mediated killing occurs mainly through the NKG2D activation pathway. However, the degree of NK cell cytolytic activity against autologous, endogenously HIV-1-infected CD4+ T cell blasts that down-modulate HLA-A and -B alleles and against heterologous MHC-I(neg cell lines is particularly low. This phenomenon is associated with the defective surface expression and engagement of natural cytotoxicity receptors (NCRs and with the high frequency of the anergic CD56(neg/CD16(pos subsets of highly dysfunctional NK cells from HIV-1-infected viremic patients. Collectively, our data demonstrate that the chronic viral replication of HIV-1 in infected individuals results in several phenotypic and functional aberrancies that interfere with the NK cell-mediated killing of autologous p24(pos blasts derived from primary T cells.

  7. Type i CD20 antibodies recruit the B cell receptor for complement-dependent lysis of malignant B cells

    DEFF Research Database (Denmark)

    Engelberts, P. J.; Voorhorst, M.; Schuurman, J.

    2016-01-01

    . We hypothesized that CD20 Ab-induced clustering of the IgM or IgG BCR was involved in accessory CDC. Indeed, accessory CDC was consistently observed in B cell lines expressing an IgM BCR and in some cell lines expressing an IgG BCR, but it was absent in BCR- B cell lines. A direct relationship...... between BCR expression and accessory CDC was established by transfecting the BCR into CD20+ cells: OFA-F(ab')2 fragments were able to induce CDC in the CD20+BCR+ cell population, but not in the CD20+BCR- population. Importantly, OFA-F(ab')2 fragments were able to induce CDC ex vivo in malignant B cells...... isolated from patients with mantle cell lymphoma and Waldenström macroglobulinemia. In summary, accessory CDC represents a novel effector mechanism that is dependent on type I CD20 Ab-induced BCR clustering. Accessory CDC may contribute to the excellent capacity of type I CD20 Abs to induce CDC...

  8. Dextran sulphate crowding and sodium deoxycholate lysis of primary breast fibroblast cells achieve extracellular matrix deposition and decellularization for breast cancer stem cell culture

    Directory of Open Access Journals (Sweden)

    Aroem Naruni

    2016-01-01

    Full Text Available AbstrakLatar belakang: Lingkungan mikro yaitu sel stromal dam matriks ekstraseluler saat ini dinyatakansebagai kontributor dalam perkembangan tumor. Beberapa penelitian telah mengembangkan matriksekstraseluler yang mendukung perkembangan sel in vitro. Matriks ekstraseluler adalah suatu komplekssusunan supramolekuler dari berbagai macam glycoprotein dan proteoglycan. Matriks ekstraselulermenyediakan integritas jaringan, bertindak sebagai scaffold alami tempat sel melekat dan berinteraksiserta berperan sebagai reservoir pertumbuhan sel. Penelitian ini bertujuan untuk mendapatkan deposisidan deselularisasi yang optimal pada matriks ekstraseluler.Metode: Dalam penelitian ini, kami mengembangkan cells crowder untuk meningkatkan deposit matriksekstraseluler dari kultur sel primer fibroblast payudara yang diperoleh dari spesimen hasil operasimammoplasty. Dextran 500 kDa ditambahkan dalam media kultur DMEM lengkap yang telah ditambahkan0.5% FBS dan 100μM L-ascorbic acid 2-phosphate. Setelah tujuh hari, sel dilisis dengan menggunakanSodium Deoxycolate (DOC.Hasil: Deposisi matriks ekstraseluler dan proses deselulerisasi dari sel primer fibroblas payudara dapatterdeteksi dengan menggunakan antibodi Rabbit anti human fibronectin yang selanjutnya ditambahkandengan anti rabbit IgG yang telah dikonjugasi dengan Alexa Fluor 488.Kesimpulan: Penambahan dextran sulfat dan prosesing lysis dengan sodium deoxycolate dapatmeningkatkan deposisi dan menghasilkan deselularisasi matriks ekstraseluler. (Health Science Journalof Indonesia 2015;6:43-7Kata kunci: matriks ekstra selular, kanker mammae, stem cell, sel fibroblast AbstractBackground: The microenvironment including stromal cells and extracellular matrix (ECM is now consideredan active contributor to tumor progression. Certain studies have developed ECM which supports a suitable cellulargrowth in vitro. The ECM is a complex supramolecular assembly of a variety of glycoproteins and proteoglycans

  9. Diphtheria toxin- and Pseudomonas A toxin-mediated apoptosis. ADP ribosylation of elongation factor-2 is required for DNA fragmentation and cell lysis and synergy with tumor necrosis factor-alpha.

    Science.gov (United States)

    Morimoto, H; Bonavida, B

    1992-09-15

    We have reported that diphtheria toxin (DTX) mediates target cell lysis and intranucleosomal DNA fragmentation (apoptosis) and also synergizes with TNF-alpha. In this paper, we examined which step in the pathway of DTX-mediated inhibition of protein synthesis was important for induction of cytolytic activity and for synergy. Using a DTX-sensitive tumor cell line, we first examined the activity of the mutant CRM 197, which does not catalyze the ADP ribosylation of elongation factor-2 (EF-2). CRM 197 was not cytolytic for target cells and did not mediate intranucleosomal DNA fragmentation of viable cells. The failure of CRM 197 to mediate target cell lysis suggested that the catalytic activity of DTX is prerequisite for target cell lysis. This was corroborated by demonstrating that MeSAdo, which blocks the biosynthesis of diphthamide, inhibited DTX-mediated protein synthesis inhibition and also blocked target cell lysis. Furthermore, the addition of nicotinamide, which competes with NAD+ on the DTX action site of EF-2, also blocked DTX-mediated lysis. These findings suggest that ADP-ribosylation of EF-2 may be a necessary step in the pathway leading to target cell lysis. In contrast to the sensitive line, the SKOV-3 tumor cell line is sensitive to protein synthesis inhibition by DTX but is not susceptible to cytolysis and apoptosis by DTX. Thus, protein synthesis inhibition by DTX is not sufficient to mediate target cell lysis. The synergy in cytotoxicity obtained with the combination of DTX and TNF-alpha was examined in order to determine the pathway mediated by DTX in synergy. Like the direct lysis by DTX, synergy was significantly reduced by MeSAdo and by nicotinamide. Furthermore, synergy was not observed with combination of CRM 197 and TNF-alpha. These results demonstrate that, in synergy, DTX may utilize the same pathway required for its cytolytic activity. Pseudomonas aeruginosa exotoxin shared most the properties shown for DTX. Altogether, these findings

  10. Relationship between the adaptive response and bystander effect produced by single cell irradiation using a focused ultrasoft x-ray microbeam

    International Nuclear Information System (INIS)

    Wu, L.; Schettino, G.; Folkard, M.; Yu, Z.; Prise, K.; Michael, B.; Wang, Y.

    2003-01-01

    Full text: Using the cell killing method and our newly developed focused carbon-K ultrasoft X-rays, we tested for an interaction between bystander responses and adaptive responses by irradiating only one V79 cell in a population with a dose of 0.2 or 1Gy, combined with a conventional 240kVp X irradiation (0, 0.01, 0.05, 0.2 or 1Gy) 2 hours before or after bystander treatment. The clonogenic survival of V79 cells was precisely measured by a single cell revisiting assay after incubation for 3 days. Our results clearly showed that the cell killing by the bystander treatment could be reduced by about 5% if we treated the cells with a very low dose of conventional 240kVp X-rays of 0.01 or 0.05Gy (at which dose they only kill 1 or 2% cells in a population), whether the conventional dose was given before or after bystander irradiation. When the conventional dose was increased to 0.2 or 1Gy (at which dose they could kill about 10 or 25% V79 cells), no adaptive response was found if we treated the cells with conventional irradiation first and bystander irradiation afterwards. However, the adaptive responses observed when we irradiated a single cell within the whole cell population before 0.2 or 1Gy conventional irradiation was given. This showed that the bystander-mediated adaptive response could increase the cell survival by 5 or 8% respectively compared with the cell killing by conventional irradiation of 0.2 or 1Gy only. We also tested the distribution of dead clones in the microbeam dishes either for bystander irradiation only or combined with conventional X-rays. We did not find any distance relationship between the irradiated cell and non-irradiated cells, which was consistent with our previous bystander irradiation studies showing an equal probability of finding damaged clones any where in the scanned area of the dish

  11. Type I CD20 Antibodies Recruit the B Cell Receptor for Complement-Dependent Lysis of Malignant B Cells

    NARCIS (Netherlands)

    Engelberts, Patrick J.; Voorhorst, Marleen; Schuurman, Janine; van Meerten, Tom; Bakker, Joost M.; Vink, Tom; Mackus, Wendy J. M.; Breij, Esther C. W.; Derer, Stefanie; Valerius, Thomas; van de Winkel, Jan G. J.; Parren, Paul W. H. I.; Beurskens, Frank J.

    2016-01-01

    Human IgG1 type I CD20 Abs, such as rituximab and ofatumumab (OFA), efficiently induce complement-dependent cytotoxicity (CDC) of CD20(+) B cells by binding of C1 to hexamerized Fc domains. Unexpectedly, we found that type I CD20 Ab F(ab ')2 fragments, as well as C1q-binding-deficient IgG mutants,

  12. Maintenance, endogeneous, respiration, lysis, decay and predation

    DEFF Research Database (Denmark)

    loosdrecht, Marc C. M. Van; Henze, Mogens

    1999-01-01

    mechanism is microbiologically correct. The lysis/decay model mechanism is a strongly simplified representation of reality. This paper tries to review the processes grouped under endogenous respiration in activated sludge models. Mechanisms and processes such as maintenance, lysis, internal and external...... decay, predation and death-regeneration are discussed. From recent microbial research it has become evident that cells do not die by themselves. Bacteria are however subject to predation by protozoa. Bacteria store reserve polymers that in absence of external substrate are used for growth...

  13. Lysis from without

    Science.gov (United States)

    2011-01-01

    In this commentary I consider use of the term “lysis from without” (LO) along with the phenomenon's biological relevance. LO originally described an early bacterial lysis induced by high-multiplicity virion adsorption and that occurs without phage production (here indicated as LOV). Notably, this is more than just high phage multiplicities of adsorption leading to bacterial killing. The action on bacteria of exogenously supplied phage lysin, too, has been described as a form of LO (here, LOL). LOV has been somewhat worked out mechanistically for T4 phages, has been used to elucidate various phage-associated phenomena including discovery of the phage eclipse, may be relevant to phage ecology, and, with resistance to LO (LOR), is blocked by certain phage gene products. Speculation as to the impact of LOV on phage therapy also is fairly common. Since LOV assays are relatively easily performed and not all phages are able to induce LOV, a phage's potential to lyse bacteria without first infecting should be subject to at least in vitro experimental confirmation before the LOV label is applied. The term “abortive infection” may be used more generally to describe non-productive phage infections that kill bacteria. PMID:21687534

  14. Memory and survival after microbeam radiation therapy

    International Nuclear Information System (INIS)

    Schueltke, Elisabeth; Juurlink, Bernhard H.J.; Ataelmannan, Khalid; Laissue, Jean; Blattmann, Hans; Braeuer-Krisch, Elke; Bravin, Alberto; Minczewska, Joanna; Crosbie, Jeffrey; Taherian, Hadi; Frangou, Evan; Wysokinsky, Tomasz; Chapman, L. Dean; Griebel, Robert; Fourney, Daryl

    2008-01-01

    Background: Disturbances of memory function are frequently observed in patients with malignant brain tumours and as adverse effects after radiotherapy to the brain. Experiments in small animal models of malignant brain tumour using synchrotron-based microbeam radiation therapy (MRT) have shown a promising prolongation of survival times. Materials and methods: Two animal models of malignant brain tumour were used to study survival and memory development after MRT. Thirteen days after implantation of tumour cells, animals were submitted to MRT either with or without adjuvant therapy (buthionine-SR-sulfoximine = BSO or glutamine). We used two orthogonal 1-cm wide arrays of 50 microplanar quasiparallel microbeams of 25 μm width and a center-to-center distance of about 200 μm, created by a multislit collimator, with a skin entrance dose of 350 Gy for each direction. Object recognition tests were performed at day 13 after tumour cell implantation and in monthly intervals up to 1 year after tumour cell implantation. Results: In both animal models, MRT with and without adjuvant therapy significantly increased survival times. BSO had detrimental effects on memory function early after therapy, while administration of glutamine resulted in improved memory

  15. 7th International Workshop on Microbeam Probes of Cellular Radiation Response

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, David J.

    2009-07-21

    The extended abstracts that follow present a summary of the Proceedings of the 7th International Workshop: Microbeam Probes of Cellular Radiation Response, held at Columbia University’s Kellogg Center in New York City on March 15–17, 2006. These International Workshops on Microbeam Probes of Cellular Radiation Response have been held regularly since 1993 (1–5). Since the first workshop, there has been a rapid growth (see Fig. 1) in the number of centers developing microbeams for radiobiological research, and worldwide there are currently about 30 microbeams in operation or under development. Single-cell/single-particle microbeam systems can deliver beams of different ionizing radiations with a spatial resolution of a few micrometers down to a few tenths of a micrometer. Microbeams can be used to addressquestions relating to the effects of low doses of radiation (a single radiation track traversing a cell or group of cells), to probe subcellular targets (e.g. nucleus or cytoplasm), and to address questions regarding the propagation of information about DNA damage (for example, the radiation-induced bystander effect). Much of the recent research using microbeams has been to study low-dose effects and ‘‘non-targeted’’ responses such as bystander effects, genomic instability and adaptive responses. This Workshop provided a forum to assess the current state of microbeam technology and current biological applications and to discuss future directions for development, both technological and biological. Over 100 participants reviewed the current state of microbeam research worldwide and reported on new technological developments in the fields of both physics and biology.

  16. Anti-PD-L1/TGFβR2 (M7824) fusion protein induces immunogenic modulation of human urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis.

    Science.gov (United States)

    Grenga, Italia; Donahue, Renee N; Gargulak, Morgan L; Lepone, Lauren M; Roselli, Mario; Bilusic, Marijo; Schlom, Jeffrey

    2018-03-01

    Avelumab has recently been approved by the Food and Drug Administration for the therapy of Merkel cell carcinoma and urothelial carcinoma. M7824 is a novel first-in-class bifunctional fusion protein comprising a monoclonal antibody against programmed death-ligand 1 (PD-L1, avelumab), fused to the extracellular domain of human transforming growth factor beta (TGFβ) receptor 2, which functions as a TGFβ "trap." Advanced urothelial tumors have been shown to express TGFβ, which possesses immunosuppressive properties that promote cancer progression and metastasis. The rationale for a combined molecule is to block the PD-1/PD-L1 interaction between tumor cells and immune cell infiltrate and simultaneously reduce or eliminate TGFβ from the tumor microenvironment. In this study, we explored the effect of M7824 on invasive urothelial carcinoma cell lines. Human urothelial (transitional cell) carcinoma cell lines HTB-4, HTB-1, and HTB-5 were treated with M7824, M7824mut (M7824 that is mutated in the anti-PD-L1 portion of the molecule and thus does not bind PD-L1), anti-PD-L1 (avelumab), or IgG1 isotype control monoclonal antibody, and were assessed for gene expression, cell-surface phenotype, and sensitivity to lysis by TRAIL, antigen-specific cytotoxic T lymphocytes and natural killer cells. M7824 retains the ability to mediate antibody-dependent cellular cytotoxicity of tumor cells, although in some cases to a lesser extent than anti-PD-L1. However, compared to anti-PD-L1, M7824 increases (A) gene expression of molecules involved in T-cell trafficking in the tumor (e.g., CXCL11), (B) TRAIL-mediated tumor cell lysis, and (C) antigen-specific CD8 + T-cell-mediated lysis of tumor cells. These studies demonstrate the immunomodulatory properties of M7824 on both tumor cell phenotype and immune-mediated lysis. Compared to anti-PD-L1 or M7824mut, M7824 induces immunogenic modulation of urothelial carcinoma cell lines, rendering them more susceptible to immune

  17. Microbeam X-ray fluorescence mapping of Cu and Fe in human prostatic carcinoma cell lines using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, K.M.J.; Leitao, R.G.; Oliveira-Barros, E.G.; Oliveira, M.A.; Canellas, C.G.L.; Anjos, M.J.; Nasciutti, L.E.; Lopes, R.T., E-mail: kjose@nuclear.ufrj.br, E-mail: marcelin@lin.ufrj.br, E-mail: ricardo@lin.ufrj.br, E-mail: roberta@lin.ufrj.br, E-mail: eligouveab@gmail.com, E-mail: maria_aparecida_ufrj@yahoo.com.br, E-mail: luiz.nasciutti@histo.ufrj.br, E-mail: roberta.leitao@uerj.br, E-mail: marcelin@uerj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Laboratorio de Instrumentacao Nuclear; Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Ciencias Biomedicas; Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Instituto de Fisica

    2017-11-01

    Cancer is a worldwide public health problem and prostate cancer continues to be one of the most common fatal cancers in men. Copper plays an important role in the aetiology and growth of tumours however, whether intratumoral copper is actually elevated in prostate cancer patients has not been established. Iron, an important trace element, plays a vital function in oxygen metabolism, oxygen uptake, and electron transport in mitochondria, energy metabolism, muscle function, and hematopoiesis. The X-ray microfluorescence technique (μXRF) is a rapid and non-destructive method of elemental analysis that provides useful elemental information about samples without causing damage or requiring extra sample preparations. This study investigated the behavior of cells in spheroids of human prostate cells, tumour cell line (DU145) and normal cell line (RWPE-1), after supplementation with zinc chloride by 24 hours using synchrotron X-ray microfluorescence (μSRXRF). The measurements were performed with a standard geometry of 45 deg of incidence, excited by a white beam using a pixel of 25 μm and a time of 300 ms/pixel at the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). The results by SRμXRF showed non-uniform Cu and Fe distributions in all the spheroids analyzed. (author)

  18. Microbeam X-ray fluorescence mapping of Cu and Fe in human prostatic carcinoma cell lines using synchrotron radiation

    International Nuclear Information System (INIS)

    Rocha, K.M.J.; Leitao, R.G.; Oliveira-Barros, E.G.; Oliveira, M.A.; Canellas, C.G.L.; Anjos, M.J.; Nasciutti, L.E.; Lopes, R.T.; Universidade Federal do Rio de Janeiro; Universidade do Estado do Rio de Janeiro

    2017-01-01

    Cancer is a worldwide public health problem and prostate cancer continues to be one of the most common fatal cancers in men. Copper plays an important role in the aetiology and growth of tumours however, whether intratumoral copper is actually elevated in prostate cancer patients has not been established. Iron, an important trace element, plays a vital function in oxygen metabolism, oxygen uptake, and electron transport in mitochondria, energy metabolism, muscle function, and hematopoiesis. The X-ray microfluorescence technique (μXRF) is a rapid and non-destructive method of elemental analysis that provides useful elemental information about samples without causing damage or requiring extra sample preparations. This study investigated the behavior of cells in spheroids of human prostate cells, tumour cell line (DU145) and normal cell line (RWPE-1), after supplementation with zinc chloride by 24 hours using synchrotron X-ray microfluorescence (μSRXRF). The measurements were performed with a standard geometry of 45 deg of incidence, excited by a white beam using a pixel of 25 μm and a time of 300 ms/pixel at the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). The results by SRμXRF showed non-uniform Cu and Fe distributions in all the spheroids analyzed. (author)

  19. Permeabilization and lysis of Pseudomonas pseudoalcaligenes cells by triton X-100 for efficient production of D-malate

    NARCIS (Netherlands)

    Werf, M.J. van der; Hartmans, S.; Tweel, W.J.J. van den

    1995-01-01

    Pseudomonas pseudoalcaligenes can only form d-malate from maleate after incubation of the cells with a solvent or a detergent. The effect of the detergent Triton X-100 on d-malate production was studied in more detail. The longer the cells were incubated with Triton X-100, the higher was the

  20. Preclinical Testing of an Oncolytic Parvovirus: Standard Protoparvovirus H-1PV Efficiently Induces Osteosarcoma Cell Lysis In Vitro.

    Science.gov (United States)

    Geiss, Carsten; Kis, Zoltán; Leuchs, Barbara; Frank-Stöhr, Monika; Schlehofer, Jörg R; Rommelaere, Jean; Dinsart, Christiane; Lacroix, Jeannine

    2017-10-17

    Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV) in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS) was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts used as culture models of non-transformed mesenchymal cells. H-1PV was found to enter osteosarcoma cells and to induce viral DNA replication, transcription of viral genes, and translation to viral proteins. After H-1PV infection, release of infectious viral particles from osteosarcoma cells into the supernatant indicated successful viral assembly and egress. Crystal violet staining revealed progressive cytomorphological changes in all osteosarcoma cell lines. Infection of osteosarcoma cell lines with the standard H-1PV caused an arrest of the cell cycle in the G2 phase, and these lines had a limited capacity for standard H-1PV virus replication. The cytotoxicity of wild-type H-1PV virus towards osteosarcoma cells was compared in vitro with that of two variants, Del H-1PV and DM H-1PV, previously described as fitness variants displaying higher infectivity and spreading in human transformed cell lines of different origins. Surprisingly, wild-type H-1PV displayed the strongest cytostatic and cytotoxic effects in this analysis and thus seems the most promising for the next preclinical validation steps in vivo.

  1. Preclinical Testing of an Oncolytic Parvovirus: Standard Protoparvovirus H-1PV Efficiently Induces Osteosarcoma Cell Lysis In Vitro

    Directory of Open Access Journals (Sweden)

    Carsten Geiss

    2017-10-01

    Full Text Available Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts used as culture models of non-transformed mesenchymal cells. H-1PV was found to enter osteosarcoma cells and to induce viral DNA replication, transcription of viral genes, and translation to viral proteins. After H-1PV infection, release of infectious viral particles from osteosarcoma cells into the supernatant indicated successful viral assembly and egress. Crystal violet staining revealed progressive cytomorphological changes in all osteosarcoma cell lines. Infection of osteosarcoma cell lines with the standard H-1PV caused an arrest of the cell cycle in the G2 phase, and these lines had a limited capacity for standard H-1PV virus replication. The cytotoxicity of wild-type H-1PV virus towards osteosarcoma cells was compared in vitro with that of two variants, Del H-1PV and DM H-1PV, previously described as fitness variants displaying higher infectivity and spreading in human transformed cell lines of different origins. Surprisingly, wild-type H-1PV displayed the strongest cytostatic and cytotoxic effects in this analysis and thus seems the most promising for the next preclinical validation steps in vivo.

  2. Use of conivaptan to allow aggressive hydration to prevent tumor lysis syndrome in a pediatric patient with large-cell lymphoma and SIADH.

    Science.gov (United States)

    Rianthavorn, Pornpimol; Cain, Joan P; Turman, Martin A

    2008-08-01

    The available treatment options for hyponatremia secondary to SIADH are limited and not completely effective. Conivaptan is a vasopressin 1a and 2 receptor antagonist recently approved by the US Food and Drug Administration (FDA) for treating euvolemic and hypervolemic hyponatremia in adult patients. However, data on efficacy and safety of conivaptan in pediatrics are limited. We report a case of a 13-year-old boy with extensively metastasized anaplastic large-cell lymphoma. He also developed hyponatremia due to syndrome of inappropriate antidiuretic hormone secretion (SIADH) prior to chemotherapy initiation. SIADH management in this case was complicated when fluid restriction was not safely attainable. Conivaptan played a significant role in this situation by allowing provision of a large amount of intravenous fluid prior to and during induction chemotherapy. It proved to be an important component in preventing uric acid nephropathy/tumor lysis syndrome. Conivaptan induced free-water clearance as indicated by increased urine output and decreased urine osmolality. The patient responded to conivaptan without any adverse effects.

  3. The first interdisciplinary experiments at the IMP high energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Du, Guanghua; Guo, Jinlong; Wu, Ruqun; Guo, Na; Liu, Wenjing; Ye, Fei; Sheng, Lina; Li, Qiang [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou (China); Li, Huiyun [Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China)

    2015-04-01

    The high energy beam of tens to hundred MeV/u ions possesses mm-to-cm penetration depth in materials and can be easily extracted into air without significant energy loss and beam scattering. Combination of high energy ions and microbeam technology facilitates the microprobe application to many practical studies in large scale samples. The IMP heavy ion microbeam facility has recently been integrated with microscopic positioning and targeting irradiation system. This paper introduced the first interdisciplinary experiments performed at the IMP microbeam facility using the beam of 80.5 MeV/u carbon ions. Bystander effect induction via medium transferring was not found in the micro-irradiation study using HeLa cells. The mouse irradiation experiment demonstrated that carbon irradiation of 10 Gy dose to its tuberomammillary nucleus did not impair the sleep nerve system. The fault injection attack on RSA (Rivest–Shamir–Adleman) decryption proved that the commercial field-programmable gate array chip is vulnerable in single event effect to low linear-energy-transfer carbon irradiation, and the attack can cause the leakage of RSA private key. This work demonstrates the potential of high energy microbeam in its application to biology, biomedical, radiation hardness, and information security studies.

  4. Kinetics of cell lysis for Microcystis aeruginosa and Nitzschia palea in the exposure to β-cyclocitral

    International Nuclear Information System (INIS)

    Chang, De-Wei; Hsieh, Meng-Ling; Chen, Yan-Min; Lin, Tsair-Fuh; Chang, Jo-Shu

    2011-01-01

    The effect of an algal metabolite, β-cyclocitral, on the cell integrity of two cyanobacteria and one diatom was investigated. The cyanobacteria, Microcystis aeruginosa PCC 7005 and PCC 7820, and the diatom, Nitzschia palea, were exposed to various concentrations of β-cyclocitral. Scanning electron microscope (SEM) results indicate that the cells of tested species were greatly altered after being exposed to β-cyclocitral. A flow cytometer coupled with the SYTOX stain and chlorophyll-a auto-fluorescence was used to quantify the effect of β-cyclocitral on cell integrity for the tested cyanobacteria and diatom. Kinetic experiments show that about 5-10 mg L -1 of β-cyclocitral for the two M. aeruginosa strains and a much lower concentration, 0.1-0.5 mg L -1 , for N. palea were needed to cause 15-20% of cells to rupture. When the β-cyclocitral concentration was increased to 200-1000 mg L -1 for M. aeruginosa and 5-10 mg L -1 for N. palea, almost all the cells ruptured between 8 and 24 h. A first-order kinetic model is able to describe the data of cell integrity over time. The extracted rate constant values well correlate with the applied β-cyclocitral dosages. The obtained kinetic parameters may be used to estimate β-cyclocitral dosage and contact time required for the control of cyanobacteria and diatoms in water bodies.

  5. Transcriptional Response of Human Cells to Microbeam Irradiation with 2.1 MeV Alpha Particles

    Science.gov (United States)

    Hellweg, C. E.; Bogner, S.; Spitta, L.; Arenz, A.; Baumstark-Khan, C.; Greif, K. D.; Giesen, U.

    Within the next decades an increasing number of human beings in space will be simultaneously exposed to different stimuli especially microgravity and radiation To assess the risks for humans during long-duration space missions the complex interplay of these parameters at the cellular level must be understood Cellular stress protection responses lead to increased transcription of several genes via modulation of transcription factors Activation of the Nuclear Factor kappa B NF- kappa B pathway as a possible anti-apoptotic route represents such an important cellular stress response A screening assay for detection of NF- kappa B-dependent gene activation using the destabilized variant of Enhanced Green Fluorescent Protein d2EGFP as reporter protein had been developed It consists of Human Embryonic Kidney HEK 293 Cells stably transfected with a receptor-reporter-construct carrying d2EGFP under the control of a NF- kappa B response element Clones positive for Tumor Necrosis Factor alpha TNF- alpha inducible d2EGFP expression were selected as cellular reporters Irradiation was performed either with X-rays 150 kV 19 mA at DLR Cologne or with 2 1 MeV alpha particles LET sim 160 keV mu m at PTB Braunschweig After irradiation the following biological endpoints were determined i cell survival via the colony forming ability test ii time-dependent activation of NF- kappa B dependent d2EGFP gene expression using flow cytometry iii quantitative RT-PCR

  6. X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Lyle E. [National Institute of Standards and Technology (NIST); Larson, Ben C [ORNL; Yang, Wenge [Carnegie Institution of Washington; Kassner, Michael E. [University of Southern California; Tischler, Jonathan Zachary [ORNL; Delos-Reyes, Michael A. [University of Southern California; Fields, Richard J. [National Institute of Standards and Technology (NIST); Liu, Wenjun [Argonne National Laboratory (ANL)

    2006-01-01

    The distribution of elastic strains (and thus stresses) at the sub-micrometer length scale within deformed metal single crystals has surprisingly broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behavior within individual grains [1-4], the transport of dislocations through such structures [5-7], changes in mechanical properties that occur during reverse loading [8-10] (e.g. sheet metal forming), and the analyses of diffraction line profiles for microstructural studies of these phenomena [11-17]. We present the first direct, spatially-resolved measurements of the elastic strains within individual dislocation cells in copper single crystals deformed in tension and compression along <100> axes. Broad distributions of elastic strains are found, with profound implications for theories of dislocation structure evolution [4,18], dislocation transport [5-7], and the extraction of dislocation parameters from X-ray line profiles [11-17,19].

  7. Online imaging of initial DNA damages at the PTB microbeam

    International Nuclear Information System (INIS)

    Giesen, U.; Langner, F.; Mielke, C.; Mosconi, M.; Dirks, W. G.

    2011-01-01

    In an inter-disciplinary collaboration of Physikalisch-Technische Bundesanstalt (PTB), German Collection of Microorganisms and Cell Cultures (DSMZ) and Heinrich-Heine Univ., live-cell imaging has been established at the charged-particle microbeam facility of PTB. Candidate genes participating in DNA strand-break repair pathways such as PARP-1, MRE11, MSH2, MDC1 and p53BP1 have been modified to generate fluorescent fusion proteins. Using multi-cistronic expression vectors, stable genomic integration was achieved in HT-1080 fibroblasts. The aim of this study is to characterise and use these highly reliable cell lines for studying initial steps of DNA damage responses and kinetics of repair after microbeam irradiation with high- and low-linear energy transfer (LET) particles in living cells at physiological conditions. (authors)

  8. Preclinical Testing of an Oncolytic Parvovirus: Standard Protoparvovirus H-1PV Efficiently Induces Osteosarcoma Cell Lysis In Vitro

    OpenAIRE

    Carsten Geiss; Zoltán Kis; Barbara Leuchs; Monika Frank-Stöhr; Jörg R. Schlehofer; Jean Rommelaere; Christiane Dinsart; Jeannine Lacroix

    2017-01-01

    Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV) in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS) was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts...

  9. Alloreactive cytotoxic T lymphocytes from aged mice express increased lysis of autologous and third-party target cells

    NARCIS (Netherlands)

    Kruisbeek, A.M.; Steinmeier, F.A.

    1980-01-01

    Much data support the notion that with increasing age a decline in T cell effector function occurs. In the present study, qualitative rather than quantitative age-related changes in vitro alloreactive cytotoxic T lymphocyte (CTL) responses were observed. The level of specific alloreactive CTL

  10. Other applications of ion microbeams

    International Nuclear Information System (INIS)

    Cookson, J.A.

    1987-01-01

    The paper concerns the analytical and non-analytical applications of ion microbeams. The analytical applications considered include:-fusion research, environmental studies, ion implantations and criminology, and each is briefly discussed. Non-analytical applications in which nuclear microprobes have been used include:-thickness and uniformity measurements, energy loss radiography, channelling contrast, tomography, topography, ion implantation, and detector testing, and these are also discussed. (UK)

  11. Application of Doehlert experimental design in the optimization of experimental variables for the Pseudozyma sp. (CCMB 306 and Pseudozyma sp. (CCMB 300 cell lysis

    Directory of Open Access Journals (Sweden)

    Amanda Reges de Sena

    2012-12-01

    Full Text Available This study aimed to verify the influence of pH and temperature on the lysis of yeast using experimental design. In this study, the enzymatic extract containing β-1,3-glucanase and chitinase, obtained from the micro-organism Moniliophthora perniciosa, was used. The experiment showed that the best conditions for lysis of Pseudozyma sp. (CCMB 306 and Pseudozyma sp. (CCMB 300 by lytic enzyme were pH 4.9 at 37 ºC and pH 3.9 at 26.7 ºC, respectively. The lytic enzyme may be used for obtaining various biotechnology products from yeast.

  12. Prevalence of Complement-Mediated Cell Lysis-like Gene (sicG) in Streptococcus dysgalactiae subsp. equisimilis Isolates From Japan (2014-2016).

    Science.gov (United States)

    Takahashi, Takashi; Fujita, Tomohiro; Shibayama, Akiyoshi; Tsuyuki, Yuzo; Yoshida, Haruno

    2017-07-01

    Streptococcus dysgalactiae subsp. equisimilis (SDSE; a β-hemolytic streptococcus of human or animal origin) infections are emerging worldwide. We evaluated the clonal distribution of complement-mediated cell lysis-like gene (sicG) among SDSE isolates from three central prefectures of Japan. Group G/C β-hemolytic streptococci were collected from three institutions from April 2014 to March 2016. Fifty-five strains (52 from humans and three from animals) were identified as SDSE on the basis of 16S rRNA sequencing data.; they were obtained from 25 sterile (blood, joint fluid, and cerebrospinal fluid) and 30 non-sterile (skin-, respiratory tract-, and genitourinary tract-origin) samples. emm genotyping, multilocus sequence typing, sicG amplification/sequencing, and random amplified polymorphic DNA (RAPD) analysis of sicG-positive strains were performed. sicG was detected in 30.9% of the isolates (16 human and one canine) and the genes from the 16 human samples (blood, 10; open pus, 3; sputum, 2; throat swab, 1) and one canine sample (open pus) showed the same sequence pattern. All sicG-harboring isolates belonged to clonal complex (CC) 17, and the most prevalent emm type was stG6792 (82.4%). There was a significant association between sicG presence and the development of skin/soft tissue infections. CC17 isolates with sicG could be divided into three subtypes by RAPD analysis. CC17 SDSE harboring sicG might have spread into three closely-related prefectures in central Japan during 2014-2016. Clonal analysis of isolates from other areas might be needed to monitor potentially virulent strains in humans and animals. © The Korean Society for Laboratory Medicine

  13. Synthesis and functioning of the colicin E1 lysis protein: Comparison with the colicin A lysis protein

    International Nuclear Information System (INIS)

    Cavard, D.

    1991-01-01

    The colicin E1 lysis protein, CelA, was identified as a 3-kDa protein in induced cells of Escherichia coli K-12 carrying pColE1 by pulse-chase labeling with either [ 35 S]cysteine or [ 3 H]lysine. This 3-kDa protein was acylated, as shown by [2- 3 H]glycerol labeling, and seemed to correspond to the mature CelA protein. The rate of modification and processing of CelA was different from that observed for Cal, the colicin A lysis protein. In contrast to Cal, no intermediate form was detected for CelA, no signal peptide accumulated, and no modified precursor form was observed after globomycin treatment. Thus, the rate of synthesis would not be specific to lysis proteins. Solubilization in sodium dodecyl sulfate of the mature forms of both CelA and Cal varied similarly at the time of colicin release, indicating a change in lysis protein structure. This particular property would play a role in the mechanism of colicin export. The accumulation of the signal peptide seems to be a factor determining the toxicity of the lysis proteins since CelA provoked less cell damage than Cal. Quasi-lysis and killing due to CelA were higher in degP mutants than in wild-type cells. They were minimal in pldA mutants

  14. β-1,3 Glucanases e quitinases: aplicação na lise de leveduras e inibição de fungos β-1,3 glucanases and chitinases: application in the yeast cell lysis and fungi inhibition

    Directory of Open Access Journals (Sweden)

    Luciana Francisco Fleuri

    2008-08-01

    Full Text Available Objetivou-se, no presente trabalho, a aplicação de β-1,3 glucanases e quitinases da linhagem Cellulosimicrobium cellulans 191 na lise de leveduras e inibição de fungos, respectivamente. O delineamento experimental mostrou que as melhores condições para a lise de Saccharomyces cerevisiae KL-88 pela β-1,3 glucanase foi pH 6,5 e 35ºC. As células de leveduras incubadas por 10 h em frascos sem agitação mostraram-se mais susceptíveis à lise pela ação da enzima. Foi obtido maior lise da levedura quando a suspensão de células foi submetida ao tratamento com β-1,3 glucanase e cisteína 1mM. A enzima invertase intracelular ou ligada à célula de S. cerevisiae KL-88 e K. marxianus NCYC 587 foi extraída após tratamento da suspensão celular com β-1,3 glucanase, sendo que o tratamento prévio das leveduras com a enzima aumentou a susceptibilidade das células à lise com ultra-som. A preparação de quitinase foi capaz de formar halos de inibição de alguns fungos.The aim of this work was the application of β-1,3 glucanases and chitinases by Cellulosimicrobium cellulans 191 strain on yeast cell lysis and fungi inhibition, respectively. The experimental design study showed that the best conditions to Saccharomyces cerevisiae KL-88 lysis by β-1,3 glucanase extract were pH 6,5 and 35ºC. This study also demonstrated that the yeast cells were more susceptible to lysis after 10 h of cultivation in flasks without agitation. Lysis activity was increased when S. cerevisiae KL-88 cell suspension was treated with β-1,3 glucanase and cystein 1mM. The enzyme invertase of S. cerevisiae KL-88 and Kluyveromyces marxianus NCYC 587 was extracted after treatment of cell suspension with β-1,3 glucanase and the previous treatment of yeasts with the enzyme, increased the susceptibility to lysis when ultrasonic treatment was used. The chitinase presented growth inhibition halos for some of the fungi.

  15. Development of the Jyvaeskylae microbeam facility

    Energy Technology Data Exchange (ETDEWEB)

    Norarat, Rattanaporn, E-mail: rattanaporn.norarat@phys.jyu.fi [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (YFL), FIN-40014 Jyvaeskylae (Finland); Sajavaara, Timo; Laitinen, Mikko; Heikkinen, Pauli; Ranttila, Kimmo; Ylikorkala, Kari; Haenninen, Vaeinoe; Rossi, Mikko; Jones, Pete [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (YFL), FIN-40014 Jyvaeskylae (Finland); Marjomaeki, Varpu; Gilbert, Leona [Department of Environmental and Biological Sciences, University of Jyvaeskylae, P.O. Box 35 (YFL), FIN-40014 Jyvaeskylae (Finland); Whitlow, Harry J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (YFL), FIN-40014 Jyvaeskylae (Finland)

    2012-02-01

    Research highlights: Black-Right-Pointing-Pointer A MeV ion microbeam for biomedical materials research is being developed. Black-Right-Pointing-Pointer High accuracy scanning using electrostatic post-focus deflection. Black-Right-Pointing-Pointer Imaging and direct lithographic image writing using time-stamping methods. Black-Right-Pointing-Pointer New scanning modes and fluorescence detectors permit low ion-fluence cell imaging. Black-Right-Pointing-Pointer Thermal compensated beam-line support design for high positional accuracy. - Abstract: A new microbeam facility is being constructed at the 1.7 MV Pelletron Accelerator in Jyvaeskylae. The facility is designed for easy upgrading and incorporates a number of innovative features. Initially, it is based on a Heidelberg doublet with a design capability of a 3 Multiplication-Sign 5 {mu}m beamspot at PIXE intensities and later upgraded to nanobeam performance. A thermal-expansion compensated rigid frame mounted on a mechanically isolated floor section is used to support the ion optical components. A compact-post focusing electrostatic deflector is used for high linearity beam scanning. This together with a novel time-stamped data collection (TDC) allows dynamic effects in IBIC, fluorescence bleaching to be studied as well as facilitating multi-resolution image support for low-fluence imaging of cells. The target chamber is fitted with a novel low-cost large working distance optical microscope, extremely compact large solid angle photon detectors as well as conventional secondary electron, PIXE and Scanning Transmission Ion Microscopy (STIM) detectors.

  16. Active mems microbeam device for gas detection

    KAUST Repository

    Bouchaala, Adam M.

    2017-10-05

    Sensors and active switches for applications in gas detection and other fields are described. The devices are based on the softening and hardening nonlinear response behaviors of microelectromechanical systems (MEMS) clamped-clamped microbeams. In that context, embodiments of gas-triggered MEMS microbeam sensors and switches are described. The microbeam devices can be coated with a Metal-Organic Framework to achieve high sensitivity. For gas sensing, an amplitude-based tracking algorithm can be used to quantify an amount of gas captured by the devices according to frequency shift. Noise analysis is also conducted according to the embodiments, which shows that the microbeam devices have high stability against thermal noise. The microbeam devices are also suitable for the generation of binary sensing information for alarming, for example.

  17. Lysis of autologous human macrophages by lymphokine-activated killer cells: interaction of effector cell and target cell conjugates analyzed by scanning electron microscopy.

    Science.gov (United States)

    Streck, R J; Helinski, E H; Ovak, G M; Pauly, J L

    1990-09-01

    Lymphokine (i.e., interleukin 2; IL-2)-activated killer (LAK) cells derived from normal human blood are known to destroy human tumor target cells. Accordingly, immunotherapy modalities using IL-2, either alone or in combination with LAK cells, have been evaluated for eradicating metastatic cancer. In studies conducted to characterize receptors on LAK cell membrane ultrastructures, we observed that LAK cells kill autologous human monocyte-derived macrophages (M phi). In these experiments, peripheral blood mononuclear cells of a healthy adult donor were cultured to generate LAK cells and autologous non-adherent M phi. Thereafter, conjugates were prepared by incubating for 3 h autologous populations of LAK cells and M phi. Examination of the conjugates by scanning electron microscopy (SEM) identified LAK cell-mediated killing of M phi. Moreover, SEM analysis of the LAK cell membrane architecture identified microvilli-like ultrastructures that provided a physical bridge that joined together the LAK cell and M phi. The immunological mechanism(s) underling LAK cell killing of autologous M phi is not known; nevertheless, these conjugates will provide a useful model to study membrane receptors on ultrastructures that mediate the initial stages of cytolysis that include target cell recognition and cell-to-cell adhesion. The results of our observations and the findings of other investigators who have also demonstrated LAK cell killing of autologous normal human leukocytes are discussed in the context of the association of IL-2 and IL-2-activated killer cells with side effects observed in ongoing clinical trials and with autoimmune disorders.

  18. Produção de protoplastos e lise da parede celular de leveduras utilizando β-1,3 glucanase Protoplasts production and yeast cell wall lysis using β-1,3 glucanase

    Directory of Open Access Journals (Sweden)

    Luciana Francisco Fleuri

    2010-06-01

    Full Text Available O presente trabalho visou a aplicação da β-1,3 glucanase lítica, obtida do microrganismo Cellulosimicrobium cellulans 191, na produção de protoplastos e na lise da parede celular de leveduras. A preparação bruta da enzima foi capaz de lisar as leveduras Kluyveromyces lodderi, Saccharomyces cerevisiae (Fleischmann e Itaiquara, S. cerevisiae KL-88, S. diastaticus NCYC 713, S. cerevisiae NCYC 1001, Candida glabrata NCYC 388, Kluyveromyces marxianus NCYC 587 e Hansenula mrakii NCYC 500. A β-1,3 glucanase purificada foi capaz de lisar as leveduras Saccharomyces cerevisiae KL-88, Saccharomyces capensis, Debaromyces vanriji, Pachysolen tannophillus, Kluyveromyces drosophilarum, Candida glabrata, Hansenula mrakii e Pichia membranaefaciens e formar protoplastos de Saccharomyces cerevisiae KL-88.The aim of this work was the application of lytic β-1,3 glucanase obtained from Cellulosimicrobium cellulans strain 191 in the production of protoplasts and lysis of yeast cell walls. The crude extract demonstrated lysis activity against the yeasts Kluyveromyces lodderi, Saccharomyces cerevisiae (Fleischmann and Itaiquara, S. cerevisiae KL-88, S. diastaticus NCYC 713, S. cerevisiae NCYC 1001, Candida glabrata NCYC 388, Kluyveromyces marxianus NCYC 587, and Hansenula mrakii NCYC 500. The purified β-1,3 glucanase demonstrated lysis activity against the yeasts Saccharomyces cerevisiae KL-88, Saccharomyces capensis, Debaromyces vanriji, Pachysolen tannophillus, Kluyveromyces drosophilarum, Candida glabrata, Hansenula mrakii, and Pichia membranaefaciens, and it was able to produce Saccharomyces cerevisiae KL-88 protoplasts.

  19. Monte Carlo dose calculation of microbeam in a lung phantom

    International Nuclear Information System (INIS)

    Company, F.Z.; Mino, C.; Mino, F.

    1998-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate permit investigation of the application of an array of closely spaced, parallel or converging microplanar beams in radiotherapy. The proposed techniques takes advantage of the hypothesised repair mechanism of capillary cells between alternate microbeam zones, which regenerates the lethally irradiated endothelial cells. The lateral and depth doses of 100 keV microplanar beams are investigated for different beam dimensions and spacings in a tissue, lung and tissue/lung/tissue phantom. The EGS4 Monte Carlo code is used to calculate dose profiles at different depth and bundles of beams (up to 20x20cm square cross section). The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different depths, bundles, heights, widths and beam spacings. Relatively high peak to valley ratios are observed in the lung region, suggesting an ideal environment for microbeam radiotherapy. For a single field, the ratio at the tissue/lung interface will set the maximum dose to the target volume. However, in clinical application, several fields would be involved allowing much greater doses to be applied for the elimination of cancer cells. We conclude therefore that multifield microbeam therapy has the potential to achieve useful therapeutic ratios for the treatment of lung cancer

  20. Microbeam irradiation of the C. elegans nematode

    International Nuclear Information System (INIS)

    Bertucci, Antonella; Brenner, David J.; Pocock, Roger D.J.; Randers-Pehrson, Gerhard

    2009-01-01

    The understanding of complex radiation responses in biological systems, such as non-targeted effects as represented by the bystander response, can be enhanced by the use of genetically amenable model organisms. Almost all bystander studies to date have been carried out by using conventional single-cell in vitro systems, which are useful tools to characterize basic cellular and molecular responses. A few studies have been reported in monolayer explants and bystander responses have been also investigated in a three-dimensional normal human tissue system. However, despite the well-know usefulness of in vitro models, they cannot capture the complexity of radiation responses of living systems such as animal models. To carry out in vivo studies on the bystander effect we have developed a new technique to expose living organisms using proton microbeams. We report the use of a nematode C. elegans strain with a Green Fluorescent Protein (GFP) reporter for the hsp-4 heat-shock gene as an in vivo model for radiation studies. Exposing animals to heat and chemicals stressors leads to whole body increases in the hsp-4 protein reflected by enhanced fluorescence. We report here that γ-rays also can induce stress response in a dose dependent manner. However, whole body exposure to stress agents does not allow for evaluation of distance dependent response in non targeted tissues: the so-called bystander effect. We used the RARAF microbeam to site specifically deliver 3 MeV protons to a site in the tail of young worms. GFP expression was enhanced after 24 hours in a number dependent manner at distances > 100 μm from the site of irradiation. (author)

  1. Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose

    International Nuclear Information System (INIS)

    Serduc, Raphael; Fonta, Caroline; Renaud, Luc; Bouchet, Audrey; Braeuer-Krisch, Elke; Sarun, Sukhena; Bravin, Alberto; Le Duc, Geraldine; Laissue, Jean A; Spiga, Jenny; Boutonnat, Jean; Siegbahn, Erik Albert; Esteve, Francois

    2009-01-01

    To analyze the effects of the microbeam width (25, 50 and 75 μm) on the survival of 9L gliosarcoma tumor-bearing rats and on toxicity in normal tissues in normal rats after microbeam radiation therapy (MRT), 9L gliosarcomas implanted in rat brains, as well as in normal rat brains, were irradiated in the MRT mode. Three configurations (MRT25, MRT50, MRT75), each using two orthogonally intersecting arrays of either 25, 50 or 75 μm wide microbeams, all spaced 211 μm on center, were tested. For each configuration, peak entrance doses of 860, 480 and 320 Gy, respectively, were calculated to produce an identical valley dose of 18 Gy per individual array at the center of the tumor. Two, 7 and 14 days after radiation treatment, 42 rats were killed to evaluate histopathologically the extent of tumor necrosis, and the presence of proliferating tumors cells and tumor vessels. The median survival times of the normal rats were 4.5, 68 and 48 days for MRT25, 50 and 75, respectively. The combination of the highest entrance doses (860 Gy per array) with 25 μm wide beams (MRT25) resulted in a cumulative valley dose of 36 Gy and was excessively toxic, as it led to early death of all normal rats and of ∼50% of tumor-bearing rats. The short survival times, particularly of rats in the MRT25 group, restricted adequate observance of the therapeutic effect of the method on tumor-bearing rats. However, microbeams of 50 μm width led to the best median survival time after 9L gliosarcoma MRT treatment and appeared as the better compromise between tumor control and normal brain toxicity compared with 75 μm or 25 μm widths when used with a 211 μm on-center distance. Despite very high radiation doses, the tumors were not sterilized; viable proliferating tumor cells remained present at the tumor margin. This study shows that microbeam width and peak entrance doses strongly influence tumor responses and normal brain toxicity, even if valley doses are kept constant in all groups. The use

  2. Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose

    Energy Technology Data Exchange (ETDEWEB)

    Serduc, Raphael; Fonta, Caroline; Renaud, Luc [Universite de Toulouse, UPS, Centre de Recherche Cerveau et Cognition (France); Bouchet, Audrey; Braeuer-Krisch, Elke; Sarun, Sukhena; Bravin, Alberto; Le Duc, Geraldine [European Synchrotron Radiation Facility, F38043 Grenoble (France); Laissue, Jean A [Institute of Pathology, University of Bern (Switzerland); Spiga, Jenny [Department of Physics, University of Cagliari, s.p. Monserrato-Sestu, Monserrato (Canada) 09042 (Italy); Boutonnat, Jean [TIMC lab, UMR CNRS 5525, Univ Joseph Fourier, CHU, Grenoble (France); Siegbahn, Erik Albert [Department of Medical Physics, Karolinska Universitetssjukhuset, 17176 Stockholm (Sweden); Esteve, Francois [INSERM U836, Equipe 6, Institut des Neurosciences de Grenoble, 38043 Grenoble Cedex (France)], E-mail: raph.serduc@gmail.com

    2009-11-07

    To analyze the effects of the microbeam width (25, 50 and 75 {mu}m) on the survival of 9L gliosarcoma tumor-bearing rats and on toxicity in normal tissues in normal rats after microbeam radiation therapy (MRT), 9L gliosarcomas implanted in rat brains, as well as in normal rat brains, were irradiated in the MRT mode. Three configurations (MRT25, MRT50, MRT75), each using two orthogonally intersecting arrays of either 25, 50 or 75 {mu}m wide microbeams, all spaced 211 {mu}m on center, were tested. For each configuration, peak entrance doses of 860, 480 and 320 Gy, respectively, were calculated to produce an identical valley dose of 18 Gy per individual array at the center of the tumor. Two, 7 and 14 days after radiation treatment, 42 rats were killed to evaluate histopathologically the extent of tumor necrosis, and the presence of proliferating tumors cells and tumor vessels. The median survival times of the normal rats were 4.5, 68 and 48 days for MRT25, 50 and 75, respectively. The combination of the highest entrance doses (860 Gy per array) with 25 {mu}m wide beams (MRT25) resulted in a cumulative valley dose of 36 Gy and was excessively toxic, as it led to early death of all normal rats and of {approx}50% of tumor-bearing rats. The short survival times, particularly of rats in the MRT25 group, restricted adequate observance of the therapeutic effect of the method on tumor-bearing rats. However, microbeams of 50 {mu}m width led to the best median survival time after 9L gliosarcoma MRT treatment and appeared as the better compromise between tumor control and normal brain toxicity compared with 75 {mu}m or 25 {mu}m widths when used with a 211 {mu}m on-center distance. Despite very high radiation doses, the tumors were not sterilized; viable proliferating tumor cells remained present at the tumor margin. This study shows that microbeam width and peak entrance doses strongly influence tumor responses and normal brain toxicity, even if valley doses are kept constant in

  3. The new Sandia light ion microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Vizkelethy, G., E-mail: gvizkel@sandia.gov [Sandia National Laboratories, P.O. Box 5800, MS 1056, Albuquerque, NM 87185 (United States); Doyle, B.L. [Sandia National Laboratories, P.O. Box 5800, MS 1056, Albuquerque, NM 87185 (United States); McDaniel, F.L. [Sandia National Laboratories, P.O. Box 5800, MS 1056, Albuquerque, NM 87185 (United States); University of North Texas, Denton, TX 76203 (United States)

    2012-02-15

    The Ion Beam Laboratory of Sandia National Laboratories (SNL) was recently relocated into a brand new building. The 6 MV High Voltage Engineering (HVE) tandem accelerator (hosting the heavy ion microbeam and several analytical beam lines) and the 350 kV HVE implanter with a nanobeam were moved to the new building. There were several new pieces of equipment acquired associated with the move, among them a new high brightness 3 MV Pelletron accelerator, a high resolution light ion microbeam, a nanoimplanter, and a transmission electron microscope (TEM) connected to the tandem accelerator. In this paper this new facility will be described, and initial results of the new microbeam will be presented.

