WorldWideScience

Sample records for microarrays gene expression

  1. Gene Expression and Microarray Investigation of Dendrobium ...

    African Journals Online (AJOL)

    blood glucose > 16.7 mmol/L were used as the model group and treated with Dendrobium mixture. (DEN ... Keywords: Diabetes, Gene expression, Dendrobium mixture, Microarray testing ..... homeostasis in airway smooth muscle. Am J.

  2. Classification across gene expression microarray studies

    Directory of Open Access Journals (Sweden)

    Kuner Ruprecht

    2009-12-01

    Full Text Available Abstract Background The increasing number of gene expression microarray studies represents an important resource in biomedical research. As a result, gene expression based diagnosis has entered clinical practice for patient stratification in breast cancer. However, the integration and combined analysis of microarray studies remains still a challenge. We assessed the potential benefit of data integration on the classification accuracy and systematically evaluated the generalization performance of selected methods on four breast cancer studies comprising almost 1000 independent samples. To this end, we introduced an evaluation framework which aims to establish good statistical practice and a graphical way to monitor differences. The classification goal was to correctly predict estrogen receptor status (negative/positive and histological grade (low/high of each tumor sample in an independent study which was not used for the training. For the classification we chose support vector machines (SVM, predictive analysis of microarrays (PAM, random forest (RF and k-top scoring pairs (kTSP. Guided by considerations relevant for classification across studies we developed a generalization of kTSP which we evaluated in addition. Our derived version (DV aims to improve the robustness of the intrinsic invariance of kTSP with respect to technologies and preprocessing. Results For each individual study the generalization error was benchmarked via complete cross-validation and was found to be similar for all classification methods. The misclassification rates were substantially higher in classification across studies, when each single study was used as an independent test set while all remaining studies were combined for the training of the classifier. However, with increasing number of independent microarray studies used in the training, the overall classification performance improved. DV performed better than the average and showed slightly less variance. In

  3. A Critical Perspective On Microarray Breast Cancer Gene Expression Profiling

    NARCIS (Netherlands)

    Sontrop, H.M.J.

    2015-01-01

    Microarrays offer biologists an exciting tool that allows the simultaneous assessment of gene expression levels for thousands of genes at once. At the time of their inception, microarrays were hailed as the new dawn in cancer biology and oncology practice with the hope that within a decade diseases

  4. The application of DNA microarrays in gene expression analysis

    NARCIS (Netherlands)

    Hal, van N.L.W.; Vorst, O.; Houwelingen, van A.M.M.L.; Kok, E.J.; Peijnenburg, A.A.C.M.; Aharoni, A.; Tunen, van A.J.; Keijer, J.

    2000-01-01

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed.

  5. Emerging use of gene expression microarrays in plant physiology.

    Science.gov (United States)

    Wullschleger, Stan D; Difazio, Stephen P

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.

  6. Emerging Use of Gene Expression Microarrays in Plant Physiology

    Directory of Open Access Journals (Sweden)

    Stephen P. Difazio

    2006-04-01

    Full Text Available Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.

  7. Microarray analysis of the gene expression profile in triethylene ...

    African Journals Online (AJOL)

    Microarray analysis of the gene expression profile in triethylene glycol dimethacrylate-treated human dental pulp cells. ... Conclusions: Our results suggest that TEGDMA can change the many functions of hDPCs through large changes in gene expression levels and complex interactions with different signaling pathways.

  8. The application of DNA microarrays in gene expression analysis.

    Science.gov (United States)

    van Hal, N L; Vorst, O; van Houwelingen, A M; Kok, E J; Peijnenburg, A; Aharoni, A; van Tunen, A J; Keijer, J

    2000-03-31

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.

  9. Integrated olfactory receptor and microarray gene expression databases

    Directory of Open Access Journals (Sweden)

    Crasto Chiquito J

    2007-06-01

    Full Text Available Abstract Background Gene expression patterns of olfactory receptors (ORs are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB, which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction. Description ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data. Conclusion ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.

  10. Gene Expression Analysis Using Agilent DNA Microarrays

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2009-01-01

    Hybridization of labeled cDNA to microarrays is an intuitively simple and a vastly underestimated process. If it is not performed, optimized, and standardized with the same attention to detail as e.g., RNA amplification, information may be overlooked or even lost. Careful balancing of the amount ...

  11. A Fisheye Viewer for microarray-based gene expression data.

    Science.gov (United States)

    Wu, Min; Thao, Cheng; Mu, Xiangming; Munson, Ethan V

    2006-10-13

    Microarray has been widely used to measure the relative amounts of every mRNA transcript from the genome in a single scan. Biologists have been accustomed to reading their experimental data directly from tables. However, microarray data are quite large and are stored in a series of files in a machine-readable format, so direct reading of the full data set is not feasible. The challenge is to design a user interface that allows biologists to usefully view large tables of raw microarray-based gene expression data. This paper presents one such interface--an electronic table (E-table) that uses fisheye distortion technology. The Fisheye Viewer for microarray-based gene expression data has been successfully developed to view MIAME data stored in the MAGE-ML format. The viewer can be downloaded from the project web site http://polaris.imt.uwm.edu:7777/fisheye/. The fisheye viewer was implemented in Java so that it could run on multiple platforms. We implemented the E-table by adapting JTable, a default table implementation in the Java Swing user interface library. Fisheye views use variable magnification to balance magnification for easy viewing and compression for maximizing the amount of data on the screen. This Fisheye Viewer is a lightweight but useful tool for biologists to quickly overview the raw microarray-based gene expression data in an E-table.

  12. A fisheye viewer for microarray-based gene expression data

    Directory of Open Access Journals (Sweden)

    Munson Ethan V

    2006-10-01

    Full Text Available Abstract Background Microarray has been widely used to measure the relative amounts of every mRNA transcript from the genome in a single scan. Biologists have been accustomed to reading their experimental data directly from tables. However, microarray data are quite large and are stored in a series of files in a machine-readable format, so direct reading of the full data set is not feasible. The challenge is to design a user interface that allows biologists to usefully view large tables of raw microarray-based gene expression data. This paper presents one such interface – an electronic table (E-table that uses fisheye distortion technology. Results The Fisheye Viewer for microarray-based gene expression data has been successfully developed to view MIAME data stored in the MAGE-ML format. The viewer can be downloaded from the project web site http://polaris.imt.uwm.edu:7777/fisheye/. The fisheye viewer was implemented in Java so that it could run on multiple platforms. We implemented the E-table by adapting JTable, a default table implementation in the Java Swing user interface library. Fisheye views use variable magnification to balance magnification for easy viewing and compression for maximizing the amount of data on the screen. Conclusion This Fisheye Viewer is a lightweight but useful tool for biologists to quickly overview the raw microarray-based gene expression data in an E-table.

  13. Xylella fastidiosa gene expression analysis by DNA microarrays

    OpenAIRE

    Travensolo,Regiane F.; Carareto-Alves,Lucia M.; Costa,Maria V.C.G.; Lopes,Tiago J.S.; Carrilho,Emanuel; Lemos,Eliana G.M.

    2009-01-01

    Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcrip...

  14. Microarray analysis of gene expression profiles in ripening pineapple fruits.

    Science.gov (United States)

    Koia, Jonni H; Moyle, Richard L; Botella, Jose R

    2012-12-18

    Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit

  15. Washing scaling of GeneChip microarray expression

    Directory of Open Access Journals (Sweden)

    Krohn Knut

    2010-05-01

    Full Text Available Abstract Background Post-hybridization washing is an essential part of microarray experiments. Both the quality of the experimental washing protocol and adequate consideration of washing in intensity calibration ultimately affect the quality of the expression estimates extracted from the microarray intensities. Results We conducted experiments on GeneChip microarrays with altered protocols for washing, scanning and staining to study the probe-level intensity changes as a function of the number of washing cycles. For calibration and analysis of the intensity data we make use of the 'hook' method which allows intensity contributions due to non-specific and specific hybridization of perfect match (PM and mismatch (MM probes to be disentangled in a sequence specific manner. On average, washing according to the standard protocol removes about 90% of the non-specific background and about 30-50% and less than 10% of the specific targets from the MM and PM, respectively. Analysis of the washing kinetics shows that the signal-to-noise ratio doubles roughly every ten stringent washing cycles. Washing can be characterized by time-dependent rate constants which reflect the heterogeneous character of target binding to microarray probes. We propose an empirical washing function which estimates the survival of probe bound targets. It depends on the intensity contribution due to specific and non-specific hybridization per probe which can be estimated for each probe using existing methods. The washing function allows probe intensities to be calibrated for the effect of washing. On a relative scale, proper calibration for washing markedly increases expression measures, especially in the limit of small and large values. Conclusions Washing is among the factors which potentially distort expression measures. The proposed first-order correction method allows direct implementation in existing calibration algorithms for microarray data. We provide an experimental

  16. Gene Expression Signature in Endemic Osteoarthritis by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Xi Wang

    2015-05-01

    Full Text Available Kashin-Beck Disease (KBD is an endemic osteochondropathy with an unknown pathogenesis. Diagnosis of KBD is effective only in advanced cases, which eliminates the possibility of early treatment and leads to an inevitable exacerbation of symptoms. Therefore, we aim to identify an accurate blood-based gene signature for the detection of KBD. Previously published gene expression profile data on cartilage and peripheral blood mononuclear cells (PBMCs from adults with KBD were compared to select potential target genes. Microarray analysis was conducted to evaluate the expression of the target genes in a cohort of 100 KBD patients and 100 healthy controls. A gene expression signature was identified using a training set, which was subsequently validated using an independent test set with a minimum redundancy maximum relevance (mRMR algorithm and support vector machine (SVM algorithm. Fifty unique genes were differentially expressed between KBD patients and healthy controls. A 20-gene signature was identified that distinguished between KBD patients and controls with 90% accuracy, 85% sensitivity, and 95% specificity. This study identified a 20-gene signature that accurately distinguishes between patients with KBD and controls using peripheral blood samples. These results promote the further development of blood-based genetic biomarkers for detection of KBD.

  17. Application of four dyes in gene expression analyses by microarrays

    Directory of Open Access Journals (Sweden)

    van Schooten Frederik J

    2005-07-01

    Full Text Available Abstract Background DNA microarrays are widely used in gene expression analyses. To increase throughput and minimize costs without reducing gene expression data obtained, we investigated whether four mRNA samples can be analyzed simultaneously by applying four different fluorescent dyes. Results Following tests for cross-talk of fluorescence signals, Alexa 488, Alexa 594, Cyanine 3 and Cyanine 5 were selected for hybridizations. For self-hybridizations, a single RNA sample was labelled with all dyes and hybridized on commercial cDNA arrays or on in-house spotted oligonucleotide arrays. Correlation coefficients for all combinations of dyes were above 0.9 on the cDNA array. On the oligonucleotide array they were above 0.8, except combinations with Alexa 488, which were approximately 0.5. Standard deviation of expression differences for replicate spots were similar on the cDNA array for all dye combinations, but on the oligonucleotide array combinations with Alexa 488 showed a higher variation. Conclusion In conclusion, the four dyes can be used simultaneously for gene expression experiments on the tested cDNA array, but only three dyes can be used on the tested oligonucleotide array. This was confirmed by hybridizations of control with test samples, as all combinations returned similar numbers of differentially expressed genes with comparable effects on gene expression.

  18. Reproducibility of gene expression across generations of Affymetrix microarrays

    Directory of Open Access Journals (Sweden)

    Haslett Judith N

    2003-06-01

    Full Text Available Abstract Background The development of large-scale gene expression profiling technologies is rapidly changing the norms of biological investigation. But the rapid pace of change itself presents challenges. Commercial microarrays are regularly modified to incorporate new genes and improved target sequences. Although the ability to compare datasets across generations is crucial for any long-term research project, to date no means to allow such comparisons have been developed. In this study the reproducibility of gene expression levels across two generations of Affymetrix GeneChips® (HuGeneFL and HG-U95A was measured. Results Correlation coefficients were computed for gene expression values across chip generations based on different measures of similarity. Comparing the absolute calls assigned to the individual probe sets across the generations found them to be largely unchanged. Conclusion We show that experimental replicates are highly reproducible, but that reproducibility across generations depends on the degree of similarity of the probe sets and the expression level of the corresponding transcript.

  19. Xylella fastidiosa gene expression analysis by DNA microarrays

    Directory of Open Access Journals (Sweden)

    Regiane F. Travensolo

    2009-01-01

    Full Text Available Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM2 and liquid BCYE. All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others. The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.

  20. Sensitivity and fidelity of DNA microarray improved with integration of Amplified Differential Gene Expression (ADGE

    Directory of Open Access Journals (Sweden)

    Ile Kristina E

    2003-07-01

    Full Text Available Abstract Background The ADGE technique is a method designed to magnify the ratios of gene expression before detection. It improves the detection sensitivity to small change of gene expression and requires small amount of starting material. However, the throughput of ADGE is low. We integrated ADGE with DNA microarray (ADGE microarray and compared it with regular microarray. Results When ADGE was integrated with DNA microarray, a quantitative relationship of a power function between detected and input ratios was found. Because of ratio magnification, ADGE microarray was better able to detect small changes in gene expression in a drug resistant model cell line system. The PCR amplification of templates and efficient labeling reduced the requirement of starting material to as little as 125 ng of total RNA for one slide hybridization and enhanced the signal intensity. Integration of ratio magnification, template amplification and efficient labeling in ADGE microarray reduced artifacts in microarray data and improved detection fidelity. The results of ADGE microarray were less variable and more reproducible than those of regular microarray. A gene expression profile generated with ADGE microarray characterized the drug resistant phenotype, particularly with reference to glutathione, proliferation and kinase pathways. Conclusion ADGE microarray magnified the ratios of differential gene expression in a power function, improved the detection sensitivity and fidelity and reduced the requirement for starting material while maintaining high throughput. ADGE microarray generated a more informative expression pattern than regular microarray.

  1. AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data

    Directory of Open Access Journals (Sweden)

    Xia Yuannan

    2006-12-01

    Full Text Available Abstract Background DNA microarrays are a powerful tool for monitoring the expression of tens of thousands of genes simultaneously. With the advance of microarray technology, the challenge issue becomes how to analyze a large amount of microarray data and make biological sense of them. Affymetrix GeneChips are widely used microarrays, where a variety of statistical algorithms have been explored and used for detecting significant genes in the experiment. These methods rely solely on the quantitative data, i.e., signal intensity; however, qualitative data are also important parameters in detecting differentially expressed genes. Results AffyMiner is a tool developed for detecting differentially expressed genes in Affymetrix GeneChip microarray data and for associating gene annotation and gene ontology information with the genes detected. AffyMiner consists of the functional modules, GeneFinder for detecting significant genes in a treatment versus control experiment and GOTree for mapping genes of interest onto the Gene Ontology (GO space; and interfaces to run Cluster, a program for clustering analysis, and GenMAPP, a program for pathway analysis. AffyMiner has been used for analyzing the GeneChip data and the results were presented in several publications. Conclusion AffyMiner fills an important gap in finding differentially expressed genes in Affymetrix GeneChip microarray data. AffyMiner effectively deals with multiple replicates in the experiment and takes into account both quantitative and qualitative data in identifying significant genes. AffyMiner reduces the time and effort needed to compare data from multiple arrays and to interpret the possible biological implications associated with significant changes in a gene's expression.

  2. Identification of differentially expressed genes in cutaneous squamous cell carcinoma by microarray expression profiling

    Directory of Open Access Journals (Sweden)

    Sterry Wolfram

    2006-08-01

    Full Text Available Abstract Background Carcinogenesis is a multi-step process indicated by several genes up- or down-regulated during tumor progression. This study examined and identified differentially expressed genes in cutaneous squamous cell carcinoma (SCC. Results Three different biopsies of 5 immunosuppressed organ-transplanted recipients each normal skin (all were pooled, actinic keratosis (AK (two were pooled, and invasive SCC and additionally 5 normal skin tissues from immunocompetent patients were analyzed. Thus, total RNA of 15 specimens were used for hybridization with Affymetrix HG-U133A microarray technology containing 22,283 genes. Data analyses were performed by prediction analysis of microarrays using nearest shrunken centroids with the threshold 3.5 and ANOVA analysis was independently performed in order to identify differentially expressed genes (p vs. AK and SCC were observed for 118 genes. Conclusion The majority of identified differentially expressed genes in cutaneous SCC were previously not described.

  3. Observation of intermittency in gene expression on cDNA microarrays

    CERN Document Server

    Peterson, L E

    2002-01-01

    We used scaled factorial moments to search for intermittency in the log expression ratios (LERs) for thousands of genes spotted on cDNA microarrays (gene chips). Results indicate varying levels of intermittency in gene expression. The observation of intermittency in the data analyzed provides a complimentary handle on moderately expressed genes, generally not tackled by conventional techniques.

  4. Unsupervised Bayesian linear unmixing of gene expression microarrays.

    Science.gov (United States)

    Bazot, Cécile; Dobigeon, Nicolas; Tourneret, Jean-Yves; Zaas, Aimee K; Ginsburg, Geoffrey S; Hero, Alfred O

    2013-03-19

    This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores

  5. Gene Expression Browser: Large-Scale and Cross-Experiment Microarray Data Management, Search & Visualization

    Science.gov (United States)

    The amount of microarray gene expression data in public repositories has been increasing exponentially for the last couple of decades. High-throughput microarray data integration and analysis has become a critical step in exploring the large amount of expression data for biological discovery. Howeve...

  6. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  7. Complete gene expression profiling of Saccharopolyspora erythraea using GeneChip DNA microarrays

    Directory of Open Access Journals (Sweden)

    Bordoni Roberta

    2007-11-01

    Full Text Available Abstract Background The Saccharopolyspora erythraea genome sequence, recently published, presents considerable divergence from those of streptomycetes in gene organization and function, confirming the remarkable potential of S. erythraea for producing many other secondary metabolites in addition to erythromycin. In order to investigate, at whole transcriptome level, how S. erythraea genes are modulated, a DNA microarray was specifically designed and constructed on the S. erythraea strain NRRL 2338 genome sequence, and the expression profiles of 6494 ORFs were monitored during growth in complex liquid medium. Results The transcriptional analysis identified a set of 404 genes, whose transcriptional signals vary during growth and characterize three distinct phases: a rapid growth until 32 h (Phase A; a growth slowdown until 52 h (Phase B; and another rapid growth phase from 56 h to 72 h (Phase C before the cells enter the stationary phase. A non-parametric statistical method, that identifies chromosomal regions with transcriptional imbalances, determined regional organization of transcription along the chromosome, highlighting differences between core and non-core regions, and strand specific patterns of expression. Microarray data were used to characterize the temporal behaviour of major functional classes and of all the gene clusters for secondary metabolism. The results confirmed that the ery cluster is up-regulated during Phase A and identified six additional clusters (for terpenes and non-ribosomal peptides that are clearly regulated in later phases. Conclusion The use of a S. erythraea DNA microarray improved specificity and sensitivity of gene expression analysis, allowing a global and at the same time detailed picture of how S. erythraea genes are modulated. This work underlines the importance of using DNA microarrays, coupled with an exhaustive statistical and bioinformatic analysis of the results, to understand the transcriptional

  8. Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2005-11-01

    Full Text Available Abstract Background The extensive use of DNA microarray technology in the characterization of the cell transcriptome is leading to an ever increasing amount of microarray data from cancer studies. Although similar questions for the same type of cancer are addressed in these different studies, a comparative analysis of their results is hampered by the use of heterogeneous microarray platforms and analysis methods. Results In contrast to a meta-analysis approach where results of different studies are combined on an interpretative level, we investigate here how to directly integrate raw microarray data from different studies for the purpose of supervised classification analysis. We use median rank scores and quantile discretization to derive numerically comparable measures of gene expression from different platforms. These transformed data are then used for training of classifiers based on support vector machines. We apply this approach to six publicly available cancer microarray gene expression data sets, which consist of three pairs of studies, each examining the same type of cancer, i.e. breast cancer, prostate cancer or acute myeloid leukemia. For each pair, one study was performed by means of cDNA microarrays and the other by means of oligonucleotide microarrays. In each pair, high classification accuracies (> 85% were achieved with training and testing on data instances randomly chosen from both data sets in a cross-validation analysis. To exemplify the potential of this cross-platform classification analysis, we use two leukemia microarray data sets to show that important genes with regard to the biology of leukemia are selected in an integrated analysis, which are missed in either single-set analysis. Conclusion Cross-platform classification of multiple cancer microarray data sets yields discriminative gene expression signatures that are found and validated on a large number of microarray samples, generated by different laboratories and

  9. Hierarchical information representation and efficient classification of gene expression microarray data

    OpenAIRE

    Bosio, Mattia

    2014-01-01

    In the field of computational biology, microarryas are used to measure the activity of thousands of genes at once and create a global picture of cellular function. Microarrays allow scientists to analyze expression of many genes in a single experiment quickly and eficiently. Even if microarrays are a consolidated research technology nowadays and the trends in high-throughput data analysis are shifting towards new technologies like Next Generation Sequencing (NGS), an optimum method for sample...

  10. Array2BIO: from microarray expression data to functional annotation of co-regulated genes

    Directory of Open Access Journals (Sweden)

    Rasley Amy

    2006-06-01

    Full Text Available Abstract Background There are several isolated tools for partial analysis of microarray expression data. To provide an integrative, easy-to-use and automated toolkit for the analysis of Affymetrix microarray expression data we have developed Array2BIO, an application that couples several analytical methods into a single web based utility. Results Array2BIO converts raw intensities into probe expression values, automatically maps those to genes, and subsequently identifies groups of co-expressed genes using two complementary approaches: (1 comparative analysis of signal versus control and (2 clustering analysis of gene expression across different conditions. The identified genes are assigned to functional categories based on Gene Ontology classification and KEGG protein interaction pathways. Array2BIO reliably handles low-expressor genes and provides a set of statistical methods for quantifying expression levels, including Benjamini-Hochberg and Bonferroni multiple testing corrections. An automated interface with the ECR Browser provides evolutionary conservation analysis for the identified gene loci while the interconnection with Crème allows prediction of gene regulatory elements that underlie observed expression patterns. Conclusion We have developed Array2BIO – a web based tool for rapid comprehensive analysis of Affymetrix microarray expression data, which also allows users to link expression data to Dcode.org comparative genomics tools and integrates a system for translating co-expression data into mechanisms of gene co-regulation. Array2BIO is publicly available at http://array2bio.dcode.org.

  11. Can subtle changes in gene expression be consistently detected with different microarray platforms?

    Directory of Open Access Journals (Sweden)

    Kuiper Rowan

    2008-03-01

    Full Text Available Abstract Background The comparability of gene expression data generated with different microarray platforms is still a matter of concern. Here we address the performance and the overlap in the detection of differentially expressed genes for five different microarray platforms in a challenging biological context where differences in gene expression are few and subtle. Results Gene expression profiles in the hippocampus of five wild-type and five transgenic δC-doublecortin-like kinase mice were evaluated with five microarray platforms: Applied Biosystems, Affymetrix, Agilent, Illumina, LGTC home-spotted arrays. Using a fixed false discovery rate of 10% we detected surprising differences between the number of differentially expressed genes per platform. Four genes were selected by ABI, 130 by Affymetrix, 3,051 by Agilent, 54 by Illumina, and 13 by LGTC. Two genes were found significantly differentially expressed by all platforms and the four genes identified by the ABI platform were found by at least three other platforms. Quantitative RT-PCR analysis confirmed 20 out of 28 of the genes detected by two or more platforms and 8 out of 15 of the genes detected by Agilent only. We observed improved correlations between platforms when ranking the genes based on the significance level than with a fixed statistical cut-off. We demonstrate significant overlap in the affected gene sets identified by the different platforms, although biological processes were represented by only partially overlapping sets of genes. Aberrances in GABA-ergic signalling in the transgenic mice were consistently found by all platforms. Conclusion The different microarray platforms give partially complementary views on biological processes affected. Our data indicate that when analyzing samples with only subtle differences in gene expression the use of two different platforms might be more attractive than increasing the number of replicates. Commercial two-color platforms seem to

  12. Density based pruning for identification of differentially expressed genes from microarray data

    Directory of Open Access Journals (Sweden)

    Xu Jia

    2010-11-01

    Full Text Available Abstract Motivation Identification of differentially expressed genes from microarray datasets is one of the most important analyses for microarray data mining. Popular algorithms such as statistical t-test rank genes based on a single statistics. The false positive rate of these methods can be improved by considering other features of differentially expressed genes. Results We proposed a pattern recognition strategy for identifying differentially expressed genes. Genes are mapped to a two dimension feature space composed of average difference of gene expression and average expression levels. A density based pruning algorithm (DB Pruning is developed to screen out potential differentially expressed genes usually located in the sparse boundary region. Biases of popular algorithms for identifying differentially expressed genes are visually characterized. Experiments on 17 datasets from Gene Omnibus Database (GEO with experimentally verified differentially expressed genes showed that DB pruning can significantly improve the prediction accuracy of popular identification algorithms such as t-test, rank product, and fold change. Conclusions Density based pruning of non-differentially expressed genes is an effective method for enhancing statistical testing based algorithms for identifying differentially expressed genes. It improves t-test, rank product, and fold change by 11% to 50% in the numbers of identified true differentially expressed genes. The source code of DB pruning is freely available on our website http://mleg.cse.sc.edu/degprune

  13. Radioactive cDNA microarray (II): Gene expression profiling of antidepressant treatment by human cDNA microarray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hye; Kang, Rhee Hun; Ham, Byung Joo; Lee, Min Su; Shin, Kyung Ho; Choe, Jae Gol; Kim, Meyoung Kon [College of Medicine, Univ. of Korea, Seoul (Korea, Republic of)

    2003-07-01

    Major depressive disorder is a prevalent psychiatric disorder in primary care, associated with impaired patient functioning and well-being. Fluoxetine is a selective serotonin-reuptake inhibitors (SSRIs) and is a commonly prescribed antidepressant compound. Its action is primarily attributed to selective inhibition of the reuptake of serotonin (5-hydroxytryptamine) in the central nervous system. Objectives ; the aims of this study were two-fold: (1) to determine the usefulness for investigation of the transcription profiles in depression patients, and (2) to assess the differences in gene expression profiles between positive response group and negative response groups by fluoxetine treatment. This study included 53 patients with major depression (26 in positive response group with antidepressant treatment, 27 in negative response group with antidepressant treatment), and 53 healthy controls. To examine the difference of gene expression profile in depression patients, radioactive complementary DNA microarrays were used to evaluate changes in the expression of 1,152 genes in total. Using 33p-labeled probes, this method provided highly sensitive gene expression profiles including brain receptors, drug metabolism, and cellular signaling. Gene transcription profiles were classified into several categories in accordance with the antidepressant gene-regulation. The gene profiles were significantly up-(22 genes) and down-(16 genes) regulated in the positive response group when compared to the control group. Also, in the negative response group, 35 genes were up-regulated and 8 genes were down-regulated when compared to the control group. Consequently, we demonstrated that radioactive human cDNA microarray is highly likely to be an efficient technology for evaluating the gene regulation of antidepressants, such as selective serotonin-reuptake inhibitors (SSRIs), by using high-throughput biotechnology.

  14. Radioactive cDNA microarray (II): Gene expression profiling of antidepressant treatment by human cDNA microarray

    International Nuclear Information System (INIS)

    Lee, Ji Hye; Kang, Rhee Hun; Ham, Byung Joo; Lee, Min Su; Shin, Kyung Ho; Choe, Jae Gol; Kim, Meyoung Kon

    2003-01-01

    Major depressive disorder is a prevalent psychiatric disorder in primary care, associated with impaired patient functioning and well-being. Fluoxetine is a selective serotonin-reuptake inhibitors (SSRIs) and is a commonly prescribed antidepressant compound. Its action is primarily attributed to selective inhibition of the reuptake of serotonin (5-hydroxytryptamine) in the central nervous system. Objectives ; the aims of this study were two-fold: (1) to determine the usefulness for investigation of the transcription profiles in depression patients, and (2) to assess the differences in gene expression profiles between positive response group and negative response groups by fluoxetine treatment. This study included 53 patients with major depression (26 in positive response group with antidepressant treatment, 27 in negative response group with antidepressant treatment), and 53 healthy controls. To examine the difference of gene expression profile in depression patients, radioactive complementary DNA microarrays were used to evaluate changes in the expression of 1,152 genes in total. Using 33p-labeled probes, this method provided highly sensitive gene expression profiles including brain receptors, drug metabolism, and cellular signaling. Gene transcription profiles were classified into several categories in accordance with the antidepressant gene-regulation. The gene profiles were significantly up-(22 genes) and down-(16 genes) regulated in the positive response group when compared to the control group. Also, in the negative response group, 35 genes were up-regulated and 8 genes were down-regulated when compared to the control group. Consequently, we demonstrated that radioactive human cDNA microarray is highly likely to be an efficient technology for evaluating the gene regulation of antidepressants, such as selective serotonin-reuptake inhibitors (SSRIs), by using high-throughput biotechnology

  15. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  16. Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray.

    Science.gov (United States)

    Fernandez, Paula; Soria, Marcelo; Blesa, David; DiRienzo, Julio; Moschen, Sebastian; Rivarola, Maximo; Clavijo, Bernardo Jose; Gonzalez, Sergio; Peluffo, Lucila; Príncipi, Dario; Dosio, Guillermo; Aguirrezabal, Luis; García-García, Francisco; Conesa, Ana; Hopp, Esteban; Dopazo, Joaquín; Heinz, Ruth Amelia; Paniego, Norma

    2012-01-01

    Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de). The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (psunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement.

  17. Clustering approaches to identifying gene expression patterns from DNA microarray data.

    Science.gov (United States)

    Do, Jin Hwan; Choi, Dong-Kug

    2008-04-30

    The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

  18. Analysis of gene expression in resynthesized Brassica napus Allopolyploids using arabidopsis 70mer oligo microarrays.

    Directory of Open Access Journals (Sweden)

    Robert T Gaeta

    Full Text Available BACKGROUND: Studies in resynthesized Brassica napus allopolyploids indicate that homoeologous chromosome exchanges in advanced generations (S(5ratio6 alter gene expression through the loss and doubling of homoeologous genes within the rearrangements. Rearrangements may also indirectly affect global gene expression if homoeologous copies of gene regulators within rearrangements have differential affects on the transcription of genes in networks. METHODOLOGY/PRINCIPAL FINDINGS: We utilized Arabidopsis 70mer oligonucleotide microarrays for exploring gene expression in three resynthesized B. napus lineages at the S(0ratio1 and S(5ratio6 generations as well as their diploid progenitors B. rapa and B. oleracea. Differential gene expression between the progenitors and additive (midparent expression in the allopolyploids were tested. The S(5ratio6 lines differed in the number of genetic rearrangements, allowing us to test if the number of genes displaying nonadditive expression was related to the number of rearrangements. Estimates using per-gene and common variance ANOVA models indicated that 6-15% of 26,107 genes were differentially expressed between the progenitors. Individual allopolyploids showed nonadditive expression for 1.6-32% of all genes. Less than 0.3% of genes displayed nonadditive expression in all S(0ratio1 lines and 0.1-0.2% were nonadditive among all S(5ratio6 lines. Differentially expressed genes in the polyploids were over-represented by genes differential between the progenitors. The total number of differentially expressed genes was correlated with the number of genetic changes in S(5ratio6 lines under the common variance model; however, there was no relationship using a per-gene variance model, and many genes showed nonadditive expression in S(0ratio1 lines. CONCLUSIONS/SIGNIFICANCE: Few genes reproducibly demonstrated nonadditive expression among lineages, suggesting few changes resulted from a general response to polyploidization

  19. Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L. gene expression oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Paula Fernandez

    Full Text Available Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de. The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons. The resulting Sunflower Unigen Resource (SUR version 1.0 was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01 allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement.

  20. Production of DNA microarray and expression analysis of genes from Xylella fastidiosa in different culture media

    Directory of Open Access Journals (Sweden)

    Regiane de Fátima Travensolo

    2009-06-01

    Full Text Available DNA Microarray was developed to monitor the expression of many genes from Xylella fastidiosa, allowing the side by-side comparison of two situations in a single experiment. The experiments were performed using X. fastidiosa cells grown in two culture media: BCYE and XDM2. The primers were synthesized, spotted onto glass slides and the array was hybridized against fluorescently labeled cDNAs. The emitted signals were quantified, normalized and the data were statistically analyzed to verify the differentially expressed genes. According to the data, 104 genes were differentially expressed in XDM2 and 30 genes in BCYE media. The present study showed that DNA microarray technique efficiently differentiate the expressed genes under different conditions.DNA Microarray foi desenvolvida para monitorar a expressão de muitos genes de Xylella fastidiosa, permitindo a comparação de duas situações distintas em um único experimento. Os experimentos foram feitos utilizando células de X. fastidiosa cultivada em dois meios de cultura: BCYE e XDM2. Pares de oligonucleotídeos iniciadores foram sintetizados, depositados em lâminas de vidro e o arranjo foi hibridizado contra cDNAs marcados fluorescentemente. Os sinais emitidos foram quantificados, normalizados e os dados foram estatisticamente analisados para verificar os genes diferencialmente expressos. De acordo com nossos dados, 104 genes foram diferencialmente expressos para o meio de cultura XDM2 e 30 genes para o BCYE. No presente estudo, nós demonstramos que a técnica de DNA microarrays eficientemente diferencia genes expressos sob diferentes condições de cultivo.

  1. Evaluation of gene expression data generated from expired Affymetrix GeneChip® microarrays using MAQC reference RNA samples

    Directory of Open Access Journals (Sweden)

    Tong Weida

    2010-10-01

    Full Text Available Abstract Background The Affymetrix GeneChip® system is a commonly used platform for microarray analysis but the technology is inherently expensive. Unfortunately, changes in experimental planning and execution, such as the unavailability of previously anticipated samples or a shift in research focus, may render significant numbers of pre-purchased GeneChip® microarrays unprocessed before their manufacturer’s expiration dates. Researchers and microarray core facilities wonder whether expired microarrays are still useful for gene expression analysis. In addition, it was not clear whether the two human reference RNA samples established by the MAQC project in 2005 still maintained their transcriptome integrity over a period of four years. Experiments were conducted to answer these questions. Results Microarray data were generated in 2009 in three replicates for each of the two MAQC samples with either expired Affymetrix U133A or unexpired U133Plus2 microarrays. These results were compared with data obtained in 2005 on the U133Plus2 microarray. The percentage of overlap between the lists of differentially expressed genes (DEGs from U133Plus2 microarray data generated in 2009 and in 2005 was 97.44%. While there was some degree of fold change compression in the expired U133A microarrays, the percentage of overlap between the lists of DEGs from the expired and unexpired microarrays was as high as 96.99%. Moreover, the microarray data generated using the expired U133A microarrays in 2009 were highly concordant with microarray and TaqMan® data generated by the MAQC project in 2005. Conclusions Our results demonstrated that microarray data generated using U133A microarrays, which were more than four years past the manufacturer’s expiration date, were highly specific and consistent with those from unexpired microarrays in identifying DEGs despite some appreciable fold change compression and decrease in sensitivity. Our data also suggested that the

  2. Microarray-Based Gene Expression Profiling to Elucidate Effectiveness of Fermented Codonopsis lanceolata in Mice

    Directory of Open Access Journals (Sweden)

    Woon Yong Choi

    2014-04-01

    Full Text Available In this study, the effect of Codonopsis lanceolata fermented by lactic acid on controlling gene expression levels related to obesity was observed in an oligonucleotide chip microarray. Among 8170 genes, 393 genes were up regulated and 760 genes were down regulated in feeding the fermented C. lanceolata (FCL. Another 374 genes were up regulated and 527 genes down regulated without feeding the sample. The genes were not affected by the FCL sample. It was interesting that among those genes, Chytochrome P450, Dmbt1, LOC76487, and thyroid hormones, etc., were mostly up or down regulated. These genes are more related to lipid synthesis. We could conclude that the FCL possibly controlled the gene expression levels related to lipid synthesis, which resulted in reducing obesity. However, more detailed protein expression experiments should be carried out.

  3. GENE EXPRESSION IN THE TESTES OF NORMOSPERMIC VERSUS TERATOSPERMIC DOMESTIC CATS USING HUMAN CDNA MICROARRAY ANALYSES

    Science.gov (United States)

    GENE EXPRESSION IN THE TESTES OF NORMOSPERMIC VERSUS TERATOSPERMIC DOMESTIC CATS USING HUMAN cDNA MICROARRAY ANALYSESB.S. Pukazhenthi1, J. C. Rockett2, M. Ouyang3, D.J. Dix2, J.G. Howard1, P. Georgopoulos4, W.J. J. Welsh3 and D. E. Wildt11Department of Reproductiv...

  4. ZODET: software for the identification, analysis and visualisation of outlier genes in microarray expression data.

    Directory of Open Access Journals (Sweden)

    Daniel L Roden

    Full Text Available Complex human diseases can show significant heterogeneity between patients with the same phenotypic disorder. An outlier detection strategy was developed to identify variants at the level of gene transcription that are of potential biological and phenotypic importance. Here we describe a graphical software package (z-score outlier detection (ZODET that enables identification and visualisation of gross abnormalities in gene expression (outliers in individuals, using whole genome microarray data. Mean and standard deviation of expression in a healthy control cohort is used to detect both over and under-expressed probes in individual test subjects. We compared the potential of ZODET to detect outlier genes in gene expression datasets with a previously described statistical method, gene tissue index (GTI, using a simulated expression dataset and a publicly available monocyte-derived macrophage microarray dataset. Taken together, these results support ZODET as a novel approach to identify outlier genes of potential pathogenic relevance in complex human diseases. The algorithm is implemented using R packages and Java.The software is freely available from http://www.ucl.ac.uk/medicine/molecular-medicine/publications/microarray-outlier-analysis.

  5. DNA microarrays of baculovirus genomes: differential expression of viral genes in two susceptible insect cell lines.

    Science.gov (United States)

    Yamagishi, J; Isobe, R; Takebuchi, T; Bando, H

    2003-03-01

    We describe, for the first time, the generation of a viral DNA chip for simultaneous expression measurements of nearly all known open reading frames (ORFs) in the best-studied members of the family Baculoviridae, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV). In this study, a viral DNA chip (Ac-BmNPV chip) was fabricated and used to characterize the viral gene expression profile for AcMNPV in different cell types. The viral chip is composed of microarrays of viral DNA prepared by robotic deposition of PCR-amplified viral DNA fragments on glass for ORFs in the NPV genome. Viral gene expression was monitored by hybridization to the DNA fragment microarrays with fluorescently labeled cDNAs prepared from infected Spodoptera frugiperda, Sf9 cells and Trichoplusia ni, TnHigh-Five cells, the latter a major producer of baculovirus and recombinant proteins. A comparison of expression profiles of known ORFs in AcMNPV elucidated six genes (ORF150, p10, pk2, and three late gene expression factor genes lef-3, p35 and lef- 6) the expression of each of which was regulated differently in the two cell lines. Most of these genes are known to be closely involved in the viral life cycle such as in DNA replication, late gene expression and the release of polyhedra from infected cells. These results imply that the differential expression of these viral genes accounts for the differences in viral replication between these two cell lines. Thus, these fabricated microarrays of NPV DNA which allow a rapid analysis of gene expression at the viral genome level should greatly speed the functional analysis of large genomes of NPV.

  6. Improving the scaling normalization for high-density oligonucleotide GeneChip expression microarrays

    Directory of Open Access Journals (Sweden)

    Lu Chao

    2004-07-01

    Full Text Available Abstract Background Normalization is an important step for microarray data analysis to minimize biological and technical variations. Choosing a suitable approach can be critical. The default method in GeneChip expression microarray uses a constant factor, the scaling factor (SF, for every gene on an array. The SF is obtained from a trimmed average signal of the array after excluding the 2% of the probe sets with the highest and the lowest values. Results Among the 76 U34A GeneChip experiments, the total signals on each array showed 25.8% variations in terms of the coefficient of variation, although all microarrays were hybridized with the same amount of biotin-labeled cRNA. The 2% of the probe sets with the highest signals that were normally excluded from SF calculation accounted for 34% to 54% of the total signals (40.7% ± 4.4%, mean ± sd. In comparison with normalization factors obtained from the median signal or from the mean of the log transformed signal, SF showed the greatest variation. The normalization factors obtained from log transformed signals showed least variation. Conclusions Eliminating 40% of the signal data during SF calculation failed to show any benefit. Normalization factors obtained with log transformed signals performed the best. Thus, it is suggested to use the mean of the logarithm transformed data for normalization, rather than the arithmetic mean of signals in GeneChip gene expression microarrays.

  7. Implementation of plaid model biclustering method on microarray of carcinoma and adenoma tumor gene expression data

    Science.gov (United States)

    Ardaneswari, Gianinna; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    A Tumor is an abnormal growth of cells that serves no purpose. Carcinoma is a tumor that grows from the top of the cell membrane and the organ adenoma is a benign tumor of the gland-like cells or epithelial tissue. In the field of molecular biology, the development of microarray technology is used in the data store of disease genetic expression. For each of microarray gene, an amount of information is stored for each trait or condition. In gene expression data clustering can be done with a bicluster algorithm, thats clustering method which not only the objects to be clustered, but also the properties or condition of the object. This research proposed Plaid Model Biclustering as one of biclustering method. In this study, we discuss the implementation of Plaid Model Biclustering Method on microarray of Carcinoma and Adenoma tumor gene expression data. From the experimental results, we found three biclusters are formed by Carcinoma gene expression data and four biclusters are formed by Adenoma gene expression data.

  8. Consistent Differential Expression Pattern (CDEP) on microarray to identify genes related to metastatic behavior.

    Science.gov (United States)

    Tsoi, Lam C; Qin, Tingting; Slate, Elizabeth H; Zheng, W Jim

    2011-11-11

    To utilize the large volume of gene expression information generated from different microarray experiments, several meta-analysis techniques have been developed. Despite these efforts, there remain significant challenges to effectively increasing the statistical power and decreasing the Type I error rate while pooling the heterogeneous datasets from public resources. The objective of this study is to develop a novel meta-analysis approach, Consistent Differential Expression Pattern (CDEP), to identify genes with common differential expression patterns across different datasets. We combined False Discovery Rate (FDR) estimation and the non-parametric RankProd approach to estimate the Type I error rate in each microarray dataset of the meta-analysis. These Type I error rates from all datasets were then used to identify genes with common differential expression patterns. Our simulation study showed that CDEP achieved higher statistical power and maintained low Type I error rate when compared with two recently proposed meta-analysis approaches. We applied CDEP to analyze microarray data from different laboratories that compared transcription profiles between metastatic and primary cancer of different types. Many genes identified as differentially expressed consistently across different cancer types are in pathways related to metastatic behavior, such as ECM-receptor interaction, focal adhesion, and blood vessel development. We also identified novel genes such as AMIGO2, Gem, and CXCL11 that have not been shown to associate with, but may play roles in, metastasis. CDEP is a flexible approach that borrows information from each dataset in a meta-analysis in order to identify genes being differentially expressed consistently. We have shown that CDEP can gain higher statistical power than other existing approaches under a variety of settings considered in the simulation study, suggesting its robustness and insensitivity to data variation commonly associated with microarray

  9. Microarray meta-analysis to explore abiotic stress-specific gene expression patterns in Arabidopsis.

    Science.gov (United States)

    Shen, Po-Chih; Hour, Ai-Ling; Liu, Li-Yu Daisy

    2017-12-01

    Abiotic stresses are the major limiting factors that affect plant growth, development, yield and final quality. Deciphering the underlying mechanisms of plants' adaptations to stresses using few datasets might overlook the different aspects of stress tolerance in plants, which might be simultaneously and consequently operated in the system. Fortunately, the accumulated microarray expression data offer an opportunity to infer abiotic stress-specific gene expression patterns through meta-analysis. In this study, we propose to combine microarray gene expression data under control, cold, drought, heat, and salt conditions and determined modules (gene sets) of genes highly associated with each other according to the observed expression data. By analyzing the expression variations of the Eigen genes from different conditions, we had identified two, three, and five gene modules as cold-, heat-, and salt-specific modules, respectively. Most of the cold- or heat-specific modules were differentially expressed to a particular degree in shoot samples, while most of the salt-specific modules were differentially expressed to a particular degree in root samples. A gene ontology (GO) analysis on the stress-specific modules suggested that the gene modules exclusively enriched stress-related GO terms and that different genes under the same GO terms may be alternatively disturbed in different conditions. The gene regulatory events for two genes, DREB1A and DEAR1, in the cold-specific gene module had also been validated, as evidenced through the literature search. Our protocols study the specificity of the gene modules that were specifically activated under a particular type of abiotic stress. The biplot can also assist to visualize the stress-specific gene modules. In conclusion, our approach has the potential to further elucidate mechanisms in plants and beneficial for future experiments design under different abiotic stresses.

  10. Age-Specific Gene Expression Profiles of Rhesus Monkey Ovaries Detected by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Hengxi Wei

    2015-01-01

    Full Text Available The biological function of human ovaries declines with age. To identify the potential molecular changes in ovarian aging, we performed genome-wide gene expression analysis by microarray of ovaries from young, middle-aged, and old rhesus monkeys. Microarray data was validated by quantitative real-time PCR. Results showed that a total of 503 (60 upregulated, 443 downregulated and 84 (downregulated genes were differentially expressed in old ovaries compared to young and middle-aged groups, respectively. No difference in gene expression was found between middle-aged and young groups. Differentially expressed genes were mainly enriched in cell and organelle, cellular and physiological process, binding, and catalytic activity. These genes were primarily associated with KEGG pathways of cell cycle, DNA replication and repair, oocyte meiosis and maturation, MAPK, TGF-beta, and p53 signaling pathway. Genes upregulated were involved in aging, defense response, oxidation reduction, and negative regulation of cellular process; genes downregulated have functions in reproduction, cell cycle, DNA and RNA process, macromolecular complex assembly, and positive regulation of macromolecule metabolic process. These findings show that monkey ovary undergoes substantial change in global transcription with age. Gene expression profiles are useful in understanding the mechanisms underlying ovarian aging and age-associated infertility in primates.

  11. Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray.

    Science.gov (United States)

    Fenart, Stéphane; Ndong, Yves-Placide Assoumou; Duarte, Jorge; Rivière, Nathalie; Wilmer, Jeroen; van Wuytswinkel, Olivier; Lucau, Anca; Cariou, Emmanuelle; Neutelings, Godfrey; Gutierrez, Laurent; Chabbert, Brigitte; Guillot, Xavier; Tavernier, Reynald; Hawkins, Simon; Thomasset, Brigitte

    2010-10-21

    Flax (Linum usitatissimum L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties

  12. Development and validation of a flax (Linum usitatissimum L. gene expression oligo microarray

    Directory of Open Access Journals (Sweden)

    Gutierrez Laurent

    2010-10-01

    Full Text Available Abstract Background Flax (Linum usitatissimum L. has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars and its cellulose-rich fibres (fibre-flax cultivars used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Results Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples. A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well

  13. Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data

    International Nuclear Information System (INIS)

    Lenburg, Marc E; Liou, Louis S; Gerry, Norman P; Frampton, Garrett M; Cohen, Herbert T; Christman, Michael F

    2003-01-01

    Renal cell carcinoma is a common malignancy that often presents as a metastatic-disease for which there are no effective treatments. To gain insights into the mechanism of renal cell carcinogenesis, a number of genome-wide expression profiling studies have been performed. Surprisingly, there is very poor agreement among these studies as to which genes are differentially regulated. To better understand this lack of agreement we profiled renal cell tumor gene expression using genome-wide microarrays (45,000 probe sets) and compare our analysis to previous microarray studies. We hybridized total RNA isolated from renal cell tumors and adjacent normal tissue to Affymetrix U133A and U133B arrays. We removed samples with technical defects and removed probesets that failed to exhibit sequence-specific hybridization in any of the samples. We detected differential gene expression in the resulting dataset with parametric methods and identified keywords that are overrepresented in the differentially expressed genes with the Fisher-exact test. We identify 1,234 genes that are more than three-fold changed in renal tumors by t-test, 800 of which have not been previously reported to be altered in renal cell tumors. Of the only 37 genes that have been identified as being differentially expressed in three or more of five previous microarray studies of renal tumor gene expression, our analysis finds 33 of these genes (89%). A key to the sensitivity and power of our analysis is filtering out defective samples and genes that are not reliably detected. The widespread use of sample-wise voting schemes for detecting differential expression that do not control for false positives likely account for the poor overlap among previous studies. Among the many genes we identified using parametric methods that were not previously reported as being differentially expressed in renal cell tumors are several oncogenes and tumor suppressor genes that likely play important roles in renal cell

  14. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data

    Directory of Open Access Journals (Sweden)

    Teng Shaolei

    2013-01-01

    Full Text Available Abstract Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs and Support Vector Machines (SVMs were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression.