  4. Negative Knudsen force on heated microbeams

    KAUST Repository

    Zhu, Taishan; Ye, Wenjing; Zhang, Jun

    2011-01-01

    Knudsen force acting on a heated microbeam adjacent to a cold substrate in a rarefied gas is a mechanical force created by unbalanced thermal gradients. The measured force has its direction pointing towards the side with a lower thermal gradient

  5. Origin of Knudsen forces on heated microbeams

    KAUST Repository

    Zhu, Taishan; Ye, Wenjing

    2010-01-01

    microbeam are captured as functions of Knudsen number in the entire flow regime. Both flow strength and Knudsen force peak in the transition regime and negative Knudsen force absent in experimental data is observed. The mechanisms of the thermally induced

  6. Active mems microbeam device for gas detection

    KAUST Repository

    Bouchaala, Adam M.; Jaber, Nizar; Younis, Mohammad I.

    2017-01-01

    Sensors and active switches for applications in gas detection and other fields are described. The devices are based on the softening and hardening nonlinear response behaviors of microelectromechanical systems (MEMS) clamped-clamped microbeams

  7. The application of microbeam in the research on radiation-induced bystander effects

    International Nuclear Information System (INIS)

    Xiong Jie; Han Ling

    2002-01-01

    There has been more and more attention to the phenomenon known as radiation-induced bystander effects, which will have a tremendous effect on the research in low -dose radiation biological effects. However, due to the stochastic nature of energy deposition and the random position of tracts, direct evidence for bystander effects and exact results of single particle interacts with a cell cannot be provided by using conventional broad-field irradiation. The availability of microbeam, especially the single particle microbeam in the world, whereby individual cells or precise location of cells can be irradiated with either a single or an exact number of particles provides a useful tool for the research on radiation-induced bystander effects. The author describes the radiation -induced bystander effect and the application of microbeam in the research on it

  8. Production and applications of positron microbeams

    International Nuclear Information System (INIS)

    Brandes, G.R.; Canter, K.F.; Horsky, T.N.; Lippel, P.H.; Mills, A.P. Jr.

    1989-01-01

    The production of a positron microbeam using the high-brightness beam developed at Brandeis University and possible applications of this microbeam to spatially resolved defect studies and positron microscopy are reviewed. The high-brightness beam consists of a W(110) primary moderator and two remoderation stages which provide a 500-fold increase in brightness. With this brightness increase and microbeam optics, we are able to form a 12 μm FWHM beam (48 mrad pencil half-angle) at 5 keV beam energy. The well characterised small-diameter beam is particularly adaptable for determining defect concentration and structure, both laterally and in a depth-profiling mode. In the case of a transmission positron microscope or a positron re-emission microscope operating in a high-magnification mode, efficient image formation requires the use of a microbeam to maximise the number of positrons in the area being imaged. Results of the scanning microbeam tests and the application of a microbeam to positron microscopy and defect studies are reviewed. (author)

  9. Evaluation of Lysis Methods for the Extraction of Bacterial DNA for Analysis of the Vaginal Microbiota.

    Directory of Open Access Journals (Sweden)

    Christina Gill

    Full Text Available Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating prior to chemical and enzyme-based DNA extraction with a commercial kit.After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering.An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures of

  10. Evaluation of Lysis Methods for the Extraction of Bacterial DNA for Analysis of the Vaginal Microbiota.

    Science.gov (United States)

    Gill, Christina; van de Wijgert, Janneke H H M; Blow, Frances; Darby, Alistair C

    2016-01-01

    Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating) prior to chemical and enzyme-based DNA extraction with a commercial kit. After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity) between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering. An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures of epidemiological studies

  11. Radiation induced processes in moss cells. Short term and long term radiation responses of special interest after microbeam uv irradiation of the haploid moss cells of Funaria hygrometrica

    Energy Technology Data Exchange (ETDEWEB)

    Doehren, R v [Mainz Univ. (F.R. Germany). Inst. fuer Biochemie

    1975-01-01

    The moss F.h. shows apical growth in the protonema cells which spread radially from the spor. Every apical daughter cell during the state of 'Caulonema' and just before in the state of 'Caulonema Primanen' initiates cell division as soon as more than twice the length of the mother cell is reached. All this allows to follow radiation effects in single cells conveniently. UV irradiation on the range of 254 nm and 280 nm delivered at different parts of the cell area delays cell division markedly may suppress it, and is able to stop the process of growing in relation to the delivered dose and to the irradiated area as well. In case of irradiation of the area next to where the membrane is just being formed - that is to say next to the phragmoplast - the new membrane will be wrongly oriented. In particular giant cells are occurring in the case of nucleus irradiation during early prophase.

  12. Ion microbeam irradiation for radiobiology and radical chemistry: status and prospect

    Energy Technology Data Exchange (ETDEWEB)

    Khodja, H, E-mail: hicham.khodja@cea.fr [CEA, IRAMIS, SIS2M, LEEL, 91191 Gif-sur-Yvette (France); CNRS, UMR 3299, SIS2M, LEEL, 91191 Gif-sur-Yvette (France)

    2011-01-01

    Ion microbeams are commonly used to study local irradiation effects in living cells, as it has been established that ion beam irradiations can lead to deleterious changes in cells that are not struck directly by the microbeam. Such changes, which take place over distances long compared to the size of the irradiation spot and for times long compared to the time of irradiation, are collectively termed radiation-induced bystander effect or RIBE. Free-radical chemistry is frequently invoked to explain the RIBE but no unified model is available at present. Ion microbeams when coupled with advanced methods for observing free radicals are the tools of choice for investigating the chemistry and biological processes governing RIBE.

  13. Continuation of mitosis after selective laser microbeam destruction of the centriolar region

    Energy Technology Data Exchange (ETDEWEB)

    Berns, N.W.; Richardson, S.M.

    1977-12-01

    The centriole regions of prophase PTK2 cells were irradiated with a laser microbeam. Cells continued through mitosis normally. Ultrastructural analysis revealed either an absence of centrioles or severely damaged centrioles at the irradiated poles. Microtubules appeared to focus into pericentriolar cloud material.

  14. Continuation of mitosis after selective laser microbeam destruction of the centriolar region

    International Nuclear Information System (INIS)

    Berns, N.W.; Richardson, S.M.

    1977-01-01

    The centriole regions of prophase PTK2 cells were irradiated with a laser microbeam. Cells continued through mitosis normally. Ultrastructural analysis revealed either an absence of centrioles or severely damaged centrioles at the irradiated poles. Microtubules appeared to focus into pericentriolar cloud material

  15. Antibacterial compounds of Canadian honeys target bacterial cell wall inducing phenotype changes, growth inhibition and cell lysis that resemble action of β-lactam antibiotics.

    Directory of Open Access Journals (Sweden)

    Katrina Brudzynski

    Full Text Available Honeys show a desirable broad spectrum activity against Gram-positive and negative bacteria making antibacterial activity an intrinsic property of honey and a desirable source for new drug development. The cellular targets and underlying mechanism of action of honey antibacterial compounds remain largely unknown. To facilitate the target discovery, we employed a method of phenotypic profiling by directly comparing morphological changes in Escherichia coli induced by honeys to that of ampicillin, the cell wall-active β-lactam of known mechanism of action. Firstly, we demonstrated the purity of tested honeys from potential β-lactam contaminations using quantitative LC-ESI-MS. Exposure of log-phase E. coli to honey or ampicillin resulted in time- and concentration-dependent changes in bacterial cell shape with the appearance of filamentous phenotypes at sub-inhibitory concentrations and spheroplasts at the MBC. Cell wall destruction by both agents, clearly visible on microscopic micrographs, was accompanied by increased permeability of the lipopolysaccharide outer membrane as indicated by fluorescence-activated cell sorting (FACS. More than 90% E. coli exposed to honey or ampicillin became permeable to propidium iodide. Consistently with the FACS results, both honey-treated and ampicillin-treated E. coli cells released lipopolysaccharide endotoxins at comparable levels, which were significantly higher than controls (p<0.0001. E. coli cells transformed with the ampicillin-resistance gene (β-lactamase remained sensitive to honey, displayed the same level of cytotoxicity, cell shape changes and endotoxin release as ampicillin-sensitive cells. As expected, β-lactamase protected the host cell from antibacterial action of ampicillin. Thus, both honey and ampicillin induced similar structural changes to the cell wall and LPS and that this ability underlies antibacterial activities of both agents. Since the cell wall is critical for cell growth and

  16. Definite existence of subphases with eight- and ten-layer unit cells as studied by complementary methods, electric-field-induced birefringence and microbeam resonant x-ray scattering.

    Science.gov (United States)

    Feng, Zhengyu; Chandani Perera, A D L; Fukuda, Atsuo; Vij, Jagdish K; Ishikawa, Ken; Iida, Atsuo; Takanishi, Yoichi

    2017-07-01

    A mixture of two selenium-containing compounds, 80 wt. % AS657 and 20 wt. % AS620, are studied with two complementary methods, electric-field-induced birefringence (EFIB) and microbeam resonant x-ray scattering (μRXS). The mixture shows the typical phase sequence of Sm-C_{A}^{*}-1/3-1/2-Sm-C^{*}-Sm-C_{α}^{*}-Sm-A, where 1/3 and 1/2 are two prototypal ferrielectric and antiferroelectric subphases with three- and four-layer unit cells, respectively. Here we designate the subphase as its q_{T} number defined by the ratio of [F]/([F]+[A]), where [F] and [A] are the numbers of synclinic ferroelectric and anticlinic antiferroelectric orderings in the unit cell, respectively. The electric field vs temperature phase diagram with EFIB contours indicates the emergence of three additional subphases, an antiferroelectric one between Sm-C_{A}^{*} and 1/3 and antiferroelectric and apparently ferrielectric ones between 1/3 and 1/2. The simplest probable q_{T}'s for these additional subphases are 1/4, 2/5, and 3/7, respectively, in the order of increasing temperature. The μRXS profiles indicate that antiferroelectric 1/4 and 2/5 approximately have the eight-layer (FAAAFAAA) and ten-layer (FAFAAFAFAA) Ising unit cells, respectively. The remaining subphase may be ferrielectric 3/7 with a seven-layer unit cell, although the evidence is partial. These experimental results are compared with the phenomenological Landau model [P. V. Dolganov and E. I. Kats, Liq. Cryst. Rev. 1, 127 (2014)2168-039610.1080/21680396.2013.869667] and the quasimolecular model [A. V. Emelyanenko and M. A. Osipov, Phys. Rev. E 68, 051703 (2003)1063-651X10.1103/PhysRevE.68.051703].

  17. Origin of Knudsen forces on heated microbeams

    KAUST Repository

    Zhu, Taishan

    2010-09-09

    The presented work probes the fundamentals of Knudsen forces. Using the direct simulation Monte Carlo (DSMC) method, the flows induced by temperature inhomogeneity within a representative configuration and the Knudsen force acting on a heated microbeam are captured as functions of Knudsen number in the entire flow regime. Both flow strength and Knudsen force peak in the transition regime and negative Knudsen force absent in experimental data is observed. The mechanisms of the thermally induced flows and Knudsen forces are studied. It has been found that thermal edge flow is the main driven source for the formation of the Knudsen force on microbeams and domain configuration plays an important role in the process.

  18. A new paradigm in radioadaptive response developing from microbeam research

    International Nuclear Information System (INIS)

    Matsumoto, Hideki; Tomita, Masanori; Otsuka, Kensuke; Hatashita, Masanori

    2009-01-01

    A classic paradigm in radiation biology asserts that all radiation effects on cells, tissues and organisms are due to the direct action of radiation on living tissue. Using this model, possible risks from exposure to low dose ionizing radiation (below 100 mSv) are estimated by extrapolating from data obtained after exposure to higher doses of radiation, using a linear non-threshold model (LNT model). However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose/low dose-rate radiation than they do to high dose/high dose-rate radiation. These important responses to low dose/low dose-rate radiation are the radiation-induced adaptive response, the bystander response, low-dose hypersensitivity, and genomic instability. The mechanisms underlying these responses often involve bio-chemical and molecular signals generated in response to targeted and non-targeted events. In order to define and understand the bystander response to provide a basis for the understanding of non-targeted events and to elucidate the mechanisms involved, recent sophisticated research has been conducted with X-ray microbeams and charged heavy particle microbeams, and these studies have produced many new observations. Based on these observations, associations have been suggested to exist between the radio-adaptive and bystander responses. The present review focuses on these two phenomena, and summarizes observations supporting their existence, and discusses the linkage between them in light of recent results obtained from experiments utilizing microbeams. (author)

  19. Elemental analysis techniques using proton microbeam

    International Nuclear Information System (INIS)

    Sakai, Takuro; Oikawa, Masakazu; Sato, Takahiro

    2005-01-01

    Proton microbeam is a powerful tool for two-dimensional elemental analysis. The analysis is based on Particle Induced X-ray Emission (PIXE) and Particle Induced Gamma-ray Emission (PIGE) techniques. The paper outlines the principles and instruments, and describes the dental application has been done in JAERI Takasaki. (author)

  20. Branch formation induced by microbeam irradiation of Adiantum protonemata

    International Nuclear Information System (INIS)

    Wada, M.

    1998-01-01

    Branches were induced in centrifuged Adiantum protonemal cells by partial irradiation with polarized red light. Nuclear behavior and microtubule pattern change during branch formation were investigated. A branch formed at any part where a red microbeam was focused along a long apical cell. The nucleus moved towards the irradiated area and remained there until a branch developed. The pattern of microtubules changed from parallel to oblique at the irradiated area and then a transverse arrangement of microtubules appeared on both sides of the area. It appeared as if the nucleus was suspended between two microtubule rings. This nuclear behavior and the changes in microtubule pattern were different from those observed during branch formation under whole cell irradiation. From the results of this work we suggest that there is an importance for precise control of experimental conditions

  1. Rare incidence of tumor lysis syndrome in metastatic prostate cancer following treatment with docetaxel.

    Science.gov (United States)

    Bhardwaj, Sharonlin; Varma, Seema

    2018-03-01

    Tumor lysis syndrome is a serious and sometimes lethal complication of cancer treatment that is comprised of a set of metabolic disturbances along with clinical manifestations. Initiating chemotherapy in bulky, rapidly proliferating tumors causes rapid cell turnover that in turn releases metabolites into circulation that give rise to metabolic derangements that can be dangerous. This syndrome is usually seen in high-grade hematological malignancies. Less commonly, tumor lysis syndrome can present in solid tumors and even rarely in genitourinary tumors. In this report, the authors describe a specific case of tumor lysis syndrome in a patient with metastatic prostate cancer following treatment with docetaxel.

  2. Nucleation of holin domains and holes optimizes lysis timing of E. coli by phage λ

    Science.gov (United States)

    Ryan, Gillian; Rutenberg, Andrew

    2007-03-01

    Holin proteins regulate the precise scheduling of Escherichia coli lysis during infection by bacteriophage λ. Inserted into the host bacterium's inner membrane during infection, holins aggregate to form rafts and then holes within those rafts. We present a two-stage nucleation model of holin action, with the nucleation of condensed holin domains followed by the nucleation of holes within these domains. Late nucleation of holin rafts leads to a weak dependence of lysis timing on host cell size, though both nucleation events contribute equally to timing errors. Our simulations recover the accurate scheduling observed experimentally, and also suggest that phage-λ lysis of E.coli is optimized.

  3. Development of an intermediate energy heavy-ion micro-beam irradiation system

    International Nuclear Information System (INIS)

    Song Mingtao; Wang Zhiguang; He Yuan; Gao Daqing; Yang Xiaotian; Liu Jie; Su Hong; Man Kaidi; Sheng Li'na

    2008-01-01

    The micro-beam irradiation system, which focuses the beam down the micron order and precisely delivers a predefined number of ions to a predefined spot of micron order, is a powerful tool for radio-biology, radio-biomedicine and micromachining. The Institute of Modern Physics of Chinese Academy of Sciences is developing a heavy-ion micro-beam irradiation system up to intermediate energy. Based on the intermediate and low energy beam provided by Heavy Ion Research Facility of Lanzhou, the micro-beam system takes the form of the magnetic focusing. The heavy-ion beam is conducted to the basement by a symmetrical achromatic system consisting of two vertical bending magnets and a quadrupole in between. Then a beam spot of micron order is formed by magnetic triplet quadrupole of very high gradient. The sample can be irradiated either in vacuum or in the air. This system will be the first opening platform capable of providing heavy ion micro-beam, ranging from low (10 MeV/u) to intermediate energy (100 MeV/u), for irradiation experiment with positioning and counting accuracy. Target material may be biology cell, tissue or other non-biological materials. It will be a help for unveiling the essence of heavy-ion interaction with matter and also a new means for exploring the application of heavy-ion irradiation. (authors)

  4. High energy ion hit technique to local area using microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Ryuichi; Kamiya, Tomihiro; Suda, Tamotsu; Sakai, Takuro; Hirao, Toshio; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Single energetic ion hit technique has been developed as an application of ion microbeam technique, in order to study the effect of local damage or injury to materials and living organisms. The overall performance is basically defined by those of separate techniques: microbeam formation, microbeam positioning, single ion detection, detection signal processing, hit timing control, and hit verification. Recent progress on the developments of these techniques at JAERI-TIARA facility are reviewed. (author)

  5. Operation manual of microbeam system in Takasaki for biological application (MiST-BA)

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya; Yokota, Yuichiro; Wada, Seiichi; Funayama, Tomoo; Kobayashi, Yasuhiko

    2004-03-01

    Microbeam System is a powerful tool for micro-radiosurgery studies and direct investigation of cell-to-cell communications such as 'bystander effects'. Microbeam system in Takasaki for biological application (MiST-BA) has been developed for several years and applied to some cases. There were fate mapping of the cellular blastoderm stage egg of the silkworm and bystander effects such as inhibition of cell proliferation, induction of micronuclei, and so on. The aim of this report (operation manual) is to provide a simple and easy usage of MiST-BA for current and new users. MiST-BA consists of three parts; (1) Offline microscope control system for cell-finding. (2) Online microscope control system for cell-targeting and irradiating, and (3) Beam shutter control system for cell irradiation with a precise number of heavy ions. The report presents the outline of MiST-BA, the operation protocol of each part, examples of a microbeam irradiation experiment using CHO-K1 cells, silkworm eggs, and Tobacco protoplast cells, and Trouble shooting. (author)

  6. Semiconductor analysis with a channeled helium microbeam

    International Nuclear Information System (INIS)

    Ingarfield, S.A.; McKenzie, C.D.; Short, K.T.; Williams, J.S.

    1981-01-01

    This paper describes the use of a channeled helium microbeam for analysis of damage and dopant distributions in semiconductors. Practical difficulties and potential problems associated with the channeling of microbeams in semiconductors have been examined. In particular, the following factors have been characterised: i) the effect of both convergence of focused beam and beam scanning on the quality of channeling; ii) damage produced by the probe ions; and iii) local beam heating effects arising from high current densities. Acceptable channeling has been obtained (minimum yield approaching 4%) under a variety of focusing and scanning conditions which are suitable for analysis of device structures. The capabilities of the technique are demonstrated by monitoring variations in local damage and impurity depth distributions across a narrow (<2mm) region of an ion implanted silicon wafer

  7. High energy ion microbeams and their applications

    International Nuclear Information System (INIS)

    Bakhru, H.; Nickles, E.; Haberl, A.; Morris, W.G.

    1992-01-01

    In recent years there has been rapid growth for the development of equipment for forming a focussed beam (0.5 - 2μm) with high energy ions. The State University of New York at Albany ion scanning microprobe has been used for several applications especially in the fields of materials and biological studies. Rutherford backscattering spectroscopy (RBS) and particle-induced x-ray emission (PIXE) analysis have been performed on microelectronic circuits with a spatial resolution of approximately 2 μm. Studies on films of superconductors (YBa CuO) will be presented. Applications of microbeams for the biological studies and analytical techniques will be presented. Current and future role of microbeams and their limitations will be discussed. (author)

  8. Electrothermally Actuated Microbeams With Varying Stiffness

    KAUST Repository

    Tella, Sherif Adekunle

    2017-11-03

    We present axially loaded clamped-guided microbeams that can be used as resonators and actuators of variable stiffness, actuation, and anchor conditions. The applied axial load is implemented by U-shaped electrothermal actuators stacked at one of the beams edges. These can be configured and wired in various ways, which serve as mechanical stiffness elements that control the operating resonance frequency of the structures and their static displacement. The experimental results have shown considerable increase in the resonance frequency and mid-point deflection of the microbeam upon changing the end conditions of the beam. These results can be promising for applications requiring large deflection and high frequency tunability, such as filters, memory devices, and switches. The experimental results are compared to multi-physics finite-element simulations showing good agreement among them.

  9. Direct Cellular Lysis/Protein Extraction Protocol for Soil Metaproteomics

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Jansson, Janet [Lawrence Berkeley National Laboratory (LBNL); Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Chavarria, Krystle L. [Lawrence Berkeley National Laboratory (LBNL); Tom, Lauren M [Lawrence Berkeley National Laboratory (LBNL); Brodie, Eoin L. [Lawrence Berkeley National Laboratory (LBNL); Hettich, Robert {Bob} L [ORNL

    2010-01-01

    We present a novel direct protocol for deep proteome characterization of microorganisms in soil. The method employs thermally assisted detergent-based cellular lysis (SDS) of soil samples, followed by TCA precipitation for proteome extraction/cleanup prior to liquid chromatography-mass spectrometric characterization. This approach was developed and optimized using different soils inoculated with genome-sequenced bacteria (Gram-negative Pseudomonas putida or Gram-positive Arthrobacter chlorophenolicus). Direct soil protein extraction was compared to protein extraction from cells isolated from the soil matrix prior to lysis (indirect method). Each approach resulted in identification of greater than 500 unique proteins, with a wide range in molecular mass and functional categories. To our knowledge, this SDS-TCA approach enables the deepest proteome characterizations of microbes in soil to date, without significant biases in protein size, localization, or functional category compared to pure cultures. This protocol should provide a powerful tool for ecological studies of soil microbial communities.

  10. The Fc-receptor III of cultured human monocytes. Structural similarity with FcRIII of natural killer cells and role in the extracellular lysis of sensitized erythrocytes

    NARCIS (Netherlands)

    Klaassen, R. J.; Ouwehand, W. H.; Huizinga, T. W.; Engelfriet, C. P.; von dem Borne, A. E.

    1990-01-01

    FcRIII is not present on peripheral blood monocytes, but becomes expressed upon culturing and can be demonstrated on tissue macrophages. We studied the expression of FcRIII of cultured monocytes in detail and compared its structure with FcRIII of neutrophils and NK cells. The cell density of FcRIII

  11. Application of heavy-ion microbeam system at Kyoto University: Energy response for imaging plate by single ion irradiation

    International Nuclear Information System (INIS)

    Tosaki, M.; Nakamura, M.; Hirose, M.; Matsumoto, H.

    2011-01-01

    A heavy-ion microbeam system for cell irradiation has been developed using an accelerator at Kyoto University. We have successfully developed proton-, carbon-, fluorine- and silicon-beams in order to irradiate a micro-meter sized area with ion counting, especially single ion irradiation. In the heavy-ion microbeam system, an imaging plate (IP) was utilized for beam diagnostics on the irradiation. The IP is widely used for radiography studies in biology. However, there are a few studies on the low linear energy transfer (LET) by single ions, i.e., low-intensity exposure. Thus we have investigated the energy response for the IP, which can be utilized for microbeam diagnostics.

  12. Proton microbeam irradiation effects on PtBA polymer

    Indian Academy of Sciences (India)

    Microbeam irradiation effects on poly-tert-butyl-acrylate (PtBA) polymer using 2.0 MeV proton microbeam are reported. Preliminary results on pattern formation on PtBA are carried out as a function of fluence. After writing the pattern, a thin layer of Ge is deposited. Distribution of Ge in pristine and ion beam patterned surface ...

  13. Dynamics of Microbeams under Multi-Frequency Excitations

    KAUST Repository

    Ibrahim, Alwathiqbellah

    2017-01-24

    This paper presents an investigation of the dynamics of microbeams under multiple harmonic electrostatic excitation frequencies. First, the response of a cantilever microbeam to two alternating current (AC) source excitation is examined. We show by simulations the response of the microbeam at primary resonance (near the fundamental natural frequency) and at secondary resonances (near half, superharmonic, and twice, subharmonic, the fundamental natural frequency). A multimode Galerkin method combined with the Euler-Bernoulli beam equation, accounting for the nonlinear electrostatic force, has been used to develop a reduced order model. The response of the cantilever microbeam to three AC source excitation is also investigated and shown as a promising technique to enhance the bandwidth of resonators. Finally, an experimental study of a clamped-clamped microbeam is conducted, demonstrating the multi-frequency excitation resonances using two, three, and four AC sources.

  14. Dynamics of Microbeams under Multi-Frequency Excitations

    KAUST Repository

    Ibrahim, Alwathiqbellah; Jaber, Nizar; Chandran, Akhil; Thirupathi, Maloth; Younis, Mohammad I.

    2017-01-01

    This paper presents an investigation of the dynamics of microbeams under multiple harmonic electrostatic excitation frequencies. First, the response of a cantilever microbeam to two alternating current (AC) source excitation is examined. We show by simulations the response of the microbeam at primary resonance (near the fundamental natural frequency) and at secondary resonances (near half, superharmonic, and twice, subharmonic, the fundamental natural frequency). A multimode Galerkin method combined with the Euler-Bernoulli beam equation, accounting for the nonlinear electrostatic force, has been used to develop a reduced order model. The response of the cantilever microbeam to three AC source excitation is also investigated and shown as a promising technique to enhance the bandwidth of resonators. Finally, an experimental study of a clamped-clamped microbeam is conducted, demonstrating the multi-frequency excitation resonances using two, three, and four AC sources.

  15. Bystander effect studies using heavy-ion microbeam

    International Nuclear Information System (INIS)

    Kobayashi, Yasuhiko; Funayama, Tomoo; Sakashita, Tetsuya; Wada, Seiichi; Yokota, Yuichiro; Kakizaki, Takehiko; Hamada, Nobuyuki; Hara, Takamitsu; Fukamoto, Kana; Suzuki, Michiyo; Ni, M.; Furusawa, Yoshiya

    2007-01-01

    We have established a single cell irradiation system, which allows selected cells to be individually hit with defined number of heavy charged particles, using a collimated heavy-ion microbeam apparatus at JAEA-Takasaki. This system has been developed to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations, in ways that cannot be achieved using conventional broad-field exposures. Individual cultured cells grown in special dishes were irradiated in the atmosphere with a single or defined numbers of 18.3 MeV/amu 12 C, 13.0 or 17.5 MeV/amu 20 Ne, and 11.5 MeV/amu 40 Ar ions. Targeting and irradiation of the cells were performed automatically according to the positional data of the target cells microscopically obtained before irradiation. The actual number of particle tracks that pass through target cells was detected with prompt etching of the bottom of the cell dish made of ion track detector TNF-1 (modified CR-39). (author)

  16. Lysis of fresh human solid tumors by autologous lymphocytes activated in vitro with lectins

    International Nuclear Information System (INIS)

    Mazumder, A.; Grimm, E.A.; Zhang, H.Z.; Rosenberg, S.A.

    1982-01-01

    Human peripheral blood lymphocytes (PBL), obtained from patients with a variety of cancers, were incubated in vitro with phytohemagglutinin, concanavalin A, and crude or lectin-free T-cell growth factors. The lectin-activated PBL of nine patients were capable of lysing fresh autologous tumor during a 4-hr 51Cr release assay. Multiple metastases from the same patient were equivalently lysed by these activated autologous PBL. No lysis of fresh PBL or lectin-induced lymphoblast cell targets was seen, although tumor, PBL, and lymphoblast cells were shown to be equally lysable using allosensitized cells. The activated cells could be expanded without loss of cytotoxicity in crude or lectin-free T-cell growth factors. The generation of cells lytic to fresh autologous tumor was dependent on the presence of adherent cells, although the lytic cell itself was not adherent. Proliferation was not involved in the induction of lytic cells since equal lysis was induced in irradiated and nonirradiated lymphocytes. Lectin was not required in the lytic assay, and the addition of alpha-methyl-D-mannoside to concanavalin A-activated lymphoid cells did not increase the lysis of fresh tumor cells. Activation by lectin for 3 days appears to be an efficient and convenient method for generating human cells lytic to fresh autologous tumor. These lytic cells may be of value for studies of the cell-mediated lysis of human tumor and possibly for tumor immunotherapy as well

  17. Chimeric bispecific OC/TR monoclonal antibody mediates lysis of tumor cells expressing the folate-binding protein (MOv18) and displays decreased immunogenicity in patients

    NARCIS (Netherlands)

    Luiten, R. M.; Warnaar, S. O.; Sanborn, D.; Lamers, C. H.; Bolhuis, R. L.; Litvinov, S. V.; Zurawski, V. R.; Coney, L. R.

    1997-01-01

    The bispecific OC/TR monoclonal antibody (mAb) cross-links the CD3 molecule on T cells with the human folate-binding protein (FBP), which is highly expressed on nonmucinous ovarian carcinomas. Clinical trials of patients with ovarian carcinoma with the OC/TR mAb have shown some complete and partial

  18. Inactivation of the Autolysis-Related Genes lrgB and yycI in Staphylococcus aureus Increases Cell Lysis-Dependent eDNA Release and Enhances Biofilm Development In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Cristiana Ossaille Beltrame

    Full Text Available Staphylococcus aureus ica-independent biofilms are multifactorial in nature, and various bacterial proteins have been associated with biofilm development, including fibronectin-binding proteins A and B, protein A, surface protein SasG, proteases, and some autolysins. The role of extracellular DNA (eDNA has also been demonstrated in some S. aureus biofilms. Here, we constructed a Tn551 library, and the screening identified two genes that affected biofilm formation, lrgB and yycI. The repressive effect of both genes on the development of biofilm was also confirmed in knockout strains constructed by allelic recombination. In contrast, the superexpression of either lrgB or yycI by a cadmium-inducible promoter led to a decrease in biofilm accumulation. Indeed, a significant increase in the cell-lysis dependent eDNA release was detected when lrgB or yycI were inactivated, explaining the enhanced biofilm formed by these mutants. In fact, lrgB and yycI genes belong to distinct operons that repress bacterial autolysis through very different mechanisms. LrgB is associated with the synthesis of phage holin/anti-holin analogues, while YycI participates in the activation/repression of the two-component system YycGF (WalKR. Our in vivo data suggest that autolysins activation lead to increased bacterial virulence in the foreign body animal model since a higher number of attached cells was recovered from the implanted catheters inoculated with lrgB or yycI knockout mutants.

  19. Comparison of Different Sample Preparation Protocols Reveals Lysis Buffer-Specific Extraction Biases in Gram-Negative Bacteria and Human Cells.

    Science.gov (United States)

    Glatter, Timo; Ahrné, Erik; Schmidt, Alexander

    2015-11-06

    We evaluated different in-solution and FASP-based sample preparation strategies for absolute protein quantification. Label-free quantification (LFQ) was employed to compare different sample preparation strategies in the bacterium Pseudomonas aeruginosa and human embryonic kidney cells (HEK), and organismal-specific differences in general performance and enrichment of specific protein classes were noted. The original FASP protocol globally enriched for most proteins in the bacterial sample, whereas the sodium deoxycholate in-solution strategy was more efficient with HEK cells. Although detergents were found to be highly suited for global proteome analysis, higher intensities were obtained for high-abundant nucleic acid-associated protein complexes, like the ribosome and histone proteins, using guanidine hydrochloride. Importantly, we show for the first time that the observable total proteome mass of a sample strongly depends on the sample preparation protocol, with some protocols resulting in a significant underestimation of protein mass due to incomplete protein extraction of biased protein groups. Furthermore, we demonstrate that some of the observed abundance biases can be overcome by incorporating a nuclease treatment step or, alternatively, a correction factor for complementary sample preparation approaches.

  20. The mechanics of anaphase B in a basidiomycete as revealed by laser microbeam microsurgery

    International Nuclear Information System (INIS)

    Bayles, C.J.; Aist, J.R.; Berns, M.W.

    1993-01-01

    Bayles, C. J., Aist, J. R., and Berns, M. W. 1993. The mechanics of anaphase B in a basidiomycete as revealed by laser microbeam microsurgery. Experimental Mycology 17, 191-199. Cytoplasmic forces were found to be actively pulling on the spindle pole bodies during anaphase B in the dikaryotic, basidiomycete fungus, Helicobasidium mompa. When the spindle of one nucleus was severed with a laser microbeam at mid anaphase B, its two spindle pole bodies separated at a much faster rate than did those of the intact spindle in the other nucleus of the same cell. Since astral microtubule populations apparently reach their maximum during anaphase B in this fungus, we suggest that these microtubules may be involved in the cytoplasmic pulling forces. The spindle appears to act primarily as a governor, regulating the rate at which the spindle pole bodies are separated

  1. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    Science.gov (United States)

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  2. X-ray microbeams: Tumor therapy and central nervous system research

    International Nuclear Information System (INIS)

    Dilmanian, F.A.; Qu, Y.; Liu, S.; Cool, C.D.; Gilbert, J.; Hainfeld, J.F.; Kruse, C.A.; Laterra, J.; Lenihan, D.; Nawrocky, M.M.; Pappas, G.; Sze, C.-I.; Yuasa, T.; Zhong, N.; Zhong, Z.; McDonald, J.W.

    2005-01-01

    Irradiation with parallel arrays of thin, planar slices of X-ray beams (microplanar beams, or microbeams) spares normal tissue, including the central nervous system (CNS), and preferentially damages tumors. The effects are mediated, at least in part, by the tissue's microvasculature that seems to effectively repair itself in normal tissue but fails to do so in tumors. Consequently, the therapeutic index of single-fraction unidirectional microbeam irradiations has been shown to be larger than that of single-fraction unidirectional unsegmented beams in treating the intracranial rat 9L gliosarcoma tumor model (9LGS) and the subcutaneous murine mammary carcinoma EMT-6. This paper presents results demonstrating that individual microbeams, or arrays of parallel ones, can also be used for targeted, selective cell ablation in the CNS, and also to induce demyelination. The results highlight the value of the method as a powerful tool for studying the CNS through selective cell ablation, besides its potential as a treatment modality in clinical oncology

  3. A High Throughput Screening Assay for Anti-Mycobacterial Small Molecules Based on Adenylate Kinase Release as a Reporter of Cell Lysis.

    Directory of Open Access Journals (Sweden)

    Lauren Forbes

    Full Text Available Mycobacterium tuberculosis (Mtb is well-established to be one of the most important bacterial pathogens for which new antimicrobial therapies are needed. Herein, we describe the development of a high throughput screening assay for the identification of molecules that are bactericidal against Mycobacteria. The assay utilizes the release of the intracellular enzyme adenylate kinase into the culture medium as a reporter of mycobacterial cell death. We demonstrate that the assay is selective for mycobactericidal molecules and detects anti-mycobacterial activity at concentrations below the minimum inhibitory concentration of many molecules. Thus, the AK assay is more sensitive than traditional growth assays. We have validated the AK assay in the HTS setting using the Mtb surrogate organism M. smegmatis and libraries of FDA approved drugs as well as a commercially available Diversity set. The screen of the FDA-approved library demonstrated that the AK assay is able to identify the vast majority of drugs with known mycobactericidal activity. Importantly, our screen of the Diversity set revealed that the increased sensitivity of the AK assay increases the ability of M. smegmatis-based screens to detect molecules with relatively poor activity against M. smegmatis but good to excellent activity against Mtb.

  4. Increased Resistance to osmotic lysis of sickled erythrocytes ...

    African Journals Online (AJOL)

    treated with CNw had significantly reduced osmotic lysis when compared with the untreated set (P<0.05, respectively) at various hypotonic NaCl concentrations. Various Hb genotypes exhibited a graded increase in osmotic pressure lysis in ...

  5. Comprehensive Cross-Clade Characterization of Antibody-Mediated Recognition, Complement-Mediated Lysis, and Cell-Mediated Cytotoxicity of HIV-1 Envelope-Specific Antibodies toward Eradication of the HIV-1 Reservoir.

    Science.gov (United States)

    Mujib, Shariq; Liu, Jun; Rahman, A K M Nur-Ur; Schwartz, Jordan A; Bonner, Phil; Yue, Feng Yun; Ostrowski, Mario A

    2017-08-15

    Immunotherapy with passive administration of broadly neutralizing HIV-1 envelope-specific antibodies (bnAbs) in the setting of established infection in vivo has yielded mixed results. The contribution of different antibodies toward the direct elimination of infected cells is poorly understood. In this study, we determined the ability of 12 well-characterized anti-HIV-1 neutralizing antibodies to recognize and eliminate primary CD4 T cells infected with HIV-1 belonging to clades A, B, C, and D, via antibody-dependent complement-mediated lysis (ADCML) and antibody-dependent cell-mediated cytotoxicity (ADCC), in vitro We further tested unique combinations of these antibodies to determine the optimal antibody cocktails to be tested in future clinical trials. We report that antibody binding to infected CD4 T cells is highly variable and correlates with ADCML and ADCC processes. Particularly, antibodies targeting the envelope glycan shield (2G12) and V1/V2 site (PG9, PG16, and PGT145) are best at recognizing HIV-1-infected CD4 T cells. However, only PG9 and PG16 and their combinations with other bnAbs sufficiently induced the elimination of HIV-1-infected CD4 T cells by ADCML, ADCC, or both. Notably, CD4 binding site antibodies VRC01, 3BNC117, and NIH45-46 G54W did not exhibit recognition of infected cells and were unable to induce their killing. Future trials geared toward the development of a cure for HIV/AIDS should incorporate V1/V2 antibodies for maximal clearance of infected cells. With the use of only primary immune cells, we conducted a comprehensive cross-clade physiological analysis to aid the direction of antibodies as therapeutics toward the development of a cure for HIV/AIDS. IMPORTANCE Several antibodies capable of neutralizing the majority of circulating HIV-1 strains have been identified to date and have been shown to prevent infection in animal models. However, the use of combinations of such broadly neutralizing antibodies (bnAbs) for the treatment and

  6. Miniature acoustic wave lysis system and uses thereof

    Science.gov (United States)

    Branch, Darren W.; Vreeland, Erika Cooley; Smith, Gennifer Tanabe

    2016-12-06

    The present invention relates to an acoustic lysis system including a disposable cartridge that can be reversibly coupled to a platform having a small, high-frequency piezoelectric transducer array. In particular, the system releases viable DNA, RNA, and proteins from human or bacterial cells, without chemicals or additional processing, to enable high-speed sample preparation for clinical point-of-care medical diagnostics and use with nano/microfluidic cartridges. Also described herein are methods of making and using the system of the invention.

  7. Comparison of lysis-centrifugation with lysis-filtration and a conventional unvented bottle for blood cultures.

    OpenAIRE

    Gill, V J; Zierdt, C H; Wu, T C; Stock, F; Pizzo, P A; MacLowry, J D

    1984-01-01

    Evaluation of a commercially available lysis-centrifugation blood culture system (Isolator, DuPont Co., Wilmington, Del.) and a lysis-filtration blood culture system for 3,111 cultures showed that both methods had comparable recoveries (73 and 68%, respectively) of significant aerobic and facultatively anaerobic isolates. The unvented conventional blood culture bottle had a recovery rate of 59%. Although the lysis-centrifugation and lysis-filtration systems had comparable recoveries of pathog...

  8. Neurocognitive sparing of desktop microbeam irradiation.

    Science.gov (United States)

    Bazyar, Soha; Inscoe, Christina R; Benefield, Thad; Zhang, Lei; Lu, Jianping; Zhou, Otto; Lee, Yueh Z

    2017-08-11

    Normal tissue toxicity is the dose-limiting side effect of radiotherapy. Spatial fractionation irradiation techniques, like microbeam radiotherapy (MRT), have shown promising results in sparing the normal brain tissue. Most MRT studies have been conducted at synchrotron facilities. With the aim to make this promising treatment more available, we have built the first desktop image-guided MRT device based on carbon nanotube x-ray technology. In the current study, our purpose was to evaluate the effects of MRT on the rodent normal brain tissue using our device and compare it with the effect of the integrated equivalent homogenous dose. Twenty-four, 8-week-old male C57BL/6 J mice were randomly assigned to three groups: MRT, broad-beam (BB) and sham. The hippocampal region was irradiated with two parallel microbeams in the MRT group (beam width = 300 μm, center-to-center = 900 μm, 160 kVp). The BB group received the equivalent integral dose in the same area of their brain. Rotarod, marble burying and open-field activity tests were done pre- and every month post-irradiation up until 8 months to evaluate the cognitive changes and potential irradiation side effects on normal brain tissue. The open-field activity test was substituted by Barnes maze test at 8th month. A multilevel model, random coefficients approach was used to evaluate the longitudinal and temporal differences among treatment groups. We found significant differences between BB group as compared to the microbeam-treated and sham mice in the number of buried marble and duration of the locomotion around the open-field arena than shams. Barnes maze revealed that BB mice had a lower capacity for spatial learning than MRT and shams. Mice in the BB group tend to gain weight at the slower pace than shams. No meaningful differences were found between MRT and sham up until 8-month follow-up using our measurements. Applying MRT with our newly developed prototype compact CNT-based image-guided MRT system

  9. Parameter identification of an electrically actuated imperfect microbeam

    KAUST Repository

    Ruzziconi, Laura; Younis, Mohammad I.; Lenci, Stefano

    2013-01-01

    In this study we consider a microelectromechanical system (MEMS) and focus on extracting analytically the model parameters that describe its non-linear dynamic features accurately. The device consists of a clamped-clamped polysilicon microbeam

  10. Multifrequency Excitation of a Clamped-Clamped Microbeam

    KAUST Repository

    Jaber, Nizar; Ramini, Abdallah; Younis, Mohammad I.

    2016-01-01

    . These microbeams are fabricated using polyimide as structural layer coated with nickel form top and chromium and gold layers from bottom. We demonstrate the excitation of additive and subtractive type resonance. We show that by properly tuning the frequency

  11. An Experimental and Theoretical Investigation of Electrostatically Coupled Cantilever Microbeams

    KAUST Repository

    Ilyas, Saad; Chappanda, Karumbaiah N.; Hafiz, Md Abdullah Al; Ramini, Abdallah; Younis, Mohammad I.

    2016-01-01

    We present an experimental and theoretical investigation of the static and dynamic behavior of electrostatically coupled laterally actuated silicon microbeams. The coupled beam resonators are composed of two almost identical flexible cantilever

  12. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection

    Directory of Open Access Journals (Sweden)

    Kempashanaiah Nanjundappa

    2011-08-01

    Full Text Available Abstract Background Interest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens. However, the use of bacteriophages for therapeutic purposes has raised concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty in dose determination in clinical situations. A phage that kills the target cell but is incapable of host cell lysis would alleviate these concerns without compromising efficacy. Results We developed a recombinant lysis-deficient Staphylococcus aureus phage P954, in which the endolysin gene was rendered nonfunctional by insertional inactivation. P954, a temperate phage, was lysogenized in S. aureus strain RN4220. The native endolysin gene on the prophage was replaced with an endolysin gene disrupted by the chloramphenicol acetyl transferase (cat gene through homologous recombination using a plasmid construct. Lysogens carrying the recombinant phage were detected by growth in presence of chloramphenicol. Induction of the recombinant prophage did not result in host cell lysis, and the phage progeny were released by cell lysis with glass beads. The recombinant phage retained the endolysin-deficient genotype and formed plaques only when endolysin was supplemented. The host range of the recombinant phage was the same as that of the parent phage. To test the in vivo efficacy of the recombinant endolysin-deficient phage, immunocompromised mice were challenged with pathogenic S. aureus at a dose that results in 80% mortality (LD80. Treatment with the endolysin-deficient phage rescued mice from the fatal S. aureus infection. Conclusions A recombinant endolysin-deficient staphylococcal phage has been developed that is lethal to methicillin-resistant S. aureus without causing bacterial cell lysis. The phage was able to multiply in lytic mode utilizing a heterologous endolysin expressed from a plasmid in the propagation host

  13. In situ macromolecular crystallography using microbeams.

    Science.gov (United States)

    Axford, Danny; Owen, Robin L; Aishima, Jun; Foadi, James; Morgan, Ann W; Robinson, James I; Nettleship, Joanne E; Owens, Raymond J; Moraes, Isabel; Fry, Elizabeth E; Grimes, Jonathan M; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S; Stuart, David I; Evans, Gwyndaf

    2012-05-01

    Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams. © 2012 International Union of Crystallography

  14. Aggregate Formation During the Viral Lysis of a Marine Diatom

    Directory of Open Access Journals (Sweden)

    Yosuke Yamada

    2018-05-01

    Full Text Available Recent studies have suggested that the viral lysis of microbes not only facilitates the conversion of particulate organic matter into dissolved organic matter, but also promotes the formation of organic aggregates, which enhance the export of organic carbon from the surface ocean to the deep sea. However, experimental data supporting this proposition are limited. Here, we tested the hypothesis that the viral infection of marine diatoms enhances aggregate formation. We used a model system consisting of Chaetoceros tenuissimus, a bloom-forming diatom with an approximate cell size of 3–10 μm, and a DNA virus, CtenDNAV type II, which replicates in the nucleus of C. tenuissimus. The volume of large particles (50–400 μm in equivalent spherical diameters, determined from photographic images was measured over time (up to 15 days in the diatom-alone control and a virus-added diatom culture. We also determined the concentrations of Coomassie-stainable particles (CSP, proteinaceous particles and transparent exopolymeric particles (TEP, acid-polysaccharide-rich particles with colorimetric methods. The total volume of large particles was significantly higher (5–59 fold in the virus-added diatoms than in the diatom-alone control during the period in which the viral lysis of the diatoms proceeded. One class of large particles produced in the virus-added diatoms was flake-shaped. The flakes were tightly packed and dense, and sank rapidly, possibly playing an important role in the vertical delivery of materials from the surface to the deep sea. The bulk CSP concentrations tended to be higher in the virus-added diatoms than in the diatom-alone control, whereas the reverse was true for the TEP. These results suggest that proteinaceous polymers are involved in aggregate formation. Our data support the emerging notion that the viral lysis of microbes facilitates aggregate formation and the export of organic carbon in the ocean.

  15. Wide area scanning system and carbon microbeams at the external microbeam facility of the INFN LABEC laboratory in Florence

    Energy Technology Data Exchange (ETDEWEB)

    Giuntini, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Massi, M. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Calusi, S. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Castelli, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Carraresi, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Fedi, M.E.; Gelli, N. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Liccioli, L.; Mandò, P.A.; Mazzinghi, A. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Palla, L. [INFN, Sezione di Pisa and Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Romano, F.P. [Consiglio Nazionale delle Ricerche (CNR), Istituto per i Beni Archeologici e Monumentali (IBAM), Via Biblioteca, 4, 95124 Catania (Italy); Istituto Nazionale di Fisica Nucleare (INFN), LNS, Via S.Sofia 62, 95125 Catania (Italy); and others

    2015-04-01

    Recently, developments have been made to the external scanning microbeam of INFN-LABEC laboratory in Florence. A new system for mechanical sample scanning was implemented. This system allows us to acquire large maps (up to 20 × 20 cm{sup 2}), of great interest in the Cultural Heritage field. In parallel, the possibility of using carbon microbeams for experiments, such as, for example, ion beam modification of materials and MeV Secondary Ion Mass Spectrometry, has been investigated. As a test application, Particle Induced X-ray Emission with carbon microbeams has been performed on a lapis lazuli stone. First results for both wide area imaging and external carbon microbeams are briefly reported.

  16. Wide area scanning system and carbon microbeams at the external microbeam facility of the INFN LABEC laboratory in Florence

    International Nuclear Information System (INIS)

    Giuntini, L.; Massi, M.; Calusi, S.; Castelli, L.; Carraresi, L.; Fedi, M.E.; Gelli, N.; Liccioli, L.; Mandò, P.A.; Mazzinghi, A.; Palla, L.; Romano, F.P.

    2015-01-01

    Recently, developments have been made to the external scanning microbeam of INFN-LABEC laboratory in Florence. A new system for mechanical sample scanning was implemented. This system allows us to acquire large maps (up to 20 × 20 cm 2 ), of great interest in the Cultural Heritage field. In parallel, the possibility of using carbon microbeams for experiments, such as, for example, ion beam modification of materials and MeV Secondary Ion Mass Spectrometry, has been investigated. As a test application, Particle Induced X-ray Emission with carbon microbeams has been performed on a lapis lazuli stone. First results for both wide area imaging and external carbon microbeams are briefly reported

  17. Effects of locally targeted heavy-ion and laser microbeam on root hydrotropism in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Miyazawa, Yutaka; Sakashita, Tetsuya; Funayama, Tomoo

    2008-01-01

    Classical studies on root hydrotropism have hypothesized the importance of columella cells as well as the de novo gene expression, such as auxin-inducible gene, at the elongation zone in hydrotropism; however, there has been no confirmation that columella cells or auxin-mediated signaling in the elongation zone are necessary for hydrotropism. We examined the role of root cap and elongation zone cells in root hydrotropism using heavy-ion and laser microbeam. Heavy-ion microbeam irradiation of the elongation zone, but not that of the columella cells, significantly and temporarily suppressed the development of hydrotropic curvature. However, laser ablation confirmed that columella cells are indispensable for hydrotropism. Systemic heavy-ion broad-beam irradiation suppressed de novo expression of INDOLE ACETIC ACID 5 gene, but not MIZU-KUSSEI1 gene. Our results indicate that both the root cap and elongation zone have indispensable and functionally distinct roles in root hydrotropism, and that de novo gene expression might be required for hydrotropism in the elongation zone, but not in columella cells. (author)

  18. Radiobiological experiments at the Munich ion microbeam SNAKE

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, A.A.; Drexler, G.A.; Loewe, R. [Strahlenbiologisches Inst., Ludwig-Maximilians-Univ. Muenchen (Germany); Dollinger, G.; Hauptner, A.; Hable, V.; Greubel, C.; Kruecken, R. [Physik Dept. E12, Technische Univ. Muenchen, Garching (Germany); Cremer, T.; Dietzel, S. [Dept. Biologie II, Ludwig-Maximilians-Univ. Muenchen, Planegg-Martinsried (Germany)

    2005-07-01

    The ion microbeam SNAKE at the Munich 14 MV tandem accelerator was recently adapted for irradiation of cells and is now routinely used for radiobiological experiments. Several features, including ion-optical beam focussing to achieve a targeting accuracy of about 500 nm, fast movement of the beam by electrostatic deflection and single ion preparation make SNAKE an excellent tool for localized irradiation with a defined number of ions. The ion spectrum available ranges from 20 MeV protons to 200 MeV gold ions, thus allowing to vary the LET over four orders of magnitude and to conduct low and high LET irradiation in a single experimental set-up. This offers the possibility of a systematic analysis of the cellular response mechanisms in their dependence on dose and LET. Other current lines of research include analysis of the spatio-temporal dynamics of protein recruitment at damaged chromatin sites and determination of the mobility of damaged chromatin regions in the interphase nucleus. (orig.)

  19. Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics

    International Nuclear Information System (INIS)

    Mitchell, Gabriel J; Weitz, Joshua S; Nelson, Daniel C

    2010-01-01

    The number of microbial pathogens resistant to antibiotics continues to increase even as the rate of discovery and approval of new antibiotic therapeutics steadily decreases. Many researchers have begun to investigate the therapeutic potential of naturally occurring lytic enzymes as an alternative to traditional antibiotics. However, direct characterization of lytic enzymes using techniques based on synthetic substrates is often difficult because lytic enzymes bind to the complex superstructure of intact cell walls. Here we present a new standard for the analysis of lytic enzymes based on turbidity assays which allow us to probe the dynamics of lysis without preparing a synthetic substrate. The challenge in the analysis of these assays is to infer the microscopic details of lysis from macroscopic turbidity data. We propose a model of enzymatic lysis that integrates the chemistry responsible for bond cleavage with the physical mechanisms leading to cell wall failure. We then present a solution to an inverse problem in which we estimate reaction rate constants and the heterogeneous susceptibility to lysis among target cells. We validate our model given simulated and experimental turbidity assays. The ability to estimate reaction rate constants for lytic enzymes will facilitate their biochemical characterization and development as antimicrobial therapeutics

  20. Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics.

    Science.gov (United States)

    Mitchell, Gabriel J; Nelson, Daniel C; Weitz, Joshua S

    2010-10-04

    The number of microbial pathogens resistant to antibiotics continues to increase even as the rate of discovery and approval of new antibiotic therapeutics steadily decreases. Many researchers have begun to investigate the therapeutic potential of naturally occurring lytic enzymes as an alternative to traditional antibiotics. However, direct characterization of lytic enzymes using techniques based on synthetic substrates is often difficult because lytic enzymes bind to the complex superstructure of intact cell walls. Here we present a new standard for the analysis of lytic enzymes based on turbidity assays which allow us to probe the dynamics of lysis without preparing a synthetic substrate. The challenge in the analysis of these assays is to infer the microscopic details of lysis from macroscopic turbidity data. We propose a model of enzymatic lysis that integrates the chemistry responsible for bond cleavage with the physical mechanisms leading to cell wall failure. We then present a solution to an inverse problem in which we estimate reaction rate constants and the heterogeneous susceptibility to lysis among target cells. We validate our model given simulated and experimental turbidity assays. The ability to estimate reaction rate constants for lytic enzymes will facilitate their biochemical characterization and development as antimicrobial therapeutics.

  1. In situ macromolecular crystallography using microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny; Owen, Robin L.; Aishima, Jun [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Morgan, Ann W.; Robinson, James I. [University of Leeds, Leeds LS9 7FT (United Kingdom); Nettleship, Joanne E.; Owens, Raymond J. [Research Complex at Harwell, Rutherford Appleton Laboratory R92, Didcot, Oxfordshire OX11 0DE (United Kingdom); Moraes, Isabel [Imperial College, London SW7 2AZ (United Kingdom); Fry, Elizabeth E.; Grimes, Jonathan M.; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S. [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Stuart, David I. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2012-04-17

    A sample environment for mounting crystallization trays has been developed on the microfocus beamline I24 at Diamond Light Source. The technical developments and several case studies are described. Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams.

  2. Negative Knudsen force on heated microbeams

    KAUST Repository

    Zhu, Taishan

    2011-11-18

    Knudsen force acting on a heated microbeam adjacent to a cold substrate in a rarefied gas is a mechanical force created by unbalanced thermal gradients. The measured force has its direction pointing towards the side with a lower thermal gradient and its magnitude vanishes in both continuum and free-molecule limits. In our previous study, negative Knudsen forces were discovered at the high Knudsen regime before diminishing in the free-molecule limit. Such a phenomenon was, however, neither observed in experiment [A. Passian et al., Phys. Rev. Lett. 90, 124503 (2003)], nor captured in the latest numerical study [J. Nabeth et al., Phys. Rev. E 83, 066306 (2011)]. In this paper, the existence of such a negative Knudsen force is further confirmed using both numerical simulation and theoretical analysis. The asymptotic order of the Knudsen force near the collisionless limit is analyzed and the analytical expression of its leading term is provided, from which approaches for the enhancement of negative Knudsen forces are proposed. The discovered phenomenon could find its applications in novel mechanisms for pressure sensing and actuation.

  3. In situ macromolecular crystallography using microbeams

    International Nuclear Information System (INIS)

    Axford, Danny; Owen, Robin L.; Aishima, Jun; Foadi, James; Morgan, Ann W.; Robinson, James I.; Nettleship, Joanne E.; Owens, Raymond J.; Moraes, Isabel; Fry, Elizabeth E.; Grimes, Jonathan M.; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S.; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    A sample environment for mounting crystallization trays has been developed on the microfocus beamline I24 at Diamond Light Source. The technical developments and several case studies are described. Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams

  4. Analysis of metallic pigments by ion microbeam

    International Nuclear Information System (INIS)

    Pelicon, P.; Klanjsek-Gunde, M.; Kunaver, M.; Simcic, J.; Budnar, M.

    2002-01-01

    Metallic paints consist of metallic flakes dispersed in a resinous binder, i.e. a light-element polymer matrix. The spatial distribution and orientation of metallic flakes inside the matrix determines the covering efficiency of the paint, glossiness, and its angular-dependent properties such as lightness flop or color flop (two-tone). Such coatings are extensively used for a functional (i.e. security) as well as decorative purpose. The ion microbeam analysis of two types of silver paint with imbedded metallic flakes has been performed to determine the spatial distribution of the aluminum flakes in paint layer. The average sizes of the aluminum flakes were 23 μm (size distribution 10-37) and 49 μm (size distribution 34-75), respectively. The proton beam with the size of 2x2 μm 2 at Ljubljana ion microprobe has been used to scan the surface of the pigments. PIXE mapping of Al Kα map shows lateral distribution of the aluminum flakes, whereas the RBS slicing method reveals tomograms of the flakes in uppermost 7 μm of the pigment layer. The series of point analysis aligned over the single flake reveal the flake angle in respect to the polymer matrix surface. The angular sensitivity is well below 1 angular degree

  5. Applications of High-Throughput Clonogenic Survival Assays in High-LET Particle Microbeams.

    Science.gov (United States)

    Georgantzoglou, Antonios; Merchant, Michael J; Jeynes, Jonathan C G; Mayhead, Natalie; Punia, Natasha; Butler, Rachel E; Jena, Rajesh

    2015-01-01

    Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-linear energy transfer (LET) particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells' clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells' response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell's capacity to divide at least four to five times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  6. Techniques and multi-disciplinary applications of ion microbeam

    International Nuclear Information System (INIS)

    Du Guanghua

    2012-01-01

    Beam of MeV ions form particle accelerators can be confined by collimators or focused by electrical/magnetic quadruples into micrometer size, and this microbeam can be used to obtain spatial information or radiation effect in solids and biological samples. This paper reviews the technical developments and the multi-disciplinary applications of microbeam, including ion beam analysis, single event effect in semiconductor devices, proton beam writing and cellular response to targeted particle irradiations. Finally, the high-energy heavy-ion microbeam facility at the Institute of Modern Physics of Chinese Academy of Sciences is introduced, which has successfully focused 1 GeV Carbon ions into a beam spot of 1 μm × 2 μm in air. (authors)

  7. Nanoscale and submicron fatigue crack growth in nickel microbeams

    International Nuclear Information System (INIS)

    Yang, Y.; Yao, N.; Imasogie, B.; Soboyejo, W.O.

    2007-01-01

    This paper presents a novel edge-notched microbeam technique for the study of short fatigue crack growth. The technique is used to study submicron and nanoscale fatigue in LIGA Ni thin films with columnar microstructures. The edge-notched microbeams were fabricated within LIGA Ni thin films, using focused ion beam (FIB) techniques. The microbeams were then cyclically deformed to failure at a stress ratio of 0.1. Different slip-band structures were observed below the nanoscale notches. Cyclic deformation resulted in the formation of primary slip bands below the notch. Subsequent crack growth then occurred by the unzipping of fatigue cracks along intersecting slip bands. The effects of the primary slip bands were idealized using dislocation-based models. These were used to estimate the intrinsic fatigue threshold and the fatigue endurance limit. The estimates from the model are shown to be consistent with experimental data from prior stress-life experiments and current/prior fatigue threshold estimates

  8. Improvement of the Energy Stability of the Single Ion Microbeam

    International Nuclear Information System (INIS)

    Zhan Furu; Qi Xuehong; Xu Mingliang; Chen Lianyun; Yu Zengliang

    2008-01-01

    Energy instability strongly affects the state and the beam size of the single ion microbeam. A facility based on the Generating Voltmeter was developed to improve the energy stability of the CAS-LIBB (Chinese Academy of Sciences, key laboratory of ion beam bioengineering) single ion microbeam. This paper presents the analysis of the energy instability of the single ion microbeam. A simplified theoretical model is set up to calculate the relationship between the energy instability and the beam spot size. By using this technique, the energy instability is adjusted to about 1%. Stable run-time is over 6 hours. The radius of the single ion beam is reduced by 10% compared to the previous one.

  9. Light ion microbeam analysis / processing system and its improvement

    International Nuclear Information System (INIS)

    Koka, Masashi; Ishii, Yasuyuki; Yamada, Naoto; Ohkubo, Takeru; Kamiya, Tomihiro; Satoh, Takahiro; Kada, Wataru; Kitamura, Akane; Iwata, Yoshihiro

    2016-03-01

    A MeV-class light ion microbeam system has been developed for micro-analysis and micro-fabrication with high spatial resolution at 3-MV single-ended accelerator in Takasaki Ion Accelerators for Advanced Radiation Application of Takasaki Advanced Radiation Research Institute, Sector of Nuclear Science Research, Japan Atomic Energy Agency. This report describes the technical improvements for the main apparatus (the accelerator, beam-transport lines, and microbeam system), and auxiliary equipments/ parts for ion beam applications such as Particle Induced X-ray/Gamma-ray Emission (PIXE/PIGE) analysis, 3-D element distribution analysis using PIXE Computed Tomography (CT), Ion Beam Induced Luminescence (IBIL) analysis, and Proton Beam Writing with the microbeam scanning, with functional outline of these apparatus and equipments/parts. (author)

  10. Lysis of typhus-group rickettsia-infected targets by lymphokine activated killers

    International Nuclear Information System (INIS)

    Carl, M.; Dasch, G.A.

    1986-01-01

    The authors recently described a subset of OKT8, OKT3-positive lymphocytes from typhus-group rickettsia immune individuals which were capable of lysing autologous PHA-blasts or Epstein-Barr virus transformed B cells (LCL) infected with typhus-group rickettsiae. In order to determine if killing by these effectors was HLA-restricted, they stimulated peripheral blood mononuclear cells (PBMC) from typhus-group rickettsia immune individuals in vitro with typhus-group rickettsia-derived antigen for one week and then measured lysis of autologous LCL or HLA-mismatched LCL in a 4-6 hour Cr 51 -release assay. There was significant lysis of both the autologous and the HLA-mismatched infected targets as compared to the corresponding uninfected targets. Since this suggested that the effectors were lymphokine activated killers (LAK) rather than cytotoxic T lymphocytes, they then tested this hypothesis by stimulating PBMC from both immune and non-immune individuals in vitro for one week with purified interleukin 2 and measuring lysis of infected, autologous LCL. PBMC thus treated, from both immune and non-immune individuals, were capable of significantly lysing autologous, infected LCL as compared to the non-infected control. They therefore conclude that targets infected with typhus-group rickettsiae are susceptible to lysis to LAK

  11. Applications of high-throughput clonogenic survival assays in high-LET particle microbeams

    Directory of Open Access Journals (Sweden)

    Antonios eGeorgantzoglou

    2016-01-01

    Full Text Available Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-LET particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells’ clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells’ response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell’s capacity to divide at least 4-5 times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  12. A mechanism of acquired resistance to complement-mediated lysis by Entamoeba histolytica.

    Science.gov (United States)

    Gutiérrez-Kobeh, L; Cabrera, N; Pérez-Montfort, R

    1997-04-01

    Some Entamoeba histolytica strains resist complement-mediated lysis by serum. Susceptible and resistant strains activate the complement system equivalently, but resistant amebas evade killing by membrane attack complexes. Our objective was to determine the mechanism by which trophozoites of E. histolytica resist lysis by human serum. Amebas were made resistant to lysis by incubation with increasing concentrations of normal human serum. The possibility that resistant cells ingest membrane attack complexes was explored by subcellular fractionation of susceptible and resistant trophozoites treated with sublytic concentrations of human serum containing radiolabeled C9. In both cases, most of the label was in the fractions containing plasma membrane. The susceptible strain consistently showed more label associated with these fractions than the resistant strain. Thus, the possibility that the membrane attack complexes were released to the medium was explored. Both resistant and susceptible trophozoites release to the medium similar amounts of material excluded by Sepharose CL-2B in the presence or absence of normal human serum. Labeled C9 elutes together with the main bulk of proteins from the medium: this indicates that it is not in vesicles or high molecular weight aggregates. Coincubation of susceptible amebas with lysates of resistant trophozoites confers resistance to susceptible cells within 30 min. Resistance to lysis by serum can also be acquired by susceptible amebas after coincubation with lysates from human erythrocytes or after feeding them with whole human red blood cells. Resistant but not susceptible trophozoites show intense immunofluorescent staining on their surface with anti-human erythrocytic membrane antibody. These results suggest that amebas acquire resistance to lysis by serum by incorporating into their membranes complement regulatory proteins.

  13. Virus-specific HLA-restricted lysis of herpes simplex virus-infected human monocytes and macrophages mediated by cytotoxic T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Torpey, D.J. III

    1987-01-01

    Freshly-isolated peripheral blood human monocytes and 5 day in vitro cultured macrophages were infected with herpes simplex virus type 1 (HSV-1), labeled with /sup 51/Cr, and used as target cells in a 12-14 hour cell-mediated cytotoxicity assay. Mononuclear leukocytes (MNL) from HSV-1 non-immune individuals, whether unstimulated or stimulated with HSV-1 antigen, did not mediate significant lysis of either target cell. HSV-immune MNL, both freshly-isolated and cultured for 5 days without antigen, demonstrated only low levels of natural killer (NK) cell-mediate lysis. MNL from HSV-immune individuals incubated for 5 days in vitro with HSV-1 antigen mediated significant virus-specific lysis of both target cells. Mean virus-specific lysis of autologous monocytes was 8.5(/+-/2.0)% compared to a three-fold greater virus-specific lysis of autologous macrophages. Greater than 70% of this lytic activity was mediated by Leu-11-negative, T3-positive cytotoxic T lymphocytes (CTL). Allogeneic target cells lacking a common HLA determinant were not significantly lysed while T8-positive CTL mediated infrequent lysis of target cells sharing a common HLA-A and/or HLA-B determinant. T4-positive lymphocytes were demonstrated to be the predominant cell mediating lysis of autologous target cells and allogeneic target cells sharing both HLA-A and/or HLA-B plus HLA-DR determinants with the CTL; the T4-positive cell was the sole CTL mediator of lysis of allogeneic target cells having a common HLA-DR determinant.

  14. Virus-specific HLA-restricted lysis of herpes simplex virus-infected human monocytes and macrophages mediated by cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Torpey, D.J. III.

    1987-01-01

    Freshly-isolated peripheral blood human monocytes and 5 day in vitro cultured macrophages were infected with herpes simplex virus type 1 (HSV-1), labeled with 51 Cr, and used as target cells in a 12-14 hour cell-mediated cytotoxicity assay. Mononuclear leukocytes (MNL) from HSV-1 non-immune individuals, whether unstimulated or stimulated with HSV-1 antigen, did not mediate significant lysis of either target cell. HSV-immune MNL, both freshly-isolated and cultured for 5 days without antigen, demonstrated only low levels of natural killer (NK) cell-mediate lysis. MNL from HSV-immune individuals incubated for 5 days in vitro with HSV-1 antigen mediated significant virus-specific lysis of both target cells. Mean virus-specific lysis of autologous monocytes was 8.5(/+-/2.0)% compared to a three-fold greater virus-specific lysis of autologous macrophages. Greater than 70% of this lytic activity was mediated by Leu-11-negative, T3-positive cytotoxic T lymphocytes (CTL). Allogeneic target cells lacking a common HLA determinant were not significantly lysed while T8-positive CTL mediated infrequent lysis of target cells sharing a common HLA-A and/or HLA-B determinant. T4-positive lymphocytes were demonstrated to be the predominant cell mediating lysis of autologous target cells and allogeneic target cells sharing both HLA-A and/or HLA-B plus HLA-DR determinants with the CTL; the T4-positive cell was the sole CTL mediator of lysis of allogeneic target cells having a common HLA-DR determinant

  15. Supercritical nonlinear parametric dynamics of Timoshenko microbeams

    Science.gov (United States)

    Farokhi, Hamed; Ghayesh, Mergen H.

    2018-06-01

    The nonlinear supercritical parametric dynamics of a Timoshenko microbeam subject to an axial harmonic excitation force is examined theoretically, by means of different numerical techniques, and employing a high-dimensional analysis. The time-variant axial load is assumed to consist of a mean value along with harmonic fluctuations. In terms of modelling, a continuous expression for the elastic potential energy of the system is developed based on the modified couple stress theory, taking into account small-size effects; the kinetic energy of the system is also modelled as a continuous function of the displacement field. Hamilton's principle is employed to balance the energies and to obtain the continuous model of the system. Employing the Galerkin scheme along with an assumed-mode technique, the energy terms are reduced, yielding a second-order reduced-order model with finite number of degrees of freedom. A transformation is carried out to convert the second-order reduced-order model into a double-dimensional first order one. A bifurcation analysis is performed for the system in the absence of the axial load fluctuations. Moreover, a mean value for the axial load is selected in the supercritical range, and the principal parametric resonant response, due to the time-variant component of the axial load, is obtained - as opposed to transversely excited systems, for parametrically excited system (such as our problem here), the nonlinear resonance occurs in the vicinity of twice any natural frequency of the linear system; this is accomplished via use of the pseudo-arclength continuation technique, a direct time integration, an eigenvalue analysis, and the Floquet theory for stability. The natural frequencies of the system prior to and beyond buckling are also determined. Moreover, the effect of different system parameters on the nonlinear supercritical parametric dynamics of the system is analysed, with special consideration to the effect of the length-scale parameter.

  16. Bystander-induced apoptosis and premature differentiation in primary urothelial explants after charged particle microbeam irradiation

    International Nuclear Information System (INIS)

    Belyakov, O.V.; Folkard, M.; Mothersill, C.; Prise, K.M.; Michael, B.D.

    2002-01-01

    The ureter primary explant technique was developed to study bystander effects under in vivo like conditions where stem and differentiated cells are present. Irradiation was performed with a 3 He 2+ charged particle microbeam available at the Gray Cancer Institute, with high (∼2 μm) precision. Tissue sections from porcine ureters were pre-irradiated with the microbeam at a single location with 10 3 He 2+ particles (5 MeV; LET 70 keV.μm -1 ). After irradiation, the tissue section was incubated for 7 days, thus allowing the explant outgrowth to form. Total cellular damage (total fraction of micronucleated and apoptotic cells) was measured according to morphological criteria. Apoptosis was also assessed using a 3'-OH DNA end-labelling technique. Premature differentiation was estimated using antibodies to uroplakin III, a specific marker of terminal urothelial differentiation. Results of our experiments demonstrated a significant bystander-induced differentiation and a less significant increase in apoptotic and micronucleated cells. A hypothesis based on the protective nature of the bystander effect is proposed. (author)

  17. 21 CFR 864.7275 - Euglobulin lysis time tests.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Euglobulin lysis time tests. 864.7275 Section 864.7275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7275 Euglobulin lysis...

  18. A self-lysis pathway that enhances the virulence of a pathogenic bacterium.

    Science.gov (United States)

    McFarland, Kirsty A; Dolben, Emily L; LeRoux, Michele; Kambara, Tracy K; Ramsey, Kathryn M; Kirkpatrick, Robin L; Mougous, Joseph D; Hogan, Deborah A; Dove, Simon L

    2015-07-07

    In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system.

  19. A proton microbeam deflection system to scan target surfaces

    International Nuclear Information System (INIS)

    Heck, D.

    1978-12-01

    A system to deflect the proton beam within the Karlsruhe microbeam setup is described. The deflection is achieved whithin a transverse electrical field generated between parallel electrodes. Their tension is controlled by a pattern generator, thus enabling areal and line scans with a variable number of scan points at variable scan speed. The application is demonstrated at two different examples. (orig.) [de

  20. Dynamic Characteristics of Electrostatically Actuated Microbeams with Slant Crack

    Directory of Open Access Journals (Sweden)

    Han Zhou

    2015-01-01

    Full Text Available An improved model of the slant crack on a microbeam is presented. Based on fracture mechanics, the rotation coefficient for the slant crack is derived as a massless rotational spring accounting for the additional stress intensity factors generated by the orientation of the crack compared to the transverse crack. Comparisons between microbeams with a slant crack of different geometry parameters (slant angle, depth ratio, and crack position are investigated with regard to the dynamic mechanical behaviors and nonlinear response. By presenting a mathematical modeling, the effects of the slant crack and the electric actuation of an electrostatically actuated fixed-fixed microbeam on the dynamic characteristics are examined in detail. It is shown that the crack position has more significant influence on the pull-in voltage value than the slant angle or the depth ratio. Approaching the slant crack to the fixed end or enlarging the external incentives amplifies the nonlinearity of the microbeam system, while the effects of depth ratio and slant angle are dependent on the crack position. The resonance frequency and the resonance amplitude are affected as well.

  1. Electrical lysis: dynamics revisited and advances in On-chip operation.

    Science.gov (United States)

    Morshed, Bashir; Shams, Maitham; Mussivand, Tofy

    2013-01-01

    Electrical lysis (EL) is the process of breaking the cell membrane to expose the internal contents under an applied high electric field. Lysis is an important phenomenon for cellular analysis, medical treatment, and biofouling control. This paper aims to review, summarize, and analyze recent advancements on EL. Major databases including PubMed, Ei Engineering Village, IEEE Xplore, and Scholars Portal were searched using relevant keywords. More than 50 articles published in English since 1997 are cited in this article. EL has several key advantages compared to other lysis techniques such as chemical, mechanical, sonication, or laser, including rapid speed of operation, ability to control, miniaturization, low cost, and low power requirement. A variety of cell types have been investigated for including protoplasts, E. coli, yeasts, blood cells, and cancer cells. EL has been developed and applied for decontamination, cytology, genetics, single-cell analysis, cancer treatment, and other applications. On-chip EL is a promising technology for multiplexed automated implementation of cell-sample preparation and processing with micro- or nanoliter reagents.

  2. Heavy ion microbeam system for study of single event effects

    International Nuclear Information System (INIS)

    Kamiya, Tomihiro; Utsunomiya, Nobuhiro; Minehara, Eiichi; Tanaka, Ryuichi; Ohmura, Miyoshi; Kohno, Kazuhiro; Iwamoto, Eiji.

    1992-01-01

    A high-energy heavy ion microbeam system has been developed and installed on a beam line of a 3 MV tandem electrostatic accelerator mainly for analysis of basic mechanism of single event upset (SEU) of semiconductor devices in spacecraft. The SEU is now the most serious problem for highly reliable spacecraft electronics system with long space mission. However, the mechanism has not been understood on the basis of microscopic process of SEU. The SEU phenomena depends not only upon hitting particles, but also upon the hit position on the microcircuit. To observe the transient charge pulse from a SEU, a single ion particle must hit exactly the desired position of the microcircuit. Such an experiment requires the microbeam spot size within 1 μm, the beam positioning accuracy within ±1 μm, and single ion hitting. The microbeam system has been designed to meet the above technical requirements. The system is equipped with two lens systems: one to control the target beam current in a wide range down to extremely low current without any change of the beam optics, and the other to focus heavy ion beams within a spot size of 1 μm. The final goal is to hit a microscopic target area with a single 15 MeV nickel ion. The beam spot size has been evaluated by Gaussian fitting of secondary electron profiles with microbeam scanning across the fine Cu mesh. The single ion detection has been also tested to generate a trigger signal for closing beam shutter to prevent further hits. This paper outlines the new microbeam system and describes methods to realize these techniques. (author)

  3. The Columbia University proton-induced soft x-ray microbeam.

    Science.gov (United States)

    Harken, Andrew D; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2011-09-15

    A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K(α) 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 μm × 50 μm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced x-rays from this spot project a 50 μm round x-ray generation spot into the vertical direction. The x-rays are focused to a spot size of 5 μm in diameter using a Fresnel zone plate. The x-rays have an attenuation length of (1/e length of ~145 μm) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultra soft x-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments.

  4. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    Science.gov (United States)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-04-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a- Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two ''control plates'' are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (glass/water) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  5. Static Response of Microbeams due to Capillary and Electrostatic Forces

    KAUST Repository

    Bataineh, Ahmad M.

    2016-03-07

    Micro-sensors or micro-switches usually operate under the effect of electrostatic force and could face some environmental effects like humidity, which may lead to condensation underneath the beams and create strong capillary forces. Those tiny structures are principally made of microbeams that can undergo instabilities under the effect of those created huge capillary forces. In fact, during the fabrication of microbeams, there is an important step to separate the beam from its substrate (wet etching). After this step, the microstructure is dried, which may causes the onset of some droplets of water trapped underneath the beam that could bring about a huge capillary force pulling it toward its substrate. If this force is bigger than the microbeam\\'s restoring force, it will become stuck to the substrate. This paper investigates the instability scenarios of both clamped-clamped (straight and curved) and cantilever (straight and curled) microbeams under the effect of capillary and/or electrostatic forces. The reduced order modeling (ROM) based on the Galerkin procedure is used to solve the nonlinear beam equations. The non-ideal boundaries are modeled by adding springs. The volume of the fluid between the beam and the substrate underneath it is varied and the relation between the volume of the water and the stability of the beam is shown. An analysis for the factors of which should be taken in to consideration in the fabrication processes to overcome the instability due to huge capillary forces is done. Also the size of the electrode for the electrostatic force is varied to show the effect on the micro-switch stability. A variation of the pull-in voltage with some specific beam parameters and with more than one case of electrode size is shown. It is found that capillary forces have a pronounced effect on the stability of microbeams. It is also found that the pull-in length decreases as the electrode size increases. It is also shown that the pull-in voltage decreases

  6. A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection

    Science.gov (United States)

    2015-09-01

    ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for...ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for Chemical...TITLE AND SUBTITLE A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  7. Heavy Ion Microbeam- and Broadbeam-Induced Current Transients in SiGe HBTs

    Science.gov (United States)

    Pellish, Jonathan A.; Reed, R. A.; McMorrow, D.; Vizkelethy, G.; Ferlet-Cavrois, V.; Baggio, J.; Duhamel, O.; Moen, K. A.; Phillips, S. D.; Diestelhorst, R. M.; hide

    2009-01-01

    IBM 5AM SiGe HBT is device-under-test. High-speed measurement setup. Low-impedance current transient measurements. SNL, JYFL, GANIL. Microbeam to broadbeam position inference. Improvement to state-of-the-art. Microbeam (SNL) transients reveal position dependent heavy ion response, Unique response for different device regions Unique response for different bias schemes. Similarities to TPA pulsed-laser data. Broadbeam transients (JYFL and GANIL) provide realistic heavy ion response. Feedback using microbeam data. Overcome issues of LET and ion range with microbeam. **Angled Ar-40 data in full paper. Data sets yield first-order results, suitable for TCAD calibration feedback.

  8. Multifrequency Excitation of a Clamped-Clamped Microbeam

    KAUST Repository

    Jaber, Nizar R.

    2016-01-20

    We present analytical and experimental investigation of an electrically actuated clamped-clamped microbeam under a twosource harmonic excitation. The first frequency is swept around the first mode of vibration where the second one is fixed. These microbeams are fabricated using polyimide as structural layer coated with nickel form top and chromium and gold layers from bottom. We demonstrate the excitation of additive and subtractive type resonance. We show that by properly tuning the frequency and the amplitude of the excitation force, the frequency bandwidth of the resonator is increased. Theoretically, we solved the eigenvalue problem for different axial forces to find the natural frequencies ratio that match the experimental values. Using Galerkin method, a reduced order model is derived to simulate the static and dynamic response of the device where using three symmetric mode shapes provided a good agreement with experimental data. © Copyright 2015 by ASME.

  9. Converse flexoelectric effect in comb electrode piezoelectric microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zhiyuan, E-mail: shenyuan675603@gmail.com [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Chen, Wei [Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore)

    2012-04-09

    We demonstrate the converse flexoelectric effect in a lead zirconate titanate microbeam. The fringe electric field of a comb electrode induces converse flexoelectric responses in uniformly poled and depoled beams. The simulated electric field distribution shows that bending of the beam is induced by piezoelectric and μ{sub 11}, μ{sub 12} flexoelectric coefficients. Simulations indicate that piezoelectric displacement occurs in different directions in the two opposite poled samples while flexoelectric displacement remains the same. This finding is verified by the displacement measurement results. -- Highlights: ► We demonstrate the converse flexoelectric effect in a PZT microbeam. ► Beams with upward and downward poling states are fabricated by MEMS technique. ► Converse flexoelectric deformation is induced by the fringe field. ► Electric field distribution is calculated by finite element analysis. ► The simulation results are verified by impedance and displacement measurements.

  10. Extended abstracts: Microbeam Probes of Cellular Radiation Response [final report

    International Nuclear Information System (INIS)

    Brenner, David J.

    2000-01-01

    In July 1999, we organized the 4th International Workshop: Microbeam Probes of Cellular Radiation Response, held in Killiney Bay, Dublin, Ireland, on July 17-18. Roughly 75 scientists (about equal numbers of physicists and biologists) attended the workshop, the fourth in a bi-annual series. Extended abstracts from the meeting were published in the Radiation Research journal, vol. 153, iss. 2, pp. 220-238 (February 2000)(attached). All the objectives in the proposal were met

  11. Study of the phage production efficiency in the bacteria lysis processes

    International Nuclear Information System (INIS)

    Vidania Munoz, R. de; Garces, F.; Davila, C. A.

    1979-01-01

    In this work we present a search for the best production conditions of λvir andλ clear phages In E coli K12 and E coli C 6 00 infected cells respectively. By keeping fixed some parameters of the process as the bacterial and phage generation times and (he bacterial burst side, we have finder that the lysis yield is strongly dependent on the multiplicity and in a lesser degree on the infection time. It appears from the experimental results that other variables are important, as infection efficiency and approach time from phages to bacteria. We will try to describe the lysis phenomenon by a numerical model on the bases of the se experimental results. (Author) 11 refs

  12. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    Science.gov (United States)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  13. Alpha-particles microbeam irradiation: impact of reactive oxygen species in bystander effect

    International Nuclear Information System (INIS)

    Hanot, M.

    2008-11-01

    Ionizing radiation-induced bystander effects arise in bystander cells that receive signals from directly irradiated cells. To date, free radicals are believed to play an active role in the bystander response, but this is incompletely characterized. To mark temporal and spatial impacts of bystander effect, we employed a precise α-particle microbeam to target a small fraction of sub-confluent osteoblastic cell cultures (MC3T3-E1). We identified the cellular membrane and mitochondria like two distinct places generating reactive oxygen species. The global oxidative stress observed after irradiation was significantly attenuated after filipin treatment, evidencing the pivotal role of membrane in MC3T3-E1 cells bystander response. To determine impact of bystander effect at a cell level, cellular consequences of this membrane-dependant bystander effect were then investigated. A variable fraction of the cell population (10 to 100%) was individually targeted. In this case, mitotic death and micronuclei yield both increased in bystander cells as well as in targeted cells demonstrating a role of bystander signals between irradiated cells in an autocrine or paracrine manner. Our results indicate a complex interaction of direct irradiation and bystander signals that lead to a membrane-dependant amplification of cell responses. (author)

  14. Study of transient current induced by heavy-ion microbeams in Si and GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hirao, Toshio; Nashiyama, Isamu; Kamiya, Tomihiro; Suda, Tamotu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy-ion microbeams were applied to the study of mechanism of single event upset (SEU). Transient current induced in p{sup +}n junction diodes by strike of heavy ion microbeam were measured by using a high-speed digitizing sampling system. (author)

  15. Role of the SRRz/Rz1 lambdoid lysis cassette in the pathoadaptive evolution of Shigella.

    Science.gov (United States)

    Leuzzi, Adriano; Grossi, Milena; Di Martino, Maria Letizia; Pasqua, Martina; Micheli, Gioacchino; Colonna, Bianca; Prosseda, Gianni

    2017-06-01

    Shigella, the etiological agent of bacillary dysentery (shigellosis), is a highly adapted human pathogen. It evolved from an innocuous ancestor resembling the Escherichia coli strain by gain and loss of genes and functions. While the gain process concerns the acquisition of the genetic determinants of virulence, the loss is related to the adaptation of the genome to the new pathogenic status and occurs by pathoadaptive mutation of antivirulence genes. In this study, we highlight that the SRRz/Rz 1 lambdoid lysis cassette, even though stably adopted in E. coli K12 by virtue of its beneficial effect on cell physiology, has undergone a significant decay in Shigella. Moreover, we show the antivirulence nature of the SRRz/Rz 1 lysis cassette in Shigella. In fact, by restoring the SRRz/Rz 1 expression in this pathogen, we observe an increased release of peptidoglycan fragments, causing an unbalance in the fine control exerted by Shigella on host innate immunity and a mitigation of its virulence. This strongly affects the virulence of Shigella and allows to consider the loss of SRRz/Rz 1 lysis cassette as another pathoadaptive event in the life of Shigella. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    Science.gov (United States)

    Harken, Andrew; Randers-Pehrson, Gerhard; Attinger, Daniel; Brenner, David J.

    2013-01-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University’s Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm – 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H+), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles (4He++). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms. PMID:24058378

  17. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    International Nuclear Information System (INIS)

    Grad, M; Harken, A; Randers-Pehrson, G; Brenner, D J; Attinger, D

    2012-01-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University's Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm - 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H + ), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles ( 4 He ++ ). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms.

  18. Lysis of Gymnodinium breve by cultures of the green alga Nannochloris eucaryotum.

    Science.gov (United States)

    Pérez, E; Sawyers, W G; Martin, D F

    2001-01-01

    Laboratory cultures of Florida's red tide organism, Gymnodinium breve, were killed by the green alga Nannochloris eucaryotum. Studies involved organism-organism interaction as well as organism-cell-free culture (N. eucaryotum) interaction. Both studies demonstrated that N. eucaryotum adversely affected Florida's red tide organism. The lysis has been attributed to compounds called APONINs (apparent oceanic naturally occurring cytolins). N. eucaryotum crude APONIN was extracted from cell-free cultures, partially purified and fractionated. The fractions were bioassayed against G. breve, and 'fingerprints' of the deleterious fractions were obtained.

  19. MOSFET dosimetry of the radiation therapy microbeams at the European synchrotron radiation facility

    International Nuclear Information System (INIS)

    Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: We have developed an innovative on-line MOSFET readout system for use in the quality assurance of radiation treatment beams. Recently the system has found application in areas where excellent spatial resolution is also a requirement in the quality assurance process, for example IMRT, and microbeam radiation therapy. The excellent spatial resolution is achieved by using a quadruple RADFET TM chip in 'edge on' mode. In developing this approach we have found that the system can be utilised to determine any error in the beam profile measurements due to misalignment of RADFET with respect to the radiation beam or microbeam. Using this approach will ensure that the excellent spatial resolution of the RADFET used in 'edge-on' mode is fully utilised. In this work we report on dosimetry measurements performed at the microbeam radiation therapy beamline located at the European Synchrotron Radiation Facility. The synchrotron planar array microbeam with size 10-30 μm and pitch ∼200 μm has found an important application in microbeam radiation therapy (MRT) of brain tumours in infants for whom other kinds of radiotherapy are inadequate and/or unsafe. The radiation damage from an array of parallel microbeams correlates strongly with the range of peak-valley dose ratios (PVDR), ie, the range of the ratio of the absorbed dose to tissue directly in line with the mid-plane of the microbeam to that in the mid-plane between adjacent microbeams. Novel physical dosimetry of the microbeams using the online MOSFET reader system will be presented. Comparison of the experimental results with both GaF film measurements and Monte Carlo computer-simulated dosimetry are described here for selected points in the peak and valley regions of a microbeam-irradiated tissue phantom

  20. The role of the micronucleus in stomatogenesis in sexual reproduction of Paramecium tetraurelia: laser microbeam irradiation of the micronucleus

    International Nuclear Information System (INIS)

    Tam Laiwa; Ng, S.F.

    1986-01-01

    Fifteen amicronucleate cell lines and 22 cell lines with defective micronuclei were obtained following selective laser microbeam irradiation of the micronucleus. The amicronucleate cell lines showed reduced growth rate and formed abnormal oral apparatuses in asexual reproduction, and failed to produce any oral apparatus in autogamy. The 22 cell lines with defective micronucleus exhibited various abnormalities of the oral apparatus newly formed during autogamy. These abnormalities included the arrest of membranelle assembly, reduction in the length of the buccal cavity and oral membranelles, disruption of the organization of the membranelles, quadrulation of the dorsal peniculus, and failure of addition of membranellar basal body rows. Hence the micronucleus plays multiple roles in sexual stomatogenesis. Our results agree with the notion that the micronucleus acts during a critical period between the second meiotic division and up to the formation of the zygotic nucleus to control the early stage of oral membranelle assembly. Laser microbeam irradiation might have created recessive mutations and/or chromosomal aberrations, which were expressed during this critical period with the formation of abnormal postmeiotic nuclei. (author)

  1. Role of the micronucleus in stomatogenesis in sexual reproduction of Paramecium tetraurelia: laser microbeam irradiation of the micronucleus

    Energy Technology Data Exchange (ETDEWEB)

    Tam Laiwa; Ng, S.F.

    1986-12-01

    Fifteen amicronucleate cell lines and 22 cell lines with defective micronuclei were obtained following selective laser microbeam irradiation of the micronucleus. The amicronucleate cell lines showed reduced growth rate and formed abnormal oral apparatuses in asexual reproduction, and failed to produce any oral apparatus in autogamy. The 22 cell lines with defective micronucleus exhibited various abnormalities of the oral apparatus newly formed during autogamy. These abnormalities included the arrest of membranelle assembly, reduction in the length of the buccal cavity and oral membranelles, disruption of the organization of the membranelles, quadrulation of the dorsal peniculus, and failure of addition of membranellar basal body rows. Hence the micronucleus plays multiple roles in sexual stomatogenesis. Our results agree with the notion that the micronucleus acts during a critical period between the second meiotic division and up to the formation of the zygotic nucleus to control the early stage of oral membranelle assembly. Laser microbeam irradiation might have created recessive mutations and/or chromosomal aberrations, which were expressed during this critical period with the formation of abnormal postmeiotic nuclei.

  2. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Frances Mercer

    2016-08-01

    Full Text Available Trichomonas vaginalis (Tv is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells.

  3. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis

    Science.gov (United States)

    Mercer, Frances; Diala, Fitz Gerald I.; Chen, Yi-Pei; Molgora, Brenda M.; Ng, Shek Hang; Johnson, Patricia J.

    2016-01-01

    Trichomonas vaginalis (Tv) is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells. PMID:27529696

  4. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis.

    Science.gov (United States)

    Gross, Bethany C; Anderson, Kari B; Meisel, Jayda E; McNitt, Megan I; Spence, Dana M

    2015-06-16

    This paper describes the design and fabrication of a polyjet-based three-dimensional (3D)-printed fluidic device where poly(dimethylsiloxane) (PDMS) or polystyrene (PS) were used to coat the sides of a fluidic channel within the device to promote adhesion of an immobilized cell layer. The device was designed using computer-aided design software and converted into an .STL file prior to printing. The rigid, transparent material used in the printing process provides an optically transparent path to visualize endothelial cell adherence and supports integration of removable electrodes for electrical cell lysis in a specified portion of the channel (1 mm width × 0.8 mm height × 2 mm length). Through manipulation of channel geometry, a low-voltage power source (500 V max) was used to selectively lyse adhered endothelial cells in a tapered region of the channel. Cell viability was maintained on the device over a 5 day period (98% viable), though cell coverage decreased after day 4 with static media delivery. Optimal lysis potentials were obtained for the two fabricated device geometries, and selective cell clearance was achieved with cell lysis efficiencies of 94 and 96%. The bottleneck of unknown surface properties from proprietary resin use in fabricating 3D-printed materials is overcome through techniques to incorporate PDMS and PS.

  5. New capabilities of the Zagreb ion microbeam system

    International Nuclear Information System (INIS)

    Jaksic, M.; Bogdanovic Radovic, I.; Bogovac, M.; Desnica, V.; Fazinic, S.; Karlusic, M.; Medunic, Z.; Muto, H.; Pastuovic, Z.; Siketic, Z.; Skukan, N.; Tadic, T.

    2007-01-01

    The installation of a new 1.0 MV Tandetron accelerator and a recent upgrade of the 6.0 MV Tandem Van de Graaff accelerator increased the application possibilities of the Zagreb ion microbeam system. Several ion sources enable now the selection of a wide variety of ions. Most of them can be focused by the existing microprobe system. Sample positioning tools and new scanner control options are implemented in the new generation of SPECTOR data acquisition system. Details of the upgrades are presented

  6. Photoacoustic microbeam-oscillator with tunable resonance direction and amplitude

    Science.gov (United States)

    Wu, Qingjun; Li, Fanghao; Wang, Bo; Yi, Futing; Jiang, J. Z.; Zhang, Dongxian

    2018-01-01

    We successfully design one photoacoustic microbeam-oscillator actuated by nanosecond laser, which exhibits tunable resonance direction and amplitude. The mechanism of laser induced oscillation is systematically analyzed. Both simulation and experimental results reveal that the laser induced acoustic wave propagates in a multi-reflected mode, resulting in resonance in the oscillator. This newly-fabricated micrometer-sized beam-oscillator has an excellent actuation function, i.e., by tuning the laser frequency, the direction and amplitude of actuation can be efficiently altered, which will have potential industrial applications.

  7. Radiosurgery using heavy ion microbeams for biological study: Fate mapping of the cellular blastoderm-stage egg of the silkworm, Bombyx mori

    International Nuclear Information System (INIS)

    Kiguchi, Kenji; Shirai, Koji; Kanekatsu, Rensuke; Kobayashi, Yasuhiko; Tu, Z.-L.; Funayama, Tomoo; Watanabe, Hiroshi

    2003-01-01

    We investigated the effects of heavy ions on embryogenesis of the silkworm, Bombyx mori using a collimated heavy ion microbeam from the vertical beam line of an AVF-cyclotron. Eggs were exposed to carbon ions at the cellular blastoderm stage. Microbeams were found to be extremely useful for radio-microsurgical inactivation of nuclei or cells in the target site. Spot irradiation caused abnormal embryos, which showed localized defects such as deletion, duplication and fusion, depending on dose, beam size and site of irradiation. The location and frequency of defects on the resultant embryos were closely correlated to the irradiation site. Based on this correlation, a fate map was established for the Bombyx egg at the cellular blastoderm stage

  8. Radiosurgery using heavy ion microbeams for biological study: Fate mapping of the cellular blastoderm-stage egg of the silkworm, Bombyx mori

    Energy Technology Data Exchange (ETDEWEB)

    Kiguchi, Kenji E-mail: kkiguch@giptc.shinshu-u.ac.jp; Shirai, Koji; Kanekatsu, Rensuke; Kobayashi, Yasuhiko; Tu, Z.-L.; Funayama, Tomoo; Watanabe, Hiroshi

    2003-09-01

    We investigated the effects of heavy ions on embryogenesis of the silkworm, Bombyx mori using a collimated heavy ion microbeam from the vertical beam line of an AVF-cyclotron. Eggs were exposed to carbon ions at the cellular blastoderm stage. Microbeams were found to be extremely useful for radio-microsurgical inactivation of nuclei or cells in the target site. Spot irradiation caused abnormal embryos, which showed localized defects such as deletion, duplication and fusion, depending on dose, beam size and site of irradiation. The location and frequency of defects on the resultant embryos were closely correlated to the irradiation site. Based on this correlation, a fate map was established for the Bombyx egg at the cellular blastoderm stage.

  9. Design of the IMP microbeam irradiation system for 100 MeV/u heavy ions

    International Nuclear Information System (INIS)

    Sheng Lina; Song Mingtao; Zhang Xiaoqi; Yang Xiaotian; Gao Daqing; He Yuan; Zhang Bin; Liu Jie; Sun Youmei; Dang Bingrong; Lwenjian; Su Hong; Man Kaidi; Guo Yizhen; Wang Zhiguang; Zhan Wenlong

    2009-01-01

    A state-of-the-art high energy heavy ion microbeam irradiation system is constructed at the Institute of Modern Physics of the Chinese Academy of Sciences. This microbeam system operates in both full current intensity mode and single ion mode. It delivers a predefined number of ions to pre-selected targets for research in biology and material science. The characteristic of this microbeam system is high energy and vertical irradiation. A quadrupole focusing system, in combination with a series of slits, has been designed to optimize the spatial resolution. A symmetrically achromatic system leads the beam downwards and serves simultaneously as an energy analyzer. A high gradient quadrupole triplet finally focuses a C 6+ ion beam to 1 μm in the vacuum chamber within the energy range from 10 MeV/u to 100 MeV/u. In this paper, the IMP microbeam system is described in detail. A systematic investigation of the ion beam optics of this microbeam system is presented together with the associated aberrations. Comparison is made between the IMP microbeam system and the other existing systems to further discuss the performance of this microbeam. Then the optimized initial beam parameters are given for high resolution and high hitting efficiency. At last, the experiment platform is briefly introduced. (authors)

  10. Inhibition of pneumococcal autolysis in lysis-centrifugation blood culture.

    OpenAIRE

    Lehtonen, O P

    1986-01-01

    The recovery of Streptococcus pneumoniae from the Isolator lysis-centrifugation blood culture has been low in many studies. The poor survival of pneumococci was not due to toxicity of the Isolator medium but to autolysis before plating. This autolysis was completely inhibited by adding 10 mM phosphorylcholine to the Isolator medium.

  11. Parameter identification of an electrically actuated imperfect microbeam

    KAUST Repository

    Ruzziconi, Laura

    2013-12-01

    In this study we consider a microelectromechanical system (MEMS) and focus on extracting analytically the model parameters that describe its non-linear dynamic features accurately. The device consists of a clamped-clamped polysilicon microbeam electrostatically and electrodynamically actuated. The microbeam has imperfections in the geometry, which are related to the microfabrication process, resulting in many unknown and uncertain parameters of the device. The objective of the present paper is to introduce a simple but appropriate model which, despite the inevitable approximations, is able to describe and predict the most relevant aspects of the experimental response in a neighborhood of the first symmetric resonance. The modeling includes the main imperfections in the microstructure. The unknown parameters are settled via parametric identification. The approach is developed in the frequency domain and is based on matching both the frequency values and, remarkably, the frequency response curves, which are considered as the most salient features of the device response. Non-linearities and imperfections considerably complicate the identification process. Via the combined use of linear analysis and non-linear dynamic simulations, a single first symmetric mode reduced-order model is derived. Extensive numerical simulations are performed at increasing values of electrodynamic excitation. Comparison with experimental data shows a satisfactory concurrence of results not only at low electrodynamic voltage, but also at higher ones. This validates the proposed theoretical approach. We highlight its applicability, both in similar case-studies and, more in general, in systems. © 2013 Elsevier Ltd.

  12. An Experimental and Theoretical Investigation of Electrostatically Coupled Cantilever Microbeams

    KAUST Repository

    Ilyas, Saad

    2016-06-16

    We present an experimental and theoretical investigation of the static and dynamic behavior of electrostatically coupled laterally actuated silicon microbeams. The coupled beam resonators are composed of two almost identical flexible cantilever beams forming the two sides of a capacitor. The experimental and theoretical analysis of the coupled system is carried out and compared against the results of beams actuated with fixed electrodes individually. The pull-in characteristics of the electrostatically coupled beams are studied, including the pull-in time. The dynamics of the coupled dual beams are explored via frequency sweeps around the neighborhood of the natural frequencies of the system for different input voltages. Good agreement is reported among the simulation results and the experimental data. The results show considerable drop in the pull-in values as compared to single microbeam resonators. The dynamics of the coupled beam resonators are demonstrated as a way to increase the bandwidth of the resonator near primary resonance as well as a way to introduce increased frequency shift, which can be promising for resonant sensing applications. Moreover the dynamic pull-in characteristics are also studied and proposed as a way to sense the shift in resonance frequency.

  13. Revisiting bistability in the lysis/lysogeny circuit of bacteriophage lambda.

    Directory of Open Access Journals (Sweden)

    Michael Bednarz

    Full Text Available The lysis/lysogeny switch of bacteriophage lambda serves as a paradigm for binary cell fate decision, long-term maintenance of cellular state and stimulus-triggered switching between states. In the literature, the system is often referred to as "bistable." However, it remains unclear whether this term provides an accurate description or is instead a misnomer. Here we address this question directly. We first quantify transcriptional regulation governing lysogenic maintenance using a single-cell fluorescence reporter. We then use the single-cell data to derive a stochastic theoretical model for the underlying regulatory network. We use the model to predict the steady states of the system and then validate these predictions experimentally. Specifically, a regime of bistability, and the resulting hysteretic behavior, are observed. Beyond the steady states, the theoretical model successfully predicts the kinetics of switching from lysogeny to lysis. Our results show how the physics-inspired concept of bistability can be reliably used to describe cellular phenotype, and how an experimentally-calibrated theoretical model can have accurate predictive power for cell-state switching.