  15. ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development.

    Science.gov (United States)

    Alba, Rob; Fei, Zhangjun; Payton, Paxton; Liu, Yang; Moore, Shanna L; Debbie, Paul; Cohn, Jonathan; D'Ascenzo, Mark; Gordon, Jeffrey S; Rose, Jocelyn K C; Martin, Gregory; Tanksley, Steven D; Bouzayen, Mondher; Jahn, Molly M; Giovannoni, Jim

    2004-09-01

    Gene expression profiling holds tremendous promise for dissecting the regulatory mechanisms and transcriptional networks that underlie biological processes. Here we provide details of approaches used by others and ourselves for gene expression profiling in plants with emphasis on cDNA microarrays and discussion of both experimental design and downstream analysis. We focus on methods and techniques emphasizing fabrication of cDNA microarrays, fluorescent labeling, cDNA hybridization, experimental design, and data processing. We include specific examples that demonstrate how this technology can be used to further our understanding of plant physiology and development (specifically fruit development and ripening) and for comparative genomics by comparing transcriptome activity in tomato and pepper fruit.

  16. Normal uniform mixture differential gene expression detection for cDNA microarrays

    Directory of Open Access Journals (Sweden)

    Raftery Adrian E

    2005-07-01

    Full Text Available Abstract Background One of the primary tasks in analysing gene expression data is finding genes that are differentially expressed in different samples. Multiple testing issues due to the thousands of tests run make some of the more popular methods for doing this problematic. Results We propose a simple method, Normal Uniform Differential Gene Expression (NUDGE detection for finding differentially expressed genes in cDNA microarrays. The method uses a simple univariate normal-uniform mixture model, in combination with new normalization methods for spread as well as mean that extend the lowess normalization of Dudoit, Yang, Callow and Speed (2002 1. It takes account of multiple testing, and gives probabilities of differential expression as part of its output. It can be applied to either single-slide or replicated experiments, and it is very fast. Three datasets are analyzed using NUDGE, and the results are compared to those given by other popular methods: unadjusted and Bonferroni-adjusted t tests, Significance Analysis of Microarrays (SAM, and Empirical Bayes for microarrays (EBarrays with both Gamma-Gamma and Lognormal-Normal models. Conclusion The method gives a high probability of differential expression to genes known/suspected a priori to be differentially expressed and a low probability to the others. In terms of known false positives and false negatives, the method outperforms all multiple-replicate methods except for the Gamma-Gamma EBarrays method to which it offers comparable results with the added advantages of greater simplicity, speed, fewer assumptions and applicability to the single replicate case. An R package called nudge to implement the methods in this paper will be made available soon at http://www.bioconductor.org.

  17. Gene expression patterns during the larval development of European sea bass (dicentrarchus labrax) by microarray analysis.

    Science.gov (United States)

    Darias, M J; Zambonino-Infante, J L; Hugot, K; Cahu, C L; Mazurais, D

    2008-01-01

    During the larval period, marine teleosts undergo very fast growth and dramatic changes in morphology, metabolism, and behavior to accomplish their metamorphosis into juvenile fish. Regulation of gene expression is widely thought to be a key mechanism underlying the management of the biological processes required for harmonious development over this phase of life. To provide an overall analysis of gene expression in the whole body during sea bass larval development, we monitored the expression of 6,626 distinct genes at 10 different points in time between 7 and 43 days post-hatching (dph) by using heterologous hybridization of a rainbow trout cDNA microarray. The differentially expressed genes (n = 485) could be grouped into two categories: genes that were generally up-expressed early, between 7 and 23 dph, and genes up-expressed between 25 and 43 dph. Interestingly, among the genes regulated during the larval period, those related to organogenesis, energy pathways, biosynthesis, and digestion were over-represented compared with total set of analyzed genes. We discuss the quantitative regulation of whole-body contents of these specific transcripts with regard to the ontogenesis and maturation of essential functions that take place over larval development. Our study is the first utilization of a transcriptomic approach in sea bass and reveals dynamic changes in gene expression patterns in relation to marine finfish larval development.

  18. Comparative analysis of gene expression by microarray analysis of male and female flowers of Asparagus officinalis.

    Science.gov (United States)

    Gao, Wu-Jun; Li, Shu-Fen; Zhang, Guo-Jun; Wang, Ning-Na; Deng, Chuan-Liang; Lu, Long-Dou

    2013-01-01

    To identify rapidly a number of genes probably involved in sex determination and differentiation of the dioecious plant Asparagus officinalis, gene expression profiles in early flower development for male and female plants were investigated by microarray assay with 8,665 probes. In total, 638 male-biased and 543 female-biased genes were identified. These genes with biased-expression for male and female were involved in a variety of processes associated with molecular functions, cellular components, and biological processes, suggesting that a complex mechanism underlies the sex development of asparagus. Among the differentially expressed genes involved in the reproductive process, a number of genes associated with floral development were identified. Reverse transcription-PCR was performed for validation, and the results were largely consistent with those obtained by microarray analysis. The findings of this study might contribute to understanding of the molecular mechanisms of sex determination and differentiation in dioecious asparagus and provide a foundation for further studies of this plant.

  19. Microarray expression analysis of genes involved in innate immune memory in peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Keisuke Yoshida

    2016-03-01

    Full Text Available Immunological memory has been believed to be a feature of the adaptive immune system for long period, but recent reports suggest that the innate immune system also exhibits memory-like reaction. Although evidence of innate immune memory is accumulating, no in vivo experimental data has clearly implicated a molecular mechanism, or even a cell-type, for this phenomenon. In this study of data deposited into Gene Expression Omnibus (GEO under GSE71111, we analyzed the expression profile of peritoneal macrophages isolated from mice pre-administrated with toll-like receptor (TLR ligands, mimicking pathogen infection. In these macrophages, increased expression of a group of innate immunity-related genes was sustained over a long period of time, and these genes overlapped with ATF7-regulated genes. We conclude that ATF7 plays an important role in innate immune memory in macrophages. Keywords: Macrophage, ATF7, Innate immune memory, Microarray

  20. Training ANFIS structure using genetic algorithm for liver cancer classification based on microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Bülent Haznedar

    2017-02-01

    Full Text Available Classification is an important data mining technique, which is used in many fields mostly exemplified as medicine, genetics and biomedical engineering. The number of studies about classification of the datum on DNA microarray gene expression is specifically increased in recent years. However, because of the reasons as the abundance of gene numbers in the datum as microarray gene expressions and the nonlinear relations mostly across those datum, the success of conventional classification algorithms can be limited. Because of these reasons, the interest on classification methods which are based on artificial intelligence to solve the problem on classification has been gradually increased in recent times. In this study, a hybrid approach which is based on Adaptive Neuro-Fuzzy Inference System (ANFIS and Genetic Algorithm (GA are suggested in order to classify liver microarray cancer data set. Simulation results are compared with the results of other methods. According to the results obtained, it is seen that the recommended method is better than the other methods.

  1. Exploring matrix factorization techniques for significant genes identification of Alzheimer’s disease microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Hu Xiaohua

    2011-07-01

    Full Text Available Abstract Background The wide use of high-throughput DNA microarray technology provide an increasingly detailed view of human transcriptome from hundreds to thousands of genes. Although biomedical researchers typically design microarray experiments to explore specific biological contexts, the relationships between genes are hard to identified because they are complex and noisy high-dimensional data and are often hindered by low statistical power. The main challenge now is to extract valuable biological information from the colossal amount of data to gain insight into biological processes and the mechanisms of human disease. To overcome the challenge requires mathematical and computational methods that are versatile enough to capture the underlying biological features and simple enough to be applied efficiently to large datasets. Methods Unsupervised machine learning approaches provide new and efficient analysis of gene expression profiles. In our study, two unsupervised knowledge-based matrix factorization methods, independent component analysis (ICA and nonnegative matrix factorization (NMF are integrated to identify significant genes and related pathways in microarray gene expression dataset of Alzheimer’s disease. The advantage of these two approaches is they can be performed as a biclustering method by which genes and conditions can be clustered simultaneously. Furthermore, they can group genes into different categories for identifying related diagnostic pathways and regulatory networks. The difference between these two method lies in ICA assume statistical independence of the expression modes, while NMF need positivity constrains to generate localized gene expression profiles. Results In our work, we performed FastICA and non-smooth NMF methods on DNA microarray gene expression data of Alzheimer’s disease respectively. The simulation results shows that both of the methods can clearly classify severe AD samples from control samples, and

  2. Microarray analysis of gene expression alteration in human middle ear epithelial cells induced by micro particle.

    Science.gov (United States)

    Song, Jae-Jun; Kwon, Jee Young; Park, Moo Kyun; Seo, Young Rok

    2013-10-01

    The primary aim of this study is to reveal the effect of particulate matter (PM) on the human middle ear epithelial cell (HMEEC). The HMEEC was treated with PM (300 μg/ml) for 24 h. Total RNA was extracted and used for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed by using Pathway Studio 9.0 software. For selected genes, the changes in gene expression were confirmed by real-time PCR. A total of 611 genes were regulated by PM. Among them, 366 genes were up-regulated, whereas 245 genes were down-regulated. Up-regulated genes were mainly involved in cellular processes, including reactive oxygen species generation, cell proliferation, apoptosis, cell differentiation, inflammatory response and immune response. Down-regulated genes affected several cellular processes, including cell differentiation, cell cycle, proliferation, apoptosis and cell migration. A total of 21 genes were discovered as crucial components in potential signaling networks containing 2-fold up regulated genes. Four genes, VEGFA, IL1B, CSF2 and HMOX1 were revealed as key mediator genes among the up-regulated genes. A total of 25 genes were revealed as key modulators in the signaling pathway associated with 2-fold down regulated genes. Four genes, including IGF1R, TIMP1, IL6 and FN1, were identified as the main modulator genes. We identified the differentially expressed genes in PM-treated HMEEC, whose expression profile may provide a useful clue for the understanding of environmental pathophysiology of otitis media. Our work indicates that air pollution, like PM, plays an important role in the pathogenesis of otitis media. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. CDNA Microarray Based Comparative Gene Expression Analysis of Primary Breast Tumors Versus In Vitro Transformed Neoplastic Breast Epithelium

    National Research Council Canada - National Science Library

    Szallasi, Zoltan

    2001-01-01

    .... The first group of clones is being sorted by their ability to form tumors. We are currently performing cDNA microarray analysis quantifying the expression level of about 15,000 genes in these cell lines...

  4. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    Directory of Open Access Journals (Sweden)

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  5. Gene Expression Profiling and Identification of Resistance Genes to Aspergillus flavus Infection in Peanut through EST and Microarray Strategies

    Directory of Open Access Journals (Sweden)

    Baozhu Guo

    2011-06-01

    Full Text Available Aspergillus flavus and A. parasiticus infect peanut seeds and produce aflatoxins, which are associated with various diseases in domestic animals and humans throughout the world. The most cost-effective strategy to minimize aflatoxin contamination involves the development of peanut cultivars that are resistant to fungal infection and/or aflatoxin production. To identify peanut Aspergillus-interactive and peanut Aspergillus-resistance genes, we carried out a large scale peanut Expressed Sequence Tag (EST project which we used to construct a peanut glass slide oligonucleotide microarray. The fabricated microarray represents over 40% of the protein coding genes in the peanut genome. For expression profiling, resistant and susceptible peanut cultivars were infected with a mixture of Aspergillus flavus and parasiticus spores. The subsequent microarray analysis identified 62 genes in resistant cultivars that were up-expressed in response to Aspergillus infection. In addition, we identified 22 putative Aspergillus-resistance genes that were constitutively up-expressed in the resistant cultivar in comparison to the susceptible cultivar. Some of these genes were homologous to peanut, corn, and soybean genes that were previously shown to confer resistance to fungal infection. This study is a first step towards a comprehensive genome-scale platform for developing Aspergillus-resistant peanut cultivars through targeted marker-assisted breeding and genetic engineering.

  6. Evaluation of Different Normalization and Analysis Procedures for Illumina Gene Expression Microarray Data Involving Small Changes

    Science.gov (United States)

    Johnstone, Daniel M.; Riveros, Carlos; Heidari, Moones; Graham, Ross M.; Trinder, Debbie; Berretta, Regina; Olynyk, John K.; Scott, Rodney J.; Moscato, Pablo; Milward, Elizabeth A.

    2013-01-01

    While Illumina microarrays can be used successfully for detecting small gene expression changes due to their high degree of technical replicability, there is little information on how different normalization and differential expression analysis strategies affect outcomes. To evaluate this, we assessed concordance across gene lists generated by applying different combinations of normalization strategy and analytical approach to two Illumina datasets with modest expression changes. In addition to using traditional statistical approaches, we also tested an approach based on combinatorial optimization. We found that the choice of both normalization strategy and analytical approach considerably affected outcomes, in some cases leading to substantial differences in gene lists and subsequent pathway analysis results. Our findings suggest that important biological phenomena may be overlooked when there is a routine practice of using only one approach to investigate all microarray datasets. Analytical artefacts of this kind are likely to be especially relevant for datasets involving small fold changes, where inherent technical variation—if not adequately minimized by effective normalization—may overshadow true biological variation. This report provides some basic guidelines for optimizing outcomes when working with Illumina datasets involving small expression changes. PMID:27605185

  7. Vaccine-induced modulation of gene expression in turbot peritoneal cells. A microarray approach.

    Science.gov (United States)

    Fontenla, Francisco; Blanco-Abad, Verónica; Pardo, Belén G; Folgueira, Iria; Noia, Manuel; Gómez-Tato, Antonio; Martínez, Paulino; Leiro, José M; Lamas, Jesús

    2016-07-01

    We used a microarray approach to examine changes in gene expression in turbot peritoneal cells after injection of the fish with vaccines containing the ciliate parasite Philasterides dicentrarchi as antigen and one of the following adjuvants: chitosan-PVMMA microspheres, Freund́s complete adjuvant, aluminium hydroxide gel or Matrix-Q (Isconova, Sweden). We identified 374 genes that were differentially expressed in all groups of fish. Forty-two genes related to tight junctions and focal adhesions and/or actin cytoskeleton were differentially expressed in free peritoneal cells. The profound changes in gene expression related to cell adherence and cytoskeleton may be associated with cell migration and also with the formation of cell-vaccine masses and their attachment to the peritoneal wall. Thirty-five genes related to apoptosis were differentially expressed. Although most of the proteins coded by these genes have a proapoptotic effect, others are antiapoptotic, indicating that both types of signals occur in peritoneal leukocytes of vaccinated fish. Interestingly, many of the genes related to lymphocytes and lymphocyte activity were downregulated in the groups injected with vaccine. We also observed decreased expression of genes related to antigen presentation, suggesting that macrophages (which were abundant in the peritoneal cavity after vaccination) did not express these during the early inflammatory response in the peritoneal cavity. Finally, several genes that participate in the inflammatory response were differentially expressed, and most participated in resolution of inflammation, indicating that an M2 macrophage response is generated in the peritoneal cavity of fish one day post vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Microarray-based analysis of differential gene expression between infective and noninfective larvae of Strongyloides stercoralis.

    Directory of Open Access Journals (Sweden)

    Roshan Ramanathan

    2011-05-01

    Full Text Available Differences between noninfective first-stage (L1 and infective third-stage (L3i larvae of parasitic nematode Strongyloides stercoralis at the molecular level are relatively uncharacterized. DNA microarrays were developed and utilized for this purpose.Oligonucleotide hybridization probes for the array were designed to bind 3,571 putative mRNA transcripts predicted by analysis of 11,335 expressed sequence tags (ESTs obtained as part of the Nematode EST project. RNA obtained from S. stercoralis L3i and L1 was co-hybridized to each array after labeling the individual samples with different fluorescent tags. Bioinformatic predictions of gene function were developed using a novel cDNA Annotation System software. We identified 935 differentially expressed genes (469 L3i-biased; 466 L1-biased having two-fold expression differences or greater and microarray signals with a p value<0.01. Based on a functional analysis, L1 larvae have a larger number of genes putatively involved in transcription (p = 0.004, and L3i larvae have biased expression of putative heat shock proteins (such as hsp-90. Genes with products known to be immunoreactive in S. stercoralis-infected humans (such as SsIR and NIE had L3i biased expression. Abundantly expressed L3i contigs of interest included S. stercoralis orthologs of cytochrome oxidase ucr 2.1 and hsp-90, which may be potential chemotherapeutic targets. The S. stercoralis ortholog of fatty acid and retinol binding protein-1, successfully used in a vaccine against Ancylostoma ceylanicum, was identified among the 25 most highly expressed L3i genes. The sperm-containing glycoprotein domain, utilized in a vaccine against the nematode Cooperia punctata, was exclusively found in L3i biased genes and may be a valuable S. stercoralis target of interest.A new DNA microarray tool for the examination of S. stercoralis biology has been developed and provides new and valuable insights regarding differences between infective and

  9. A power law global error model for the identification of differentially expressed genes in microarray data

    Directory of Open Access Journals (Sweden)

    Granucci Francesca

    2004-12-01

    Full Text Available Abstract Background High-density oligonucleotide microarray technology enables the discovery of genes that are transcriptionally modulated in different biological samples due to physiology, disease or intervention. Methods for the identification of these so-called "differentially expressed genes" (DEG would largely benefit from a deeper knowledge of the intrinsic measurement variability. Though it is clear that variance of repeated measures is highly dependent on the average expression level of a given gene, there is still a lack of consensus on how signal reproducibility is linked to signal intensity. The aim of this study was to empirically model the variance versus mean dependence in microarray data to improve the performance of existing methods for identifying DEG. Results In the present work we used data generated by our lab as well as publicly available data sets to show that dispersion of repeated measures depends on location of the measures themselves following a power law. This enables us to construct a power law global error model (PLGEM that is applicable to various Affymetrix GeneChip data sets. A new DEG identification method is therefore proposed, consisting of a statistic designed to make explicit use of model-derived measurement spread estimates and a resampling-based hypothesis testing algorithm. Conclusions The new method provides a control of the false positive rate, a good sensitivity vs. specificity trade-off and consistent results with varying number of replicates and even using single samples.

  10. OpWise: Operons aid the identification of differentially expressed genes in bacterial microarray experiments

    Directory of Open Access Journals (Sweden)

    Arkin Adam P

    2006-01-01

    Full Text Available Abstract Background Differentially expressed genes are typically identified by analyzing the variation between replicate measurements. These procedures implicitly assume that there are no systematic errors in the data even though several sources of systematic error are known. Results OpWise estimates the amount of systematic error in bacterial microarray data by assuming that genes in the same operon have matching expression patterns. OpWise then performs a Bayesian analysis of a linear model to estimate significance. In simulations, OpWise corrects for systematic error and is robust to deviations from its assumptions. In several bacterial data sets, significant amounts of systematic error are present, and replicate-based approaches overstate the confidence of the changers dramatically, while OpWise does not. Finally, OpWise can identify additional changers by assigning genes higher confidence if they are consistent with other genes in the same operon. Conclusion Although microarray data can contain large amounts of systematic error, operons provide an external standard and allow for reasonable estimates of significance. OpWise is available at http://microbesonline.org/OpWise.

  11. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    Directory of Open Access Journals (Sweden)

    Hala Alshamlan

    2015-01-01

    Full Text Available An artificial bee colony (ABC is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR, and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO. The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  12. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    Science.gov (United States)

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  13. Gene expression of panaxydol-treated human melanoma cells using radioactive cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Joong Youn; Yu, Su Jin; Soh, Jeong Won; Kim, Meyoung Kon [College of Medicine, Korea Univ., Seoul (Korea, Republic of)

    2001-07-01

    Polyacetylenic alcohols derived from Panax ginseng have been studied to be an anticancer reagent previously. One of the Panax ginseng polyacetylenic alcohols, i.e., panaxydol, has been studied to possess an antiproliferative effect on human melanoma cell line (SK-MEL-1). In ths study, radioactive cDNA microarrays enabled an efficient approach to analyze the pattern of gene expression (3.194 genes in a total) simultaneously. The bioinformatics selection of human cDNAs, which is specifically designed for immunology, apoptosis and signal transduction, were arrayed on nylon membranes. Using with {sup 33}P labeled probes, this method provided highly sensitive gene expression profiles of our interest including apoptosis, cell proliferation, cell cycle, and signal transduction. Gene expression profiles were also classified into several categories in accordance with the duration of panaxydol treatment. Consequently, the gene profiles of our interest were significantly up (199 genes, > 2.0 of Z-ratio) or down-(196 genes, < 2.0 of Z-ratio) regulated in panaxydol-treated human melanoma cells.

  14. Gene expression of panaxydol-treated human melanoma cells using radioactive cDNA microarrays

    International Nuclear Information System (INIS)

    Cho, Joong Youn; Yu, Su Jin; Soh, Jeong Won; Kim, Meyoung Kon

    2001-01-01

    Polyacetylenic alcohols derived from Panax ginseng have been studied to be an anticancer reagent previously. One of the Panax ginseng polyacetylenic alcohols, i.e., panaxydol, has been studied to possess an antiproliferative effect on human melanoma cell line (SK-MEL-1). In ths study, radioactive cDNA microarrays enabled an efficient approach to analyze the pattern of gene expression (3.194 genes in a total) simultaneously. The bioinformatics selection of human cDNAs, which is specifically designed for immunology, apoptosis and signal transduction, were arrayed on nylon membranes. Using with 33 P labeled probes, this method provided highly sensitive gene expression profiles of our interest including apoptosis, cell proliferation, cell cycle, and signal transduction. Gene expression profiles were also classified into several categories in accordance with the duration of panaxydol treatment. Consequently, the gene profiles of our interest were significantly up (199 genes, > 2.0 of Z-ratio) or down-(196 genes, < 2.0 of Z-ratio) regulated in panaxydol-treated human melanoma cells

  15. Incorporation of gene-specific variability improves expression analysis using high-density DNA microarrays

    Directory of Open Access Journals (Sweden)

    Spitznagel Edward

    2003-11-01

    Full Text Available Abstract Background The assessment of data reproducibility is essential for application of microarray technology to exploration of biological pathways and disease states. Technical variability in data analysis largely depends on signal intensity. Within that context, the reproducibility of individual probe sets has not been hitherto addressed. Results We used an extraordinarily large replicate data set derived from human placental trophoblast to analyze probe-specific contribution to variability of gene expression. We found that signal variability, in addition to being signal-intensity dependant, is probe set-specific. Importantly, we developed a novel method to quantify the contribution of this probe set-specific variability. Furthermore, we devised a formula that incorporates a priori-computed, replicate-based information on probe set- and intensity-specific variability in determination of expression changes even without technical replicates. Conclusion The strategy of incorporating probe set-specific variability is superior to analysis based on arbitrary fold-change thresholds. We recommend its incorporation to any computation of gene expression changes using high-density DNA microarrays. A Java application implementing our T-score is available at http://www.sadovsky.wustl.edu/tscore.html.

  16. Examination of gene expression in mice exposed to low dose radiation using affymetrix cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.; Knox, D.; Lavoie, J.; Lemon, J.; Boreham, D. [McMaster Univ., Hamilton, Ontario (Canada)

    2005-07-01

    'Full text:' Gamma radiation acts via the indirect effect to damage cells by producing reactive oxygen species (ROS). These ROS are capable damaging macromolecules and, altering signal pathways and gene transcription. Cells have evolved enzymes and mechanisms to scavenge ROS and repair oxidative damage. Microarrays allow the survey of the gene transcription activity of thousands of genes simultaneously. Messenger RNA is extracted from cells, hybridized with the complementary DNA (cDNA) of a microarray chip, and examined with a chip reader. Affymetrix microarray chips have been produced by the CSCHAH in Winnipeg containing 26000 murine genes. Groups of female mice have been exposed to low dose whole body chronic gamma radiation exposures of 0,50,100, and 120 mGy, corresponding to 15,30,60, and 75 weeks, respectively. MRNA from mice brain tissue has been extracted, isolated, converted to cDNA and labeled. Gene expression in each irradiated mouse was compared to the pooled expression of the control mice. Analysis of gene expression levels are performed with microarray analytical software, Array Pro by Media Cybernetics, and powerful statistical software, BRB microarray tools. Differences in gene expressions, focusing on genes for cytokines, DNA repair mechanisms, immuno-modulators, apoptosis pathways, and enzymatic anti-oxidant systems, are being examined and will be reported. (author)

  17. GTI: a novel algorithm for identifying outlier gene expression profiles from integrated microarray datasets.

    Directory of Open Access Journals (Sweden)

    John Patrick Mpindi

    Full Text Available BACKGROUND: Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type ('outlier genes', a hallmark of potential oncogenes. METHODOLOGY: A new statistical method (the gene tissue index, GTI was developed by modifying and adapting algorithms originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas. According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples. Immunohistochemical data were available for 65% (19 of 29 of these genes, and 17 of these 19 genes (90% showed a typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier gene candidate as a potential therapeutic target. CONCLUSIONS/SIGNIFICANCE: Taken together, these results support the GTI as a novel approach to identify potential oncogene outliers and drug targets. The algorithm is

  18. Analysis of gene expression profile microarray data in complex regional pain syndrome.

    Science.gov (United States)

    Tan, Wulin; Song, Yiyan; Mo, Chengqiang; Jiang, Shuangjian; Wang, Zhongxing

    2017-09-01

    The aim of the present study was to predict key genes and proteins associated with complex regional pain syndrome (CRPS) using bioinformatics analysis. The gene expression profiling microarray data, GSE47603, which included peripheral blood samples from 4 patients with CRPS and 5 healthy controls, was obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in CRPS patients compared with healthy controls were identified using the GEO2R online tool. Functional enrichment analysis was then performed using The Database for Annotation Visualization and Integrated Discovery online tool. Protein‑protein interaction (PPI) network analysis was subsequently performed using Search Tool for the Retrieval of Interaction Genes database and analyzed with Cytoscape software. A total of 257 DEGs were identified, including 243 upregulated genes and 14 downregulated ones. Genes in the human leukocyte antigen (HLA) family were most significantly differentially expressed. Enrichment analysis demonstrated that signaling pathways, including immune response, cell motion, adhesion and angiogenesis were associated with CRPS. PPI network analysis revealed that key genes, including early region 1A binding protein p300 (EP300), CREB‑binding protein (CREBBP), signal transducer and activator of transcription (STAT)3, STAT5A and integrin α M were associated with CRPS. The results suggest that the immune response may therefore serve an important role in CRPS development. In addition, genes in the HLA family, such as HLA‑DQB1 and HLA‑DRB1, may present potential biomarkers for the diagnosis of CRPS. Furthermore, EP300, its paralog CREBBP, and the STAT family genes, STAT3 and STAT5 may be important in the development of CRPS.

  19. [Research on the relevance between the virulent genes differential expression and pathogenecity of Leptospira with microarray].

    Science.gov (United States)

    Yu, De-li; Bao, Lang

    2015-01-01

    To find the change of virulent gene expression and to analyze the relevance between the virulent change and the gene expression. Grouped guinea pigs were inoculated with 1 mL Leptospira cultured in vivo, Leptospira cultured in vitro and the Leptospira culture medium through abdominal subcutaneous respectively. The survival rate, body mass and temperature change of guinea pigs in different groups were measured within 15 d after the inoculation, then the survived guinea pigs were scarified, and the organ coefficient was also measured to know the virulence of Leptospira cultured in different environment. The amplified gene segments from Leptospira were used as probes and wrote the microarray. The total RNA was extracted from Leptospira standard strain cultured in culture medium and guinea pigs. After reverse transcription to cDNA, they were labeled with Cy3 and Cy5 respectively. Labeled cDNA was mixed and hybridized with the microarray. The hybridized mircroarray was scanned and analysed. The survival rate of inoculated guinea pig was different from group to group (in vivo group: 0%; in vitro group: 88.9%; culture medium group: 100%). The guinea pigs in vivo group had a higher temperature (PLeptospira: LA1027, LA1029, LA4004, LA3050, LA3540, LA0327, LA0378, LA1650, LA3937, LA2089, LA2144, LA3576, LA0011 and gene of Loa22 were up regulation after continuously cultured in guinea pigs. The pathogenic ability of Leptospira cultured in different environment is different and the gene expression of Leptospira is different between in vivo and in vitro as well. The understanding of the meaning of this change might help to know the pathogenecity of Leptospira.

  20. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification.

    Science.gov (United States)

    Oberthuer, André; Berthold, Frank; Warnat, Patrick; Hero, Barbara; Kahlert, Yvonne; Spitz, Rüdiger; Ernestus, Karen; König, Rainer; Haas, Stefan; Eils, Roland; Schwab, Manfred; Brors, Benedikt; Westermann, Frank; Fischer, Matthias

    2006-11-01

    To develop a gene expression-based classifier for neuroblastoma patients that reliably predicts courses of the disease. Two hundred fifty-one neuroblastoma specimens were analyzed using a customized oligonucleotide microarray comprising 10,163 probes for transcripts with differential expression in clinical subgroups of the disease. Subsequently, the prediction analysis for microarrays (PAM) was applied to a first set of patients with maximally divergent clinical courses (n = 77). The classification accuracy was estimated by a complete 10-times-repeated 10-fold cross validation, and a 144-gene predictor was constructed from this set. This classifier's predictive power was evaluated in an independent second set (n = 174) by comparing results of the gene expression-based classification with those of risk stratification systems of current trials from Germany, Japan, and the United States. The first set of patients was accurately predicted by PAM (cross-validated accuracy, 99%). Within the second set, the PAM classifier significantly separated cohorts with distinct courses (3-year event-free survival [EFS] 0.86 +/- 0.03 [favorable; n = 115] v 0.52 +/- 0.07 [unfavorable; n = 59] and 3-year overall survival 0.99 +/- 0.01 v 0.84 +/- 0.05; both P model, the PAM predictor classified patients of the second set more accurately than risk stratification of current trials from Germany, Japan, and the United States (P < .001; hazard ratio, 4.756 [95% CI, 2.544 to 8.893]). Integration of gene expression-based class prediction of neuroblastoma patients may improve risk estimation of current neuroblastoma trials.

  1. Early Gene Expression in Wounded Human Keratinocytes Revealed by DNA Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Pascal Barbry

    2006-04-01

    Full Text Available Wound healing involves several steps: spreading of the cells, migration and proliferation. We have profiled gene expression during the early events of wound healing in normal human keratinocytes with a home-made DNA microarray containing about 1000 relevant human probes. An original wounding machine was used, that allows the wounding of up to 40% of the surface of a confluent monolayer of cultured cells grown on a Petri dish (compared with 5% with a classical ‘scratch’ method. The two aims of the present study were: (a to validate a limited number of genes by comparing the expression levels obtained with this technique with those found in the literature; (b to combine the use of the wounding machine with DNA microarray analysis for large-scale detection of the molecular events triggered during the early stages of the wound-healing process. The time-courses of RNA expression observed at 0.5, 1.5, 3, 6 and 15 h after wounding for genes such as c-Fos, c-Jun, Egr1, the plasminogen activator PLAU (uPA and the signal transducer and transcription activator STAT3, were consistent with previously published data. This suggests that our methodologies are able to perform quantitative measurement of gene expression. Transcripts encoding two zinc finger proteins, ZFP36 and ZNF161, and the tumour necrosis factor α-induced protein TNFAIP3, were also overexpressed after wounding. The role of the p38 mitogen-activated protein kinase (p38MAPK in wound healing was shown after the inhibition of p38 by SB203580, but our results also suggest the existence of surrogate activating pathways.

  2. Microarray-Based Gene Expression Analysis for Veterinary Pathologists: A Review.

    Science.gov (United States)

    Raddatz, Barbara B; Spitzbarth, Ingo; Matheis, Katja A; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner

    2017-09-01

    High-throughput, genome-wide transcriptome analysis is now commonly used in all fields of life science research and is on the cusp of medical and veterinary diagnostic application. Transcriptomic methods such as microarrays and next-generation sequencing generate enormous amounts of data. The pathogenetic expertise acquired from understanding of general pathology provides veterinary pathologists with a profound background, which is essential in translating transcriptomic data into meaningful biological knowledge, thereby leading to a better understanding of underlying disease mechanisms. The scientific literature concerning high-throughput data-mining techniques usually addresses mathematicians or computer scientists as the target audience. In contrast, the present review provides the reader with a clear and systematic basis from a veterinary pathologist's perspective. Therefore, the aims are (1) to introduce the reader to the necessary methodological background; (2) to introduce the sequential steps commonly performed in a microarray analysis including quality control, annotation, normalization, selection of differentially expressed genes, clustering, gene ontology and pathway analysis, analysis of manually selected genes, and biomarker discovery; and (3) to provide references to publically available and user-friendly software suites. In summary, the data analysis methods presented within this review will enable veterinary pathologists to analyze high-throughput transcriptome data obtained from their own experiments, supplemental data that accompany scientific publications, or public repositories in order to obtain a more in-depth insight into underlying disease mechanisms.

  3. Analyzing Multiple-Probe Microarray: Estimation and Application of Gene Expression Indexes

    KAUST Repository

    Maadooliat, Mehdi

    2012-07-26

    Gene expression index estimation is an essential step in analyzing multiple probe microarray data. Various modeling methods have been proposed in this area. Amidst all, a popular method proposed in Li and Wong (2001) is based on a multiplicative model, which is similar to the additive model discussed in Irizarry et al. (2003a) at the logarithm scale. Along this line, Hu et al. (2006) proposed data transformation to improve expression index estimation based on an ad hoc entropy criteria and naive grid search approach. In this work, we re-examined this problem using a new profile likelihood-based transformation estimation approach that is more statistically elegant and computationally efficient. We demonstrate the applicability of the proposed method using a benchmark Affymetrix U95A spiked-in experiment. Moreover, We introduced a new multivariate expression index and used the empirical study to shows its promise in terms of improving model fitting and power of detecting differential expression over the commonly used univariate expression index. As the other important content of the work, we discussed two generally encountered practical issues in application of gene expression index: normalization and summary statistic used for detecting differential expression. Our empirical study shows somewhat different findings from the MAQC project (MAQC, 2006).

  4. Candidate Genes for Testicular Cancer Evaluated by In Situ Protein Expression Analyses on Tissue Microarrays

    Directory of Open Access Journals (Sweden)

    Rolf I. Skotheim

    2003-09-01

    Full Text Available By the use of high-throughput molecular technologies, the number of genes and proteins potentially relevant to testicular germ cell tumor (TGCT and other diseases will increase rapidly. In a recent transcriptional profiling, we demonstrated the overexpression of GRB7 and JUP in TGCTs, confirmed the reported overexpression of CCND2. We also have recent evidences for frequent genetic alterations of FHIT and epigenetic alterations of MGMT. To evaluate whether the expression of these genes is related to any clinicopathological variables, we constructed a tissue microarray with 510 testicular tissue cores from 279 patients diagnosed with TGCT, covering various histological subgroups and clinical stages. By immunohistochemistry, we found that JUP, GRB7, CCND2 proteins were rarely present in normal testis, but frequently expressed at high levels in TGCT. Additionally, all premalignant intratubular germ cell neoplasias were JUP-immunopositive. MGMT and FHIT were expressed by normal testicular tissues, but at significantly lower frequencies in TGCT. Except for CCND2, the expressions of all markers were significantly associated with various TGCT subtypes. In summary, we have developed a high-throughput tool for the evaluation of TGCT markers, utilized this to validate five candidate genes whose protein expressions were indeed deregulated in TGCT.

  5. Macrophage Gene Expression Associated with Remodeling of the Prepartum Rat Cervix: Microarray and Pathway Analyses

    Science.gov (United States)

    Dobyns, Abigail E.; Goyal, Ravi; Carpenter, Lauren Grisham; Freeman, Tom C.; Longo, Lawrence D.; Yellon, Steven M.

    2015-01-01

    As the critical gatekeeper for birth, prepartum remodeling of the cervix is associated with increased resident macrophages (Mφ), proinflammatory processes, and extracellular matrix degradation. This study tested the hypothesis that expression of genes unique to Mφs characterizes the prepartum from unremodeled nonpregnant cervix. Perfused cervix from prepartum day 21 postbreeding (D21) or nonpregnant (NP) rats, with or without Mφs, had RNA extracted and whole genome microarray analysis performed. By subtractive analyses, expression of 194 and 120 genes related to Mφs in the cervix from D21 rats were increased and decreased, respectively. In both D21 and NP groups, 158 and 57 Mφ genes were also more or less up- or down-regulated, respectively. Mφ gene expression patterns were most strongly correlated within groups and in 5 major clustering patterns. In the cervix from D21 rats, functional categories and canonical pathways of increased expression by Mφ gene related to extracellular matrix, cell proliferation, differentiation, as well as cell signaling. Pathways were characteristic of inflammation and wound healing, e.g., CD163, CD206, and CCR2. Signatures of only inflammation pathways, e.g., CSF1R, EMR1, and MMP12 were common to both D21 and NP groups. Thus, a novel and complex balance of Mφ genes and clusters differentiated the degraded extracellular matrix and cellular genomic activities in the cervix before birth from the unremodeled state. Predicted Mφ activities, pathways, and networks raise the possibility that expression patterns of specific genes characterize and promote prepartum remodeling of the cervix for parturition at term and with preterm labor. PMID:25811906

  6. Microarray data and gene expression statistics for Saccharomyces cerevisiae exposed to simulated asbestos mine drainage

    Directory of Open Access Journals (Sweden)

    Heather E. Driscoll

    2017-08-01

    Full Text Available Here we describe microarray expression data (raw and normalized, experimental metadata, and gene-level data with expression statistics from Saccharomyces cerevisiae exposed to simulated asbestos mine drainage from the Vermont Asbestos Group (VAG Mine on Belvidere Mountain in northern Vermont, USA. For nearly 100 years (between the late 1890s and 1993, chrysotile asbestos fibers were extracted from serpentinized ultramafic rock at the VAG Mine for use in construction and manufacturing industries. Studies have shown that water courses and streambeds nearby have become contaminated with asbestos mine tailings runoff, including elevated levels of magnesium, nickel, chromium, and arsenic, elevated pH, and chrysotile asbestos-laden mine tailings, due to leaching and gradual erosion of massive piles of mine waste covering approximately 9 km2. We exposed yeast to simulated VAG Mine tailings leachate to help gain insight on how eukaryotic cells exposed to VAG Mine drainage may respond in the mine environment. Affymetrix GeneChip® Yeast Genome 2.0 Arrays were utilized to assess gene expression after 24-h exposure to simulated VAG Mine tailings runoff. The chemistry of mine-tailings leachate, mine-tailings leachate plus yeast extract peptone dextrose media, and control yeast extract peptone dextrose media is also reported. To our knowledge this is the first dataset to assess global gene expression patterns in a eukaryotic model system simulating asbestos mine tailings runoff exposure. Raw and normalized gene expression data are accessible through the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO Database Series GSE89875 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89875.

  7. Strategies for comparing gene expression profiles from different microarray platforms: application to a case-control experiment.

    Science.gov (United States)

    Severgnini, Marco; Bicciato, Silvio; Mangano, Eleonora; Scarlatti, Francesca; Mezzelani, Alessandra; Mattioli, Michela; Ghidoni, Riccardo; Peano, Clelia; Bonnal, Raoul; Viti, Federica; Milanesi, Luciano; De Bellis, Gianluca; Battaglia, Cristina

    2006-06-01

    Meta-analysis of microarray data is increasingly important, considering both the availability of multiple platforms using disparate technologies and the accumulation in public repositories of data sets from different laboratories. We addressed the issue of comparing gene expression profiles from two microarray platforms by devising a standardized investigative strategy. We tested this procedure by studying MDA-MB-231 cells, which undergo apoptosis on treatment with resveratrol. Gene expression profiles were obtained using high-density, short-oligonucleotide, single-color microarray platforms: GeneChip (Affymetrix) and CodeLink (Amersham). Interplatform analyses were carried out on 8414 common transcripts represented on both platforms, as identified by LocusLink ID, representing 70.8% and 88.6% of annotated GeneChip and CodeLink features, respectively. We identified 105 differentially expressed genes (DEGs) on CodeLink and 42 DEGs on GeneChip. Among them, only 9 DEGs were commonly identified by both platforms. Multiple analyses (BLAST alignment of probes with target sequences, gene ontology, literature mining, and quantitative real-time PCR) permitted us to investigate the factors contributing to the generation of platform-dependent results in single-color microarray experiments. An effective approach to cross-platform comparison involves microarrays of similar technologies, samples prepared by identical methods, and a standardized battery of bioinformatic and statistical analyses.

  8. Microarray analysis of pancreatic gene expression during biotin repletion in biotin-deficient rats.

    Science.gov (United States)

    Dakshinamurti, Krishnamurti; Bagchi, Rushita A; Abrenica, Bernard; Czubryt, Michael P

    2015-12-01

    Biotin is a B vitamin involved in multiple metabolic pathways. In humans, biotin deficiency is relatively rare but can cause dermatitis, alopecia, and perosis. Low biotin levels occur in individuals with type-2 diabetes, and supplementation with biotin plus chromium may improve blood sugar control. The acute effect on pancreatic gene expression of biotin repletion following chronic deficiency is unclear, therefore we induced biotin deficiency in adult male rats by feeding them a 20% raw egg white diet for 6 weeks. Animals were then randomized into 2 groups: one group received a single biotin supplement and returned to normal chow lacking egg white, while the second group remained on the depletion diet. After 1 week, pancreata were removed from biotin-deficient (BD) and biotin-repleted (BR) animals and RNA was isolated for microarray analysis. Biotin depletion altered gene expression in a manner indicative of inflammation, fibrosis, and defective pancreatic function. Conversely, biotin repletion activated numerous repair and anti-inflammatory pathways, reduced fibrotic gene expression, and induced multiple genes involved in pancreatic endocrine and exocrine function. A subset of the results was confirmed by quantitative real-time PCR analysis, as well as by treatment of pancreatic AR42J cells with biotin. The results indicate that biotin repletion, even after lengthy deficiency, results in the rapid induction of repair processes in the pancreas.

  9. Microarray-based screening of differentially expressed genes in glucocorticoid-induced avascular necrosis

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-01-01

    The underlying mechanisms of glucocorticoid (GC)-induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC-induced ANFH. E-MEXP-2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid-induced ANFH rats compared with 5 placebo-treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC-induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25-Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α-2-macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC-induced ANFH via interacting with VDR. A2M may also be involved in the development of GC-induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC-induced ANFH may provide novel targets for diagnostics and therapeutic treatment. PMID:28393228

  10. Protective Effect of Gwakhyangjeonggisan Herbal Acupuncture Solution in Glioblastoma Cells: Microarray Analysis of Gene Expression

    Directory of Open Access Journals (Sweden)

    Hong-Seok Lee

    2005-12-01

    Full Text Available Objectives : Neurological disorders have been one of main therapeutic targets of acupuncture. The present study investigated the protective effects of Gwakhyangjeonggisan herbal acupuncture solution (GHAS. Methods : We performed 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay in glioblastoma cells, and did microarray analysis with cells exposed to reactive oxigen species (ROS of hydrogen peroxide by 8.0 k Human cDNA, with cut-off level of 2-fold changes in gene expression. Results : MTT assay showed protective effect of GHAS on the glioblastoma cells exposed to hydrogen peroxide. When glioblastoma cells were exposed to hydrogen peroxide, 24 genes were downregulated. When the cells were pretreated with GHAS before exposure to hydrogen peroxide, 46 genes were downregulated. Many of the genes downregulated by hydrogen peroxide stimulation were decreased in the amount of downregulation or reversed to upregulation. Conclusions : The gene expression changes observed in the present study are supposed to be related to the protective molecular mechanism of GHAS in the glioblastoma cells exposed to ROS stress.

  11. Comparative analysis of human conjunctival and corneal epithelial gene expression with oligonucleotide microarrays.

    Science.gov (United States)

    Turner, Helen C; Budak, Murat T; Akinci, M A Murat; Wolosin, J Mario

    2007-05-01

    To determine global mRNA expression levels in corneal and conjunctival epithelia and identify transcripts that exhibit preferential tissue expression. cDNA samples derived from human conjunctival and corneal epithelia were hybridized in three independent experiments to a commercial oligonucleotide array representing more than 22,000 transcripts. The resultant signal intensities and microarray software transcript present/absent calls were used in conjunction with the local pooled error (LPE) statistical method to identify transcripts that are preferentially or exclusively expressed in one of the two tissues at significant levels (expression >1% of the beta-actin level). EASE (Expression Analysis Systematic Explorer software) was used to identify biological systems comparatively overrepresented in either epithelium. Immuno-, and cytohistochemistry was performed to validate or expand on selected results of interest. The analysis identified 332 preferential and 93 exclusive significant corneal epithelial transcripts. The corresponding numbers of conjunctival epithelium transcripts were 592 and 211, respectively. The overrepresented biological processes in the cornea were related to cell adhesion and oxiredox equilibria and cytoprotection activities. In the conjunctiva, the biological processes that were most prominent were related to innate immunity and melanogenesis. Immunohistochemistry for antigen-presenting cells and melanocytes was consistent with these gene signatures. The transcript comparison identified a substantial number of genes that have either not been identified previously or are not known to be highly expressed in these two epithelia, including testican-1, ECM1, formin, CRTAC1, and NQO1 in the cornea and, in the conjunctiva, sPLA(2)-IIA, lipocalin 2, IGFBP3, multiple MCH class II proteins, and the Na-Pi cotransporter type IIb. Comparative gene expression profiling leads to the identification of many biological processes and previously unknown genes that

  12. Exploring the key genes and pathways in enchondromas using a gene expression microarray.

    Science.gov (United States)

    Shi, Zhongju; Zhou, Hengxing; Pan, Bin; Lu, Lu; Kang, Yi; Liu, Lu; Wei, Zhijian; Feng, Shiqing

    2017-07-04

    Enchondromas are the most common primary benign osseous neoplasms that occur in the medullary bone; they can undergo malignant transformation into chondrosarcoma. However, enchondromas are always undetected in patients, and the molecular mechanism is unclear. To identify key genes and pathways associated with the occurrence and development of enchondromas, we downloaded the gene expression dataset GSE22855 and obtained the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in enchondromas. In total, 635 genes were identified as DEGs. Of these, 225 genes (35.43%) were up-regulated, and the remaining 410 genes (64.57%) were down-regulated. We identified the predominant gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly over-represented in the enchondromas samples compared with the control samples. Subsequently the top 10 core genes were identified from the protein-protein interaction (PPI) network. The enrichment analyses of the genes mainly involved in two significant modules showed that the DEGs were principally related to ribosomes, protein digestion and absorption, ECM-receptor interaction, focal adhesion, amoebiasis and the PI3K-Akt signaling pathway.Together, these data elucidate the molecular mechanisms underlying the occurrence and development of enchondromas and provide promising candidates for therapeutic intervention and prognostic evaluation. However, further experimental studies are needed to confirm these results.

  13. Gene expression profiling in gill tissues of White spot syndrome virus infected black tiger shrimp Penaeus monodon by DNA microarray.

    Science.gov (United States)

    Shekhar, M S; Gomathi, A; Gopikrishna, G; Ponniah, A G

    2015-06-01

    White spot syndrome virus (WSSV) continues to be the most devastating viral pathogen infecting penaeid shrimp the world over. The genome of WSSV has been deciphered and characterized from three geographical isolates and significant progress has been made in developing various molecular diagnostic methods to detect the virus. However, the information on host immune gene response to WSSV pathogenesis is limited. Microarray analysis was carried out as an approach to analyse the gene expression in black tiger shrimp Penaeus monodon in response to WSSV infection. Gill tissues collected from the WSSV infected shrimp at 6, 24, 48 h and moribund stage were analysed for differential gene expression. Shrimp cDNAs of 40,059 unique sequences were considered for designing the microarray chip. The Cy3-labeled cRNA derived from healthy and WSSV-infected shrimp was subjected to hybridization with all the DNA spots in the microarray which revealed 8,633 and 11,147 as up- and down-regulated genes respectively at different time intervals post infection. The altered expression of these numerous genes represented diverse functions such as immune response, osmoregulation, apoptosis, nucleic acid binding, energy and metabolism, signal transduction, stress response and molting. The changes in gene expression profiles observed by microarray analysis provides molecular insights and framework of genes which are up- and down-regulated at different time intervals during WSSV infection in shrimp. The microarray data was validated by Real Time analysis of four differentially expressed genes involved in apoptosis (translationally controlled tumor protein, inhibitor of apoptosis protein, ubiquitin conjugated enzyme E2 and caspase) for gene expression levels. The role of apoptosis related genes in WSSV infected shrimp is discussed herein.