  14. Tumor Lysis Syndrome (TLS following intrathecal chemotherapy in a child with acute myelogenous leukemia (AML

    Directory of Open Access Journals (Sweden)

    Chana L. Glasser, MD

    2017-01-01

    Full Text Available Tumor Lysis Syndrome (TLS is a well-known complication of induction therapy for hematologic malignancies. It is characterized by rapid breakdown of malignant white blood cells (WBCs leading to metabolic derangements and serious morbidity if left untreated. Most commonly, TLS is triggered by systemic chemotherapy, however, there have been case reports of TLS following intrathecal (IT chemotherapy, all in patients with acute lymphoblastic leukemia (ALL/lymphoma. Here, we report the first case of a patient with acute myelogenous leukemia (AML who developed TLS following a single dose of IT cytosine arabinoside (Ara-C.

  15. Investigation of double strand breaks induced by alpha particle irradiation using C.N.B.G. microbeam in human keratinocytes

    International Nuclear Information System (INIS)

    Pouthier, Th.

    2006-12-01

    To understand the mechanisms of interaction of ionizing radiation with living tissues exposed to low and protracted doses remains a major issue for risk evaluation. The response cannot be found in epidemiological studies because the only available data concern accidental exposures to high doses of radiation. The natural exposure represents the main source of exposure in the daily life, just before the medical sources (radiology, radiotherapy). In addition, this kind of exposure is very difficult to reproduce in vitro by irradiating cell lines. The method per preference is based on random irradiation of cell populations. The mean number of particles having traversed cells is then calculated on the basis of Poisson statistics. In addition to inevitable multiple impacts, the numerous potential intracellular targets (nuclei, cytoplasm), the indirect effects induced by the impact of particles on neighbouring cells or simply the extracellular targets, constitute phenomena that make more complex the interpretation of experimental data. A charged particle microbeam was developed at C.E.N.B.G. to perform the targeted irradiation of individual cells with a targeting precision of a few microns. It is possible to deliver a counted number of alpha particles down to the ultimate dose of one alpha per cell, to target predetermined cells and then to observe the response of the neighbouring cells. This facility has been validated during this work on human keratinocyte cells expressing a recombinant nuclear fluorescent protein (histone H2B-GFP). The combination of ion micro-beams with confocal microscopy and numeric quantitative analysis allowed the measurement of DNA double strand breaks via the phosphorylation of the histone H2A.X in individual cells. The mechanisms of DNA reparation and apoptosis induction were also in the scope of those studies. The experimental results obtained during this thesis validate the methodology we have developed by demonstrating the targeting

  16. Sulfolobus turreted icosahedral virus c92 protein responsible for the formation of pyramid-like cellular lysis structures.

    Science.gov (United States)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan; She, Qunxin; Young, Mark J

    2011-07-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.

  17. Preparation of single rice chromosome for construction of a DNA library using a laser microbeam trap.

    Science.gov (United States)

    Liu, Xiaohui; Wang, Haowei; Li, Yinmei; Tang, Yesheng; Liu, Yilei; Hu, Xin; Jia, Peixin; Ying, Kai; Feng, Qi; Guan, Jianping; Jin, Chaoqing; Zhang, Lei; Lou, Liren; Zhou, Zhuan; Han, Bin

    2004-04-29

    We report the development of a laser micromanipulation system and its application in the isolation of individual rice chromosomes directly from a metaphase cell. Microdissection and flow sorting are two major methods for the isolation of single chromosome. These methods are dependent on the techniques of chromosome spread and chromosome suspension, respectively. In the development of this system, we avoided using chromosome spread and cell suspension was used instead. The cell wall of metaphase rice cell was cut by optical scissors. The released single chromosome was captured by an optical trap and transported to an area without cell debris. The isolated single chromosome was then collected and specific library was constructed by linker adaptor PCR. The average insert size of the library was about 300 bp. Two hundred inserts of chromosome 4 library were sequenced, and 96.5% were aligned to the corresponding sequences of rice chromosome 4. These results suggest the possible application of this method for the preparation of other subcellular structures and for the cloning of single macromolecule through a laser microbeam trap.

  18. Sulfolobus Turreted Icosahedral Virus c92 Protein Responsible for the Formation of Pyramid-Like Cellular Lysis Structures

    DEFF Research Database (Denmark)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan

    2011-01-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system desc...... disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.......Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system...... described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene...

  19. Bacterial Infochemicals are Drivers of Algal Lysis

    Science.gov (United States)

    Whalen, K.; Deering, R.; Rowley, D. C.; El Gamal, A.; Schorn, M.; Moore, B. S.; Johnson, M. D.; Mincer, T. J.; Harvey, E.

    2016-02-01

    Processing of organic matter by bacteria forces oceanic biogeochemical cycles, food web structure and ultimately environmental stoichiometry. A newly emerging picture of the microbial loop suggests that bacteria are not merely passive recipients of dissolved organic matter (DOM) from phytoplankton exudate. Rather, heterotrophic bacteria can mediate the flow of DOM by actively producing soluble algicidal compounds. However, deciphering those chemical signals that determine these interactions has remained a challenge. Here, we report the isolation of 2-heptyl-4-quinolone (HHQ), released by Pseudoalteromonas piscicida, a marine gamma-proteobacteria isolated from plastic debris in the North Atlantic. Both 2-heptyl-3-hydroxy-4-quinolone and its immediate precursor, HHQ are known to function as antibiotics and quorum sensing signaling molecules with crucial roles in virulence, and apoptosis in eukaryotic cells (e.g. fungi and mammalian cells). Our ecologically-relevant screening of live cells and filtrate from P. piscicida cultures caused a significant decrease in the growth rate of the bloom-forming coccolithophore, Emiliania huxleyi. Bioassay-guided fraction of P. piscicida extracellular crude extracts identified HHQ, which induced mortality in three strains of E. huxleyi with an IC50 in the nanomolar range. In contrast, the marine chlorophyte, Dunaliella tertiolecta and diatom, Phaeodactylum tricornutum were unaffected by HHQ exposures (IC50 > 10 micromolar), but were susceptible to extracts of P. piscicida, indicating this bacterium may produce a cocktail of algicidal compounds specific to different phytoplankton guilds. The ability of HHQ to influence phytoplankton growth suggests that alkylquinolone-signaling molecules play a fundamental role in interkingdom interactions, ultimately influencing shifts in phytoplankton population dynamics. This study implicates a new role for HHQ beyond its importance in quorum sensing.

  20. Vibration Characteristics of Piezoelectric Microbeams Based on the Modified Couple Stress Theory

    Directory of Open Access Journals (Sweden)

    R. Ansari

    2014-01-01

    Full Text Available The vibration behavior of piezoelectric microbeams is studied on the basis of the modified couple stress theory. The governing equations of motion and boundary conditions for the Euler-Bernoulli and Timoshenko beam models are derived using Hamilton’s principle. By the exact solution of the governing equations, an expression for natural frequencies of microbeams with simply supported boundary conditions is obtained. Numerical results for both beam models are presented and the effects of piezoelectricity and length scale parameter are illustrated. It is found that the influences of piezoelectricity and size effects are more prominent when the length of microbeams decreases. A comparison between two beam models also reveals that the Euler-Bernoulli beam model tends to overestimate the natural frequencies of microbeams as compared to its Timoshenko counterpart.

  1. Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling

    KAUST Repository

    Ruzziconi, Laura; Bataineh, Ahmad M.; Younis, Mohammad I.; Cui, Weili; Lenci, Stefano

    2013-01-01

    We present a study of the dynamic behavior of a microelectromechanical systems (MEMS) device consisting of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical

  2. Development of a TOF SIMS setup at the Zagreb heavy ion microbeam facility

    Science.gov (United States)

    Tadić, Tonči; Bogdanović Radović, Iva; Siketić, Zdravko; Cosic, Donny Domagoj; Skukan, Natko; Jakšić, Milko; Matsuo, Jiro

    2014-08-01

    We describe a new Time-of-flight Secondary Ion Mass Spectrometry (TOF SIMS) setup for MeV SIMS application, which is constructed and installed at the heavy ion microbeam facility at the Ruđer Bošković Institute in Zagreb. The TOF-SIMS setup is developed for high sensitivity molecular imaging using a heavy ion microbeam that focuses ion beams (from C to I) with sub-micron resolution. Dedicated pulse processing electronics for MeV SIMS application have been developed, enabling microbeam-scanning control, incoming ion microbeam pulsing and molecular mapping. The first results showing measured MeV SIMS spectra as well as molecular maps for samples of interest are presented and discussed.

  3. Development of a TOF SIMS setup at the Zagreb heavy ion microbeam facility

    International Nuclear Information System (INIS)

    Tadić, Tonči; Bogdanović Radović, Iva; Siketić, Zdravko; Cosic, Donny Domagoj; Skukan, Natko; Jakšić, Milko; Matsuo, Jiro

    2014-01-01

    We describe a new Time-of-flight Secondary Ion Mass Spectrometry (TOF SIMS) setup for MeV SIMS application, which is constructed and installed at the heavy ion microbeam facility at the Ruđer Bošković Institute in Zagreb. The TOF-SIMS setup is developed for high sensitivity molecular imaging using a heavy ion microbeam that focuses ion beams (from C to I) with sub-micron resolution. Dedicated pulse processing electronics for MeV SIMS application have been developed, enabling microbeam-scanning control, incoming ion microbeam pulsing and molecular mapping. The first results showing measured MeV SIMS spectra as well as molecular maps for samples of interest are presented and discussed

  4. Higher order modes excitation of electrostatically actuated clamped–clamped microbeams: experimental and analytical investigation

    KAUST Repository

    Jaber, Nizar; Ramini, Abdallah; Carreno, Armando Arpys Arevalo; Younis, Mohammad I.

    2016-01-01

    © 2016 IOP Publishing Ltd. In this study, we demonstrate analytically and experimentally the excitations of the higher order modes of vibrations in electrostatically actuated clamped-clamped microbeam resonators. The concept is based on using

  5. Heavy Ion Microbeam and Broadbeam Transients in SiGe HBTs

    Science.gov (United States)

    Pellish, Jonathan A.; Reed, Robert A.; McMorrow, Dale; Vizkelethy, Gyorgy; Dodd, Paul E.; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philippe; Duhamel, Olivier; Phillips, Stanley D.; hide

    2009-01-01

    SiGe HBT heavy ion current transients are measured using microbeam and both high- and low-energy broadbeam sources. These new data provide detailed insight into the effects of ion range, LET, and strike location.

  6. Tumour lysis syndrome: A rare acute presentation of locally advanced testicular cancer – Case report and review of literature

    Directory of Open Access Journals (Sweden)

    Marcus Chow

    2016-01-01

    Full Text Available Tumour lysis syndrome (TLS is a potentially fatal complication of malignancy or its treatment. This uncommon syndrome comprises laboratory findings of hyperuricaemia, hypocalcaemia, hyperkalaemia and hyperphosphataemia. A literature search revealed a total of eight patients, with testicular cancer, who had TLS. All these patients had metastatic disease. We present a unique case of a 47-year-old gentleman we saw in clinic, who presented with a rapidly growing right groin mass and acute breathlessness, and discuss the diagnosis and management of TLS. TLS is extremely rare in testicular cancer but necessitates the awareness of urologists. TLS can occur spontaneously in testicular malignancy. Cell lysis in a rapidly proliferating germ cell tumour is a possible mechanism. The prompt identification and institution of management for TLS is crucial to improve clinical outcomes.

  7. 'BioQuaRT' project: design of a novel in situ protocol for the simultaneous visualisation of chromosomal aberrations and micronuclei after irradiation at microbeam facilities

    International Nuclear Information System (INIS)

    Patrono, C.; Testa, A.; Monteiro Gil, O.; Giesen, U.; Langner, F.; Rabus, H.; Pinto, M.

    2015-01-01

    The aim of the 'BioQuaRT' (Biologically weighted Quantities in Radiotherapy) project is to develop measurement techniques for characterising charged particle track structure on different length scales, and to correlate at the cellular level the track structure properties with the biological effects of radiation. This multi-scale approach will allow characterisation of the radiation qualities used in radiotherapy and the related biological effects. Charged-particle microbeam facilities were chosen as the platforms for all radiobiology experiments in the 'BioQuaRT' project, because they allow targeting single cells (or compartments of a cell) with a predefined number of ionising particles and correlating the cell-by-cell induced damage with type and energy of the radiation and with the number of ions per cell. Within this project, a novel in situ protocol was developed for the analysis of the mis-repaired and/or unrepaired chromosome damage induced by charged-particle irradiations at the Physikalisch-Technische Bundesanstalt (PTB) ion microbeam facility. Among the cytogenetic biomarkers to detect and estimate radiation-induced DNA damage in radiobiology, chromosomal aberrations and micronuclei were chosen. The characteristics of the PTB irradiation system required the design of a special in situ assay: specific irradiation dishes with a base made from a bio-foil 25-μm thick and only 3000-4000 cells seeded and irradiated per dish. This method was developed on Chinese hamster ovary (CHO) cells, one of the most commonly used cell lines in radiobiology in vitro experiments. The present protocol allows the simultaneous scoring of chromosome aberrations and micronuclei on the same irradiated dish. Thanks to its versatility, this method could also be extended to other radiobiological applications besides the single-ion microbeam irradiations. (authors)

  8. Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo

    OpenAIRE

    Br?nnimann, Daniel; Bouchet, Audrey; Schneider, Christoph; Potez, Marine; Serduc, Rapha?l; Br?uer-Krisch, Elke; Graber, Werner; von Gunten, Stephan; Laissue, Jean Albert; Djonov, Valentin

    2016-01-01

    International audience; Our goal was the visualizing the vascular damage and acute inflammatory response to micro-and minibeam irradiation in vivo. Microbeam (MRT) and minibeam radiation therapies (MBRT) are tumor treatment approaches of potential clinical relevance, both consisting of parallel X-ray beams and allowing the delivery of thousands of Grays within tumors. We compared the effects of microbeams (25– 100 μm wide) and minibeams (200–800 μm wide) on vasculature, inflammation and surro...

  9. Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam.

    Science.gov (United States)

    Li, Yingli; Meguid, S A; Fu, Yiming; Xu, Daolin

    2014-02-08

    In this paper, we provide a unified and self-consistent treatment of a functionally graded material (FGM) microbeam with varying thermal conductivity subjected to non-uniform or uniform temperature field. Specifically, it is our objective to determine the effect of the microscopic size of the beam, the electrostatic gap, the temperature field and material property on the pull-in voltage of the microbeam under different boundary conditions. The non-uniform temperature field is obtained by integrating the steady-state heat conduction equation. The governing equations account for the microbeam size by introducing an internal material length-scale parameter that is based on the modified couple stress theory. Furthermore, it takes into account Casimir and van der Waals forces, and the associated electrostatic force with the first-order fringing field effects. The resulting nonlinear differential equations were converted to a coupled system of algebraic equations using the differential quadrature method. The outcome of our work shows the dramatic effect and dependence of the pull-in voltage of the FGM microbeam upon the temperature field, its gradient for a given boundary condition. Specifically, both uniform and non-uniform thermal loading can actuate the FGM microbeam even without an applied voltage. Our work also reveals that the non-uniform temperature field is more effective than the uniform temperature field in actuating a FGM cantilever-type microbeam. For the clamped-clamped case, care must be taken to account for the effective use of thermal loading in the design of microbeams. It is also observed that uniform thermal loading will lead to a reduction in the pull-in voltage of a FGM microbeam for all the three boundary conditions considered.

  10. Performances of synchrotron radiation microbeam focused by monolithic half focusing polycapillary X-ray lens

    International Nuclear Information System (INIS)

    Sun Tianxi; Liu Zhiguo; He Bo; Wei Shiqiang; Xie Yaning; Liu Tao; Hu Tiandou; Ding Xunliang

    2007-01-01

    A monolithic half focusing polycapillary X-ray lens (MHFPXRL) composed of 289,000 capillaries is used to produce a synchrotron radiation microbeam. The energy dependence of the output focal distance, focal spot size, transmission efficiency, vertical beam position, and gain in flux density of this microbeam is studied in detail. There is a slight change in the output focal distance of the MHFPXRL when the X-ray energies change

  11. First trial of spatial and temporal fractionations of the delivered dose using synchrotron microbeam radiation therapy

    International Nuclear Information System (INIS)

    Serduc, Raphael; Braeuer-Krisch, Elke; Bouchet, Audrey; Brochard, Thierry; Bravin, Alberto; Le Duc, Geraldine; Renaud, Luc; Laissue, Jean Albert

    2009-01-01

    The technical feasibility of temporal and spatial fractionations of the radiation dose has been evaluated using synchrotron microbeam radiation therapy for brain tumors in rats. A significant increase in lifespan (216%, p<0.0001) resulted when three fractions of microbeam irradiation were applied to the tumor through three different ports, orthogonal to each other, at 24 h intervals. However, there were no long-term survivors, and immunohistological studies revealed that 9 L tumors were not entirely ablated. (orig.)

  12. First trial of spatial and temporal fractionations of the delivered dose using synchrotron microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Serduc, Raphael [Toulouse Univ. (France). UPS Centre de Recherche Cerveau et Cognition; CNRS, CerCo, Toulouse (France); European Synchrotron Radiation Facility, 38 - Grenoble (France); Braeuer-Krisch, Elke; Bouchet, Audrey; Brochard, Thierry; Bravin, Alberto; Le Duc, Geraldine [European Synchrotron Radiation Facility, 38 - Grenoble (France); Renaud, Luc [Toulouse Univ. (France). UPS Centre de Recherche Cerveau et Cognition; CNRS, CerCo, Toulouse (France); Laissue, Jean Albert [Bern Univ. (Switzerland). Inst. of Pathology

    2009-07-15

    The technical feasibility of temporal and spatial fractionations of the radiation dose has been evaluated using synchrotron microbeam radiation therapy for brain tumors in rats. A significant increase in lifespan (216%, p<0.0001) resulted when three fractions of microbeam irradiation were applied to the tumor through three different ports, orthogonal to each other, at 24 h intervals. However, there were no long-term survivors, and immunohistological studies revealed that 9 L tumors were not entirely ablated. (orig.)

  13. Nuclear microbeam study of advanced materials for fusion reactor technology

    International Nuclear Information System (INIS)

    Alves, L.C.; Alves, E.; Grime, G.W.; Silva, M.F. da; Soares, J.C.

    1999-01-01

    The Oxford scanning proton microprobe was used to study SiC fibres, SiC/SiC ceramic composites and Be pebbles, which are some of the most important materials for fusion technology. For the SiC materials, although the results reveal a high degree of homogeneity and purity in the composition of the fibres, some grains containing heavy metals were detected in the composites. Rutherford backscattering analysis further allowed establishing that at least some of these grains are not on the surface of the material but rather distributed throughout the bulk of the SiC composites. The two different types of Be pebbles analysed also showed very different levels of contaminants. The information obtained with the microbeam analysis is confronted with the one resulting from the broad beam PIXE and RBS analysis

  14. Fabrication of fine imaging devices using an external proton microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, T., E-mail: sakai.takuro@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Yasuda, R.; Iikura, H.; Nojima, T. [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Koka, M.; Satoh, T.; Ishii, Y. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan); Oshima, A. [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan)

    2014-08-01

    We have successfully fabricated novel microscopic imaging devices made from UV/EB curable resin using an external scanning proton microbeam. The devices are micro-structured fluorescent plates that consist of an array of micro-pillars that align periodically. The base material used in the pillars is UV/EB curable resin and each pillar contains phosphor grains. The pattern exposures were performed using a proton beam writing technique. The height of the pillars depends on the range of the proton beam. Optical microscopy and scanning electron microscopy have been used to characterize the samples. The results show that the fabricated fluorescent plates are expected to be compatible with both spatial resolution and detection efficiency.

  15. Electrothermally actuated tunable clamped-guided resonant microbeams

    KAUST Repository

    Alcheikh, Nouha

    2017-06-11

    We present simulation and experimental investigation demonstrating active alteration of the resonant and frequency response behavior of resonators by controlling the electrothermal actuation method on their anchors. In-plane clamped-guided arch and straight microbeams resonators are designed and fabricated with V-shaped electrothermal actuators on their anchors. These anchors not only offer various electrothermal actuation options, but also serve as various mechanical stiffness elements that affect the operating resonance frequency of the structures. We have shown that for an arch, the first mode resonance frequency can be increased up to 50% of its initial value. For a straight beam, we have shown that before buckling, the resonance frequency decreases to very low values and after buckling, it increases up to twice of its initial value. These results can be promising for the realization of different wide–range tunable microresonator. The experimental results have been compared to multi-physics finite-element simulations showing good agreement among them.

  16. Making microbeams and nanobeams by channeling in microstructures and nanostructures

    Directory of Open Access Journals (Sweden)

    S. Bellucci

    2003-03-01

    Full Text Available A particle beam of very small cross section is useful in many accelerator applications including biological and medical ones. We show the capability of the channeling technique using a micron-sized structure on a surface of a single crystal, or using a nanotube, to produce a beam of a cross section down to one square micrometer (or nanometer. The channeled beam can be deflected and thus well separated in angle and space from the primary and scattered particles. Monte Carlo simulation is done to evaluate the characteristics of a channeled microbeam. Emittances down to 0.001 nm rad, and flux up to 10^{6}   μm^{2} per second, can be achieved for protons and ions.

  17. Electrothermally actuated tunable clamped-guided resonant microbeams

    Science.gov (United States)

    Alcheikh, N.; Hajjaj, A. Z.; Jaber, N.; Younis, M. I.

    2018-01-01

    We present simulation and experimental investigation demonstrating active alteration of the resonant and frequency response behavior of resonators by controlling the electrothermal actuation method on their anchors. In-plane clamped-guided arch and straight microbeams resonators are designed and fabricated with V-shaped electrothermal actuators on their anchors. These anchors not only offer various electrothermal actuation options, but also serve as various mechanical stiffness elements that affect the operating resonance frequency of the structures. We have shown that for an arch, the first mode resonance frequency can be increased up to 50% of its initial value. For a straight beam, we have shown that before buckling, the resonance frequency decreases to very low values and after buckling, it increases up to twice of its initial value. These results can be promising for the realization of different wide-range tunable microresonator. The experimental results have been compared to multi-physics finite-element simulations showing good agreement among them.

  18. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment

    OpenAIRE

    Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A.; Roland, Kenneth L.; Curtiss, Roy

    2008-01-01

    We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain χ8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis a...

  19. Clotrimazole enhances lysis of human erythrocytes induced by t-BHP.

    Science.gov (United States)

    Lisovskaya, Irene L; Shcherbachenko, Irina M; Volkova, Rimma I; Ataullakhanov, Fazoil I

    2009-08-14

    Clotrimazole (CLT) is an antifungal and antimalarial agent also effective as a Gardos channel inhibitor. In addition, CLT possesses antitumor properties. Recent data provide evidence that CLT forms a complex with heme (hemin), which produces a more potent lytic effect than heme alone. This study addressed the effect of CLT on the lysis of normal human erythrocytes induced by tert-butyl hydroperoxide (t-BHP). For the first time, it was shown that 10 microM CLT significantly enhanced the lytic effect of t-BHP on erythrocytes in both Ca(2+)-containing and Ca(2+)-free media, suggesting that the effect is not related to Gardos channels. CLT did not affect the rate of free radical generation, the kinetics of GSH degradation, methemoglobin formation and TBARS generation; therefore, we concluded that CLT does not cause additional oxidative damage to erythrocytes treated with t-BHP. It is tempted to speculate that CLT enhances t-BHP-induced changes in erythrocyte volume and lysis largely by forming a complex with hemin released during hemoglobin oxidation in erythrocytes: the CLT-hemin complex destabilizes the cell membrane more potently than hemin alone. If so, the effect of CLT on cell membrane damage during free-radical oxidation may be used to increase the efficacy of antitumor therapy.

  20. Dark membrane lysis and photosensitization by 3-carbethoxypsoralen

    Energy Technology Data Exchange (ETDEWEB)

    Muller-Runkel, R.; Grossweiner, L.I. (Illinois Inst. of Tech., Chicago (USA). Dept. of Physics)

    1981-03-01

    Aqueous solutions of 3-carbethoxypsoralen (3-CPs) induced lysis of egg lecithin liposomes and whole human erythrocytes in the dark. Near-UV irradiation of 3-CPs sensitized the inactivation of lysozyme attributed to the production of reactive radical intermediates. The implications of these findings for the use of 3-CPs as a sensitizer in psoralen + UV-A (PUVA) therapy of psoriasis are discussed.

  1. Dark membrane lysis and photosensitization by 3-carbethoxypsoralen

    International Nuclear Information System (INIS)

    Muller-Runkel, R.; Grossweiner, L.I.

    1981-01-01

    Aqueous solutions of 3-carbethoxypsoralen (3-CPs) induced lysis of egg lecithin liposomes and whole human erythrocytes in the dark. Near-UV irradiation of 3-CPs sensitized the inactivation of lysozyme attributed to the production of reactive radical intermediates. The implications of these findings for the use of 3-CPs as a sensitizer in psoralen + UV-A (PUVA) therapy of psoriasis are discussed. (author)

  2. RNA integrity as a quality indicator during the first steps of RNP purifications : A comparison of yeast lysis methods

    Directory of Open Access Journals (Sweden)

    Jansen Ralf-Peter

    2004-10-01

    Full Text Available Abstract Background The completion of several genome-sequencing projects has increased our need to assign functions to newly identified genes. The presence of a specific protein domain has been used as the determinant for suggesting a function for these new genes. In the case of proteins that are predicted to interact with mRNA, most RNAs bound by these proteins are still unknown. In yeast, several protocols for the identification of protein-protein interactions in high-throughput analyses have been developed during the last years leading to an increased understanding of cellular proteomics. If any of these protocols or similar approaches shall be used for the identification of mRNA-protein complexes, the integrity of mRNA is a critical factor. Results We compared the effect of different lysis protocols on RNA integrity. We report dramatic differences in RNA stability depending on the method used for yeast cell lysis. Glass bead milling and French Press lead to degraded mRNAs even in the presence of RNase inhibitors. Thus, they are not suitable to purify intact mRNP complexes or to identify specific mRNAs bound to proteins. Conclusion We suggest a novel protocol, grinding deep-frozen cells, for the preparation of protein extracts that contain intact RNAs, as lysis method for the purification of mRNA-protein complexes from yeast cells.

  3. Response of avian embryonic brain to spatially segmented x-ray microbeams.

    Science.gov (United States)

    Dilmanian, F A; Morris, G M; Le Duc, G; Huang, X; Ren, B; Bacarian, T; Allen, J C; Kalef-Ezra, J; Orion, I; Rosen, E M; Sandhu, T; Sathé, P; Wu, X Y; Zhong, Z; Shivaprasad, H L

    2001-05-01

    Duck embryo was studied as a model for assessing the effects of microbeam radiation therapy (MRT) on the human infant brain. Because of the high risk of radiation-induced disruption of the developmental process in the immature brain, conventional wide-beam radiotherapy of brain tumors is seldom carried out in infants under the age of three. Other types of treatment for pediatric brain tumors are frequently ineffective. Recent findings from studies in Grenoble on the brain of suckling rats indicate that MRT could be of benefit for the treatment of early childhood tumors. In our studies, duck embryos were irradiated at 3-4 days prior to hatching. Irradiation was carried out using a single exposure of synchrotron-generated X-rays, either in the form of parallel microplanar beams (microbeams), or as non-segmented broad beam. The individual microplanar beams had a width of 27 microm and height of 11 mm, and a center-to-center spacing of 100 microm. Doses to the exposed areas of embryo brain were 40, 80, 160 and 450 Gy (in-slice dose) for the microbeam, and 6, 12 and 18 Gy for the broad beam. The biological end point employed in the study was ataxia. This neurological symptom of radiation damage to the brain developed within 75 days of hatching. Histopathological analysis of brain tissue did not reveal any radiation induced lesions for microbeam doses of 40-160 Gy (in-slice), although some incidences of ataxia were observed in that dose group. However, severe brain lesions did occur in animals in the 450 Gy microbeam dose groups, and mild lesions in the 18 Gy broad beam dose group. These results indicate that embryonic duck brain has an appreciably higher tolerance to the microbeam modality, as compared to the broad beam modality. When the microbeam dose was normalized to the full volume of the irradiated tissue. i.e., the dose averaged over microbeams and the space between the microbeams, brain tolerance was estimated to be about three times higher to microbeam

  4. Investigation on the biological effects of pharynx irradiation by single-particle microbeam and C.elegans immobilization

    International Nuclear Information System (INIS)

    Guo Xiaoying; Yang Gen; Chen Lianyun; Wu Lijun; Li Buqing

    2010-01-01

    Using C.elegans- with clear genetic background, easy genetic maneuverability, small individual, transparence, easily penetrated by a variety of particle as a in vivo model organism, irradiation damage at the individual level of the signal transduction and the mechanism research were investigated. In order to radiate accurately, the worms need Immobilize. The results showed that the ether: ethanol = 1:1 mixture, enabled the worms quickly anesthesia, and kept the worms Immobilization in the whole irradiation process, then quickly recovered after irradiation and recovery rate of 100%. On the basis, the laved and the apoptotic cells in the distal gonad would be test when the worm pharynx were irradiated by single-particle microbeam. The primary results showed that the apoptotic cells in distal gonad significantly increased when the worm pharynx were irradiated 5000 particles. (authors)

  5. NK cells and T cells: mirror images?

    NARCIS (Netherlands)

    Versteeg, R.

    1992-01-01

    The expression of MHC class I molecules protects cells against lysis by natural killer (NK) cells. It is possible that NK cells are 'educated' to recognize self MHC class I molecules and that the combination of self peptide and MHC class I molecule blocks NK-mediated lysis. Here, Rogier Versteeg

  6. Microbeam mapping of single event latchups and single event upsets in CMOS SRAMs

    International Nuclear Information System (INIS)

    Barak, J.; Adler, E.; Fischer, B.E.; Schloegl, M.; Metzger, S.

    1998-01-01

    The first simultaneous microbeam mapping of single event upset (SEU) and latchup (SEL) in the CMOS RAM HM65162 is presented. The authors found that the shapes of the sensitive areas depend on V DD , on the ions being used and on the site on the chip being hit by the ion. In particular, they found SEL sensitive sites close to the main power supply lines between the memory-bit-arrays by detecting the accompanying current surge. All these SELs were also accompanied by bit-flips elsewhere in the memory (which they call indirect SEUs in contrast to the well known SEUs induced in the hit memory cell only). When identical SEL sensitive sites were hit farther away from the supply lines only indirect SEL sensitive sites could be detected. They interpret these events as latent latchups in contrast to the classical ones detected by their induced current surge. These latent SELs were probably decoupled from the main supply lines by the high resistivity of the local supply lines

  7. A novel clot lysis assay for recombinant plasminogen activator.

    Science.gov (United States)

    Jamialahmadi, Oveis; Fazeli, Ahmad; Hashemi-Najafabadi, Sameereh; Fazeli, Mohammad Reza

    2015-03-01

    Recombinant plasminogen activator (r-PA, reteplase) is an engineered variant of alteplase. When expressed in E. coli, it appears as inclusion bodies that require refolding to recover its biological activity. An important step following refolding is to determine the activity of refolded protein. Current methods for enzymatic activity of thrombolytic drugs are costly and complex. Here a straightforward and low-cost clot lysis assay was developed. It quantitatively measures the activity of the commercial reteplase and is also capable of screening refolding conditions. As evidence for adequate accuracy and sensitivity of the current assay, r-PA activity measurements are shown to be comparable to those obtained from chromogenic substrate assay.

  8. Comparison of clot lysis activity and biochemical properties of originator tenecteplase (Metalyse® with those of an alleged biosimilar

    Directory of Open Access Journals (Sweden)

    Werner eKliche

    2014-02-01

    Full Text Available The bioengineered tissue plasminogen activator tenecteplase is an important treatment modality of acute myocardial infarction recommended by international guidelines. Following introduction of originator tenecteplase (brand names Metalyse® and TNKase®, a ‘biosimilar’ tenecteplase became available for commercial use in India under the brand name Elaxim® in the absence of Indian biosimilar guidelines which came into force from September 15th, 2012. Based on a report of biochemical and fibrinolytical differences between Metalyse and Elaxim, we have systematically compared them in a range of routine quality testing assays. As compared to Metalyse, Elaxim exhibited less clot lysis activity and contained less of the two-chain form of tenecteplase. Even upon full in vitro conversion to the two-chain form Elaxim exhibited less clot lysis activity. This was linked to differences in sialic acid content and glycosylation pattern with Elaxim exhibiting less bi- and more tetra-antennary glycosylation, leading to different charge heterogeneity profile. Regarding purity, Elaxim contained more tenecteplase aggregates and, in contrast to Metalyse, considerable amounts of Chinese hamster ovary cell protein. Taken together these data demonstrate that Metalyse and Elaxim differ considerably in clot lysis activity and biochemical properties. These data question whether Elaxim indeed can be considered a ‘biosimilar’ of Metalyse, i.e. whether and to which extent the clinical efficacy and safety properties of Metalyse can be extrapolated to Elaxim in the absence of comparative clinical data.

  9. Diagnosis of spatial resolution for microbeam scanning PIXE using STIM method and CR-39 track detector in PASTA

    International Nuclear Information System (INIS)

    Hamano, T.; Imaseki, H.; Yukawa, M.; Ishikawa, T.; Iso, H.; Matsumoto, K.

    2003-01-01

    In PIXE analysis system and Tandem Accelerator facility (PASTA) of NIRS, we are using Scanning Transmission Ion Microscopy (STIM) method and solid track detector to diagnose the spatial resolution of scanning microbeam PIXE analysis system. These methods are widely used by many microbeam facilities. (author)

  10. Development of a Charged Particle Microbeam for Single-Particle Subcellular Irradiations at the MIT Laboratory for Accelerator Beam Application

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2004-01-01

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube

  11. Dynamics of an Imperfect Microbeam Considering its Exact Shape

    KAUST Repository

    Bataineh, Ahmad M.

    2014-08-17

    We study the static and dynamic behavior of electrically actuated micromachined arches. First, we conduct experiments on micromachined polysilicon beams by driving them electrically and varying their amplitude and frequency of voltage loads. The results reveal several interesting nonlinear phenomena of jumps, hysteresis, and softening behaviors. Next, we conduct analytical and theoretical investigation to understand the experiments. First, we solve the Eigen value problem analytically. We study the effect of the initial rise on the natural frequency and mode shapes, and use a Galerkin-based procedure to derive a reduced order model, which is then used to solve both the static and dynamic responses. We use two symmetric modes in the reduced order model to have accurate and converged results. We use long time integration to solve the nonlinear ordinary differential equations, and then modify our model using effective length to match experimental results. To further improve the matching with the experimental data, we curve-fit the exact profile of the microbeam to match the experimentally measured profile and use it in the reduced-order model to generate frequency-response curves. Finally, we use another numerical technique, the shooting technique, to solve the nonlinear ordinary differential equations. By using shooting and the curve fitted function, we found that we get good agreement with the experimental data.

  12. A new external microbeam system in Fudan University

    International Nuclear Information System (INIS)

    Zheng, Y.; Shen, H.; Li, Y.Q.; Li, X.Y.; Yang, M.J.; Mi, Y.

    2013-01-01

    A cost-effective and removable external beam system is set up based on the Oxford Microbeam system in Fudan University. In our external beam system, 7.5-μm-thick Kapton film is used as exit window with a diameter of 3.5 mm. The spatial resolution is about 18 μm full width at half maximum (FWHM) on a copper grid. As an example, calcium distribution in otolith is present by the external micro-PIXE. In addition, little change can be done to the external system mentioned above for radiobiology experiments. The exit window can be changed from the focal plane to the observation window of vacuum chamber. By calculation, the beam spot size can reach less than 30 μm. Since the Oxford type octagonal target chamber is popular among the nuclear microprobe facilities, this method can be provided to easily replace the in-vacuum system with the external system, extending the in-vacuum analysis to external beam analysis

  13. A new external microbeam system in Fudan University

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.; Shen, H., E-mail: haoshen@fudan.edu.cn; Li, Y.Q.; Li, X.Y.; Yang, M.J.; Mi, Y.

    2013-07-01

    A cost-effective and removable external beam system is set up based on the Oxford Microbeam system in Fudan University. In our external beam system, 7.5-μm-thick Kapton film is used as exit window with a diameter of 3.5 mm. The spatial resolution is about 18 μm full width at half maximum (FWHM) on a copper grid. As an example, calcium distribution in otolith is present by the external micro-PIXE. In addition, little change can be done to the external system mentioned above for radiobiology experiments. The exit window can be changed from the focal plane to the observation window of vacuum chamber. By calculation, the beam spot size can reach less than 30 μm. Since the Oxford type octagonal target chamber is popular among the nuclear microprobe facilities, this method can be provided to easily replace the in-vacuum system with the external system, extending the in-vacuum analysis to external beam analysis.

  14. A new external microbeam system in Fudan University

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Shen, H., E-mail: haoshen@fudan.edu.cn [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Li, Y.Q.; Li, X.Y.; Yang, M.J.; Mi, Y. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 (China)

    2013-02-01

    A cost-effective and removable external beam system is set up based on the Oxford Microbeam system in Fudan University. In our external beam system, 7.5-μm-thick Kapton film is used as exit window with a diameter of 3.5 mm. The spatial resolution is about 18 μm full width at half maximum (FWHM) on a copper grid. As an example, calcium distribution in otolith is present by the external micro-PIXE. In addition, little change can be done to the external system mentioned above for radiobiology experiments. The exit window can be changed from the focal plane to the observation window of vacuum chamber. By calculation, the beam spot size can reach less than 30 μm. Since the Oxford type octagonal target chamber is popular among the nuclear microprobe facilities, this method can be provided to easily replace the in-vacuum system with the external system, extending the in-vacuum analysis to external beam analysis.

  15. The ionoluminescence apparatus at the LABEC external microbeam facility

    International Nuclear Information System (INIS)

    Calusi, S.; Colombo, E.; Giuntini, L.; Giudice, A. Lo; Manfredotti, C.; Massi, M.; Pratesi, G.; Vittone, E.

    2008-01-01

    In this paper, we describe the main features of the ionoluminescence (IL) apparatus recently installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC Laboratory in Firenze. The peculiarity of this IL set-up resides in the fact that the light produced by the ion irradiation of the specimen is collected by a bifurcated optical fiber, so that photons are shunted both to a CCD spectrometer, working in the 200-900 nm wavelength range, and to a photomultiplier (PMT). The accurate focusing of the optical system allows high photon collection efficiency and this results in rapid acquisition of luminescence spectra with low ion currents on luminescent materials; simultaneously, luminescence maps with a spatial resolution of 10 μm can be acquired through the synchronization of PMT photon detection with the position of the scanning focused ion beam. An optical filter with a narrow passband facing the photomultiplier allows chromatic selectivity of the luminescence centres. The IL apparatus is synergistically integrated into the existing set-up for ion beam analyses (IBA). The upgraded system permits simultaneous IL and PIXE/PIGE/BS measurements. With our integrated system, we have been studying raw lapis lazuli samples of different known origins and precious lapis lazuli artworks of the Collezione Medicea of Museum of Natural History, University of Firenze, aiming at characterising their composition and provenance

  16. The ionoluminescence apparatus at the LABEC external microbeam facility

    Energy Technology Data Exchange (ETDEWEB)

    Calusi, S.; Colombo, E. [INFN Sezione di Torino, Via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy); Giuntini, L. [Dipartimento di Fisica, Universita and INFN Sezione di Firenze, Via Sansone 1, 50019, Sesto Fiorentino, Firenze (Italy)], E-mail: giuntini@fi.infn.it; Giudice, A. Lo [Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy); Manfredotti, C. [INFN Sezione di Torino, Via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy); Massi, M. [Dipartimento di Fisica, Universita and INFN Sezione di Firenze, Via Sansone 1, 50019, Sesto Fiorentino, Firenze (Italy); Pratesi, G. [Dipartimento di Scienze della Terra and Museo di Storia Naturale, Universita di Firenze, Via G. La Pira 4, 50121 Firenze (Italy); Vittone, E. [INFN Sezione di Torino, Via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica Sperimentale and NIS Excellence Centre, Universita di Torino, Via P. Giuria 1, 10125 Torino (Italy)

    2008-05-15

    In this paper, we describe the main features of the ionoluminescence (IL) apparatus recently installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC Laboratory in Firenze. The peculiarity of this IL set-up resides in the fact that the light produced by the ion irradiation of the specimen is collected by a bifurcated optical fiber, so that photons are shunted both to a CCD spectrometer, working in the 200-900 nm wavelength range, and to a photomultiplier (PMT). The accurate focusing of the optical system allows high photon collection efficiency and this results in rapid acquisition of luminescence spectra with low ion currents on luminescent materials; simultaneously, luminescence maps with a spatial resolution of 10 {mu}m can be acquired through the synchronization of PMT photon detection with the position of the scanning focused ion beam. An optical filter with a narrow passband facing the photomultiplier allows chromatic selectivity of the luminescence centres. The IL apparatus is synergistically integrated into the existing set-up for ion beam analyses (IBA). The upgraded system permits simultaneous IL and PIXE/PIGE/BS measurements. With our integrated system, we have been studying raw lapis lazuli samples of different known origins and precious lapis lazuli artworks of the Collezione Medicea of Museum of Natural History, University of Firenze, aiming at characterising their composition and provenance.

  17. Multifrequency excitation of a clamped–clamped microbeam: Analytical and experimental investigation

    KAUST Repository

    Jaber, Nizar

    2016-03-14

    Using partial electrodes and a multifrequency electrical source, we present a large-bandwidth, large-amplitude clamped–clamped microbeam resonator excited near the higher order modes of vibration. We analytically and experimentally investigate the nonlinear dynamics of the microbeam under a two-source harmonic excitation. The first-frequency source is swept around the first three modes of vibration, whereas the second source frequency remains fixed. New additive and subtractive resonances are demonstrated. We illustrated that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth of the resonator is controlled. The microbeam is fabricated using polyimide as a structural layer coated with nickel from the top and chromium and gold layers from the bottom. Using the Galerkin method, a reduced order model is derived to simulate the static and dynamic response of the device. A good agreement between the theoretical and experimental data are reported.

  18. Multifrequency excitation of a clamped–clamped microbeam: Analytical and experimental investigation

    KAUST Repository

    Jaber, Nizar; Ramini, Abdallah; Younis, Mohammad I.

    2016-01-01

    Using partial electrodes and a multifrequency electrical source, we present a large-bandwidth, large-amplitude clamped–clamped microbeam resonator excited near the higher order modes of vibration. We analytically and experimentally investigate the nonlinear dynamics of the microbeam under a two-source harmonic excitation. The first-frequency source is swept around the first three modes of vibration, whereas the second source frequency remains fixed. New additive and subtractive resonances are demonstrated. We illustrated that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth of the resonator is controlled. The microbeam is fabricated using polyimide as a structural layer coated with nickel from the top and chromium and gold layers from the bottom. Using the Galerkin method, a reduced order model is derived to simulate the static and dynamic response of the device. A good agreement between the theoretical and experimental data are reported.

  19. Microbeam high-resolution diffraction and x-ray standing wave methods applied to semiconductor structures

    International Nuclear Information System (INIS)

    Kazimirov, A; Bilderback, D H; Huang, R; Sirenko, A; Ougazzaden, A

    2004-01-01

    A new approach to conditioning x-ray microbeams for high angular resolution x-ray diffraction and scattering techniques is introduced. We combined focusing optics (one-bounce imaging capillary) and post-focusing collimating optics (miniature Si(004) channel-cut crystal) to generate an x-ray microbeam with a size of 10 μm and ultimate angular resolution of 14 μrad. The microbeam was used to analyse the strain in sub-micron thick InGaAsP epitaxial layers grown on an InP(100) substrate by the selective area growth technique in narrow openings between the oxide stripes. For the structures for which the diffraction peaks from the substrate and the film overlap, the x-ray standing wave technique was applied for precise measurements of the strain with a Δd/d resolution of better than 10 -4 . (rapid communication)

  20. Alignment of dipole magnet in micro-beam line of HIRFL

    International Nuclear Information System (INIS)

    Wang Shaoming; Chen Wenjun; Yang Shengli; Cai Guozhu; Guo Yizhen; Zhou Guangming; Man Kaidi; Song Mingtao

    2010-01-01

    Microbeam irradiation facility is an experiment platform, which can reduce the beam-spot on the irradiated sample to micrometer level, and can accurately locate and count the radioactive particles. It is a powerful research tool for the irradiation material science, irradiation biology, irradiation biomedicine and micro mechanical machining. The microbeam irradiation facility requires the precise work for installation and alignment. These conditions make magnet's change for directions and positions because the location space of dipole magnets in micro-beam line of HIRFL (Heavy Ion Research Facility in Lanzhou) is very small. It is a challenge for the installation and alignment work of magnets. It was solved by transforming coordinates of benchmarks of magnets, which controlled the error of magnet setup within error tolerance range. (authors)

  1. Residual stress measurement method in MEMS microbeams using frequency shift data

    International Nuclear Information System (INIS)

    Somà, Aurelio; Ballestra, Alberto

    2009-01-01

    The dynamical behaviour of a set of gold microbeams affected by residual stress has been studied. Experimental frequency shift curves were obtained by increasing the dc voltage applied to the specimens. Comparison with different analytical and numerical models has been carried out in order to identify both analytical and finite element models in the presence of residual stress. Residual strain and stress, due to the fabrication process, have been widely reported in the literature in both out-of-plane microcantilevers and clamped–clamped microbeams by using mainly the value of pull-in voltage and static deflection data. In the case of a microcantilever, an accurate modelling includes the effect of the initial curvature due to microfabrication. In double-clamped microbeams, a pre-load applied by tensile stress is considered. A good correspondence is pointed out between measurements and numerical models so that the residual stress effect can be evaluated for different geometrical configurations

  2. A single lysis solution for the analysis of tissue samples by different proteomic technologies

    DEFF Research Database (Denmark)

    Gromov, P.; Celis, J.E.; Gromova, I.

    2008-01-01

    -based proteomics (reverse-phase lysate arrays or direct antibody arrays), allowing the direct comparison of qualitative and quantitative data yielded by these technologies when applied to the same samples. The usefulness of the CLB1 solution for gel-based proteomics was further established by 2D PAGE analysis...... dissease, is driving scientists to increasingly use clinically relevant samples for biomarker and target discovery. Tissues are heterogeneous and as a result optimization of sample preparation is critical for generating accurate, representative, and highly reproducible quantitative data. Although a large...... number of protocols for preparation of tissue lysates has been published, so far no single recipe is able to provide a "one-size fits all" solubilization procedure that can be used to analyse the same lysate using different proteomics technologies. Here we present evidence showing that cell lysis buffer...

  3. Lysis of Chlamydomonas reinhardtii by high-intensity focused ultrasound as a function of exposure time.

    Science.gov (United States)

    Bigelow, Timothy A; Xu, Jin; Stessman, Dan J; Yao, Linxing; Spalding, Martin H; Wang, Tong

    2014-05-01

    Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10-40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm(2). The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Synchrotron x-ray microbeam characteristics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi

    1995-01-01

    X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis. 16 refs., 5 figs

  5. Channeling-based collimators for generation of microbeams produced by silicon micromachining technology

    International Nuclear Information System (INIS)

    Guidi, V.; Antonini, A.; Milan, E.; Ronzoni, A.; Martinelli, G.; Biryukov, V.M.; Chesnokov, Yu.A.

    2006-01-01

    The growing interest on micro-beams in recent years and the combined development of channeling technology in high-energy physics have opened the way to new concepts for micro-beams devices. Silicon micromachining technology is here applied to manufacture micro-collimators in inexpensive and feasible ways. Both dry and wet etchings can be employed for the purpose, though the latter technique appears to be cheaper and easier. Two designs for micro-collimator devices have been considered and preliminary samples have been produced accordingly

  6. Role of adrenal hormones and prostaglandins in the control of mouse thymocytes lysis.

    Science.gov (United States)

    Durant, S; Seillan, C; Duval, D; Homo-Delarche, F

    1984-01-01

    The cytolytic actions of glucocorticoids and of agents increasing cyclic AMP were studied in vitro in thymocyte suspensions isolated from adrenalectomized or hydrocortisone-treated mice. Although considered as corticoresistant cells, the thymocytes isolated from hydrocortisone-treated mice were lysed to the same extent although more slowly in vitro by dexamethasone than whole thymocyte populations (i.e. corticosensitive cells). Moreover, these two cell populations were shown to contain comparable amounts of glucocorticoid receptors and to be almost equally sensitive to the metabolic effects of glucocorticoids when measured by inhibition of RNA and DNA synthesis. Studies performed with corticosensitive cells showed that prostaglandin E2, isoproterenol and dibutyrilcyclic AMP were also able to induce cell lysis and that, isoproterenol and dexamethasone exerted additive cytolytic action in vitro. In vivo experiments showed also an additive effect of steroids and isoproterenol on thymus atrophy. In contrast, cells isolated from hydrocortisone-treated animals were not sensitive to the cytotoxic action of prostaglandin E2, isoproterenol and dibutyril cyclic AMP. This difference between the two populations was not associated with any difference in the responsiveness of adenylate cyclase as determined following isoproterenol-induced accumulation of cyclic AMP. The cytolytic action of dexamethasone but also that of prostaglandin E2 and isoproterenol, could be blocked in the presence of cycloheximide, an inhibitor of protein synthesis, thus suggesting that glucocorticoids and agents increasing cyclic AMP control the synthesis of some proteins involved in the triggering of cell lysis. Among the hypotheses proposed to explain the differences between in vitro and in vivo sensitivity of lymphoid cell to glucocorticoids, it was suggested that the drug may in vivo indirectly control the viability or the proliferation of thymocytes through the release of other mediators. We have

  7. Nonlinear dynamic response of an electrically actuated imperfect microbeam resonator

    KAUST Repository

    Ruzziconi, Laura

    2013-08-04

    We present a study of the dynamic behavior of a MEMS device constituted of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. The nonlinear behavior is highlighted, which includes ranges of multistability, where the non-resonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is capable also to capture the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. Copyright © 2013 by ASME.

  8. Isolation of Mycobacterium chelonei with the lysis-centrifugation blood culture technique.

    OpenAIRE

    Fojtasek, M F; Kelly, M T

    1982-01-01

    Mycobacterium chelonei was isolated from a patient by the lysis-centrifugation and the conventional two-bottle blood culture methods. The lysis-centrifugation method was significantly more sensitive and rapid than the conventional method in detecting and isolating this organism; quantitations done by this method were useful for monitoring response to therapy.

  9. Microbeam Radiation-Induced Tissue Damage Depends on the Stage of Vascular Maturation

    International Nuclear Information System (INIS)

    Sabatasso, Sara; Laissue, Jean Albert; Hlushchuk, Ruslan; Graber, Werner; Bravin, Alberto; Braeuer-Krisch, Elke; Corde, Stephanie; Blattmann, Hans; Gruber, Guenther; Djonov, Valentin

    2011-01-01

    Purpose: To explore the effects of microbeam radiation (MR) on vascular biology, we used the chick chorioallantoic membrane (CAM) model of an almost pure vascular system with immature vessels (lacking periendothelial coverage) at Day 8 and mature vessels (with coverage) at Day 12 of development. Methods and Materials: CAMs were irradiated with microplanar beams (width, ∼25 μm; interbeam spacing, ∼200 μm) at entrance doses of 200 or 300 Gy and, for comparison, with a broad beam (seamless radiation [SLR]), with entrance doses of 5 to 40 Gy. Results: In vivo monitoring of Day-8 CAM vasculature 6 h after 200 Gy MR revealed a near total destruction of the immature capillary plexus. Conversely, 200 Gy MR barely affected Day-12 CAM mature microvasculature. Morphological evaluation of Day-12 CAMs after the dose was increased to 300 Gy revealed opened interendothelial junctions, which could explain the transient mesenchymal edema immediately after irradiation. Electron micrographs revealed cytoplasmic vacuolization of endothelial cells in the beam path, with disrupted luminal surfaces; often the lumen was engorged with erythrocytes and leukocytes. After 30 min, the capillary plexus adopted a striated metronomic pattern, with alternating destroyed and intact zones, corresponding to the beam and the interbeam paths within the array. SLR at a dose of 10 Gy caused growth retardation, resulting in a remarkable reduction in the vascular endpoint density 24 h postirradiation. A dose of 40 Gy damaged the entire CAM vasculature. Conclusions: The effects of MR are mediated by capillary damage, with tissue injury caused by insufficient blood supply. Vascular toxicity and physiological effects of MR depend on the stage of capillary maturation and appear in the first 15 to 60 min after irradiation. Conversely, the effects of SLR, due to the arrest of cell proliferation, persist for a longer time.

  10. Physiologically gated microbeam radiation using a field emission x-ray source array

    Energy Technology Data Exchange (ETDEWEB)

    Chtcheprov, Pavel, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Biomedical Engineering, University of North Carolina, 152 MacNider Hall, Campus Box 7575, Chapel Hill, North Carolina 27599 (United States); Burk, Laurel; Inscoe, Christina; Ger, Rachel; Hadsell, Michael; Lu, Jianping [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 (United States); Yuan, Hong [Department of Radiology, University of North Carolina, 2006 Old Clinic, CB #7510, Chapel Hill, North Carolina 27599 (United States); Zhang, Lei [Department of Applied Physical Sciences, University of North Carolina, Chapman Hall, CB#3216, Chapel Hill, North Carolina 27599 (United States); Chang, Sha [Department of Radiation Oncology, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States); Zhou, Otto, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States)

    2014-08-15

    Purpose: Microbeam radiation therapy (MRT) uses narrow planes of high dose radiation beams to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000 Gy of peak entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during treatment can lead to significant movement of microbeam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), which reduces the effectiveness of MRT. Recently, the authors have demonstrated the feasibility of generating microbeam radiation for small animal treatment using a carbon nanotube (CNT) x-ray source array. The purpose of this study is to incorporate physiological gating to the CNT microbeam irradiator to minimize motion-induced microbeam blurring. Methods: The CNT field emission x-ray source array with a narrow line focal track was operated at 160 kVp. The x-ray radiation was collimated to a single 280 μm wide microbeam at entrance. The microbeam beam pattern was recorded using EBT2 Gafchromic{sup ©} films. For the feasibility study, a strip of EBT2 film was attached to an oscillating mechanical phantom mimicking mouse chest respiratory motion. The servo arm was put against a pressure sensor to monitor the motion. The film was irradiated with three microbeams under gated and nongated conditions and the full width at half maximums and PVDRs were compared. An in vivo study was also performed with adult male athymic mice. The liver was chosen as the target organ for proof of concept due to its large motion during respiration compared to other organs. The mouse was immobilized in a specialized mouse bed and anesthetized using isoflurane. A pressure sensor was attached to a mouse's chest to monitor its respiration. The output signal triggered the electron extraction voltage of the field emission source such that x-ray was generated only

  11. Hyperphosphatemia during spontaneous tumor lysis syndrome culminate in severe hyphosphatemia at the time of blast crisis of Phneg CML to acute myelomoncytic leukemia

    Directory of Open Access Journals (Sweden)

    Salomon Ophira

    2012-08-01

    Full Text Available Abstract Extreme swing of phosphor from severe hyperphosphatemia to severe hypophosphatemia in a patient with blast crisis of myeloid origin was the result of imbalance between massive apoptosis of leukemic cells in the context of spontaneous tumor lysis syndrome and massive production of leukemic cells with only 1% of blast in peripheral blood. The mutated p53 protein suggested acting as oncogene in the presented case and possibly affecting phosphor status.

  12. Clot formation and lysis in platelet rich plasma of healthy donors and patients with resistant hypertension

    Directory of Open Access Journals (Sweden)

    I. I. Patalakh

    2018-04-01

    Full Text Available Hemostatic balance in blood is affected by numerous factors, including coagulation and fibrinolytic proteins, the wide spectrum of their inhibitors, and blood cells. Since platelets can participate in contradictory processes, they significantly complicate the whole picture. Therefore, nowadays the development of global assays of hemostasis, which can reflect the physiological process of hemostasis and can be used for point-of-care diagnosis of thrombosis, is crucial. This paper outlines a new approach we used to analyze the capabilities of clot waveform analysis tools to distinguish the response of platelet-rich plasma from healthy donors and patients with arterial hypertension caused by stimulation of coagulation and lysis (with exogenous thrombin and recombinant tissue-type plasminogen activator, respectively. In donor plasma, when the clot degradation was accompanied by 40 IU/ml of recombinant tissue-type plasminogen activator, platelets potentiated fibrinolysis more than coagulation, which ultimately shifts the overall balance to a profibrinolytic state. At the same time, for patients with hypertension, platelets, embedded in clot obtained from platelet-rich plasma, showed a weaker ability to stimulate fibrinolysis. The obtained data gives the evidence that platelets can act not only as procoagulants but also as profibrinolytics. By simultaneously amplifying coagulation and fibrinolysis, making their rates comparable, platelets would control plasma procoagulant activity, thereby regulating local hemostatic balance, the size and lifetime of the clot. Moreover, clot waveform analysis may be used to distinguish the effects of platelet-rich plasma on clotting or lysis of fibrin clots in healthy donors and patients with essential hypertension.

  13. Viral lysis of Phaeocystis pouchetii: implications for algal population dynamics and heterotrophic C, N and P cycling

    DEFF Research Database (Denmark)

    Haaber, Jakob Brandt Borup; Middelboe, Mathias

    2009-01-01

    in the microbial food web was associated with significant N and P mineralization, supporting the current view that viral lysates can be an important source of inorganic nutrients in marine systems. In the presence of R. salina, the generated NH(4)(+) supported 11% of the observed R. salina growth. Regrowth...... of virus-resistant P. pouchetii following cell lysis was observed in long-term incubations (150 days), and possibly influenced by nutrient availability and competition from R. salina. The observed impact of viral activity on autotrophic and heterotrophic processes provides direct experimental evidence...

  14. Identification of ancient textile fibres from Khirbet Qumran caves using synchrotron radiation microbeam diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Martin [Institut fuer Experimentelle und Angewandte Physik der Christian, Albrechts, Universitaet zu Kiel, Leibnizstr. 19, D-24098 Kiel (Germany)]. E-mail: mmueller@physik.uni-kiel.de; Murphy, Bridget [Institut fuer Experimentelle und Angewandte Physik der Christian, Albrechts, Universitaet zu Kiel, Leibnizstr. 19, D-24098 Kiel (Germany); Burghammer, Manfred [European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble Cedex (France); Riekel, Christian [European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble Cedex (France); Roberts, Mark [Daresbury Laboratory, Keckwick Lane, Warrington WA4 4AD (United Kingdom); Papiz, Miroslav [Daresbury Laboratory, Keckwick Lane, Warrington WA4 4AD (United Kingdom); Clarke, David [Daresbury Laboratory, Keckwick Lane, Warrington WA4 4AD (United Kingdom); Gunneweg, Jan [Institute of Archaeology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem (Israel); Pantos, Emmanuel [Daresbury Laboratory, Keckwick Lane, Warrington WA4 4AD (United Kingdom)

    2004-10-08

    Archaeological textiles fragments from the caves of Qumran in the Dead Sea region were investigated by means of X-ray microbeam diffraction on single fibres. This non-destructive technique made the identification of the used plant textile fibres possible. Apart from bast fibres (mainly flax), cotton was identified which was most unexpected in the archaeological context.

  15. Piezoelectric transduction of flexural modes in pre-stressed microbeam resonators

    NARCIS (Netherlands)

    Torri, G.B.; Janssen, N.M.A.; Zeng, Z.; Rottenberg, X.; Karabacak, D.M.; Vandecasteele, M.; Hoof, C.V.; Puers, R.; Tilmans, H.A.C.

    2014-01-01

    This paper reports on the optimization of the design of piezoelectric transducer elements integrated on doubly-clamped microbeam resonators utilized as (bio)chemical sensors. We report and emphasize the often forgotten influence of membrane stresses on defining the dimensions and optimal position of

  16. Dynamic response of an electrostatically actuated microbeam to drop-table test

    International Nuclear Information System (INIS)

    Ouakad, Hassen M; Younis, Mohammad I; Alsaleem, Fadi

    2012-01-01

    In this paper, we present a theoretical and experimental investigation into the dynamic response of an electrostatically actuated microbeam when subjected to drop-table test. For the theoretical part, a reduced-order model based on an Euler–Bernoulli beam model is utilized. The model accounts for the electrostatic bias on the microbeam and the shock pulse of the drop-table test. Simulation results are presented showing the combined effect of electrostatic force and mechanical shock in triggering early pull-in instability of the cantilever microbeams. The analytical simulation results are validated by finite-element results for the static response. Dynamic pull-in threshold as a function of the mechanical shock amplitude is shown over a wide range of shock spanning hundreds of thousands of g up to zero g. For the experimental part, a micromachined cantilever beam made of gold of length 50 µm is subjected to drop-table tests while being biased by electrostatic loads. Several experimental data are shown demonstrating the phenomenon of collapse due to the combined shock and electrostatic forces. It is also demonstrated that by biasing short and too stiff microbeams with electrostatic voltages, their stiffness is weakened. This lowers their threshold of collapse considerably to the range of acceleration that enables testing them with in-house shock testing equipments, such as drop-table tests. (paper)

  17. The Dynamics of a Doubly Clamped Microbeam Near the Primary Resonance: Experimental and Analytical Investigation

    KAUST Repository

    Masri, Karim M.

    2016-01-20

    We present experimental and analytical investigation of the dynamics of a doubly clamped microbeam near its primary resonance. The microbeam is excited electrostatically by an electrode on the first half of the beam. These microbeams are fabricated using polyimide as structural layer coated with nickel from top and chromium and gold layers from bottom. A noise signal is applied to experimentally detect the natural frequencies. Then, frequency sweep tests are generated for various values of DC bias revealing hardening, transition, and softening behavior of the microbeam. We report for the first time the transition from lower stable state, to unstable state, and then to large stable state experimentally. A multi-mode Galerkin method is used to develop a reduced order model (ROM) of the beam. Shooting method is used to find the periodic motion and is utilized to generate frequency response curves. The curves show good agreement with the experimental results with hardening behavior at lower DC voltage then softening at higher voltage loads and dynamic pull-in. © Copyright 2015 by ASME.

  18. Identification of ancient textile fibres from Khirbet Qumran caves using synchrotron radiation microbeam diffraction

    International Nuclear Information System (INIS)

    Mueller, Martin; Murphy, Bridget; Burghammer, Manfred; Riekel, Christian; Roberts, Mark; Papiz, Miroslav; Clarke, David; Gunneweg, Jan; Pantos, Emmanuel

    2004-01-01

    Archaeological textiles fragments from the caves of Qumran in the Dead Sea region were investigated by means of X-ray microbeam diffraction on single fibres. This non-destructive technique made the identification of the used plant textile fibres possible. Apart from bast fibres (mainly flax), cotton was identified which was most unexpected in the archaeological context

  19. Identification of ancient textile fibres from Khirbet Qumran caves using synchrotron radiation microbeam diffraction

    Science.gov (United States)

    Müller, Martin; Murphy, Bridget; Burghammer, Manfred; Riekel, Christian; Roberts, Mark; Papiz, Miroslav; Clarke, David; Gunneweg, Jan; Pantos, Emmanuel

    2004-10-01

    Archaeological textiles fragments from the caves of Qumran in the Dead Sea region were investigated by means of X-ray microbeam diffraction on single fibres. This non-destructive technique made the identification of the used plant textile fibres possible. Apart from bast fibres (mainly flax), cotton was identified which was most unexpected in the archaeological context.

  20. Influence of squeeze film damping on the higher-order modes of clamped–clamped microbeams

    KAUST Repository

    Alcheikh, Nouha

    2016-05-06

    This paper presents an experimental study and a finite-element analysis of the effect of squeeze film damping on the resonance frequency and quality factor of the higher-order flexure vibrations modes of clamped-clamped microbeams. Viscoelastic and silicon nitride microbeams are fabricated and are electrostatically actuated by various electrode configurations to trigger the first, second, and third modes. The damping characteristic and the resonance frequency of these modes are examined for a wide range of gas pressure and electrostatic voltage loads. The results of the silicon nitride beams and viscoelastic beams are compared. It is found that the intrinsic material loss is the major dissipation mechanism at low pressure for the viscoelastic microbeams, significantly limiting their quality factor. It is also found that while the silicon nitride beams show higher quality factors at the intrinsic and molecular regimes of pressure, due to their low intrinsic loss, their quality factors near atmospheric pressure are lower than those of the viscoelastic microbeams. Further, the higher-order modes of all the beams show much higher quality factors at atmospheric pressure compared to the first mode, which could be promising for operating such resonators in air. Experimental results and finite element model simulations show good agreement for resonance frequency and quality factor for the three studied modes. © 2016 IOP Publishing Ltd.

  1. Tumor lysis syndrome in a patient with metastatic colon cancer after treatment with oxaliplatin and 5-Fu

    Directory of Open Access Journals (Sweden)

    Ruo-Han Tseng

    2016-12-01

    Full Text Available Tumor lysis syndrome in solid tumors is a rare occurrence, with a poor prognosis. We present the case of a patient of recurrent colon cancer who received chemotherapy with FOLFOX regimen (lencovorin, fluorouracil, and oxaliplatin with subsequent tumor lysis. We present a recurrent rectal cancer patient suffered from tumor lysis syndrome after salvage FOLFOX regimen. After treat with CVVH with improved conscious status. In this case report, we had review the tumor lysis in solid tumor.

  2. WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, J [University of North Carolina and North Carolina State University, Chapel Hill, NC (United States); Dooley, J; Chang, S [University of North Carolina School of Medicine, Chapel Hill, NC (United States); Belley, M; Yoshizumi, T [Duke University Medical Center, Durham, NC (United States); Stanton, I; Langloss, B; Therien, M [Duke University, Durham, NC (United States)

    2015-06-15

    Purpose: Microbeam Radiation Therapy (MRT) is an experimental radiation therapy that has demonstrated a higher therapeutic ratio than conventional radiation therapy in animal studies. There are several roadblocks in translating the promising treatment technology to clinical application, one of which is the lack of a real-time, high-resolution dosimeter. Current clinical radiation detectors have poor spatial resolution and, as such, are unsuitable for measuring microbeams with submillimeter-scale widths. Although GafChromic film has high spatial resolution, it lacks the real-time dosimetry capability necessary for MRT preclinical research and potential clinical use. In this work we have demonstrated the feasibility of using a nanoscintillator fiber-optic detector (nanoFOD) system for real-time MRT dosimetry. Methods: A microplanar beam array is generated using a x-ray research irradiator and a custom-made, microbeam-forming collimator. The newest generation nanoFOD has an effective size of 70 µm in the measurement direction and was calibrated against a kV ion chamber (RadCal Accu-Pro) in open field geometry. We have written a computer script that performs automatic data collection with immediate background subtraction. A computer-controlled detector positioning stage is used to precisely measure the microbeam peak dose and beam profile by translating the stage during data collection. We test the new generation nanoFOD system, with increased active scintillation volume, against the previous generation system. Both raw and processed data are time-stamped and recorded to enable future post-processing. Results: The real-time microbeam dosimetry system worked as expected. The new generation dosimeter has approximately double the active volume compared to the previous generation resulting in over 900% increase in signal. The active volume of the dosimeter still provided the spatial resolution that meets the Nyquist criterion for our microbeam widths. Conclusion: We have

  3. Evaluating the peak-to-valley dose ratio of synchrotron microbeams using PRESAGE fluorescence

    International Nuclear Information System (INIS)

    Annabell, N.; Yagi, N.; Umetani, K.; Wong, C.; Geso, M.

    2012-01-01

    The peak-to-valley dose ratio of a microbeam array can be measured by fluorescence of PRESAGE dosimeters. Peak-to-valley dose ratios are calculated using this new technique and also by EBT2 film. Synchrotron-generated microbeam radiotherapy holds great promise for future treatment, but the high dose gradients present conventional dosimetry with a challenge. Measuring the important peak-to-valley dose ratio (PVDR) of a microbeam-collimated synchrotron source requires both a dosimeter and an analysis method capable of exceptional spatial resolution. The PVDR is of great interest since it is the limiting factor for potential application of the microbeam radiation therapy technique clinically for its tissue-sparing properties (i.e. the valley dose should be below the tolerance of normal tissue). In this work a new method of measuring the dose response of PRESAGE dosimeters is introduced using the fluorescence from a 638 nm laser on a confocal laser-scanning microscope. This fluorescent microscopy method produces dosimetry data at a pixel size as low as 78 nm, giving a much better spatial resolution than optical computed tomography, which is normally used for scanning PRESAGE dosimeters. Using this technique the PVDR of the BL28B2 microbeam at the SPring-8 synchrotron in Japan is estimated to be approximately 52:1 at a depth of 2.5 mm. The PVDR was also estimated with EBT2 GAFchromic films as 30.5:1 at the surface in order to compare the PRESAGE fluorescent results with a more established dosimetry system. This estimation is in good agreement with previously measured ratios using other dosimeters and Monte Carlo simulations. This means that it is possible to use PRESAGE dosimeters with confocal microscopy for the determination of PVDR

  4. Application of Doehlert experimental design in the optimization of experimental variables for the Pseudozyma sp. (CCMB 306 and Pseudozyma sp. (CCMB 300 cell lysis Aplicação do modelo Doehlert na otimização das variáveis experimentais para a lise de Pseudozyma sp. (CCMB 306 e Pseudozyma sp. (CCMB 300

    Directory of Open Access Journals (Sweden)

    Amanda Reges de Sena

    2012-12-01

    Full Text Available This study aimed to verify the influence of pH and temperature on the lysis of yeast using experimental design. In this study, the enzymatic extract containing β-1,3-glucanase and chitinase, obtained from the micro-organism Moniliophthora perniciosa, was used. The experiment showed that the best conditions for lysis of Pseudozyma sp. (CCMB 306 and Pseudozyma sp. (CCMB 300 by lytic enzyme were pH 4.9 at 37 ºC and pH 3.9 at 26.7 ºC, respectively. The lytic enzyme may be used for obtaining various biotechnology products from yeast.O presente trabalho visou verificar a influência do pH e temperatura na lise de leveduras utilizando planejamento experimental. No estudo, foi utilizado o extrato enzimático, contendo β-1,3-glucanase e quitinase líticas, obtidas do micro-organismo Moniliophthora perniciosa. O delineamento experimental mostrou que as melhores condições para a lise de Pseudozyma sp. (CCMB 306 e Pseudozyma sp. (CCMB 300, pelas enzimas líticas, foram pH 4,9 a 37 ºC, pH 3,9 a 26,7 ºC, respectivamente. As enzimas líticas podem ser utilizadas para a obtenção de vários produtos biotecnológicos a partir de leveduras.

  5. Comparative Dosimetric Estimates of a 25 keV Electron Micro-beam with three Monte Carlo Codes

    CERN Document Server

    Mainardi, E; Donahue, R J

    2002-01-01

    The calculations presented compare the different performances of the three Monte Carlo codes PENELOPE-1999, MCNP-4C and PITS, for the evaluation of Dose profiles from a 25 keV electron micro-beam traversing individual cells. The overall model of a cell is a water cylinder equivalent for the three codes but with a different internal scoring geometry: hollow cylinders for PENELOPE and MCNP, whereas spheres are used for the PITS code. A cylindrical cell geometry with scoring volumes with the shape of hollow cylinders was initially selected for PENELOPE and MCNP because of its superior simulation of the actual shape and dimensions of a cell and for its improved computer-time efficiency if compared to spherical internal volumes. Some of the transfer points and energy transfer that constitute a radiation track may actually fall in the space between spheres, that would be outside the spherical scoring volume. This internal geometry, along with the PENELOPE algorithm, drastically reduced the computer time when using ...

  6. Evaluation of conventional castaneda and lysis centrifugation blood culture techniques for diagnosis of human brucellosis.

    Science.gov (United States)

    Mantur, Basappa G; Mangalgi, Smita S

    2004-09-01

    We investigated the role of the lysis centrifugation blood culture technique over the conventional Castaneda technique for the diagnosis of human brucellosis. The lysis centrifugation technique has been found to be more sensitive in both acute (20% higher sensitivity; P centrifugation was in the mean detection time, which was only 2.4 days in acute and 2.7 days in chronic cases, with 103 out of 110 (93.6%) and 17 out of 20 (85%) cultures from acute and chronic brucellosis, respectively, detected before the conventional culture was positive. Our results confirmed the potential usefulness of the lysis technique in diagnosis and institution of appropriate antibiotic therapy.

  7. Leukocyte function-associated antigen-1-dependent lysis of Fas+ (CD95+/Apo-1+) innocent bystanders by antigen-specific CD8+ CTL.

    Science.gov (United States)

    Kojima, H; Eshima, K; Takayama, H; Sitkovsky, M V

    1997-09-15

    Exquisite specificity toward Ag-bearing cells (cognate targets) is one of the most important properties of CD8+ CTL-mediated cytotoxicity. Using highly Ag-specific CD8+ CTL lines and clones, which spare noncognate, Ag-free targets, we found that in the presence of Ag-bearing targets the CTL acquire the ability to lyse noncognate target cells (bystanders). It is shown that the unexpectedly rapid and efficient lysis of bystanders by Ag-activated CTL is mediated by a Fas ligand (FasL)/Fas-based mechanism and does not depend on perforin. The CTL lysed Fas-expressing bystanders, but spared the Fas-negative or anti-Fas mAb-resistant bystander cells. Accordingly, the FasL-deficient gld/gld CTL did not kill bystanders, while perforin-deficient CTL did. Unlike anti-Fas mAb-induced cell death, the lysis of bystanders was not only FasL/Fas dependent but also required adhesion molecule LFA-1 on the surface of the activated CTL. Lysis of bystanders is viewed as acceptable "collateral" damage, but the persistent presence of activated CTL could result in immunopathologies involving functional Fas-expressing tissues.

  8. Catheter placement for lysis of spontaneous intracerebral hematomas: does a catheter position in the core of the hematoma allow more effective and faster hematoma lysis?

    Science.gov (United States)

    Malinova, Vesna; Schlegel, Anna; Rohde, Veit; Mielke, Dorothee

    2017-07-01

    For the fibrinolytic therapy of intracerebral hematomas (ICH) using recombinant tissue plasminogen activator (rtPA), a catheter position in the core of the hematoma along the largest clot diameter was assumed to be optimal for an effective clot lysis. However, it never had been proven that core position indeed enhances clot lysis if compared with less optimal catheter positions. In this study, the impact of the catheter position on the effectiveness and on the time course of clot lysis was evaluated. We analyzed the catheter position using a relative error calculating the distance perpendicular to the catheter's center in relation to hematoma's diameter and evaluated the relative hematoma volume reduction (RVR). The correlation of the RVR with the catheter position was evaluated. Additionally, we tried to identify patterns of clot lysis with different catheter positions. The patient's outcome at discharge was evaluated using the Glasgow outcome score. A total of 105 patients were included in the study. The mean hematoma volume was 56 ml. The overall RVR was 62.7 %. In 69 patients, a catheter position in the core of the clot was achieved. We found no significant correlation between catheter position and hematoma RVR (linear regression, p = 0.14). Core catheter position leads to more symmetrical hematoma RVR. Faster clot lysis happens in the vicinity of the catheter openings. We found no significant difference in the patient's outcome dependent on the catheter position (linear regression, p = 0.90). The catheter position in the core of the hematoma along its largest diameter does not significantly influence the effectiveness of clot lysis after rtPA application.

  9. Mycobacterium tuberculosis bacteremia detected by the Isolator lysis-centrifugation blood culture system.

    OpenAIRE

    Kiehn, T E; Gold, J W; Brannon, P; Timberger, R J; Armstrong, D

    1985-01-01

    Mycobacterium tuberculosis was detected by the Isolator lysis-centrifugation blood culture system from the blood of a patient with tuberculosis of the breast. The organism also grew on conventional laboratory media inoculated with pleural fluid from the patient.

  10. Studies of Bystander Effects in 3-D Tissue Systems Using a Low-LET Microbeam

    International Nuclear Information System (INIS)

    Brenner, David J.

    2009-01-01

    frequency was also observed. When cells were cultured in medium donated from cells exposed to 5 Gy X-rays, a significant bystander effect was observed for clonogenic survival. When cells were cultured for 5 h with supernatant from donor cells exposed to 2 cGy and were then irradiated with 4 Gy X-rays, they failed to show an increase in survival compared with cells directly irradiated with 4 Gy. However, a twofold reduction in the oncogenic transformation frequency was seen. An adaptive dose of X-rays cancelled out the majority of the bystander effect produced by alpha-particles. For oncogenic transformation, but not cell survival, radioadaption can occur in unirradiated cells via a transmissible factor(s). A pilot study was undertaken to observe the bystander effect in a realistic multicellular three-dimensional morphology. We found bystander responses in a three-dimensional, normal human-tissue system. Endpoints were induction of micronucleated and apoptotic cells. A charged-particle microbeam was used, allowing irradiation of cells in defined locations in the tissue yet guaranteeing that no cells located more than a few micrometers away receive any radiation exposure. Unirradiated cells up to 1 mm distant from irradiated cells showed a significant enhancement in effect over background, with an average increase in effect of 1.7-fold for micronuclei and 2.8-fold for apoptosis. The surprisingly long range of bystander signals in human tissue suggests that bystander responses may be important in extrapolating radiation risk estimates from epidemiologically accessible doses down to very low doses where nonhit bystander cells will predominate. Finally, it would be of great benefit to develop a reproducible tissue system suitable for critical radiobiological assays. We have developed a reliable protocol to harvest cells from tissue samples and to investigate the damage induced on a single cell basis. In order to result in a valid tool for bystander experiments, the method

  11. Effects of copper, organic mercury and a mixture of the two on glycerol lysis of erythrocytes.

    OpenAIRE

    宮地,芳之

    1987-01-01

    The effects of copper, organic mercury and a mixture of the two on glycerol lysis of erythrocytes were examined. Copper ion and organic mercury (EMP; ethylmercury phosphate, and PCMB; sodium p-chloromercuricbenzoate) inhibited glycerol lysis of erythrocytes. The inhibitory effects was dependent on the incubation period. An equimolor solution of copper ion and EMP showed between copper ion and EMP. Similar results were obtained with copper and PCMB.

  12. PREFACE: European Microbeam Analysis Society's 14th European Workshop on Modern Developments and Applications in Microbeam Analysis (EMAS 2015), Portorož, Slovenia, 3-7 May 2015

    Science.gov (United States)

    Llovet, Xavier; Matthews, Michael B.; Čeh, Miran; Langer, Enrico; Žagar, Kristina

    2016-02-01

    This volume of the IOP Conference Series: Materials Science and Engineering contains papers from the 14th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis which took place from the 3rd to the 7th of May 2015 in the Grand Hotel Bernardin, Portorož, Slovenia. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on a career in microbeam analysis can meet and discuss with the established experts. The workshops have a unique format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field.This workshop was organized in collaboration with the Jožef Stefan Institute and SDM - Slovene Society for Microscopy. The technical programme included the following topics: electron probe microanalysis, STEM and EELS, materials applications, cathodoluminescence and electron backscatter diffraction (EBSD), and their applications. As at previous workshops there was also a special oral session for young scientists. The best presentation by a young scientist was awarded with an invitation to attend the 2016 Microscopy and Microanalysis meeting at Columbus, Ohio. The prize went to Shirin Kaboli, of the Department of Metals and Materials Engineering of McGill University (Montréal, Canada), for her talk entitled "Electron channelling contrast reconstruction with electron backscattered diffraction". The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 71 posters from 16 countries were on display at the meeting and that the participants came from as far away as Japan, Canada, USA, and Australia. A selection of participants with posters was invited

  13. Microbeam radiation therapy. Physical and biological aspects of a new cancer therapy and development of a treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Bartzsch, Stefan

    2014-11-05

    Microbeam Radiation Therapy (MRT) is a novel treatment strategy against cancer. Highly brilliant synchrotron radiation is collimated to parallel, a few micrometre wide, planar beams and used to irradiate malignant tissues with high doses. The applied peak doses are considerably higher than in conventional radiotherapy, but valley doses between the beams remain underneath the established tissue tolerance. Previous research has shown that these beam geometries spare normal tissue, while being effective in tumour ablation. In this work physical and biological aspects of the therapy were investigated. A therapy planning system was developed for the first clinical treatments at the European Synchrotron Radiation Facility in Grenoble (France) and a dosimetry method based on radiochromic films was created to validate planned doses with measurements on a micrometre scale. Finally, experiments were carried out on a cellular level in order to correlate the physically planned doses with the biological damage caused in the tissue. The differences between Monte Carlo dose and dosimetry are less than 10% in the valley and 5% in the peak regions. Developed alternative faster dose calculation methods deviate from the computational intensive MC simulations by less than 15% and are able to determine the dose within a few minutes. The experiments in cell biology revealed an significant influence of intercellular signalling on the survival of cells close to radiation boundaries. These observations may not only be important for MRT but also for conventional radiotherapy.

  14. An automated single ion hit at JAERI heavy ion microbeam to observe individual radiation damage

    International Nuclear Information System (INIS)

    Kamiya, Tomihiro; Sakai, Takuro; Naitoh, Yutaka; Hamano, Tsuyoshi; Hirao, Toshio

    1999-01-01

    Microbeam scanning and a single ion hit technique have been combined to establish an automated beam positioning and single ion hit system at the JAERI Takasaki heavy ion microbeam system. Single ion irradiation on preset points of a sample in various patterns can be performed automatically in a short period. The reliability of the system was demonstrated using CR-39 nuclear track detectors. Single ion hit patterns were achieved with a positioning accuracy of 2 μm or less. In measurement of single event transient current using this system, the reduction of the pulse height by accumulation of radiation damages was observed by single ion injection to the same local areas. This technique showed a possibility to get some quantitative information about the lateral displacement of an individual radiation effect in silicon PIN photodiodes. This paper will give details of the irradiation system and present results from several experiments

  15. Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS

    International Nuclear Information System (INIS)

    Wang, Binglei; Zhou, Shenjie; Zhao, Junfeng; Chen, Xi

    2011-01-01

    We present a size-dependent model for electrostatically actuated microbeam-based MEMS using strain gradient elasticity theory. The normalized pull-in voltage is shown to increase nonlinearly with the decrease of the beam height, and the size effect becomes prominent if the beam thickness is on the order of microns or smaller (i.e. when the beam dimension is comparable to the material length scale parameter). Very good agreement is found between the present model and available experimental data. The study may be helpful to characterize the mechanical properties of small size MEMS, or guide the design of microbeam-based devices for a wide range of potential applications. (technical note)

  16. Correlated microradiography, X-ray microbeam diffraction and electron probe microanalysis of calcifications in an odontoma

    International Nuclear Information System (INIS)

    Aoba, T.; Yoshioka, C.; Yagi, T.

    1980-01-01

    Using microradiography, X-ray microbeam diffraction and electron probe microanalysis, a correlated morphologic and crystallographic study was performed on dysplastic enamel in a compound odontoma. The tumor was found in the lateral incisor-canine region of the left mandible of a 36-year-old woman. A conspicuous feature was the presence of hypomineralized areas, which were situated in the proximity of enamel surface and distinctly demarcated from the adjacent enamel. X-ray microbeam diffraction and electron microanalysis showed that these lesions have a lower crystallinity and a higher concentration of magnesium as compared with the adjacent enamel. In addition, the present study revealed the presence of two other types of calcifications: 1) calcified structures within the fissure or on the enamel surface, which include lacunae of varying size and which resemble a form of coronal cementum, and 2) spherical calcifications which may be an epithelial product. (author)

  17. A Galerkin-Parameterization Method for the Optimal Control of Smart Microbeams

    Directory of Open Access Journals (Sweden)

    Marwan Abukhaled

    2009-01-01

    Full Text Available A proposed computational method is applied to damp out the excess vibrations in smart microbeams, where the control action is implemented using piezoceramic actuators. From a mathematical point of view, we wish to determine the optimal boundary actuators that minimize a given energy-based performance measure. The minimization of the performance measure over the actuators is subjected to the full motion of the structural vibrations of the micro-beams. A direct state-control parametrization approach is proposed where the shifted Legendre polynomials are employed to solve the optimization problem. Legendre operational matrix and the properties of Kronecker product are utilized to find the approximated optimal trajectory and optimal control law of the lumped parameter systems with respect to the quadratic cost function by solving linear algebraic equations. Numerical examples are provided to demonstrate the applicability and efficiency of the proposed approach.

  18. Study of the phage production efficiency in the bacteria lysis processes; Estudio del rendimiento en fagos para los procesos de lisis bacteriana

    Energy Technology Data Exchange (ETDEWEB)

    Vidania Munoz, R de; Garces, F; Davila, C A

    1979-07-01

    In this work we present a search for the best production conditions of {lambda}vir and{lambda} clear phages In E coli K12 and E coli C{sub 6}00 infected cells respectively. By keeping fixed some parameters of the process as the bacterial and phage generation times and the bacterial burst side, we have found that the lysis yield is strongly dependent on the multiplicity and in a lesser degree on the infection time. It appears from the experimental results that other variables are important, as infection efficiency and approach time from phages to bacteria. We will try to describe the lysis phenomenon by a numerical model on the bases of the se experimental results. (Author) 11 refs.

  19. PIXE/PIGE characterisation of emeralds using an external micro-beam

    International Nuclear Information System (INIS)

    Calligaro, T.; Dran, J.-C.; Poirot, J.-P.; Querre, G.; Salomon, J.; Zwaan, J.C.

    2000-01-01

    A large collection of emeralds of various occurrences has been analysed by PIXE/PIGE in view to establish a compositional database. Major elements (Be, Si, Al) and trace elements (Li, F, Na, Mg, Ca, Rb, Cs and transition metals) are determined using an external 3 MeV proton micro-beam. Elemental micro-mapping permits to select the useful provenance tracers. This database was applied to infer the origin of several ancient emeralds set on historical jewels

  20. Heavy Ion Microbeam- and Broadbeam-Induced Transients in SiGe HBTs

    Science.gov (United States)

    Pellish, Jonathan A.; Reed, Robert A.; McMorrow, Dale; Vizkelethy, Gyorgy; Ferlet-Cavrois, Veronique; Baggio, Jacques; Duhamel, Olivier; Moen, Kurt A.; Phillips, Stanley D.; Diestelhorst, Ryan M.; hide

    2009-01-01

    SiGe HBT heavy ion-induced current transients are measured using Sandia National Laboratories microbeam and high- and low-energy broadbeam sources at the Grand Accelerateur National d'Ions Lourds and the University of Jyvaskyla. The data were captured using a custom broadband IC package and real-time digital phosphor oscilloscopes with at least 16 GHz of analog bandwidth. These data provide detailed insight into the effects of ion strike location, range, and LET.

  1. Studies on cytotoxic and clot lysis activity of probiotically fermented cocktail juice prepared using Camellia sinensis and Punica grantum

    Science.gov (United States)

    Biswas, Ananya; Deori, Meenakshi; Nivetha, A.; Mohansrinivasan, V.

    2017-11-01

    In the current research the effect of probiotic microorganisms viz; Lactococcus lactis and Lactobacillus plantarum on fermentation of Camellia sinensis and Punica grantum was studied. In vitro test were done to analyze the anticancer, antioxidant and atherosclerosis (clot lysis) properties of fermented juice. The juice was fermented for 48 and 96h, during which concentration of phenolic content, total acid content and free radical scavenging activity of the sample was analyzed by DPPH assay (α, α-diphenyl-β-picrylhydrazyl). Dropping of pH was observed after 48 h of fermentation. The clot lysis activity was found to be 80 % in 100μl concentration of fermented cocktail juice. The 96 h fermented sample has shown around 70% inhibition against colon cancer cell lines. Analytical study of HPLC proves the organic acid production such as ascorbic acid in superior amount for 96h of fermented sample, Based on the retention time, the corresponding peaks were detected at 4.919 and 4.831 min.

  2. Dynamics of a clamped–clamped microbeam resonator considering fabrication imperfections

    KAUST Repository

    Bataineh, Ahmad M.

    2014-10-18

    We present an investigation into the static and dynamic behavior of an electrostatically actuated clamped–clamped polysilicon microbeam resonator accounting for its fabrication imperfections, which are commonly encountered in similar microstructures. These are mainly because of the initial deformation of the beam due to stress gradient and its flexible anchors. First, we show experimental data of the microbeam when driven electrically by varying the amplitude and frequency of the voltage loads. The results reveal several interesting nonlinear phenomena of jumps, hysteresis, and softening behaviors. Theoretical investigation is then conducted to model the microbeam, and hence, interpret the experimental data. We solve the Eigen value problem governing the natural frequencies analytically. We then utilize a Galerkin-based procedure to derive a reduced order model, which is then used to simulate both the static and dynamic responses. To achieve good matching between theory and experiment, we show that the exact profile of the deformed beam needs to be utilized in the reduced order model, as measured from the optical profiler, combined with a shooting technique simulation, which is capable of tracing the resonant frequency branches under very-low damping conditions.

  3. Development of economic MeV-ion microbeam technology at Chiang Mai University

    Science.gov (United States)

    Singkarat, S.; Puttaraksa, N.; Unai, S.; Yu, L. D.; Singkarat, K.; Pussadee, N.; Whitlow, H. J.; Natyanum, S.; Tippawan, U.

    2017-08-01

    Developing high technologies but in economic manners is necessary and also feasible for developing countries. At Chiang Mai University, Thailand, we have developed MeV-ion microbeam technology based on a 1.7-MV Tandetron tandem accelerator with our limited resources in a cost-effective manner. Instead of using expensive and technically complex electrostatic or magnetic quadrupole focusing lens systems, we have developed cheap MeV-ion microbeams using programmed L-shaped blade aperture and capillary techniques for MeV ion beam lithography or writing and mapping. The programmed L-shaped blade micro-aperture system consists of a pair of L-shaped movable aperture pieces which are controlled by computer to cut off the ion beam for controlling the beam size down to the micrometer order. The capillary technique utilizes our home-fabricated tapered glass capillaries to realize microbeams. Either system can be installed inside the endstation of the MeV ion beam line of the accelerator. Both systems have been applied to MeV-ion beam lithography or writing of micro-patterns for microfluidics applications to fabricate lab-on-chip devices. The capillary technique is being developed for MeV-ion beam mapping of biological samples. The paper reports details of the techniques and introduces some applications.

  4. On the Nonlinear Dynamics of a Doubly Clamped Microbeam near Primary Resonance

    KAUST Repository

    Jaber, Nizar; Masri, Karim M.; Younis, Mohammad I.

    2017-01-01

    This work aims to investigate theoretically and experimentally various nonlinear dynamic behaviors of a doubly clamped microbeam near its primary resonance. Mainly, we investigate the transition behavior from hardening, mixed, and then softening behavior. We show in a single frequency-response curve, under a constant voltage load, the transition from hardening to softening behavior demonstrating the dominance of the quadratic electrostatic nonlinearity over the cubic geometric nonlinearity of the beam as the motion amplitudes becomes large, which may lead eventually to dynamic pull-in. The microbeam is fabricated using polyimide as a structural layer coated with nickel from top and chromium and gold layers from the bottom. Frequency sweep tests are conducted for different values of DC bias revealing hardening, mixed, and softening behavior of the microbeam. A multi-mode Galerkin model combined with a shooting technique are implemented to generate the frequency response curves and to analyze the stability of the periodic motions using the Floquet theory. The simulated curves show good agreement with the experimental data.

  5. Effects of geometric nonlinearity in an adhered microbeam for measuring the work of adhesion

    Science.gov (United States)

    Fang, Wenqiang; Mok, Joyce; Kesari, Haneesh

    2018-03-01

    Design against adhesion in microelectromechanical devices is predicated on the ability to quantify this phenomenon in microsystems. Previous research related the work of adhesion for an adhered microbeam to the beam's unadhered length, and as such, interferometric techniques were developed to measure that length. We propose a new vibration-based technique that can be easily implemented with existing atomic force microscopy tools or similar metrology systems. To make such a technique feasible, we analysed a model of the adhered microbeam using the nonlinear beam theory put forth by Woinowsky-Krieger. We found a new relation between the work of adhesion and the unadhered length; this relation is more accurate than the one by Mastrangelo & Hsu (Mastrangelo & Hsu 1993 J. Microelectromech. S., 2, 44-55. (doi:10.1109/84.232594)) which is commonly used. Then, we derived a closed-form approximate relationship between the microbeam's natural frequency and its unadhered length. Results obtained from this analytical formulation are in good agreement with numerical results from three-dimensional nonlinear finite-element analysis.

  6. Nonlinear behavior of capacitive micro-beams based on strain gradient theory

    International Nuclear Information System (INIS)

    Fathalilou, Mohammad; Sadeghi, Morteza; Rezazadeh, Ghader

    2014-01-01

    This paper studies the size dependent behavior of materials in MEMS structures. This behavior becomes noticeable for a structure when the characteristic size such as thickness or diameter is close to its internal length-scale parameter and is insignificant for the high ratio of the characteristic size to the length-scale parameter, which is the case of the silicon base micro-beams. However, in some types of micro-beams like gold or nickel bases, the size dependent effect cannot be overlooked. In such cases, ignoring this behavior in modeling will lead to incorrect results. Some previous researchers have applied classic beam theory on their models and imposed a considerable hypothetical value of residual stress to match their theoretical results with the experimental ones. The equilibrium positions or fixed points of the gold and nickel micro-beams are obtained and shown that for a given DC voltage, there is a considerable difference between the obtained fixed points using classic beam theory, modified couple stress theory, and modified strain gradient theory. In addition, it is shown that the calculated static and dynamic pull-in voltages using higher order theories are much closer to the experimental results and are higher several times than those obtained by classic beam theory.

  7. Development of micro-optics for high-resolution IL spectroscopy with a proton microbeam probe

    International Nuclear Information System (INIS)

    Kada, Wataru; Satoh, Takahiro; Yokoyama, Akihito; Koka, Masashi; Kamiya, Tomihiro

    2014-01-01

    Confocal optics for ion luminescence (IL) was developed for the precise analysis of the chemical composition of microscopic targets with an external proton microbeam probe. Anti-reflection-coated confocal micro-lens optics with an effective focus area of approximately 800 × 800 μm was installed on the microbeam line of a single-ended accelerator. Chromatic aberrations of the confocal optics were examined at wavelengths of 300–900 nm. An electrically-cooled back-thinned charge coupled device spectrometer with a wavelength resolution of 0.5 nm was used for the microscopic spectroscopy and IL imaging of microscopic mineral targets. Simultaneous microscopic IL and micro-PIXE analysis were performed using an external 3 MeV H + microbeam with a current of less than 100 pA. A spectral resolution of 3 nm was achieved for a single IL peak which corresponded to Cr 3+ impurities in a single-crystal of aluminum oxide. The use of IL spectroscopy and imaging for aerosol targets revealed microscopic distributions of the chemical and elemental composition in the atmosphere

  8. On the Nonlinear Dynamics of a Doubly Clamped Microbeam near Primary Resonance

    KAUST Repository

    Jaber, Nizar

    2017-04-07

    This work aims to investigate theoretically and experimentally various nonlinear dynamic behaviors of a doubly clamped microbeam near its primary resonance. Mainly, we investigate the transition behavior from hardening, mixed, and then softening behavior. We show in a single frequency-response curve, under a constant voltage load, the transition from hardening to softening behavior demonstrating the dominance of the quadratic electrostatic nonlinearity over the cubic geometric nonlinearity of the beam as the motion amplitudes becomes large, which may lead eventually to dynamic pull-in. The microbeam is fabricated using polyimide as a structural layer coated with nickel from top and chromium and gold layers from the bottom. Frequency sweep tests are conducted for different values of DC bias revealing hardening, mixed, and softening behavior of the microbeam. A multi-mode Galerkin model combined with a shooting technique are implemented to generate the frequency response curves and to analyze the stability of the periodic motions using the Floquet theory. The simulated curves show good agreement with the experimental data.

  9. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment.

    Science.gov (United States)

    Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A; Roland, Kenneth L; Curtiss, Roy

    2008-07-08

    We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain chi8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis and additional mutations to enhance complete lysis and antigen delivery. The second component is plasmid pYA3681, which encodes arabinose-regulated murA and asdA expression and C2-regulated synthesis of antisense asdA and murA mRNA transcribed from the P22 P(R) promoter. An arabinose-regulated c2 gene is present in the chromosome. chi8937(pYA3681) exhibits arabinose-dependent growth. Upon invasion of host tissues, an arabinose-free environment, transcription of asdA, murA, and c2 ceases, and concentrations of their gene products decrease because of cell division. The drop in C2 concentration results in activation of P(R), driving synthesis of antisense mRNA to block translation of any residual asdA and murA mRNA. A highly antigenic alpha-helical domain of Streptococcus pneumoniae Rx1 PspA was cloned into pYA3681, resulting in pYA3685 to test antigen delivery. Mice orally immunized with chi8937(pYA3685) developed antibody responses to PspA and Salmonella outer membrane proteins. No viable vaccine strain cells were detected in host tissues after 21 days. This system has potential applications with other Gram-negative bacteria in which biological containment would be desirable.

  10. Early postnatal diagnosis of hereditary spherocytosis by combining light microscopy, acidified glycerol lysis test and eosin-5'-maleimide binding assay.

    Science.gov (United States)

    Andres, Oliver; Eber, Stefan; Speer, Christian P

    2015-12-01

    Exact diagnosis of hereditary spherocytosis (HS) is widely considered unreliable around birth. However, early postnatal diagnosis at the beginning of congenital hemolysis may be essential for managing neonatal anemia and hemolytic icterus, identifying those at high risk for severe hyperbilirubinemia, irreversible kernicterus, or sudden need for red cell transfusion. We analyzed 37 blood samples from neonates or infants up to six weeks of life that had been collected in-house or shipped to our laboratory due to suspected red cell membrane disorder. By combining assessment of red cell morphology, acidified glycerol lysis test (AGLT), and eosin-5'-maleimide (EMA) binding assay, we were able to clearly exclude HS in 22 and confirm HS in 10 patients, of which one had undergone red cell transfusion prior to blood sampling. Assessment of red cell morphology and normal test results allowed diagnosis of infantile pyknocytosis or Heinz body anemia in three neonates. Re-evaluation of five patients with inconsistent results of AGLT and EMA binding led to confirmation of HS in two cases. Automated analysis of hematologic parameters revealed elevated proportion of hyperdense cells to be a highly significant indicator for HS in neonatal infants. We showed that assessment of red cell morphology in combination with AGLT and EMA binding assay is a reliable basis for confirming or rejecting suspected diagnosis of HS even in neonates. Our data underline the necessity for blood sampling and laboratory exploration in suspected red cell membrane or enzyme defects at the earliest occasion.

  11. In situ biological dose mapping estimates the radiation burden delivered to 'spared' tissue between synchrotron X-ray microbeam radiotherapy tracks.

    Directory of Open Access Journals (Sweden)

    Kai Rothkamm

    Full Text Available Microbeam radiation therapy (MRT using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to 'spared' tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30-40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies.

  12. Method and apparatus for iterative lysis and extraction of algae

    Science.gov (United States)

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  13. The euglobulin clot lysis time to assess the impact of nanoparticles on fibrinolysis

    Energy Technology Data Exchange (ETDEWEB)

    Minet, Valentine, E-mail: valentine.minet@unamur.be; Alpan, Lutfiye; Mullier, François [University of Namur – UNamur, Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Nanosafety Center (NNC), NAmur Research Institute for Life Sciences NARILIS (Belgium); Toussaint, Olivier [Laboratory of Cellular Biochemistry and Biology (URBC) (Belgium); Lucas, Stéphane [University of Namur (UNamur), Research Centre for the Physics of Matter and Radiation (PMR-LARN), Namur Nanosafety Center NNC, NAmur Research Institute for Life Sciences NARILIS (Belgium); Dogné, Jean-Michel; Laloy, Julie, E-mail: julie.laloy@unamur.be [University of Namur – UNamur, Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Nanosafety Center (NNC), NAmur Research Institute for Life Sciences NARILIS (Belgium)

    2015-07-15

    Nanoparticles (NPs) are developed for many applications in various fields, including nanomedicine. The NPs used in nanomedicine may disturb homeostasis in blood. Secondary hemostasis (blood coagulation) and fibrinolysis are complex physiological processes regulated by activators and inhibitors. An imbalance of this system can either lead to the development of hemorrhages or thrombosis. No data are currently available on the impact of NPs on fibrinolysis. The objectives of this study are (1) to select a screening test to study ex vivo the impact of NPs on fibrinolysis and (2) to test NPs with different physicochemical properties. Euglobulin clot lysis time test was selected to screen the impact of some NPs on fibrinolysis using normal pooled plasma. A dose-dependent decrease in the lysis time was observed with silicon dioxide and silver NPs without disturbing the fibrin network. Carbon black, silicon carbide, and copper oxide did not affect the lysis time at the tested concentrations.

  14. [Treatment of surface burns with proteolytic enzymes: mathematic description of lysis kinetics].

    Science.gov (United States)

    Domogatskaia, A S; Domogatskiĭ, S P; Ruuge, E K

    2003-01-01

    The lysis of necrotic tissue by a proteolytic enzyme applied to the surface of a burn wound was studied. A mathematical model was proposed, which describes changes in the thickness of necrotic tissue as a function of the proteolytic activity of the enzyme. The model takes into account the inward-directed diffusion of the enzyme, the counterflow of interstitial fluid (exudates) containing specific inhibitors, and the extracellular matrix proteolysis. It was shown in terms of the quasi-stationary approach that the thickness of the necrotic tissue layer decreases exponentially with time; i.e., the lysis slows down as the thickness of the necrotic tissue layer decreases. The dependence of the characteristic time of this decrease on enzyme concentration was obtained. It was shown that, at high enzyme concentrations (more than 5 mg/ml), the entire time of lysis (after the establishment of quasi-stationary equilibrium) is inversely proportional to the concentration of the enzyme.