  14. Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Cheung Leo

    2007-02-01

    Full Text Available Abstract Background Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more important for our understanding of diseases at genomic level. Although many machine learning methods have been developed and applied to the area of microarray gene expression data analysis, the majority of them are based on linear models, which however are not necessarily appropriate for the underlying connection between the target disease and its associated explanatory genes. Linear model based methods usually also bring in false positive significant features more easily. Furthermore, linear model based algorithms often involve calculating the inverse of a matrix that is possibly singular when the number of potentially important genes is relatively large. This leads to problems of numerical instability. To overcome these limitations, a few non-linear methods have recently been introduced to the area. Many of the existing non-linear methods have a couple of critical problems, the model selection problem and the model parameter tuning problem, that remain unsolved or even untouched. In general, a unified framework that allows model parameters of both linear and non-linear models to be easily tuned is always preferred in real-world applications. Kernel-induced learning methods form a class of approaches that show promising potentials to achieve this goal. Results A hierarchical statistical model named kernel-imbedded Gaussian process (KIGP is developed under a unified Bayesian framework for binary disease classification problems using microarray gene expression data. In particular, based on a probit regression setting, an adaptive algorithm with a cascading structure is designed to find the appropriate kernel, to discover the potentially significant genes, and to make the optimal class prediction accordingly. A Gibbs sampler is built as the core of the algorithm to make

  15. Missing value imputation for microarray gene expression data using histone acetylation information

    Directory of Open Access Journals (Sweden)

    Feng Jihua

    2008-05-01

    Full Text Available Abstract Background It is an important pre-processing step to accurately estimate missing values in microarray data, because complete datasets are required in numerous expression profile analysis in bioinformatics. Although several methods have been suggested, their performances are not satisfactory for datasets with high missing percentages. Results The paper explores the feasibility of doing missing value imputation with the help of gene regulatory mechanism. An imputation framework called histone acetylation information aided imputation method (HAIimpute method is presented. It incorporates the histone acetylation information into the conventional KNN(k-nearest neighbor and LLS(local least square imputation algorithms for final prediction of the missing values. The experimental results indicated that the use of acetylation information can provide significant improvements in microarray imputation accuracy. The HAIimpute methods consistently improve the widely used methods such as KNN and LLS in terms of normalized root mean squared error (NRMSE. Meanwhile, the genes imputed by HAIimpute methods are more correlated with the original complete genes in terms of Pearson correlation coefficients. Furthermore, the proposed methods also outperform GOimpute, which is one of the existing related methods that use the functional similarity as the external information. Conclusion We demonstrated that the using of histone acetylation information could greatly improve the performance of the imputation especially at high missing percentages. This idea can be generalized to various imputation methods to facilitate the performance. Moreover, with more knowledge accumulated on gene regulatory mechanism in addition to histone acetylation, the performance of our approach can be further improved and verified.

  16. Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators by oligonucleotide microarray analysis

    International Nuclear Information System (INIS)

    Estilo, Cherry L; Boyle, Jay O; Kraus, Dennis H; Patel, Snehal; Shaha, Ashok R; Wong, Richard J; Huryn, Joseph M; Shah, Jatin P; Singh, Bhuvanesh; O-charoenrat, Pornchai; Talbot, Simon; Socci, Nicholas D; Carlson, Diane L; Ghossein, Ronald; Williams, Tijaana; Yonekawa, Yoshihiro; Ramanathan, Yegnanarayana

    2009-01-01

    The present study is aimed at identifying potential candidate genes as prognostic markers in human oral tongue squamous cell carcinoma (SCC) by large scale gene expression profiling. The gene expression profile of patients (n=37) with oral tongue SCC were analyzed using Affymetrix HG-U95Av2 high-density oligonucleotide arrays. Patients (n=20) from which there were available tumor and matched normal mucosa were grouped into stage (early vs. late) and nodal disease (node positive vs. node negative) subgroups and genes differentially expressed in tumor vs. normal and between the subgroups were identified. Three genes, GLUT3, HSAL2, and PACE4, were selected for their potential biological significance in a larger cohort of 49 patients via quantitative real-time RT-PCR. Hierarchical clustering analyses failed to show significant segregation of patients. In patients (n=20) with available tumor and matched normal mucosa, 77 genes were found to be differentially expressed (P< 0.05) in the tongue tumor samples compared to their matched normal controls. Among the 45 over-expressed genes, MMP-1 encoding interstitial collagenase showed the highest level of increase (average: 34.18 folds). Using the criterion of two-fold or greater as overexpression, 30.6%, 24.5% and 26.5% of patients showed high levels of GLUT3, HSAL2 and PACE4, respectively. Univariate analyses demonstrated that GLUT3 over-expression correlated with depth of invasion (P<0.0001), tumor size (P=0.024), pathological stage (P=0.009) and recurrence (P=0.038). HSAL2 was positively associated with depth of invasion (P=0.015) and advanced T stage (P=0.047). In survival studies, only GLUT3 showed a prognostic value with disease-free (P=0.049), relapse-free (P=0.002) and overall survival (P=0.003). PACE4 mRNA expression failed to show correlation with any of the relevant parameters. The characterization of genes identified to be significant predictors of prognosis by oligonucleotide microarray and further validation by

  17. Microarray Analysis of Iris Gene Expression in Mice with Mutations Influencing Pigmentation

    Science.gov (United States)

    Trantow, Colleen M.; Cuffy, Tryphena L.; Fingert, John H.; Kuehn, Markus H.

    2011-01-01

    Purpose. Several ocular diseases involve the iris, notably including oculocutaneous albinism, pigment dispersion syndrome, and exfoliation syndrome. To screen for candidate genes that may contribute to the pathogenesis of these diseases, genome-wide iris gene expression patterns were comparatively analyzed from mouse models of these conditions. Methods. Iris samples from albino mice with a Tyr mutation, pigment dispersion–prone mice with Tyrp1 and Gpnmb mutations, and mice resembling exfoliation syndrome with a Lyst mutation were compared with samples from wild-type mice. All mice were strain (C57BL/6J), age (60 days old), and sex (female) matched. Microarrays were used to compare transcriptional profiles, and differentially expressed transcripts were described by functional annotation clustering using DAVID Bioinformatics Resources. Quantitative real-time PCR was performed to validate a subset of identified changes. Results. Compared with wild-type C57BL/6J mice, each disease context exhibited a large number of statistically significant changes in gene expression, including 685 transcripts differentially expressed in albino irides, 403 in pigment dispersion–prone irides, and 460 in exfoliative-like irides. Conclusions. Functional annotation clusterings were particularly striking among the overrepresented genes, with albino and pigment dispersion–prone irides both exhibiting overall evidence of crystallin-mediated stress responses. Exfoliative-like irides from mice with a Lyst mutation showed overall evidence of involvement of genes that influence immune system processes, lytic vacuoles, and lysosomes. These findings have several biologically relevant implications, particularly with respect to secondary forms of glaucoma, and represent a useful resource as a hypothesis-generating dataset. PMID:20739468

  18. A random variance model for detection of differential gene expression in small microarray experiments.

    Science.gov (United States)

    Wright, George W; Simon, Richard M

    2003-12-12

    Microarray techniques provide a valuable way of characterizing the molecular nature of disease. Unfortunately expense and limited specimen availability often lead to studies with small sample sizes. This makes accurate estimation of variability difficult, since variance estimates made on a gene by gene basis will have few degrees of freedom, and the assumption that all genes share equal variance is unlikely to be true. We propose a model by which the within gene variances are drawn from an inverse gamma distribution, whose parameters are estimated across all genes. This results in a test statistic that is a minor variation of those used in standard linear models. We demonstrate that the model assumptions are valid on experimental data, and that the model has more power than standard tests to pick up large changes in expression, while not increasing the rate of false positives. This method is incorporated into BRB-ArrayTools version 3.0 (http://linus.nci.nih.gov/BRB-ArrayTools.html). ftp://linus.nci.nih.gov/pub/techreport/RVM_supplement.pdf

  19. Microarray Analysis of Gene Expression Alteration in Human Middle Ear Epithelial Cells Induced by Asian Sand Dust.

    Science.gov (United States)

    Go, Yoon Young; Park, Moo Kyun; Kwon, Jee Young; Seo, Young Rok; Chae, Sung-Won; Song, Jae-Jun

    2015-12-01

    The primary aim of this study is to evaluate the gene expression profile of Asian sand dust (ASD)-treated human middle ear epithelial cell (HMEEC) using microarray analysis. The HMEEC was treated with ASD (400 µg/mL) and total RNA was extracted for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed. For selected genes, the changes in gene expression were confirmed by real-time polymerase chain reaction. A total of 1,274 genes were differentially expressed by ASD. Among them, 1,138 genes were 2 folds up-regulated, whereas 136 genes were 2 folds down-regulated. Up-regulated genes were mainly involved in cellular processes, including apoptosis, cell differentiation, and cell proliferation. Down-regulated genes affected cellular processes, including apoptosis, cell cycle, cell differentiation, and cell proliferation. The 10 genes including ADM, CCL5, EDN1, EGR1, FOS, GHRL, JUN, SOCS3, TNF, and TNFSF10 were identified as main modulators in up-regulated genes. A total of 11 genes including CSF3, DKK1, FOSL1, FST, TERT, MMP13, PTHLH, SPRY2, TGFBR2, THBS1, and TIMP1 acted as main components of pathway associated with 2-fold down regulated genes. We identified the differentially expressed genes in ASD-treated HMEEC. Our work indicates that air pollutant like ASD, may play an important role in the pathogenesis of otitis media.

  20. Expression microarray identifies the unliganded glucocorticoid receptor as a regulator of gene expression in mammary epithelial cells

    International Nuclear Information System (INIS)

    Ritter, Heather D; Mueller, Christopher R

    2014-01-01

    While glucocorticoids and the liganded glucocorticoid receptor (GR) have a well-established role in the maintenance of differentiation and suppression of apoptosis in breast tissue, the involvement of unliganded GR in cellular processes is less clear. Our previous studies implicated unliganded GR as a positive regulator of the BRCA1 tumour suppressor gene in the absence of glucocorticoid hormone, which suggested it could play a similar role in the regulation of other genes. An shRNA vector directed against GR was used to create mouse mammary cell lines with depleted endogenous levels of this receptor in order to further characterize the role of GR in breast cells. An expression microarray screen for targets of unliganded GR was performed using our GR-depleted cell lines maintained in the absence of glucocorticoids. Candidate genes positively regulated by unliganded GR were identified, classified by Gene Ontology and Ingenuity Pathway Analysis, and validated using quantitative real-time reverse transcriptase PCR. Chromatin immunoprecipitation and dual luciferase expression assays were conducted to further investigate the mechanism through which unliganded GR regulates these genes. Expression microarray analysis revealed 260 targets negatively regulated and 343 targets positively regulated by unliganded GR. A number of the positively regulated targets were involved in pro-apoptotic networks, possibly opposing the activity of liganded GR targets. Validation and further analysis of five candidates from the microarray indicated that two of these, Hsd11b1 and Ch25h, were regulated by unliganded GR in a manner similar to Brca1 during glucocorticoid treatment. Furthermore, GR was shown to interact directly with and upregulate the Ch25h promoter in the absence, but not the presence, of hydrocortisone (HC), confirming our previously described model of gene regulation by unliganded GR. This work presents the first identification of targets of unliganded GR. We propose that

  1. DNA microarray global gene expression analysis of influenza virus-infected chicken and duck cells

    Directory of Open Access Journals (Sweden)

    Suresh V. Kuchipudi

    2015-06-01

    Full Text Available The data described in this article pertain to the article by Kuchipudi et al. (2014 titled “Highly Pathogenic Avian Influenza Virus Infection in Chickens But Not Ducks Is Associated with Elevated Host Immune and Pro-inflammatory Responses” [1]. While infection of chickens with highly pathogenic avian influenza (HPAI H5N1 virus subtypes often leads to 100% mortality within 1 to 2 days, infection of ducks in contrast causes mild or no clinical signs. The rapid onset of fatal disease in chickens, but with no evidence of severe clinical symptoms in ducks, suggests underlying differences in their innate immune mechanisms. We used Chicken Genechip microarrays (Affymetrix to analyse the gene expression profiles of primary chicken and duck lung cells infected with a low pathogenic avian influenza (LPAI H2N3 virus and two HPAI H5N1 virus subtypes to understand the molecular basis of host susceptibility and resistance in chickens and ducks. Here, we described the experimental design, quality control and analysis that were performed on the data set. The data are publicly available through the Gene Expression Omnibus (GEOdatabase with accession number GSE33389, and the analysis and interpretation of these data are included in Kuchipudi et al. (2014 [1].

  2. Analysis of Temporal-spatial Co-variation within Gene Expression Microarray Data in an Organogenesis Model

    Science.gov (United States)

    Ehler, Martin; Rajapakse, Vinodh; Zeeberg, Barry; Brooks, Brian; Brown, Jacob; Czaja, Wojciech; Bonner, Robert F.

    The gene networks underlying closure of the optic fissure during vertebrate eye development are poorly understood. We used a novel clustering method based on Laplacian Eigenmaps, a nonlinear dimension reduction method, to analyze microarray data from laser capture microdissected (LCM) cells at the site and developmental stages (days 10.5 to 12.5) of optic fissure closure. Our new method provided greater biological specificity than classical clustering algorithms in terms of identifying more biological processes and functions related to eye development as defined by Gene Ontology at lower false discovery rates. This new methodology builds on the advantages of LCM to isolate pure phenotypic populations within complex tissues and allows improved ability to identify critical gene products expressed at lower copy number. The combination of LCM of embryonic organs, gene expression microarrays, and extracting spatial and temporal co-variations appear to be a powerful approach to understanding the gene regulatory networks that specify mammalian organogenesis.

  3. Meta-analysis of Drosophila circadian microarray studies identifies a novel set of rhythmically expressed genes.

    Directory of Open Access Journals (Sweden)

    Kevin P Keegan

    2007-11-01

    Full Text Available Five independent groups have reported microarray studies that identify dozens of rhythmically expressed genes in the fruit fly Drosophila melanogaster. Limited overlap among the lists of discovered genes makes it difficult to determine which, if any, exhibit truly rhythmic patterns of expression. We reanalyzed data from all five reports and found two sources for the observed discrepancies, the use of different expression pattern detection algorithms and underlying variation among the datasets. To improve upon the methods originally employed, we developed a new analysis that involves compilation of all existing data, application of identical transformation and standardization procedures followed by ANOVA-based statistical prescreening, and three separate classes of post hoc analysis: cross-correlation to various cycling waveforms, autocorrelation, and a previously described fast Fourier transform-based technique. Permutation-based statistical tests were used to derive significance measures for all post hoc tests. We find application of our method, most significantly the ANOVA prescreening procedure, significantly reduces the false discovery rate relative to that observed among the results of the original five reports while maintaining desirable statistical power. We identify a set of 81 cycling transcripts previously found in one or more of the original reports as well as a novel set of 133 transcripts not found in any of the original studies. We introduce a novel analysis method that compensates for variability observed among the original five Drosophila circadian array reports. Based on the statistical fidelity of our meta-analysis results, and the results of our initial validation experiments (quantitative RT-PCR, we predict many of our newly found genes to be bona fide cyclers, and suggest that they may lead to new insights into the pathways through which clock mechanisms regulate behavioral rhythms.

  4. A microarray analysis of sex- and gonad-biased gene expression in the zebrafish: Evidence for masculinization of the transcriptome

    Directory of Open Access Journals (Sweden)

    Mo Qianxing

    2009-12-01

    Full Text Available Abstract Background In many taxa, males and females are very distinct phenotypically, and these differences often reflect divergent selective pressures acting on the sexes. Phenotypic sexual dimorphism almost certainly reflects differing patterns of gene expression between the sexes, and microarray studies have documented widespread sexually dimorphic gene expression. Although the evolutionary significance of sexual dimorphism in gene expression remains unresolved, these studies have led to the formulation of a hypothesis that male-driven evolution has resulted in the masculinization of animal transcriptomes. Here we use a microarray assessment of sex- and gonad-biased gene expression to test this hypothesis in zebrafish. Results By using zebrafish Affymetrix microarrays to compare gene expression patterns in male and female somatic and gonadal tissues, we identified a large number of genes (5899 demonstrating differences in transcript abundance between male and female Danio rerio. Under conservative statistical significance criteria, all sex-biases in gene expression were due to differences between testes and ovaries. Male-enriched genes were more abundant than female-enriched genes, and expression bias for male-enriched genes was greater in magnitude than that for female-enriched genes. We also identified a large number of genes demonstrating elevated transcript abundance in testes and ovaries relative to male body and female body, respectively. Conclusion Overall our results support the hypothesis that male-biased evolutionary pressures have resulted in male-biased patterns of gene expression. Interestingly, our results seem to be at odds with a handful of other microarray-based studies of sex-specific gene expression patterns in zebrafish. However, ours was the only study designed to address this specific hypothesis, and major methodological differences among studies could explain the discrepancies. Regardless, all of these studies agree

  5. Molecular sub-classification of renal epithelial tumors using meta-analysis of gene expression microarrays.

    Directory of Open Access Journals (Sweden)

    Thomas Sanford

    Full Text Available To evaluate the accuracy of the sub-classification of renal cortical neoplasms using molecular signatures.A search of publicly available databases was performed to identify microarray datasets with multiple histologic sub-types of renal cortical neoplasms. Meta-analytic techniques were utilized to identify differentially expressed genes for each histologic subtype. The lists of genes obtained from the meta-analysis were used to create predictive signatures through the use of a pair-based method. These signatures were organized into an algorithm to sub-classify renal neoplasms. The use of these signatures according to our algorithm was validated on several independent datasets.We identified three Gene Expression Omnibus datasets that fit our criteria to develop a training set. All of the datasets in our study utilized the Affymetrix platform. The final training dataset included 149 samples represented by the four most common histologic subtypes of renal cortical neoplasms: 69 clear cell, 41 papillary, 16 chromophobe, and 23 oncocytomas. When validation of our signatures was performed on external datasets, we were able to correctly classify 68 of the 72 samples (94%. The correct classification by subtype was 19/20 (95% for clear cell, 14/14 (100% for papillary, 17/19 (89% for chromophobe, 18/19 (95% for oncocytomas.Through the use of meta-analytic techniques, we were able to create an algorithm that sub-classified renal neoplasms on a molecular level with 94% accuracy across multiple independent datasets. This algorithm may aid in selecting molecular therapies and may improve the accuracy of subtyping of renal cortical tumors.

  6. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina.

    Science.gov (United States)

    Bidard, Frédérique; Imbeaud, Sandrine; Reymond, Nancie; Lespinet, Olivier; Silar, Philippe; Clavé, Corinne; Delacroix, Hervé; Berteaux-Lecellier, Véronique; Debuchy, Robert

    2010-06-18

    The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS), we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis.

  7. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina

    Directory of Open Access Journals (Sweden)

    Bidard Frédérique

    2010-06-01

    Full Text Available Abstract Background The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. Findings We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS, we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. Conclusions A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis.

  8. Identification of Differentially Expressed IGFBP5-Related Genes in Breast Cancer Tumor Tissues Using cDNA Microarray Experiments.

    Science.gov (United States)

    Akkiprik, Mustafa; Peker, İrem; Özmen, Tolga; Amuran, Gökçe Güllü; Güllüoğlu, Bahadır M; Kaya, Handan; Özer, Ayşe

    2015-11-10

    IGFBP5 is an important regulatory protein in breast cancer progression. We tried to identify differentially expressed genes (DEGs) between breast tumor tissues with IGFBP5 overexpression and their adjacent normal tissues. In this study, thirty-eight breast cancer and adjacent normal breast tissue samples were used to determine IGFBP5 expression by qPCR. cDNA microarrays were applied to the highest IGFBP5 overexpressed tumor samples compared to their adjacent normal breast tissue. Microarray analysis revealed that a total of 186 genes were differentially expressed in breast cancer compared with normal breast tissues. Of the 186 genes, 169 genes were downregulated and 17 genes were upregulated in the tumor samples. KEGG pathway analyses showed that protein digestion and absorption, focal adhesion, salivary secretion, drug metabolism-cytochrome P450, and phenylalanine metabolism pathways are involved. Among these DEGs, the prominent top two genes (MMP11 and COL1A1) which potentially correlated with IGFBP5 were selected for validation using real time RT-qPCR. Only COL1A1 expression showed a consistent upregulation with IGFBP5 expression and COL1A1 and MMP11 were significantly positively correlated. We concluded that the discovery of coordinately expressed genes related with IGFBP5 might contribute to understanding of the molecular mechanism of the function of IGFBP5 in breast cancer. Further functional studies on DEGs and association with IGFBP5 may identify novel biomarkers for clinical applications in breast cancer.

  9. In Silico Analysis of Microarray-Based Gene Expression Profiles Predicts Tumor Cell Response to Withanolides

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2012-05-01

    Full Text Available Withania somnifera (L. Dunal (Indian ginseng, winter cherry, Solanaceae is widely used in traditional medicine. Roots are either chewed or used to prepare beverages (aqueous decocts. The major secondary metabolites of Withania somnifera are the withanolides, which are C-28-steroidal lactone triterpenoids. Withania somnifera extracts exert chemopreventive and anticancer activities in vitro and in vivo. The aims of the present in silico study were, firstly, to investigate whether tumor cells develop cross-resistance between standard anticancer drugs and withanolides and, secondly, to elucidate the molecular determinants of sensitivity and resistance of tumor cells towards withanolides. Using IC50 concentrations of eight different withanolides (withaferin A, withaferin A diacetate, 3-azerininylwithaferin A, withafastuosin D diacetate, 4-B-hydroxy-withanolide E, isowithanololide E, withafastuosin E, and withaperuvin and 19 established anticancer drugs, we analyzed the cross-resistance profile of 60 tumor cell lines. The cell lines revealed cross-resistance between the eight withanolides. Consistent cross-resistance between withanolides and nitrosoureas (carmustin, lomustin, and semimustin was also observed. Then, we performed transcriptomic microarray-based COMPARE and hierarchical cluster analyses of mRNA expression to identify mRNA expression profiles predicting sensitivity or resistance towards withanolides. Genes from diverse functional groups were significantly associated with response of tumor cells to withaferin A diacetate, e.g. genes functioning in DNA damage and repair, stress response, cell growth regulation, extracellular matrix components, cell adhesion and cell migration, constituents of the ribosome, cytoskeletal organization and regulation, signal transduction, transcription factors, and others.

  10. Preparation of oligonucleotide microarray for radiation-associated gene expression detection and its application in lung cancer cell lines

    International Nuclear Information System (INIS)

    Guo Wanfeng; Lin Ruxian; Huang Jian; Guo Guozhen; Wang Shengqi

    2005-01-01

    Objective: The response of tumor cell to radiation is accompanied by complex change in patterns of gene expression. It is highly probable that a better understanding of molecular and genetic changes can help to sensitize the radioresistant tumor cells. Methods: Oligonucleotide microarray provides a powerful tool for high-throughput identifying a wider range of genes involved in the radioresistance. Therefore, the authors designed one oligonucleotide microarray according to the biological effect of IR. By using different radiosensitive lung cancer cell lines, the authors identified genes showing altered expression in lung cancer cell lines. To provide independent confirmation of microarray data, semi-quantitative RT-PCR was performed on a selection of genes. Results: In radioresistant A549 cell lines, a total of 18 genes were selected as having significant fold-changes compared to NCI-H446, 8 genes were up-regulated and 10 genes were down-regulated. Subsequently, A549 and NCI-H446 cells were delivered by ionizing radiation. In A549 cell line, we found 22 (19 up-regulated and 3 down-regulated) and 26 (8 up-regulated and 18 down-regulated) differentially expressed genes at 6h and 24h after ionizing radiation. In NCI-H446 cell line, we identified 17 (9 up-regulated and 8 down-regulated) and 18 (6 up-regulated and 12 down-regulated) differentially expressed genes at 6 h and 24 h after ionizing radiation. The authors tested seven genes (MDM2, p53, XRCC5, Bcl-2, PIM2, NFKBIA and Cyclin B1) for RT-PCR, and found that the results were in good agreement with those from the microarray data except for NFKBIA gene, even though the value for each mRNA level might be different between the two measurements. In present study, the authors identified some genes with cell proliferation and anti-apoptosis, such as MdM2, BCL-2, PKCz and PIM2 expression levels increased in A549 cells and decreased in NCI-H446 cells after radiation, and other genes with DNA repair, such as XRCC5, ERCC5

  11. Differential and correlation analyses of microarray gene expression data in the CEPH Utah families

    DEFF Research Database (Denmark)

    Tan, Qihua; Zhao, Jinghua; Li, Shuxia

    2008-01-01

    -regulated genes identifies cell-cell signaling as an important functional category implicated in human aging. Sex-dependent gene expression is characterized by genes that may escape X-inactivation and, most interestingly, such a pattern is not affected by the aging process. Analysis on sibship correlation on gene...... expression revealed a large number of significant genes suggesting the importance of a genetic mechanism in regulating transcriptional activities. In addition, we observe an interesting pattern of sibship correlation on gene expression that increases exponentially with the mean of gene expression reflecting...

  12. Microarray analysis of the gene expression profile in triethylene glycol dimethacrylate-treated human dental pulp cells.

    Science.gov (United States)

    Torun, D; Torun, Z Ö; Demirkaya, K; Sarper, M; Elçi, M P; Avcu, F

    2017-11-01

    Triethylene glycol dimethacrylate (TEGDMA) is an important resin monomer commonly used in the structure of dental restorative materials. Recent studies have shown that unpolymerized resin monomers may be released into the oral environment and cause harmful biological effects. We investigated changes in the gene expression profiles of TEGDMA-treated human dental pulp cells (hDPCs) following short- (1-day) and long-term (7-days) exposure. HDPCs were exposed to a noncytotoxic concentration of TEGDMA, and gene expression profiles were evaluated by microarray analysis. The results were confirmed by quantitative reverse-transcriptase PCR (qRT PCR). In total, 1282 and 1319 genes (up- or down-regulated) were differentially expressed compared with control group after the 1- and 7-day incubation periods, respectively. Biological ontology-based analyses revealed that metabolic, cellular, and developmental processes constituted the largest groups of biological functional processes. qRT-PCR analysis on bone morphogenetic protein-2 (BMP-2), BMP-4, secreted protein, acidic, cysteine-rich, collagen type I alpha 1, oxidative stress-induced growth inhibitor 1, MMP3, interleukin-6, and heme oxygenase-1 genes confirmed the changes in expression observed in the microarray analysis. Our results suggest that TEGDMA can change the many functions of hDPCs through large changes in gene expression levels and complex interactions with different signaling pathways.

  13. The Arabidopsis co-expression tool (act): a WWW-based tool and database for microarray-based gene expression analysis

    DEFF Research Database (Denmark)

    Jen, C. H.; Manfield, I. W.; Michalopoulos, D. W.

    2006-01-01

    be examined using the novel clique finder tool to determine the sets of genes most likely to be regulated in a similar manner. In combination, these tools offer three levels of analysis: creation of correlation lists of co-expressed genes, refinement of these lists using two-dimensional scatter plots......We present a new WWW-based tool for plant gene analysis, the Arabidopsis Co-Expression Tool (act) , based on a large Arabidopsis thaliana microarray data set obtained from the Nottingham Arabidopsis Stock Centre. The co-expression analysis tool allows users to identify genes whose expression...

  14. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Xianwei [School of Life Sciences, Shandong University, Jinan 250100 (China); Zhang, Xiaoli [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Jinxing [School of Life Sciences, Shandong University, Jinan 250100 (China); Jin, Wenrui, E-mail: jwr@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-01-07

    Highlights: • A single-molecule-detection (SMD) microarray for 10 samples is fabricated. • The based-SMD microarray assay (SMA) can determine 8 DNAs for each sample. • The limit of detection of SMA is as low as 1.3 × 10{sup −16} mol L{sup −1}. • The SMA can be applied in single-cell multiple gene expression analysis. - Abstract: We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3 × 10{sup −16} mol L{sup −1}. The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three

  15. Microarray analysis of gene expression by skeletal muscle of three mouse models of Kennedy disease/spinal bulbar muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Kaiguo Mo

    2010-09-01

    Full Text Available Emerging evidence implicates altered gene expression within skeletal muscle in the pathogenesis of Kennedy disease/spinal bulbar muscular atrophy (KD/SBMA. We therefore broadly characterized gene expression in skeletal muscle of three independently generated mouse models of this disease. The mouse models included a polyglutamine expanded (polyQ AR knock-in model (AR113Q, a polyQ AR transgenic model (AR97Q, and a transgenic mouse that overexpresses wild type AR solely in skeletal muscle (HSA-AR. HSA-AR mice were included because they substantially reproduce the KD/SBMA phenotype despite the absence of polyQ AR.We performed microarray analysis of lower hindlimb muscles taken from these three models relative to wild type controls using high density oligonucleotide arrays. All microarray comparisons were made with at least 3 animals in each condition, and only those genes having at least 2-fold difference and whose coefficient of variance was less than 100% were considered to be differentially expressed. When considered globally, there was a similar overlap in gene changes between the 3 models: 19% between HSA-AR and AR97Q, 21% between AR97Q and AR113Q, and 17% between HSA-AR and AR113Q, with 8% shared by all models. Several patterns of gene expression relevant to the disease process were observed. Notably, patterns of gene expression typical of loss of AR function were observed in all three models, as were alterations in genes involved in cell adhesion, energy balance, muscle atrophy and myogenesis. We additionally measured changes similar to those observed in skeletal muscle of a mouse model of Huntington's Disease, and to those common to muscle atrophy from diverse causes.By comparing patterns of gene expression in three independent models of KD/SBMA, we have been able to identify candidate genes that might mediate the core myogenic features of KD/SBMA.

  16. Comparative RNA-Seq and microarray analysis of gene expression changes in B-cell lymphomas of Canis familiaris.

    Directory of Open Access Journals (Sweden)

    Marie Mooney

    Full Text Available Comparative oncology is a developing research discipline that is being used to assist our understanding of human neoplastic diseases. Companion canines are a preferred animal oncology model due to spontaneous tumor development and similarity to human disease at the pathophysiological level. We use a paired RNA sequencing (RNA-Seq/microarray analysis of a set of four normal canine lymph nodes and ten canine lymphoma fine needle aspirates to identify technical biases and variation between the technologies and convergence on biological disease pathways. Surrogate Variable Analysis (SVA provides a formal multivariate analysis of the combined RNA-Seq/microarray data set. Applying SVA to the data allows us to decompose variation into contributions associated with transcript abundance, differences between the technology, and latent variation within each technology. A substantial and highly statistically significant component of the variation reflects transcript abundance, and RNA-Seq appeared more sensitive for detection of transcripts expressed at low levels. Latent random variation among RNA-Seq samples is also distinct in character from that impacting microarray samples. In particular, we observed variation between RNA-Seq samples that reflects transcript GC content. Platform-independent variable decomposition without a priori knowledge of the sources of variation using SVA represents a generalizable method for accomplishing cross-platform data analysis. We identified genes differentially expressed between normal lymph nodes of disease free dogs and a subset of the diseased dogs diagnosed with B-cell lymphoma using each technology. There is statistically significant overlap between the RNA-Seq and microarray sets of differentially expressed genes. Analysis of overlapping genes in the context of biological systems suggests elevated expression and activity of PI3K signaling in B-cell lymphoma biopsies compared with normal biopsies, consistent with

  17. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profiler™ PCR Arrays from SuperArray, containing primer pairs that have been experimentally validated to ensure gene-specificity and high amplification efficiency. Results The SYBR Green PCR Arrays exhibit good reproducibility among different users, PCR instruments and test sites. In addition, the SYBR Green PCR Arrays have the highest concordance with TaqMan PCR, and a high level of concordance with other quantitative methods and microarrays that were evaluated in this study in terms of fold-change correlation and overlap of lists of differentially expressed genes. Conclusion These data demonstrate that SYBR Green real-time PCR delivers highly comparable results in gene expression measurement with TaqMan PCR and other high-density microarrays.

  18. ArraySolver: An Algorithm for Colour-Coded Graphical Display and Wilcoxon Signed-Rank Statistics for Comparing Microarray Gene Expression Data

    OpenAIRE

    Khan, Haseeb Ahmad

    2004-01-01

    The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for tra...

  19. Biological data warehousing system for identifying transcriptional regulatory sites from gene expressions of microarray data.

    Science.gov (United States)

    Tsou, Ann-Ping; Sun, Yi-Ming; Liu, Chia-Lin; Huang, Hsien-Da; Horng, Jorng-Tzong; Tsai, Meng-Feng; Liu, Baw-Juine

    2006-07-01

    Identification of transcriptional regulatory sites plays an important role in the investigation of gene regulation. For this propose, we designed and implemented a data warehouse to integrate multiple heterogeneous biological data sources with data types such as text-file, XML, image, MySQL database model, and Oracle database model. The utility of the biological data warehouse in predicting transcriptional regulatory sites of coregulated genes was explored using a synexpression group derived from a microarray study. Both of the binding sites of known transcription factors and predicted over-represented (OR) oligonucleotides were demonstrated for the gene group. The potential biological roles of both known nucleotides and one OR nucleotide were demonstrated using bioassays. Therefore, the results from the wet-lab experiments reinforce the power and utility of the data warehouse as an approach to the genome-wide search for important transcription regulatory elements that are the key to many complex biological systems.

  20. Identification of self-consistent modulons from bacterial microarray expression data with the help of structured regulon gene sets

    KAUST Repository

    Permina, Elizaveta A.

    2013-01-01

    Identification of bacterial modulons from series of gene expression measurements on microarrays is a principal problem, especially relevant for inadequately studied but practically important species. Usage of a priori information on regulatory interactions helps to evaluate parameters for regulatory subnetwork inference. We suggest a procedure for modulon construction where a seed regulon is iteratively updated with genes having expression patterns similar to those for regulon member genes. A set of genes essential for a regulon is used to control modulon updating. Essential genes for a regulon were selected as a subset of regulon genes highly related by different measures to each other. Using Escherichia coli as a model, we studied how modulon identification depends on the data, including the microarray experiments set, the adopted relevance measure and the regulon itself. We have found that results of modulon identification are highly dependent on all parameters studied and thus the resulting modulon varies substantially depending on the identification procedure. Yet, modulons that were identified correctly displayed higher stability during iterations, which allows developing a procedure for reliable modulon identification in the case of less studied species where the known regulatory interactions are sparse. Copyright © 2013 Taylor & Francis.

  1. CAFE: an R package for the detection of gross chromosomal abnormalities from gene expression microarray data.

    Science.gov (United States)

    Bollen, Sander; Leddin, Mathias; Andrade-Navarro, Miguel A; Mah, Nancy

    2014-05-15

    The current methods available to detect chromosomal abnormalities from DNA microarray expression data are cumbersome and inflexible. CAFE has been developed to alleviate these issues. It is implemented as an R package that analyzes Affymetrix *.CEL files and comes with flexible plotting functions, easing visualization of chromosomal abnormalities. CAFE is available from https://bitbucket.org/cob87icW6z/cafe/ as both source and compiled packages for Linux and Windows. It is released under the GPL version 3 license. CAFE will also be freely available from Bioconductor. sander.h.bollen@gmail.com or nancy.mah@mdc-berlin.de Supplementary data are available at Bioinformatics online.

  2. "Hook"-calibration of GeneChip-microarrays: Chip characteristics and expression measures

    Directory of Open Access Journals (Sweden)

    Krohn Knut

    2008-08-01

    Full Text Available Abstract Background Microarray experiments rely on several critical steps that may introduce biases and uncertainty in downstream analyses. These steps include mRNA sample extraction, amplification and labelling, hybridization, and scanning causing chip-specific systematic variations on the raw intensity level. Also the chosen array-type and the up-to-dateness of the genomic information probed on the chip affect the quality of the expression measures. In the accompanying publication we presented theory and algorithm of the so-called hook method which aims at correcting expression data for systematic biases using a series of new chip characteristics. Results In this publication we summarize the essential chip characteristics provided by this method, analyze special benchmark experiments to estimate transcript related expression measures and illustrate the potency of the method to detect and to quantify the quality of a particular hybridization. It is shown that our single-chip approach provides expression measures responding linearly on changes of the transcript concentration over three orders of magnitude. In addition, the method calculates a detection call judging the relation between the signal and the detection limit of the particular measurement. The performance of the method in the context of different chip generations and probe set assignments is illustrated. The hook method characterizes the RNA-quality in terms of the 3'/5'-amplification bias and the sample-specific calling rate. We show that the proper judgement of these effects requires the disentanglement of non-specific and specific hybridization which, otherwise, can lead to misinterpretations of expression changes. The consequences of modifying probe/target interactions by either changing the labelling protocol or by substituting RNA by DNA targets are demonstrated. Conclusion The single-chip based hook-method provides accurate expression estimates and chip-summary characteristics

  3. Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments

    Directory of Open Access Journals (Sweden)

    Pistoia Vito

    2008-10-01

    Full Text Available Abstract Background Most microarray experiments are carried out with the purpose of identifying genes whose expression varies in relation with specific conditions or in response to environmental stimuli. In such studies, genes showing similar mean expression values between two or more groups are considered as not differentially expressed, even if hidden subclasses with different expression values may exist. In this paper we propose a new method for identifying differentially expressed genes, based on the area between the ROC curve and the rising diagonal (ABCR. ABCR represents a more general approach than the standard area under the ROC curve (AUC, because it can identify both proper (i.e., concave and not proper ROC curves (NPRC. In particular, NPRC may correspond to those genes that tend to escape standard selection methods. Results We assessed the performance of our method using data from a publicly available database of 4026 genes, including 14 normal B cell samples (NBC and 20 heterogeneous lymphomas (namely: 9 follicular lymphomas and 11 chronic lymphocytic leukemias. Moreover, NBC also included two sub-classes, i.e., 6 heavily stimulated and 8 slightly or not stimulated samples. We identified 1607 differentially expressed genes with an estimated False Discovery Rate of 15%. Among them, 16 corresponded to NPRC and all escaped standard selection procedures based on AUC and t statistics. Moreover, a simple inspection to the shape of such plots allowed to identify the two subclasses in either one class in 13 cases (81%. Conclusion NPRC represent a new useful tool for the analysis of microarray data.

  4. Monitoring expression profiles of rice (Oryza sativa L.) genes under abiotic stresses using cDNA Microarray Analysis (abstract)

    International Nuclear Information System (INIS)

    Rabbani, M.A.

    2005-01-01

    Transcript regulation in response to cold, drought, high salinity and ABA application was investigated in rice (Oryza sativa L., Nipponbare) with microarray analysis including approx. 1700 independent DNA elements derived from three cDNA libraries constructed from 15-day old rice seedlings stressed with drought, cold and high salinity. A total of 141 non-redundant genes were identified, whose expression ratios were more than three-fold compared with the control genes for at least one of stress treatments in microarray analysis. However, after RNA gel blot analysis, a total of 73 genes were identified, among them the transcripts of 36, 62, 57 and 43 genes were found increased after cold, drought, high salinity and ABA application, respectively. Sixteen of these identified genes have been reported previously to be stress inducible in rice, while 57 of which are novel that have not been reported earlier as stress responsive in rice. We observed a strong association in the expression patterns of stress responsive genes and found 15 stress inducible genes that responded to all four treatments. Based on Venn diagram analysis, 56 genes were induced by both drought and high salinity, whereas 22 genes were upregulated by both cold and high salinity stress. Similarly 43 genes were induced by both drought stress and ABA application, while only 17 genes were identified as cold and ABA inducible genes. These results indicated the existence of greater cross talk between drought, ABA and high salinity stress signaling processes than those between cold and ABA, and cold and high salinity stress signaling pathways. The cold, drought, high salinity and ABA inducible genes were classified into four gene groups from their expression profiles. Analysis of data enabled us to identify a number of promoters and possible cis-acting DNA elements of several genes induced by a variety of abiotic stresses by combining expression data with genomic sequence data of rice. Comparative analysis of

  5. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhang

    2010-11-01

    Full Text Available We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computational prediction from gene sequence data, thereby establishing that these genes are indeed part of the vomeronasal system, especially the V2Rs. 168 V1Rs and 98 V2Rs were detected to be highly enriched in mouse vomeronasal organ (VNO, and 108 V1Rs and 87 V2Rs in rat VNO. We monitored the expression profile of mouse VR genes in other non-VNO tissues with the result that some VR genes were re-designated as VR-like genes based on their non-olfactory expression pattern. Temporal expression profiles for mouse VR genes were characterized and their patterns were classified, revealing the developmental dynamics of these so-called pheromone receptors. We found numerous patterns of temporal expression which indicate possible behavior-related functions. The uneven composition of VR genes in certain patterns suggests a functional differentiation between the two types of VR genes. We found the coherence between VR genes and transcription factors in terms of their temporal expression patterns. In situ hybridization experiments were performed to evaluate the cell number change over time for selected receptor genes.

  6. Bone Metastasis in Advanced Breast Cancer: Analysis of Gene Expression Microarray.

    Science.gov (United States)

    Cosphiadi, Irawan; Atmakusumah, Tubagus D; Siregar, Nurjati C; Muthalib, Abdul; Harahap, Alida; Mansyur, Muchtarruddin

    2018-03-08

    Approximately 30% to 40% of breast cancer recurrences involve bone metastasis (BM). Certain genes have been linked to BM; however, none have been able to predict bone involvement. In this study, we analyzed gene expression profiles in advanced breast cancer patients to elucidate genes that can be used to predict BM. A total of 92 advanced breast cancer patients, including 46 patients with BM and 46 patients without BM, were identified for this study. Immunohistochemistry and gene expression analysis was performed on 81 formalin-fixed paraffin-embedded samples. Data were collected through medical records, and gene expression of 200 selected genes compiled from 6 previous studies was performed using NanoString nCounter. Genetic expression profiles showed that 22 genes were significantly differentially expressed between breast cancer patients with metastasis in bone and other organs (BM+) and non-BM, whereas subjects with only BM showed 17 significantly differentially expressed genes. The following genes were associated with an increasing incidence of BM in the BM+ group: estrogen receptor 1 (ESR1), GATA binding protein 3 (GATA3), and melanophilin with an area under the curve (AUC) of 0.804. In the BM group, the following genes were associated with an increasing incidence of BM: ESR1, progesterone receptor, B-cell lymphoma 2, Rab escort protein, N-acetyltransferase 1, GATA3, annexin A9, and chromosome 9 open reading frame 116. ESR1 and GATA3 showed an increased strength of association with an AUC of 0.928. A combination of the identified 3 genes in BM+ and 8 genes in BM showed better prediction than did each individual gene, and this combination can be used as a training set. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Quantitative multiplex quantum dot in-situ hybridisation based gene expression profiling in tissue microarrays identifies prognostic genes in acute myeloid leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Tholouli, Eleni [Department of Haematology, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom); MacDermott, Sarah [The Medical School, The University of Manchester, Oxford Road, M13 9PT Manchester (United Kingdom); Hoyland, Judith [School of Biomedicine, Faculty of Medical and Human Sciences, The University of Manchester, Oxford Road, M13 9PT Manchester (United Kingdom); Yin, John Liu [Department of Haematology, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom); Byers, Richard, E-mail: richard.byers@cmft.nhs.uk [School of Cancer and Enabling Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, M13 9PT Manchester (United Kingdom)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Development of a quantitative high throughput in situ expression profiling method. Black-Right-Pointing-Pointer Application to a tissue microarray of 242 AML bone marrow samples. Black-Right-Pointing-Pointer Identification of HOXA4, HOXA9, Meis1 and DNMT3A as prognostic markers in AML. -- Abstract: Measurement and validation of microarray gene signatures in routine clinical samples is problematic and a rate limiting step in translational research. In order to facilitate measurement of microarray identified gene signatures in routine clinical tissue a novel method combining quantum dot based oligonucleotide in situ hybridisation (QD-ISH) and post-hybridisation spectral image analysis was used for multiplex in-situ transcript detection in archival bone marrow trephine samples from patients with acute myeloid leukaemia (AML). Tissue-microarrays were prepared into which white cell pellets were spiked as a standard. Tissue microarrays were made using routinely processed bone marrow trephines from 242 patients with AML. QD-ISH was performed for six candidate prognostic genes using triplex QD-ISH for DNMT1, DNMT3A, DNMT3B, and for HOXA4, HOXA9, Meis1. Scrambled oligonucleotides were used to correct for background staining followed by normalisation of expression against the expression values for the white cell pellet standard. Survival analysis demonstrated that low expression of HOXA4 was associated with poorer overall survival (p = 0.009), whilst high expression of HOXA9 (p < 0.0001), Meis1 (p = 0.005) and DNMT3A (p = 0.04) were associated with early treatment failure. These results demonstrate application of a standardised, quantitative multiplex QD-ISH method for identification of prognostic markers in formalin-fixed paraffin-embedded clinical samples, facilitating measurement of gene expression signatures in routine clinical samples.

  8. Systematic gene microarray analysis of the lncRNA expression profiles in human uterine cervix carcinoma.

    Science.gov (United States)

    Chen, Jie; Fu, Ziyi; Ji, Chenbo; Gu, Pingqing; Xu, Pengfei; Yu, Ningzhu; Kan, Yansheng; Wu, Xiaowei; Shen, Rong; Shen, Yan

    2015-05-01

    The human uterine cervix carcinoma is one of the most well-known malignancy reproductive system cancers, which threatens women health globally. However, the mechanisms of the oncogenesis and development process of cervix carcinoma are not yet fully understood. Long non-coding RNAs (lncRNAs) have been proved to play key roles in various biological processes, especially development of cancer. The function and mechanism of lncRNAs on cervix carcinoma is still rarely reported. We selected 3 cervix cancer and normal cervix tissues separately, then performed lncRNA microarray to detect the differentially expressed lncRNAs. Subsequently, we explored the potential function of these dysregulated lncRNAs through online bioinformatics databases. Finally, quantity real-time PCR was carried out to confirm the expression levels of these dysregulated lncRNAs in cervix cancer and normal tissues. We uncovered the profiles of differentially expressed lncRNAs between normal and cervix carcinoma tissues by using the microarray techniques, and found 1622 upregulated and 3026 downregulated lncRNAs (fold-change>2.0) in cervix carcinoma compared to the normal cervical tissue. Furthermore, we found HOXA11-AS might participate in cervix carcinogenesis by regulating HOXA11, which is involved in regulating biological processes of cervix cancer. This study afforded expression profiles of lncRNAs between cervix carcinoma tissue and normal cervical tissue, which could provide database for further research about the function and mechanism of key-lncRNAs in cervix carcinoma, and might be helpful to explore potential diagnosis factors and therapeutic targets for cervix carcinoma. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. The Local Maximum Clustering Method and Its Application in Microarray Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2004-01-01

    Full Text Available An unsupervised data clustering method, called the local maximum clustering (LMC method, is proposed for identifying clusters in experiment data sets based on research interest. A magnitude property is defined according to research purposes, and data sets are clustered around each local maximum of the magnitude property. By properly defining a magnitude property, this method can overcome many difficulties in microarray data clustering such as reduced projection in similarities, noises, and arbitrary gene distribution. To critically evaluate the performance of this clustering method in comparison with other methods, we designed three model data sets with known cluster distributions and applied the LMC method as well as the hierarchic clustering method, the -mean clustering method, and the self-organized map method to these model data sets. The results show that the LMC method produces the most accurate clustering results. As an example of application, we applied the method to cluster the leukemia samples reported in the microarray study of Golub et al. (1999.

  10. A quantitative comparison of cell-type-specific microarray gene expression profiling methods in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Benjamin W Okaty

    Full Text Available Expression profiling of restricted neural populations using microarrays can facilitate neuronal classification and provide insight into the molecular bases of cellular phenotypes. Due to the formidable heterogeneity of intermixed cell types that make up the brain, isolating cell types prior to microarray processing poses steep technical challenges that have been met in various ways. These methodological differences have the potential to distort cell-type-specific gene expression profiles insofar as they may insufficiently filter out contaminating mRNAs or induce aberrant cellular responses not normally present in vivo. Thus we have compared the repeatability, susceptibility to contamination from off-target cell-types, and evidence for stress-responsive gene expression of five different purification methods--Laser Capture Microdissection (LCM, Translating Ribosome Affinity Purification (TRAP, Immunopanning (PAN, Fluorescence Activated Cell Sorting (FACS, and manual sorting of fluorescently labeled cells (Manual. We found that all methods obtained comparably high levels of repeatability, however, data from LCM and TRAP showed significantly higher levels of contamination than the other methods. While PAN samples showed higher activation of apoptosis-related, stress-related and immediate early genes, samples from FACS and Manual studies, which also require dissociated cells, did not. Given that TRAP targets actively translated mRNAs, whereas other methods target all transcribed mRNAs, observed differences may also reflect translational regulation.

  11. Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data.

    Directory of Open Access Journals (Sweden)

    Christian Müller

    Full Text Available Technical variation plays an important role in microarray-based gene expression studies, and batch effects explain a large proportion of this noise. It is therefore mandatory to eliminate technical variation while maintaining biological variability. Several strategies have been proposed for the removal of batch effects, although they have not been evaluated in large-scale longitudinal gene expression data. In this study, we aimed at identifying a suitable method for batch effect removal in a large study of microarray-based longitudinal gene expression. Monocytic gene expression was measured in 1092 participants of the Gutenberg Health Study at baseline and 5-year follow up. Replicates of selected samples were measured at both time points to identify technical variability. Deming regression, Passing-Bablok regression, linear mixed models, non-linear models as well as ReplicateRUV and ComBat were applied to eliminate batch effects between replicates. In a second step, quantile normalization prior to batch effect correction was performed for each method. Technical variation between batches was evaluated by principal component analysis. Associations between body mass index and transcriptomes were calculated before and after batch removal. Results from association analyses were compared to evaluate maintenance of biological variability. Quantile normalization, separately performed in each batch, combined with ComBat successfully reduced batch effects and maintained biological variability. ReplicateRUV performed perfectly in the replicate data subset of the study, but failed when applied to all samples. All other methods did not substantially reduce batch effects in the replicate data subset. Quantile normalization plus ComBat appears to be a valuable approach for batch correction in longitudinal gene expression data.

  12. Understanding Autoimmune Mechanisms in Multiple Sclerosis Using Gene Expression Microarrays: Treatment Effect and Cytokine-related Pathways

    Directory of Open Access Journals (Sweden)

    A. Achiron

    2004-01-01

    Full Text Available Multiple sclerosis (MS is a central nervous system disease in which activated autoreactive T-cells invade the blood brain barrier and initiate an inflammatory response that leads to myelin destruction and axonal loss. The etiology of MS, as well as the mechanisms associated with its unexpected onset, the unpredictable clinical course spanning decades, and the different rates of progression leading to disability over time, remains an enigma. We have applied gene expression microarrays technology in peripheral blood mononuclear cells (PBMC to better understand MS pathogenesis and better target treatment approaches. A signature of 535 genes were found to distinguish immunomodulatory treatment effects between 13 treated and 13 untreated MS patients. In addition, the expression pattern of 1109 gene transcripts that were previously reported to significantly differentiate between MS patients and healthy subjects were further analyzed to study the effect of cytokine-related pathways on disease pathogenesis. When relative gene expression for 26 MS patients was compared to 18 healthy controls, 30 genes related to various cytokine-associated pathways were identified. These genes belong to a variety of families such as interleukins, small inducible cytokine subfamily and tumor necrosis factor ligand and receptor. Further analysis disclosed seven cytokine-associated genes within the immunomodulatory treatment signature, and two cytokine-associated genes SCYA4 (small inducible cytokine A4 and FCAR (Fc fragment of IgA, CD89 that were common to both the MS gene expression signature and the immunomodulatory treatment gene expression signature. Our results indicate that cytokine-associated genes are involved in various pathogenic pathways in MS and also related to immunomodulatory treatment effects.

  13. Identification and comprehensive evaluation of reference genes for RT-qPCR analysis of host gene-expression in Brassica juncea-aphid interaction using microarray data.

    Science.gov (United States)

    Ram, Chet; Koramutla, Murali Krishna; Bhattacharya, Ramcharan

    2017-07-01

    Brassica juncea is a chief oil yielding crop in many parts of the world including India. With advancement of molecular techniques, RT-qPCR based study of gene-expression has become an integral part of experimentations in crop breeding. In RT-qPCR, use of appropriate reference gene(s) is pivotal. The virtue of the reference genes, being constant in expression throughout the experimental treatments, needs to be validated case by case. Appropriate reference gene(s) for normalization of gene-expression data in B. juncea during the biotic stress of aphid infestation is not known. In the present investigation, 11 reference genes identified from microarray database of Arabidopsis-aphid interaction at a cut off FDR ≤0.1, along with two known reference genes of B. juncea, were analyzed for their expression stability upon aphid infestation. These included 6 frequently used and 5 newly identified reference genes. Ranking orders of the reference genes in terms of expression stability were calculated using advanced statistical approaches such as geNorm, NormFinder, delta Ct and BestKeeper. The analysis suggested CAC, TUA and DUF179 as the most suitable reference genes. Further, normalization of the gene-expression data of STP4 and PR1 by the most and the least stable reference gene, respectively has demonstrated importance and applicability of the recommended reference genes in aphid infested samples of B. juncea. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Bone health nutraceuticals alter microarray mRNA gene expression: A randomized, parallel, open-label clinical study.

    Science.gov (United States)

    Lin, Yumei; Kazlova, Valentina; Ramakrishnan, Shyam; Murray, Mary A; Fast, David; Chandra, Amitabh; Gellenbeck, Kevin W

    2016-01-15

    Dietary intake of fruits and vegetables has been suggested to have a role in promoting bone health. More specifically, the polyphenols they contain have been linked to physiological effects related to bone mineral density and bone metabolism. In this research, we use standard microarray analyses of peripheral whole blood from post-menopausal women treated with two fixed combinations of plant extracts standardized to polyphenol content to identify differentially expressed genes relevant to bone health. In this 28-day open-label study, healthy post-menopausal women were randomized into three groups, each receiving one of three investigational fixed combinations of plant extracts: an anti-resorptive (AR) combination of pomegranate fruit (Punica granatum L.) and grape seed (Vitis vinifera L.) extracts; a bone formation (BF) combination of quercetin (Dimorphandra mollis Benth) and licorice (Glycyrrhiza glabra L.) extracts; and a fixed combination of all four plant extracts (AR plus BF). Standard microarray analysis was performed on peripheral whole blood samples taken before and after each treatment. Annotated genes were analyzed for their association to bone health by comparison to a gene library. The AR combination down-regulated a number of genes involved in reduction of bone resorption including cathepsin G (CTSG) and tachykinin receptor 1 (TACR1). The AR combination also up-regulated genes associated with formation of extracellular matrix including heparan sulfate proteoglycan 2 (HSPG2) and hyaluronoglucosaminidase 1 (HYAL1). In contrast, treatment with the BF combination resulted in up-regulation of bone morphogenetic protein 2 (BMP-2) and COL1A1 (collagen type I α1) genes which are linked to bone and collagen formation while down-regulating genes linked to osteoclastogenesis. Treatment with a combination of all four plant extracts had a distinctly different effect on gene expression than the results of the AR and BF combinations individually. These results could

  15. Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men.

    Science.gov (United States)

    Sjögren, Klara; Leung, Kin-Chuen; Kaplan, Warren; Gardiner-Garden, Margaret; Gibney, James; Ho, Ken K Y

    2007-07-01

    Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.

  16. Differential gene expression from genome-wide microarray analyses distinguishes Lohmann Selected Leghorn and Lohmann Brown layers.

    Directory of Open Access Journals (Sweden)

    Christin Habig

    Full Text Available The Lohmann Selected Leghorn (LSL and Lohmann Brown (LB layer lines have been selected for high egg production since more than 50 years and belong to the worldwide leading commercial layer lines. The objectives of the present study were to characterize the molecular processes that are different among these two layer lines using whole genome RNA expression profiles. The hens were kept in the newly developed small group housing system Eurovent German with two different group sizes. Differential expression was observed for 6,276 microarray probes (FDR adjusted P-value <0.05 among the two layer lines LSL and LB. A 2-fold or greater change in gene expression was identified on 151 probe sets. In LSL, 72 of the 151 probe sets were up- and 79 of them were down-regulated. Gene ontology (GO enrichment analysis accounting for biological processes evinced 18 GO-terms for the 72 probe sets with higher expression in LSL, especially those taking part in immune system processes and membrane organization. A total of 32 enriched GO-terms were determined among the 79 down-regulated probe sets of LSL. Particularly, these terms included phosphorus metabolic processes and signaling pathways. In conclusion, the phenotypic differences among the two layer lines LSL and LB are clearly reflected in their gene expression profiles of the cerebrum. These novel findings provide clues for genes involved in economically important line characteristics of commercial laying hens.

  17. Development of a cDNA microarray for the measurement of gene expression in the sheep scab mite Psoroptes ovis

    Directory of Open Access Journals (Sweden)

    Burgess Stewart TG

    2012-02-01

    Full Text Available Abstract Background Sheep scab is caused by the ectoparasitic mite Psoroptes ovis which initiates a profound cutaneous inflammatory response, leading to the development of the skin lesions which are characteristic of the disease. Existing control strategies rely upon injectable endectocides and acaricidal dips but concerns over residues, eco-toxicity and the development of acaricide resistance limit the sustainability of this approach. In order to identify alternative means of disease control, a deeper understanding of both the parasite and its interaction with the host are required. Methods Herein we describe the development and utilisation of an annotated P. ovis cDNA microarray containing 3,456 elements for the measurement of gene expression in this economically important ectoparasite. The array consists of 981 P. ovis EST sequences printed in triplicate along with 513 control elements. Array performance was validated through the analysis of gene expression differences between fed and starved P. ovis mites. Results Sequences represented on the array include homologues of major house dust mite allergens and tick salivary proteins, along with factors potentially involved in mite reproduction and xenobiotic metabolism. In order to validate the performance of this unique resource under biological conditions we used the array to analyse gene expression differences between fed and starved P. ovis mites. These analyses identified a number of house dust mite allergen homologues up-regulated in fed mites and P. ovis transcripts involved in stress responses, autophagy and chemosensory perception up-regulated in starved mites. Conclusion The P. ovis cDNA microarray described here has been shown to be both robust and reproducible and will enable future studies to analyse gene expression in this important ectoparasite.

  18. Identification of novel candidate target genes in amplicons of Glioblastoma multiforme tumors detected by expression and CGH microarray profiling

    Directory of Open Access Journals (Sweden)

    Hernández-Moneo Jose-Luis

    2006-09-01

    Full Text Available Abstract Background Conventional cytogenetic and comparative genomic hybridization (CGH studies in brain malignancies have shown that glioblastoma multiforme (GBM is characterized by complex structural and numerical alterations. However, the limited resolution of these techniques has precluded the precise identification of detailed specific gene copy number alterations. Results We performed a genome-wide survey of gene copy number changes in 20 primary GBMs by CGH on cDNA microarrays. A novel amplicon at 4p15, and previously uncharacterized amplicons at 13q32-34 and 1q32 were detected and are analyzed here. These amplicons contained amplified genes not previously reported. Other amplified regions containg well-known oncogenes in GBMs were also detected at 7p12 (EGFR, 7q21 (CDK6, 4q12 (PDGFRA, and 12q13-15 (MDM2 and CDK4. In order to identify the putative target genes of the amplifications, and to determine the changes in gene expression levels associated with copy number change events, we carried out parallel gene expression profiling analyses using the same cDNA microarrays. We detected overexpression of the novel amplified genes SLA/LP and STIM2 (4p15, and TNFSF13B and COL4A2 (13q32-34. Some of the candidate target genes of amplification (EGFR, CDK6, MDM2, CDK4, and TNFSF13B were tested in an independent set of 111 primary GBMs by using FISH and immunohistological assays. The novel candidate 13q-amplification target TNFSF13B was amplified in 8% of the tumors, and showed protein expression in 20% of the GBMs. Conclusion This high-resolution analysis allowed us to propose novel candidate target genes such as STIM2 at 4p15, and TNFSF13B or COL4A2 at 13q32-34 that could potentially contribute to the pathogenesis of these tumors and which would require futher investigations. We showed that overexpression of the amplified genes could be attributable to gene dosage and speculate that deregulation of those genes could be important in the development

  19. Performance comparison of two microarray platforms to assess differential gene expression in human monocyte and macrophage cells

    Directory of Open Access Journals (Sweden)

    Montalescot Gilles

    2008-06-01

    Full Text Available Abstract Background In this study we assessed the respective ability of Affymetrix and Illumina microarray methodologies to answer a relevant biological question, namely the change in gene expression between resting monocytes and macrophages derived from these monocytes. Five RNA samples for each type of cell were hybridized to the two platforms in parallel. In addition, a reference list of differentially expressed genes (DEG was generated from a larger number of hybridizations (mRNA from 86 individuals using the RNG/MRC two-color platform. Results Our results show an important overlap of the Illumina and Affymetrix DEG lists. In addition, more than 70% of the genes in these lists were also present in the reference list. Overall the two platforms had very similar performance in terms of biological significance, evaluated by the presence in the DEG lists of an excess of genes belonging to Gene Ontology (GO categories relevant for the biology of monocytes and macrophages. Our results support the conclusion of the MicroArray Quality Control (MAQC project that the criteria used to constitute the DEG lists strongly influence the degree of concordance among platforms. However the importance of prioritizing genes by magnitude of effect (fold change rather than statistical significance (p-value to enhance cross-platform reproducibility recommended by the MAQC authors was not supported by our data. Conclusion Functional analysis based on GO enrichment demonstrates that the 2 compared technologies delivered very similar results and identified most of the relevant GO categories enriched in the reference list.

  20. Association of adipocyte genes with ASP expression: a microarray analysis of subcutaneous and omental adipose tissue in morbidly obese subjects

    Directory of Open Access Journals (Sweden)

    Lu HuiLing

    2010-01-01

    Full Text Available Abstract Background Prevalence of obesity is increasing to pandemic proportions. However, obese subjects differ in insulin resistance, adipokine production and co-morbidities. Based on fasting plasma analysis, obese subjects were grouped as Low Acylation Stimulating protein (ASP and Triglyceride (TG (LAT vs High ASP and TG (HAT. Subcutaneous (SC and omental (OM adipose tissues (n = 21 were analysed by microarray, and biologic pathways in lipid metabolism and inflammation were specifically examined. Methods LAT and HAT groups were matched in age, obesity, insulin, and glucose, and had similar expression of insulin-related genes (InsR, IRS-1. ASP related genes tended to be increased in the HAT group and were correlated (factor B, adipsin, complement C3, p Results HAT adipose tissue demonstrated increased lipid related genes for storage (CD36, DGAT1, DGAT2, SCD1, FASN, and LPL, lipolysis (HSL, CES1, perilipin, fatty acid binding proteins (FABP1, FABP3 and adipocyte differentiation markers (CEBPα, CEBPβ, PPARγ. By contrast, oxidation related genes were decreased (AMPK, UCP1, CPT1, FABP7. HAT subjects had increased anti-inflammatory genes TGFB1, TIMP1, TIMP3, and TIMP4 while proinflammatory PIG7 and MMP2 were also significantly increased; all genes, p Conclusion Taken together, the profile of C5L2 receptor, ASP gene expression and metabolic factors in adipose tissue from morbidly obese HAT subjects suggests a compensatory response associated with the increased plasma ASP and TG.

  1. Microarray gene expression during early healing of GBR-treated calvarial critical size defects.

    Science.gov (United States)

    Al-Kattan, R; Retzepi, M; Calciolari, E; Donos, N

    2017-10-01

    To investigate the gene expression and molecular pathways implicated in the regulation of the osseous healing process following guided bone regeneration (GBR). Six 6-month-old Wistar male rats were used. Standardized 5-mm critical size defects were created in the parietal bones of each animal and treated with an extracranial and intracranial ePTFE membrane, according to the GBR principle. Three animals were randomly sacrificed after 7 and 15 days of healing. Total RNA was extracted from each sample and prepared for gene expression analysis. RNA quality and quantity were assessed, followed by hybridization of the cRNA to Affymetrix GeneChip Rat Genome 230 2.0 Arrays. The Affymetrix data were processed, and first-order analysis, quality control and statistical analysis were performed. Biological interpretation was performed via pathway and Gene Ontology (GO) analysis. Between the 7- and 15-day samples, 538 genes were differently regulated. At day 7, inflammatory and immune responses were clearly upregulated. In addition, GO terms related to angiogenesis and cell cycle regulation were overexpressed. At day 15, a more complex cellular activity and cell metabolism were evident. The bone formation processes were significantly overexpressed, with several genes encoding growth factors, enzyme activity, and extracellular matrix formation found as upregulated. Remarkably, a negative regulation of Wnt signalling pathway was observed at 15 days. The gene expression profile of the cells participating in osseous formation varied depending on the healing stage. A number of candidate genes that seem differentially expressed during early stages of intramembranous bone regeneration was suggested. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments

    Directory of Open Access Journals (Sweden)

    Kohlbacher Oliver

    2008-12-01

    Full Text Available Abstract Background High-throughput methods that allow for measuring the expression of thousands of genes or proteins simultaneously have opened new avenues for studying biochemical processes. While the noisiness of the data necessitates an extensive pre-processing of the raw data, the high dimensionality requires effective statistical analysis methods that facilitate the identification of crucial biological features and relations. For these reasons, the evaluation and interpretation of expression data is a complex, labor-intensive multi-step process. While a variety of tools for normalizing, analysing, or visualizing expression profiles has been developed in the last years, most of these tools offer only functionality for accomplishing certain steps of the evaluation pipeline. Results Here, we present a web-based toolbox that provides rich functionality for all steps of the evaluation pipeline. Our tool GeneTrailExpress offers besides standard normalization procedures powerful statistical analysis methods for studying a large variety of biological categories and pathways. Furthermore, an integrated graph visualization tool, BiNA, enables the user to draw the relevant biological pathways applying cutting-edge graph-layout algorithms. Conclusion Our gene expression toolbox with its interactive visualization of the pathways and the expression values projected onto the nodes will simplify the analysis and interpretation of biochemical pathways considerably.

  3. Principles of gene microarray data analysis.

    Science.gov (United States)

    Mocellin, Simone; Rossi, Carlo Riccardo

    2007-01-01

    The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.

  4. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data.

    Science.gov (United States)

    Ren, Zhonglu; Wang, Wenhui; Li, Jinming

    2016-02-01

    Identifying colon cancer subtypes based on molecular signatures may allow for a more rational, patient-specific approach to therapy in the future. Classifications using gene expression data have been attempted before with little concordance between the different studies carried out. In this study we aimed to uncover subtypes of colon cancer that have distinct biological characteristics and identify a set of novel biomarkers which could best reflect the clinical and/or biological characteristics of each subtype. Clustering analysis and discriminant analysis were utilized to discover the subtypes in two different molecular levels on 153 colon cancer samples from The Cancer Genome Atlas (TCGA) Data Portal. At gene expression level, we identified two major subtypes, ECL1 (expression cluster 1) and ECL2 (expression cluster 2) and a list of signature genes. Due to the heterogeneity of colon cancer, the subtype ECL1 can be further subdivided into three nested subclasses, and HOTAIR were found upregulated in subclass 2. At DNA methylation level, we uncovered three major subtypes, MCL1 (methylation cluster 1), MCL2 (methylation cluster 2) and MCL3 (methylation cluster 3). We found only three subtypes of CpG island methylator phenotype (CIMP) in colon cancer instead of the four subtypes in the previous reports, and we found no sufficient evidence to subdivide MCL3 into two distinct subgroups.

  5. Gene expression analysis in response to osmotic stimuli in the intervertebral disc with DNA microarray.

    Science.gov (United States)

    Zhang, Wenzhi; Li, Xu; Shang, Xifu; Zhao, Qichun; Hu, Yefeng; Xu, Xiang; He, Rui; Duan, Liqun; Zhang, Feng

    2013-12-27

    Intervertebral disc (IVD) cells experience a broad range of physicochemical stimuli under physiologic conditions, including alterations in their osmotic environment. At present, the molecular mechanisms underlying osmotic regulation in IVD cells are poorly understood. This study aims to screen genes affected by changes in osmotic pressure in cells of subjects aged 29 to 63 years old, with top-scoring pair (TSP) method. Gene expression data set GSE1648 was downloaded from Gene Expression Omnibus database, including four hyper-osmotic stimuli samples, four iso-osmotic stimuli samples, and three hypo-osmotic stimuli samples. A novel, simple method, referred to as the TSP, was used in this study. Through this method, there was no need to perform data normalization and transformation before data analysis. A total of five pairs of genes ((CYP2A6, FNTB), (PRPF8, TARDBP), (RPS5, OAZ1), (SLC25A3, NPM1) and (CBX3, SRSF9)) were selected based on the TSP method. We inferred that all these genes might play important roles in response to osmotic stimuli and age in IVD cells. Additionally, hyper-osmotic and iso-osmotic stimuli conditions were adverse factors for IVD cells. We anticipate that our results will provide new thoughts and methods for the study of IVD disease.

  6. Microarray analysis of gene expression in peripheral blood mononuclear cells from dioxin-exposed human subjects

    International Nuclear Information System (INIS)

    McHale, Cliona M.; Zhang, Luoping; Hubbard, Alan E.; Zhao, Xin; Baccarelli, Andrea; Pesatori, Angela C.; Smith, Martyn T.; Landi, Maria Teresa

    2007-01-01

    Tetrachlorodibenzo-p-dioxin (TCDD) is classified as a human carcinogen and exerts toxic effects on the skin (chloracne). Effects on reproductive, immunological, and endocrine systems have also been observed in animal models. TCDD acts through the aryl hydrocarbon receptor (AhR) pathway influencing largely unknown gene networks. An industrial accident in Seveso, Italy in 1976 exposed thousands of people to substantial quantities of TCDD. Twenty years after the exposure, this study examines global gene expression in the mononuclear cells of 26 Seveso female never smokers, with similar age, alcohol consumption, use of medications, and background plasma levels of 22 dioxin congeners unrelated to the Seveso accident. Plasma dioxin levels were still elevated in the exposed subjects. We performed analyses in two different comparison groups. The first included high-exposed study subjects compared with individuals with background TCDD levels (average plasma levels 99.4 and 6.7 ppt, respectively); the second compared subjects who developed chloracne after the accident, and those who did not develop this disease. Overall, we observed a modest alteration of gene expression based on dioxin levels or on chloracne status. In the comparison between high levels and background levels of TCDD, four histone genes were up-regulated and modified expression of HIST1H3H was confirmed by real-time PCR. In the comparison between chloracne case-control subjects, five hemoglobin genes were up-regulated. Pathway analysis revealed two major networks for each comparison, involving cell proliferation, apoptosis, immunological and hematological disease, and other pathways. Further examination of the role of these genes in dioxin induced-toxicity is warranted

  7. Discovery of distinctive gene expression profiles in rheumatoid synovium using cDNA microarray technology: evidence for the existence of multiple pathways of tissue destruction and repair.

    NARCIS (Netherlands)

    Kraan, TC van der Pouw; Gaalen, van FA; Huizinga, T.W.; Pieterman, E; Breedveld, F.C.; Verweij, C.L.

    2003-01-01

    Rheumatoid arthritis (RA) is a heterogeneous disease. We used cDNA microarray technology to subclassify RA patients and disclose disease pathways in rheumatoid synovium. Hierarchical clustering of gene expression data identified two main groups of tissues (RA-I and RA-II). A total of 121 genes were

  8. Gene Expression in the Normal Adult Human Kidney Assessed by Complementary DNA Microarray

    OpenAIRE

    Higgins, John P.T.; Wang, Lingli; Kambham, Neeraja; Montgomery, Kelli; Mason, Veronica; Vogelmann, Stefanie U.; Lemley, Kevin V.; Brown, Patrick O.; Brooks, James D.; van de Rijn, Matt

    2004-01-01

    The kidney is a highly specialized organ with a complex, stereotyped architecture and a great diversity of functions and cell types. Because the microscopic organization of the nephron, the functional unit of the kidney, has a consistent relationship to the macroscopic anatomy of the kidney, knowledge of the characteristic patterns of gene expression in different compartments of the kidney could provide insight into the functions and functional organization of the normal nephron. We studied g...

  9. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data

    OpenAIRE

    REN, ZHONGLU; WANG, WENHUI; LI, JINMING

    2015-01-01

    Identifying colon cancer subtypes based on molecular signatures may allow for a more rational, patient-specific approach to therapy in the future. Classifications using gene expression data have been attempted before with little concordance between the different studies carried out. In this study we aimed to uncover subtypes of colon cancer that have distinct biological characteristics and identify a set of novel biomarkers which could best reflect the clinical and/or biological characteristi...

  10. Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray.

    Directory of Open Access Journals (Sweden)

    Kouji Satoh

    Full Text Available Rice (Oryza sativa L. is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE genes, 33K annotated non-expressed (ANE genes, and 5.5K non-annotated expressed (NAE genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria.

  11. Detection of EBV Infection and Gene Expression in Oral Cancer from Patients in Taiwan by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Ching-Yu Yen

    2009-01-01

    Full Text Available Epstein-Barr virus is known to cause nasopharyngeal carcinoma. Although oral cavity is located close to the nasal pharynx, the pathogenetic role of Epstein-Barr virus (EBV in oral cancers is unclear. This molecular epidemiology study uses EBV genomic microarray (EBV-chip to simultaneously detect the prevalent rate and viral gene expression patterns in 57 oral squamous cell carcinoma biopsies (OSCC collected from patients in Taiwan. The majority of the specimens (82.5% were EBV-positive that probably expressed coincidently the genes for EBNAs, LMP2A and 2B, and certain structural proteins. Importantly, the genes fabricated at the spots 61 (BBRF1, BBRF2, and BBRF3 and 68 (BDLF4 and BDRF1 on EBV-chip were actively expressed in a significantly greater number of OSCC exhibiting exophytic morphology or ulceration than those tissues with deep invasive lesions (P=.0265 and .0141, resp.. The results may thus provide the lead information for understanding the role of EBV in oral cancer pathogenesis.

  12. Gene expression microarray profiles of cumulus cells in lean and overweight-obese polycystic ovary syndrome patients.

    Science.gov (United States)

    Kenigsberg, Shlomit; Bentov, Yaakov; Chalifa-Caspi, Vered; Potashnik, Gad; Ofir, Rivka; Birk, Ohad S

    2009-02-01

    The aim of this work was to study gene expression patterns of cultured cumulus cells from lean and overweight-obese polycystic ovary syndrome (PCOS) patients using genome-wide oligonucleotide microarray. The study included 25 patients undergoing in vitro fertilization and intra-cytoplasmic sperm injection: 12 diagnosed with PCOS and 13 matching controls. Each of the groups was subdivided into lean (body mass index (BMI) 27) subgroups. The following comparisons of gene expression data were made: lean PCOS versus lean controls, lean PCOS versus overweight PCOS, all PCOS versus all controls, overweight PCOS versus overweight controls, overweight controls versus lean controls and all overweight versus all lean. The largest number of differentially expressed genes (DEGs), with fold change (FC) |FC| >or= 1.5 and P-value lean PCOS versus lean controls comparison (487) with most of these genes being down-regulated in PCOS. The second largest group of DEGs originated from the comparison of lean PCOS versus overweight PCOS (305). The other comparisons resulted in a much smaller number of DEGs (174, 109, 125 and 12, respectively). In the comparison of lean PCOS with lean controls, most DEGs were transcription factors and components of the extracellular matrix and two pathways, Wnt/beta-catenin and mitogen-activated protein kinase. When comparing overweight PCOS with overweight controls, most DEGs were of pathways related to insulin signaling, metabolism and energy production. The finding of unique gene expression patterns in cumulus cells from the two PCOS subtypes is in agreement with other studies that have found the two to be separate entities with potentially different pathophysiologies.

  13. Microarray-based analysis of the differential expression of melanin synthesis genes in dark and light-muzzle Korean cattle.

    Science.gov (United States)

    Kim, Sang Hwan; Hwang, Sue Yun; Yoon, Jong Taek

    2014-01-01

    The coat color of mammals is determined by the melanogenesis pathway, which is responsible for maintaining the balance between black-brown eumelanin and yellow-reddish pheomelanin. It is also believed that the color of the bovine muzzle is regulated in a similar manner; however, the molecular mechanism underlying pigment deposition in the dark-muzzle has yet to be elucidated. The aim of the present study was to identify melanogenesis-associated genes that are differentially expressed in the dark vs. light muzzle of native Korean cows. Using microarray clustering and real-time polymerase chain reaction techniques, we observed that the expression of genes involved in the mitogen-activated protein kinase (MAPK) and Wnt signaling pathways is distinctively regulated in the dark and light muzzle tissues. Differential expression of tyrosinase was also noticed, although the difference was not as distinct as those of MAPK and Wnt. We hypothesize that emphasis on the MAPK pathway in the dark-muzzle induces eumelanin synthesis through the activation of cAMP response element-binding protein and tyrosinase, while activation of Wnt signaling counteracts this process and raises the amount of pheomelanin in the light-muzzle. We also found 2 novel genes (GenBank No. NM-001076026 and XM-588439) with increase expression in the black nose, which may provide additional information about the mechanism of nose pigmentation. Regarding the increasing interest in the genetic diversity of cattle stocks, genes we identified for differential expression in the dark vs. light muzzle may serve as novel markers for genetic diversity among cows based on the muzzle color phenotype.

  14. Microarray-based analysis of the differential expression of melanin synthesis genes in dark and light-muzzle Korean cattle.

    Directory of Open Access Journals (Sweden)

    Sang Hwan Kim

    Full Text Available The coat color of mammals is determined by the melanogenesis pathway, which is responsible for maintaining the balance between black-brown eumelanin and yellow-reddish pheomelanin. It is also believed that the color of the bovine muzzle is regulated in a similar manner; however, the molecular mechanism underlying pigment deposition in the dark-muzzle has yet to be elucidated. The aim of the present study was to identify melanogenesis-associated genes that are differentially expressed in the dark vs. light muzzle of native Korean cows. Using microarray clustering and real-time polymerase chain reaction techniques, we observed that the expression of genes involved in the mitogen-activated protein kinase (MAPK and Wnt signaling pathways is distinctively regulated in the dark and light muzzle tissues. Differential expression of tyrosinase was also noticed, although the difference was not as distinct as those of MAPK and Wnt. We hypothesize that emphasis on the MAPK pathway in the dark-muzzle induces eumelanin synthesis through the activation of cAMP response element-binding protein and tyrosinase, while activation of Wnt signaling counteracts this process and raises the amount of pheomelanin in the light-muzzle. We also found 2 novel genes (GenBank No. NM-001076026 and XM-588439 with increase expression in the black nose, which may provide additional information about the mechanism of nose pigmentation. Regarding the increasing interest in the genetic diversity of cattle stocks, genes we identified for differential expression in the dark vs. light muzzle may serve as novel markers for genetic diversity among cows based on the muzzle color phenotype.

  15. Analysis of baseline and cisplatin-inducible gene expression in Fanconi anemia cells using oligonucleotide-based microarrays

    Directory of Open Access Journals (Sweden)

    Liu Johnson M

    2002-11-01

    Full Text Available Abstract Background Patients with Fanconi anemia (FA suffer from multiple defects, most notably of the hematological compartment (bone marrow failure, and susceptibility to cancer. Cells from FA patients show increased spontaneous chromosomal damage, which is aggravated by exposure to low concentrations of DNA cross-linking agents such as mitomycin C or cisplatin. Five of the identified FA proteins form a nuclear core complex. However, the molecular function of these proteins remains obscure. Methods Oligonucleotide microarrays were used to compare the expression of approximately 12,000 genes from FA cells with matched controls. Expression profiles were studied in lymphoblastoid cell lines derived from three different FA patients, one from the FA-A and two from the FA-C complementation groups. The isogenic control cell lines were obtained by either transfecting the cells with vectors expressing the complementing cDNAs or by using a spontaneous revertant cell line derived from the same patient. In addition, we analyzed expression profiles from two cell line couples at several time points after a 1-hour pulse treatment with a discriminating dose of cisplatin. Results Analysis of the expression profiles showed differences in expression of a number of genes, many of which have unknown function or are difficult to relate to the FA defect. However, from a selected number of proteins involved in cell cycle regulation, DNA repair and chromatin structure, Western blot analysis showed that p21waf1/Cip1 was significantly upregulated after low dose cisplatin treatment in FA cells specifically (as well as being expressed at elevated levels in untreated FA cells. Conclusions The observed increase in expression of p21waf1/Cip1 after treatment of FA cells with crosslinkers suggests that the sustained elevated levels of p21waf1/Cip1 in untreated FA cells detected by Western blot analysis likely reflect increased spontaneous damage in these cells.

  16. ArraySolver: an algorithm for colour-coded graphical display and Wilcoxon signed-rank statistics for comparing microarray gene expression data.

    Science.gov (United States)

    Khan, Haseeb Ahmad

    2004-01-01

    The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for transferring data from one platform to other. Various statistical methods, including the t-test, analysis of variance, Pearson test and Mann-Whitney U test, have been reported for comparing microarray data, whereas the utilization of the Wilcoxon signed-rank test, which is an appropriate test for two-groups comparison of gene expression data, has largely been neglected in microarray studies. The aim of this investigation was to build an integrated tool, ArraySolver, for colour-coded graphical display and comparison of gene expression data using the Wilcoxon signed-rank test. The results of software validation showed similar outputs with ArraySolver and SPSS for large datasets. Whereas the former program appeared to be more accurate for 25 or fewer pairs (n < or = 25), suggesting its potential application in analysing molecular signatures that usually contain small numbers of genes. The main advantages of ArraySolver are easy data selection, convenient report format, accurate statistics and the familiar Excel platform.

  17. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys

    International Nuclear Information System (INIS)

    Schuster, B.E.; Roszell, L.E.; Murr, L.E.; Ramirez, D.A.; Demaree, J.D.; Klotz, B.R.; Rosencrance, A.B.; Dennis, W.E.; Bao, W.; Perkins, E.J.; Dillman, J.F.; Bannon, D.I.

    2012-01-01

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up‐regulated and those involved with muscle development and differentiation significantly down‐regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin‐dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas. -- Highlights: ► Tungsten/nickel/cobalt, tungsten/nickel/iron, and pure tungsten were studied. ► Male Fischer rats implanted with

  18. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, B.E. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, B434 Mulberry Road, Aberdeen Proving Ground, MD 21005-5609 (United States); Roszell, L.E. [U.S. Army Institute of Public Health, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010‐5403 (United States); Murr, L.E.; Ramirez, D.A. [Department of Metallurgical and Materials Engineering, University of Texas, El Paso, TX 79968 (United States); Demaree, J.D. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, B434 Mulberry Road, Aberdeen Proving Ground, MD 21005-5609 (United States); Klotz, B.R. [Dynamic Science Inc., Aberdeen Proving Ground, MD 21005‐5609 (United States); Rosencrance, A.B.; Dennis, W.E. [U.S. Army Center for Environmental Health Research, Department of Chemistry, Ft. Detrick, MD 21702‐5010 (United States); Bao, W. [SAS Institute, Inc. SAS Campus Drive, Cary, NC 27513 (United States); Perkins, E.J. [U.S. Army Engineer Research and Development Center, 3909 Hall Ferry Road, Vicksburg MS 39180 (United States); Dillman, J.F. [U.S. Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Aberdeen Proving Ground, MD 21010‐5400 (United States); Bannon, D.I., E-mail: desmond.bannon@us.army.mil [U.S. Army Institute of Public Health, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010‐5403 (United States)

    2012-11-15

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up‐regulated and those involved with muscle development and differentiation significantly down‐regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin‐dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas. -- Highlights: ► Tungsten/nickel/cobalt, tungsten/nickel/iron, and pure tungsten were studied. ► Male Fischer rats implanted with

  19. Gene expression profiling to characterize sediment toxicity – a pilot study using Caenorhabditis elegans whole genome microarrays

    Directory of Open Access Journals (Sweden)

    Reifferscheid Georg

    2009-04-01

    Full Text Available Abstract Background Traditionally, toxicity of river sediments is assessed using whole sediment tests with benthic organisms. The challenge, however, is the differentiation between multiple effects caused by complex contaminant mixtures and the unspecific toxicity endpoints such as survival, growth or reproduction. The use of gene expression profiling facilitates the identification of transcriptional changes at the molecular level that are specific to the bio-available fraction of pollutants. Results In this pilot study, we exposed the nematode Caenorhabditis elegans to three sediments of German rivers with varying (low, medium and high levels of heavy metal and organic contamination. Beside chemical analysis, three standard bioassays were performed: reproduction of C. elegans, genotoxicity (Comet assay and endocrine disruption (YES test. Gene expression was profiled using a whole genome DNA-microarray approach to identify overrepresented functional gene categories and derived cellular processes. Disaccharide and glycogen metabolism were found to be affected, whereas further functional pathways, such as oxidative phosphorylation, ribosome biogenesis, metabolism of xenobiotics, aging and several developmental processes were found to be differentially regulated only in response to the most contaminated sediment. Conclusion This study demonstrates how ecotoxicogenomics can identify transcriptional responses in complex mixture scenarios to distinguish different samples of river sediments.

  20. Microarray analysis of gene expression patterns of high lycopene tomato generated from seeds after long-term space flight

    Science.gov (United States)

    Lu, Jinying; Ren, Chunxiao; Pan, Yi; Nechitailo, Galina S.; Liu, Min

    Lycopene content is a most vital trait of tomatoes due to the role of lycopene in reducing the risk of some kinds of cancers. In this experiment, we gained a high lycopene (hl) tomato (named HY-2), after seven generations of self-cross selection, from seeds Russian MNP-1 carried in Russia MIR space station for six years. HPLC result showed that the lycopene content was 1.6 times more than that in Russian MNP-1 (the wild type). Microarray analysis presented the general profile of differential expressed genes at the tomato developmental stage of 7DPB (days post breaker). One hundred and forty three differential expression genes were identified according to the following criterion: the average changes were no less than 1.5 folds with q-value (similar to FDR) less than 0.05 or changes were no less than 1.5 folds in all three biological replications. Most of the differential expressed genes were mainly involved in metabolism, response to stimulus, biosynthesis, development and regulation. Particularly, we discussed the genes involved in protein metabolism, response to unfolded protein, carotenoid biosynthesis and photosynthesis that might be related to the fruit development and the accumulation of lycopene. What's more, we conducted QRT-PCR validation of five key genes (Fps, CrtL-b, CrtR-b, Zep and Nxs) in the lycopene biosynthesis pathway through time courses and that provided the direct molecular evidence for the hl phenotype. Our results demonstrate that long-term space flight, as a rarely used tool, can positively cause some beneficial mutations in the seeds and thus to help to generate a high quality variety, combined with ground selections.

  1. Prenatal alcohol exposure alters gene expression in the rat brain: Experimental design and bioinformatic analysis of microarray data

    Directory of Open Access Journals (Sweden)

    Alexandre A. Lussier

    2015-09-01

    Full Text Available We previously identified gene expression changes in the prefrontal cortex and hippocampus of rats prenatally exposed to alcohol under both steady-state and challenge conditions (Lussier et al., 2015, Alcohol.: Clin. Exp. Res., 39, 251–261. In this study, adult female rats from three prenatal treatment groups (ad libitum-fed control, pair-fed, and ethanol-fed were injected with physiological saline solution or complete Freund׳s adjuvant (CFA to induce arthritis (adjuvant-induced arthritis, AA. The prefrontal cortex and hippocampus were collected 16 days (peak of arthritis or 39 days (during recovery following injection, and whole genome gene expression was assayed using Illumina׳s RatRef-12 expression microarray. Here, we provide additional metadata, detailed explanations of data pre-processing steps and quality control, as well as a basic framework for the bioinformatic analyses performed. The datasets from this study are publicly available on the GEO repository (accession number GSE63561.

  2. Gene expression dose-response changes in microarrays after exposure of human peripheral lung epithelial cells to nickel(II).

    Science.gov (United States)

    Cheng, Robert Y S; Zhao, Ailian; Alvord, W Gregory; Powell, Douglas A; Bare, Robert M; Masuda, Akira; Takahashi, Takashi; Anderson, Lucy M; Kasprzak, Kazimierz S

    2003-08-15

    Occupational exposure to nickel compounds is associated with lung cancer risk; both genotoxic and epigenetic mechanisms have been proposed. For comprehensive examination of the acute effects of nickel(II) acetate on gene expression in cultured human peripheral lung epithelial HPL1D cells, microarray analyses were carried out with cDNA chips (approximately 8000 cDNAs). Cells were exposed for 24 h to nontoxic (50, 100, and 200 microM) or toxic (400, 800, and 1600 microM) nickel(II) concentrations. Cluster analysis was applied to the 868 genes with > or = 2-fold change at any concentration. Two main clusters showed marked up- or down-regulation at the highest, toxic concentrations. The data further subdivided into 10 highly cohesive clusters with high probability, and of these only 2 had the same response trend at low nontoxic as at high concentrations, an observation of clear relevance to the process of high- to low-dose extrapolation in risk assessment. There were 113 genes showing > or = 2-fold change at the three lower nontoxic concentrations, those most relevant to in vivo carcinogenesis. In addition to expected responses of metallothionein, ferritin, and heat-shock proteins, the results revealed for the first time changed expression of some potential cancer-related genes in response to low-dose Ni(II): RhoA, dyskerin, interferon regulatory factor 1, RAD21 homologue, and tumor protein, translationally controlled. Overall, most of the genes impacted by nontoxic concentrations of nickel(II) acetate related to gene transcription, protein synthesis and stability, cytoskeleton, signaling, metabolism, cell membrane, and extracellular matrix.

  3. Effects of temperature on gene expression patterns in Leptospira interrogans serovar Lai as assessed by whole-genome microarrays.

    Science.gov (United States)

    Lo, Miranda; Bulach, Dieter M; Powell, David R; Haake, David A; Matsunaga, James; Paustian, Michael L; Zuerner, Richard L; Adler, Ben

    2006-10-01

    Leptospirosis is an important zoonosis of worldwide distribution. Humans become infected via exposure to pathogenic Leptospira spp. from infected animals or contaminated water or soil. The availability of genome sequences for Leptospira interrogans, serovars Lai and Copenhageni, has opened up opportunities to examine global transcription profiles using microarray technology. Temperature is a key environmental factor known to affect leptospiral protein expression. Leptospira spp. can grow in artificial media at a range of temperatures reflecting conditions found in the environment and the mammalian host. Therefore, transcriptional changes were compared between cultures grown at 20 degrees C, 30 degrees C, 37 degrees C, and 39 degrees C to represent ambient temperatures in the environment, growth under laboratory conditions, and temperatures in healthy and febrile hosts. Data from direct pairwise comparisons of the four temperatures were consolidated to examine transcriptional changes at two generalized biological conditions representing mammalian physiological temperatures (37 degrees C and 39 degrees C) versus environmental temperatures (20 degrees C and 30 degrees C). Additionally, cultures grown at 30 degrees C then shifted overnight to 37 degrees C were compared with those grown long-term at 30 degrees C and 37 degrees C to identify genes potentially expressed in the early stages of infection. Comparison of data sets from physiological versus environmental experiments with upshift experiments provided novel insights into possible transcriptional changes at different stages of infection. Changes included differential expression of chemotaxis and motility genes, signal transduction systems, and genes encoding proteins involved in alteration of the outer membrane. These findings indicate that temperature is an important factor regulating expression of proteins that facilitate invasion and establishment of disease.

  4. Gene expression microarray analysis encompassing metamorphosis and the onset of calcification in the scleractinian coral Montastraea faveolata.

    Science.gov (United States)

    Reyes-Bermudez, Alejandro; Desalvo, Michael K; Voolstra, Christian R; Sunagawa, Shinichi; Szmant, Alina M; Iglesias-Prieto, Roberto; Medina, Mónica

    2009-01-01

    Similar to many marine invertebrates, scleractinian corals experience a dramatic morphological transformation, as well as a habitat switch, upon settlement and metamorphosis. At this time, planula larvae transform from non-calcifying, demersal, motile organisms into sessile, calcifying, benthic juvenile polyps. We performed gene expression microarray analyses between planulae, aposymbiotic primary polyps, and symbiotic adult tissue to elucidate the molecular mechanisms underlying coral metamorphosis and early stages of calcification in the Robust/Short clade scleractinian coral Montastraea faveolata. Among the annotated genes, the most abundant upregulated transcripts in the planula stage are involved in protein synthesis, chromatin assembly and mitochondrial metabolism; the polyp stage, morphogenesis, protein catabolism and organic matrix synthesis; and the adult stage, sexual reproduction, stress response and symbiosis. We also present evidence showing that the planula and adult transcriptomes are more similar to each other than to the polyp transcriptome. Our results also point to a large number of uncharacterized adult coral-specific genes likely involved in coral-specific functions such as symbiosis and calcification.

  5. A newly designed 45 to 60 mer oligonucleotide Agilent platform microarray for global gene expression studies of Synechocystis PCC6803: example salt stress experiment

    NARCIS (Netherlands)

    Aguirre von Wobeser, E.; Huisman, J.; Ibelings, B.; Matthijs, H.C.P.; Matthijs, H.C.P.

    2005-01-01

    A newly designed 45 to 60 mer oligonucleotide Agilent platform microarray for global gene expression studies of Synechocystis PCC6803: example salt stress experiment Eneas Aguirre-von-Wobeser 1, Jef Huisman1, Bas Ibelings2 and Hans C.P. Matthijs1 1 Universiteit van Amsterdam, Amsterdam, The

  6. Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data.

    Directory of Open Access Journals (Sweden)

    Qingzhong Liu

    Full Text Available Microarray data has a high dimension of variables but available datasets usually have only a small number of samples, thereby making the study of such datasets interesting and challenging. In the task of analyzing microarray data for the purpose of, e.g., predicting gene-disease association, feature selection is very important because it provides a way to handle the high dimensionality by exploiting information redundancy induced by associations among genetic markers. Judicious feature selection in microarray data analysis can result in significant reduction of cost while maintaining or improving the classification or prediction accuracy of learning machines that are employed to sort out the datasets. In this paper, we propose a gene selection method called Recursive Feature Addition (RFA, which combines supervised learning and statistical similarity measures. We compare our method with the following gene selection methods: Support Vector Machine Recursive Feature Elimination (SVMRFE, Leave-One-Out Calculation Sequential Forward Selection (LOOCSFS, Gradient based Leave-one-out Gene Selection (GLGS. To evaluate the performance of these gene selection methods, we employ several popular learning classifiers on the MicroArray Quality Control phase II on predictive modeling (MAQC-II breast cancer dataset and the MAQC-II multiple myeloma dataset. Experimental results show that gene selection is strictly paired with learning classifier. Overall, our approach outperforms other compared methods. The biological functional analysis based on the MAQC-II breast cancer dataset convinced us to apply our method for phenotype prediction. Additionally, learning classifiers also play important roles in the classification of microarray data and our experimental results indicate that the Nearest Mean Scale Classifier (NMSC is a good choice due to its prediction reliability and its stability across the three performance measurements: Testing accuracy, MCC values, and

  7. Microarray evaluation of gene expression profiles in inflamed and healthy human dental pulp: the role of IL1beta and CD40 in pulp inflammation.

    Science.gov (United States)

    Gatta, V; Zizzari, V L; Dd ' Amico, V; Salini, L; D' Aurora, M; Franchi, S; Antonucci, I; Sberna, M T; Gherlone, E; Stuppia, L; Tetè, S

    2012-01-01

    Dental pulp undergoes a number of changes passing from healthy status to inflammation due to deep decay. These changes are regulated by several genes resulting differently expressed in inflamed and healthy dental pulp, and the knowledge of the processes underlying this differential expression is of great relevance in the identification of the pathogenesis of the disease. In this study, the gene expression profile of inflamed and healthy dental pulps were compared by microarray analysis, and data obtained were analyzed by Ingenuity Pathway Analysis (IPA) software. This analysis allows to focus on a variety of genes, typically expressed in inflamed tissues. The comparison analysis showed an increased expression of several genes in inflamed pulp, among which IL1β and CD40 resulted of particular interest. These results indicate that gene expression profile of human dental pulp in different physiological and pathological conditions may become an useful tool for improving our knowledge about processes regulating pulp inflammation.

  8. Layered signaling regulatory networks analysis of gene expression involved in malignant tumorigenesis of non-resolving ulcerative colitis via integration of cross-study microarray profiles.