  15. Measurement of minute local strain in semiconductor materials and electronic devices by using a highly parallel X-ray microbeam

    CERN Document Server

    Matsui, J; Yokoyama, K; Takeda, S; Katou, M; Kurihara, H; Watanabe, K; Kagoshima, Y; Kimura, S

    2003-01-01

    We have developed an X-ray microbeam with a small angular divergence by adopting X-ray optics with successive use of asymmetric Bragg reflection from silicon crystals for the both polarizations of the synchrotron X-rays. The microbeam actually obtained is several microns in size and possesses an angular divergence of less than 2 arcsec which enables us to measure the strain of 10 sup - sup 5 -10 sup - sup 6. By scanning the sample against the microbeam, distribution of the minute local strain in various regions of semiconductor crystals for electronic devices, e.g., the strain around the SiO sub 2 /Si film edge in silicon devices, the strain in an InGaAsP/InP stripe laser were measured.

  16. Measurement of minute local strain in semiconductor materials and electronic devices by using a highly parallel X-ray microbeam

    International Nuclear Information System (INIS)

    Matsui, J.; Tsusaka, Y.; Yokoyama, K.; Takeda, S.; Katou, M.; Kurihara, H.; Watanabe, K.; Kagoshima, Y.; Kimura, S.

    2003-01-01

    We have developed an X-ray microbeam with a small angular divergence by adopting X-ray optics with successive use of asymmetric Bragg reflection from silicon crystals for the both polarizations of the synchrotron X-rays. The microbeam actually obtained is several microns in size and possesses an angular divergence of less than 2 arcsec which enables us to measure the strain of 10 -5 -10 -6 . By scanning the sample against the microbeam, distribution of the minute local strain in various regions of semiconductor crystals for electronic devices, e.g., the strain around the SiO 2 /Si film edge in silicon devices, the strain in an InGaAsP/InP stripe laser were measured

  17. Measurement of minute local strain in semiconductor materials and electronic devices by using a highly parallel X-ray microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, J. E-mail: matsui@sci.himeji-tech.ac.jp; Tsusaka, Y.; Yokoyama, K.; Takeda, S.; Katou, M.; Kurihara, H.; Watanabe, K.; Kagoshima, Y.; Kimura, S

    2003-01-01

    We have developed an X-ray microbeam with a small angular divergence by adopting X-ray optics with successive use of asymmetric Bragg reflection from silicon crystals for the both polarizations of the synchrotron X-rays. The microbeam actually obtained is several microns in size and possesses an angular divergence of less than 2 arcsec which enables us to measure the strain of 10{sup -5}-10{sup -6}. By scanning the sample against the microbeam, distribution of the minute local strain in various regions of semiconductor crystals for electronic devices, e.g., the strain around the SiO{sub 2}/Si film edge in silicon devices, the strain in an InGaAsP/InP stripe laser were measured.

  18. Laser microirradiation of cells

    International Nuclear Information System (INIS)

    Berns, M.W.; Kitzes, M.; Rattner, J.B.; Burt, J.; Meredith, S.

    1979-01-01

    The brief review outlines the technique of laser microbeam irradiation (260 - 700 nm) of cells to study ultrastructural changes. In combination with other techniques such as optical microscopy, electron microscopy and autoradiography structure and organization of chromosomes and nucleoli, chromosome stability, mechanisms of mitosis, gene mapping, cytoplasmic functions, and structure of nucleic acids are investigated

  19. Tumor lysis syndrome following endoscopic radiofrequency interstitial thermal ablation of colorectal liver metastases.

    LENUS (Irish Health Repository)

    Barry, B D

    2012-02-03

    Radiofrequency interstitial thermal ablation (RITA) provides a palliative option for patients suffering from metastatic liver disease. This procedure can be performed using a laparoscopic approach with laparoscopic ultrasound used to position the RITA probe. We describe a case of laparoscopic RITA performed for colorectal liver metastasis that was complicated by tumor lysis syndrome (TLS) following treatment. We consider RITA to be a safe procedure, as supported by the literature, but where intracorporal tumor lysis is the treatment goal we believe that the systemic release of tumor products can overwhelm the excretory capacity; therefore, TLS is an inevitable consequence in some patients.

  20. Complement lysis activity in autologous plasma is associated with lower viral loads during the acute phase of HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Michael Huber

    2006-11-01

    Full Text Available BACKGROUND: To explore the possibility that antibody-mediated complement lysis contributes to viremia control in HIV-1 infection, we measured the activity of patient plasma in mediating complement lysis of autologous primary virus. METHODS AND FINDINGS: Sera from two groups of patients-25 with acute HIV-1 infection and 31 with chronic infection-were used in this study. We developed a novel real-time PCR-based assay strategy that allows reliable and sensitive quantification of virus lysis by complement. Plasma derived at the time of virus isolation induced complement lysis of the autologous virus isolate in the majority of patients. Overall lysis activity against the autologous virus and the heterologous primary virus strain JR-FL was higher at chronic disease stages than during the acute phase. Most strikingly, we found that plasma virus load levels during the acute but not the chronic infection phase correlated inversely with the autologous complement lysis activity. Antibody reactivity to the envelope (Env proteins gp120 and gp41 were positively correlated with the lysis activity against JR-FL, indicating that anti-Env responses mediated complement lysis. Neutralization and complement lysis activity against autologous viruses were not associated, suggesting that complement lysis is predominantly caused by non-neutralizing antibodies. CONCLUSIONS: Collectively our data provide evidence that antibody-mediated complement virion lysis develops rapidly and is effective early in the course of infection; thus it should be considered a parameter that, in concert with other immune functions, steers viremia control in vivo.

  1. TNF induction of EL4 hyposensitivity to lysis by recombinant (soluble) and membrane-associated TNFs: TNF binding, internalization, and degradation.

    Science.gov (United States)

    Fishman, M; Costlow, M

    1994-04-01

    EL4 mouse thymoma cells sensitive to TNF-mediated lysis only in the presence of cycloheximide (S-EL4) or in the presence or absence of cycloheximide (N-EL4) were used in these experiments. Murine tumor cell line (S-EL4) sensitivity to TNF cytotoxicity is augmented when cycloheximide is added together with TNF or when cycloheximide is added 1 hr before or after TNF. No enhanced sensitivity is observed when target cells are incubated with cycloheximide 2-4 hr before or after the addition of TNF. In the absence of cycloheximide, S-EL4 cells preexposed to murine TNF are less susceptible to lysis by TNF and TNF receptor-conjugated TNF but are lysed by integral membrane TNF. TNF-induced hyposensitivity is partially reversed by actinomycin D or by culturing the preexposed cells for 4 hr prior to TNF lytic assay. TNF preincubation of N- and S-EL4 cells results in an immediate decrease in 125I-TNF binding due to TNF receptor occupancy. Recovery of TNF-R occupancy and TNF internalization were subsequently noted.

  2. Investigation of chemical vapour deposition diamond detectors by X-ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    International Nuclear Information System (INIS)

    Olivero, P.; Manfredotti, C.; Vittone, E.; Fizzotti, F.; Paolini, C.; Lo Giudice, A.; Barrett, R.; Tucoulou, R.

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the large hadron collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of 'detector grade' artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro-beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitative study of the inhomogeneity of the charge transport parameter defined as the product of mobility and lifetime for both electron and holes. XBIL represents a technique complementary to ion beam induced luminescence (IBIL), which has already been used by our group, since X-ray energy loss profile in the material is different from that of MeV ions. X-ray induced luminescence maps have been performed simultaneously with induced photocurrent maps, to correlate charge transport and induced luminescence properties of diamond. Simultaneous XBICC and XBIL maps exhibit features of partial complementarity that have been interpreted on the basis of considerations on radiative and non-radiative recombination processes which compete with charge transport efficiency

  3. Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Serduc, Raphael; Looij, Yohan van de; Francony, Gilles; Verdonck, Olivier; Sanden, Boudewijn van der; Farion, Regine; Segebarth, Christoph; Remy, Chantal; Lahrech, Hana [INSERM, U836, F-38043 Grenoble (France); Laissue, Jean [Institute of Pathology, University of Bern (Switzerland); Braeuer-Krisch, Elke; Siegbahn, Erik Albert; Bravin, Alberto; Prezado, Yolanda [European Synchrotron Radiation Facility, F-38043 Grenoble (France)], E-mail: serduc@esrf.fr

    2008-03-07

    Cerebral edema is one of the main acute complications arising after irradiation of brain tumors. Microbeam radiation therapy (MRT), an innovative experimental radiotherapy technique using spatially fractionated synchrotron x-rays, has been shown to spare radiosensitive tissues such as mammal brains. The aim of this study was to determine if cerebral edema occurs after MRT using diffusion-weighted MRI and microgravimetry. Prone Swiss nude mice's heads were positioned horizontally in the synchrotron x-ray beam and the upper part of the left hemisphere was irradiated in the antero-posterior direction by an array of 18 planar microbeams (25 mm wide, on-center spacing 211 mm, height 4 mm, entrance dose 312 Gy or 1000 Gy). An apparent diffusion coefficient (ADC) was measured at 7 T 1, 7, 14, 21 and 28 days after irradiation. Eventually, the cerebral water content (CWC) was determined by microgravimetry. The ADC and CWC in the irradiated (312 Gy or 1000 Gy) and in the contralateral non-irradiated hemispheres were not significantly different at all measurement times, with two exceptions: (1) a 9% ADC decrease (p < 0.05) was observed in the irradiated cortex 1 day after exposure to 312 Gy, (2) a 0.7% increase (p < 0.05) in the CWC was measured in the irradiated hemispheres 1 day after exposure to 1000 Gy. The results demonstrate the presence of a minor and transient cellular edema (ADC decrease) at 1 day after a 312 Gy exposure, without a significant CWC increase. One day after a 1000 Gy exposure, the CWC increased, while the ADC remained unchanged and may reflect the simultaneous presence of cellular and vasogenic edema. Both types of edema disappear within a week after microbeam exposure which may confirm the normal tissue sparing effect of MRT. For more information on this article, see medicalphysicsweb.org.

  4. A study of x-ray microbeam stress measurement for local area

    International Nuclear Information System (INIS)

    Natsume, Yoshitaka; Miyakawa, Susumu

    1987-01-01

    A new type X-ray microbeam equipment which is capable of three-dimensional oscillation at an X-ray radiation position was used to measure the residual stress of pure iron powder and bending plate specimens as well as that in the vicinity of fatigue crack tip of 1/2 CT specimen. The results obtained are summerized as follows. (1) Diffraction profiles of pure iron powder with diameter 0.02 ∼ 0.03 μm particle size obtained by the present microbeam technique in the beam area of 80 μm in diamether and measuring time more than 800 sec showed Kα 1 and Kα 2 peaks clearly, so that these profiles are good enough for stress measurement. (2) The measured stress of pure iron powder with diameter 10 ∼ 25 μm particle size in the beam area of 80 μm in diameter was not equal to 0 MPa. The measured stress varied greatly and was independent of measuring time. (3) The measured stress of pure iron powder with diameter 0.02 ∼ 0.03 μm particle size in the beam area of 80 μm in diameter was almost 1 MPa, which shows the good accuracy of this X-ray micro-beam equipment. (4) The relation between the X-ray measured stress and the mechanically applied stress showed good agreement. (5) The distribution of residual stress at the vicinity of fatigue crack tip showed that the residual stress at the fatigue crack tip was compression and the residual stress in front of crack tip was tension. This tensile residual stress in front of crack tip existed in the area from 0.02 mm to 2 mm. (6) The above results show that the present equipment is advantageous in the investigation of local stress, shortening the measuring time without sacrificing the accuracy. (author)

  5. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    Science.gov (United States)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  6. Beam Characterisation of the Australian Synchrotron Imaging and medical beamline for microbeam radiotherapy research

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Midgley, S.; Lewis, R.A.; Ackerly, T.L.

    2010-01-01

    Full text: Microbeam radiotherapy (MRT) has been developed at synchrotrons around the world over the last two decades. Previous studies have shown normal tissue to be extremely tolerant to MRT at doses normally considered toxic in conventional radiotherapy whilst having a palliative and even curative effect on animal tumours. Our MRT research team has attempted to characterise the beam spectrum of the imaging and medical beamline (TMBL) at the Australian Synchrotron. We also carried out film dosimetry to quantify the peak-to-valley dose ratio for three fixed geometry MRT collimators. The source of X-rays on the IMBL is a 1.4 T wiggler at a distance of 20 m from the sample stage. In vacuo and in-air metal absorbers were used to remove soft X-rays hardening the beam to between 30 and 160 keY. Filters used were 1.5 mm C, 2.5 mm AI, 0.5 mm Be and 0.75 mm Cu. Free air ion chamber measurements and half value layer measurements in conjunction with predictions from a theoretical model based upon a spectrum calculator derived a mean energy of the microbeam of 57 keV with a half value layer of approximately 0.29 mm Cu. The measured air kerma rate was 120 Gy/s. Measurements of the MRT beams created with tungsten/kapton multi-slit collimators on radiographic films were compared with Monte Carlo simulations of the microbeam arrays. The peak-to-valley-dose ratios were found to be 3-4 times lower than predicted by the Monte Carlo model. Imperfections in the manufacturing of the collimators may explain the observed discrepancy. (author)

  7. Microbeam line of MeV heavy ions for materials modification and in-situ analysis

    International Nuclear Information System (INIS)

    Horino, Yuji; Chayahara, Akiyoshi; Kiuchi, Masato; Fujii, Kanenaga; Satoh, Mamoru; Takai, Mikio.

    1990-01-01

    A microbeam line for MeV heavy ions of almost any element has been developed for microion-beam processing such as maskless MeV ion implantation and its in-situ analysis. Beam spot sizes of 4.0 μm x 4.0 μm for 3 MeV C 2+ and 9.6 μm x 4.8 μm for 1.8 MeV Au 2+ beams were obtained. Maskless MeV gold ion implantation to a silicon substrate and in-situ microanalysis before and after ion implantation were demonstrated. (author)

  8. MeV He microbeam analysis of a semiconductor integrated circuit

    International Nuclear Information System (INIS)

    Zhu Peiran; Liu Jiarui; Zhang Jinping; Yin Shiduan

    1989-01-01

    An MeV He + microbeam has been used to analyse a microscale semiconductor structure. The 2 MeV He + ion beam is limited to 25 μm diameter by a set of diaphragms and is further focused by a quadrupole quadruplet to 3μm diameter. The incident beam current on the sample is about 0.3 nA. The Rutherford backscattering (RBS) technique is applied to the measurement of the composition and depth profile in the near-surface region of a semiconductor integrated circuit. (author)

  9. Scanning ion micro-beam techniques for measuring diffusion in heterogeneous materials

    International Nuclear Information System (INIS)

    Jenneson, P.M.; Clough, A.S.

    1998-01-01

    A raster scanning MeV micro-beam of 1 H + or 3 He + ions was used to study the diffusion of small molecules in heterogeneous materials. The location of elemental contaminants (heavier than Lithium) in polymer insulated cables was studied with 1 H micro-Particle Induced X-ray Emission (μPIXE). Concentration profiles of a deuterated molecule in a hair fibre were determined with 3 He micro-Nuclear Reaction Analysis (μNRA). Chlorine and heavy water (D 2 0) diffusion into cement pastes were profiled using a combination of 3 He μPIXE and μNRA. (authors)

  10. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    International Nuclear Information System (INIS)

    Hayashi, Y.; Hirose, Y.; Seno, Y.

    2016-01-01

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 "3 voxels was obtained.

  11. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: y-hayashi@mosk.tytlabs.co.jp; Hirose, Y.; Seno, Y. [Toyota Central R& D Toyota Central R& D Labs., Inc., 41-1 Nagakute Aichi 480-1192 Japan (Japan)

    2016-07-27

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 {sup 3} voxels was obtained.

  12. MeV He microbeam analysis of a semiconductor integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Peiran; Liu Jiarui; Zhang Jinping; Yin Shiduan

    1989-01-01

    An MeV He/sup +/ microbeam has been used to analyse a microscale semiconductor structure. The 2 MeV He/sup +/ ion beam is limited to 25 /mu/m diameter by a set of diaphragms and is further focused by a quadrupole quadruplet to 3/mu/m diameter. The incident beam current on the sample is about 0.3 nA. The Rutherford backscattering (RBS) technique is applied to the measurement of the composition and depth profile in the near-surface region of a semiconductor integrated circuit.

  13. A method of dosimetry for synchrotron microbeam radiation therapy using radiochromic films and microdensitometry

    International Nuclear Information System (INIS)

    Crosbie, J. C.; Svalbe, I. D.; Lewis, R. A.

    2007-01-01

    Full text: Normal tissue displays an exceptional tolerance to high doses of radiation (hundreds of Gy) when delivered as a microplanar array of synchrotron-generated x-rays. Furthermore, MRT has been shown to cause significant tumour growth delay and in some case complete ablation. The biological effects of MRT on tissue are not fully understood. This is further complicated by difficulties in performing accurate dosimetry. The majority of dosimetry performed for MRT has been Monte Carlo simulations. The aim of this work was to utilise film dosimetry and microdensitometry to measure the peak-to-valley dose ratios (PVDRs) for synchrotron microbeam radiation therapy.

  14. Viral lysis of photosynthesizing microbes as a mechanism for calcium carbonate nucleation in seawater

    Science.gov (United States)

    Lisle, John T.; Robbins, Lisa L.

    2016-01-01

    Removal of carbon through the precipitation and burial of calcium carbonate in marine sediments constitutes over 70% of the total carbon on Earth and is partitioned between coastal and pelagic zones. The precipitation of authigenic calcium carbonate in seawater, however, has been hotly debated because despite being in a supersaturated state, there is an absence of persistent precipitation. One of the explanations for this paradox is the geochemical conditions in seawater cannot overcome the activation energy barrier for the first step in any precipitation reaction; nucleation. Here we show that virally induced rupturing of photosynthetic cyanobacterial cells releases cytoplasmic-associated bicarbonate at concentrations ~23-fold greater than in the surrounding seawater, thereby shifting the carbonate chemistry toward the homogenous nucleation of one or more of the calcium carbonate polymorphs. Using geochemical reaction energetics, we show the saturation states (Ω) in typical seawater for calcite (Ω = 4.3), aragonite (Ω = 3.1), and vaterite (Ω = 1.2) are significantly elevated following the release and diffusion of the cytoplasmic bicarbonate (Ωcalcite = 95.7; Ωaragonite = 68.5; Ωvaterite = 25.9). These increases in Ω significantly reduce the activation energy for nuclei formation thresholds for all three polymorphs, but only vaterite nucleation is energetically favored. In the post-lysis seawater, vaterite's nuclei formation activation energy is significantly reduced from 1.85 × 10−17 J to 3.85 × 10−20 J, which increases the nuclei formation rate from highly improbable (nucleation of calcium carbonate in seawater describes a mechanism through which the initial step in the production of carbonate sediments may proceed. It also presents an additional role of photosynthesizing microbes and their viruses in marine carbon cycles and reveals these microorganisms are a collective repository for concentrated and reactive dissolved inorganic carbon (DIC

  15. Phenotypic variations in osmotic lysis of Sahel goat erythrocytes in non-ionic glucose media.

    Science.gov (United States)

    Igbokwe, Nanacha Afifi; Igbokwe, Ikechukwu Onyebuchi

    2016-03-01

    Erythrocyte osmotic lysis in deionised glucose media is regulated by glucose influx, cation efflux, and changes in cell volume after water diffusion. Transmembrane fluxes may be affected by varied expression of glucose transporter protein and susceptibility of membrane proteins to glucose-induced glycosylation and oxidation in various physiologic states. Variations in haemolysis of Sahel goat erythrocytes after incubation in hyposmotic non-ionic glucose media, associated with sex, age, late pregnancy, and lactation, were investigated. The osmotic fragility curve in glucose media was sigmoidal with erythrocytes from goats in late pregnancy (PRE) or lactation (LAC) or from kid (KGT) or middle-aged (MGT) goats. Non-sigmoidal phenotype occurred in yearlings (YGT) and old (OGT) goats. The composite fragility phenotype for males and non-pregnant dry (NPD) females was non-sigmoidal. Erythrocytes with non-sigmoidal curves were more stable than those with sigmoidal curves because of inflectional shift of the curve to the left. Erythrocytes tended to be more fragile with male than female sex, KGT and MGT than YGT and OGT, and LAC and PRE than NPD. Thus, sex, age, pregnancy, and lactation affected the haemolytic pattern of goat erythrocytes in glucose media. The physiologic state of the goat affected the in vitro interaction of glucose with erythrocytes, causing variations in osmotic stability with variants of fragility phenotype. Variations in the effect of high extracellular glucose concentrations on the functions of membrane-associated glucose transporter, aquaporins, and the cation cotransporter were presumed to be relevant in regulating the physical properties of goat erythrocytes under osmotic stress.

  16. Viral lysis of photosynthesizing microbes as a mechanism for calcium carbonate nucleation in seawater

    Science.gov (United States)

    Lisle, John T.; Robbins, Lisa L.

    2016-01-01

    Removal of carbon through the precipitation and burial of calcium carbonate in marine sediments constitutes over 70% of the total carbon on Earth and is partitioned between coastal and pelagic zones. The precipitation of authigenic calcium carbonate in seawater, however, has been hotly debated because despite being in a supersaturated state, there is an absence of persistent precipitation. One of the explanations for this paradox is the geochemical conditions in seawater cannot overcome the activation energy barrier for the first step in any precipitation reaction; nucleation. Here we show that virally induced rupturing of photosynthetic cyanobacterial cells releases cytoplasmic-associated bicarbonate at concentrations ~23-fold greater than in the surrounding seawater, thereby shifting the carbonate chemistry toward the homogenous nucleation of one or more of the calcium carbonate polymorphs. Using geochemical reaction energetics, we show the saturation states (Ω) in typical seawater for calcite (Ω = 4.3), aragonite (Ω = 3.1), and vaterite (Ω = 1.2) are significantly elevated following the release and diffusion of the cytoplasmic bicarbonate (Ωcalcite = 95.7; Ωaragonite = 68.5; Ωvaterite = 25.9). These increases in Ω significantly reduce the activation energy for nuclei formation thresholds for all three polymorphs, but only vaterite nucleation is energetically favored. In the post-lysis seawater, vaterite's nuclei formation activation energy is significantly reduced from 1.85 × 10−17 J to 3.85 × 10−20 J, which increases the nuclei formation rate from highly improbable (seawater describes a mechanism through which the initial step in the production of carbonate sediments may proceed. It also presents an additional role of photosynthesizing microbes and their viruses in marine carbon cycles and reveals these microorganisms are a collective repository for concentrated and reactive dissolved inorganic carbon (DIC) that is currently not accounted for

  17. Mechanisms of fever production and lysis: lessons from experimental LPS fever.

    Science.gov (United States)

    Roth, Joachim; Blatteis, Clark M

    2014-10-01

    Fever is a cardinal symptom of infectious or inflammatory insults, but it can also arise from noninfectious causes. The fever-inducing agent that has been used most frequently in experimental studies designed to characterize the physiological, immunological and neuroendocrine processes and to identify the neuronal circuits that underlie the manifestation of the febrile response is lipopolysaccharide (LPS). Our knowledge of the mechanisms of fever production and lysis is largely based on this model. Fever is usually initiated in the periphery of the challenged host by the immediate activation of the innate immune system by LPS, specifically of the complement (C) cascade and Toll-like receptors. The first results in the immediate generation of the C component C5a and the subsequent rapid production of prostaglandin E2 (PGE2). The second, occurring after some delay, induces the further production of PGE2 by induction of its synthesizing enzymes and transcription and translation of proinflammatory cytokines. The Kupffer cells (Kc) of the liver seem to be essential for these initial processes. The subsequent transfer of the pyrogenic message from the periphery to the brain is achieved by neuronal and humoral mechanisms. These pathways subserve the genesis of early (neuronal signals) and late (humoral signals) phases of the characteristically biphasic febrile response to LPS. During the course of fever, counterinflammatory factors, "endogenous antipyretics," are elaborated peripherally and centrally to limit fever in strength and duration. The multiple interacting pro- and antipyretic signals and their mechanistic effects that underlie endotoxic fever are the subjects of this review.

  18. Cobalt chloride speciation, mechanisms of cytotoxicity on human pulmonary cells, and synergistic toxicity with zinc

    International Nuclear Information System (INIS)

    Bresson, Carole; Darolles, Carine; Sage, Nicole; Malard, Veronique; Carmona, Asuncion; Roudeau, Stephane; Ortega, Richard; Gautier, Celine; Ansoborlo, Eric

    2013-01-01

    Cobalt is used in numerous industrial sectors, leading to occupational diseases, particularly by inhalation. Cobalt-associated mechanisms of toxicity are far from being understood and information that could improve knowledge in this area is required. We investigated the impact of a soluble cobalt compound, CoCl 2 .6H 2 O, on the BEAS-2B lung epithelial cell line, as well as its impact on metal homeostasis. Cobalt speciation in different culture media, in particular soluble and precipitated cobalt species, was investigated via theoretical and analytical approaches. The cytotoxic effects of cobalt on the cells were assessed. Upon exposure of BEAS-2B cells to cobalt, intracellular accumulation of cobalt and zinc was demonstrated using direct in situ microchemical analysis based on ion micro-beam techniques and analysis after cell lysis by inductively coupled plasma mass spectrometry (ICP-MS). Microchemical imaging revealed that cobalt was rather homogeneously distributed in the nucleus and in the cytoplasm whereas zinc was more abundant in the nucleus. The modulation of zinc homeostasis led to the evaluation of the effect of combined cobalt and zinc exposure. In this case, a clear synergistic increase in toxicity was observed as well as a substantial increase in zinc content within cells. Western blots performed under the same co-exposure conditions revealed a decrease in ZnT1 expression, suggesting that cobalt could inhibit zinc release through the modulation of ZnT1. Overall, this study highlights the potential hazard to lung function, of combined exposure to cobalt and zinc. (authors)

  19. Cobalt chloride speciation, mechanisms of cytotoxicity on human pulmonary cells, and synergistic toxicity with zinc

    International Nuclear Information System (INIS)

    Bresson, Carole; Darolles, Carine; Sage, Nicole; Malard, Veronique; Carmona, Asuncion; Roudeau, Stephane; Ortega, Richard; Gautier, Celine; Ansoborlo, Eric

    2013-01-01

    Complete text of publication follows: Cobalt is used in numerous industrial sectors, leading to occupational diseases, particularly by inhalation. Cobalt-associated mechanisms of toxicity are far from being understood and information that could improve knowledge in this area is required. We investigated the impact of a soluble cobalt compound, CoCl 2 , on the BEAS-2B lung epithelial cell line, as well as its impact on metal homeostasis. Cobalt speciation in different culture media, in particular soluble and precipitated cobalt species, was investigated via theoretical and analytical approaches. The cytotoxic effects of cobalt on the cells were assessed. Upon exposure of BEAS-2B cells to cobalt, intracellular accumulation of cobalt and zinc was demonstrated using direct in situ microchemical analysis based on ion micro-beam techniques and analysis after cell lysis by inductively coupled plasma mass spectrometry (ICP-MS). Microchemical imaging revealed that cobalt was rather homogeneously distributed in the nucleus and in the cytoplasm whereas zinc was more abundant in the nucleus. The modulation of zinc homeostasis led to the evaluation of the effect of combined cobalt and zinc exposure. In this case, a clear synergistic increase in toxicity was observed as well as a substantial increase in zinc content within cells. Western blots performed under the same co-exposure conditions revealed a decrease in ZnT1 expression, suggesting that cobalt could inhibit zinc release through the modulation of ZnT1. Overall, this study highlights the potential hazard to lung function, of combined exposure to cobalt and zinc

  20. Plasma Clot Lysis Time and Its Association with Cardiovascular Risk Factors in Black Africans

    NARCIS (Netherlands)

    Z. de Lange (Zelda); M. Pieters (Marlien); J.C. Jerling (Johann); A. Kruger (Annamarie); D.C. Rijken (Dingeman)

    2012-01-01

    textabstractStudies in populations of European descent show longer plasma clot lysis times (CLT) in patients with cardiovascular disease (CVD) than in controls. No data are available on the association between CVD risk factors and fibrinolytic potential in black Africans, a group undergoing rapid

  1. Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses

    NARCIS (Netherlands)

    Hannen, E.J. van; Zwart, G.; Agterveld, M.P. van; Gons, H.J.; Ebert, J.; Laanbroek, H.J.

    1999-01-01

    During an experiment in two laboratory-scale enclosures filled with lake water (130 liters each) we noticed the almost-complete lysis of the cyanobacterial population. Based on electron microscopic observations of viral particles inside cyanobacterial filaments and counts of virus-like particles,

  2. Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses

    NARCIS (Netherlands)

    Van Hannen, E.J.; Zwart, G.; Van Agterveld, M.P.; Gons, H.J.; Ebert, J.; Laanbroek, H.J.

    1999-01-01

    During an experiment in two laboratory-scale enclosures filled with lake water (130 liters each) we noticed the almost-complete lysis of the cyanobacterial population. Based on electron microscopic observations of viral particles inside cyanobacterial filaments and counts of virus-like particles, we

  3. Electrochemical lysis at the stage of endoresection for large posterior intraocular tumors

    Directory of Open Access Journals (Sweden)

    Yu. A. Belyy

    2012-01-01

    Full Text Available Purpose: to design the new combined technique of endoresection with intraoperative intraocular electrochemical lysis at the tumor destruction stage for large posterior intraocular tumors.Methods: 3 patients (3 eyes with large choroidal melanomas t3N0M0 (tumor thickness — 8-10 mm, base diameter — 13-15 mm, juxtapapillary localization. Mean age was 55.4 years old. Endoresection with intraoperational intraocular electrochemical lysis of the tumor was performed. Electrochemical lysis was performed with use of the technical unit ECU 300 (Soering, Germany and the original method of combined intratumoral positioning of two platinum electrodes: anode and cathode.Results: the tumor was removal completely in all 3 cases. the anatomical retinal reattachment was reached in all patients. Sclera was safe in all 3 cases. Visual acuity was not changed (NLP. At the place of the removal tumor a surgical choroidal coloboma without pigmentation all over scleral bed and periphery was shown in all cases in distant postoperative period (from 1.5 to 3 years. No local recurrences or metastasis were revealed in all patients.Conclusion: Further investigations in clinical group are necessarily to determinate the real possibilities of the combined method and the indications for endoresection with intraoperative intraocular electrochemical lysis for large intraocular tumors. 

  4. Influence of environmental variation on the bacterioplankton community and its loss to viral lysis in the Curonian Lagoon

    Science.gov (United States)

    Šulčius, Sigitas; Reunamo, Anna; Paškauskas, Ričardas; Leskinen, Piia

    2018-05-01

    Coastal lagoons are continuously exposed to strong environmental gradients that determine the distribution and trophic interactions of microbial communities. Therefore, in this study we assessed whether and how environmental changes influence the bacterial community and its vulnerability to viral infection and lysis along the major environmental gradient in the Curonian Lagoon. We found significant differences in bacterial community profiles, their richness and evenness between the riverine, freshwater southern part and the Baltic Sea water intrusion-influenced northern part of the lagoon, suggesting strong environmental control of the structure of bacterial communities. Viruses were found to be play an important role in bacterial mortality in the Curonian Lagoon, being responsible for the removal of 20-50% of the bacterial standing stock. We observed differences in virioplankton decay rates and virus burst sizes between the northern and southern parts of the lagoon. However, no relationships were found between viral activity and bacterial communities within the lagoon ecosystem. The frequency of infected cells and virus-mediated bacterial mortality (VMBM) remained constant among the sampling sites irrespective of differences in bacteria community assemblages and environmental conditions. The results indicate that factors determining changes in bacterial diversity are different from the factors limiting their vulnerability to viral infection and lysis. This study also suggests that under changing environmental conditions, virus-bacteria interactions are more stable than the interacting viral and bacterial communities themselves. These findings are important for understanding the functioning of the coastal ecosystems under the rapidly changing local (spatial and temporal) and global (e.g. eutrophication, climate change) conditions.

  5. DNA damage on nano- and micrometer scales impacts dicentric induction: computer modelling of ion microbeam experiments

    Science.gov (United States)

    Friedland, Werner; Kundrat, Pavel; Schmitt, Elke

    2016-07-01

    Detailed understanding of the enhanced relative biological effectiveness (RBE) of ions, in particular at high linear energy transfer (LET) values, is needed to fully explore the radiation risk of manned space missions. It is generally accepted that the enhanced RBE of high-LET particles results from the DNA lesion patterns, in particular DNA double-strand breaks (DSB), due to the spatial clustering of energy deposits around their trajectories. In conventional experiments on biological effects of radiation types of diverse quality, however, clustering of energy deposition events on nanometer scale that is relevant for the induction and local complexity of DSB is inherently interlinked with regional (sub-)micrometer-scale DSB clustering along the particle tracks. Due to this limitation, the role of both (nano- and micrometer) scales on the induction of diverse biological endpoints cannot be frankly separated. To address this issue in a unique way, experiments at the ion microbeam SNAKE [1] and corresponding track-structure based model calculations of DSB induction and subsequent repair with the biophysical code PARTRAC [2] have been performed. In the experiments, hybrid human-hamster A_{L} cells were irradiated with 20 MeV (2.6 keV/μm) protons, 45 MeV (60 keV/μm) lithium ions or 55 MeV (310 keV/μm) carbon ions. The ions were either quasi-homogeneously distributed or focused to 0.5 x 1 μm^{2} spots on regular matrix patterns of 5.4 μm, 7.6 μm and 10.6 μm grid size, with pre-defined particle numbers per spot so as to deposit a mean dose of 1.7 Gy for all irradiation patterns. As expected, the induction of dicentrics by homogeneous irradiation increased with LET: lithium and carbon ions induced about two- and four-fold higher yields of dicentrics than protons. The induction of dicentrics is, however, affected by µm-scale, too: focusing 20 lithium ions or 451 protons per spot on a 10.6 μm grid induced two or three times more dicentrics, respectively, than a

  6. CTL lysis: there is a hyperbolic relation of killing rate to exocytosable granzyme A for highly cytotoxic murine cytotoxic T lymphocytes.

    Science.gov (United States)

    Poe, M; Wu, J K; Talento, A; Koo, G C

    1996-06-10

    The lysis of susceptible targets by efficient cytotoxic T lymphocytes (CTL) increases both with time and with the ratio of CTL to target. Simple methods for calculating a killing rate constant from the time dependence of killing and for calculating the relation of the killing rate constant to the concentration of exocytosable granzyme A are given. Application of these methods to the killing of target cells by the highly efficient mouse CTL AR1 is presented. AR1 needed granzyme A for efficient killing. AR1 contained sufficient exocytosable granzyme A to kill at about 80% of the rate possible at infinite exocytosable granzyme A.

  7. On using the dynamic snap-through motion of MEMS initially curved microbeams for filtering applications

    KAUST Repository

    Ouakad, Hassen M.; Younis, Mohammad I.

    2014-01-01

    Numerical and experimental investigations of the dynamics of micromachined shallow arches (initially curved microbeams) and the possibility of using their dynamic snap-through motion for filtering purposes are presented. The considered MEMS arches are actuated by a DC electrostatic load along with an AC harmonic load. Their dynamics is examined numerically using a Galerkin-based reduced-order model when excited near both their first and third natural frequencies. Several simulation results are presented demonstrating interesting jumps and dynamic snap-through behavior of the MEMS arches and their attractive features for uses as band-pass filters, such as their sharp roll-off from pass-bands to stop-bands and their flat response. Experimental work is conducted to test arches realized of curved polysilicon microbeams when excited by DC and AC loads. Experimental data of the micromachined curved beams are shown for the softening and hardening behavior near the first and third natural frequencies, respectively, as well as dynamic snap-through motion. © 2013 Elsevier Ltd.

  8. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, N; Ohta, N; Matsuo, T [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tanaka, T; Terada, Y; Kamasaka, H; Kometani, T, E-mail: yagi@spring8.or.j [Ezaki Glico Co. Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502 (Japan)

    2010-10-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6{mu}m at BL40XU and 50{mu}m at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  9. Paintings on copper by the Flemish artist Frans Francken II: PIXE characterization by external microbeam

    International Nuclear Information System (INIS)

    Corregidor, V.; Oliveira, A.R.; Rodrigues, P.A.; Alves, L.C.

    2015-01-01

    Resorting to an external proton microbeam, PIXE analyses of three oil paintings on copper support dated from the XVII century and attributed to the Flemish artist Frans Francken II, were undertaken. The present work aims to contribute to the compositional study of the painting materials employed by XVII century artists that exploited copper as a support for oil painting, and specifically the materials used by Francken’s workshop, particularly copper plates. Because of the low thickness of the pictorial layers of this type of paintings and its non-destructive character, PIXE is the ideal technique to study the elemental composition of the paintings. Several spots in each painting were chosen for analysis in order to cover almost all the pigments used in the colour palette. Lead and calcium were detected in practically every analysed regions, probably related to the presence of lead white and chalk, usually used as ground layer on copper paintings. Small quantities of gold were also detected, which is present in many of this artist’s works to embellish some details of the representations. Also this work reports the first application of the external proton microbeam set-up available at CTN/IST in Portugal for the characterization of oil paintings

  10. An Electrically Actuated Microbeam-Based MEMS Device: Experimental and Theoretical Investigation

    KAUST Repository

    Ruzziconi, Laura

    2017-11-03

    The present paper deals with the dynamic behavior of a microelectromechanical systems (MEMS). The device consists of a clamped-clamped microbeam electrostatically and electrodynamically actuated. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. In the first part of the paper an extensive experimental investigation is conducted. The microbeam is perfectly straight. The first three experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted. The experimental data show the coexistence of the nonresonant and the resonant branch, which perform a bending toward higher frequencies values before undergoing jump or pull-in dynamics. This kind of bending is not particularly common in MEMS. In the second part of the paper, a theoretical single degree-of-freedom model is derived. The unknown parameters are extracted and settled via parametric identification. A single mode reduced-order model is considered, which is obtained via the Galerkin technique. To enhance the computational efficiency, the contribution of the electric force term is computed in advance and stored in a table. Extensive numerical simulations are performed at increasing values of electrodynamic excitation. They are observed to properly predict all the main nonlinear features arising in the device response. This occurs not only at low values of electrodynamic excitation, but also at higher ones

  11. Free vibration analysis of magneto-electro-elastic microbeams subjected to magneto-electric loads

    Science.gov (United States)

    Vaezi, Mohamad; Shirbani, Meisam Moory; Hajnayeb, Ali

    2016-01-01

    Different types of actuating and sensing mechanisms are used in new micro and nanoscale devices. Therefore, a new challenge is modeling electromechanical systems that use these mechanisms. In this paper, free vibration of a magnetoelectroelastic (MEE) microbeam is investigated in order to obtain its natural frequencies and buckling loads. The beam is simply supported at both ends. External electric and magnetic potentials are applied to the beam. By using the Hamilton's principle, the governing equations and boundary conditions are derived based on the Euler-Bernoulli beam theory. The equations are solved, analytically to obtain the natural frequencies of the MEE microbeam. Furthermore, the effects of external electric and magnetic potentials on the buckling of the beam are analyzed and the critical values of the potentials are obtained. Finally, a numerical study is conducted. It is found that the natural frequency can be tuned directly by changing the magnetic and electric potentials. Additionally, a closed form solution for the normalized natural frequency is derived, and buckling loads are calculated in a numerical example.

  12. Synchrotron microbeam radiation therapy induces hypoxia in intracerebral gliosarcoma but not in the normal brain

    International Nuclear Information System (INIS)

    Bouchet, Audrey; Lemasson, Benjamin; Christen, Thomas; Potez, Marine; Rome, Claire; Coquery, Nicolas; Le Clec’h, Céline; Moisan, Anaick; Bräuer-Krisch, Elke; Leduc, Géraldine; Rémy, Chantal; Laissue, Jean A.; Barbier, Emmanuel L.; Brun, Emmanuel; Serduc, Raphaël

    2013-01-01

    Purpose: Synchrotron microbeam radiation therapy (MRT) is an innovative irradiation modality based on spatial fractionation of a high-dose X-ray beam into lattices of microbeams. The increase in lifespan of brain tumor-bearing rats is associated with vascular damage but the physiological consequences of MRT on blood vessels have not been described. In this manuscript, we evaluate the oxygenation changes induced by MRT in an intracerebral 9L gliosarcoma model. Methods: Tissue responses to MRT (two orthogonal arrays (2 × 400 Gy)) were studied using magnetic resonance-based measurements of local blood oxygen saturation (MR S O 2 ) and quantitative immunohistology of RECA-1, Type-IV collagen and GLUT-1, marker of hypoxia. Results: In tumors, MR S O 2 decreased by a factor of 2 in tumor between day 8 and day 45 after MRT. This correlated with tumor vascular remodeling, i.e. decrease in vessel density, increases in half-vessel distances (×5) and GLUT-1 immunoreactivity. Conversely, MRT did not change normal brain MR S O 2 , although vessel inter-distances increased slightly. Conclusion: We provide new evidence for the differential effect of MRT on tumor vasculature, an effect that leads to tumor hypoxia. As hypothesized formerly, the vasculature of the normal brain exposed to MRT remains sufficiently perfused to prevent any hypoxia

  13. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    International Nuclear Information System (INIS)

    Yagi, N; Ohta, N; Matsuo, T; Tanaka, T; Terada, Y; Kamasaka, H; Kometani, T

    2010-01-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6μm at BL40XU and 50μm at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  14. Analysis of the X-ray microbeam test result of the flash memories

    International Nuclear Information System (INIS)

    Yan Yihua; Ding Lili; Chen Wei; Guo Hongxia; Guo Xiaoqiang; Lin Dongsheng; Zhang Keying; Zhang Fengqi; Deng Yuliang; Fan Ruyu

    2013-01-01

    Background: The failure phenomenon is difficult to analyze for the flash memories when the whole chip is exposed to irradiation since both the memory array and the peripheral circuits might be degraded. Purpose: In order to detect the radiation susceptibility and corresponding phenomenon of the related circuits that included in the flash memories, the X-ray microbeam is used as the radiation source instead of 60 Co. Methods: The failure phenomenon is studied respectively when the memory array, decoder circuits, the charge pump circuits as well as the I/O circuits are exposed to radiation. The errors are mapped according to the logical address and the failure mechanism is analyzed based on the circuits. Results: Irradiated on the memory .array win lead to regularly distributed 0→1 bit flips, while only 1→0 are found when the row decoder is under exposure. Degradation of the charge pump circuits would lead to the erase/program functional failure. Conclusions: The results suggest that the X-ray microbeam radiation test is a good method for detecting the radiation susceptibility of the integrated circuits that contains lots of circuit modules. (authors)

  15. PREFACE: Proceedings of the 11th European Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis

    Science.gov (United States)

    2010-07-01

    This volume of IOP Conference Series: Materials Science and Engineering contains papers from the 11th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis which took place from 10-14 May 2009 in the Hotel Faltom, Gdynia, Poland. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on careers in microbeam analysis can meet and discuss with the established experts. The workshops have a very distinct format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field. For this workshop EMAS invited speakers on the following topics: EPMA, EBSD, fast energy-dispersive X-ray spectroscopy, three-dimensional microanalysis, and micro-and nanoanalysis in the natural resources industry. The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 69 posters from 16 countries were on display at the meeting and that the participants came from as far away as Japan and the USA. A number of participants with posters were invited to give short oral presentations of their work in two dedicated sessions. As at previous workshops there was also a special oral session for young scientists. Small cash prizes were awarded for the three best posters and for the best oral presentation by a young scientist. The prize for the best poster went to the contribution by G Tylko, S Dubchak, Z Banach and K Turnau, entitled Monte Carlo simulation for an assessment of standard validity and quantitative X-ray microanalysis in plant. Joanna Wojewoda-Budka of the Institute of Metallurgy and Materials Science, Krakow, received the prize for the best oral presentation by a

  16. PREFACE: EMAS 2013 Workshop: 13th European Workshop on Modern Developments and Applications in Microbeam Analysis

    Science.gov (United States)

    Llovet, Xavier, Dr; Matthews, Mr Michael B.; Brisset, François, Dr; Guimarães, Fernanda, Dr; Vieira, Professor Joaquim M., Dr

    2014-03-01

    This volume of the IOP Conference Series: Materials Science and Engineering contains papers from the 13th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis which took place from the 12th to the 16th of May 2013 in the Centro de Congressos do Alfândega, Porto, Portugal. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on a career in microbeam analysis can meet and discuss with the established experts. The workshops have a very specific format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field. This workshop was organized in collaboration with LNEG - Laboratório Nacional de Energia e Geologia and SPMICROS - Sociedade Portuguesa de Microscopia. The technical programme included the following topics: electron probe microanalysis, future technologies, electron backscatter diffraction (EBSD), particle analysis, and applications. As at previous workshops there was also a special oral session for young scientists. The best presentation by a young scientist was awarded with an invitation to attend the 2014 Microscopy and Microanalysis meeting at Hartford, Connecticut. The prize went to Shirin Kaboli, of the Department of Metals and Materials Engineering of McGill University (Montréal, Canada), for her talk entitled ''Plastic deformation studies with electron channelling contrast imaging and electron backscattered diffraction''. The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 74 posters from 21 countries were on display at the meeting and that the participants came from as far away as Japan, Canada and the USA. A

  17. PREFACE: EMAS 2011: 12th European Workshop on Modern Developments in Microbeam Analysis

    Science.gov (United States)

    Brisset, François; Dugne, Olivier; Robaut, Florence; Lábár, János L.; Walker, Clive T.

    2012-03-01

    This volume of IOP Conference Series: Materials Science and Engineering contains papers from the 12th Workshop of the European Microbeam Analysis Society (EMAS) on Modern Developments and Applications in Microbeam Analysis, which took place from the 15-19 May 2011 in the Angers Congress Centre, Angers, France. The primary aim of this series of workshops is to assess the state-of-the-art and reliability of microbeam analysis techniques. The workshops also provide a forum where students and young scientists starting out on a career in microbeam analysis can meet and discuss with the established experts. The workshops have a very specific format comprising invited plenary lectures by internationally recognized experts, poster presentations by the participants and round table discussions on the key topics led by specialists in the field. This workshop was organized in collaboration with GN-MEBA - Groupement National de Microscopie Electronique à Balayage et de microAnalysis, France. The technical programme included the following topics: the limits of EPMA, new techniques, developments and concepts in microanalysis, microanalysis in the SEM, and new and less common applications of micro- and nanoanalysis. As at previous workshops there was also a special oral session for young scientists. The best presentation by a young scientist was awarded with an invitation to attend the 2012 Microscopy and Microanalysis meeting at Phoenix, Arizona. The prize went to Pierre Burdet, of the Federal Institute of Technology of Lausanne (EPFL), for his talk entitled '3D EDS microanalysis by FIB-SEM: enhancement of elemental quantification'. The continuing relevance of the EMAS workshops and the high regard in which they are held internationally can be seen from the fact that 74 posters from 18 countries were on display at the meeting, and that the participants came from as far away as Japan, Canada and the USA. A selection of participants with posters were invited to give a short oral

  18. Study of squeeze film damping in a micro-beam resonator based on micro-polar theory

    Directory of Open Access Journals (Sweden)

    Mina Ghanbari

    Full Text Available In this paper, squeeze film damping in a micro-beam resonator based on micro-polar theory has been investigated. The proposed model for this study consists of a clamped-clamped micro-beam bounded between two fixed layers. The gap between the micro-beam and layers is filled with air. As fluid behaves differently in micro scale than macro, the micro-scale fluid field in the gap has been modeled based on micro-polar theory. Equation of motion governing transverse deflection of the micro- beam based on modified couple stress theory and also non-linear Reynolds equation of the fluid field based on micropolar theory have been non-dimensionalized, linearized and solved simultaneously in order to calculate the quality factor of the resonator. The effect of micropolar parameters of air on the quality factor has been investigated. The quality factor of the of the micro-beam resonator for different values of non-dimensionalized length scale of the beam, squeeze number and also non-dimensionalized pressure has been calculated and compared to the obtained values of quality factor based on classical theory.

  19. Size-dependent dynamic stability analysis of microbeams actuated by piezoelectric voltage based on strain gradient elasticity theory

    Energy Technology Data Exchange (ETDEWEB)

    Sahmani, Saeid; Bahrami, Mohsen [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-01-15

    In the current paper, dynamic stability analysis of microbeams subjected to piezoelectric voltage is presented in which the microbeam is integrated with piezoelectric layers on the lower and upper surfaces. Both of the flutter and divergence instabilities of microbeams with clamped-clamped and clamped-free boundary conditions are predicted corresponding to various values of applied voltage. To take size effect into account, the classical Timoshenko beam theory in conjunction with strain gradient elasticity theory is utilized to develop nonclassical beam model containing three additional internal length scale parameters. By using Hamilton's principle, the higher-order governing differential equations and associated boundary conditions are derived. Afterward, generalized differential quadrature method is employed to discretize the size-dependent governing differential equations along with clamped-clamped and clamped-free end supports. The critical piezoelectric voltages corresponding to various values dimensionless length scale parameter are evaluated and compared with those predicted by the classical beam theory. It is revealed that in the case of clamped-free boundary conditions, the both of flutter and divergence instabilities occur. However, for the clamped-clamped microbeams, only divergence instability takes place.

  20. Computational modelling of the cerebral cortical microvasculature: effect of x-ray microbeams versus broad beam irradiation

    Science.gov (United States)

    Merrem, A.; Bartzsch, S.; Laissue, J.; Oelfke, U.

    2017-05-01

    Microbeam Radiation Therapy is an innovative pre-clinical strategy which uses arrays of parallel, tens of micrometres wide kilo-voltage photon beams to treat tumours. These x-ray beams are typically generated on a synchrotron source. It was shown that these beam geometries allow exceptional normal tissue sparing from radiation damage while still being effective in tumour ablation. A final biological explanation for this enhanced therapeutic ratio has still not been found, some experimental data support an important role of the vasculature. In this work, the effect of microbeams on a normal microvascular network of the cerebral cortex was assessed in computer simulations and compared to the effect of homogeneous, seamless exposures at equal energy absorption. The anatomy of a cerebral microvascular network and the inflicted radiation damage were simulated to closely mimic experimental data using a novel probabilistic model of radiation damage to blood vessels. It was found that the spatial dose fractionation by microbeam arrays significantly decreased the vascular damage. The higher the peak-to-valley dose ratio, the more pronounced the sparing effect. Simulations of the radiation damage as a function of morphological parameters of the vascular network demonstrated that the distribution of blood vessel radii is a key parameter determining both the overall radiation damage of the vasculature and the dose-dependent differential effect of microbeam irradiation.

  1. Studying nanostructure gradients in injection-molded polypropylene/montmorillonite composites by microbeam small-angle x-ray scattering

    DEFF Research Database (Denmark)

    Stribeck, Norbert; Schneider, Konrad; Zeinolebadi, Ahmad

    2014-01-01

    The core–shell structure in oriented cylindrical rods of polypropylene (PP) and nanoclay composites (NCs) from PP and montmorillonite (MMT) is studied by microbeam small-angle x-ray scattering (SAXS). The structure of neat PP is almost homogeneous across the rod showing regular semicrystalline......-shaped phyllosilicate filler particles....

  2. Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM

    Science.gov (United States)

    Ghadiri, Majid; Shafiei, Navvab; Alireza Mousavi, S.

    2016-09-01

    Due to having difficulty in solving governing nonlinear differential equations of a non-uniform microbeam, a few numbers of authors have studied such fields. In the present study, for the first time, the size-dependent vibration behavior of a rotating functionally graded (FG) tapered microbeam based on the modified couple stress theory is investigated using differential quadrature element method (DQEM). It is assumed that physical and mechanical properties of the FG microbeam are varying along the thickness that will be defined as a power law equation. The governing equations are determined using Hamilton's principle, and DQEM is presented to obtain the results for cantilever and propped cantilever boundary conditions. The accuracy and validity of the results are shown in several numerical examples. In order to display the influence of size on the first two natural frequencies and consequently changing of some important microbeam parameters such as material length scale, rate of cross section, angular velocity and gradient index of the FG material, several diagrams and tables are represented. The results of this article can be used in designing and optimizing elastic and rotary-type micro-electro-mechanical systems like micro-motors and micro-robots including rotating parts.

  3. Síndrome de lise tumoral: uma revisão abrangente da literatura Acute tumor lysis syndrome: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Michael Darmon

    2008-09-01

    égias baseadas no risco dos pacientes são necessários para limitar a alta morbidade e mortalidade desta complicação.Tumor lysis syndrome is characterized by the massive destruction of malignant cells and the release in the extra-cellular space of their content. While Tumor lysis syndrome may occur spontaneously before treatment, it usually develops shortly after the initiation of cytotoxic chemotherapy. These metabolites can overwhelm the homeostatic mechanisms with development of hyperuricaemia, hyperkalaemia, hyperphosphataemia, and hypocalcaemia. These biological manifestations may lead to clinical manifestations including, acute kidney injury, seizure, or sudden death that require intensive care. Since clinical tumor lysis syndrome is associated with a poor prognosis both prevention of tumor lysis syndrome and prevention of clinical consequences of tumor lysis syndrome are mandatory. The objective of this review is to describe pathophysiological mechanisms, biological and clinical manifestations of tumor Lysis syndrome, and to provide upto-date guidelines to ensure prevention of tumor lysis syndrome. Review of selected studies on tumor lysis syndrome published at the PubMed database www.pubmed.gov during the last 20 years. Additional references were retrieved from the studies initially selected. Tumor lysis syndrome is a frequent and life-threatening complication of the newly diagnosed malignancies. Preventive measures, including hydration, uricolytic agents, eviction of factors predisposing to acute kidney injury and, in the more severe patients, on prophylactic renal replacement therapy, are required to prevent or limit clinical consequences of Tumor lysis syndrome. However optimal timing and modalities of prevention remains unknown and may be modified by the changing spectrum of patients at risk of tumor lysis syndrome. Development and validation of risk based strategies is required to limit the high morbidity and mortality of this complication.

  4. Use of synchrotron medical microbeam irradiation to investigate radiation-induced bystander and abscopal effects in vivo.

    Science.gov (United States)

    Fernandez-Palomo, Cristian; Bräuer-Krisch, Elke; Laissue, Jean; Vukmirovic, Dusan; Blattmann, Hans; Seymour, Colin; Schültke, Elisabeth; Mothersill, Carmel

    2015-09-01

    The question of whether bystander and abscopal effects are the same is unclear. Our experimental system enables us to address this question by allowing irradiated organisms to partner with unexposed individuals. Organs from both animals and appropriate sham and scatter dose controls are tested for expression of several endpoints such as calcium flux, role of 5HT, reporter assay cell death and proteomic profile. The results show that membrane related functions of calcium and 5HT are critical for true bystander effect expression. Our original inter-animal experiments used fish species whole body irradiated with low doses of X-rays, which prevented us from addressing the abscopal effect question. Data which are much more relevant in radiotherapy are now available for rats which received high dose local irradiation to the implanted right brain glioma. The data were generated using quasi-parallel microbeams at the biomedical beamline at the European Synchrotron Radiation Facility in Grenoble France. This means we can directly compare abscopal and "true" bystander effects in a rodent tumour model. Analysis of right brain hemisphere, left brain and urinary bladder in the directly irradiated animals and their unirradiated partners strongly suggests that bystander effects (in partner animals) are not the same as abscopal effects (in the irradiated animal). Furthermore, the presence of a tumour in the right brain alters the magnitude of both abscopal and bystander effects in the tissues from the directly irradiated animal and in the unirradiated partners which did not contain tumours, meaning the type of signal was different. Copyright © 2015. Published by Elsevier Ltd.

  5. Weanling piglet cerebellum: a surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology

    Science.gov (United States)

    Laissue, Jean A.; Blattmann, Hans; Di Michiel, Marco; Slatkin, Daniel N.; Lyubimova, Nadia; Guzman, Raphael; Zimmermann, Werner; Birrer, Stephan; Bley, Tim; Kircher, Patrick; Stettler, Regina; Fatzer, Rosmarie; Jaggy, Andre; Smilowitz, Henry; Brauer, Elke; Bravin, Alberto; Le Duc, Geraldine; Nemoz, Christian; Renier, Michel; Thomlinson, William C.; Stepanek, Jiri; Wagner, Hans-Peter

    2001-12-01

    The cerebellum of the weanling piglet (Yorkshire) was used as a surrogate for the radiosensitive human infant cerebellum in a Swiss-led program of experimental microbeam radiation therapy (MRT) at the ESRF. Five weanlings in a 47 day old litter of seven, and eight weanlings in a 40 day old litter of eleven were irradiated in November, 1999 and June, 2000, respectively. A 1.5 cm-wide x 1.5 xm-high array of equally space approximately equals 20-30 micrometers wide, upright microbeams spaced at 210 micrometers intervals was propagated horizontally, left to right, through the cerebella of the prone, anesthetized piglets. Skin-entrance intra-microbeam peak adsorbed doses were uniform, either 150, 300, 425, or 600 gray (Gy). Peak and inter-microbeam (valley) absorbed doses in the cerebellum were computed with the PSI version of the Monte Carlo code GEANT and benchmarked using Gafchromic and radiochromic film microdosimetry. For approximately equals 66 weeks [first litter; until euthanasia], or approximately equals 57 weeks [second litter; until July 30, 2001] after irradiation, the littermates were developmentally, behaviorally, neurologically and radiologically normal as observed and tested by experienced farmers and veterinary scientists unaware of which piglets were irradiated or sham-irradiated. Morever, MRT implemented at the ESRF with a similar array of microbeams and a uniform skin-entrance peak dose of 625 Gy, followed by immunoprophylaxis, was shown to be palliative or curative in young adult rats bearing intracerebral gliosarcomas. These observations give further credence to MRT's potential as an adjunct therapy for brain tumors in infancy, when seamless therapeutic irradiation of the brain is hazardous.

  6. Controlled vesicle deformation and lysis by single oscillating bubbles

    Science.gov (United States)

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2003-05-01

    The ability of collapsing (cavitating) bubbles to focus and concentrate energy, forces and stresses is at the root of phenomena such as cavitation damage, sonochemistry or sonoluminescence. In a biomedical context, ultrasound-driven microbubbles have been used to enhance contrast in ultrasonic images. The observation of bubble-enhanced sonoporation-acoustically induced rupture of membranes-has also opened up intriguing possibilities for the therapeutic application of sonoporation as an alternative to cell-wall permeation techniques such as electroporation and particle guns. However, these pioneering experiments have not been able to pinpoint the mechanism by which the violently collapsing bubble opens pores or larger holes in membranes. Here we present an experiment in which gentle (linear) bubble oscillations are sufficient to achieve rupture of lipid membranes. In this regime, the bubble dynamics and the ensuing sonoporation can be accurately controlled. The use of microbubbles as focusing agents makes acoustics on the micrometre scale (microacoustics) a viable tool, with possible applications in cell manipulation and cell-wall permeation as well as in microfluidic devices.

  7. Superiority of SDS lysis over saponin lysis for direct bacterial identification from positive blood culture bottle by MALDI-TOF MS.

    Science.gov (United States)

    Caspar, Yvan; Garnaud, Cécile; Raykova, Mariya; Bailly, Sébastien; Bidart, Marie; Maubon, Danièle

    2017-05-01

    Fast species diagnosis has an important health care impact, as rapid and specific antibacterial therapy is of clear benefit for patient's outcome. Here, a new protocol for species identification directly from positive blood cultures is proposed. Four in-house protocols for bacterial identification by MS directly from clinical positive blood cultures evaluating two lytic agents, SDS and saponin, and two protein extraction schemes, fast (FP) and long (LP) are compared. One hundred and sixty-eight identification tests are carried out on 42 strains. Overall, there are correct identifications to the species level in 90% samples for the SDS-LP, 60% for the SDS-FP, 48% for the saponin LP, and 43% for the saponin FP. Adapted scores allowed 92, 86, 72, and 53% identification for SDS-LP, SDS-FP, saponin LP, and saponin FP, respectively. Saponin lysis is associated with a significantly lower score compared to SDS (0.87 [0.83-0.92], p-value saponin lysis and the application of this rapid and cost-effective protocol in daily routine for microbiological agents implicated in septicemia. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An improved in-house lysis-filtration protocol for bacterial identification from positive blood culture bottles with high identification rates by MALDI-TOF MS.

    Science.gov (United States)

    Tsuchida, Sachio; Murata, Syota; Miyabe, Akiko; Satoh, Mamoru; Takiwaki, Masaki; Matsushita, Kazuyuki; Nomura, Fumio

    2018-05-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is now a well-established method for identification of microorganisms from positive blood cultures. Pretreatments to effectively remove non-bacterial proteins are a prerequisite for successful identification, and a variety of protocols have been reported. Although commercially available kits, mainly the Sepsityper Kit, are increasingly used, the identification rates reported often are not satisfactory, particularly for Gram-positive isolates. We developed a new, in-house lysis-filtration protocol and prospectively evaluated its performance compared to the Sepsityper kit. The in-house protocol consists of three simple steps: lysis by ammonium chloride, aspiration with a syringe fitted with a 0.45-μm membrane, and centrifugation to collect microbes. The novel protocol requires only 20 min. Performance of the in-house protocol was evaluated using a total of 117 monomicrobial cases of positive blood culture. Medium from blood culture bottles was pretreated by the in-house protocol or the commercial kit, and isolated cells were subjected to direct identification by mass spectrometry fingerprinting in parallel with conventional subculturing for reference identification. The overall MALDI-TOF MS-based identification rates with score > 1.7 and > 2.0 obtained using the in-house protocol were 99.2% and 85.5%, respectively, whereas those obtained using the Sepsityper Kit were 85.4% and 61.5%, respectively. For Gram-positive cases, the in-house protocol yielded scores >1.7 and > 2.0 at 98.5% and 76.1%, respectively, whereas the commercial kit yielded these scores at 76.1% and 43.3%, respectively. Although these are preliminary results, these values suggest that this easy lysis-filtration protocol deserves assessment in a larger-scale test. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Spontaneous tumour lysis syndrome in a case of multiple myeloma – A rare occurrence

    Directory of Open Access Journals (Sweden)

    Kavitha Saravu

    2013-03-01

    Full Text Available We describe a case of a 40-year-old male patient who was found to have multiple myeloma with spontaneous tumour lysis syndrome (TLS, following a compression fracture of the L–2 vertebrae. Multiple myeloma was confirmed by bone marrow analysis and the M–band on serum protein electrophoresis. Hyperuricaemia (26.2 mg/dL, hyperkalaemia (> 7.0 mEq/L, hyperphosphatemia (16.2 mg of phosphorus/dL, normocalcemia and acute kidney injury, prior to anticancer treatment suggested spontaneous TLS. Inciting events for tumour lysis, such as chemotherapy, dehydration and exposure to steroids were absent. Patient received hydration, hypourecemic drugs and haemodialysis. This case report highlights the rare presentation of multiple myeloma with spontaneous TLS.

  10. A case of cetuximab-related tumour lysis syndrome in metastatic rectal carcinoma

    Science.gov (United States)

    Haroon, Muhammad; Kwong, Whye Yan; Cantwell, Brian; Walker, Frank

    2010-01-01

    A 60-year-old man was diagnosed with a moderately differentiated adenocarcinoma in November 2006. The computed tomography (CT), magnetic resonance imaging (MRI) and whole-body positron emission tomography–CT (PET–CT) scan showed the presence of multiple liver metastases which were confined to its right lobe. He had the first session of a combined therapy with cetuximab and 5-fluorouracil (5-FU) in March 2009; however, soon afterwards, he presented with the symptoms, signs and biochemistry suggestive of tumour lysis syndrome. Our unusual case highlights that tumour lysis syndrome can also develop in ‘low risk’ category tumours, and that clinicians should be vigilant in identifying at-risk patients. PMID:28657052

  11. [Intraoperative lysis and neurostimulation as added therapy in surgery of popliteal artery aneurysm].

    Science.gov (United States)

    Peiper, C; Heye, K; Ktenidis, K; Horsch, S

    1997-01-01

    Additional therapy of symptomatic popliteal artery aneurysm includes intraoperative lysis for the treatment of the descending thrombosis and spinal cord stimulation for cases of chronic deterioration of the peripheral perfusion state. Between 1989 and 1996, we treated 50 patients with 55 symptomatic aneurysms using this concept, 18 of them as emergency cases. We reached a postoperative amputation rate of 12.7% and good long-term functional results in 34 of 37 patients.

  12. Arthroscopic lysis and lavage in patients with temporomandibular anterior disc displacement without reduction

    Czech Academy of Sciences Publication Activity Database

    Machoň, V.; Šedý, Jiří; Klíma, K.; Hirjak, D.; Foltán, R.

    2012-01-01

    Roč. 41, č. 1 (2012), s. 109-113 ISSN 0901-5027 R&D Projects: GA MŠk(CZ) LC554; GA ČR GAP304/10/0320 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : temporomandibular joint * arthroscopic lysis * arthroscopic lavage Subject RIV: FJ - Surgery incl. Transplants Impact factor: 1.521, year: 2012

  13. Survival of rats bearing advanced intracerebral F 98 tumors after glutathione depletion and microbeam radiation therapy: conclusions from a pilot project.

    Science.gov (United States)

    Schültke, E; Bräuer-Krisch, E; Blattmann, H; Requardt, H; Laissue, J A; Hildebrandt, G

    2018-05-10

    Resistance to radiotherapy is frequently encountered in patients with glioblastoma multiforme. It is caused at least partially by the high glutathione content in the tumour tissue. Therefore, the administration of the glutathione synthesis inhibitor Buthionine-SR-Sulfoximine (BSO) should increase survival time. BSO was tested in combination with an experimental synchrotron-based treatment, microbeam radiation therapy (MRT), characterized by spatially and periodically alternating microscopic dose distribution. One hundred thousand F98 glioma cells were injected into the right cerebral hemisphere of adult male Fischer rats to generate an orthotopic small animal model of a highly malignant brain tumour in a very advanced stage. Therapy was scheduled for day 13 after tumour cell implantation. At this time, 12.5% of the animals had already died from their disease. The surviving 24 tumour-bearing animals were randomly distributed in three experimental groups: subjected to MRT alone (Group A), to MRT plus BSO (Group B) and tumour-bearing untreated controls (Group C). Thus, half of the irradiated animals received an injection of 100 μM BSO into the tumour two hours before radiotherapy. Additional tumour-free animals, mirroring the treatment of the tumour-bearing animals, were included in the experiment. MRT was administered in bi-directional mode with arrays of quasi-parallel beams crossing at the tumour location. The width of the microbeams was ≈28 μm with a center-to-center distance of ≈400 μm, a peak dose of 350 Gy, and a valley dose of 9 Gy in the normal tissue and 18 Gy at the tumour location; thus, the peak to valley dose ratio (PVDR) was 31. After tumour-cell implantation, otherwise untreated rats had a mean survival time of 15 days. Twenty days after implantation, 62.5% of the animals receiving MRT alone (group A) and 75% of the rats given MRT + BSO (group B) were still alive. Thirty days after implantation, survival was 12.5% in Group A and 62

  14. A comparison of ray-tracing software for the design of quadrupole microbeam systems

    International Nuclear Information System (INIS)

    Incerti, S.; Smith, R.W.; Merchant, M.; Grime, G.W.; Meot, F.; Serani, L.; Moretto, Ph.; Touzeau, C.; Barberet, Ph.; Habchi, C.; Nguyen, D.T.

    2005-01-01

    For many years the only ray-tracing software available with sufficient precision for the design of quadrupole microbeam focusing systems has been OXRAY and its successor TRAX, developed at Oxford in the 1980s. With the current interest in pushing the beam diameter into the nanometre region, this software has become dated and more importantly the precision at small displacements may not be sufficient and new simulation tools are required. Two candidates for this are Zgoubi, developed at CEA as a general beam line design tool and the CERN simulation program Geant in its latest version Geant4. In order to use Geant4 new quadrupole field modules have been developed and implemented. In this paper the capabilities of the three codes TRAX, Zgoubi and Geant4 are reviewed. Comparisons of ray-tracing calculations in a high demagnification quadrupole probe-forming system for the sub-micron region are presented

  15. Complete synchronization condition in a network of piezoelectric micro-beam

    International Nuclear Information System (INIS)

    Taffoti Yolong, V.Y.; Woafo, P.

    2007-10-01

    This work deals with the dynamics of a network of piezoelectric micro-beams. The complete synchronization condition for this class of chaotic nonlinear electromechanical systems devices with nearest-neighbor diffusive coupling is studied. The nonlinearities on the device studied here are both on the electrical component and on the mechanical one. The investigation is made for the case of a large number of discrete piezoelectric disks coupled. The problem of chaos synchronization is described and converted into the analysis of stability of the system via its differential equations. We show that the complete synchronization of N identical coupled nonlinear chaotic systems having the shift invariant coupling schemes can be calculated from the synchronization of two of them coupled in both directions. According to analytical, semi-analytical predictions and numerical calculations, the transition boundaries for chaos synchronization state in the coupled system are determined as a function of the increasing number of oscillators. (author)

  16. Micro-CT of sea urchin ossicles supplemented with microbeam diffraction

    Science.gov (United States)

    Stock, Stuart R.; Ignatiev, Konstantin I.; Veis, Arthur; De Carlo, Francesco; Almer, J. D.

    2004-10-01

    Sea urchins employ as wide a range of composite reinforcement strategies as are seen in engineering composites. Besides tailoring reinforcement morphology and alignment to the functional demands of position, solid solution strengthening (high Mg calcite), inclusion toughening (macromolecules), functional gradients in mineral reinforcement morphology, composition and dimensions and mineral interface tailoring are other tactics important to achieving high toughness and high strength in sea urchin teeth. Teeth from different echinoid families illustrate combinations of reinforcement parameters and toughening mechanisms providing good functionality, a virtual probe of the available design space. This paper focuses on a multi-mode x-ray investigation of sea urchin teeth studied on scales approaching 1 μm in millimeter-sized samples, in particular mapping 3-D microarchitecture with synchrotron and laboratory microCT and mapping Ca1-xMgxCO3 crystal composition x and microstrain and crystallite size via microbeam diffraction.

  17. Flexoelectric Effect on Vibration of Piezoelectric Microbeams Based on a Modified Couple Stress Theory

    Directory of Open Access Journals (Sweden)

    Xingjia Li

    2017-01-01

    Full Text Available A novel electric Gibbs function was proposed for the piezoelectric microbeams (PMBs by employing a modified couple stress theory. Based on the new Gibbs function and the Euler-Bernoulli beam theory, the governing equations which incorporate the effects of couple stress, flexoelectricity, and piezoelectricity were derived for the mechanics of PMBs. The analysis of the effective bending rigidity shows the effects of size and flexoelectricity can greaten the stiffness of PMBs so that the natural frequency increases significantly compared with the Euler-Bernoulli beam, and then the mechanical and electrical properties of PMBs are enhanced compared to the classical beam. This study can guide the design of microscale piezoelectric/flexoelectric structures which may find potential applications in the microelectromechanical systems (MEMS.

  18. Piezoelectric transduction of flexural modes in pre-stressed microbeam resonators

    International Nuclear Information System (INIS)

    Torri, G B; Rottenberg, X; Hoof, C Van; Puers, R; Tilmans, H A C; Janssen, N M A; Zeng, Z; Karabacak, D M; Vandecasteele, M

    2014-01-01

    This paper reports on the optimization of the design of piezoelectric transducer elements integrated on doubly-clamped microbeam resonators utilized as (bio)chemical sensors. We report and emphasize the often forgotten influence of membrane stresses on defining the dimensions and optimal position of the piezoelectric transducer elements. The study takes into account stress induced structural changes and provides models for the equivalent motional parameters of resonators with particular shapes of the transducers matching the flexural modes of vibration. The above is analyzed theoretically using numerical models and is confirmed by impedance measurements and optical measurements of fabricated doubly-clamped beam resonators. We propose various transducer designs and highlight the advantages of using higher order vibration modes by implementing specially designed mode matching transducer elements. It is concluded that the paper describes and highlights the importance of accounting for the membrane stresses to optimize the resonator performance and the low power in electronic feedback of resonating sensing systems. (paper)

  19. Nuclear micro-beam analysis of deuterium distribution in carbon fibre composites for controlled fusion devices

    International Nuclear Information System (INIS)

    Petersson, P.; Kreter, A.; Possnert, G.; Rubel, M.

    2010-01-01

    Probes made of carbon fibre composite NB41 were exposed to deuterium plasmas in the TEXTOR tokamak and in a simulator of plasma-wall interactions, PISCES. The aim was to assess the deuterium retention and its lateral and depth distribution. The analysis was performed by means of D( 3 He, p) 4 He and 12 C( 3 He, p) 14 N nuclear reactions analysis using a standard (1 mm spot) and micro-beam (20 μm resolution). The measurements have revealed non uniform distribution of deuterium atoms in micro-regions: differences by a factor of 3 between the maximum and minimum deuterium concentrations. The differences were associated with the orientation and type of fibres for samples exposed in PICSES. For surface structure in the erosion zone of samples exposed to a tokamak plasma the micro-regions were more complex. Depth profiling has indicated migration of fuel into the bulk of materials.

  20. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers

    International Nuclear Information System (INIS)

    Cunning, Benjamin V; Ahmed, Mohsin; Mishra, Neeraj; Kermany, Atieh Ranjbar; Iacopi, Francesca; Wood, Barry

    2014-01-01

    Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices. (paper)

  1. Ion microbeam analysis. Application to the study of the skin barrier and its nano-toxicology

    International Nuclear Information System (INIS)

    Simon, M.

    2009-12-01

    This work is dedicated to the use of ion microbeam irradiation to the study of a complex biological tissue like skin. Up to now, it has been very difficult to detect and track metallic oxides and manufactured nano-particles in biological tissues, most particularly in skin. Thus, it is essential to precise the mechanisms involved in skin barrier function processes face to exogenous agents like nano-particles and to characterize them in biological models in vitro/in vivo. During my work, I have had the opportunity to combine quantitative methods of analysis with high resolution imagery techniques (confocal microscopy, transmission electron microscopy and ion beam analysis) in order to characterize: (i) the skin barrier function of an ex vivo pig ear skin model understanding the ion homeostasis behavior face to different chemical or physical stresses; (ii) the impact on viability, accumulation and intracellular distribution of nano-particles (Titanium Oxides) naked or functionalized with fluorescent dyes (FITC, Rhodamine)

  2. Piezoelectric transduction of flexural modes in pre-stressed microbeam resonators

    Science.gov (United States)

    Torri, G. B.; Janssen, N. M. A.; Zeng, Z.; Rottenberg, X.; Karabacak, D. M.; Vandecasteele, M.; Van Hoof, C.; Puers, R.; Tilmans, H. A. C.

    2014-08-01

    This paper reports on the optimization of the design of piezoelectric transducer elements integrated on doubly-clamped microbeam resonators utilized as (bio)chemical sensors. We report and emphasize the often forgotten influence of membrane stresses on defining the dimensions and optimal position of the piezoelectric transducer elements. The study takes into account stress induced structural changes and provides models for the equivalent motional parameters of resonators with particular shapes of the transducers matching the flexural modes of vibration. The above is analyzed theoretically using numerical models and is confirmed by impedance measurements and optical measurements of fabricated doubly-clamped beam resonators. We propose various transducer designs and highlight the advantages of using higher order vibration modes by implementing specially designed mode matching transducer elements. It is concluded that the paper describes and highlights the importance of accounting for the membrane stresses to optimize the resonator performance and the low power in electronic feedback of resonating sensing systems.

  3. PIXE microbeam analysis of the metallic debris release around endosseous implants

    International Nuclear Information System (INIS)

    Buso, G.P.; Galassini, S.; Moschini, G.; Passi, P.; Zadro, A.; Uzunov, N.M.; Doyle, B.L.; Rossi, P.; Provencio, P.

    2005-01-01

    The mechanical friction that occurs during the surgical insertion of endosseous implants, both in dentistry and orthopaedics, may cause the detachment of metal debris which are dislodged into the peri-implant tissues and can lead to adverse clinical effects. This phenomenon more likely happens with coated or roughened implants that are the most widely employed. In the present study were studied dental implants screws made of commercially pure titanium and coated using titanium plasma-spray (TPS) technique. The implants were inserted in the tibia of rabbits, and removed 'en bloc' with the surrounding bone after one month. After proper processing and mounting on plastic holders, samples from bones were analysed by EDXRF setup at of National Laboratories of Legnaro, INFN, Italy, and consequently at 3 MeV proton microbeam setup at Sandia National Laboratories. Elemental maps were drawn, showing some occasional presence of metal particles in the peri-implant bone

  4. Comparison of the lysis-centrifugation and agitated biphasic blood culture systems for detection of fungemia.

    Science.gov (United States)

    Murray, P R

    1991-01-01

    Although the detection of fungemia has been improved by the use of vented or biphasic blood culture bottles, the best recovery and earliest detection have been reported in the Isolator lysis-centrifugation system. It was recently demonstrated that improved detection of both bacteria and fungi was accomplished by mechanically agitating blood culture bottles for the first 24 h of incubation. In this study the detection of fungemia by use of the Isolator system was compared with that of an agitated biphasic system. A total of 182 fungi were isolated from blood specimens inoculated into both culture systems. No difference in the overall recovery of fungi or individual species of yeasts was observed between the two systems. However, all seven isolates of Histoplasma capsulatum were recovered in the Isolator system only. The time required to detect fungemia with each of the two systems was also compared. No statistically significant difference was observed. From the data collected during this 18-month study, it can be concluded that the overall recovery and time of detection of yeasts are equivalent in the lysis-centrifugation system and the agitated biphasic blood culture system. The lysis-centrifugation system is still superior for the detection of filamentous fungi such as H. capsulatum. PMID:1993772

  5. Effect of ultrasonic frequency on the mechanism of formic acid sono-lysis

    International Nuclear Information System (INIS)

    Chave, T.; Nikitenko, S.I.; Navarro, N.M.; Pochon, P.; Bisel, I.

    2011-01-01

    The kinetics and mechanism of formic acid sono-chemical degradation were studied at ultrasonic frequencies of 20, 200, and 607 kHz under argon atmosphere. Total yield of HCOOH sono-chemical degradation increases approximately 6-8-fold when the frequency increased from 20 to 200 or to 607 kHz. At low ultrasonic frequencies, HCOOH degradation has been attributed to oxidation with OH . radicals from water sono-lysis and to the HCOOH decarboxylation occurring at the cavitation bubble-liquid interface. With high-frequency ultrasound, the sono-chemical reaction is also influenced by HCOOH dehydration. Whatever the ultrasonic frequency, the sono-lysis of HCOOH yielded H 2 and CO 2 in the gas phase as well as trace, amounts of oxalic acid and formaldehyde in the liquid phase. However, CO and CH 4 formations were only detected under high frequency ultrasound. The most striking difference between low frequency and high frequency ultrasound is that the sono-lysis of HCOOH at high ultrasonic frequencies initiates Fischer-Tropsch hydrogenation of carbon monoxide. (authors)

  6. Analysis of strain error sources in micro-beam Laue diffraction

    International Nuclear Information System (INIS)

    Hofmann, Felix; Eve, Sophie; Belnoue, Jonathan; Micha, Jean-Sébastien; Korsunsky, Alexander M.

    2011-01-01

    Micro-beam Laue diffraction is an experimental method that allows the measurement of local lattice orientation and elastic strain within individual grains of engineering alloys, ceramics, and other polycrystalline materials. Unlike other analytical techniques, e.g. based on electron microscopy, it is not limited to surface characterisation or thin sections, but rather allows non-destructive measurements in the material bulk. This is of particular importance for in situ loading experiments where the mechanical response of a material volume (rather than just surface) is studied and it is vital that no perturbation/disturbance is introduced by the measurement technique. Whilst the technique allows lattice orientation to be determined to a high level of precision, accurate measurement of elastic strains and estimating the errors involved is a significant challenge. We propose a simulation-based approach to assess the elastic strain errors that arise from geometrical perturbations of the experimental setup. Using an empirical combination rule, the contributions of different geometrical uncertainties to the overall experimental strain error are estimated. This approach was applied to the micro-beam Laue diffraction setup at beamline BM32 at the European Synchrotron Radiation Facility (ESRF). Using a highly perfect germanium single crystal, the mechanical stability of the instrument was determined and hence the expected strain errors predicted. Comparison with the actual strain errors found in a silicon four-point beam bending test showed good agreement. The simulation-based error analysis approach makes it possible to understand the origins of the experimental strain errors and thus allows a directed improvement of the experimental geometry to maximise the benefit in terms of strain accuracy.

  7. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk.

    Science.gov (United States)

    Autsavapromporn, Narongchai; Plante, Ianik; Liu, Cuihua; Konishi, Teruaki; Usami, Noriko; Funayama, Tomoo; Azzam, Edouard I; Murakami, Takeshi; Suzuki, Masao

    2015-01-01

    Radiation-induced bystander effects have important implications in radiotherapy. Their persistence in normal cells may contribute to risk of health hazards, including cancer. This study investigates the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of harmful effects in progeny of bystander cells. Confluent human skin fibroblasts were exposed to microbeam radiations with different linear energy transfer (LET) at mean absorbed doses of 0.4 Gy by which 0.036-0.4% of the cells were directly targeted by radiation. Following 20 population doublings, the cells were harvested and assayed for micronucleus formation, gene mutation and protein oxidation. Our results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET. The progeny of bystander cells exposed to X-rays (LET ∼6 keV/μm) or protons (LET ∼11 keV/μm) showed persistent oxidative stress, which correlated with increased micronucleus formation and mutation at the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) locus. Such effects were not observed after irradiation by carbon ions (LET ∼103 keV/μm). Interestingly, progeny of bystander cells from cultures exposed to protons or carbon ions under conditions where GJIC was inhibited harbored reduced oxidative and genetic damage. This mitigating effect was not detected when the cultures were exposed to X-rays. These findings suggest that cellular exposure to proton and heavy charged particle with LET properties similar to those used here can reduce the risk of lesions associated with cancer. The ability of cells to communicate via gap junctions at the time of irradiation appears to impact residual damage in progeny of bystander cells.

  8. STUDIES ON THE BACTERIOPHAGE OF D'HERELLE : IX. EVIDENCE OF HYDROLYSIS OF BACTERIAL PROTEIN DURING LYSIS.

    Science.gov (United States)

    Hetler, D M; Bronfenbrenner, J

    1928-07-31

    1. During the process of lysis by bacteriophage, there is an appreciable increase in the amount of free amino acid present in the culture. 2. The increase of free amino acid is due to hydrolysis of bacterial protein.

  9. Blood culture bottles are superior to lysis-centrifugation tubes for bacteriological diagnosis of spontaneous bacterial peritonitis.

    OpenAIRE

    Siersema, P D; de Marie, S; van Zeijl, J H; Bac, D J; Wilson, J H

    1992-01-01

    The conventional method of ascitic fluid culturing was compared with the bedside inoculation of ascites into blood culture bottles and into lysis-centrifugation tubes. The conventional culture method was compared with the blood culture bottle method in 31 episodes of spontaneous bacterial peritonitis (SBP). Cultures were positive with the conventional culture method in 11 (35%) episodes and with the blood culture bottle method in 26 (84%) episodes (P less than 0.001). The lysis-centrifugation...

  10. Optical Fiber-Tip Sensors Based on In-Situ µ-Printed Polymer Suspended-Microbeams.

    Science.gov (United States)

    Yao, Mian; Ouyang, Xia; Wu, Jushuai; Zhang, A Ping; Tam, Hwa-Yaw; Wai, P K A

    2018-06-05

    Miniature optical fiber-tip sensors based on directly µ-printed polymer suspended-microbeams are presented. With an in-house optical 3D μ-printing technology, SU-8 suspended-microbeams are fabricated in situ to form Fabry⁻Pérot (FP) micro-interferometers on the end face of standard single-mode optical fiber. Optical reflection spectra of the fabricated FP micro-interferometers are measured and fast Fourier transform is applied to analyze the cavity of micro-interferometers. The applications of the optical fiber-tip sensors for refractive index (RI) sensing and pressure sensing, which showed 917.3 nm/RIU to RI change and 4.29 nm/MPa to pressure change, respectively, are demonstrated in the experiments. The sensors and their optical µ-printing method unveil a new strategy to integrate complicated microcomponents on optical fibers toward 'lab-on-fiber' devices and applications.

  11. Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory

    Science.gov (United States)

    Bakhshi Khaniki, Hossein; Rajasekaran, Sundaramoorthy

    2018-05-01

    This study develops a comprehensive investigation on mechanical behavior of non-uniform bi-directional functionally graded beam sensors in the framework of modified couple stress theory. Material variation is modelled through both length and thickness directions using power-law, sigmoid and exponential functions. Moreover, beam is assumed with linear, exponential and parabolic cross-section variation through the length using power-law and sigmoid varying functions. Using these assumptions, a general model for microbeams is presented and formulated by employing Hamilton’s principle. Governing equations are solved using a mixed finite element method with Lagrangian interpolation technique, Gaussian quadrature method and Wilson’s Lagrangian multiplier method. It is shown that by using bi-directional functionally graded materials in nonuniform microbeams, mechanical behavior of such structures could be affected noticeably and scale parameter has a significant effect in changing the rigidity of nonuniform bi-directional functionally graded beams.

  12. Physics study of microbeam radiation therapy with PSI-version of Monte Carlo code GEANT as a new computational tool

    CERN Document Server

    Stepanek, J; Laissue, J A; Lyubimova, N; Di Michiel, F; Slatkin, D N

    2000-01-01

    Microbeam radiation therapy (MRT) is a currently experimental method of radiotherapy which is mediated by an array of parallel microbeams of synchrotron-wiggler-generated X-rays. Suitably selected, nominally supralethal doses of X-rays delivered to parallel microslices of tumor-bearing tissues in rats can be either palliative or curative while causing little or no serious damage to contiguous normal tissues. Although the pathogenesis of MRT-mediated tumor regression is not understood, as in all radiotherapy such understanding will be based ultimately on our understanding of the relationships among the following three factors: (1) microdosimetry, (2) damage to normal tissues, and (3) therapeutic efficacy. Although physical microdosimetry is feasible, published information on MRT microdosimetry to date is computational. This report describes Monte Carlo-based computational MRT microdosimetry using photon and/or electron scattering and photoionization cross-section data in the 1 e V through 100 GeV range distrib...

  13. Detection of minute strain in very local areas of materials by using an X-ray microbeam

    CERN Document Server

    Matsui, J; Tsusaka, Y; Kimura, S

    2003-01-01

    In order to analyze the local minute strain in semiconductor materials and devices, we have demonstrated formation of X-ray microbeams by using asymmetric Bragg reflections of the crystal and a zone plate or cylindrical mirror combined with synchrotron radiation. A series of X-ray rocking curves have been obtained by scanning the sample with using the X-ray microbeam. In addition, reciprocal space maps have also been obtained by inserting an analyzer crystal behind the sample. From these data, information on the strain distribution can be obtained for various samples, such as the strain near SiO sub 2 /Si film edges, that in silicon-on-insulator (SOI) crystals, and that in InGaAsP semiconductor laser stripes. (author)

  14. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae.

    Science.gov (United States)

    Cabib, E; Silverman, S J; Shaw, J A

    1992-01-01

    Previous results [E. Cabib, A. Sburlati, B. Bowers & S. J. Silverman (1989) Journal of Cell Biology 108, 1665-1672] strongly suggested that the lysis observed in daughter cells of Saccharomyces cerevisiae defective in chitin synthase 1 (Chs1) was caused by a chitinase that partially degrades the chitin septum in the process of cell separation. Consequently, it was proposed that in wild-type cells, Chs1 acts as a repair enzyme by replenishing chitin during cytokinesis. The chitinase requirement for lysis has been confirmed in two different ways: (a) demethylallosamidin, a more powerful chitinase inhibitor than the previously used allosamidin, is also a much better protector against lysis and (b) disruption of the chitinase gene in chs1 cells eliminates lysis. Reintroduction of a normal chitinase gene, by transformation of those cells with a suitable plasmid, restores lysis. The percentage of lysed cells in strains lacking Chs1 was not increased by elevating the chitinase level with high-copy-number plasmids carrying the hydrolase gene. Furthermore, the degree of lysis varied in different chs1 strains; lysis was abolished in chs1 mutants containing the scs1 suppressor. These results indicate that, in addition to chitinase, lysis requires other gene products that may become limiting.

  15. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy.

    Science.gov (United States)

    Martinez-Rovira, I; Sempau, J; Prezado, Y

    2012-05-01

    Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-μm-wide microbeams spaced by 200-400 μm) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two

  16. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rovira, I.; Sempau, J.; Prezado, Y. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain) and ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz B.P. 220, F-38043 Grenoble Cedex (France); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain); Laboratoire Imagerie et modelisation en neurobiologie et cancerologie, UMR8165, Centre National de la Recherche Scientifique (CNRS), Universites Paris 7 et Paris 11, Bat 440., 15 rue Georges Clemenceau, F-91406 Orsay Cedex (France)

    2012-05-15

    Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at

  17. Surgical treatment of bilateral nondisplaced isthmic lysis by interlaminar fixation device

    Directory of Open Access Journals (Sweden)

    Keyvan Mostofi

    2017-01-01

    Full Text Available Study Design: Spondylolysis is a defect in the portion of pars interarticularis. The latter affects approximately 6% of the population. It is caused by repetitive trauma in hyperextension. Low back pain is the most common symptom. Methods: We implanted interspinous process devices in 12 patients with isthmic lysis without spondylolisthesis for low back pain. The purpose of the surgery was to conduct a minimally invasive procedure. Results: In eight cases, patients became asymptomatic. In two cases, there has been a considerable improvement. In two cases, no change had been noted. Conclusion: This good result motivates us to consider this approach a part of therapeutic arsenal for some cases of spondylolysis.

  18. Dynamic behaviour of the local layer structure of antiferroelectric liquid crystals under a high electric field measured by time-resolved synchrotron x-ray microbeam diffraction

    International Nuclear Information System (INIS)

    Takahashi, Yumiko; Iida, Atsuo; Takanishi, Yoichi; Ogasawara, Toyokazu; Ishikawa, Ken; Takezoe, Hideo

    2001-01-01

    The local layer structure response to a triangular electric field in an antiferroelectric liquid crystal cell has been measured using synchrotron X-ray diffraction with 3 ms time resolution and a few μm spatial resolution. The initially coexisting vertical and horizontal chevron structures are irreversibly transformed to the layer structure with a rearranged molecular orientation at the surface (so-called vertical bookshelf structure). After the irreversible transformation, the rearranged layer structure shows a reversible transition between the horizontal chevron (high field, ferroelectric state) and the combination of the modified vertical and horizontal chevron (low field, antiferroelectric state) associated with the field-induced antiferroelectric-ferroelectric transition. The reversible layer structure has a smaller horizontal chevron angle (a few degrees) than that in the initial state (about 17deg). The detailed microbeam diffraction revealed that the layer structure at a low electric field consists of a broad vertical chevron with a small chevron angle and a bent bookshelf in combination with a horizontal chevron, depending on the analyzing position. The stripe texture is related to the modified horizontal chevron structure. (author)

  19. Dynamic behaviour of the local layer structure of antiferroelectric liquid crystals under a high electric field measured by time-resolved synchrotron x-ray microbeam diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yumiko [Graduate University for Advanced Studies, Tsukuba, Ibaraki (Japan); Iida, Atsuo [Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takanishi, Yoichi; Ogasawara, Toyokazu; Ishikawa, Ken; Takezoe, Hideo [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Tokyo (Japan)

    2001-05-01

    The local layer structure response to a triangular electric field in an antiferroelectric liquid crystal cell has been measured using synchrotron X-ray diffraction with 3 ms time resolution and a few {mu}m spatial resolution. The initially coexisting vertical and horizontal chevron structures are irreversibly transformed to the layer structure with a rearranged molecular orientation at the surface (so-called vertical bookshelf structure). After the irreversible transformation, the rearranged layer structure shows a reversible transition between the horizontal chevron (high field, ferroelectric state) and the combination of the modified vertical and horizontal chevron (low field, antiferroelectric state) associated with the field-induced antiferroelectric-ferroelectric transition. The reversible layer structure has a smaller horizontal chevron angle (a few degrees) than that in the initial state (about 17deg). The detailed microbeam diffraction revealed that the layer structure at a low electric field consists of a broad vertical chevron with a small chevron angle and a bent bookshelf in combination with a horizontal chevron, depending on the analyzing position. The stripe texture is related to the modified horizontal chevron structure. (author)

  20. Biological activity analysis of native and recombinant streptokinase using clot lysis and chromogenic substrate assay.

    Science.gov (United States)

    Mahboubi, Arash; Sadjady, Seyyed Kazem; Mirzaei Saleh Abadi, Mohammad; Azadi, Saeed; Solaimanian, Roya

    2012-01-01

    DETERMINATION OF STREPTOKINASE ACTIVITY IS USUALLY ACCOMPLISHED THROUGH TWO ASSAY METHODS: a) Clot lysis, b) Chromogenic substrate assay. In this study the biological activity of two streptokinase products, namely Streptase®, which is a native product and Heberkinasa®, which is a recombinant product, was determined against the third international reference standard using the two forementioned assay methods. The results indicated that whilst the activity of Streptase® was found to be 101 ± 4% and 97 ± 5% of the label claim with Clot lysis and Chromogenic substrate assay respectively, for Heberkinasa® the potency values obtained were 42 ± 5% and 92.5 ± 2% of the label claim respectively. To shed some light on the reason for this finding, the n-terminal sequence of the streptokinase molecules present in the two products was determined. The results showed slight differences in the amino acid sequence of the recombinant product in comparison to the native one at the amino terminus. This finding supports those of other workers who found that n-terminal sequence of the streptokinase molecule can have significant effect on the activity of this protein.

  1. Isolation and Expression of the Lysis Genes of Actinomyces naeslundii Phage Av-1

    Science.gov (United States)

    Delisle, Allan L.; Barcak, Gerard J.; Guo, Ming

    2006-01-01

    Like most gram-positive oral bacteria, Actinomyces naeslundii is resistant to salivary lysozyme and to most other lytic enzymes. We are interested in studying the lysins of phages of this important oral bacterium as potential diagnostic and therapeutic agents. To identify the Actinomyces phage genes encoding these species-specific enzymes in Escherichia coli, we constructed a new cloning vector, pAD330, that can be used to enrich for and isolate phage holin genes, which are located adjacent to the lysin genes in most phage genomes. Cloned holin insert sequences were used to design sequencing primers to identify nearby lysin genes by using whole phage DNA as the template. From partial digestions of A. naeslundii phage Av-1 genomic DNA we were able to clone, in independent experiments, inserts that complemented the defective λ holin in pAD330, as evidenced by extensive lysis after thermal induction. The DNA sequence of the inserts in these plasmids revealed that both contained the complete lysis region of Av-1, which is comprised of two holin-like genes, designated holA and holB, and an endolysin gene, designated lysA. We were able to subclone and express these genes and determine some of the functional properties of their gene products. PMID:16461656

  2. Synchrotron X-ray micro-beam studies of ancient Egyptian make-up

    International Nuclear Information System (INIS)

    Martinetto, P.; Anne, M.; Dooryhee, E.; Drakopoulos, M.; Dubus, M.; Salomon, J.; Simionovici, A.; Walter, Ph.

    2001-01-01

    Vases full of make-up are most often present in the burial furniture of Egyptian tombs dated from the pharaonic period. The powdered cosmetics made of isolated grains are analysed to identify their trace element signature. From this signature we identify the provenance of the mineral ingredients in the make-up and we observe different impurities in products, which have been demonstrated as synthetic substances by previous works. Focused X-ray micro-beam (2x5 μm 2 ) is successively tuned at 11 keV, below the L III absorption edge of Pb, and 31.8 keV for global characterisation of the metal impurities. The fluorescence signal integrated over each single grain is detected against the X-ray micro-diffraction pattern collected in transmission with a bi-dimensional detector. Furthermore, for galena grains rich in Zn, the XANES signal at the K-absorption edge of Zn shows its immediate nearest-neighbour environment

  3. Synchrotron X-ray micro-beam studies of ancient Egyptian make-up

    Science.gov (United States)

    Martinetto, P.; Anne, M.; Dooryhée, E.; Drakopoulos, M.; Dubus, M.; Salomon, J.; Simionovici, A.; Walter, Ph.

    2001-07-01

    Vases full of make-up are most often present in the burial furniture of Egyptian tombs dated from the pharaonic period. The powdered cosmetics made of isolated grains are analysed to identify their trace element signature. From this signature we identify the provenance of the mineral ingredients in the make-up and we observe different impurities in products, which have been demonstrated as synthetic substances by previous works. Focused X-ray micro-beam ( 2×5 μm2) is successively tuned at 11 keV, below the L III absorption edge of Pb, and 31.8 keV for global characterisation of the metal impurities. The fluorescence signal integrated over each single grain is detected against the X-ray micro-diffraction pattern collected in transmission with a bi-dimensional detector. Furthermore, for galena grains rich in Zn, the XANES signal at the K-absorption edge of Zn shows its immediate nearest-neighbour environment.

  4. Synchrotron X-ray micro-beam studies of ancient Egyptian make-up

    Energy Technology Data Exchange (ETDEWEB)

    Martinetto, P; Anne, M; Dooryhee, E; Drakopoulos, M; Dubus, M; Salomon, J; Simionovici, A; Walter, Ph

    2001-07-01

    Vases full of make-up are most often present in the burial furniture of Egyptian tombs dated from the pharaonic period. The powdered cosmetics made of isolated grains are analysed to identify their trace element signature. From this signature we identify the provenance of the mineral ingredients in the make-up and we observe different impurities in products, which have been demonstrated as synthetic substances by previous works. Focused X-ray micro-beam (2x5 {mu}m{sup 2}) is successively tuned at 11 keV, below the L{sub III} absorption edge of Pb, and 31.8 keV for global characterisation of the metal impurities. The fluorescence signal integrated over each single grain is detected against the X-ray micro-diffraction pattern collected in transmission with a bi-dimensional detector. Furthermore, for galena grains rich in Zn, the XANES signal at the K-absorption edge of Zn shows its immediate nearest-neighbour environment.

  5. Comparison of proton microbeam and gamma irradiation for the radiation hardness testing of silicon PIN diodes

    Science.gov (United States)

    Jakšić, M.; Grilj, V.; Skukan, N.; Majer, M.; Jung, H. K.; Kim, J. Y.; Lee, N. H.

    2013-09-01

    Simple and cost-effective solutions using Si PIN diodes as detectors are presently utilized in various radiation-related applications in which excessive exposure to radiation degrades their charge transport properties. One of the conventional methods for the radiation hardness testing of such devices is time-consuming irradiation with electron beam or gamma-ray irradiation facilities, high-energy proton accelerators, or with neutrons from research reactors. Recently, for the purpose of radiation hardness testing, a much faster nuclear microprobe based approach utilizing proton irradiation has been developed. To compare the two different irradiation techniques, silicon PIN diodes have been irradiated with a Co-60 gamma radiation source and with a 6 MeV proton microbeam. The signal degradation in the silicon PIN diodes for both irradiation conditions has been probed by the IBIC (ion beam induced charge) technique, which can precisely monitor changes in charge collection efficiency. The results presented are reviewed on the basis of displacement damage calculations and NIEL (non-ionizing energy loss) concept.

  6. Conformal image-guided microbeam radiation therapy at the ESRF biomedical beamline ID17

    International Nuclear Information System (INIS)

    Donzelli, Mattia; Bräuer-Krisch, Elke; Nemoz, Christian; Brochard, Thierry; Oelfke, Uwe

    2016-01-01

    Purpose: Upcoming veterinary trials in microbeam radiation therapy (MRT) demand for more advanced irradiation techniques than in preclinical research with small animals. The treatment of deep-seated tumors in cats and dogs with MRT requires sophisticated irradiation geometries from multiple ports, which impose further efforts to spare the normal tissue surrounding the target. Methods: This work presents the development and benchmarking of a precise patient alignment protocol for MRT at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF). The positioning of the patient prior to irradiation is verified by taking x-ray projection images from different angles. Results: Using four external fiducial markers of 1.7  mm diameter and computed tomography-based treatment planning, a target alignment error of less than 2  mm can be achieved with an angular deviation of less than 2 ∘ . Minor improvements on the protocol and the use of smaller markers indicate that even a precision better than 1  mm is technically feasible. Detailed investigations concerning the imaging dose lead to the conclusion that doses for skull radiographs lie in the same range as dose reference levels for human head radiographs. A currently used online dose monitor for MRT has been proven to give reliable results for the imaging beam. Conclusions: The ESRF biomedical beamline ID17 is technically ready to apply conformal image-guided MRT from multiple ports to large animals during future veterinary trials.

  7. Higher order modes excitation of electrostatically actuated clamped–clamped microbeams: experimental and analytical investigation

    KAUST Repository

    Jaber, Nizar

    2016-01-06

    © 2016 IOP Publishing Ltd. In this study, we demonstrate analytically and experimentally the excitations of the higher order modes of vibrations in electrostatically actuated clamped-clamped microbeam resonators. The concept is based on using partial electrodes with shapes that induce strong excitation of the mode of interest. The devices are fabricated using polyimide as a structural layer coated with nickel from the top and chrome and gold layers from the bottom. Experimentally, frequency sweeps with different electro-dynamical loading conditions are shown to demonstrate the excitation of the higher order modes of vibration. Using a half electrode, the second mode is excited with high amplitude of vibration compared with almost zero response using the full electrode. Also, using a two-third electrode configuration is shown to amplify the third mode resonance amplitude compared with the full electrode under the same electrical loading conditions. An analytical model is developed based on the Euler-Bernollui beam model and the Galerkin method to simulate the device response. Good agreement between the simulation results and the experimental data is reported.