    Science.gov (United States)

    Fan, Shengjun; Pan, Zhenyu; Geng, Qiang; Li, Xin; Wang, Yefan; An, Yu; Xu, Yan; Tie, Lu; Pan, Yan; Li, Xuejun

    2013-01-01

    Ulcerative colitis (UC) was the most frequently diagnosed inflammatory bowel disease (IBD) and closely linked to colorectal carcinogenesis. By far, the underlying mechanisms associated with the disease are still unclear. With the increasing accumulation of microarray gene expression profiles, it is profitable to gain a systematic perspective based on gene regulatory networks to better elucidate the roles of genes associated with disorders. However, a major challenge for microarray data analysis is the integration of multiple-studies generated by different groups. In this study, firstly, we modeled a signaling regulatory network associated with colorectal cancer (CRC) initiation via integration of cross-study microarray expression data sets using Empirical Bayes (EB) algorithm. Secondly, a manually curated human cancer signaling map was established via comprehensive retrieval of the publicly available repositories. Finally, the co-differently-expressed genes were manually curated to portray the layered signaling regulatory networks. Overall, the remodeled signaling regulatory networks were separated into four major layers including extracellular, membrane, cytoplasm and nucleus, which led to the identification of five core biological processes and four signaling pathways associated with colorectal carcinogenesis. As a result, our biological interpretation highlighted the importance of EGF/EGFR signaling pathway, EPO signaling pathway, T cell signal transduction and members of the BCR signaling pathway, which were responsible for the malignant transition of CRC from the benign UC to the aggressive one. The present study illustrated a standardized normalization approach for cross-study microarray expression data sets. Our model for signaling networks construction was based on the experimentally-supported interaction and microarray co-expression modeling. Pathway-based signaling regulatory networks analysis sketched a directive insight into colorectal carcinogenesis

  9. Temporal Gene Expression Profiling of the Wheat Leaf Rust Pathosystem Using cDNA Microarray Reveals Differences in Compatible and Incompatible Defence Pathways

    OpenAIRE

    Fofana, Bourlaye; Banks, Travis W.; McCallum, Brent; Strelkov, Stephen E.; Cloutier, Sylvie

    2007-01-01

    In this study, we detail the construction of a custom cDNA spotted microarray containing 7728 wheat ESTs and the use of the array to identify host genes that are differentially expressed upon challenges with leaf rust fungal pathogens. Wheat cultivar RL6003 (Thatcher Lr1) was inoculated with Puccinia triticina virulence phenotypes BBB (incompatible) or TJB (7-2) (compatible) and sampled at four different time points (3, 6, 12, and 24 hours) after inoculation. Transcript expression levels rela...

  10. A Microarray Study of Carpet-Shell Clam (Ruditapes decussatus Shows Common and Organ-Specific Growth-Related Gene Expression Differences in Gills and Digestive Gland

    Directory of Open Access Journals (Sweden)

    Carlos Saavedra

    2017-11-01

    Full Text Available Growth rate is one of the most important traits from the point of view of individual fitness and commercial production in mollusks, but its molecular and physiological basis is poorly known. We have studied differential gene expression related to differences in growth rate in adult individuals of the commercial marine clam Ruditapes decussatus. Gene expression in the gills and the digestive gland was analyzed in 5 fast-growing and five slow-growing animals by means of an oligonucleotide microarray containing 14,003 probes. A total of 356 differentially expressed genes (DEG were found. We tested the hypothesis that differential expression might be concentrated at the growth control gene core (GCGC, i.e., the set of genes that underlie the molecular mechanisms of genetic control of tissue and organ growth and body size, as demonstrated in model organisms. The GCGC includes the genes coding for enzymes of the insulin/insulin-like growth factor signaling pathway (IIS, enzymes of four additional signaling pathways (Raf/Ras/Mapk, Jnk, TOR, and Hippo, and transcription factors acting at the end of those pathways. Only two out of 97 GCGC genes present in the microarray showed differential expression, indicating a very little contribution of GCGC genes to growth-related differential gene expression. Forty eight DEGs were shared by both organs, with gene ontology (GO annotations corresponding to transcription regulation, RNA splicing, sugar metabolism, protein catabolism, immunity, defense against pathogens, and fatty acid biosynthesis. GO term enrichment tests indicated that genes related to growth regulation, development and morphogenesis, extracellular matrix proteins, and proteolysis were overrepresented in the gills. In the digestive gland overrepresented GO terms referred to gene expression control through chromatin rearrangement, RAS-related small GTPases, glucolysis, and energy metabolism. These analyses suggest a relevant role of, among others

  11. Analyzing Multiple-Probe Microarray: Estimation and Application of Gene Expression Indexes

    KAUST Repository

    Maadooliat, Mehdi; Huang, Jianhua Z.; Hu, Jianhua

    2012-01-01

    model, which is similar to the additive model discussed in Irizarry et al. (2003a) at the logarithm scale. Along this line, Hu et al. (2006) proposed data transformation to improve expression index estimation based on an ad hoc entropy criteria and naive

  12. Mining microarray datasets in nutrition: expression of the GPR120 (n-3 fatty acid receptor/sensor) gene is down-regulated in human adipocytes by macrophage secretions.

    Science.gov (United States)

    Trayhurn, Paul; Denyer, Gareth

    2012-01-01

    Microarray datasets are a rich source of information in nutritional investigation. Targeted mining of microarray data following initial, non-biased bioinformatic analysis can provide key insight into specific genes and metabolic processes of interest. Microarrays from human adipocytes were examined to explore the effects of macrophage secretions on the expression of the G-protein-coupled receptor (GPR) genes that encode fatty acid receptors/sensors. Exposure of the adipocytes to macrophage-conditioned medium for 4 or 24 h had no effect on GPR40 and GPR43 expression, but there was a marked stimulation of GPR84 expression (receptor for medium-chain fatty acids), the mRNA level increasing 13·5-fold at 24 h relative to unconditioned medium. Importantly, expression of GPR120, which encodes an n-3 PUFA receptor/sensor, was strongly inhibited by the conditioned medium (15-fold decrease in mRNA at 24 h). Macrophage secretions have major effects on the expression of fatty acid receptor/sensor genes in human adipocytes, which may lead to an augmentation of the inflammatory response in adipose tissue in obesity.

  13. Microarray and Proteomic Analysis of Brassinosteroid- and Gibberellin-Regulated Gene and Protein Expression in Rice

    OpenAIRE

    Yang, Guangxiao; Komatsu, Setsuko

    2016-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two groups of plant growth regulators essential for normal plant growth and development. To gain insight into the molecular mechanism by which BR and GA regulate the growth and development of plants, especially the monocot plant rice, it is necessary to identify and analyze more genes and proteins that are regulated by them. With the availability of draft sequences of two major types, japonica and indica rice, it has become possible to analyze exp...

  14. Microarray Gene Expression Analysis of Murine Tumor Heterogeneity Defined by Dynamic Contrast-Enhanced MRI

    Directory of Open Access Journals (Sweden)

    Nick G. Costouros

    2002-07-01

    Full Text Available Current methods of studying angiogenesis are limited in their ability to serially evaluate in vivo function throughout a target tissue. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI and pharmacokinetic modeling provide a useful method for evaluating tissue vasculature based on contrast accumulation and washout. While it is often assumed that areas of high contrast enhancement and washout comprise areas of increased angiogenesis and tumor activity, the actual molecular pathways that are active in such areas are poorly understood. Using DCE-MRI in a murine subcutaneous tumor model, we were able to perform pharmacokinetic functional analysis of a tumor, coregistration of MRI images with histological cross-sections, immunohistochemistry, laser capture microdissection, and genetic profiling of tumor heterogeneity based on pharmacokinetic parameters. Using imaging as a template for biologic investigation, we have not found evidence of increased expression of proangiogenic modulators at the transcriptional level in either distinct pharmacokinetic region. Furthermore, these regions show no difference on histology and CD31 immunohistochemistry. However, the expression of ribosomal proteins was greatly increased in high enhancement and washout regions, implying increased protein translation and consequent increased cellular activity. Together, these findings point to the potential importance of posttranscriptional regulation in angiogenesis and the need for the development of angiogenesis-specific contrast agents to evaluate in vivo angiogenesis at a molecular level.

  15. [Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis].

    Science.gov (United States)

    Rao, J; Liu, D; Zhang, N; He, H; Ge, F; Chen, C

    2014-01-01

    Fusarium wilt, caused by a soilborne pathogen Fusarium oxysporum f. sp. lilii, is the major disease of lily (Lilium L.). In order to isolate the genes differentially expressed in a resistant reaction to F. oxysporum in L. regale Wilson, a cDNA library was constructed with L. regale root during F. oxysporum infection using the suppression subtractive hybridization (SSH), and a total of 585 unique expressed sequence tags (ESTs) were obtained. Furthermore, the gene expression profiles in the incompatible interaction between L. regale and F. oxysporum were revealed by oligonucleotide microarray analysis of 585 unique ESTs comparison to the compatible interaction between a susceptible Lilium Oriental Hybrid 'Siberia' and F. oxysporum. The result of expression profile analysis indicated that the genes encoding pathogenesis-related proteins (PRs), antioxidative stress enzymes, secondary metabolism enzymes, transcription factors, signal transduction proteins as well as a large number of unknown genes were involved in early defense response of L. regale to F. oxysporum infection. Moreover, the following quantitative reverse transcription PCR (QRT-PCR) analysis confirmed reliability of the oligonucleotide microarray data. In the present study, isolation of differentially expressed genes in L. regale during response to F. oxysporum helped to uncover the molecular mechanism associated with the resistance of L. regale against F. oxysporum.

  16. Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number.

    Directory of Open Access Journals (Sweden)

    Joseph Andrews

    2010-01-01

    Full Text Available We have previously identified genome-wide DNA methylation changes in a cell line model of breast cancer metastasis. These complex epigenetic changes that we observed, along with concurrent karyotype analyses, have led us to hypothesize that complex genomic alterations in cancer cells (deletions, translocations and ploidy are superimposed over promoter-specific methylation events that are responsible for gene-specific expression changes observed in breast cancer metastasis.We undertook simultaneous high-resolution, whole-genome analyses of MDA-MB-468GFP and MDA-MB-468GFP-LN human breast cancer cell lines (an isogenic, paired lymphatic metastasis cell line model using Affymetrix gene expression (U133, promoter (1.0R, and SNP/CNV (SNP 6.0 microarray platforms to correlate data from gene expression, epigenetic (DNA methylation, and combination copy number variant/single nucleotide polymorphism microarrays. Using Partek Software and Ingenuity Pathway Analysis we integrated datasets from these three platforms and detected multiple hypomethylation and hypermethylation events. Many of these epigenetic alterations correlated with gene expression changes. In addition, gene dosage events correlated with the karyotypic differences observed between the cell lines and were reflected in specific promoter methylation patterns. Gene subsets were identified that correlated hyper (and hypo methylation with the loss (or gain of gene expression and in parallel, with gene dosage losses and gains, respectively. Individual gene targets from these subsets were also validated for their methylation, expression and copy number status, and susceptible gene pathways were identified that may indicate how selective advantage drives the processes of tumourigenesis and metastasis.Our approach allows more precisely profiling of functionally relevant epigenetic signatures that are associated with cancer progression and metastasis.

  17. Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray.

    Science.gov (United States)

    Samolski, Ilanit; de Luis, Alberto; Vizcaíno, Juan Antonio; Monte, Enrique; Suárez, M Belén

    2009-10-13

    It has recently been shown that the Trichoderma fungal species used for biocontrol of plant diseases are capable of interacting with plant roots directly, behaving as symbiotic microorganisms. With a view to providing further information at transcriptomic level about the early response of Trichoderma to a host plant, we developed a high-density oligonucleotide (HDO) microarray encompassing 14,081 Expressed Sequence Tag (EST)-based transcripts from eight Trichoderma spp. and 9,121 genome-derived transcripts of T. reesei, and we have used this microarray to examine the gene expression of T. harzianum either alone or in the presence of tomato plants, chitin, or glucose. Global microarray analysis revealed 1,617 probe sets showing differential expression in T. harzianum mycelia under at least one of the culture conditions tested as compared with one another. Hierarchical clustering and heat map representation showed that the expression patterns obtained in glucose medium clustered separately from the expression patterns observed in the presence of tomato plants and chitin. Annotations using the Blast2GO suite identified 85 of the 257 transcripts whose probe sets afforded up-regulated expression in response to tomato plants. Some of these transcripts were predicted to encode proteins related to Trichoderma-host (fungus or plant) associations, such as Sm1/Elp1 protein, proteases P6281 and PRA1, enchochitinase CHIT42, or QID74 protein, although previously uncharacterized genes were also identified, including those responsible for the possible biosynthesis of nitric oxide, xenobiotic detoxification, mycelium development, or those related to the formation of infection structures in plant tissues. The effectiveness of the Trichoderma HDO microarray to detect different gene responses under different growth conditions in the fungus T. harzianum strongly indicates that this tool should be useful for further assays that include different stages of plant colonization, as well as

  18. Microarray analysis of gene expression profiles of Schistosoma japonicum derived from less-susceptible host water buffalo and susceptible host goat.

    Directory of Open Access Journals (Sweden)

    Jianmei Yang

    Full Text Available BACKGROUND: Water buffalo and goats are natural hosts for S. japonicum in endemic areas of China. The susceptibility of these two hosts to schistosome infection is different, as water buffalo are less conducive to S. japonicum growth and development. To identify genes that may affect schistosome development and survival, we compared gene expression profiles of schistosomes derived from these two natural hosts using high-throughput microarray technology. RESULTS: The worm recovery rate was lower and the length and width of worms from water buffalo were smaller compared to those from goats following S. japonicum infection for 7 weeks. Besides obvious morphological difference between the schistosomes derived from the two hosts, differences were also observed by scanning and transmission electron microscopy. Microarray analysis showed differentially expressed gene patterns for parasites from the two hosts, which revealed that genes related to lipid and nucleotide metabolism, as well as protein folding, sorting, and degradation were upregulated, while others associated with signal transduction, endocrine function, development, immune function, endocytosis, and amino acid/carbohydrate/glycan metabolism were downregulated in schistosomes from water buffalo. KEGG pathway analysis deduced that the differentially expressed genes mainly involved lipid metabolism, the MAPK and ErbB signaling pathways, progesterone-mediated oocyte maturation, dorso-ventral axis formation, reproduction, and endocytosis, etc. CONCLUSION: The microarray gene analysis in schistosomes derived from water buffalo and goats provide a useful platform to disclose differences determining S. japonicum host compatibility to better understand the interplay between natural hosts and parasites, and identify schistosome target genes associated with susceptibility to screen vaccine candidates.

  19. Genome-Wide Screening of Genes Showing Altered Expression in Liver Metastases of Human Colorectal Cancers by cDNA Microarray

    Directory of Open Access Journals (Sweden)

    Rempei Yanagawa

    2001-01-01

    Full Text Available In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions.

  20. Short-term arginine deprivation results in large-scale modulation of hepatic gene expression in both normal and tumor cells: microarray bioinformatic analysis

    Directory of Open Access Journals (Sweden)

    Sabo Edmond

    2006-09-01

    Full Text Available Abstract Background We have reported arginine-sensitive regulation of LAT1 amino acid transporter (SLC 7A5 in normal rodent hepatic cells with loss of arginine sensitivity and high level constitutive expression in tumor cells. We hypothesized that liver cell gene expression is highly sensitive to alterations in the amino acid microenvironment and that tumor cells may differ substantially in gene sets sensitive to amino acid availability. To assess the potential number and classes of hepatic genes sensitive to arginine availability at the RNA level and compare these between normal and tumor cells, we used an Affymetrix microarray approach, a paired in vitro model of normal rat hepatic cells and a tumorigenic derivative with triplicate independent replicates. Cells were exposed to arginine-deficient or control conditions for 18 hours in medium formulated to maintain differentiated function. Results Initial two-way analysis with a p-value of 0.05 identified 1419 genes in normal cells versus 2175 in tumor cells whose expression was altered in arginine-deficient conditions relative to controls, representing 9–14% of the rat genome. More stringent bioinformatic analysis with 9-way comparisons and a minimum of 2-fold variation narrowed this set to 56 arginine-responsive genes in normal liver cells and 162 in tumor cells. Approximately half the arginine-responsive genes in normal cells overlap with those in tumor cells. Of these, the majority was increased in expression and included multiple growth, survival, and stress-related genes. GADD45, TA1/LAT1, and caspases 11 and 12 were among this group. Previously known amino acid regulated genes were among the pool in both cell types. Available cDNA probes allowed independent validation of microarray data for multiple genes. Among genes downregulated under arginine-deficient conditions were multiple genes involved in cholesterol and fatty acid metabolism. Expression of low-density lipoprotein receptor was

  1. Identification of self-consistent modulons from bacterial microarray expression data with the help of structured regulon gene sets

    KAUST Repository

    Permina, Elizaveta A.; Medvedeva, Yulia; Baeck, Pia M.; Hegde, Shubhada R.; Mande, Shekhar C.; Makeev, Vsevolod J.

    2013-01-01

    interactions helps to evaluate parameters for regulatory subnetwork inference. We suggest a procedure for modulon construction where a seed regulon is iteratively updated with genes having expression patterns similar to those for regulon member genes. A set

  2. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Nookaew, Intawat; Papini, Marta; Pornputtapong, Natapol

    2012-01-01

    RNA-seq, has recently become an attractive method of choice in the studies of transcriptomes, promising several advantages compared with microarrays. In this study, we sought to assess the contribution of the different analytical steps involved in the analysis of RNA-seq data generated with the I......RNA-seq, has recently become an attractive method of choice in the studies of transcriptomes, promising several advantages compared with microarrays. In this study, we sought to assess the contribution of the different analytical steps involved in the analysis of RNA-seq data generated...... gene expression identification derived from the different statistical methods, as well as their integrated analysis results based on gene ontology annotation are in good agreement. Overall, our study provides a useful and comprehensive comparison between the two platforms (RNA-seq and microrrays...

  3. Microarray Analysis Reveals Higher Gestational Folic Acid Alters Expression of Genes in the Cerebellum of Mice Offspring—A Pilot Study

    Directory of Open Access Journals (Sweden)

    Subit Barua

    2015-01-01

    Full Text Available Folate is a water-soluble vitamin that is critical for nucleotide synthesis and can modulate methylation of DNA by altering one-carbon metabolism. Previous studies have shown that folate status during pregnancy is associated with various congenital defects including the risk of aberrant neural tube closure. Maternal exposure to a methyl supplemented diet also can alter DNA methylation and gene expression, which may influence the phenotype of offspring. We investigated if higher gestational folic acid (FA in the diet dysregulates the expression of genes in the cerebellum of offspring in C57BL/6 J mice. One week before gestation and throughout the pregnancy, groups of dams were supplemented with FA either at 2 mg/kg or 20 mg/kg of diet. Microarray analysis was used to investigate the genome wide gene expression profile in the cerebellum from day old pups. Our results revealed that exposure to the higher dose FA diet during gestation dysregulated expression of several genes in the cerebellum of both male and female pups. Several transcription factors, imprinted genes, neuro-developmental genes and genes associated with autism spectrum disorder exhibited altered expression levels. These findings suggest that higher gestational FA potentially dysregulates gene expression in the offspring brain and such changes may adversely alter fetal programming and overall brain development.

  4. Gene Expression Profile in the Early Stage of Angiotensin II-induced Cardiac Remodeling: a Time Series Microarray Study in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Meng-Qiu Dang

    2015-01-01

    Full Text Available Background/Aims: Angiotensin II (Ang II plays a critical role in the cardiac remodeling contributing to heart failure. However, the gene expression profiles induced by Ang II in the early stage of cardiac remodeling remain unknown. Methods: Wild-type male mice (C57BL/6 background, 10-weeek-old were infused with Ang II (1500 ng/kg/min for 7 days. Blood pressure was measured. Cardiac function and remodeling were examined by echocardiography, H&E and Masson staining. The time series microarrays were then conducted to detected gene expression profiles. Results: Microarray results identified that 1,489 genes were differentially expressed in the hearts at day 1, 3 and 7 of Ang II injection. These genes were further classified into 26 profiles by hierarchical cluster analysis. Of them, 4 profiles were significant (No. 19, 8, 21 and 22 and contained 904 genes. Gene Ontology showed that these genes mainly participate in metabolic process, oxidation-reduction process, extracellular matrix organization, apoptotic process, immune response, and others. Significant pathways included focal adhesion, ECM-receptor interaction, cytokine-cytokine receptor interaction, MAPK and insulin signaling pathways, which were known to play important roles in Ang II-induced cardiac remodeling. Moreover, gene co-expression networks analysis suggested that serine/cysteine peptidase inhibitor, member 1 (Serpine1, also known as PAI-1 localized in the core of the network. Conclusions: Our results indicate that many genes are mainly involved in metabolism, inflammation, cardiac fibrosis and hypertrophy. Serpine1 may play a central role in the development of Ang II-induced cardiac remodeling at the early stage.

  5. Patterns of gene expression in carp liver after exposure to a mixture of waterborne and dietary cadmium using a custom-made microarray

    International Nuclear Information System (INIS)

    Reynders, Hans; Ven, Karlijn van der; Moens, Lotte N.; Remortel, Piet van; De Coen, Wim M.; Blust, Ronny

    2006-01-01

    Gene expression changes in carp liver tissue were studied after acute (3 and 24 h) and subchronic (7 and 28 days) exposure to a mixture of waterborne (9, 105 and 480 μg/l) and dietary (9.5, 122 and 144 μg/g) cadmium, using a custom-made microarray. Suppression subtractive hybridization-PCR (SSH-PCR) was applied to isolate a set of 643 liver genes, involved in multiple biological pathways, such as energy metabolism (e.g. glucokinase), immune response (e.g. complement C3) and stress and detoxification (e.g. cytochrome P450 2F2, glutathione-S-transferase pi). These genes were subsequently spotted on glass-slides for the construction of a custom-made microarray. Resulting microarray hybridizations indicated a highly dynamic response to cadmium exposure. At low exposure concentrations (9 μg/l through water and 9.5 μg/g dry weight through food) mostly energy-related genes (e.g. glucokinase, elastase) were influenced, while a general stress response was obvious through induction of several stress-related genes, including hemopexin and cytochrome P450 2F2, at high cadmium concentrations. In addition, fish exposed to the highest cadmium concentrations showed liver damage after 7 days of exposure, as measured by elevated alanine transaminase activity in plasma and increased liver water content (wet-to-dry weight ratio). Moreover, decreased hematocrit and growth were found at the end of the experiment. Altogether this study clearly demonstrated the importance of varying exposure conditions for the characterization of the molecular impact of cadmium and showed that microarray results can provide important information, required to unravel the molecular events and responses related to cadmium exposure

  6. Trait specific expression profiling of salt stress responsive genes in diverse rice genotypes as determined by modified Significance Analysis of Microarrays

    Directory of Open Access Journals (Sweden)

    Mohammad Rashed Hossain

    2016-05-01

    Full Text Available Stress responsive gene expression is commonly profiled in a comparative manner involving different stress conditions or genotypes with contrasting reputation of tolerance/resistance. In contrast, this research exploited a wide natural variation in terms of taxonomy, origin and salt sensitivity in eight genotypes of rice to identify the trait specific patterns of gene expression under salt stress. Genome wide transcptomic responses were interrogated by the weighted continuous morpho-physiological trait responses using modified Significance Analysis of Microarrays. More number of genes was found to be differentially expressed under salt stressed compared to that of under unstressed conditions. Higher numbers of genes were observed to be differentially expressed for the traits shoot Na+/K+, shoot Na+, root K+, biomass and shoot Cl-, respectively. The results identified around sixty genes to be involved in Na+, K+ and anion homeostasis, transport and transmembrane activity under stressed conditions. Gene Ontology (GO enrichment analysis identified 1.36% (578 genes of the entire transcriptome to be involved in the major molecular functions such as signal transduction (>150 genes, transcription factor (81 genes and translation factor activity (62 genes etc. under salt stress. Chromosomal mapping of the genes suggests that majority of the genes are located on chromosomes 1, 2, 3, 6 & 7. The gene network analysis showed that the transcription factors and translation initiation factors formed the major gene networks and are mostly active in nucleus, cytoplasm and mitochondria whereas the membrane and vesicle bound proteins formed a secondary network active in plasma membrane and vacuoles. The novel genes and the genes with unknown functions thus identified provide picture of a synergistic salinity response representing the potentially fundamental mechanisms that are active in the wide natural genetic background of rice and will be of greater use once

  7. Can intrinsic human tissue radiosensitivity be correlated with late responding gene RNA expression in white blood cells using a 96 gene micro-array?

    International Nuclear Information System (INIS)

    Schmidt, D.; Streeter, O.; Dagliyan, G.; Hill, C.K.; Williams-Hill, D.M.

    2003-01-01

    Radiation is widely used in the treatment of cancers. It is generally believed there is a sigmoid relationship between radiation dose and probability of cure. There is also a sigmoid relationship between radiation dose and normal tissue response. Generally total radiation dose to a tumor is limited by normal tissue tolerance. It has been postulated that up to 70% of inter-individual differences in radiosensitivity may be due to genetic predisposition (Tureson I. Et al, IJROBP, 1996;36:1065). However, to date, clinicians have no way of estimating or predicting an individual's normal tissue response to radiation exposure. Thus the prescribed dose cannot be tailored to an individuals actual expected response but is an empirically derived compromise based on experience. Although a number of studies using cellular techniques have shown that human cell radiosensitivity can be measured, none of these can be performed quick enough to be used in the clinic. In this study we are looking at gene expression that occurs some 24 hours after an exposure compared to expression before any exposure in peripheral white blood cells from patients undergoing radiotherapy for various tumors. The patients will be followed for overt radiation sensitivity by standard criteria by clinicians in the Department. The main aims are: does RNA expression level in a 96 gene micro-array vary before and after radiation and do these changes in RNA expression correlate with the objective measurements of acute radiation response observed by the clinicians in the patients. The USC IRB recently approved the protocol and human consent for this study to enter 50 patients in the next 12 months using mostly head and neck and endometrial cancer patients where we can get a normal tissue sample to examine as well as the blood sample. We will present the rationale, protocol, methods and early results in detail

  8. Expression microarray meta-analysis identifies genes associated with Ras/MAPK and related pathways in progression of muscle-invasive bladder transition cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Jonathan A Ewald

    Full Text Available The effective detection and management of muscle-invasive bladder Transition Cell Carcinoma (TCC continues to be an urgent clinical challenge. While some differences of gene expression and function in papillary (Ta, superficial (T1 and muscle-invasive (≥T2 bladder cancers have been investigated, the understanding of mechanisms involved in the progression of bladder tumors remains incomplete. Statistical methods of pathway-enrichment, cluster analysis and text-mining can extract and help interpret functional information about gene expression patterns in large sets of genomic data. The public availability of patient-derived expression microarray data allows open access and analysis of large amounts of clinical data. Using these resources, we investigated gene expression differences associated with tumor progression and muscle-invasive TCC. Gene expression was calculated relative to Ta tumors to assess progression-associated differences, revealing a network of genes related to Ras/MAPK and PI3K signaling pathways with increased expression. Further, we identified genes within this network that are similarly expressed in superficial Ta and T1 stages but altered in muscle-invasive T2 tumors, finding 7 genes (COL3A1, COL5A1, COL11A1, FN1, ErbB3, MAPK10 and CDC25C whose expression patterns in muscle-invasive tumors are consistent in 5 to 7 independent outside microarray studies. Further, we found increased expression of the fibrillar collagen proteins COL3A1 and COL5A1 in muscle-invasive tumor samples and metastatic T24 cells. Our results suggest that increased expression of genes involved in mitogenic signaling may support the progression of muscle-invasive bladder tumors that generally lack activating mutations in these pathways, while expression changes of fibrillar collagens, fibronectin and specific signaling proteins are associated with muscle-invasive disease. These results identify potential biomarkers and targets for TCC treatments, and

  9. Microarray expression profiling of human dental pulp from single subject.

    Science.gov (United States)

    Tete, Stefano; Mastrangelo, Filiberto; Scioletti, Anna Paola; Tranasi, Michelangelo; Raicu, Florina; Paolantonio, Michele; Stuppia, Liborio; Vinci, Raffaele; Gherlone, Enrico; Ciampoli, Cristian; Sberna, Maria Teresa; Conti, Pio

    2008-01-01

    Microarray is a recently developed simultaneous analysis of expression patterns of thousand of genes. The aim of this research was to evaluate the expression profile of human healthy dental pulp in order to find the presence of genes activated and encoding for proteins involved in the physiological process of human dental pulp. We report data obtained by analyzing expression profiles of human tooth pulp from single subjects, using an approach based on the amplification of the total RNA. Experiments were performed on a high-density array able to analyse about 21,000 oligonucleotide sequences of about 70 bases in duplicate, using an approach based on the amplification of the total RNA from the pulp of a single tooth. Obtained data were analyzed using the S.A.M. system (Significance Analysis of Microarray) and genes were merged according to their molecular functions and biological process by the Onto-Express software. The microarray analysis revealed 362 genes with specific pulp expression. Genes showing significant high expression were classified in genes involved in tooth development, protoncogenes, genes of collagen, DNAse, Metallopeptidases and Growth factors. We report a microarray analysis, carried out by extraction of total RNA from specimens of healthy human dental pulp tissue. This approach represents a powerful tool in the study of human normal and pathological pulp, allowing minimization of the genetic variability due to the pooling of samples from different individuals.

  10. The Use of cDNA Microarray to Study Gene Expression in Wnt-1 Induced Mammary Tumors

    National Research Council Canada - National Science Library

    Huang, Shixia

    2002-01-01

    .... Specifically, we have collected tissue samples from virgin mammary glands, hyperplastic mammary glands, Wnt- 1 mammary tumors, and tumors metastasized to the lung, and compared their gene expression patterns...

  11. Moving Toward Integrating Gene Expression Profiling into High-throughput Testing:A Gene Expression Biomarker Accurately Predicts Estrogen Receptor α Modulation in a Microarray Compendium

    Science.gov (United States)

    Microarray profiling of chemical-induced effects is being increasingly used in medium and high-throughput formats. In this study, we describe computational methods to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), ...

  12. DNA microarray analyses reveal a post-irradiation differential time-dependent gene expression profile in yeast cells exposed to X-rays and gamma-rays.

    Science.gov (United States)

    Kimura, Shinzo; Ishidou, Emi; Kurita, Sakiko; Suzuki, Yoshiteru; Shibato, Junko; Rakwal, Randeep; Iwahashi, Hitoshi

    2006-07-21

    Ionizing radiation (IR) is the most enigmatic of genotoxic stress inducers in our environment that has been around from the eons of time. IR is generally considered harmful, and has been the subject of numerous studies, mostly looking at the DNA damaging effects in cells and the repair mechanisms therein. Moreover, few studies have focused on large-scale identification of cellular responses to IR, and to this end, we describe here an initial study on the transcriptional responses of the unicellular genome model, yeast (Saccharomyces cerevisiae strain S288C), by cDNA microarray. The effect of two different IR, X-rays, and gamma (gamma)-rays, was investigated by irradiating the yeast cells cultured in YPD medium with 50 Gy doses of X- and gamma-rays, followed by resuspension of the cells in YPD for time-course experiments. The samples were collected for microarray analysis at 20, 40, and 80 min after irradiation. Microarray analysis revealed a time-course transcriptional profile of changed gene expressions. Up-regulated genes belonged to the functional categories mainly related to cell cycle and DNA processing, cell rescue defense and virulence, protein and cell fate, and metabolism (X- and gamma-rays). Similarly, for X- and gamma-rays, the down-regulated genes belonged to mostly transcription and protein synthesis, cell cycle and DNA processing, control of cellular organization, cell fate, and C-compound and carbohydrate metabolism categories, respectively. This study provides for the first time a snapshot of the genome-wide mRNA expression profiles in X- and gamma-ray post-irradiated yeast cells and comparatively interprets/discusses the changed gene functional categories as effects of these two radiations vis-à-vis their energy levels.

  13. A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus

    Science.gov (United States)

    2011-01-01

    Background Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of Eucalyptus using Single Feature Polymorphism (SFP) markers. Results SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. In silico validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the Eucalyptus grandis genome. Conclusions The Eucalyptus 1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on Eucalyptus maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping

  14. Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human growth plate to modulate height.

    Science.gov (United States)

    Lui, Julian C; Nilsson, Ola; Chan, Yingleong; Palmer, Cameron D; Andrade, Anenisia C; Hirschhorn, Joel N; Baron, Jeffrey

    2012-12-01

    Previous meta-analysis of genome-wide association (GWA) studies has identified 180 loci that influence adult height. However, each GWA locus typically comprises a set of contiguous genes, only one of which presumably modulates height. We reasoned that many of the causative genes within these loci influence height because they are expressed in and function in the growth plate, a cartilaginous structure that causes bone elongation and thus determines stature. Therefore, we used expression microarray studies of mouse and rat growth plate, human disease databases and a mouse knockout phenotype database to identify genes within the GWAS loci that are likely required for normal growth plate function. Each of these approaches identified significantly more genes within the GWA height loci than at random genomic locations (P analysis strongly implicates 78 genes in growth plate function, including multiple genes that participate in PTHrP-IHH, BMP and CNP signaling, and many genes that have not previously been implicated in the growth plate. Thus, this analysis reveals a large number of novel genes that regulate human growth plate chondrogenesis and thereby contribute to the normal variations in human adult height. The analytic approach developed for this study may be applied to GWA studies for other common polygenic traits and diseases, thus providing a new general strategy to identify causative genes within GWA loci and to translate genetic associations into mechanistic biological insights.

  15. Application of a cDNA microarray for profiling the gene expression of Echinococcus granulosus protoscoleces treated with albendazole and artemisinin.

    Science.gov (United States)

    Lü, Guodong; Zhang, Wenbao; Wang, Jianhua; Xiao, Yunfeng; Zhao, Jun; Zhao, Jianqin; Sun, Yimin; Zhang, Chuanshan; Wang, Junhua; Lin, Renyong; Liu, Hui; Zhang, Fuchun; Wen, Hao

    2014-12-01

    Cystic echinoccocosis (CE) is a neglected zoonosis that is caused by the dog-tapeworm Echinococcus granulosus. The disease is endemic worldwide. There is an urgent need for searching effective drug for the treatment of the disease. In this study, we sequenced a cDNA library constructed using RNA isolated from oncospheres, protoscoleces, cyst membrane and adult worms of E. granulosus. A total of 9065 non-redundant or unique sequences were obtained and spotted on chips as uniEST probes to profile the gene expression in protoscoleces of E. granulosus treated with the anthelmintic drugs albendazole and artemisinin, respectively. The results showed that 7 genes were up-regulated and 38 genes were down-regulated in the protoscoleces treated with albendazole. Gene analysis showed that these genes are responsible for energy metabolism, cell cycle and assembly of cell structure. We also identified 100 genes up-regulated and 6 genes down-regulated in the protoscoleces treated with artemisinin. These genes play roles in the transduction of environmental signals, and metabolism. Albendazole appeared its drug efficacy in damaging cell structure, while artemisinin was observed to increase the formation of the heterochromatin in protoscolex cells. Our results highlight the utility of using cDNA microarray methods to detect gene expression profiles of E. granulosus and, in particular, to understand the pharmacologic mechanism of anti-echinococcosis drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    International Nuclear Information System (INIS)

    Qing, Yi; Wang, Ge; Wang, Dong; Yang, Xue-Qin; Zhong, Zhao-Yang; Lei, Xin; Xie, Jia-Yin; Li, Meng-Xia; Xiang, De-Bing; Li, Zeng-Peng; Yang, Zhen-Zhou

    2010-01-01

    The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252 Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. HeLa cells were treated with fractionated 252 Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252 Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these 'radioresistance' genes will lead to new therapeutic targets for cervical cancer

  17. Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments

    Directory of Open Access Journals (Sweden)

    Kitchen Robert R

    2011-12-01

    Full Text Available Abstract Background Systematic processing noise, which includes batch effects, is very common in microarray experiments but is often ignored despite its potential to confound or compromise experimental results. Compromised results are most likely when re-analysing or integrating datasets from public repositories due to the different conditions under which each dataset is generated. To better understand the relative noise-contributions of various factors in experimental-design, we assessed several Illumina and Affymetrix datasets for technical variation between replicate hybridisations of Universal Human Reference (UHRR and individual or pooled breast-tumour RNA. Results A varying degree of systematic noise was observed in each of the datasets, however in all cases the relative amount of variation between standard control RNA replicates was found to be greatest at earlier points in the sample-preparation workflow. For example, 40.6% of the total variation in reported expressions were attributed to replicate extractions, compared to 13.9% due to amplification/labelling and 10.8% between replicate hybridisations. Deliberate probe-wise batch-correction methods were effective in reducing the magnitude of this variation, although the level of improvement was dependent on the sources of noise included in the model. Systematic noise introduced at the chip, run, and experiment levels of a combined Illumina dataset were found to be highly dependant upon the experimental design. Both UHRR and pools of RNA, which were derived from the samples of interest, modelled technical variation well although the pools were significantly better correlated (4% average improvement and better emulated the effects of systematic noise, over all probes, than the UHRRs. The effect of this noise was not uniform over all probes, with low GC-content probes found to be more vulnerable to batch variation than probes with a higher GC-content. Conclusions The magnitude of systematic

  18. Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments.

    Science.gov (United States)

    Kitchen, Robert R; Sabine, Vicky S; Simen, Arthur A; Dixon, J Michael; Bartlett, John M S; Sims, Andrew H

    2011-12-01

    Systematic processing noise, which includes batch effects, is very common in microarray experiments but is often ignored despite its potential to confound or compromise experimental results. Compromised results are most likely when re-analysing or integrating datasets from public repositories due to the different conditions under which each dataset is generated. To better understand the relative noise-contributions of various factors in experimental-design, we assessed several Illumina and Affymetrix datasets for technical variation between replicate hybridisations of Universal Human Reference (UHRR) and individual or pooled breast-tumour RNA. A varying degree of systematic noise was observed in each of the datasets, however in all cases the relative amount of variation between standard control RNA replicates was found to be greatest at earlier points in the sample-preparation workflow. For example, 40.6% of the total variation in reported expressions were attributed to replicate extractions, compared to 13.9% due to amplification/labelling and 10.8% between replicate hybridisations. Deliberate probe-wise batch-correction methods were effective in reducing the magnitude of this variation, although the level of improvement was dependent on the sources of noise included in the model. Systematic noise introduced at the chip, run, and experiment levels of a combined Illumina dataset were found to be highly dependent upon the experimental design. Both UHRR and pools of RNA, which were derived from the samples of interest, modelled technical variation well although the pools were significantly better correlated (4% average improvement) and better emulated the effects of systematic noise, over all probes, than the UHRRs. The effect of this noise was not uniform over all probes, with low GC-content probes found to be more vulnerable to batch variation than probes with a higher GC-content. The magnitude of systematic processing noise in a microarray experiment is variable

  19. Integrating Biological Perspectives:. a Quantum Leap for Microarray Expression Analysis

    Science.gov (United States)

    Wanke, Dierk; Kilian, Joachim; Bloss, Ulrich; Mangelsen, Elke; Supper, Jochen; Harter, Klaus; Berendzen, Kenneth W.

    2009-02-01

    Biologists and bioinformatic scientists cope with the analysis of transcript abundance and the extraction of meaningful information from microarray expression data. By exploiting biological information accessible in public databases, we try to extend our current knowledge over the plant model organism Arabidopsis thaliana. Here, we give two examples of increasing the quality of information gained from large scale expression experiments by the integration of microarray-unrelated biological information: First, we utilize Arabidopsis microarray data to demonstrate that expression profiles are usually conserved between orthologous genes of different organisms. In an initial step of the analysis, orthology has to be inferred unambiguously, which then allows comparison of expression profiles between orthologs. We make use of the publicly available microarray expression data of Arabidopsis and barley, Hordeum vulgare. We found a generally positive correlation in expression trajectories between true orthologs although both organisms are only distantly related in evolutionary time scale. Second, extracting clusters of co-regulated genes implies similarities in transcriptional regulation via similar cis-regulatory elements (CREs). Vice versa approaches, where co-regulated gene clusters are found by investigating on CREs were not successful in general. Nonetheless, in some cases the presence of CREs in a defined position, orientation or CRE-combinations is positively correlated with co-regulated gene clusters. Here, we make use of genes involved in the phenylpropanoid biosynthetic pathway, to give one positive example for this approach.

  20. Time-course investigation of the gene expression profile during Fasciola hepatica infection: A microarray-based study

    Directory of Open Access Journals (Sweden)

    Jose Rojas-Caraballo

    2015-12-01

    Full Text Available Fasciolosis is listed as one of the most important neglected tropical diseases according with the World Health Organization and is also considered as a reemerging disease in the human beings. Despite there are several studies describing the immune response induced by Fasciola hepatica in the mammalian host, investigations aimed at identifying the expression profile of genes involved in inducing hepatic injury are currently scarce. Data presented here belong to a time-course investigation of the gene expression profile in the liver of BALB/c mice infected with F. hepatica metacercariae at 7 and 21 days after experimental infection. The data published here have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE69588, previously published by Rojas-Caraballo et al. (2015 in PLoS One [1].

  1. Senescent vs. non-senescent cells in the human annulus in vivo: Cell harvest with laser capture microdissection and gene expression studies with microarray analysis

    Directory of Open Access Journals (Sweden)

    Ingram Jane A

    2010-01-01

    Full Text Available Abstract Background Senescent cells are well-recognized in the aging/degenerating human disc. Senescent cells are viable, cannot divide, remain metabolically active and accumulate within the disc over time. Molecular analysis of senescent cells in tissue offers a special challenge since there are no cell surface markers for senescence which would let one use fluorescence-activated cell sorting as a method for separating out senescent cells. Methods We employed a novel laser capture microdissection (LCM design to selectively harvest senescent and non-senescent annulus cells in paraffin-embedded tissue, and compared their gene expression with microarray analysis. LCM was used to separately harvest senescent and non-senescent cells from 11 human annulus specimens. Results Microarray analysis revealed significant differences in expression levels in senescent cells vs non-senescent cells: 292 genes were upregulated, and 321 downregulated. Genes with established relationships to senescence were found to be significantly upregulated in senescent cells vs. non-senescent cells: p38 (MPAK14, RB-Associated KRAB zinc finger, Discoidin, CUB and LCCL domain, growth arrest and DNA-damage inducible beta, p28ING5, sphingosine-1-phosphate receptor 2 and somatostatin receptor 3; cyclin-dependent kinase 8 showed significant downregulation in senescent cells. Nitric oxidase synthase 1, and heat shock 70 kDa protein 6, both of which were significantly down-regulated in senescent cells, also showed significant changes. Additional genes related to cytokines, cell proliferation, and other processes were also identified. Conclusions Our LCM-microarray analyses identified a set of genes associated with senescence which were significantly upregulated in senescent vs non-senescent cells in the human annulus. These genes include p38 MAP kinase, discoidin, inhibitor of growth family member 5, and growth arrest and DNA-damage-inducible beta. Other genes, including genes

  2. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset

    OpenAIRE

    Yamada, Yoichi; Sawada, Hiroki; Hirotani, Ken-ichi; Oshima, Masanobu; Satou, Kenji

    2012-01-01

    Abstract Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO). MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO...

  3. Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80. Analysis by cDNA microarray

    Energy Technology Data Exchange (ETDEWEB)

    Chan, John Y.H.; Chen, Lung-Kun; Chang, Jui-Feng [National Yang Ming Univ., Taipei, Taiwan (China). Inst. of Radiological Sciences] (and others)

    2001-12-01

    The ability of cells to rejoin DNA double-strand breaks (DSBs) usually correlates with their radiosensitivity. This correlation has been demonstrated in radiosensitive cells, including the Chinese hamster ovary mutant XRS-5. XRS-5 is defective in a DNA end-binding protein, Ku80, which is a component of a DNA-dependent protein kinase complex used for joining strand breaks. However, Ku80-deficient cells are known to be retarded in cell proliferation and growth as well as other yet to be identified defects. Using custom-made 600-gene cDNA microarray filters, we found differential gene expressions between the wild-type and XRS-5 cells. Defective Ku80 apparently affects the expression of several repair genes, including topoisomerase-I and -IIA, ERCC5, MLH1, and ATM. In contrast, other DNA repair-associated genes, such as GADD45A, EGR1 MDM2 and p53, were not affected. In addition, for large numbers of growth-associated genes, such as cyclins and clks, the growth factors and cytokines were also affected. Down-regulated expression was also found in several categories of seemingly unrelated genes, including apoptosis, angiogenesis, kinase and signaling, phosphatase, stress protein, proto-oncogenes and tumor suppressors, transcription and translation factors. A RT-PCR analysis confirmed that the XRS-5 cells used were defective in Ku80 expression. The diversified groups of genes being affected could mean that Ku80, a multi-functional DNA-binding protein, not only affects DNA repair, but is also involved in transcription regulation. Our data, taken together, indicate that there are specific genes being modulated in Ku80- deficient cells, and that some of the DNA repair pathways and other biological functions are apparently linked, suggesting that a defect in one gene could have global effects on many other processes. (author)

  4. Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80. Analysis by cDNA microarray

    International Nuclear Information System (INIS)

    Chan, John Y.H.; Chen, Lung-Kun; Chang, Jui-Feng

    2001-01-01

    The ability of cells to rejoin DNA double-strand breaks (DSBs) usually correlates with their radiosensitivity. This correlation has been demonstrated in radiosensitive cells, including the Chinese hamster ovary mutant XRS-5. XRS-5 is defective in a DNA end-binding protein, Ku80, which is a component of a DNA-dependent protein kinase complex used for joining strand breaks. However, Ku80-deficient cells are known to be retarded in cell proliferation and growth as well as other yet to be identified defects. Using custom-made 600-gene cDNA microarray filters, we found differential gene expressions between the wild-type and XRS-5 cells. Defective Ku80 apparently affects the expression of several repair genes, including topoisomerase-I and -IIA, ERCC5, MLH1, and ATM. In contrast, other DNA repair-associated genes, such as GADD45A, EGR1 MDM2 and p53, were not affected. In addition, for large numbers of growth-associated genes, such as cyclins and clks, the growth factors and cytokines were also affected. Down-regulated expression was also found in several categories of seemingly unrelated genes, including apoptosis, angiogenesis, kinase and signaling, phosphatase, stress protein, proto-oncogenes and tumor suppressors, transcription and translation factors. A RT-PCR analysis confirmed that the XRS-5 cells used were defective in Ku80 expression. The diversified groups of genes being affected could mean that Ku80, a multi-functional DNA-binding protein, not only affects DNA repair, but is also involved in transcription regulation. Our data, taken together, indicate that there are specific genes being modulated in Ku80- deficient cells, and that some of the DNA repair pathways and other biological functions are apparently linked, suggesting that a defect in one gene could have global effects on many other processes. (author)

  5. Timecourse microarray analyses reveal global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode).

    Science.gov (United States)

    Alkharouf, Nadim W; Klink, Vincent P; Chouikha, Imed B; Beard, Hunter S; MacDonald, Margaret H; Meyer, Susan; Knap, Halina T; Khan, Rana; Matthews, Benjamin F

    2006-09-01

    Changes in gene expression within roots of Glycine max (soybean), cv. Kent, susceptible to infection by Heterodera glycines (the soybean cyst nematode [SCN]), at 6, 12, and 24 h, and 2, 4, 6, and 8 days post-inoculation were monitored using microarrays containing more than 6,000 cDNA inserts. Replicate, independent biological samples were examined at each time point. Gene expression was analyzed statistically using T-tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). These analyses allow the user to query the data in several ways without importing the data into third-party software. RT-PCR confirmed that WRKY6 transcription factor, trehalose phosphate synthase, EIF4a, Skp1, and CLB1 were differentially induced across most time-points. Other genes induced across most timepoints included lipoxygenase, calmodulin, phospholipase C, metallothionein-like protein, and chalcone reductase. RT-PCR demonstrated enhanced expression during the first 12 h of infection for Kunitz trypsin inhibitor and sucrose synthase. The stress-related gene, SAM-22, phospholipase D and 12-oxophytodienoate reductase were also induced at the early time-points. At 6 and 8 dpi there was an abundance of transcripts expressed that encoded genes involved in transcription and protein synthesis. Some of those genes included ribosomal proteins, and initiation and elongation factors. Several genes involved in carbon metabolism and transport were also more abundant. Those genes included glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase and sucrose synthase. These results identified specific changes in gene transcript levels triggered by infection of susceptible soybean roots by SCN.

  6. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis

    Directory of Open Access Journals (Sweden)

    Arainga Mariluz

    2012-03-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G or reduced (TaxS240P transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting

  7. Microarray Analyses of Genes Differentially Expressed by Diet (Black Beans and Soy Flour) during Azoxymethane-Induced Colon Carcinogenesis in Rats.