  8. LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer.

    Science.gov (United States)

    Wrobel, Pawel; Czyzycki, Mateusz; Furman, Leszek; Kolasinski, Krzysztof; Lankosz, Marek; Mrenca, Alina; Samek, Lucyna; Wegrzynek, Dariusz

    2012-05-15

    Confocal micro-beam X-ray fluorescence microscope was constructed. The system was assembled from commercially available components - a low power X-ray tube source, polycapillary X-ray optics and silicon drift detector - controlled by an in-house developed LabVIEW software. A video camera coupled to optical microscope was utilized to display the area excited by X-ray beam. The camera image calibration and scan area definition software were also based entirely on LabVIEW code. Presently, the main area of application of the newly constructed spectrometer is 2-dimensional mapping of element distribution in environmental, biological and geological samples with micrometer spatial resolution. The hardware and the developed software can already handle volumetric 3-D confocal scans. In this work, a front panel graphical user interface as well as communication protocols between hardware components were described. Two applications of the spectrometer, to homogeneity testing of titanium layers and to imaging of various types of grains in air particulate matter collected on membrane filters, were presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Conformal image-guided microbeam radiation therapy at the ESRF biomedical beamline ID17

    Energy Technology Data Exchange (ETDEWEB)

    Donzelli, Mattia, E-mail: donzelli@esrf.fr [European Synchrotron Radiation Facility, 71, Avenue des Martyrs, Grenoble 38000, France and The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG (United Kingdom); Bräuer-Krisch, Elke; Nemoz, Christian; Brochard, Thierry [European Synchrotron Radiation Facility, 71, Avenue des Martyrs, Grenoble 38000 (France); Oelfke, Uwe [The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG (United Kingdom)

    2016-06-15

    Purpose: Upcoming veterinary trials in microbeam radiation therapy (MRT) demand for more advanced irradiation techniques than in preclinical research with small animals. The treatment of deep-seated tumors in cats and dogs with MRT requires sophisticated irradiation geometries from multiple ports, which impose further efforts to spare the normal tissue surrounding the target. Methods: This work presents the development and benchmarking of a precise patient alignment protocol for MRT at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF). The positioning of the patient prior to irradiation is verified by taking x-ray projection images from different angles. Results: Using four external fiducial markers of 1.7  mm diameter and computed tomography-based treatment planning, a target alignment error of less than 2  mm can be achieved with an angular deviation of less than 2{sup ∘}. Minor improvements on the protocol and the use of smaller markers indicate that even a precision better than 1  mm is technically feasible. Detailed investigations concerning the imaging dose lead to the conclusion that doses for skull radiographs lie in the same range as dose reference levels for human head radiographs. A currently used online dose monitor for MRT has been proven to give reliable results for the imaging beam. Conclusions: The ESRF biomedical beamline ID17 is technically ready to apply conformal image-guided MRT from multiple ports to large animals during future veterinary trials.

  10. Evaluation of support loss in micro-beam resonators: A revisit

    Science.gov (United States)

    Chen, S. Y.; Liu, J. Z.; Guo, F. L.

    2017-12-01

    This paper presents an analytical study on evaluation of support loss in micromechanical resonators undergoing in-plane flexural vibrations. Two-dimensional elastic wave theory is used to determine the energy transmission from the vibrating resonator to the support. Fourier transform and Green's function technique are adopted to solve the problem of wave motions on the surface of the support excited by the forces transmitted by the resonator onto the support. Analytical expressions of support loss in terms of quality factor, taking into account distributed normal stress and shear stress in the attachment region, and coupling between the normal stress and shear stress as well as material disparity between the support and the resonator, have been derived. Effects of geometry of micro-beam resonators, and material dissimilarity between support and resonator on support loss are examined. Numerical results show that 'harder resonator' and 'softer support' combination leads to larger support loss. In addition, the Perfectly Matched Layer (PML) numerical simulation technique is employed for validation of the proposed analytical model. Comparing with results of quality factor obtained by PML technique, we find that the present model agrees well with the results of PML technique and the pure-shear model overestimates support loss noticeably, especially for resonators with small aspect ratio and large material dissimilarity between the support and resonator.

  11. A two-dimensional vibration analysis of piezoelectrically actuated microbeam with nonideal boundary conditions

    Science.gov (United States)

    Rezaei, M. P.; Zamanian, M.

    2017-01-01

    In this paper, the influences of nonideal boundary conditions (due to flexibility) on the primary resonant behavior of a piezoelectrically actuated microbeam have been studied, for the first time. The structure has been assumed to treat as an Euler-Bernoulli beam, considering the effects of geometric nonlinearity. In this work, the general nonideal supports have been modeled as a the combination of horizontal, vertical and rotational springs, simultaneously. Allocating particular values to the stiffness of these springs provides the mathematical models for the majority of boundary conditions. This consideration leads to use a two-dimensional analysis of the multiple scales method instead of previous works' method (one-dimensional analysis). If one neglects the nonideal effects, then this paper would be an effort to solve the two-dimensional equations of motion without a need of a combination of these equations using the shortening or stretching effect. Letting the nonideal effects equal to zero and comparing their results with the results of previous approaches have been demonstrated the accuracy of the two-dimensional solutions. The results have been identified the unique effects of constraining and stiffening of boundaries in horizontal, vertical and rotational directions. This means that it is inaccurate to suppose the nonideality of supports only in one or two of these directions like as previous works. The findings are of vital importance as a better prediction of the frequency response for the nonideal supports. Furthermore, the main findings of this effort can help to choose appropriate boundary conditions for desired systems.

  12. A Microbeam Resonator with Partial Electrodes for Logic and Memory Elements

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-11-10

    We demonstrate logic and memory elements based on an in-plane clamped-clamped microbeam resonator. The micro-resonator is electrostatically actuated through a drive electrode and the motional signal is capacitively sensed at a sense electrode, while the resonance characteristics are modulated by DC voltage pulses provided at two separate partial electrodes, independent of the drive/sense electrodes. For the logic applications, we use two separate electrodes to provide DC voltages defined as the logic inputs. The high (low) motional signal at on-resonance (off-resonance) state is defined as the logic output state “1” (“0”). For the memory operation, two stable vibrational states, high and low, within the hysteretic regime are defined as the memory states, “1” and “0”, respectively. We take advantage of the split electrode configuration to provide positive and negative DC voltage pulses selectively to set/reset the memory states (“1”/“0”) without affecting the driving and sensing terminals. Excluding the energy cost for supporting electronics, these devices consume energy in 10’s of picojoules per logic/memory operations. Furthermore, the devices are fabricated using silicon on insulator (SOI) wafers, have the potential for on-chip integration, and operate at moderate pressure (~1 Torr) and room temperature.

  13. A Microbeam Resonator with Partial Electrodes for Logic and Memory Elements

    KAUST Repository

    Hafiz, Md Abdullah Al; Ilyas, Saad; Ahmed, Sally; Younis, Mohammad I.; Fariborzi, Hossein

    2017-01-01

    We demonstrate logic and memory elements based on an in-plane clamped-clamped microbeam resonator. The micro-resonator is electrostatically actuated through a drive electrode and the motional signal is capacitively sensed at a sense electrode, while the resonance characteristics are modulated by DC voltage pulses provided at two separate partial electrodes, independent of the drive/sense electrodes. For the logic applications, we use two separate electrodes to provide DC voltages defined as the logic inputs. The high (low) motional signal at on-resonance (off-resonance) state is defined as the logic output state “1” (“0”). For the memory operation, two stable vibrational states, high and low, within the hysteretic regime are defined as the memory states, “1” and “0”, respectively. We take advantage of the split electrode configuration to provide positive and negative DC voltage pulses selectively to set/reset the memory states (“1”/“0”) without affecting the driving and sensing terminals. Excluding the energy cost for supporting electronics, these devices consume energy in 10’s of picojoules per logic/memory operations. Furthermore, the devices are fabricated using silicon on insulator (SOI) wafers, have the potential for on-chip integration, and operate at moderate pressure (~1 Torr) and room temperature.

  14. Analysis of five streptokinase formulations using the euglobulin lysis test and the plasminogen activation assay

    Directory of Open Access Journals (Sweden)

    Couto L.T.

    2004-01-01

    Full Text Available Streptokinase, a 47-kDa protein isolated and secreted by most group A, C and G ß-hemolytic streptococci, interacts with and activates human protein plasminogen to form an active complex capable of converting other plasminogen molecules to plasmin. Our objective was to compare five streptokinase formulations commercially available in Brazil in terms of their activity in the in vitro tests of euglobulin clot formation and of the hydrolysis of the plasmin-specific substrate S-2251(TM. Euglobulin lysis time was determined using a 96-well microtiter plate. Initially, human thrombin (10 IU/ml and streptokinase were placed in individual wells, clot formation was initiated by the addition of plasma euglobulin, and turbidity was measured at 340 nm every 30 s. In the second assay, plasminogen activation was measured using the plasmin-specific substrate S-2251(TM. Streptase(TM was used as the reference formulation because it presented the strongest fibrinolytic activity in the euglobulin lysis test. The Unitinase(TM and Solustrep(TM formulations were the weakest, showing about 50% activity compared to the reference formulation. All streptokinases tested activated plasminogen but significant differences were observed. In terms of total S-2251(TM activity per vial, Streptase(TM (75.7 ± 5.0 units and Streptonase(TM (94.7 ± 4.6 units had the highest activity, while Unitinase(TM (31.0 ± 2.4 units and Strek(TM (32.9 ± 3.3 units had the weakest activity. Solustrep(TM (53.3 ± 2.7 units presented intermediate activity. The variations among the different formulations for both euglobulin lysis test and chromogenic substrate hydrolysis correlated with the SDS-PAGE densitometric results for the amount of 47-kDa protein. These data show that the commercially available clinical streptokinase formulations vary significantly in their in vitro activity. Whether these differences have clinical implications needs to be investigated.

  15. Characterization of arsenic-contaminated aquifer sediments from eastern Croatia by ion microbeam, PIXE and ICP-OES techniques

    International Nuclear Information System (INIS)

    Ujević Bošnjak, M.; Fazinić, S.; Duić, Ž.

    2013-01-01

    Highlights: •ICP-OES and PIXE used in the characterization of As-contaminated sediments. •Observed high correlations between the results obtained by those techniques. •Discrepancies observed for Mn, and for the highest As concentrations. •Microbeam analyses showed As association with sulphides and iron. -- Abstract: Groundwater arsenic contamination has been evidenced in eastern Croatia and hydrochemical results suggest that the occurrence of arsenic in the groundwater depends on the local geology, hydrogeology, and geochemical characteristics of the aquifer. In order to perform the sediment characterization and to investigate arsenic association with the other elements in the sediments, 10 samples from two boreholes (PVc-3 and Gundinci 1) in eastern Croatia were analyzed using two techniques: PIXE (without sample pre-treatment) and ICP-OES (after digestion), as well by ion microbeam analyses. The results of the PIXE and ICP-OES techniques showed quite good agreement; however, greater discrepancies were observed at the higher arsenic and manganese mass ratios. According to both techniques, higher As mass ratios were observed in the sediments from the PVc-3 core (up to 651 mg/kg and 491 mg/kg using PIXE and ICP-OES analyses respectively) than from the Gundinci 1 core (up to 60 mg/kg using both techniques). Although arsenic association with Fe is expected, no correlation was observed. The microbeam analyses demonstrated that arsenic is associated with sulphides and iron in the most As-contaminated sample from the PVc-3 core, while this relationship was not evident in the most As-contaminated sample from the Gundinci 1 borehole

  16. Characterization of arsenic-contaminated aquifer sediments from eastern Croatia by ion microbeam, PIXE and ICP-OES techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ujević Bošnjak, M., E-mail: magdalena.ujevic@hzjz.hr [Croatian National Institute of Public Health, Rockefelerova 7, 10000 Zagreb (Croatia); Fazinić, S. [Institute Ruđer Bošković, Bijenička cesta, 10000 Zagreb (Croatia); Duić, Ž. [University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, Zagreb (Croatia)

    2013-10-01

    Highlights: •ICP-OES and PIXE used in the characterization of As-contaminated sediments. •Observed high correlations between the results obtained by those techniques. •Discrepancies observed for Mn, and for the highest As concentrations. •Microbeam analyses showed As association with sulphides and iron. -- Abstract: Groundwater arsenic contamination has been evidenced in eastern Croatia and hydrochemical results suggest that the occurrence of arsenic in the groundwater depends on the local geology, hydrogeology, and geochemical characteristics of the aquifer. In order to perform the sediment characterization and to investigate arsenic association with the other elements in the sediments, 10 samples from two boreholes (PVc-3 and Gundinci 1) in eastern Croatia were analyzed using two techniques: PIXE (without sample pre-treatment) and ICP-OES (after digestion), as well by ion microbeam analyses. The results of the PIXE and ICP-OES techniques showed quite good agreement; however, greater discrepancies were observed at the higher arsenic and manganese mass ratios. According to both techniques, higher As mass ratios were observed in the sediments from the PVc-3 core (up to 651 mg/kg and 491 mg/kg using PIXE and ICP-OES analyses respectively) than from the Gundinci 1 core (up to 60 mg/kg using both techniques). Although arsenic association with Fe is expected, no correlation was observed. The microbeam analyses demonstrated that arsenic is associated with sulphides and iron in the most As-contaminated sample from the PVc-3 core, while this relationship was not evident in the most As-contaminated sample from the Gundinci 1 borehole.

  17. Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.

    Science.gov (United States)

    Cornelius, Iwan; Guatelli, Susanna; Fournier, Pauline; Crosbie, Jeffrey C; Sanchez Del Rio, Manuel; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael

    2014-05-01

    Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.

  18. An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response

    KAUST Repository

    Ruzziconi, Laura

    2013-02-20

    In this study we deal with a microelectromechanical system (MEMS) and develop a dynamical integrity analysis to interpret and predict the experimental response. The device consists of a clamped-clamped polysilicon microbeam, which is electrostatically and electrodynamically actuated. It has non-negligible imperfections, which are a typical consequence of the microfabrication process. A single-mode reduced-order model is derived and extensive numerical simulations are performed in a neighborhood of the first symmetric natural frequency, via frequency response diagrams and behavior chart. The typical softening behavior is observed and the overall scenario is explored, when both the frequency and the electrodynamic voltage are varied. We show that simulations based on direct numerical integration of the equation of motion in time yield satisfactory agreement with the experimental data. Nevertheless, these theoretical predictions are not completely fulfilled in some aspects. In particular, the range of existence of each attractor is smaller in practice than in the simulations. This is because these theoretical curves represent the ideal limit case where disturbances are absent, which never occurs under realistic conditions. A reliable prediction of the actual (and not only theoretical) range of existence of each attractor is essential in applications. To overcome this discrepancy and extend the results to the practical case where disturbances exist, a dynamical integrity analysis is developed. After introducing dynamical integrity concepts, integrity profiles and integrity charts are drawn. They are able to describe if each attractor is robust enough to tolerate the disturbances. Moreover, they detect the parameter range where each branch can be reliably observed in practice and where, instead, becomes vulnerable, i.e. they provide valuable information to operate the device in safe conditions according to the desired outcome and depending on the expected disturbances

  19. Reconstruction of human exposure to heavy metals using synchrotron radiation microbeams in prehistoric and modern humans

    International Nuclear Information System (INIS)

    Koizumi, Akio; Azechi, Miki; Shirasawa, Koyo

    2009-01-01

    Teeth can serve as records of environmental exposure to heavy metals during their formation. We applied a new technology - synchrotron radiation microbeams (SRXRF) - for analysis of heavy metals in human permanent teeth in modern and historical samples. Each tooth was cut in half. A longitudinal section 200 μm in thickness was subjected to the determination of the heavy metal content by SRXRF or conventional analytical methods (ICP-MS analysis or reduction-aeration atomic absorption spectrometry). The relative concentrations of Pb, Hg, Cu and Zn measured by SRXRF were translated in concentrations (in g of heavy metal/g of enamel) using calibration curves by the two analytical methods. Concentrations in teeth in the modern females (n=5) were 1.2±0.5 μg/g (n=5) for Pb; 1.7±0.2 ng/g for Hg; 0.9±1.1 μg/g for Cu; 150±24.6 μg/g for Zn. The levels of Pb were highest in the teeth samples obtained from the humans of the Edo era (1603-1868 AD) (0.5-4.0 μg/g, n=4). No trend was observed in this study in the Hg content in teeth during 3,000 years. The concentrations of Cu were highest in teeth of two medieval craftsmen (57.0 and 220 μg/g). The levels of Zn were higher in modern subjects (P<0.05) than those in the Jomon (∼1000 BC) to Edo periods [113.2±27.4 (μg/g, n=11)]. Reconstruction of developmental exposure history to lead in a famous court painter of the Edo period (18th century) revealed high levels of Pb (7.1-22.0 μg/g) in his childhood. SRXRF is useful a method for reconstructing human exposures in very long trends. (author)

  20. Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling

    KAUST Repository

    Ruzziconi, Laura

    2013-06-10

    We present a study of the dynamic behavior of a microelectromechanical systems (MEMS) device consisting of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected, the first four experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted, which includes ranges of multistability, where the nonresonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is also capable of capturing the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. © 2013 IOP Publishing Ltd.

  1. Micro-beam X-ray fluorescence and absorption imaging techniques at the IAEA Laboratories

    International Nuclear Information System (INIS)

    Wegrzynek, Dariusz; Markowicz, A.; Bamford, S.; Chinea-Cano, E.; Bogovac, M.

    2005-01-01

    X-ray tube based, micro-beam X-ray fluorescence scanning spectrometer has been equipped with two energy dispersive X-ray detectors. The two-detector configuration allows for simultaneous collection of X-ray fluorescence (XRF) and transmitted X-ray beam signals with a spatial resolution in the range of 10-50 μm, depending on the X-ray focussing element in use. The XRF signal is collected with a standard, liquid nitrogen cooled Si(Li) detector. The X-ray beam transmitted through the sample is acquired with a thermoelectrically cooled, silicon drift (SD) detector. The data acquisition is carried out in a fully automatic way under control of the SPECTOR-LOCATOR software. The software controls the scanning procedure and X-ray spectra acquisition during the scan. The energy dispersive X-ray spectra collected at every 'pixel' are stored for off-line processing. For selected regions of interest (ROI's), the element maps are constructed and displayed on-line. The spectrometer has been used for mapping elemental distributions and for performing 2D- and 3D-tomograpic imaging of minute objects in X-ray absorption and in X-ray fluorescence mode. A unique feature of the described system is simultaneous utilization of the two detectors, Si(Li) and SD, which adds new options for quantitative analysis and data interpretation. Examples of elemental mapping and 3D tomographic imaging as well as the advanced features of the SPECTOR-LOCATOR measurement control and data acquisition software are presented in this work

  2. Theory, development, and applications of the scanning positron microbeam and positron reemission microscope

    International Nuclear Information System (INIS)

    Brandes, G.R.

    1990-01-01

    The theory, design, development, and applications of two new imaging instruments, the scanning positron microbeam (SPM) and positron reemission microscope (PRM), are discussed. The SPM consists of a sectored lens which focuses and rasters the positrons from the beam across the sample. The results of rastering the 10μm x 50μm beam across a test grid demonstrate the SPM's ability to scan a 500μm diameter region and to resolve features with ∼ 5μm resolution. The SPM was used to examine the location of defects in a Si-on-SiO 2 sample. Possible applications to three dimensional defect spectroscopy and the observation of small samples are considered. In the PRM, the positrons from the brightness-enhanced beam are focused at 5keV to an 8/Am diameter spot (FWHM) onto a thin metal single crystal. An image of the opposing side of the film is formed by accelerating and focusing the reemitted thermalized positrons with a cathode lens objective and a projector lens. The final image (real) is a record of the thermal positron emission intensity versus position. Images of surface and subsurface defect structures, taken at magnifications up to 4400x and with a resolution up to 80nm, are presented and discussed. The ultimate resolution capabilities and possible applications of the PRM are examined. The implantation and diffusion process of positrons was studied with the PRM by examining the positron emission profile of 3-9keV positrons implanted into a 2200 angstrom thick Ni single crystal

  3. Prediction of recurrent venous thromboembolism by clot lysis time: a prospective cohort study.

    Science.gov (United States)

    Traby, Ludwig; Kollars, Marietta; Eischer, Lisbeth; Eichinger, Sabine; Kyrle, Paul A

    2012-01-01

    Venous thromboembolism (VTE) is a chronic disease, which tends to recur. Whether an abnormal fibrinolytic system is associated with an increased risk of VTE is unclear. We assessed the relationship between fibrinolytic capacity (reflected by clot lysis time [CLT]) and risk of recurrent VTE. We followed 704 patients (378 women; mean age 48 yrs) with a first unprovoked VTE for an average of 46 months after anticoagulation withdrawal. Patients with natural coagulation inhibitor deficiency, lupus anticoagulant, cancer, homozygosity for factor V Leiden or prothrombin mutation, or requirement for indefinite anticoagulation were excluded. Study endpoint was symptomatic recurrent VTE. For measurement of CLT, a tissue factor-induced clot was lysed by adding tissue-type plasminogen activator. Time between clot formation and lysis was determined by measuring the turbidity. 135 (19%) patients had recurrent VTE. For each increase in CLT of 10 minutes, the crude relative risk (RR) of recurrence was 1.13 (95% CI 1.02-1.25; p = 0.02) and was 1.08 (95% CI 0.98-1.20; p = 0.13) after adjustment for age and sex. For women only, the adjusted RR was 1.14 (95% CI, 0.91-1.42, p = 0.22) for each increase in CLT of 10 minutes. CLT values in the 4(th) quartile of the female patient population, as compared to values in the 1(st) quartile, conferred a risk of recurrence of 3.28 (95% CI, 1.07-10.05; p = 0.04). No association between CLT and recurrence risk was found in men. Hypofibrinolysis as assessed by CLT confers a moderate increase in the risk of recurrent VTE. A weak association between CLT and risk of recurrence was found in women only.

  4. Prediction of recurrent venous thromboembolism by clot lysis time: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Ludwig Traby

    Full Text Available Venous thromboembolism (VTE is a chronic disease, which tends to recur. Whether an abnormal fibrinolytic system is associated with an increased risk of VTE is unclear. We assessed the relationship between fibrinolytic capacity (reflected by clot lysis time [CLT] and risk of recurrent VTE. We followed 704 patients (378 women; mean age 48 yrs with a first unprovoked VTE for an average of 46 months after anticoagulation withdrawal. Patients with natural coagulation inhibitor deficiency, lupus anticoagulant, cancer, homozygosity for factor V Leiden or prothrombin mutation, or requirement for indefinite anticoagulation were excluded. Study endpoint was symptomatic recurrent VTE. For measurement of CLT, a tissue factor-induced clot was lysed by adding tissue-type plasminogen activator. Time between clot formation and lysis was determined by measuring the turbidity. 135 (19% patients had recurrent VTE. For each increase in CLT of 10 minutes, the crude relative risk (RR of recurrence was 1.13 (95% CI 1.02-1.25; p = 0.02 and was 1.08 (95% CI 0.98-1.20; p = 0.13 after adjustment for age and sex. For women only, the adjusted RR was 1.14 (95% CI, 0.91-1.42, p = 0.22 for each increase in CLT of 10 minutes. CLT values in the 4(th quartile of the female patient population, as compared to values in the 1(st quartile, conferred a risk of recurrence of 3.28 (95% CI, 1.07-10.05; p = 0.04. No association between CLT and recurrence risk was found in men. Hypofibrinolysis as assessed by CLT confers a moderate increase in the risk of recurrent VTE. A weak association between CLT and risk of recurrence was found in women only.

  5. Biological variation in tPA-induced plasma clot lysis time.

    Science.gov (United States)

    Talens, Simone; Malfliet, Joyce J M C; Rudež, Goran; Spronk, Henri M H; Janssen, Nicole A H; Meijer, Piet; Kluft, Cornelis; de Maat, Moniek P M; Rijken, Dingeman C

    2012-10-01

    Hypofibrinolysis is a risk factor for venous and arterial thrombosis, and can be assessed by using a turbidimetric tPA-induced clot lysis time (CLT) assay. Biological variation in clot lysis time may affect the interpretation and usefulness of CLT as a risk factor for thrombosis. Sufficient information about assay variation and biological variation in CLT is not yet available. Thus, this study aimed to determine the analytical, within-subject and between-subject variation in CLT. We collected blood samples from 40 healthy individuals throughout a period of one year (average 11.8 visits) and determined the CLT of each plasma sample in duplicate. The mean (± SD) CLT was 83.8 (± 11.1) minutes. The coefficients of variation for total variation, analytical variation, within-subject variation and between-subject variation were 13.4%, 2.6%, 8.2% and 10.2%, respectively. One measurement can estimate the CLT that does not deviate more than 20% from its true value. The contribution of analytical variation to the within-subject variation was 5.0%, the index of individuality was 0.84 and the reference change value was 23.8%. The CLT was longer in the morning compared to the afternoon and was slightly longer in older individuals (> 40 years) compared to younger (≤40 years) individuals. There was no seasonal variation in CLT and no association with air pollution. CLT correlated weakly with fibrinogen, C-reactive protein, prothrombin time and thrombin generation. This study provides insight into the biological variation of CLT, which can be used in future studies testing CLT as a potential risk factor for thrombosis.

  6. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray

    Science.gov (United States)

    Schiffer, A.; Gardner, M. N.; Lynn, R. H.; Tagarielli, V. L.

    2017-03-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli (E. coli) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples.

  7. Role of cell surface composition and lysis in static biofilm formation by Lactobacillus plantarum WCFS1

    NARCIS (Netherlands)

    Fernández Ramírez, Mónica D.; Nierop Groot, Masja N.; Smid, Eddy J.; Hols, Pascal; Kleerebezem, Michiel; Abee, Tjakko

    2018-01-01

    Next to applications in fermentations, Lactobacillus plantarum is recognized as a food spoilage organism, and its dispersal from biofilms in food processing environments might be implicated in contamination or recontamination of food products. This study provides new insights into biofilm

  8. Study on improvement of sludge dewaterability with H2O2 cell lysis

    Science.gov (United States)

    Zhuo, Qiongfang; Yi, Hao; Zhang, Zhengke; Wang, Ji; Feng, Lishi; Xu, Zhencheng; Guo, Qingwei; Jin, Zhong; Lan, Yongzhe

    2017-12-01

    Excess sludge is the product of sewage treatment plants. With continuous perfection of municipal sewage treatment facilities in China, sludge output increases as a result of the growth of sewage treatment plants. Excess sludge has complicated compositions, including heavy metals, PPCPs, persistent organic pollutants. It owns high contents of organic matters and water. High-efficiency and low-cost dehydration of sludge is the key of sludge disposal. How to improve sludge dehydration efficiency is the research hotspot in the world. In this study, effects of hydrogen peroxide content and pH on sludge dehydration were discussed by chemical disintegration technique. The optimal hydrogen peroxide content and pH were discussed, aiming to search a high-efficiency sludge conditioner.

  9. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis

    NARCIS (Netherlands)

    Nunes Teixeira Mucci, Maira; Noyma, Natalia Pessoa; Magalhães, de Leonardo; Miranda, Marcela; Oosterhout, van Frank; Guedes, Iamê Alves; Huszar, Vera L.M.; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-01-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show

  10. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis

    NARCIS (Netherlands)

    Mucci, Maira; Noyma, Natalia Pessoa; de Magalhaes, Leonardo; Miranda, Marcela; van Oosterhout, Frank; Guedes, Iame Alves; Huszar, Vera L. M.; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-01-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show

  11. Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions

    Science.gov (United States)

    Ghadiri, Majid; Shafiei, Navvab

    2016-04-01

    In this study, thermal vibration of rotary functionally graded Timoshenko microbeam has been analyzed based on modified couple stress theory considering temperature change in four types of temperature distribution on thermal environment. Material properties of FG microbeam are supposed to be temperature dependent and vary continuously along the thickness according to the power-law form. The axial forces are also included in the model as the thermal and true spatial variation due to the rotation. Governing equations and boundary conditions have been derived by employing Hamiltonian's principle. The differential quadrature method is employed to solve the governing equations for cantilever and propped cantilever boundary conditions. Validations are done by comparing available literatures and obtained results which indicate accuracy of applied method. Results represent effects of temperature changes, different boundary conditions, nondimensional angular velocity, length scale parameter, different boundary conditions, FG index and beam thickness on fundamental, second and third nondimensional frequencies. Results determine critical values of temperature changes and other essential parameters which can be applicable to design micromachines like micromotor and microturbine.

  12. Feasibility of employing thick microbeams from superficial and orthovoltage kVp x-ray tubes for radiotherapy of superficial cancers

    Science.gov (United States)

    Kamali-Zonouzi, P.; Shutt, A.; Nisbet, A.; Bradley, D. A.

    2017-11-01

    Preclinical investigations of thick microbeams show these to be feasible for use in radiotherapeutic dose delivery. To create the beams we access a radiotherapy x-ray tube that is familiarly used within a conventional clinical environment, coupling this with beam-defining grids. Beam characterisation, both single and in the form of arrays, has been by use of both MCNP simulation and direct Gafchromic EBT film dosimetry. As a first step in defining optimal exit-beam profiles over a range of beam energies, simulation has been made of the x-ray tube and numbers of beam-defining parallel geometry grids, the latter being made to vary in thickness, slit separation and material composition. For a grid positioned after the treatment applicator, and of similar design to those used in the first part of the study, MCNP simulation and Gafchromic EBT film were then applied in examining the resultant radiation profiles. MCNP simulations and direct dosimetry both show useful thick microbeams to be produced from the x-ray tube, with peak-to-valley dose ratios (PVDRs) in the approximate range 8.8-13.9. Although the potential to create thick microbeams using radiotherapy x-ray tubes and a grid has been demonstrated, Microbeam Radiation Therapy (MRT) would still need to be approved outside of the preclinical setting, a viable treatment technique of clinical interest needing to benefit for instance from substantially improved x-ray tube dose rates.

  13. Investigation of double strand breaks induced by alpha particle irradiation using C.N.B.G. microbeam in human keratinocytes; Mise en evidence de cassures double brin de l'ADN induites par irradiation de keratinocytes humains en microfaisceau alpha

    Energy Technology Data Exchange (ETDEWEB)

    Pouthier, Th

    2006-12-15

    To understand the mechanisms of interaction of ionizing radiation with living tissues exposed to low and protracted doses remains a major issue for risk evaluation. The response cannot be found in epidemiological studies because the only available data concern accidental exposures to high doses of radiation. The natural exposure represents the main source of exposure in the daily life, just before the medical sources (radiology, radiotherapy). In addition, this kind of exposure is very difficult to reproduce in vitro by irradiating cell lines. The method per preference is based on random irradiation of cell populations. The mean number of particles having traversed cells is then calculated on the basis of Poisson statistics. In addition to inevitable multiple impacts, the numerous potential intracellular targets (nuclei, cytoplasm), the indirect effects induced by the impact of particles on neighbouring cells or simply the extracellular targets, constitute phenomena that make more complex the interpretation of experimental data. A charged particle microbeam was developed at C.E.N.B.G. to perform the targeted irradiation of individual cells with a targeting precision of a few microns. It is possible to deliver a counted number of alpha particles down to the ultimate dose of one alpha per cell, to target predetermined cells and then to observe the response of the neighbouring cells. This facility has been validated during this work on human keratinocyte cells expressing a recombinant nuclear fluorescent protein (histone H2B-GFP). The combination of ion micro-beams with confocal microscopy and numeric quantitative analysis allowed the measurement of DNA double strand breaks via the phosphorylation of the histone H2A.X in individual cells. The mechanisms of DNA reparation and apoptosis induction were also in the scope of those studies. The experimental results obtained during this thesis validate the methodology we have developed by demonstrating the targeting

  14. Establishing the suitability of quantitative optical CT microscopy of PRESAGE® radiochromic dosimeters for the verification of synchrotron microbeam therapy

    Science.gov (United States)

    Doran, Simon J.; Rahman, A. T. Abdul; Bräuer-Krisch, Elke; Brochard, Thierry; Adamovics, John; Nisbet, Andrew; Bradley, David

    2013-09-01

    Previous research on optical computed tomography (CT) microscopy in the context of the synchrotron microbeam has shown the potential of the technique and demonstrated high quality images, but has left two questions unanswered: (i) are the images suitably quantitative for 3D dosimetry? and (ii) what is the impact on the spatial resolution of the system of the limited depth-of-field of the microscope optics? Cuvette and imaging studies are reported here that address these issues. Two sets of cuvettes containing the radiochromic plastic PRESAGE® were irradiated at the ID17 biomedical beamline of the European Synchrotron Radiation facility over the ranges 0-20 and 0-35 Gy and a third set of cuvettes was irradiated over the range 0-20 Gy using a standard medical linac. In parallel, three cylindrical PRESAGE® samples of diameter 9.7 mm were irradiated with test patterns that allowed the quantitative capabilities of the optical CT microscope to be verified, and independent measurements of the imaging modulation transfer function (MTF) to be made via two different methods. Both spectrophotometric analysis and imaging gave a linear dose response, with gradients ranging from 0.036-0.041 cm-1 Gy-1 in the three sets of cuvettes and 0.037 (optical CT units) Gy-1 for the imaging. High-quality, quantitative imaging results were obtained throughout the 3D volume, as illustrated by depth-dose profiles. These profiles are shown to be monoexponential, and the linear attention coefficient of PRESAGE® for the synchrotron-generated x-ray beam is measured to be (0.185 ± 0.02) cm-1 in excellent agreement with expectations. Low-level (<5%) residual image artefacts are discussed in detail. It was possible to resolve easily slit patterns of width 37 µm (which are smaller than many of the microbeams used on ID-17), but some uncertainty remains as to whether the low values of MTF for the higher spatial frequencies are scanner related or a result of genuine (but non-ideal) dose

  15. Plasma clot lysis time and its association with cardiovascular risk factors in black Africans.

    Directory of Open Access Journals (Sweden)

    Zelda de Lange

    Full Text Available Studies in populations of European descent show longer plasma clot lysis times (CLT in patients with cardiovascular disease (CVD than in controls. No data are available on the association between CVD risk factors and fibrinolytic potential in black Africans, a group undergoing rapid urbanisation with increased CVD prevalence. We investigated associations between known CVD risk factors and CLT in black Africans and whether CLTs differ between rural and urban participants in light of differences in CVD risk.Data from 1000 rural and 1000 urban apparently healthy black South Africans (35-60 years were cross-sectionally analysed.Increased PAI-1(act, BMI, HbA1c, triglycerides, the metabolic syndrome, fibrinogen concentration, CRP, female sex and positive HIV status were associated with increased CLTs, while habitual alcohol consumption associated with decreased CLT. No differences in CLT were found between age and smoking categories, contraceptive use or hyper- and normotensive participants. Urban women had longer CLT than rural women while no differences were observed for men.CLT was associated with many known CVD risk factors in black Africans. Differences were however observed, compared to data from populations of European descent available in the literature, suggesting possible ethnic differences. The effect of urbanisation on CLT is influenced by traditional CVD risk factors and their prevalence in urban and rural communities.

  16. Floor of the nose mucosa lysis and labial abscess caused by a bee sting.

    Science.gov (United States)

    Alemán Navas, Ramón Manuel; Martínez Mendoza, María Guadalupe; Herrera, Henry; Herrera, Helen Piccolo de

    2009-01-01

    Hymenoptera order includes bees, which have a stinging apparatus at the tail capable of delivering venom to the affected tissues. Myocardial infarction, acute renal failure, Necrotizing fasciitis, fatal infection and hemifacial asymmetry, are some of the unusual reactions reported following hymenoptera stings. This paper reports a case of bee sting in the right floor of the nose that mimicked an odontogenic infection affecting the upper lip, canine space and nasal cavity such as in cases of infection secondary to pulpal or periodontal pathology of the anterior teeth. After a thorough clinical and radiographic examination, odontogenic infection was discarded and the diagnosis of floor of the nose mucosal lysis and lip abscess secondary to a bee sting was made. This case was successfully managed with adequate incision, drainage and antibiotics without any further complication. There are several reports of unusual reactions following hymenoptera stings. However, just a few of them referred to infections of local reactions and none of them related to the anatomic location affected in the patient of the present case. Early diagnosis and treatment prevented infection dissemination and the likelihood of tissue necrosis as in previously reported cases of Necrotizing fasciitis.

  17. Large-scale clinical comparison of the lysis-centrifugation and radiometric systems for blood culture

    International Nuclear Information System (INIS)

    Brannon, P.; Kiehn, T.E.

    1985-01-01

    The Isolator 10 lysis-centrifugation blood culture system (E. I. du Pont de Nemours and Co., Inc., Wilmington, Del.) was compared with the BACTEC radiometric method (Johnston Laboratories, Inc., Towson, Md.) with 6B and 7D broth media for the recovery of bacteria and yeasts. From 11,000 blood cultures, 1,174 clinically significant organisms were isolated. The Isolator system recovered significantly more total organisms, members of the family Enterobacteriaceae, Staphylococcus spp., and yeasts. The BACTEC system recovered significantly more Pseudomonas spp., Streptococcus spp., and anaerobes. Of the Isolator colony counts, 87% measured less than 11 CFU/ml of blood. Organisms, on an average, were detected the same day from each of the two culture systems. Only 13 of the 975 BACTEC isolates (0.01%) were recovered by subculture of growth-index-negative bottles, and 12 of the 13 were detected in another broth blood culture taken within 24 h. Contaminants were recovered from 4.8% of the Isolator 10 and 2.3% of the BACTEC cultures

  18. Plasma clot lysis time and its association with cardiovascular risk factors in black Africans.

    Science.gov (United States)

    de Lange, Zelda; Pieters, Marlien; Jerling, Johann C; Kruger, Annamarie; Rijken, Dingeman C

    2012-01-01

    Studies in populations of European descent show longer plasma clot lysis times (CLT) in patients with cardiovascular disease (CVD) than in controls. No data are available on the association between CVD risk factors and fibrinolytic potential in black Africans, a group undergoing rapid urbanisation with increased CVD prevalence. We investigated associations between known CVD risk factors and CLT in black Africans and whether CLTs differ between rural and urban participants in light of differences in CVD risk.Data from 1000 rural and 1000 urban apparently healthy black South Africans (35-60 years) were cross-sectionally analysed.Increased PAI-1(act), BMI, HbA1c, triglycerides, the metabolic syndrome, fibrinogen concentration, CRP, female sex and positive HIV status were associated with increased CLTs, while habitual alcohol consumption associated with decreased CLT. No differences in CLT were found between age and smoking categories, contraceptive use or hyper- and normotensive participants. Urban women had longer CLT than rural women while no differences were observed for men.CLT was associated with many known CVD risk factors in black Africans. Differences were however observed, compared to data from populations of European descent available in the literature, suggesting possible ethnic differences. The effect of urbanisation on CLT is influenced by traditional CVD risk factors and their prevalence in urban and rural communities.

  19. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    Science.gov (United States)

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  20. Determining Human Clot Lysis Time (in vitro with Plasminogen/Plasmin from Four Species (Human, Bovine, Goat, and Swine

    Directory of Open Access Journals (Sweden)

    Omaira Cañas Bermúdez

    2015-05-01

    Full Text Available Cardiovascular disease is the leading cause of death worldwide, including failures in the plasminogen/plasmin system which is an important factor in poor lysis of blood clots. This article studies the fibrinolytic system in four species of mammals, and it identifies human plasminogen with highest thrombolysis efficiency. It examines plasminogen from four species (human, bovine, goat, and swine and identifies the most efficient one in human clot lysis in vitro. All plasminogens were identically purified by affinity chromatography. Human fibrinogen was purified by fractionation with ethanol. The purification of both plasminogen and fibrinogen was characterized by one-dimensional SDS-PAGE (10%. Human clot formation in vitro and its dissolution by plasminogen/plasmin consisted of determining lysis time from clot formation to its dilution. Purification of proteins showed greater than 95% purity, human plasminogen showed greater ability to lyse clot than animal plasminogen. The article concludes that human plasminogen/plasmin has the greatest catalysis and efficiency, as it dissolves human clot up to three times faster than that of irrational species.

  1. [Ultrasound dynamics lysis apex thrombus as an objective criterion of effectiveness of anticoagulation therapy in venous thrombosis].

    Science.gov (United States)

    Kalinin, R E; Suchkov, I A; Pshennikov, A S; Agapov, A B

    2016-01-01

    To assess the effectiveness of anticoagulant therapy (ACT) for the treatment of patients with deep venous thrombosis (DVT) of the lower extremities. The study considered ultrasonic characteristics of lysis of the proximal part of thrombus: localization and nature of venous thrombosis, the length and diameter of the proximal floating part of the thrombus, and duration of the venous thrombosis. Depending on the ACT options patients were divided into 3 groups: Group 1 (18 patients) received rivaroxaban, group 2 (19 patients) received enoxaparin sodium with subsequent transition to warfarin, and 3 group (19 patietns) received enoxaparin sodium, followed by administration of rivaroxaban. Treatment with rivaroxaban was preferable over standard ACT with enoxaparin/warfarin with regards to the lysis of thrombus when duration of thrombosis did not exceed 10 days. In 10.5% of patients who received warfarin flotation of thrombi remained for 14 days; the length of the floating part of the thrombi did not exceed 3 cm. Such circumstances and inability to reach a therapeutic INR value required cava filter placement. Treatment with enoxaparin sodium followed by the administration of rivaroxaban was found to be the most efficient ACT regimen as there was no negative dynamics of ultrasound characteristics of lysis of thrombi at any duration of the disease.

  2. Investigation of the Dynamics of a Clamped-Clamped Microbeam Near the Third Mode Using a Partial Electrode

    KAUST Repository

    Masri, Karim M.

    2014-08-17

    We present an investigation of the dynamics of a clamped-clamped microbeam excited electrostatically near its third mode. To maximize the response at the third mode, a partial electrode configuration is utilized. A multi-mode Galerkin method is used to develop a reduced order model (ROM) of the beam. A shooting method to find the periodic motion is utilized to generate frequency response curves. The curves show hardenining behavior and dynamic pull-in. We show that the dynamic amplitude of the partial configuration is higher than that of a full electrode configuration. These results are promising for the use of higher-order modes for mass detection and for ultra sensitive resonant sensors.

  3. Wide-range frequency selectivity in an acoustic sensor fabricated using a microbeam array with non-uniform thickness

    International Nuclear Information System (INIS)

    Shintaku, Hirofumi; Kotera, Hidetoshi; Kobayashi, Takayuki; Zusho, Kazuki; Kawano, Satoyuki

    2013-01-01

    In this study, we have demonstrated the fabrication of a microbeam array (MBA) with various thicknesses and investigated the suitability it for an acoustic sensor with wide-range frequency selectivity. For this, an MBA composed of 64 beams, with thicknesses varying from 2.99–142 µm, was fabricated by using single gray-scale lithography and a thick negative photoresist. The vibration of the beams in air was measured using a laser Doppler vibrometer; the resonant frequencies of the beams were measured to be from 11.5 to 290 kHz. Lastly, the frequency range of the MBA with non-uniform thickness was 10.9 times that of the MBA with uniform thickness. (paper)

  4. Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory

    Directory of Open Access Journals (Sweden)

    Hamid M. Sedighi

    Full Text Available This paper investigates the dynamic pull-in instability of vibrating micro-beams undergoing large deflection under electrosatically actuation. The governing equation of motion is derived based on the modified couple stress theory. Homotopy Perturbation Method is employed to produce the high accuracy approximate solution as well as the second-order frequency- amplitude relationship. The nonlinear governing equation of micro beam vibrations predeformed by an electric field includes both even and odd nonlinearities. The influences of basic non-dimensional parameters on the pull-in instability as well as the natural frequency are studied. It is demonstrated that two terms in series expansions are sufficient to produce high accuracy solution of the micro-structure. The accuracy of proposed asymptotic approach is validated via numerical results. The phase portrait of the system exhibits periodic and homoclinic orbits.

  5. Investigation of the Dynamics of a Clamped-Clamped Microbeam Near the Third Mode Using a Partial Electrode

    KAUST Repository

    Masri, Karim M.; Younis, Mohammad I.

    2014-01-01

    We present an investigation of the dynamics of a clamped-clamped microbeam excited electrostatically near its third mode. To maximize the response at the third mode, a partial electrode configuration is utilized. A multi-mode Galerkin method is used to develop a reduced order model (ROM) of the beam. A shooting method to find the periodic motion is utilized to generate frequency response curves. The curves show hardenining behavior and dynamic pull-in. We show that the dynamic amplitude of the partial configuration is higher than that of a full electrode configuration. These results are promising for the use of higher-order modes for mass detection and for ultra sensitive resonant sensors.

  6. Relative efficacy of the argon green, argon blue-green, and krypton red lasers for 10-0 nylon subconjunctival laser suture lysis.

    Science.gov (United States)

    Mudgil, A V; To, K W; Balachandran, R M; Janigian, R H; Tsiaras, W G

    1999-01-01

    To determine the optimal wavelength for subconjunctival laser suture lysis. 130 black monofilament 10-0 nylon sutures were sewn subconjunctivally into the bare sclera of enucleated rabbit globes. The lowest energy levels facilitating laser suture lysis were determined for the argon green (514.5 NM), argon blue-green (488.0 NM, 514.5 NM), and krypton red (647.1 NM) wavelengths. In addition, absorption spectroscopy was performed on the suture material and conjunctiva using the Perkin Elmer W/VIS Lambda 2 spectrometer. Krypton red produced the fewest buttonhole defects, and it was also the most efficient energy source for suture lysis (P = 0.0001) under nontenectomized conjunctiva. Absorbance spectra studies revealed peak absorbance at 628 NM for the 10-0 nylon suture material. Based on animal and absorption spectroscopy studies, krypton red may be a safer and more efficient wavelength for subconjunctival laser suture lysis.

  7. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam.

    Science.gov (United States)

    Graceffa, Rita; Nobrega, R Paul; Barrea, Raul A; Kathuria, Sagar V; Chakravarthy, Srinivas; Bilsel, Osman; Irving, Thomas C

    2013-11-01

    Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick-Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed.

  8. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam

    International Nuclear Information System (INIS)

    Graceffa, Rita; Nobrega, R. Paul; Barrea, Raul A.; Kathuria, Sagar V.; Chakravarthy, Srinivas; Bilsel, Osman; Irving, Thomas C.

    2013-01-01

    The development of a high-duty-cycle microsecond time-resolution SAXS capability at the Biophysics Collaborative Access Team beamline (BioCAT) 18ID at the Advanced Photon Source, Argonne National Laboratory, USA, is reported. Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick–Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed

  9. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Graceffa, Rita, E-mail: rita.graceffa@gmail.com [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Nobrega, R. Paul [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Barrea, Raul A. [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Kathuria, Sagar V. [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Chakravarthy, Srinivas [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States); Bilsel, Osman [University of Massachusetts Medical School, 364 Plantation Street, LRB 919, Worcester, MA 01605 (United States); Irving, Thomas C. [Illinois Institute of Technology, 3101 South Dearborn, Chicago, IL 60616 (United States)

    2013-11-01

    The development of a high-duty-cycle microsecond time-resolution SAXS capability at the Biophysics Collaborative Access Team beamline (BioCAT) 18ID at the Advanced Photon Source, Argonne National Laboratory, USA, is reported. Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick–Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed.

  10. Comparison of the lysis centrifugation method with the conventional blood culture method in cases of sepsis in a tertiary care hospital.

    Science.gov (United States)

    Parikh, Harshal R; De, Anuradha S; Baveja, Sujata M

    2012-07-01

    Physicians and microbiologists have long recognized that the presence of living microorganisms in the blood of a patient carries with it considerable morbidity and mortality. Hence, blood cultures have become critically important and frequently performed test in clinical microbiology laboratories for diagnosis of sepsis. To compare the conventional blood culture method with the lysis centrifugation method in cases of sepsis. Two hundred nonduplicate blood cultures from cases of sepsis were analyzed using two blood culture methods concurrently for recovery of bacteria from patients diagnosed clinically with sepsis - the conventional blood culture method using trypticase soy broth and the lysis centrifugation method using saponin by centrifuging at 3000 g for 30 minutes. Overall bacteria recovered from 200 blood cultures were 17.5%. The conventional blood culture method had a higher yield of organisms, especially Gram positive cocci. The lysis centrifugation method was comparable with the former method with respect to Gram negative bacilli. The sensitivity of lysis centrifugation method in comparison to conventional blood culture method was 49.75% in this study, specificity was 98.21% and diagnostic accuracy was 89.5%. In almost every instance, the time required for detection of the growth was earlier by lysis centrifugation method, which was statistically significant. Contamination by lysis centrifugation was minimal, while that by conventional method was high. Time to growth by the lysis centrifugation method was highly significant (P value 0.000) as compared to time to growth by the conventional blood culture method. For the diagnosis of sepsis, combination of the lysis centrifugation method and the conventional blood culture method with trypticase soy broth or biphasic media is advocable, in order to achieve faster recovery and a better yield of microorganisms.

  11. Local lysis with Alteplase for the treatment of acute embolic leg ischemia following the use of the Duett trademark closure device: preliminary results

    International Nuclear Information System (INIS)

    Schuermann, K.; Buecker, A.; Wingen, M.; Tacke, J.; Wein, B.; Guenther, R.W.; Janssens, U.

    2004-01-01

    Purpose: To analyze retrospectively the result of the alteplase lysis therapy of embolic complications following the use of the Duett closure device. Methods and Materials: For 3.5 years, the Duett closure device was used in 1,398 angiographies to close the femoral puncture site. The Duett device consists of a balloon and a liquid procoagulant containing collagen and thrombin, which is injected into the puncture tract under endovascular balloon protection of the arterial puncture site. In 9 patients (0.64%), the procoagulant was incidentally injected into the femoral artery causing acute leg ischemia. Eight patients received local lysis therapy with alteplase via a contralateral femoral access. One patient underwent surgery. On average, 21 mg alteplase (4-35 mg) were administered within 14 h (4-21 h). The course of the lysis was followed angiographyically and clinically. All patients were inteerviewed by telephone 23 months (4-35 months) later.Results: In 3 patients, lysis was complete. In 5 patients, only little thrombotic material remained. In all patients, symptoms of ischemia resolved completely within the first hours after initiation of lysis. In 5 cases, bleeding occurred at the puncture site closed with the Duett device during lysis, including development of a false aneurysm in 2 cases. Complications led to premature termination (n=2) or interruption of the lysis (n=3). All complications were treated conservatively. Clinically, long-term sequelae were paresthesia and hypoesthesia in the lower leg and foot in 2 patients treated with lysis, and in the patient who underwent surgery. (orig.) [de

  12. Comparison of Yeast Cell Protein Solubilization Procedures for Two-dimensional Electrophoresis

    DEFF Research Database (Denmark)

    Harder, A; Wildgruber, R; Nawrocki, A

    1999-01-01

    Three different procedures for the solubilization of yeast (S. cerevisiae) cell proteins were compared on the basis of the obtained two-dimensional (2-D) polypeptide patterns. Major emphasis was laid on minimizing handling steps, protein modification or degradation, and quantitative loss of high...... with sodium dodecyl sulfate (SDS) buffer, consisting of 1% SDS and 100 mM tris(hydroxymethyl)aminomethane (Tris)-HCl, pH 7.0, followed by dilution with "standard" lysis buffer, and (iii) boiling the sample with SDS during cell lysis, followed by dilution with thiourea/urea lysis buffer (2 M thiourea/ 7 M urea...

  13. Constitutive Activation of NF-KB in Prostate Carcinoma Cells Through a Positive Feedback Loop: Implication of Inducible IKK-Related Kinase (IKKi)

    National Research Council Canada - National Science Library

    Budunova, Irina V

    2005-01-01

    .... During FYO2 we developed the conditions for RNA isolation from OCT-embedded frozen PC and BPH samples, developed conditions for cell lysis and IKKi immunoprecipitation from transfected cells using FLAG antibody...

  14. Large Gastric Perforation