    Science.gov (United States)

    Rondini, Elizabeth A; Bennink, Maurice R

    2012-01-01

    We previously demonstrated that black bean (BB) and soy flour (SF)-based diets inhibit azoxymethane (AOM)-induced colon cancer. The objective of this study was to identify genes altered by carcinogen treatment in normal-appearing colonic mucosa and those attenuated by bean feeding. Ninety-five male F344 rats were fed control (AIN) diets upon arrival. At 4 and 5 weeks, rats were injected with AOM (15 mg/kg) or saline and one week later administered an AIN, BB-, or SF-based diet. Rats were sacrificed after 31 weeks, and microarrays were conducted on RNA isolated from the distal colonic mucosa. AOM treatment induced a number of genes involved in immunity, including several MHC II-associated antigens and innate defense genes (RatNP-3, Lyz2, Pla2g2a). BB- and SF-fed rats exhibited a higher expression of genes involved in energy metabolism and water and sodium absorption and lower expression of innate (RatNP-3, Pla2g2a, Tlr4, Dmbt1) and cell cycle-associated (Cdc2, Ccnb1, Top2a) genes. Genes involved in the extracellular matrix (Col1a1, Fn1) and innate immunity (RatNP-3, Pla2g2a) were induced by AOM in all diets, but to a lower extent in bean-fed animals. This profile suggests beans inhibit colon carcinogenesis by modulating cellular kinetics and reducing inflammation, potentially by preserving mucosal barrier function.

  8. Microarray analysis of expression of cell death-associated genes in rat spinal cord cells exposed to cyclic tensile stresses in vitro

    Directory of Open Access Journals (Sweden)

    Roberts Sally

    2010-07-01

    Full Text Available Abstract Background The application of mechanical insults to the spinal cord results in profound cellular and molecular changes, including the induction of neuronal cell death and altered gene expression profiles. Previous studies have described alterations in gene expression following spinal cord injury, but the specificity of this response to mechanical stimuli is difficult to investigate in vivo. Therefore, we have investigated the effect of cyclic tensile stresses on cultured spinal cord cells from E15 Sprague-Dawley rats, using the FX3000® Flexercell Strain Unit. We examined cell morphology and viability over a 72 hour time course. Microarray analysis of gene expression was performed using the Affymetrix GeneChip System®, where categorization of identified genes was performed using the Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG systems. Changes in expression of 12 genes were validated with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR. Results The application of cyclic tensile stress reduced the viability of cultured spinal cord cells significantly in a dose- and time-dependent manner. Increasing either the strain or the strain rate independently was associated with significant decreases in spinal cord cell survival. There was no clear evidence of additive effects of strain level with strain rate. GO analysis identified 44 candidate genes which were significantly related to "apoptosis" and 17 genes related to "response to stimulus". KEGG analysis identified changes in the expression levels of 12 genes of the mitogen-activated protein kinase (MAPK signaling pathway, which were confirmed to be upregulated by RT-PCR analysis. Conclusions We have demonstrated that spinal cord cells undergo cell death in response to cyclic tensile stresses, which were dose- and time-dependent. In addition, we have identified the up regulation of various genes, in particular of the MAPK pathway, which

  9. Microarray analysis of androgen-regulated gene expression in testis: the use of the androgen-binding protein (ABP-transgenic mouse as a model

    Directory of Open Access Journals (Sweden)

    Grossman Gail

    2005-12-01

    Full Text Available Abstract Background Spermatogenesis is an androgen-dependent process, yet the molecular mechanisms of androgens' actions in testis are poorly understood. Transgenic mice overexpressing rat androgen-binding protein (ABP in their testes have reduced levels of intratesticular androgens and, as a result, show a progressive impairment of spermatogenesis. We used this model to characterize changes in global gene expression in testis in response to reduced bioavailability of androgens. Methods Total RNA was extracted from testes of 30-day old transgenic and wild-type control mice, converted to cRNA, labeled with biotin, and hybridized to oligonucleotide microarrays. Microarray results were confirmed by real-time reverse transcription polymerase chain reaction. Results Three-hundred-eighty-one genes (3.05% of all transcripts represented on the chips were up-regulated and 198 genes (1.59% were down-regulated by at least a factor of 2 in the androgen-deficient animals compared to controls. Genes encoding membrane proteins, intracellular signaling molecules, enzymes, proteins participating in the immune response, and those involved in cytoskeleton organization were significantly overrepresented in the up-regulated group. Among the down-regulated transcripts, those coding for extracellular proteins were overrepresented most dramatically, followed by those related to proteolysis, cell adhesion, immune response, and growth factor, cytokine, and ion channel activities. Transcripts with the greatest potential impact on cellular activities included several transcription factors, intracellular signal transducers, secreted signaling molecules and enzymes, and various cell surface molecules. Major nodes in the up-regulated network were IL-6, AGT, MYC, and A2M, those in the down-regulated network were IL-2, -4, and -10, MAPK8, SOCS1, and CREB1. Conclusion Microarray analysis followed by gene ontology profiling and connectivity analysis identified several functional

  10. Gene expression analysis of the rat testis after treatment with di(2-ethylhexyl) phthalate using cDNA microarray and real-time RT-PCR

    International Nuclear Information System (INIS)

    Kijima, Kazuyasu; Toyosawa, Kaoru; Yasuba, Masashi; Matsuoka, Nobuo; Adachi, Tetsuya; Komiyama, Masatoshi; Mori, Chisato

    2004-01-01

    To investigate the effects of di(2-ethylhexyl) phthalate (DEHP) on gene expression in rat testis, 6-week-old male Sprague-Dawley rats were given a single oral dose of 20 or 2000 mg/kg and euthanized 3, 6, 24, or 72 h thereafter. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells were significantly increased in the testis at 24 and 72 h after the exposure to 2000 mg/kg of DEHP. On cDNA microarray analysis, in addition to apoptosis-related genes, genes associated with atrophy, APEX nuclease, MutS homologue (E. coli), testosterone-repressed-prostatic-message-2 (TRPM-2), connective tissue growth factor, collagen alpha 2 type V, and cell adhesion kinase were differentially expressed. To investigate the relationship between histopathological alteration and gene expression, we selected genes associated with apoptosis and analyzed their expression by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). With 20 mg/kg of DEHP treatment, bcl-2, key gene related to apoptosis, was increased. Up-regulation of bcl-2, inhibitor of Apaf-1/caspase-9/caspase-2 cascade of apoptosis, may be related to the fact that no morphological apoptotic change was induced after dosing of 20 mg/kg DEHP. With 2000 mg/kg of DEHP treatment, the apoptotic activator cascade, Fas/FasL, FADD/caspase-8/caspase-3 cascade, and Apaf-1/caspase-9/caspase-2 cascade were increased and bcl-2 was decreased. Thus, these gene regulations might lead the cells into apoptosis in the case of high exposure to DEHP. In contrast, FADD/caspase-10/caspase-6 cascade and caspase-11/caspase-3 cascade were not increased. These results indicate that the cascades of FADD/caspase-10/caspase-6 and caspase-11/caspase-3 are not related to apoptosis with DEHP treatment

  11. Microarray-Based Analysis of the Differential Expression of Melanin Synthesis Genes in Dark and Light-Muzzle Korean Cattle

    OpenAIRE

    Kim, Sang Hwan; Hwang, Sue Yun; Yoon, Jong Taek

    2014-01-01

    The coat color of mammals is determined by the melanogenesis pathway, which is responsible for maintaining the balance between black-brown eumelanin and yellow-reddish pheomelanin. It is also believed that the color of the bovine muzzle is regulated in a similar manner; however, the molecular mechanism underlying pigment deposition in the dark-muzzle has yet to be elucidated. The aim of the present study was to identify melanogenesis-associated genes that are differentially expressed in the d...

  12. Comparison of gene expression of mitogenic kinin path in adherent and non-adherent CD 34-stem cells using oligonucleotide microarrays.

    Directory of Open Access Journals (Sweden)

    Krzysztof Machaj

    2008-02-01

    Full Text Available One of the more interesting cells present in the umbilical cord blood - as far as their potential clinical use is concerned - are stem cells not presenting the CD34 antigen. These are the pluripotential cells with their biological properties similar to mesenchymal stem cells, with the ability to differentiate into such tissue types as bone, cartilage, nervous (to some extent, glia and muscle. The authors compared the activity of genes coding the proteins in mitogenic signal paths activated by kinin receptors using oligonucleotide microarrays in adherent and non-adherent CD 34- cells derived from umbilical cord blood. In the linear regression model with a 95% prognosis area for differentiating genes outside this area, the following genes were selected: c-jun (present in 3 isoforms and c-fos. The fos and jun genes create the AP-1 transcriptive factor which regulates the expression of genes taking part in numerous cellular processes, including the cell cycle and mitosis. The obtained results shed some light on the molecular processes behind the MSC proliferation and are a starting point for further studies on the mesenchymal stem cell biology.

  13. New insights into the pathogenesis of glucocorticoid-induced avascular necrosis: microarray analysis of gene expression in a rat model

    Science.gov (United States)

    2010-01-01

    Introduction Avascular necrosis of the femoral head (ANFH) occurs variably after exposure to corticosteroids. Microvascular thrombosis is a common pathological finding. Since systemic thrombophilia is only weakly linked with ANFH, we propose that microvascular vessel pathology may be more related to local endothelial dysfunction and femoral head apoptosis. Corticosteroid effects on the endothelium and resultant apoptosis have been reported. We hypothesize that corticosteroids contribute to a differential gene expression in the femoral head in rats with early ANFH. Methods Besides bone marrow necrosis, which is a common sign in ANFH and reported in the early stages, we include the presence of apoptosis in this study as a criterion for diagnosing early disease. Forty Wistar Kyoto (WKY) rats were randomized to either a corticosteroid-treated group or an age-matched control group for six months. After sacrifice, the femoral heads were examined for ANFH. Total mRNA was extracted from femoral heads. Affymetrix exon array (Santa Clara, CA, USA) was performed on 15 selected RNA samples. Validation methods included RT-PCR and immunohistochemistry (IHC). Results Although rat exon array demonstrated a significant upregulation of 51 genes (corticosteroid(+)/ANFH(+) VS control), alpha-2-macroglobulin (A2M) gene was particularly over-expressed. Results were validated by RT-PCR and IHC. Importantly, A2M is known to share vascular, osteogenic and cartilage functions relevant for ANFH. Conclusions The findings suggest that corticosteroid-induced ANFH in rats might be mediated by A2M. Investigation of A2M as a potential marker, and a treatment target, for early ANFH should be carried out. PMID:20579363

  14. Feasibility of using tissue microarray cores of paraffin-embedded breast cancer tissue for measurement of gene expression: a proof-of-concept study.

    Science.gov (United States)

    Drury, Suzanne; Salter, Janine; Baehner, Frederick L; Shak, Steven; Dowsett, Mitch

    2010-06-01

    To determine whether 0.6 mm cores of formalin-fixed paraffin-embedded (FFPE) tissue, as commonly used to construct immunohistochemical tissue microarrays, may be a valid alternative to tissue sections as source material for quantitative real-time PCR-based transcriptional profiling of breast cancer. Four matched 0.6 mm cores of invasive breast tumour and two 10 microm whole sections were taken from eight FFPE blocks. RNA was extracted and reverse transcribed, and TaqMan assays were performed on the 21 genes of the Oncotype DX Breast Cancer assay. Expression of the 16 recurrence-related genes was normalised to the set of five reference genes, and the recurrence score (RS) was calculated. RNA yield was lower from 0.6 mm cores than from 10 microm whole sections, but was still more than sufficient to perform the assay. RS and single gene data from cores were highly comparable with those from whole sections (RS p=0.005). Greater variability was seen between cores than between sections. FFPE sections are preferable to 0.6 mm cores for RNA profiling in order to maximise RNA yield and to allow for standard histopathological assessment. However, 0.6 mm cores are sufficient and would be appropriate to use for large cohort studies.

  15. Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis.

    Directory of Open Access Journals (Sweden)

    Guillem Segarra

    Full Text Available Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.

  16. Multivariate analysis of microarray data: differential expression and differential connection.

    Science.gov (United States)

    Kiiveri, Harri T

    2011-02-01

    Typical analysis of microarray data ignores the correlation between gene expression values. In this paper we present a model for microarray data which specifically allows for correlation between genes. As a result we combine gene network ideas with linear models and differential expression. We use sparse inverse covariance matrices and their associated graphical representation to capture the notion of gene networks. An important issue in using these models is the identification of the pattern of zeroes in the inverse covariance matrix. The limitations of existing methods for doing this are discussed and we provide a workable solution for determining the zero pattern. We then consider a method for estimating the parameters in the inverse covariance matrix which is suitable for very high dimensional matrices. We also show how to construct multivariate tests of hypotheses. These overall multivariate tests can be broken down into two components, the first one being similar to tests for differential expression and the second involving the connections between genes. The methods in this paper enable the extraction of a wealth of information concerning the relationships between genes which can be conveniently represented in graphical form. Differentially expressed genes can be placed in the context of the gene network and places in the gene network where unusual or interesting patterns have emerged can be identified, leading to the formulation of hypotheses for future experimentation.

  17. Multivariate analysis of microarray data: differential expression and differential connection

    Directory of Open Access Journals (Sweden)

    Kiiveri Harri T

    2011-02-01

    Full Text Available Abstract Background Typical analysis of microarray data ignores the correlation between gene expression values. In this paper we present a model for microarray data which specifically allows for correlation between genes. As a result we combine gene network ideas with linear models and differential expression. Results We use sparse inverse covariance matrices and their associated graphical representation to capture the notion of gene networks. An important issue in using these models is the identification of the pattern of zeroes in the inverse covariance matrix. The limitations of existing methods for doing this are discussed and we provide a workable solution for determining the zero pattern. We then consider a method for estimating the parameters in the inverse covariance matrix which is suitable for very high dimensional matrices. We also show how to construct multivariate tests of hypotheses. These overall multivariate tests can be broken down into two components, the first one being similar to tests for differential expression and the second involving the connections between genes. Conclusion The methods in this paper enable the extraction of a wealth of information concerning the relationships between genes which can be conveniently represented in graphical form. Differentially expressed genes can be placed in the context of the gene network and places in the gene network where unusual or interesting patterns have emerged can be identified, leading to the formulation of hypotheses for future experimentation.

  18. Computational biology of genome expression and regulation--a review of microarray bioinformatics.

    Science.gov (United States)

    Wang, Junbai

    2008-01-01

    Microarray technology is being used widely in various biomedical research areas; the corresponding microarray data analysis is an essential step toward the best utilizing of array technologies. Here we review two components of the microarray data analysis: a low level of microarray data analysis that emphasizes the designing, the quality control, and the preprocessing of microarray experiments, then a high level of microarray data analysis that focuses on the domain-specific microarray applications such as tumor classification, biomarker prediction, analyzing array CGH experiments, and reverse engineering of gene expression networks. Additionally, we will review the recent development of building a predictive model in genome expression and regulation studies. This review may help biologists grasp a basic knowledge of microarray bioinformatics as well as its potential impact on the future evolvement of biomedical research fields.

  19. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset

    Directory of Open Access Journals (Sweden)

    Yamada Yoichi

    2012-12-01

    Full Text Available Abstract Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO. MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. However, MIMGO has not yet been validated on a real microarray dataset using all available GO terms. Findings We combined Gene Set Enrichment Analysis (GSEA with MIMGO to identify differentially expressed GO terms in a yeast cell cycle microarray dataset. GSEA followed by MIMGO (GSEA + MIMGO correctly identified (p Conclusions MIMGO is a reliable method to identify differentially expressed GO terms comprehensively.

  20. Fast gene ontology based clustering for microarray experiments.

    Science.gov (United States)

    Ovaska, Kristian; Laakso, Marko; Hautaniemi, Sampsa

    2008-11-21

    Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  1. Low-level laser therapy induces an upregulation of collagen gene expression during the initial process of bone healing: a microarray analysis

    Science.gov (United States)

    Tim, Carla Roberta; Bossini, Paulo Sérgio; Kido, Hueliton Wilian; Malavazi, Iran; von Zeska Kress, Marcia Regina; Carazzolle, Marcelo Falsarella; Rennó, Ana Cláudia; Parizotto, Nivaldo Antonio

    2016-08-01

    This study investigates the histological modifications produced by low level laser therapy (LLLT) on the first day of bone repair, as well as evaluates the LLLT effects on collagen expression on the site of a fracture. Twenty Wistar rats were distributed into a control group (CG) and a laser group (LG). Laser irradiation of Ga-Al-As laser 830 nm, 30 mW, 94 s, 2.8 J was performed in five sessions. Animals were euthanized on day 5 postsurgery. Histopathological analysis showed that LLLT was able to increase deposition of granulation tissue and newly formed bone at the site of the injury. In addition, picrosirius analysis showed that collagen fiber organization in the LG was enhanced compared to CG. Microarray analysis demonstrated that LLLT produced an upregulation type I collagen (COL-I). Immunohistochemical analysis revealed that the subjects that were treated presented a higher immunoexpression of COL-I. Our findings indicated that LLLT improves bone healing by producing a significant increase in the expression of collagen genes.

  2. Role of SeqA and Dam in Escherichia coli gene expression: A global/microarray analysis

    DEFF Research Database (Denmark)

    Løbner-Olesen, Anders; Marinus, M.G.; Hansen, Flemming G.

    2003-01-01

    High-density oligonucleotide arrays were used to monitor global transcription patterns in Escherichia coli with various levels of Dam and SeqA proteins. Cells lacking Dam methyltransferase showed a modest increase in transcription of the genes belonging to the SOS regulon. Bacteria devoid...... of the SeqA protein, which preferentially binds hemimethylated DNA, were found to have a transcriptional profile almost identical to WT bacteria overexpressing Dam methyltransferase. The latter two strains differed from WT in two ways. First, the origin proximal genes were transcribed with increased...... frequency due to increased gene dosage. Second, chromosomal domains of high transcriptional activity alternate with regions of low activity, and our results indicate that the activity in each domain is modulated in the same way by SeqA deficiency or Dam overproduction. We suggest that the methylation status...

  3. Use of cDNA microarray to isolate differentially expressed genes in White Spot Virus infected shrimp (penaeus stylirostris)

    OpenAIRE

    Dhar, Arun K.; Klimpel, Kurt R.; Bullis, Robert A.; McClenaghan, Leroy R.

    2006-01-01

    White spot syndrome virus (WSSV), the etiologic agent of white spot disease, is currently the most important viral pathogen infecting penaeid shrimp worldwide. Since the initial report, white spot disease has caused losses of catastrophic proportion to shrimp aquaculture globally. Although considerable progress has been made in characterizing the WSSV and developing detection methods, information on the host genes involved in the immune response in shrimp due to WSSV infection is not availabl...

  4. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei

    OpenAIRE

    Zirlinger, M.; Kreiman, Gabriel; Anderson, D. J.

    2001-01-01

    Microarray technology represents a potentially powerful method for identifying cell type- and regionally restricted genes expressed in the brain. Here we have combined a microarray analysis of differential gene expression among five selected brain regions, including the amygdala, cerebellum, hippocampus, olfactory bulb, and periaqueductal gray, with in situ hybridization. On average, 0.3% of the 34,000 genes interrogated were highly enriched in each of the five regions...

  5.  DNA microarray-based gene expression profiling in diagnosis, assessing prognosis and predicting response to therapy in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Przemysław Kwiatkowski

    2012-06-01

    Full Text Available  Colorectal cancer is the most common cancer of the gastrointestinal tract. It is considered as a biological model of a certain type of cancerogenesis process in which progression from an early to late stage adenoma and cancer is accompanied by distinct genetic alterations.Clinical and pathological parameters commonly used in clinical practice are often insufficient to determine groups of patients suitable for personalized treatment. Moreover, reliable molecular markers with high prognostic value have not yet been determined. Molecular studies using DNA-based microarrays have identified numerous genes involved in cell proliferation and differentiation during the process of cancerogenesis. Assessment of the genetic profile of colorectal cancer using the microarray technique might be a useful tool in determining the groups of patients with different clinical outcomes who would benefit from additional personalized treatment.The main objective of this study was to present the current state of knowledge on the practical application of gene profiling techniques using microarrays for determining diagnosis, prognosis and response to treatment in colorectal cancer.

  6. Impact of protein supplementation and exercise in preventing changes in gene expression profiling in woman muscles after long-term bedrest as revealed by microarray analysis.

    Science.gov (United States)

    Chopard, Angele; Lecunff, Martine; Danger, Richard; Teusan, Raluca; Jasmin, Bernard J.; Marini, Jean-Francois; Leger, Jean

    Long duration space flights have a dramatic impact on human physiology and under such a condition, skeletal muscles are known to be one of the most affected systems. A thorough understanding of the basic mechanisms leading to muscle impairment under microgravity, which causes significant loss of muscle mass as well as structural disorders, is necessary for the development of efficient space flight countermeasures. This study was conducted under the aegis of the European Space Agency (ESA), the National Aeronautics and Space Administration of the USA (NASA), the Canadian Space Agency (CSA), and the French "Centre National d'Etudes Spatiales" (CNES). It gave us the opportunity to investigate for the first time the effects of prolonged disuse (long-term bedrest, LTBR) on the transcriptome of different muscle types in healthy women (control, n=8), as well as the potential beneficial impact of protein supplementation (nutrition, n=8) and a combined resistance and aerobic exercise training program (exercise, n=8). Pre- (LTBR -8) and post- (LTBR +59) biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles from each subject. Skeletal muscle gene expression profiles were obtained using a custom made microarray containing 6681 muscle-relevant genes. 555 differentiallyexpressed and statistically-significant genes were identified in control group following 60 days of LTBR, including 348 specific for SOL, 83 specific for VL, and 124 common for the two types of muscle (p<0.05). After LTBR, both muscle types exhibited a consistent decrease in pathways involved in fatty acid oxidation, ATP synthesis, and oxidative phosphorylation (p<0.05). However, the postural SOL muscle exhibited a higher level of changes with mRNA encoding proteins involved in protein synthesis and activation of protein degradation (mainly ubiquitinproteasome components) (p<0.05). Major changes in muscle function, such as those involved in calcium signaling and muscle structure including

  7. Gene expression profiles of lung adenocarcinoma linked to histopathological grading and survival but not to EGF-R status: a microarray study

    Directory of Open Access Journals (Sweden)

    Passlick Bernward

    2010-03-01

    Full Text Available Abstract Background Several different gene expression signatures have been proposed to predict response to therapy and clinical outcome in lung adenocarcinoma. Herein, we investigate if elements of published gene sets can be reproduced in a small dataset, and how gene expression profiles based on limited sample size relate to clinical parameters including histopathological grade and EGFR protein expression. Methods Affymetrix Human Genome U133A platform was used to obtain gene expression profiles of 28 pathologically and clinically annotated adenocarcinomas of the lung. EGFR status was determined by fluorescent in situ hybridization and immunohistochemistry. Results Using unsupervised clustering algorithms, the predominant gene expression signatures correlated with the histopathological grade but not with EGFR protein expression as detected by immunohistochemistry. In a supervised analysis, the signature of high grade tumors but not of EGFR overexpressing cases showed significant enrichment of gene sets reflecting MAPK activation and other potential signaling cascades downstream of EGFR. Out of four different previously published gene sets that had been linked to prognosis, three showed enrichment in the gene expression signature associated with favorable prognosis. Conclusions In this dataset, histopathological tumor grades but not EGFR status were associated with dominant gene expression signatures and gene set enrichment reflecting oncogenic pathway activation, suggesting that high immunohistochemistry EGFR scores may not necessarily be linked to downstream effects that cause major changes in gene expression patterns. Published gene sets showed association with patient survival; however, the small sample size of this study limited the options for a comprehensive validation of previously reported prognostic gene expression signatures.

  8. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  9. Uso de microarrays na busca de perfis de expressão gênica: aplicação no estudo de fenótipos complexos Use of microarrays in the search of gene expression patterns: application to the study of complex phenotypes

    Directory of Open Access Journals (Sweden)

    Camila Guindalini

    2007-12-01

    Full Text Available Com o advento do seqüenciamento de genoma humano, novas tecnologias foram desenvolvidas e despontaram como promissoras ferramentas metodológicas e científicas para o avanço na compreensão dos mecanismos envolvidos em várias doenças complexas. Dentre elas, a técnica de análise em larga escala (conhecida como microarrays ou chips de DNA é particularmente eficaz em permitir uma visão global na busca de padrões de expressão gênica em amostras biológicas. Por meio da determinação da expressão de milhares de genes simultaneamente, a promissora tecnologia permite que pesquisadores comparem o comportamento molecular de diversos tipos de linhagens celulares e tecidos diferentes, quando expostos a uma determinada condição patológica ou experimental. A aplicação do método pode trazer novas perspectivas de análise de processos fisiológicos e facilitar a identificação de marcadores moleculares para o diagnóstico, prognóstico e para o tratamento farmacológico atual. Nesse artigo, apresentaremos conceitos teóricos e metodológicos que permeiam a tecnologia de microarrays, assim como suas vantagens, perspectivas e direcionamentos futuros. Com o intuito de exemplificar sua aplicabilidade e eficiência no estudo de fenômenos complexos, serão apresentados e também discutidos resultados iniciais sobre padrões de expressão gênica em amostra de cérebros post-mortem de pacientes psiquiátricos e sobre as conseqüências moleculares e funcionais de perturbações no sono, comumente associadas a transtornos psiquiátricos.Sequencing the human genome has prompted the development of new technologies, which have emerged as promising methodological and scientific tools for advancing the current knowledge about the causes and mechanisms involved in various complex disorders. Among those, the high-throughput technique known as microarray is particularly powerful in providing a global view of gene expression patterns in biological samples

  10. Analysis of Gene expression in soybean (Glycine max roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

    Directory of Open Access Journals (Sweden)

    Gamal El-Din Abd El Kader Y

    2011-05-01

    Full Text Available Abstract Background Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site. Results We examined the expression of soybean (Glycine max genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered. Conclusions A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.

  11. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Alina Sîrbu

    2015-05-01

    Full Text Available Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions. Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  12. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks.

    Science.gov (United States)

    Sîrbu, Alina; Crane, Martin; Ruskin, Heather J

    2015-05-14

    Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions). Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  13. A Combinatory Approach for Selecting Prognostic Genes in Microarray Studies of Tumour Survivals

    Directory of Open Access Journals (Sweden)

    Qihua Tan

    2009-01-01

    Full Text Available Different from significant gene expression analysis which looks for genes that are differentially regulated, feature selection in the microarray-based prognostic gene expression analysis aims at finding a subset of marker genes that are not only differentially expressed but also informative for prediction. Unfortunately feature selection in literature of microarray study is predominated by the simple heuristic univariate gene filter paradigm that selects differentially expressed genes according to their statistical significances. We introduce a combinatory feature selection strategy that integrates differential gene expression analysis with the Gram-Schmidt process to identify prognostic genes that are both statistically significant and highly informative for predicting tumour survival outcomes. Empirical application to leukemia and ovarian cancer survival data through-within- and cross-study validations shows that the feature space can be largely reduced while achieving improved testing performances.

  14. Fast Gene Ontology based clustering for microarray experiments

    Directory of Open Access Journals (Sweden)

    Ovaska Kristian

    2008-11-01

    Full Text Available Abstract Background Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. Results We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Conclusion Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  15. Gene selection for microarray data classification via subspace learning and manifold regularization.

    Science.gov (United States)

    Tang, Chang; Cao, Lijuan; Zheng, Xiao; Wang, Minhui

    2017-12-19

    With the rapid development of DNA microarray technology, large amount of genomic data has been generated. Classification of these microarray data is a challenge task since gene expression data are often with thousands of genes but a small number of samples. In this paper, an effective gene selection method is proposed to select the best subset of genes for microarray data with the irrelevant and redundant genes removed. Compared with original data, the selected gene subset can benefit the classification task. We formulate the gene selection task as a manifold regularized subspace learning problem. In detail, a projection matrix is used to project the original high dimensional microarray data into a lower dimensional subspace, with the constraint that the original genes can be well represented by the selected genes. Meanwhile, the local manifold structure of original data is preserved by a Laplacian graph regularization term on the low-dimensional data space. The projection matrix can serve as an importance indicator of different genes. An iterative update algorithm is developed for solving the problem. Experimental results on six publicly available microarray datasets and one clinical dataset demonstrate that the proposed method performs better when compared with other state-of-the-art methods in terms of microarray data classification. Graphical Abstract The graphical abstract of this work.

  16. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.

    Science.gov (United States)

    Jaakson, K; Zernant, J; Külm, M; Hutchinson, A; Tonisson, N; Glavac, D; Ravnik-Glavac, M; Hawlina, M; Meltzer, M R; Caruso, R C; Testa, F; Maugeri, A; Hoyng, C B; Gouras, P; Simonelli, F; Lewis, R A; Lupski, J R; Cremers, F P M; Allikmets, R

    2003-11-01

    Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics have been complicated by substantial allelic heterogeneity and by differences in screening methods. To overcome these limitations, we designed a genotyping microarray (gene chip) for ABCR that includes all approximately 400 disease-associated and other variants currently described, enabling simultaneous detection of all known ABCR variants. The ABCR genotyping microarray (the ABCR400 chip) was constructed by the arrayed primer extension (APEX) technology. Each sequence change in ABCR was included on the chip by synthesis and application of sequence-specific oligonucleotides. We validated the chip by screening 136 confirmed STGD patients and 96 healthy controls, each of whom we had analyzed previously by single strand conformation polymorphism (SSCP) technology and/or heteroduplex analysis. The microarray was >98% effective in determining the existing genetic variation and was comparable to direct sequencing in that it yielded many sequence changes undetected by SSCP. In STGD patient cohorts, the efficiency of the array to detect disease-associated alleles was between 54% and 78%, depending on the ethnic composition and degree of clinical and molecular characterization of a cohort. In addition, chip analysis suggested a high carrier frequency (up to 1:10) of ABCR variants in the general population. The ABCR genotyping microarray is a robust, cost-effective, and comprehensive screening tool for variation in one gene in which mutations are responsible for a substantial fraction of retinal disease. The ABCR chip is a prototype for the next generation of screening and diagnostic tools in ophthalmic genetics, bridging clinical and scientific research. Copyright 2003 Wiley

  17. Scaling of gene expression data allowing the comparison of different gene expression platforms

    NARCIS (Netherlands)

    van Ruissen, Fred; Schaaf, Gerben J.; Kool, Marcel; Baas, Frank; Ruijter, Jan M.

    2008-01-01

    Serial analysis of gene expression (SAGE) and microarrays have found a widespread application, but much ambiguity exists regarding the amalgamation of the data resulting from these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce

  18. Hepatic gene expression changes in pigs experimentally infected with the lung pathogen Actinobacillus pleuropneumoniae as analysed with an innate immunity focused microarray

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette

    2010-01-01

    Knowledge on gene expression in the liver during respiratory infections is limited although it is well-established that this organ is an important site of synthesis of several systemic innate immune components as response to infections. In the present study, the early transcriptional hepatic...... in initiating and orchestrating the innate immune response to A. pleuropneumoniae infection. Keywords: acute phase protein, hepatic transcriptional response, innate defence, gene expression, pig...... differentially expressed. A large group of these genes encoded proteins involved in the acute phase response, including serum amyloid A, C-reactive protein, fibrinogen, haptoglobin and tumor necrosis factor-a the expression of which were all found to be up-regulated and glutathione S-transferase, transthyretin...

  19. Characterization of fetal cells from the maternal circulation by microarray gene expression analysis - Could the extravillous trophoblasts be a target for future cell-based non-invasive prenatal diagnosis?

    DEFF Research Database (Denmark)

    Hatt, Lotte; Brinch, Marie; Singh, Ripudaman

    2014-01-01

    stem cell microarray analysis. Results: 39 genes were identified as candidates for unique fetal cell markers. More than half of these are genes known to be expressed in the placenta, especially in extravillous trophoblasts (EVTs). Immunohistochemical staining of placental tissue confirmed CD105......Introduction: Circulating fetal cells in maternal blood provide a tool for risk-free, non-invasive prenatal diagnosis. However, fetal cells in the maternal circulation are scarce, and to effectively isolate enough of them for reliable diagnostics, it is crucial to know which fetal cell type......(s) should be targeted. Materials and Methods: Fetal cells were enriched from maternal blood by magnetic-activated cell sorting using the endothelial cell marker CD105 and identified by XY fluorescence in situ hybridization. Expression pattern was compared between fetal cells and maternal blood cells using...

  20. Microarray analysis of altered gene expression in murine fibroblasts transformed by nickel(II) to nickel(II)-resistant malignant phenotype

    International Nuclear Information System (INIS)

    Kowara, Renata; Karaczyn, Aldona; Cheng, Robert Y.S.; Salnikow, Konstantin; Kasprzak, Kazimierz S.

    2005-01-01

    B200 cells are Ni(II)-transformed mouse BALB/c-3T3 fibroblasts displaying a malignant phenotype and increased resistance to Ni(II) toxicity. In an attempt to find genes whose expression has been altered by the transformation, the Atlas Mouse Stress/Toxicology cDNA Expression Array (Clontech Laboratories, Inc., Palo Alto, CA) was used to analyze the levels of gene expression in both parental and Ni(II)-transformed cells. Comparison of the results revealed a significant up- or downregulation of the expression of 62 of the 588 genes present in the array (approximately 10.5%) in B200 cells. These genes were assigned to different functional groups, including transcription factors and oncogenes (9/14; fractions in parentheses denote the number of up-regulated versus the total number of genes assigned to this group), stress and DNA damage response genes (11/12), growth factors and hormone receptors (6/9), metabolism (7/7), cell adhesion (2/7), cell cycle (3/6), apoptosis (3/4), and cell proliferation (2/3). Among those genes, overexpression of beta-catenin and its downstream targets c-myc and cyclin D1, together with upregulated cyclin G, points at the malignant character of B200 cells. While the increased expression of glutathione (GSH) synthetase, glutathione-S-transferase A4 (GSTA4), and glutathione-S-transferase theta (GSTT), together with high level of several genes responding to oxidative stress, suggests the enforcement of antioxidant defenses in Ni-transformed cells

  1. Microarray mRNA expression analysis of Fanconi anemia fibroblasts.

    Science.gov (United States)

    Galetzka, D; Weis, E; Rittner, G; Schindler, D; Haaf, T

    2008-01-01

    Fanconi anemia (FA) cells are generally hypersensitive to DNA cross-linking agents, implying that mutations in the different FANC genes cause a similar DNA repair defect(s). By using a customized cDNA microarray chip for DNA repair- and cell cycle-associated genes, we identified three genes, cathepsin B (CTSB), glutaredoxin (GLRX), and polo-like kinase 2 (PLK2), that were misregulated in untreated primary fibroblasts from three unrelated FA-D2 patients, compared to six controls. Quantitative real-time RT PCR was used to validate these results and to study possible molecular links between FA-D2 and other FA subtypes. GLRX was misregulated to opposite directions in a variety of different FA subtypes. Increased CTSB and decreased PLK2 expression was found in all or almost all of the analyzed complementation groups and, therefore, may be related to the defective FA pathway. Transcriptional upregulation of the CTSB proteinase appears to be a secondary phenomenon due to proliferation differences between FA and normal fibroblast cultures. In contrast, PLK2 is known to play a pivotal role in processes that are linked to FA defects and may contribute in multiple ways to the FA phenotype: PLK2 is a target gene for TP53, is likely to function as a tumor suppressor gene in hematologic neoplasia, and Plk2(-/-) mice are small because of defective embryonal development. (c) 2008 S. Karger AG, Basel.

  2. Microarray analysis of HIV resistant female sex workers reveal a gene expression signature pattern reminiscent of a lowered immune activation state.

    Directory of Open Access Journals (Sweden)

    Elijah M Songok

    Full Text Available To identify novel biomarkers for HIV-1 resistance, including pathways that may be critical in anti-HIV-1 vaccine design, we carried out a gene expression analysis on blood samples obtained from HIV-1 highly exposed seronegatives (HESN from a commercial sex worker cohort in Nairobi and compared their profiles to HIV-1 negative controls. Whole blood samples were collected from 43 HIV-1 resistant sex workers and a similar number of controls. Total RNA was extracted and hybridized to the Affymetrix HUG 133 Plus 2.0 micro arrays (Affymetrix, Santa Clara CA. Output data was analysed through ArrayAssist software (Agilent, San Jose CA. More than 2,274 probe sets were differentially expressed in the HESN as compared to the control group (fold change ≥1.3; p value ≤0.0001, FDR <0.05. Unsupervised hierarchical clustering of the differentially expressed genes readily distinguished HESNs from controls. Pathway analysis through the KEGG signaling database revealed a majority of the impacted pathways (13 of 15, 87% had genes that were significantly down regulated. The most down expressed pathways were glycolysis/gluconeogenesis, pentose phosphate, phosphatidyl inositol, natural killer cell cytotoxicity and T-cell receptor signaling. Ribosomal protein synthesis and tight junction genes were up regulated. We infer that the hallmark of HIV-1 resistance is down regulation of genes in key signaling pathways that HIV-1 depends on for infection.

  3. Detecting imbalanced expression of SNP alleles by minisequencing on microarrays

    Directory of Open Access Journals (Sweden)

    Dahlgren Andreas

    2004-10-01

    Full Text Available Abstract Background Each of the human genes or transcriptional units is likely to contain single nucleotide polymorphisms that may give rise to sequence variation between individuals and tissues on the level of RNA. Based on recent studies, differential expression of the two alleles of heterozygous coding single nucleotide polymorphisms (SNPs may be frequent for human genes. Methods with high accuracy to be used in a high throughput setting are needed for systematic surveys of expressed sequence variation. In this study we evaluated two formats of multiplexed, microarray based minisequencing for quantitative detection of imbalanced expression of SNP alleles. We used a panel of ten SNPs located in five genes known to be expressed in two endothelial cell lines as our model system. Results The accuracy and sensitivity of quantitative detection of allelic imbalance was assessed for each SNP by constructing regression lines using a dilution series of mixed samples from individuals of different genotype. Accurate quantification of SNP alleles by both assay formats was evidenced for by R2 values > 0.95 for the majority of the regression lines. According to a two sample t-test, we were able to distinguish 1–9% of a minority SNP allele from a homozygous genotype, with larger variation between SNPs than between assay formats. Six of the SNPs, heterozygous in either of the two cell lines, were genotyped in RNA extracted from the endothelial cells. The coefficient of variation between the fluorescent signals from five parallel reactions was similar for cDNA and genomic DNA. The fluorescence signal intensity ratios measured in the cDNA samples were compared to those in genomic DNA to determine the relative expression levels of the two alleles of each SNP. Four of the six SNPs tested displayed a higher than 1.4-fold difference in allelic ratios between cDNA and genomic DNA. The results were verified by allele-specific oligonucleotide hybridisation and

  4. Analysis of antisense expression by whole genome tiling microarrays and siRNAs suggests mis-annotation of Arabidopsis orphan protein-coding genes.

    Directory of Open Access Journals (Sweden)

    Casey R Richardson

    2010-05-01

    Full Text Available MicroRNAs (miRNAs and trans-acting small-interfering RNAs (tasi-RNAs are small (20-22 nt long RNAs (smRNAs generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery.We explored rice (Oryza sativa sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis 'orphan' hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the "ancient" (deeply conserved class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for "new" rapidly-evolving MIRNA genes.Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non-coding RNAs in plants and potentially other

  5. Sexual dimorphism and ageing in the human hyppocampus: Identification, validation and impact of differentially expressed genes by factorial microarray and network analysis

    Directory of Open Access Journals (Sweden)

    Daniel Victor Guebel

    2016-10-01

    Full Text Available Motivation: In the brain of elderly-healthy individuals, the effects of sexual dimorphism and those due to normal ageing appear overlapped. Discrimination of these two dimensions would powerfully contribute to a better understanding of the aetiology of some neurodegenerative diseases, such as sporadic Alzheimer. Methods: Following a system biology approach, top-down and bottom-up strategies were combined. First, public transcriptome data corresponding to the transition from adulthood to the ageing stage in normal, human hippocampus were analysed through an optimized microarray post-processing (Q-GDEMAR method together with a proper experimental design (full factorial analysis. Second, the identified genes were placed in context by building compatible networks. The subsequent ontology analyses carried out on these networks clarify the main functionalities involved. Results: Noticeably we could identify large sets of genes according to three groups: those that exclusively depend on the sex, those that exclusively depend on the age, and those that depend on the particular combinations of sex and age (interaction. The genes identified were validated against three independent sources (a proteomic study of ageing, a senescence database, and a mitochondrial genetic database. We arrived to several new inferences about the biological functions compromised during ageing in two ways: by taking into account the sex-independent effects of ageing, and considering the interaction between age and sex where pertinent. In particular, we discuss the impact of our findings on the functions of mitochondria, autophagy, mitophagia, and microRNAs.Conclusions: The evidence obtained herein supports the occurrence of significant neurobiological differences in the hippocampus, not only between adult and elderly individuals, but between old-healthy women and old-healthy men. Hence, to obtain realistic results in further analysis of the transition from the normal ageing to

  6. Transcriptome-Wide Identification of Differentially Expressed Genes in Solanum lycopersicon L. in Response to an Alfalfa-Protein Hydrolysate Using Microarrays

    Directory of Open Access Journals (Sweden)

    Andrea Ertani

    2017-07-01

    Full Text Available An alfalfa-based protein hydrolysate (EM has been tested in tomato (Solanum lycopersicon L. plants at two different concentrations (0.1 and 1 mL L-1 to get insight on its efficacy as biostimulant in this species and to unravel possible metabolic targets and molecular mechanisms that may shed light on its mode of action. EM was efficient in promoting the fresh biomass and content in chlorophyll and soluble sugars of tomato plants, especially when it was applied at the concentration of 1 mL L-1. This effect on plant productivity was likely related to the EM-dependent up-regulation of genes identified via microarray and involved in primary carbon and nitrogen metabolism, photosynthesis, nutrient uptake and developmental processes. EM also up-regulated a number of genes implied in the secondary metabolism that leads to the synthesis of compounds (phenols and terpenes functioning in plant development and interaction with the environment. Concomitantly, phenol content was enhanced in EM-treated plants. Several new genes have been identified in tomato as potential targets of EM action, like those involved in detoxification processes from reactive oxygen species and xenobiotic (particularly glutathione/ascorbate cycle-related and ABC transporters, and defense against abiotic and biotic stress. The model hypothesized is that elicitors present in the EM formulation like auxins, phenolics, and amino acids, may trigger a signal transduction pathway via modulation of the intracellular levels of the hormones ethylene, jasmonic acid and abscissic acid, which then further prompt the activation of a cascade events requiring the presence and activity of many kinases and transcription factors to activate stress-related genes. The genes identified suggest these kinases and transcription factors as players involved in a complex crosstalk between biotic and abiotic stress signaling pathways. We conclude that EM acts as a biostimulant in tomato due to its capacity to

  7. Prevention of hyperglycemia in Zucker diabetic fatty rats by exercise training: effects on gene expression in insulin-sensitive tissues determined by high-density oligonucleotide microarray analysis

    DEFF Research Database (Denmark)

    Colombo, Michele; Gregersen, Soeren; Kruhoeffer, Mogens

    2005-01-01

    , blood samples, soleus muscle, liver, visceral fat (epididymal fat pads), and islet tissue were collected. Gene expression was quantified with Affymetrix RG-U34A array (16 chips). Exercise training ameliorates the development of hyperglycemia and reduces plasma free fatty acid and the level of glucagon...

  8. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays

    Directory of Open Access Journals (Sweden)

    Brahmbhatt Sonal

    2008-11-01

    Full Text Available Abstract Background Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most widely studied groups of fish. Results 298,304 expressed sequence tags (ESTs from Atlantic salmon (69% of the total, 11,664 chinook, 10,813 sockeye, 10,051 brook trout, 10,975 grayling, 8,630 lake whitefish, and 3,624 northern pike ESTs were obtained in this study and have been deposited into the public databases. Contigs were built and putative full-length Atlantic salmon clones have been identified. A database containing ESTs, assemblies, consensus sequences, open reading frames, gene predictions and putative annotation is available. The overall similarity between Atlantic salmon ESTs and those of rainbow trout, chinook, sockeye, brook trout, grayling, lake whitefish, northern pike and rainbow smelt is 93.4, 94.2, 94.6, 94.4, 92.5, 91.7, 89.6, and 86.2% respectively. An analysis of 78 transcript sets show Salmo as a sister group to Oncorhynchus and Salvelinus within Salmoninae, and Thymallinae as a sister group to Salmoninae and Coregoninae within Salmonidae. Extensive gene duplication is consistent with a genome duplication in the common ancestor of salmonids. Using all of the available EST data, a new expanded salmonid cDNA microarray of 32,000 features was created. Cross-species hybridizations to this cDNA microarray indicate that this resource will be useful for studies of all 68 salmonid species. Conclusion An extensive collection and analysis of salmonid RNA putative transcripts indicate that Pacific salmon, Atlantic salmon and charr are 94–96% similar while the more distant whitefish, grayling, pike and smelt are 93, 92, 89 and 86% similar to salmon. The salmonid transcriptome reveals a complex history of gene duplication that is

  9. Microarray-Based Screening of Differentially Expressed Genes of E. coli O157:H7 Sakai during Preharvest Survival on Butterhead Lettuce

    Directory of Open Access Journals (Sweden)

    Inge Van der Linden

    2016-01-01

    Full Text Available Numerous outbreaks of Escherichia coli O157:H7 have been linked to the consumption of leafy vegetables. However, up to the present, little has been known about E. coli O157:H7’s adaptive responses to survival on actively growing (and thus responsive plants. In this study, whole genome transcriptional profiles were generated from E. coli O157:H7 cells (isolate Sakai, stx- one hour and two days after inoculation on the leaves of growing butterhead lettuce, and compared with an inoculum control. A total of 273 genes of E. coli O157:H7 Sakai (5.04% of the whole genome were significantly induced or repressed by at least two-fold (p < 0.01 in at least one of the analyzed time points in comparison with the control. Several E. coli O157:H7 genes associated with oxidative stress and antimicrobial resistance were upregulated, including the iron-sulfur cluster and the multiple antibiotic resistance (mar operon, whereas the Shiga toxin virulence genes were downregulated. Nearly 40% of the genes with significantly different expression were poorly characterized genes or genes with unknown functions. These genes are of special interest for future research as they may play an important role in the pathogens’ adaptation to a lifestyle on plants. In conclusion, these findings suggest that the pathogen actively interacts with the plant environment by adapting its metabolism and responding to oxidative stress.

  10. Serious limitations of the QTL/Microarray approach for QTL gene discovery

    Directory of Open Access Journals (Sweden)

    Warden Craig H

    2010-07-01

    Full Text Available Abstract Background It has been proposed that the use of gene expression microarrays in nonrecombinant parental or congenic strains can accelerate the process of isolating individual genes underlying quantitative trait loci (QTL. However, the effectiveness of this approach has not been assessed. Results Thirty-seven studies that have implemented the QTL/microarray approach in rodents were reviewed. About 30% of studies showed enrichment for QTL candidates, mostly in comparisons between congenic and background strains. Three studies led to the identification of an underlying QTL gene. To complement the literature results, a microarray experiment was performed using three mouse congenic strains isolating the effects of at least 25 biometric QTL. Results show that genes in the congenic donor regions were preferentially selected. However, within donor regions, the distribution of differentially expressed genes was homogeneous once gene density was accounted for. Genes within identical-by-descent (IBD regions were less likely to be differentially expressed in chromosome 2, but not in chromosomes 11 and 17. Furthermore, expression of QTL regulated in cis (cis eQTL showed higher expression in the background genotype, which was partially explained by the presence of single nucleotide polymorphisms (SNP. Conclusions The literature shows limited successes from the QTL/microarray approach to identify QTL genes. Our own results from microarray profiling of three congenic strains revealed a strong tendency to select cis-eQTL over trans-eQTL. IBD regions had little effect on rate of differential expression, and we provide several reasons why IBD should not be used to discard eQTL candidates. In addition, mismatch probes produced false cis-eQTL that could not be completely removed with the current strains genotypes and low probe density microarrays. The reviewed studies did not account for lack of coverage from the platforms used and therefore removed genes

  11. In search of functional association from time-series microarray data based on the change trend and level of gene expression

    Directory of Open Access Journals (Sweden)

    Zeng An-Ping

    2006-02-01

    Full Text Available Abstract Background The increasing availability of time-series expression data opens up new possibilities to study functional linkages of genes. Present methods used to infer functional linkages between genes from expression data are mainly based on a point-to-point comparison. Change trends between consecutive time points in time-series data have been so far not well explored. Results In this work we present a new method based on extracting main features of the change trend and level of gene expression between consecutive time points. The method, termed as trend correlation (TC, includes two major steps: 1, calculating a maximal local alignment of change trend score by dynamic programming and a change trend correlation coefficient between the maximal matched change levels of each gene pair; 2, inferring relationships of gene pairs based on two statistical extraction procedures. The new method considers time shifts and inverted relationships in a similar way as the local clustering (LC method but the latter is merely based on a point-to-point comparison. The TC method is demonstrated with data from yeast cell cycle and compared with the LC method and the widely used Pearson correlation coefficient (PCC based clustering method. The biological significance of the gene pairs is examined with several large-scale yeast databases. Although the TC method predicts an overall lower number of gene pairs than the other two methods at a same p-value threshold, the additional number of gene pairs inferred by the TC method is considerable: e.g. 20.5% compared with the LC method and 49.6% with the PCC method for a p-value threshold of 2.7E-3. Moreover, the percentage of the inferred gene pairs consistent with databases by our method is generally higher than the LC method and similar to the PCC method. A significant number of the gene pairs only inferred by the TC method are process-identity or function-similarity pairs or have well-documented biological

  12. Exertional Heat Illness and Human Gene Expression

    National Research Council Canada - National Science Library

    Sonna, L.A; Sawka, M. N; Lilly, C. M

    2007-01-01

    Microarray analysis of gene expression at the level of RNA has generated new insights into the relationship between cellular responses to acute heat shock in vitro, exercise, and exertional heat illness...

  13. Expression Profiling of Tyrosine Kinase Genes

    National Research Council Canada - National Science Library

    Weier, Heinz

    2000-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  14. Normalization and gene p-value estimation: issues in microarray data processing.

    Science.gov (United States)

    Fundel, Katrin; Küffner, Robert; Aigner, Thomas; Zimmer, Ralf

    2008-05-28

    Numerous methods exist for basic processing, e.g. normalization, of microarray gene expression data. These methods have an important effect on the final analysis outcome. Therefore, it is crucial to select methods appropriate for a given dataset in order to assure the validity and reliability of expression data analysis. Furthermore, biological interpretation requires expression values for genes, which are often represented by several spots or probe sets on a microarray. How to best integrate spot/probe set values into gene values has so far been a somewhat neglected problem. We present a case study comparing different between-array normalization methods with respect to the identification of differentially expressed genes. Our results show that it is feasible and necessary to use prior knowledge on gene expression measurements to select an adequate normalization method for the given data. Furthermore, we provide evidence that combining spot/probe set p-values into gene p-values for detecting differentially expressed genes has advantages compared to combining expression values for spots/probe sets into gene expression values. The comparison of different methods suggests to use Stouffer's method for this purpose. The study has been conducted on gene expression experiments investigating human joint cartilage samples of osteoarthritis related groups: a cDNA microarray (83 samples, four groups) and an Affymetrix (26 samples, two groups) data set. The apparently straight forward steps of gene expression data analysis, e.g. between-array normalization and detection of differentially regulated genes, can be accomplished by numerous different methods. We analyzed multiple methods and the possible effects and thereby demonstrate the importance of the single decisions taken during data processing. We give guidelines for evaluating normalization outcomes. An overview of these effects via appropriate measures and plots compared to prior knowledge is essential for the biological

  15. HER2/neu (c-erbB-2) gene amplification and protein expression are rare in uterine cervical neoplasia: a tissue microarray study of 814 archival specimens

    DEFF Research Database (Denmark)

    Lesnikova, Iana; Lidang, Marianne; Hamilton-Dutoit, Stephen

    2009-01-01

    intraepithelial neoplasia (CIN)1 (n = 262), CIN2 (n = 230), CIN3 (n = 186) and invasive carcinoma (n = 136), for HER2/neu protein expression by immunohistochemistry (IHC) and for HER2/neu gene amplification by chromogenic in situ hybridization (CISH). We found moderate or strong immunohistochemical positivity...... and invasive cervical carcinoma specimens. When present, Her-2/neu positivity is more commonly seen in higher grades of cervical dysplasia and in carcinoma. However, this large TMA study shows that HER2/neu oncoprotein expression and HER2/neu gene amplification overall are uncommon events in cervical neoplasia....... This provides compelling evidence that HER2/neu plays no major role in the development and progression of cervical neoplasia....

  16. Gene expression profiling of acute myeloid leukemia samples from adult patients with AML-M1 and -M2 through boutique microarrays, real-time PCR and droplet digital PCR.

    Science.gov (United States)

    Handschuh, Luiza; Kaźmierczak, Maciej; Milewski, Marek C; Góralski, Michał; Łuczak, Magdalena; Wojtaszewska, Marzena; Uszczyńska-Ratajczak, Barbara; Lewandowski, Krzysztof; Komarnicki, Mieczysław; Figlerowicz, Marek

    2018-03-01

    Acute myeloid leukemia (AML) is the most common and severe form of acute leukemia diagnosed in adults. Owing to its heterogeneity, AML is divided into classes associated with different treatment outcomes and specific gene expression profiles. Based on previous studies on AML, in this study, we designed and generated an AML-array containing 900 oligonucleotide probes complementary to human genes implicated in hematopoietic cell differentiation and maturation, proliferation, apoptosis and leukemic transformation. The AML-array was used to hybridize 118 samples from 33 patients with AML of the M1 and M2 subtypes of the French-American‑British (FAB) classification and 15 healthy volunteers (HV). Rigorous analysis of the microarray data revealed that 83 genes were differentially expressed between the patients with AML and the HV, including genes not yet discussed in the context of AML pathogenesis. The most overexpressed genes in AML were STMN1, KITLG, CDK6, MCM5, KRAS, CEBPA, MYC, ANGPT1, SRGN, RPLP0, ENO1 and SET, whereas the most underexpressed genes were IFITM1, LTB, FCN1, BIRC3, LYZ, ADD3, S100A9, FCER1G, PTRPE, CD74 and TMSB4X. The overexpression of the CPA3 gene was specific for AML with mutated NPM1 and FLT3. Although the microarray-based method was insufficient to differentiate between any other AML subgroups, quantitative PCR approaches enabled us to identify 3 genes (ANXA3, S100A9 and WT1) whose expression can be used to discriminate between the 2 studied AML FAB subtypes. The expression levels of the ANXA3 and S100A9 genes were increased, whereas those of WT1 were decreased in the AML-M2 compared to the AML-M1 group. We also examined the association between the STMN1, CAT and ABL1 genes, and the FLT3 and NPM1 mutation status. FLT3+/NPM1- AML was associated with the highest expression of STMN1, and ABL1 was upregulated in FLT3+ AML and CAT in FLT3- AML, irrespectively of the NPM1 mutation status. Moreover, our results indicated that CAT and WT1

  17. Microarray analysis of differentially expressed genes and their functions in omental visceral adipose tissues of pregnant women with vs. without gestational diabetes mellitus

    Science.gov (United States)

    Qian, Yuan; Sun, Hao; Xiao, Hongli; Ma, Meirun; Xiao, Xue; Qu, Qinzai

    2017-01-01

    Increasing evidence has shown that insulin resistance in omental visceral adipose tissue (OVAT) is a characteristic of gestational diabetes mellitus (GDM). The present study aimed to identify differentially expressed genes (DEGs) and their associated functions and pathways involved in the pathogenesis of GDM by comparing the expression profiles of OVATs obtained from pregnant Chinese women with and without GDM during caesarian section. A total of 935 DEGs were identified, including 450 downregulated and 485 upregulated genes. In the gene ontology category cellular components, the DEGs were predominantly associated with functions of the extracellular region, while receptor binding was predominant in the molecular function category and biological process terms included antigen processing and presentation, extracellular matrix organization, positive regulation of cell-substrate adhesion, response to nutrients and response to dietary excess. Functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed and a functional interaction network was constructed. Functions of downregulated genes included antigen processing and presentation as well as cell adhesion molecules, while those of upregulated genes included transforming growth factor (TGF)-β-signaling, focal adhesion, phosphoinositide-3 kinase-Akt-signaling, P53 signaling, extracellular matrix-receptor interaction and regulation of actin cytoskeleton pathway. The five main pathways associated with GDM were antigen processing and presentation, cell adhesion molecules, Type 1 diabetes mellitus, natural killer cell-mediated cytotoxicity and TGF-β signaling. These pathways were included in the KEGG pathway categories of ‘signaling molecules and interaction’, ‘immune system’ and ‘inflammatory response’, suggesting that these processes are involved in GDM. The results of the present study enhanced the present understanding of the mechanisms associated with insulin

  18. GenePublisher: automated analysis of DNA microarray data

    DEFF Research Database (Denmark)

    Knudsen, Steen; Workman, Christopher; Sicheritz-Ponten, T.

    2003-01-01

    GenePublisher, a system for automatic analysis of data from DNA microarray experiments, has been implemented with a web interface at http://www.cbs.dtu.dk/services/GenePublisher. Raw data are uploaded to the server together with aspecification of the data. The server performs normalization...

  19. Evaluation of gene importance in microarray data based upon probability of selection

    Directory of Open Access Journals (Sweden)

    Fu Li M

    2005-03-01

    Full Text Available Abstract Background Microarray devices permit a genome-scale evaluation of gene function. This technology has catalyzed biomedical research and development in recent years. As many important diseases can be traced down to the gene level, a long-standing research problem is to identify specific gene expression patterns linking to metabolic characteristics that contribute to disease development and progression. The microarray approach offers an expedited solution to this problem. However, it has posed a challenging issue to recognize disease-related genes expression patterns embedded in the microarray data. In selecting a small set of biologically significant genes for classifier design, the nature of high data dimensionality inherent in this problem creates substantial amount of uncertainty. Results Here we present a model for probability analysis of selected genes in order to determine their importance. Our contribution is that we show how to derive the P value of each selected gene in multiple gene selection trials based on different combinations of data samples and how to conduct a reliability analysis accordingly. The importance of a gene is indicated by its associated P value in that a smaller value implies higher information content from information theory. On the microarray data concerning the subtype classification of small round blue cell tumors, we demonstrate that the method is capable of finding the smallest set of genes (19 genes with optimal classification performance, compared with results reported in the literature. Conclusion In classifier design based on microarray data, the probability value derived from gene selection based on multiple combinations of data samples enables an effective mechanism for reducing the tendency of fitting local data particularities.

  20. Comparison of gene coverage of mouse oligonucleotide microarray platforms

    Directory of Open Access Journals (Sweden)

    Medrano Juan F

    2006-03-01

    Full Text Available Abstract Background The increasing use of DNA microarrays for genetical genomics studies generates a need for platforms with complete coverage of the genome. We have compared the effective gene coverage in the mouse genome of different commercial and noncommercial oligonucleotide microarray platforms by performing an in-house gene annotation of probes. We only used information about probes that is available from vendors and followed a process that any researcher may take to find the gene targeted by a given probe. In order to make consistent comparisons between platforms, probes in each microarray were annotated with an Entrez Gene id and the chromosomal position for each gene was obtained from the UCSC Genome Browser Database. Gene coverage was estimated as the percentage of Entrez Genes with a unique position in the UCSC Genome database that is tested by a given microarray platform. Results A MySQL relational database was created to store the mapping information for 25,416 mouse genes and for the probes in five microarray platforms (gene coverage level in parenthesis: Affymetrix430 2.0 (75.6%, ABI Genome Survey (81.24%, Agilent (79.33%, Codelink (78.09%, Sentrix (90.47%; and four array-ready oligosets: Sigma (47.95%, Operon v.3 (69.89%, Operon v.4 (84.03%, and MEEBO (84.03%. The differences in coverage between platforms were highly conserved across chromosomes. Differences in the number of redundant and unspecific probes were also found among arrays. The database can be queried to compare specific genomic regions using a web interface. The software used to create, update and query the database is freely available as a toolbox named ArrayGene. Conclusion The software developed here allows researchers to create updated custom databases by using public or proprietary information on genes for any organisms. ArrayGene allows easy comparisons of gene coverage between microarray platforms for any region of the genome. The comparison presented here

  1. Microarray labeling extension values: laboratory signatures for Affymetrix GeneChips

    Science.gov (United States)

    Lee, Yun-Shien; Chen, Chun-Houh; Tsai, Chi-Neu; Tsai, Chia-Lung; Chao, Angel; Wang, Tzu-Hao

    2009-01-01

    Interlaboratory comparison of microarray data, even when using the same platform, imposes several challenges to scientists. RNA quality, RNA labeling efficiency, hybridization procedures and data-mining tools can all contribute variations in each laboratory. In Affymetrix GeneChips, about 11–20 different 25-mer oligonucleotides are used to measure the level of each transcript. Here, we report that ‘labeling extension values (LEVs)’, which are correlation coefficients between probe intensities and probe positions, are highly correlated with the gene expression levels (GEVs) on eukayotic Affymetrix microarray data. By analyzing LEVs and GEVs in the publicly available 2414 cel files of 20 Affymetrix microarray types covering 13 species, we found that correlations between LEVs and GEVs only exist in eukaryotic RNAs, but not in prokaryotic ones. Surprisingly, Affymetrix results of the same specimens that were analyzed in different laboratories could be clearly differentiated only by LEVs, leading to the identification of ‘laboratory signatures’. In the examined dataset, GSE10797, filtering out high-LEV genes did not compromise the discovery of biological processes that are constructed by differentially expressed genes. In conclusion, LEVs provide a new filtering parameter for microarray analysis of gene expression and it may improve the inter- and intralaboratory comparability of Affymetrix GeneChips data. PMID:19295132

  2. Time course investigation of PPARα- and Kupffer cell-dependent effects of WY-14,643 in mouse liver using microarray gene expression

    International Nuclear Information System (INIS)

    Woods, Courtney G.; Kosyk, Oksana; Bradford, Blair U.; Ross, Pamela K.; Burns, Amanda M.; Cunningham, Michael L.; Qu Pingping; Ibrahim, Joseph G.; Rusyn, Ivan

    2007-01-01

    Administration of peroxisome proliferators to rodents causes proliferation of peroxisomes, induction of β-oxidation enzymes, hepatocellular hypertrophy and hyperplasia, with chronic exposure ultimately leading to hepatocellular carcinomas. Many responses associated with peroxisome proliferators are nuclear receptor-mediated events involving peroxisome proliferators-activated receptor alpha (PPARα). A role for nuclear receptor-independent events has also been shown, with evidence of Kupffer cell-mediated free radical production, presumably through NAPDH oxidase, induction of redox-sensitive transcription factors involved in cytokine production and cytokine-mediated cell replication following acute treatment with peroxisome proliferators in rodents. Recent studies have demonstrated, by using p47 phox -null mice which are deficient in NADPH oxidase, that this enzyme is not related to the phenotypic events caused by prolonged administration of peroxisome proliferators. In an effort to determine the timing of the transition from Kupffer cell-to PPARα-dependent modulation of peroxisome proliferator effects, gene expression was assessed in liver from Pparα-null, p47 phox -null and corresponding wild-type mice following treatment with 4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid (WY-14,643) for 8 h, 24 h, 72 h, 1 week or 4 weeks. WY-14,643-induced gene expression in p47 phox -null mouse liver differed substantially from wild-type mice at acute doses and striking differences in baseline expression of immune related genes were evident. Pathway mapping of genes that respond to WY-14,643 in a time- and dose-dependent manner demonstrates suppression of immune response, cell death and signal transduction and promotion of lipid metabolism, cell cycle and DNA repair. Furthermore, these pathways were largely dependent on PPARα, not NADPH oxidase demonstrating a temporal shift in response to peroxisome proliferators. Overall, this study shows that NADPH oxidase

  3. Correlating gene expression to physiological parameters and environmental conditons during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays

    NARCIS (Netherlands)

    Joosen, R.V.L.; Lammers, M.; Balk, P.A.; Bronnum, P.; Konings, M.C.J.M.; Perks, M.; Stattin, E.; Wordragen, van M.F.; Geest, van der A.H.M.

    2006-01-01

    Scots pine (Pinus sylvestris L.) seedlings were grown under different conditions (three field locations, two seasons and two climate room regimes), and then analyzed for freezing tolerance of shoots and roots and for transcript abundance in apical buds based on a cDNA microarray containing about

  4. Development of a novel ozone- and photo-stable HyPer5 red fluorescent dye for array CGH and microarray gene expression analysis with consistent performance irrespective of environmental conditions

    Directory of Open Access Journals (Sweden)

    Kille Peter

    2008-11-01

    Full Text Available Abstract Background Array-based comparative genomic hybridization (CGH and gene expression profiling have become vital techniques for identifying molecular defects underlying genetic diseases. Regardless of the microarray platform, cyanine dyes (Cy3 and Cy5 are one of the most widely used fluorescent dye pairs for microarray analysis owing to their brightness and ease of incorporation, enabling high level of assay sensitivity. However, combining both dyes on arrays can become problematic during summer months when ozone levels rise to near 25 parts per billion (ppb. Under such conditions, Cy5 is known to rapidly degrade leading to loss of signal from either "homebrew" or commercial arrays. Cy5 can also suffer disproportionately from dye photobleaching resulting in distortion of (Cy5/Cy3 ratios used in copy number analysis. Our laboratory has been active in fluorescent dye research to find a suitable alternative to Cy5 that is stable to ozone and resistant to photo-bleaching. Here, we report on the development of such a dye, called HyPer5, and describe its' exceptional ozone and photostable properties on microarrays. Results Our results show HyPer5 signal to be stable to high ozone levels. Repeated exposure of mouse arrays hybridized with HyPer5-labeled cDNA to 300 ppb ozone at 5, 10 and 15 minute intervals resulted in no signal loss from the dye. In comparison, Cy5 arrays showed a dramatic 80% decrease in total signal during the same interval. Photobleaching experiments show HyPer5 to be resistant to light induced damage with 3- fold improvement in dye stability over Cy5. In high resolution array CGH experiments, HyPer5 is demonstrated to detect chromosomal aberrations at loci 2p21-16.3 and 15q26.3-26.2 from three patient sample using bacterial artificial chromosome (BAC arrays. The photostability of HyPer5 is further documented by repeat array scanning without loss of detection. Additionally, HyPer5 arrays are shown to preserve sensitivity and

  5. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  6. Microarray-Based Identification of Transcription Factor Target Genes

    NARCIS (Netherlands)

    Gorte, M.; Horstman, A.; Page, R.B.; Heidstra, R.; Stromberg, A.; Boutilier, K.A.

    2011-01-01

    Microarray analysis is widely used to identify transcriptional changes associated with genetic perturbation or signaling events. Here we describe its application in the identification of plant transcription factor target genes with emphasis on the design of suitable DNA constructs for controlling TF

  7. Using logistic regression to improve the prognostic value of microarray gene expression data sets: application to early-stage squamous cell carcinoma of the lung and triple negative breast carcinoma.

    Science.gov (United States)

    Mount, David W; Putnam, Charles W; Centouri, Sara M; Manziello, Ann M; Pandey, Ritu; Garland, Linda L; Martinez, Jesse D

    2014-06-10

    Numerous microarray-based prognostic gene expression signatures of primary neoplasms have been published but often with little concurrence between studies, thus limiting their clinical utility. We describe a methodology using logistic regression, which circumvents limitations of conventional Kaplan Meier analysis. We applied this approach to a thrice-analyzed and published squamous cell carcinoma (SQCC) of the lung data set, with the objective of identifying gene expressions predictive of early death versus long survival in early-stage disease. A similar analysis was applied to a data set of triple negative breast carcinoma cases, which present similar clinical challenges. Important to our approach is the selection of homogenous patient groups for comparison. In the lung study, we selected two groups (including only stages I and II), equal in size, of earliest deaths and longest survivors. Genes varying at least four-fold were tested by logistic regression for accuracy of prediction (area under a ROC plot). The gene list was refined by applying two sliding-window analyses and by validations using a leave-one-out approach and model building with validation subsets. In the breast study, a similar logistic regression analysis was used after selecting appropriate cases for comparison. A total of 8594 variable genes were tested for accuracy in predicting earliest deaths versus longest survivors in SQCC. After applying the two sliding window and the leave-one-out analyses, 24 prognostic genes were identified; most of them were B-cell related. When the same data set of stage I and II cases was analyzed using a conventional Kaplan Meier (KM) approach, we identified fewer immune-related genes among the most statistically significant hits; when stage III cases were included, most of the prognostic genes were missed. Interestingly, logistic regression analysis of the breast cancer data set identified many immune-related genes predictive of clinical outcome. Stratification of

  8. GeneRank: Using search engine technology for the analysis of microarray experiments

    Directory of Open Access Journals (Sweden)

    Breitling Rainer

    2005-09-01

    Full Text Available Abstract Background Interpretation of simple microarray experiments is usually based on the fold-change of gene expression between a reference and a "treated" sample where the treatment can be of many types from drug exposure to genetic variation. Interpretation of the results usually combines lists of differentially expressed genes with previous knowledge about their biological function. Here we evaluate a method – based on the PageRank algorithm employed by the popular search engine Google – that tries to automate some of this procedure to generate prioritized gene lists by exploiting biological background information. Results GeneRank is an intuitive modification of PageRank that maintains many of its mathematical properties. It combines gene expression information with a network structure derived from gene annotations (gene ontologies or expression profile correlations. Using both simulated and real data we find that the algorithm offers an improved ranking of genes compared to pure expression change rankings. Conclusion Our modification of the PageRank algorithm provides an alternative method of evaluating microarray experimental results which combines prior knowledge about the underlying network. GeneRank offers an improvement compared to assessing the importance of a gene based on its experimentally observed fold-change alone and may be used as a basis for further analytical developments.

  9. GeneRank: using search engine technology for the analysis of microarray experiments.

    Science.gov (United States)

    Morrison, Julie L; Breitling, Rainer; Higham, Desmond J; Gilbert, David R

    2005-09-21

    Interpretation of simple microarray experiments is usually based on the fold-change of gene expression between a reference and a "treated" sample where the treatment can be of many types from drug exposure to genetic variation. Interpretation of the results usually combines lists of differentially expressed genes with previous knowledge about their biological function. Here we evaluate a method--based on the PageRank algorithm employed by the popular search engine Google--that tries to automate some of this procedure to generate prioritized gene lists by exploiting biological background information. GeneRank is an intuitive modification of PageRank that maintains many of its mathematical properties. It combines gene expression information with a network structure derived from gene annotations (gene ontologies) or expression profile correlations. Using both simulated and real data we find that the algorithm offers an improved ranking of genes compared to pure expression change rankings. Our modification of the PageRank algorithm provides an alternative method of evaluating microarray experimental results which combines prior knowledge about the underlying network. GeneRank offers an improvement compared to assessing the importance of a gene based on its experimentally observed fold-change alone and may be used as a basis for further analytical developments.

  10. Evaluation of a gene information summarization system by users during the analysis process of microarray datasets

    Directory of Open Access Journals (Sweden)

    Cohen Aaron

    2009-02-01

    Full Text Available Abstract Background Summarization of gene information in the literature has the potential to help genomics researchers translate basic research into clinical benefits. Gene expression microarrays have been used to study biomarkers for disease and discover novel types of therapeutics and the task of finding information in journal articles on sets of genes is common for translational researchers working with microarray data. However, manually searching and scanning the literature references returned from PubMed is a time-consuming task for scientists. We built and evaluated an automatic summarizer of information on genes studied in microarray experiments. The Gene Information Clustering and Summarization System (GICSS is a system that integrates two related steps of the microarray data analysis process: functional gene clustering and gene information gathering. The system evaluation was conducted during the process of genomic researchers analyzing their own experimental microarray datasets. Results The clusters generated by GICSS were validated by scientists during their microarray analysis process. In addition, presenting sentences in the abstract provided significantly more important information to the users than just showing the title in the default PubMed format. Conclusion The evaluation results suggest that GICSS can be useful for researchers in genomic area. In addition, the hybrid evaluation method, partway between intrinsic and extrinsic system evaluation, may enable researchers to gauge the true usefulness of the tool for the scientists in their natural analysis workflow and also elicit suggestions for future enhancements. Availability GICSS can be accessed online at: http://ir.ohsu.edu/jianji/index.html

  11. Gene targeting associated with the radiation sensitivity in squamous cell carcinoma by using microarray analysis

    International Nuclear Information System (INIS)

    Nimura, Yoshinori; Kumagai, Ken; Kouzu, Yoshinao; Higo, Morihiro; Kato, Yoshikuni; Seki, Naohiko; Yamada, Shigeru

    2005-01-01

    In order to identify a set of genes related to radiation sensitivity of squamous cell carcinoma (SCC) and establish a predictive method, we compared expression profiles of radio-sensitive/radio-resistant SCC cell lines, using the in-house cDNA microarray consisting of 2,201 human genes derived from full-length enriched SCC cDNA libraries and the Human oligo chip 30 K (Hitachi Software Engineering). Surviving fractions (SF) after irradiation of heavy iron were calculated by colony formation assay. Three pairs (TE2-TE13, YES5-YES6, and HSC3-HSC2), sensitive (SF1 0.6), were selected for the microarray analysis. The results of cDNA microarray analysis showed that 20 genes in resistant cell lines and 5 genes in sensitive cell lines were up regulated more than 1.5-fold compared with sensitive and resistant cell lines respectively. Fourteen out of 25 genes were confirmed the gene expression profiles by real-time polymerase chain reaction (PCR). Twenty-seven genes identified by Human oligo chip 30 K are candidate for the markers to distinguish radio-sensitive from radio-resistant. These results suggest that the isolated 27 genes are the candidates that might be used as specific molecular markers to predict radiation sensitivity. (author)

  12. Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB.

    Science.gov (United States)

    Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N

    2009-10-27

    The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime. Gene ARMADA provides a

  13. Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles

    Directory of Open Access Journals (Sweden)

    Stear Michael

    2003-03-01

    Full Text Available Abstract Background Microarray profiling has the potential to illuminate the molecular processes that govern the phenotypic characteristics of porcine skeletal muscles, such as hypertrophy or atrophy, and the expression of specific fibre types. This information is not only important for understanding basic muscle biology but also provides underpinning knowledge for enhancing the efficiency of livestock production. Results We report on the de novo development of a composite skeletal muscle cDNA microarray, comprising 5500 clones from two developmentally distinct cDNA libraries (longissimus dorsi of a 50-day porcine foetus and the gastrocnemius of a 3-day-old pig. Clones selected for the microarray assembly were of low to moderate abundance, as indicated by colony hybridisation. We profiled the differential expression of genes between the psoas (red muscle and the longissimus dorsi (white muscle, by co-hybridisation of Cy3 and Cy5 labelled cDNA derived from these two muscles. Results from seven microarray slides (replicates correctly identified genes that were expected to be differentially expressed, as well as a number of novel candidate regulatory genes. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray. Conclusion We have developed a porcine skeletal muscle cDNA microarray and have identified a number of candidate genes that could be involved in muscle phenotype determination, including several members of the casein kinase 2 signalling pathway.

  14. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  15. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  16. Evaluation of the similarity of gene expression data estimated with SAGE and Affymetrix GeneChips

    NARCIS (Netherlands)

    van Ruissen, Fred; Ruijter, Jan M.; Schaaf, Gerben J.; Asgharnegad, Lida; Zwijnenburg, Danny A.; Kool, Marcel; Baas, Frank

    2005-01-01

    Background: Serial Analysis of Gene Expression ( SAGE) and microarrays have found awidespread application, but much ambiguity exists regarding the evaluation of these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce the need for

  17. Gene selection and classification for cancer microarray data based on machine learning and similarity measures

    Directory of Open Access Journals (Sweden)

    Liu Qingzhong

    2011-12-01

    Full Text Available Abstract Background Microarray data have a high dimension of variables and a small sample size. In microarray data analyses, two important issues are how to choose genes, which provide reliable and good prediction for disease status, and how to determine the final gene set that is best for classification. Associations among genetic markers mean one can exploit information redundancy to potentially reduce classification cost in terms of time and money. Results To deal with redundant information and improve classification, we propose a gene selection method, Recursive Feature Addition, which combines supervised learning and statistical similarity measures. To determine the final optimal gene set for prediction and classification, we propose an algorithm, Lagging Prediction Peephole Optimization. By using six benchmark microarray gene expression data sets, we compared Recursive Feature Addition with recently developed gene selection methods: Support Vector Machine Recursive Feature Elimination, Leave-One-Out Calculation Sequential Forward Selection and several others. Conclusions On average, with the use of popular learning machines including Nearest Mean Scaled Classifier, Support Vector Machine, Naive Bayes Classifier and Random Forest, Recursive Feature Addition outperformed other methods. Our studies also showed that Lagging Prediction Peephole Optimization is superior to random strategy; Recursive Feature Addition with Lagging Prediction Peephole Optimization obtained better testing accuracies than the gene selection method varSelRF.

  18. A tiling microarray for global analysis of chloroplast genome expression in cucumber and other plants

    Directory of Open Access Journals (Sweden)

    Pląder Wojciech

    2011-09-01

    Full Text Available Abstract Plastids are small organelles equipped with their own genomes (plastomes. Although these organelles are involved in numerous plant metabolic pathways, current knowledge about the transcriptional activity of plastomes is limited. To solve this problem, we constructed a plastid tiling microarray (PlasTi-microarray consisting of 1629 oligonucleotide probes. The oligonucleotides were designed based on the cucumber chloroplast genomic sequence and targeted both strands of the plastome in a non-contiguous arrangement. Up to 4 specific probes were designed for each gene/exon, and the intergenic regions were covered regularly, with 70-nt intervals. We also developed a protocol for direct chemical labeling and hybridization of as little as 2 micrograms of chloroplast RNA. We used this protocol for profiling the expression of the cucumber chloroplast plastome on the PlasTi-microarray. Owing to the high sequence similarity of plant plastomes, the newly constructed microarray can be used to study plants other than cucumber. Comparative hybridization of chloroplast transcriptomes from cucumber, Arabidopsis, tomato and spinach showed that the PlasTi-microarray is highly versatile.

  19. Robust gene selection methods using weighting schemes for microarray data analysis.

    Science.gov (United States)

    Kang, Suyeon; Song, Jongwoo

    2017-09-02

    A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of significant genes has been essential in analyzing the data. However, the performances of many gene selection techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a limited number of sample replicates. We have proposed new filter-based gene selection techniques, by applying a simple modification to significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In particular, our methods are much better when the given data are noisy and sample size is small. They showed relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with traditional methods in classification tasks for microarrays. The results of simulation study and real data analysis have demonstrated that our proposed methods are effective for detecting significant genes and classification tasks, especially when the given data are noisy or have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for microarray data analysis.

  20. Gene expression profile of pulpitis.

    Science.gov (United States)

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  1. The unique genomic properties of sex-biased genes: Insights from avian microarray data

    Directory of Open Access Journals (Sweden)

    Webster Matthew T

    2008-03-01

    Full Text Available Abstract Background In order to develop a framework for the analysis of sex-biased genes, we present a characterization of microarray data comparing male and female gene expression in 18 day chicken embryos for brain, gonad, and heart tissue. Results From the 15982 significantly expressed coding regions that have been assigned to either the autosomes or the Z chromosome (12979 in brain, 13301 in gonad, and 12372 in heart, roughly 18% were significantly sex-biased in any one tissue, though only 4 gene targets were biased in all tissues. The gonad was the most sex-biased tissue, followed by the brain. Sex-biased autosomal genes tended to be expressed at lower levels and in fewer tissues than unbiased gene targets, and autosomal somatic sex-biased genes had more expression noise than similar unbiased genes. Sex-biased genes linked to the Z-chromosome showed reduced expression in females, but not in males, when compared to unbiased Z-linked genes, and sex-biased Z-linked genes were also expressed in fewer tissues than unbiased Z coding regions. Third position GC content, and codon usage bias showed some sex-biased effects, primarily for autosomal genes expressed in the gonad. Finally, there were several over-represented Gene Ontology terms in the sex-biased gene sets. Conclusion On the whole, this analysis suggests that sex-biased genes have unique genomic and organismal properties that delineate them from genes that are expressed equally in males and females.

  2. Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens.

    Science.gov (United States)

    Card, Roderick; Zhang, Jiancheng; Das, Priya; Cook, Charlotte; Woodford, Neil; Anjum, Muna F

    2013-01-01

    A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure.

  3. Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis.

    Science.gov (United States)

    Bhargava, Apurva; Clabaugh, Ivory; To, Jenn P; Maxwell, Bridey B; Chiang, Yi-Hsuan; Schaller, G Eric; Loraine, Ann; Kieber, Joseph J

    2013-05-01

    Cytokinins are N(6)-substituted adenine derivatives that play diverse roles in plant growth and development. We sought to define a robust set of genes regulated by cytokinin as well as to query the response of genes not represented on microarrays. To this end, we performed a meta-analysis of microarray data from a variety of cytokinin-treated samples and used RNA-seq to examine cytokinin-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Microarray meta-analysis using 13 microarray experiments combined with empirically defined filtering criteria identified a set of 226 genes differentially regulated by cytokinin, a subset of which has previously been validated by other methods. RNA-seq validated about 73% of the up-regulated genes identified by this meta-analysis. In silico promoter analysis indicated an overrepresentation of type-B Arabidopsis response regulator binding elements, consistent with the role of type-B Arabidopsis response regulators as primary mediators of cytokinin-responsive gene expression. RNA-seq analysis identified 73 cytokinin-regulated genes that were not represented on the ATH1 microarray. Representative genes were verified using quantitative reverse transcription-polymerase chain reaction and NanoString analysis. Analysis of the genes identified reveals a substantial effect of cytokinin on genes encoding proteins involved in secondary metabolism, particularly those acting in flavonoid and phenylpropanoid biosynthesis, as well as in the regulation of redox state of the cell, particularly a set of glutaredoxin genes. Novel splicing events were found in members of some gene families that are known to play a role in cytokinin signaling or metabolism. The genes identified in this analysis represent a robust set of cytokinin-responsive genes that are useful in the analysis of cytokinin function in plants.

  4. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones

    Directory of Open Access Journals (Sweden)

    Gerosolimo Germano

    2008-06-01

    Full Text Available Abstract Background Hepatitis C virus (HCV RNA synthesis and protein expression affect cell homeostasis by modulation of gene expression. The impact of HCV replication on global cell transcription has not been fully evaluated. Thus, we analysed the expression profiles of different clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system. Results First, we compared the expression profile of HCV replicon clone 21-5 with both the Huh-7 parental cells and the 21-5 cured (21-5c cells. In these latter, the HCV RNA has been eliminated by IFN-α treatment. To confirm data, we also analyzed microarray results from both the 21-5 and two other HCV replicon clones, 22-6 and 21-7, compared to the Huh-7 cells. The study was carried out by using the Applied Biosystems (AB Human Genome Survey Microarray v1.0 which provides 31,700 probes that correspond to 27,868 human genes. Microarray analysis revealed a specific transcriptional program induced by HCV in replicon cells respect to both IFN-α-cured and Huh-7 cells. From the original datasets of differentially expressed genes, we selected by Venn diagrams a final list of 38 genes modulated by HCV in all clones. Most of the 38 genes have never been described before and showed high fold-change associated with significant p-value, strongly supporting data reliability. Classification of the 38 genes by Panther System identified functional categories that were significantly enriched in this gene set, such as histones and ribosomal proteins as well as extracellular matrix and intracellular protein traffic. The dataset also included new genes involved in lipid metabolism, extracellular matrix and cytoskeletal network, which may be critical for HCV replication and pathogenesis. Conclusion Our data provide a comprehensive analysis of alterations in gene expression induced by HCV replication and reveal modulation of new genes potentially useful

  5. Comparison of small n statistical tests of differential expression applied to microarrays

    Directory of Open Access Journals (Sweden)

    Lee Anna Y

    2009-02-01

    Full Text Available Abstract Background DNA microarrays provide data for genome wide patterns of expression between observation classes. Microarray studies often have small samples sizes, however, due to cost constraints or specimen availability. This can lead to poor random error estimates and inaccurate statistical tests of differential expression. We compare the performance of the standard t-test, fold change, and four small n statistical test methods designed to circumvent these problems. We report results of various normalization methods for empirical microarray data and of various random error models for simulated data. Results Three Empirical Bayes methods (CyberT, BRB, and limma t-statistics were the most effective statistical tests across simulated and both 2-colour cDNA and Affymetrix experimental data. The CyberT regularized t-statistic in particular was able to maintain expected false positive rates with simulated data showing high variances at low gene intensities, although at the cost of low true positive rates. The Local Pooled Error (LPE test introduced a bias that lowered false positive rates below theoretically expected values and had lower power relative to the top performers. The standard two-sample t-test and fold change were also found to be sub-optimal for detecting differentially expressed genes. The generalized log transformation was shown to be beneficial in improving results with certain data sets, in particular high variance cDNA data. Conclusion Pre-processing of data influences performance and the proper combination of pre-processing and statistical testing is necessary for obtaining the best results. All three Empirical Bayes methods assessed in our study are good choices for statistical tests for small n microarray studies for both Affymetrix and cDNA data. Choice of method for a particular study will depend on software and normalization preferences.

  6. DNA-microarrays identification of Streptococcus mutans genes associated with biofilm thickness

    Directory of Open Access Journals (Sweden)

    Feldman Mark

    2008-12-01

    Full Text Available Abstract Background A biofilm is a complex community of microorganisms that develop on surfaces in diverse environments. The thickness of the biofilm plays a crucial role in the physiology of the immobilized bacteria. The most cariogenic bacteria, mutans streptococci, are common inhabitants of a dental biofilm community. In this study, DNA-microarray analysis was used to identify differentially expressed genes associated with the thickness of S. mutans biofilms. Results Comparative transcriptome analyses indicated that expression of 29 genes was differentially altered in 400- vs. 100-microns depth and 39 genes in 200- vs. 100-microns biofilms. Only 10 S. mutans genes showed differential expression in both 400- vs. 100-microns and 200- vs. 100-microns biofilms. All of these genes were upregulated. As sucrose is a predominant factor in oral biofilm development, its influence was evaluated on selected genes expression in the various depths of biofilms. The presence of sucrose did not noticeably change the regulation of these genes in 400- vs. 100-microns and/or 200- vs. 100-microns biofilms tested by real-time RT-PCR. Furthermore, we analyzed the expression profile of selected biofilm thickness associated genes in the luxS- mutant strain. The expression of those genes was not radically changed in the mutant strain compared to wild-type bacteria in planktonic condition. Only slight downregulation was recorded in SMU.2146c, SMU.574, SMU.609, and SMU.987 genes expression in luxS- bacteria in biofilm vs. planktonic environments. Conclusion These findings reveal genes associated with the thickness of biofilms of S. mutans. Expression of these genes is apparently not regulated directly by luxS and is not necessarily influenced by the presence of sucrose in the growth media.

  7. Investigating the effect of paralogs on microarray gene-set analysis

    LENUS (Irish Health Repository)

    Faure, Andre J

    2011-01-24

    Abstract Background In order to interpret the results obtained from a microarray experiment, researchers often shift focus from analysis of individual differentially expressed genes to analyses of sets of genes. These gene-set analysis (GSA) methods use previously accumulated biological knowledge to group genes into sets and then aim to rank these gene sets in a way that reflects their relative importance in the experimental situation in question. We suspect that the presence of paralogs affects the ability of GSA methods to accurately identify the most important sets of genes for subsequent research. Results We show that paralogs, which typically have high sequence identity and similar molecular functions, also exhibit high correlation in their expression patterns. We investigate this correlation as a potential confounding factor common to current GSA methods using Indygene http:\\/\\/www.cbio.uct.ac.za\\/indygene, a web tool that reduces a supplied list of genes so that it includes no pairwise paralogy relationships above a specified sequence similarity threshold. We use the tool to reanalyse previously published microarray datasets and determine the potential utility of accounting for the presence of paralogs. Conclusions The Indygene tool efficiently removes paralogy relationships from a given dataset and we found that such a reduction, performed prior to GSA, has the ability to generate significantly different results that often represent novel and plausible biological hypotheses. This was demonstrated for three different GSA approaches when applied to the reanalysis of previously published microarray datasets and suggests that the redundancy and non-independence of paralogs is an important consideration when dealing with GSA methodologies.

  8. A regression-based differential expression detection algorithm for microarray studies with ultra-low sample size.

    Directory of Open Access Journals (Sweden)

    Daniel Vasiliu

    Full Text Available Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-n microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED. Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.

  9. Gene expression of the endolymphatic sac

    DEFF Research Database (Denmark)

    Friis, Morten; Martin-Bertelsen, Tomas; Friis-Hansen, Lennart

    2011-01-01

    that the endolymphatic sac has multiple and diverse functions in the inner ear. Objectives:The objective of this study was to provide a comprehensive review of the genes expressed in the endolymphatic sac in the rat and perform a functional characterization based on measured mRNA abundance. Methods:Microarray technology...

  10. Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora.

    Science.gov (United States)

    Nowrousian, Minou; Ringelberg, Carol; Dunlap, Jay C; Loros, Jennifer J; Kück, Ulrich

    2005-04-01

    The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies that protect the developing ascospores and ensure their proper discharge. Several regulatory genes essential for fruiting body development were previously isolated by complementation of the sterile mutants pro1, pro11 and pro22. To establish the genetic relationships between these genes and to identify downstream targets, we have conducted cross-species microarray hybridizations using cDNA arrays derived from the closely related fungus Neurospora crassa and RNA probes prepared from wild-type S. macrospora and the three developmental mutants. Of the 1,420 genes which gave a signal with the probes from all the strains used, 172 (12%) were regulated differently in at least one of the three mutants compared to the wild type, and 17 (1.2%) were regulated differently in all three mutant strains. Microarray data were verified by Northern analysis or quantitative real time PCR. Among the genes that are up- or down-regulated in the mutant strains are genes encoding the pheromone precursors, enzymes involved in melanin biosynthesis and a lectin-like protein. Analysis of gene expression in double mutants revealed a complex network of interaction between the pro gene products.

  11. Tyrosine Kinase Gene Expression Profiling in Prostate Cancer

    National Research Council Canada - National Science Library

    Weier, Heinz-Ulrich

    2001-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  12. Tyrosine Kinase Gene Expression Profiling in Prostate Cancer

    National Research Council Canada - National Science Library

    Weier, Heinz-Ulrich

    2002-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  13. An Efficient Ensemble Learning Method for Gene Microarray Classification

    Directory of Open Access Journals (Sweden)

    Alireza Osareh

    2013-01-01

    Full Text Available The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.

  14. Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand.

    Science.gov (United States)

    Jovanović, Katarina K; Tanić, Miljana; Ivanović, Ivanka; Gligorijević, Nevenka; Dojčinović, Biljana P; Radulović, Siniša

    2016-10-01

    Ruthenium(II)-arene complexes are promising drug candidates for the therapy of solid tumors. In previous work, seven new compounds of the general formula [Ru(η 6 -p-cymene)(L 1-7 )Cl] were synthesized and characterized, of which the complex with L=isoquinoline-3-carboxylic acid (RuT 7 ) was two times as active on HeLa cells compared to normal cell line MRC-5, as indicated by IC 50 values determined after 48h of incubation (45.4±3.0 vs. 84.2±5.7μM, respectively). In the present study, cell cycle analysis of HeLa cells treated with RuT 7 showed S phase arrest and an increase in sub-G1 population. The apoptotic potential of the title compound was confirmed with the Annexin V-FITC/PI assay together with a morphological evaluation of cells using fluorescent microscopy. Analysis of the intracellular accumulation of ruthenium showed 8.9ng Ru/10 6 cells after 6h of incubation. To gain further insight in the molecular mechanism of action of RuT 7 on HeLa cells, a whole-transcriptome microarray gene expression analysis was performed. Analysis of functional categories and signaling and biochemical pathways associated with the response of HeLa cells to treatment with RuT 7 showed that it leads the cells through the intrinsic (mitochondrial) apoptotic pathway, via indirect DNA damage due to the action of reactive oxygen species, and through direct DNA binding of RuT 7 . Statistical analysis for enrichment of gene sets associated with known drug-induced toxicities identified fewer associated toxicity profiles in RuT 7 -treated cells compared to cisplatin treatment. Altogether these results provide the basis for further development of RuT 7 in animal and pre-clinical studies as a potential drug candidate. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains

    DEFF Research Database (Denmark)

    Sun, Hongyan; Chen, Zhong-Hua; Chen, Fei

    2015-01-01

    Background Understanding the mechanism of low Cd accumulation in crops is crucial for sustainable safe food production in Cd-contaminated soils. Results Confocal microscopy, atomic absorption spectrometry, gas exchange and chlorophyll fluorescence analyses revealed a distinct difference in Cd...... with a substantial difference between the two genotypes. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd...... accumulation. Quantitative RT-PCR confirmed our microarray data. Furthermore, suppression of the zinc transporter genes HvZIP3 and HvZIP8 by RNAi silencing showed increased Cd accumulation and reduced Zn and Mn concentrations in barley grains. Thus, HvZIP3 and HvZIP8 could be candidate genes related to low...

  16. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes

    Directory of Open Access Journals (Sweden)

    Elvezia Maria Paraboschi

    2015-09-01

    Full Text Available Abnormalities in RNA metabolism and alternative splicing (AS are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls, followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p = 0.0015 by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.

  17. Spectral map-analysis: a method to analyze gene expression data

    OpenAIRE

    Bijnens, Luc J.M.; Lewi, Paul J.; Göhlmann, Hinrich W.; Molenberghs, Geert; Wouters, Luc

    2004-01-01

    bioinformatics; biplot; correspondence factor analysis; data mining; data visualization; gene expression data; microarray data; multivariate exploratory data analysis; principal component analysis; Spectral map analysis

  18. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  19. Global gene expression analysis for evaluation and design of biomaterials

    International Nuclear Information System (INIS)

    Hanagata, Nobutaka; Takemura, Taro; Minowa, Takashi

    2010-01-01

    Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data. (topical review)

  20. Spectral biclustering of microarray data: coclustering genes and conditions.

    Science.gov (United States)

    Kluger, Yuval; Basri, Ronen; Chang, Joseph T; Gerstein, Mark

    2003-04-01

    Global analyses of RNA expression levels are useful for classifying genes and overall phenotypes. Often these classification problems are linked, and one wants to find "marker genes" that are differentially expressed in particular sets of "conditions." We have developed a method that simultaneously clusters genes and conditions, finding distinctive "checkerboard" patterns in matrices of gene expression data, if they exist. In a cancer context, these checkerboards correspond to genes that are markedly up- or downregulated in patients with particular types of tumors. Our method, spectral biclustering, is based on the observation that checkerboard structures in matrices of expression data can be found in eigenvectors corresponding to characteristic expression patterns across genes or conditions. In addition, these eigenvectors can be readily identified by commonly used linear algebra approaches, in particular the singular value decomposition (SVD), coupled with closely integrated normalization steps. We present a number of variants of the approach, depending on whether the normalization over genes and conditions is done independently or in a coupled fashion. We then apply spectral biclustering to a selection of publicly available cancer expression data sets, and examine the degree to which the approach is able to identify checkerboard structures. Furthermore, we compare the performance of our biclustering methods against a number of reasonable benchmarks (e.g., direct application of SVD or normalized cuts to raw data).

  1. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling

    Directory of Open Access Journals (Sweden)

    Wang Yubing

    2012-12-01

    Full Text Available Abstract Background Brown planthopper (BPH, Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. Results We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT. We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1. We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC of more than 2.0 (P10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. Conclusions We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The fundamental point of the resistance strategy is that plants protect themselves by reducing their metabolic level to inhibit feeding by BPH and prevent damage from water and nutrient loss. We have selected 21 TF genes related to BPH resistance for further analyses to understand the molecular responses to BPH feeding in rice.

  2. Microarray analysis reveals key genes and pathways in Tetralogy of Fallot

    Science.gov (United States)

    He, Yue-E; Qiu, Hui-Xian; Jiang, Jian-Bing; Wu, Rong-Zhou; Xiang, Ru-Lian; Zhang, Yuan-Hai

    2017-01-01

    The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age-matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t-test, and the R/limma package, with a log2 fold-change of >2 and a false discovery rate of <0.01 set as thresholds. The biological functions of DEGs were analyzed using the ToppGene database. The ReactomeFIViz application was used to construct functional interaction (FI) networks, and the genes in each module were subjected to pathway enrichment analysis. The iRegulon plugin was used to identify transcription factors predicted to regulate the DEGs in the FI network, and the gene-transcription factor pairs were then visualized using Cytoscape software. A total of 878 DEGs were identified, including 848 upregulated genes and 30 downregulated genes. The gene FI network contained seven function modules, which were all comprised of upregulated genes. Genes enriched in Module 1 were enriched in the following three neurological disorder-associated signaling pathways: Parkinson's disease, Alzheimer's disease and Huntington's disease. Genes in Modules 0, 3 and 5 were dominantly enriched in pathways associated with ribosomes and protein translation. The Xbox binding protein 1 transcription factor was demonstrated to be involved in the regulation of genes encoding the subunits of cytoplasmic and mitochondrial ribosomes, as well as genes involved in neurodegenerative disorders. Therefore, dysfunction of genes involved in signaling pathways associated with neurodegenerative disorders, ribosome function and protein translation may contribute to the pathogenesis of TOF

  3. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.

    NARCIS (Netherlands)

    Jaakson, K.; Zernant, J.; Kulm, M.; Hutchinson, A.; Tonisson, N.; Glavac, D.; Ravnik-Glavac, M.; Hawlina, M.; Meltzer, M.R.; Caruso, R.C.; Testa, F.; Maugeri, A.; Hoyng, C.B.; Gouras, P.; Simonelli, F.; Lewis, R.A.; Lupski, J.R.; Cremers, F.P.M.; Allikmets, R.

    2003-01-01

    Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics

  4. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  5. Microarray Analysis on Gene Regulation by Estrogen, Progesterone and Tamoxifen in Human Endometrial Stromal Cells

    Directory of Open Access Journals (Sweden)

    Chun-E Ren

    2015-03-01

    Full Text Available Epithelial stromal cells represent a major cellular component of human uterine endometrium that is subject to tight hormonal regulation. Through cell-cell contacts and/or paracrine mechanisms, stromal cells play a significant role in the malignant transformation of epithelial cells. We isolated stromal cells from normal human endometrium and investigated the morphological and transcriptional changes induced by estrogen, progesterone and tamoxifen. We demonstrated that stromal cells express appreciable levels of estrogen and progesterone receptors and undergo different morphological changes upon hormonal stimulation. Microarray analysis indicated that both estrogen and progesterone induced dramatic alterations in a variety of genes associated with cell structure, transcription, cell cycle, and signaling. However, divergent patterns of changes, and in some genes opposite effects, were observed for the two hormones. A large number of genes are identified as novel targets for hormonal regulation. These hormone-responsive genes may be involved in normal uterine function and the development of endometrial malignancies.

  6. SoFoCles: feature filtering for microarray classification based on gene ontology.

    Science.gov (United States)

    Papachristoudis, Georgios; Diplaris, Sotiris; Mitkas, Pericles A

    2010-02-01

    Marker gene selection has been an important research topic in the classification analysis of gene expression data. Current methods try to reduce the "curse of dimensionality" by using statistical intra-feature set calculations, or classifiers that are based on the given dataset. In this paper, we present SoFoCles, an interactive tool that enables semantic feature filtering in microarray classification problems with the use of external, well-defined knowledge retrieved from the Gene Ontology. The notion of semantic similarity is used to derive genes that are involved in the same biological path during the microarray experiment, by enriching a feature set that has been initially produced with legacy methods. Among its other functionalities, SoFoCles offers a large repository of semantic similarity methods that are used in order to derive feature sets and marker genes. The structure and functionality of the tool are discussed in detail, as well as its ability to improve classification accuracy. Through experimental evaluation, SoFoCles is shown to outperform other classification schemes in terms of classification accuracy in two real datasets using different semantic similarity computation approaches.

  7. An Improved Fuzzy Based Missing Value Estimation in DNA Microarray Validated by Gene Ranking

    Directory of Open Access Journals (Sweden)

    Sujay Saha

    2016-01-01

    Full Text Available Most of the gene expression data analysis algorithms require the entire gene expression matrix without any missing values. Hence, it is necessary to devise methods which would impute missing data values accurately. There exist a number of imputation algorithms to estimate those missing values. This work starts with a microarray dataset containing multiple missing values. We first apply the modified version of the fuzzy theory based existing method LRFDVImpute to impute multiple missing values of time series gene expression data and then validate the result of imputation by genetic algorithm (GA based gene ranking methodology along with some regular statistical validation techniques, like RMSE method. Gene ranking, as far as our knowledge, has not been used yet to validate the result of missing value estimation. Firstly, the proposed method has been tested on the very popular Spellman dataset and results show that error margins have been drastically reduced compared to some previous works, which indirectly validates the statistical significance of the proposed method. Then it has been applied on four other 2-class benchmark datasets, like Colorectal Cancer tumours dataset (GDS4382, Breast Cancer dataset (GSE349-350, Prostate Cancer dataset, and DLBCL-FL (Leukaemia for both missing value estimation and ranking the genes, and the results show that the proposed method can reach 100% classification accuracy with very few dominant genes, which indirectly validates the biological significance of the proposed method.

  8. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    Science.gov (United States)

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning

    Science.gov (United States)

    Weitzeal, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photoassimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASAs GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be upregulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS like protein (potentially affecting cell elongation in the leaves), and an F-boxkelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm upregulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASAs VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  10. Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression.

    Science.gov (United States)

    Felsenstein, Kenneth M; Saunders, Lindsey B; Simmons, John K; Leon, Elena; Calabrese, David R; Zhang, Shuling; Michalowski, Aleksandra; Gareiss, Peter; Mock, Beverly A; Schneekloth, John S

    2016-01-15

    The transcription factor MYC plays a pivotal role in cancer initiation, progression, and maintenance. However, it has proven difficult to develop small molecule inhibitors of MYC. One attractive route to pharmacological inhibition of MYC has been the prevention of its expression through small molecule-mediated stabilization of the G-quadruplex (G4) present in its promoter. Although molecules that bind globally to quadruplex DNA and influence gene expression are well-known, the identification of new chemical scaffolds that selectively modulate G4-driven genes remains a challenge. Here, we report an approach for the identification of G4-binding small molecules using small molecule microarrays (SMMs). We use the SMM screening platform to identify a novel G4-binding small molecule that inhibits MYC expression in cell models, with minimal impact on the expression of other G4-associated genes. Surface plasmon resonance (SPR) and thermal melt assays demonstrated that this molecule binds reversibly to the MYC G4 with single digit micromolar affinity, and with weaker or no measurable binding to other G4s. Biochemical and cell-based assays demonstrated that the compound effectively silenced MYC transcription and translation via a G4-dependent mechanism of action. The compound induced G1 arrest and was selectively toxic to MYC-driven cancer cell lines containing the G4 in the promoter but had minimal effects in peripheral blood mononucleocytes or a cell line lacking the G4 in its MYC promoter. As a measure of selectivity, gene expression analysis and qPCR experiments demonstrated that MYC and several MYC target genes were downregulated upon treatment with this compound, while the expression of several other G4-driven genes was not affected. In addition to providing a novel chemical scaffold that modulates MYC expression through G4 binding, this work suggests that the SMM screening approach may be broadly useful as an approach for the identification of new G4-binding small

  11. Identification and optimization of classifier genes from multi-class earthworm microarray dataset.

    Directory of Open Access Journals (Sweden)

    Ying Li

    Full Text Available Monitoring, assessment and prediction of environmental risks that chemicals pose demand rapid and accurate diagnostic assays. A variety of toxicological effects have been associated with explosive compounds TNT and RDX. One important goal of microarray experiments is to discover novel biomarkers for toxicity evaluation. We have developed an earthworm microarray containing 15,208 unique oligo probes and have used it to profile gene expression in 248 earthworms exposed to TNT, RDX or neither. We assembled a new machine learning pipeline consisting of several well-established feature filtering/selection and classification techniques to analyze the 248-array dataset in order to construct classifier models that can separate earthworm samples into three groups: control, TNT-treated, and RDX-treated. First, a total of 869 genes differentially expressed in response to TNT or RDX exposure were identified using a univariate statistical algorithm of class comparison. Then, decision tree-based algorithms were applied to select a subset of 354 classifier genes, which were ranked by their overall weight of significance. A multiclass support vector machine (MC-SVM method and an unsupervised K-mean clustering method were applied to independently refine the classifier, producing a smaller subset of 39 and 30 classifier genes, separately, with 11 common genes being potential biomarkers. The combined 58 genes were considered the refined subset and used to build MC-SVM and clustering models with classification accuracy of 83.5% and 56.9%, respectively. This study demonstrates that the machine learning approach can be used to identify and optimize a small subset of classifier/biomarker genes from high dimensional datasets and generate classification models of acceptable precision for multiple classes.

  12. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury.

    Directory of Open Access Journals (Sweden)

    Mannion James W

    2002-10-01

    Full Text Available Abstract Background Rat oligonucleotide microarrays were used to detect changes in gene expression in the dorsal root ganglion (DRG 3 days following sciatic nerve transection (axotomy. Two comparisons were made using two sets of triplicate microarrays, naïve versus naïve and naïve versus axotomy. Results Microarray variability was assessed using the naïve versus naïve comparison. These results support use of a P 1.5-fold expression change and P 1.5-fold and P in situ hybridization verified the expression of 24 transcripts. These data showed an 83% concordance rate with the arrays; most mismatches represent genes with low expression levels reflecting limits of array sensitivity. A significant correlation was found between actual mRNA differences and relative changes between microarrays (r2 = 0.8567. Temporal patterns of individual genes regulation varied. Conclusions We identify parameters for microarray analysis which reduce error while identifying many putatively regulated genes. Functional classification of these genes suggest reorganization of cell structural components, activation of genes expressed by immune and inflammatory cells and down-regulation of genes involved in neurotransmission.

  13. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.

    Science.gov (United States)

    Xu, Jiucheng; Mu, Huiyu; Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC 2 ), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible.

  14. Analysis of baseline gene expression levels from ...

    Science.gov (United States)

    The use of gene expression profiling to predict chemical mode of action would be enhanced by better characterization of variance due to individual, environmental, and technical factors. Meta-analysis of microarray data from untreated or vehicle-treated animals within the control arm of toxicogenomics studies has yielded useful information on baseline fluctuations in gene expression. A dataset of control animal microarray expression data was assembled by a working group of the Health and Environmental Sciences Institute's Technical Committee on the Application of Genomics in Mechanism Based Risk Assessment in order to provide a public resource for assessments of variability in baseline gene expression. Data from over 500 Affymetrix microarrays from control rat liver and kidney were collected from 16 different institutions. Thirty-five biological and technical factors were obtained for each animal, describing a wide range of study characteristics, and a subset were evaluated in detail for their contribution to total variability using multivariate statistical and graphical techniques. The study factors that emerged as key sources of variability included gender, organ section, strain, and fasting state. These and other study factors were identified as key descriptors that should be included in the minimal information about a toxicogenomics study needed for interpretation of results by an independent source. Genes that are the most and least variable, gender-selectiv

  15. GeneAnalytics: An Integrative Gene Set Analysis Tool for Next Generation Sequencing, RNAseq and Microarray Data.

    Science.gov (United States)

    Ben-Ari Fuchs, Shani; Lieder, Iris; Stelzer, Gil; Mazor, Yaron; Buzhor, Ella; Kaplan, Sergey; Bogoch, Yoel; Plaschkes, Inbar; Shitrit, Alina; Rappaport, Noa; Kohn, Asher; Edgar, Ron; Shenhav, Liraz; Safran, Marilyn; Lancet, Doron; Guan-Golan, Yaron; Warshawsky, David; Shtrichman, Ronit

    2016-03-01

    Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools. This study reports on GeneAnalytics™ ( geneanalytics.genecards.org ), a comprehensive and easy-to-apply gene set analysis tool for rapid contextualization of expression patterns and functional signatures embedded in the postgenomics Big Data domains, such as Next Generation Sequencing (NGS), RNAseq, and microarray experiments. GeneAnalytics' differentiating features include in-depth evidence-based scoring algorithms, an intuitive user interface and proprietary unified data. GeneAnalytics employs the LifeMap Science's GeneCards suite, including the GeneCards®--the human gene database; the MalaCards-the human diseases database; and the PathCards--the biological pathways database. Expression-based analysis in GeneAnalytics relies on the LifeMap Discovery®--the embryonic development and stem cells database, which includes manually curated expression data for normal and diseased tissues, enabling advanced matching algorithm for gene-tissue association. This assists in evaluating differentiation protocols and discovering biomarkers for tissues and cells. Results are directly linked to gene, disease, or cell "cards" in the GeneCards suite. Future developments aim to enhance the GeneAnalytics algorithm as well as visualizations, employing varied graphical display items. Such attributes make GeneAnalytics a broadly applicable postgenomics data analyses and interpretation tool for translation of data to knowledge-based innovation in various Big Data fields such as precision medicine, ecogenomics, nutrigenomics, pharmacogenomics, vaccinomics

  16. [Preparation of the cDNA microarray on the differential expressed cDNA of senescence-accelerated mouse's hippocampus].

    Science.gov (United States)

    Cheng, Xiao-Rui; Zhou, Wen-Xia; Zhang, Yong-Xiang

    2006-05-01

    Alzheimer' s disease (AD) is the most common form of dementia in the elderly. AD is an invariably fatal neurodegenerative disorder with no effective treatment. Senescence-accelerated mouse prone 8 (SAMP8) is a model for studying age-related cognitive impairments and also is a good model to study brain aging and one of mouse model of AD. The technique of cDNA microarray can monitor the expression levels of thousands of genes simultaneously and can be used to study AD with the character of multi-mechanism, multi-targets and multi-pathway. In order to disclose the mechanism of AD and find the drug targets of AD, cDNA microarray containing 3136 cDNAs amplified from the suppression subtracted cDNA library of hippocampus of SAMP8 and SAMR1 was prepared with 16 blocks and 14 x 14 pins, the housekeeping gene beta-actin and G3PDH as inner conference. The background of this microarray was low and unanimous, and dots divided evenly. The conditions of hybridization and washing were optimized during the hybridization of probe and target molecule. After the data of hybridization analysis, the differential expressed cDNAs were sequenced and analyzed by the bioinformatics, and some of genes were quantified by the real time RT-PCR and the reliability of this cDNA microarray were validated. This cDNA microarray may be the good means to select the differential expressed genes and disclose the molecular mechanism of SAMP8's brain aging and AD.

  17. Using microarrays to identify positional candidate genes for QTL: the case study of ACTH response in pigs.

    Science.gov (United States)

    Jouffe, Vincent; Rowe, Suzanne; Liaubet, Laurence; Buitenhuis, Bart; Hornshøj, Henrik; SanCristobal, Magali; Mormède, Pierre; de Koning, D J

    2009-07-16

    Microarray studies can supplement QTL studies by suggesting potential candidate genes in the QTL regions, which by themselves are too large to provide a limited selection of candidate genes. Here we provide a case study where we explore ways to integrate QTL data and microarray data for the pig, which has only a partial genome sequence. We outline various procedures to localize differentially expressed genes on the pig genome and link this with information on published QTL. The starting point is a set of 237 differentially expressed cDNA clones in adrenal tissue from two pig breeds, before and after treatment with adrenocorticotropic hormone (ACTH). Different approaches to localize the differentially expressed (DE) genes to the pig genome showed different levels of success and a clear lack of concordance for some genes between the various approaches. For a focused analysis on 12 genes, overlapping QTL from the public domain were presented. Also, differentially expressed genes underlying QTL for ACTH response were described. Using the latest version of the draft sequence, the differentially expressed genes were mapped to the pig genome. This enabled co-location of DE genes and previously studied QTL regions, but the draft genome sequence is still incomplete and will contain many errors. A further step to explore links between DE genes and QTL at the pathway level was largely unsuccessful due to the lack of annotation of the pig genome. This could be improved by further comparative mapping analyses but this would be time consuming. This paper provides a case study for the integration of QTL data and microarray data for a species with limited genome sequence information and annotation. The results illustrate the challenges that must be addressed but also provide a roadmap for future work that is applicable to other non-model species.

  18. Uropathogenic Escherichia coli virulence genes: invaluable approaches for designing DNA microarray probes.

    Science.gov (United States)

    Jahandeh, Nadia; Ranjbar, Reza; Behzadi, Payam; Behzadi, Elham

    2015-01-01

    The pathotypes of uropathogenic Escherichia coli (UPEC) cause different types of urinary tract infections (UTIs). The presence of a wide range of virulence genes in UPEC enables us to design appropriate DNA microarray probes. These probes, which are used in DNA microarray technology, provide us with an accurate and rapid diagnosis and definitive treatment in association with UTIs caused by UPEC pathotypes. The main goal of this article is to introduce the UPEC virulence genes as invaluable approaches for designing DNA microarray probes. Main search engines such as Google Scholar and databases like NCBI were searched to find and study several original pieces of literature, review articles, and DNA gene sequences. In parallel with in silico studies, the experiences of the authors were helpful for selecting appropriate sources and writing this review article. There is a significant variety of virulence genes among UPEC strains. The DNA sequences of virulence genes are fabulous patterns for designing microarray probes. The location of virulence genes and their sequence lengths influence the quality of probes. The use of selected virulence genes for designing microarray probes gives us a wide range of choices from which the best probe candidates can be chosen. DNA microarray technology provides us with an accurate, rapid, cost-effective, sensitive, and specific molecular diagnostic method which is facilitated by designing microarray probes. Via these tools, we are able to have an accurate diagnosis and a definitive treatment regarding UTIs caused by UPEC pathotypes.

  19. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling.

    Science.gov (United States)

    Wang, Yubing; Guo, Huimin; Li, Haichao; Zhang, Hao; Miao, Xuexia

    2012-12-10

    Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF) are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT). We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1). We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC) of more than 2.0 (Pgenes related to BPH-induced resistance, most of them were readily induced in TN1 than in RHT by BPH feeding, for instance, 154 TF genes were up-regulated in TN1, but only 31 TF genes were up-regulated in RHT at 24 hours after BPH infestation; 2-4 times more TF genes were induced in TN1 than in RHT by BPH. At an FC threshold of >10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The fundamental point of the resistance strategy is that plants

  20. Support vector machine classification and validation of cancer tissue samples using microarray expression data.

    Science.gov (United States)

    Furey, T S; Cristianini, N; Duffy, N; Bednarski, D W; Schummer, M; Haussler, D

    2000-10-01

    DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data using support vector machines (SVMs). This analysis consists of both classification of the tissue samples, and an exploration of the data for mis-labeled or questionable tissue results. We demonstrate the method in detail on samples consisting of ovarian cancer tissues, normal ovarian tissues, and other normal tissues. The dataset consists of expression experiment results for 97,802 cDNAs for each tissue. As a result of computational analysis, a tissue sample is discovered and confirmed to be wrongly labeled. Upon correction of this mistake and the removal of an outlier, perfect classification of tissues is achieved, but not with high confidence. We identify and analyse a subset of genes from the ovarian dataset whose expression is highly differentiated between the types of tissues. To show robustness of the SVM method, two previously published datasets from other types of tissues or cells are analysed. The results are comparable to those previously obtained. We show that other machine learning methods also perform comparably to the SVM on many of those datasets. The SVM software is available at http://www.cs. columbia.edu/ approximately bgrundy/svm.

  1. An Entropy-based gene selection method for cancer classification using microarray data

    Directory of Open Access Journals (Sweden)

    Krishnan Arun

    2005-03-01

    Full Text Available Abstract Background Accurate diagnosis of cancer subtypes remains a challenging problem. Building classifiers based on gene expression data is a promising approach; yet the selection of non-redundant but relevant genes is difficult. The selected gene set should be small enough to allow diagnosis even in regular clinical laboratories and ideally identify genes involved in cancer-specific regulatory pathways. Here an entropy-based method is proposed that selects genes related to the different cancer classes while at the same time reducing the redundancy among the genes. Results The present study identifies a subset of features by maximizing the relevance and minimizing the redundancy of the selected genes. A merit called normalized mutual information is employed to measure the relevance and the redundancy of the genes. In order to find a more representative subset of features, an iterative procedure is adopted that incorporates an initial clustering followed by data partitioning and the application of the algorithm to each of the partitions. A leave-one-out approach then selects the most commonly selected genes across all the different runs and the gene selection algorithm is applied again to pare down the list of selected genes until a minimal subset is obtained that gives a satisfactory accuracy of classification. The algorithm was applied to three different data sets and the results obtained were compared to work done by others using the same data sets Conclusion This study presents an entropy-based iterative algorithm for selecting genes from microarray data that are able to classify various cancer sub-types with high accuracy. In addition, the feature set obtained is very compact, that is, the redundancy between genes is reduced to a large extent. This implies that classifiers can be built with a smaller subset of genes.

  2. A mixture model-based approach to the clustering of microarray expression data.

    Science.gov (United States)

    McLachlan, G J; Bean, R W; Peel, D

    2002-03-01

    This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets. EMMIX-GENE is available at http://www.maths.uq.edu.au/~gjm/emmix-gene/

  3. Analysis of multiplex gene expression maps obtained by voxelation

    OpenAIRE

    An, L; Xie, H; Chin, MH; Obradovic, Z; Smith, DJ; Megalooikonomou, V

    2009-01-01

    Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we presen...

  4. Detecting microRNA activity from gene expression data

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  5. Detecting microRNA activity from gene expression data.

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  6. Microarray analyses of glucocorticoid and vitamin D3 target genes in differentiating cultured human podocytes.

    Directory of Open Access Journals (Sweden)

    Xiwen Cheng

    Full Text Available Glomerular podocytes are highly differentiated epithelial cells that are key components of the kidney filtration units. Podocyte damage or loss is the hallmark of nephritic diseases characterized by severe proteinuria. Recent studies implicate that hormones including glucocorticoids (ligand for glucocorticoid receptor and vitamin D3 (ligand for vitamin D receptor protect or promote repair of podocytes from injury. In order to elucidate the mechanisms underlying hormone-mediated podocyte-protecting activity from injury, we carried out microarray gene expression studies to identify the target genes and corresponding pathways in response to these hormones during podocyte differentiation. We used immortalized human cultured podocytes (HPCs as a model system and carried out in vitro differentiation assays followed by dexamethasone (Dex or vitamin D3 (VD3 treatment. Upon the induction of differentiation, multiple functional categories including cell cycle, organelle dynamics, mitochondrion, apoptosis and cytoskeleton organization were among the most significantly affected. Interestingly, while Dex and VD3 are capable of protecting podocytes from injury, they only share limited target genes and affected pathways. Compared to VD3 treatment, Dex had a broader and greater impact on gene expression profiles. In-depth analyses of Dex altered genes indicate that Dex crosstalks with a broad spectrum of signaling pathways, of which inflammatory responses, cell migration, angiogenesis, NF-κB and TGFβ pathways are predominantly altered. Together, our study provides new information and identifies several new avenues for future investigation of hormone signaling in podocytes.

  7. Gene expression inference with deep learning.

    Science.gov (United States)

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Microarray Analysis of microRNA Expression during Axolotl Limb Regeneration

    Science.gov (United States)

    Holman, Edna C.; Campbell, Leah J.; Hines, John; Crews, Craig M.

    2012-01-01

    Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum) has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression) of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum (“Amex”) miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3′UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes. PMID:23028429

  9. Microarray analysis of microRNA expression during axolotl limb regeneration.

    Directory of Open Access Journals (Sweden)

    Edna C Holman

    Full Text Available Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum ("Amex" miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3'UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes.

  10. Supplementing High-Density SNP Microarrays for Additional Coverage of Disease-Related Genes: Addiction as a Paradigm

    Energy Technology Data Exchange (ETDEWEB)

    SacconePhD, Scott F [Washington University, St. Louis; Chesler, Elissa J [ORNL; Bierut, Laura J [Washington University, St. Louis; Kalivas, Peter J [Medical College of South Carolina, Charleston; Lerman, Caryn [University of Pennsylvania; Saccone, Nancy L [Washington University, St. Louis; Uhl, George R [Johns Hopkins University; Li, Chuan-Yun [Peking University; Philip, Vivek M [ORNL; Edenberg, Howard [Indiana University; Sherry, Steven [National Center for Biotechnology Information; Feolo, Michael [National Center for Biotechnology Information; Moyzis, Robert K [Johns Hopkins University; Rutter, Joni L [National Institute of Drug Abuse

    2009-01-01

    Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well represented by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions.

  11. Quantitative profiling of housekeeping and Epstein-Barr virus gene transcription in Burkitt lymphoma cell lines using an oligonucleotide microarray

    Directory of Open Access Journals (Sweden)

    Niggli Felix K

    2006-06-01

    Full Text Available Abstract Background The Epstein-Barr virus (EBV is associated with lymphoid malignancies, including Burkitt's lymphoma (BL, and can transform human B cells in vitro. EBV-harboring cell lines are widely used to investigate lymphocyte transformation and oncogenesis. Qualitative EBV gene expression has been extensively described, but knowledge of quantitative transcription is lacking. We hypothesized that transcription levels of EBNA1, the gene essential for EBV persistence within an infected cell, are similar in BL cell lines. Results To compare quantitative gene transcription in the BL cell lines Namalwa, Raji, Akata, Jijoye, and P3HR1, we developed an oligonucleotide microarray chip, including 17 housekeeping genes, six latent EBV genes (EBNA1, EBNA2, EBNA3A, EBNA3C, LMP1, LMP2, and four lytic EBV genes (BZLF1, BXLF2, BKRF2, BZLF2, and used the cell line B95.8 as a reference for EBV gene transcription. Quantitative polymerase chain reaction assays were used to validate microarray results. We found that transcription levels of housekeeping genes differed considerably among BL cell lines. Using a selection of housekeeping genes with similar quantitative transcription in the tested cell lines to normalize EBV gene transcription data, we showed that transcription levels of EBNA1 were quite similar in very different BL cell lines, in contrast to transcription levels of other EBV genes. As demonstrated with Akata cells, the chip allowed us to accurately measure EBV gene transcription changes triggered by treatment interventions. Conclusion Our results suggest uniform EBNA1 transcription levels in BL and that microarray profiling can reveal novel insights on quantitative EBV gene transcription and its impact on lymphocyte biology.

  12. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  13. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning. Analysis of Space Grown Arabidopsis with Microarray Data from GeneLab: Identification of Genes Important in Vascular Patterning

    Science.gov (United States)

    Weitzel, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photo-assimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be up-regulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS (Auxin-Regulated Gene Involved in Organ Size)-like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm up-regulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  14. GeneBins: a database for classifying gene expression data, with application to plant genome arrays

    Directory of Open Access Journals (Sweden)

    Weiller Georg

    2007-03-01

    Full Text Available Abstract Background To interpret microarray experiments, several ontological analysis tools have been developed. However, current tools are limited to specific organisms. Results We developed a bioinformatics system to assign the probe set sequences of any organism to a hierarchical functional classification modelled on KEGG ontology. The GeneBins database currently supports the functional classification of expression data from four Affymetrix arrays; Arabidopsis thaliana, Oryza sativa, Glycine max and Medicago truncatula. An online analysis tool to identify relevant functions is also provided. Conclusion GeneBins provides resources to interpret gene expression results from microarray experiments. It is available at http://bioinfoserver.rsbs.anu.edu.au/utils/GeneBins/

  15. Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks

    NARCIS (Netherlands)

    Waaijenborg, S.; Zwinderman, A.H.

    2009-01-01

    ABSTRACT: BACKGROUND: We generalized penalized canonical correlation analysis for analyzing microarray gene-expression measurements for checking completeness of known metabolic pathways and identifying candidate genes for incorporation in the pathway. We used Wold's method for calculation of the

  16. Discrimination of phytoplasmas using an oligonucleotide microarray targeting rps3, rpl22, and rps19 genes

    Czech Academy of Sciences Publication Activity Database

    Lenz, Ondřej; Marková, J.; Sarkisova, Tatiana; Fránová, Jana; Přibylová, Jaroslava

    2015-01-01

    Roč. 70, January 2015 (2015), s. 47-52 ISSN 0261-2194 Institutional support: RVO:60077344 Keywords : DNA microarray * rpl22 gene * rps19 gene * rps3 gene Subject RIV: EE - Microbiology, Virology Impact factor: 1.652, year: 2015

  17. FiGS: a filter-based gene selection workbench for microarray data

    Directory of Open Access Journals (Sweden)

    Yun Taegyun

    2010-01-01

    Full Text Available Abstract Background The selection of genes that discriminate disease classes from microarray data is widely used for the identification of diagnostic biomarkers. Although various gene selection methods are currently available and some of them have shown excellent performance, no single method can retain the best performance for all types of microarray datasets. It is desirable to use a comparative approach to find the best gene selection result after rigorous test of different methodological strategies for a given microarray dataset. Results FiGS is a web-based workbench that automatically compares various gene selection procedures and provides the optimal gene selection result for an input microarray dataset. FiGS builds up diverse gene selection procedures by aligning different feature selection techniques and classifiers. In addition to the highly reputed techniques, FiGS diversifies the gene selection procedures by incorporating gene clustering options in the feature selection step and different data pre-processing options in classifier training step. All candidate gene selection procedures are evaluated by the .632+ bootstrap errors and listed with their classification accuracies and selected gene sets. FiGS runs on parallelized computing nodes that capacitate heavy computations. FiGS is freely accessible at http://gexp.kaist.ac.kr/figs. Conclusion FiGS is an web-based application that automates an extensive search for the optimized gene selection analysis for a microarray dataset in a parallel computing environment. FiGS will provide both an efficient and comprehensive means of acquiring optimal gene sets that discriminate disease states from microarray datasets.

  18. Comparison of gene expression profiles in Bacillus megaterium ...

    African Journals Online (AJOL)

    Abstract. The MP agent, prepared from Bacillus megaterium isolated from the soil near tobacco fields, can improve metabolic products, and hence the aroma, of tobacco (Nicotiana tabacum) leaf. To explore genes regulating metabolic responses in tobacco leaf, we used microarrays to analyze differentially expressed genes ...

  19. Gene expression profiling of chicken intestinal host responses

    NARCIS (Netherlands)

    Hemert, van S.

    2007-01-01

    Chicken lines differ in genetic disease susceptibility. The scope of the research described in this thesis was to identify genes involved in genetic disease resistance in the chicken intestine. Therefore gene expression in the jejunum was investigated using a microarray approach. An intestine

  20. Identification of novel target genes involved in Indian Fanconi anemia patients using microarray.

    Science.gov (United States)

    Shyamsunder, Pavithra; Ganesh, Kripa S; Vidyasekar, Prasanna; Mohan, Sheila; Verma, Rama Shanker

    2013-12-01

    Fanconi anemia (FA) is a genetic disorder characterized by progressive bone marrow failure and a predisposition to cancers. Mutations have been documented in 15 FA genes that participate in the FA-BRCA DNA repair pathway, a fundamental pathway in the development of the disease and the presentation of its characteristic symptoms. Certain symptoms such as oxygen sensitivity, hematological abnormalities and impaired immunity suggest that FA proteins could participate in or independently control other pathways as well. In this study, we identified 9 DNA repair genes that were down regulated in a genome wide analysis of 6 Indian Fanconi anemia patients. Functional clustering of a total of 233 dysregulated genes identified key biological processes that included regulation of transcription, DNA repair, cell cycle and chromosomal organization. Microarray data revealed the down regulation of ATXN3, ARID4A and ETS-1, which were validated by RTPCR in a subsequent sample set of 9 Indian FA patients. Here we report for the first time a gene expression profile of Fanconi anemia patients from the Indian population and a pool of genes that might aid in the acquisition and progression of the FA phenotype. © 2013 Elsevier B.V. All rights reserved.

  1. Improved gene expression signature of testicular carcinoma in situ

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Leffers, Henrik; Lothe, Ragnhild A

    2007-01-01

    on global gene expression in testicular CIS have been previously published. We have merged the two data sets on CIS samples (n = 6) and identified the shared gene expression signature in relation to expression in normal testis. Among the top-20 highest expressed genes, one-third was transcription factors...... development' were significantly altered and could collectively affect cellular pathways like the WNT signalling cascade, which thus may be disrupted in testicular CIS. The merged CIS data from two different microarray platforms, to our knowledge, provide the most precise CIS gene expression signature to date....

  2. Comparison of microarray platforms for measuring differential microRNA expression in paired normal/cancer colon tissues.

    Directory of Open Access Journals (Sweden)

    Maurizio Callari

    Full Text Available BACKGROUND: Microarray technology applied to microRNA (miRNA profiling is a promising tool in many research fields; nevertheless, independent studies characterizing the same pathology have often reported poorly overlapping results. miRNA analysis methods have only recently been systematically compared but only in few cases using clinical samples. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the inter-platform reproducibility of four miRNA microarray platforms (Agilent, Exiqon, Illumina, and Miltenyi, comparing nine paired tumor/normal colon tissues. The most concordant and selected discordant miRNAs were further studied by quantitative RT-PCR. Globally, a poor overlap among differentially expressed miRNAs identified by each platform was found. Nevertheless, for eight miRNAs high agreement in differential expression among the four platforms and comparability to qRT-PCR was observed. Furthermore, most of the miRNA sets identified by each platform are coherently enriched in data from the other platforms and the great majority of colon cancer associated miRNA sets derived from the literature were validated in our data, independently from the platform. Computational integration of miRNA and gene expression profiles suggested that anti-correlated predicted target genes of differentially expressed miRNAs are commonly enriched in cancer-related pathways and in genes involved in glycolysis and nutrient transport. CONCLUSIONS: Technical and analytical challenges in measuring miRNAs still remain and further research is required in order to increase consistency between different microarray-based methodologies. However, a better inter-platform agreement was found by looking at miRNA sets instead of single miRNAs and through a miRNAs - gene expression integration approach.

  3. Feasibility of subcutaneously implanted magnetic microarrays for site specific drug and gene targeting

    Directory of Open Access Journals (Sweden)

    M. Babincová

    2010-01-01

    Full Text Available The magnetic nanoparticles play a crucial role as a drug carriers in the human body. The wedge like magnetic arrays creatinga strongly non-homogeneous magnetic field are considered as a useful way to focus magnetic nanoparticles functionalizedwith various drugs or genes to desired sites. The goal of this study is to develop a numerical model of drug targetingusing subcutaneously implanted magnetic microarrays. The Finite Element Method is applied to solve partial differentialequations describing electromagnetic field (Maxwell equations and motion of these particles in a given magnetic field isobtained solving set of ordinary differential equations expressed by Newton law of motion. The results are encouragingshowing the potential to target drug to the tumour cell locally, without unwanted side effects.

  4. NM23 protein expression in colorectal carcinoma using TMA (tissue microarray: association with metastases and survival

    Directory of Open Access Journals (Sweden)

    Levindo Alves de Oliveira

    2010-12-01

    Full Text Available CONTEXT: NM23, a metastasis suppressor gene, may be associated with prognosis in patients with colorectal carcinoma. OBJECTIVE: To analyze NM23 expression and its association with the presence of lymph node and liver metastases and survival in patients operated on for colorectal carcinoma. METHODS: One hundred thirty patients operated on for colorectal carcinoma were investigated. Tissue microarray blocks containing neoplastic tissue and tumor-adjacent non-neoplastic mucosa were obtained and analyzed by immunohistochemical staining using a monoclonal anti-NM23 antibody. Immunohistochemical expression was assessed using a semiquantitative scoring method, counting the percentage of stained cells. The results were compared regarding morphological and histological characteristics of the colorectal carcinoma, presence of lymph node and liver metastases, tumor staging, and patient survival. Statistical analysis was performed using the Mann-Whitney test, the Kruskal-Wallis test and Fisher's exact test. Survival analysis was performed using the Kaplan-Meier method and the log-rank test. RESULTS: NM23 expression was higher in colorectal carcinoma tissue than in adjacent non-neoplastic mucosa (P<0.0001. NM23 protein expression did not correlate with degree of cell differentiation (P = 0.57, vascular invasion (P = 0.85, lymphatic invasion (P = 0.41, perineural infiltration (P = 0.46, staging (P = 0.19, lymph node metastases (P = 0.08, or liver metastases (P = 0.59. Disease-free survival showed significant association (P = 0.01 with the intensity of NM23 protein immunohistochemical expression in colorectal carcinoma tissue, whereas overall survival showed no association with NM23 protein expression (P = 0.13. CONCLUSIONS: NM23 protein expression was higher in neoplastic colorectal carcinoma tissue than in adjacent non-neoplastic mucosa, showing no correlation with morphological aspects, presence of lymph node or liver metastases, colorectal carcinoma

  5. Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Salomon, Jesper; Søkilde, Rolf

    2009-01-01

    Recently, next-generation sequencing has been introduced as a promising, new platform for assessing the copy number of transcripts, while the existing microarray technology is considered less reliable for absolute, quantitative expression measurements. Nonetheless, so far, results from the two...... technologies have only been compared based on biological data, leading to the conclusion that, although they are somewhat correlated, expression values differ significantly. Here, we use synthetic RNA samples, resembling human microRNA samples, to find that microarray expression measures actually correlate...... better with sample RNA content than expression measures obtained from sequencing data. In addition, microarrays appear highly sensitive and perform equivalently to next-generation sequencing in terms of reproducibility and relative ratio quantification....

  6. Study of hepatitis B virus gene mutations with enzymatic colorimetry-based DNA microarray.

    Science.gov (United States)

    Mao, Hailei; Wang, Huimin; Zhang, Donglei; Mao, Hongju; Zhao, Jianlong; Shi, Jian; Cui, Zhichu

    2006-01-01

    To establish a modified microarray method for detecting HBV gene mutations in the clinic. Site-specific oligonucleotide probes were immobilized to microarray slides and hybridized to biotin-labeled HBV gene fragments amplified from two-step PCR. Hybridized targets were transferred to nitrocellulose membranes, followed by intensity measurement using BCIP/NBT colorimetry. HBV genes from 99 Hepatitis B patients and 40 healthy blood donors were analyzed. Mutation frequencies of HBV pre-core/core and basic core promoter (BCP) regions were found to be significantly higher in the patient group (42%, 40% versus 2.5%, 5%, P colorimetry method exhibited the same level of sensitivity and reproducibility. An enzymatic colorimetry-based DNA microarray assay was successfully established to monitor HBV mutations. Pre-core/core and BCP mutations of HBV genes could be major causes of HBV infection in HBeAg-negative patients and could also be relevant to chronicity and aggravation of hepatitis B.

  7. Microarray Expression Profile and Functional Analysis of Circular RNAs in Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Weihai Liu

    2017-09-01

    Full Text Available Background/Aims: Osteosarcoma (OS is the most common primary malignant bone tumor in children and adolescents. However, the molecular mechanisms regulating osteosarcoma tumorigenesis and progression are still poorly understood. Circular RNAs (circRNAs have been identified as microRNA sponges and are involved in many important biological processes. This study aims to investigate the global changes in the expression pattern of circRNAs in osteosarcoma and provide a comprehensive understanding of differentially expressed circRNAs. Methods: Microarray based circRNA expression was determined in osteosarcoma cell lines and compared with hFOB1.19, which was used as the normal control. We confirmed the microarray data by real time-qPCR in both osteosarcoma cell lines and tissues. The circRNA/microRNA/mRNA interaction network was predicted using bioinformatics. Gene Ontology analysis and 4 annotation tools for pathway analysis (KEGG, Biocarta, PANTHER and Reactome were used to predict the functions of differentially expressed circRNAs. Results: We revealed a number of differentially expressed circRNAs and 12 of them were confirmed, which suggests a potential role of circRNAs in OS. Among these differentially expressed circRNAs, hsa_circRNA_103801 was up-regulated in both osteosarcoma cell lines and tissues, while hsa_circRNA_104980 was down-regulated. The most likely potential target miRNAs for hsa_circRNA_103801 include hsa-miR-370-3p, hsa-miR-338-3p and hsa-miR-877-3p, while the most potential target miRNAs of hsa_circRNA_104980 consist of hsa-miR-1298-3p and hsa-miR-660-3p. Functional analysis found that hsa_circRNA_103801 was involved in pathways in cancer, such as the HIF-1, VEGF and angiogenesis pathway, the Rap1 signaling pathway and the PI3K-Akt signaling pathway, while hsa_circRNA_104980 was related to some pathways such as the tight junction pathway. Conclusions: This study has identified the comprehensive expression profile of circRNAs in

  8. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  9. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    Directory of Open Access Journals (Sweden)

    Landfors Mattias

    2010-10-01

    Full Text Available Abstract Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered, missing value imputation (2, standardization of data (2, gene selection (19 or clustering method (11. The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that

  10. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering

    Science.gov (United States)

    2010-01-01

    Background Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization. Result We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered), missing value imputation (2), standardization of data (2), gene selection (19) or clustering method (11). The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that background correction is

  11. Statistical Redundancy Testing for Improved Gene Selection in Cancer Classification Using Microarray Data

    Directory of Open Access Journals (Sweden)

    J. Sunil Rao

    2007-01-01

    Full Text Available In gene selection for cancer classifi cation using microarray data, we define an eigenvalue-ratio statistic to measure a gene’s contribution to the joint discriminability when this gene is included into a set of genes. Based on this eigenvalueratio statistic, we define a novel hypothesis testing for gene statistical redundancy and propose two gene selection methods. Simulation studies illustrate the agreement between statistical redundancy testing and gene selection methods. Real data examples show the proposed gene selection methods can select a compact gene subset which can not only be used to build high quality cancer classifiers but also show biological relevance.

  12. Microarray analysis identified Puccinia striiformis f. sp. tritici genes involved in infection and sporulation.

    Science.gov (United States)

    Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, one of the most important diseases of wheat worldwide. To identify Pst genes involved in infection and sporulation, a custom oligonucleotide Genechip was made using sequences of 442 genes selected from Pst cDNA libraries. Microarray analy...

  13. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect.

    NARCIS (Netherlands)

    Yergeau, E.; Kang, S.; He, Z.; Zhou, J.; Kowalchuk, G.A.

    2007-01-01

    Soil-borne microbial communities were examined via a functional gene microarray approach across a southern polar latitudinal gradient to gain insight into the environmental factors steering soil N- and C-cycling in terrestrial Antarctic ecosystems. The abundance and diversity of functional gene

  14. Discovery of possible gene relationships through the application of self-organizing maps to DNA microarray databases.

    Science.gov (United States)

    Chavez-Alvarez, Rocio; Chavoya, Arturo; Mendez-Vazquez, Andres

    2014-01-01

    DNA microarrays and cell cycle synchronization experiments have made possible the study of the mechanisms of cell cycle regulation of Saccharomyces cerevisiae by simultaneously monitoring the expression levels of thousands of genes at specific time points. On the other hand, pattern recognition techniques can contribute to the analysis of such massive measurements, providing a model of gene expression level evolution through the cell cycle process. In this paper, we propose the use of one of such techniques--an unsupervised artificial neural network called a Self-Organizing Map (SOM)-which has been successfully applied to processes involving very noisy signals, classifying and organizing them, and assisting in the discovery of behavior patterns without requiring prior knowledge about the process under analysis. As a test bed for the use of SOMs in finding possible relationships among genes and their possible contribution in some biological processes, we selected 282 S. cerevisiae genes that have been shown through biological experiments to have an activity during the cell cycle. The expression level of these genes was analyzed in five of the most cited time series DNA microarray databases used in the study of the cell cycle of this organism. With the use of SOM, it was possible to find clusters of genes with similar behavior in the five databases along two cell cycles. This result suggested that some of these genes might be biologically related or might have a regulatory relationship, as was corroborated by comparing some of the clusters obtained with SOMs against a previously reported regulatory network that was generated using biological knowledge, such as protein-protein interactions, gene expression levels, metabolism dynamics, promoter binding, and modification, regulation and transport of proteins. The methodology described in this paper could be applied to the study of gene relationships of other biological processes in different organisms.

  15. A microarray study of gene and protein regulation in human and rat brain following middle cerebral artery occlusion

    Science.gov (United States)

    Mitsios, Nick; Saka, Mohamad; Krupinski, Jerzy; Pennucci, Roberta; Sanfeliu, Coral; Wang, Qiuyu; Rubio, Francisco; Gaffney, John; Kumar, Pat; Kumar, Shant; Sullivan, Matthew; Slevin, Mark

    2007-01-01

    Background Altered gene expression is an important feature of ischemic cerebral injury and affects proteins of many functional classes. We have used microarrays to investigate the changes in gene expression at various times after middle cerebral artery occlusion in human and rat brain. Results Our results demonstrated a significant difference in the number of genes affected and the time-course of expression between the two cases. The total number of deregulated genes in the rat was 335 versus 126 in the human, while, of 393 overlapping genes between the two array sets, 184 were changed only in the rat and 36 in the human with a total of 41 genes deregulated in both cases. Interestingly, the mean fold changes were much higher in the human. The expression of novel genes, including p21-activated kinase 1 (PAK1), matrix metalloproteinase 11 (MMP11) and integrase interactor 1, was further analyzed by RT-PCR, Western blotting and immunohistochemistry. Strong neuronal staining was seen for PAK1 and MMP11. Conclusion Our findings confirmed previous studies reporting that gene expression screening can detect known and unknown transcriptional features of stroke and highlight the importance of research using human brain tissue in the search for novel therapeutic agents. PMID:17997827

  16. Genes involved in immunity and apoptosis are associated with human presbycusis based on microarray analysis.

    Science.gov (United States)

    Dong, Yang; Li, Ming; Liu, Puzhao; Song, Haiyan; Zhao, Yuping; Shi, Jianrong

    2014-06-01

    Genes involved in immunity and apoptosis were associated with human presbycusis. CCR3 and GILZ played an important role in the pathogenesis of presbycusis, probably through regulating chemokine receptor, T-cell apoptosis, or T-cell activation pathways. To identify genes associated with human presbycusis and explore the molecular mechanism of presbycusis. Hearing function was tested by pure-tone audiometry. Microarray analysis was performed to identify presbycusis-correlated genes by Illumina Human-6 BeadChip using the peripheral blood samples of subjects. To identify biological process categories and pathways associated with presbycusis-correlated genes, bioinformatics analysis was carried out by Gene Ontology Tree Machine (GOTM) and database for annotation, visualization, and integrated discovery (DAVID). Quantitative RT-PCR (qRT-PCR) was used to validate the microarray data. Microarray analysis identified 469 up-regulated genes and 323 down-regulated genes. Both the dominant biological processes by Gene Ontology (GO) analysis and the enriched pathways by Kyoto encyclopedia of genes and genomes (KEGG) and BIOCARTA showed that genes involved in immunity and apoptosis were associated with presbycusis. In addition, CCR3, GILZ, CXCL10, and CX3CR1 genes showed consistent difference between groups for both the gene chip and qRT-PCR data. The differences of CCR3 and GILZ between presbycusis patients and controls were statistically significant (p < 0.05).

  17. Analysis of gene expression in normal and neoplastic human testis: new roles of RNA

    DEFF Research Database (Denmark)

    Novotny, G W; Nielsen, J E; Sonne, Si Brask

    2007-01-01

    Large-scale methods for analysing gene expression, such as microarrays, have yielded a wealth of information about gene expression at the mRNA level. However, expression of alternative transcripts, together with the presence of a wide range of largely undescribed RNA transcripts combined with reg......Large-scale methods for analysing gene expression, such as microarrays, have yielded a wealth of information about gene expression at the mRNA level. However, expression of alternative transcripts, together with the presence of a wide range of largely undescribed RNA transcripts combined...

  18. Bayesian assignment of gene ontology terms to gene expression experiments.

    Science.gov (United States)

    Sykacek, P

    2012-09-15

    Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Source code under GPL license is available from the author. peter.sykacek@boku.ac.at.

  19. Bayesian assignment of gene ontology terms to gene expression experiments

    Science.gov (United States)

    Sykacek, P.

    2012-01-01

    Motivation: Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. Results: This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Availability: Source code under GPL license is available from the author. Contact: peter.sykacek@boku.ac.at PMID:22962488

  20. Microarray profiling of mononuclear peripheral blood cells identifies novel candidate genes related to chemoradiation response in rectal cancer.

    Directory of Open Access Journals (Sweden)

    Pablo Palma

    Full Text Available Preoperative chemoradiation significantly improves oncological outcome in locally advanced rectal cancer. However there is no effective method of predicting tumor response to chemoradiation in these patients. Peripheral blood mononuclear cells have emerged recently as pathology markers of cancer and other diseases, making possible their use as therapy predictors. Furthermore, the importance of the immune response in radiosensivity of solid organs led us to hypothesized that microarray gene expression profiling of peripheral blood mononuclear cells could identify patients with response to chemoradiation in rectal cancer. Thirty five 35 patients with locally advanced rectal cancer were recruited initially to perform the study. Peripheral blood samples were obtained before neaodjuvant treatment. RNA was extracted and purified to obtain cDNA and cRNA for hybridization of microarrays included in Human WG CodeLink bioarrays. Quantitative real time PCR was used to validate microarray experiment data. Results were correlated with pathological response, according to Mandard´s criteria and final UICC Stage (patients with tumor regression grade 1-2 and downstaging being defined as responders and patients with grade 3-5 and no downstaging as non-responders. Twenty seven out of 35 patients were finally included in the study. We performed a multiple t-test using Significance Analysis of Microarrays, to find those genes differing significantly in expression, between responders (n = 11 and non-responders (n = 16 to CRT. The differently expressed genes were: BC 035656.1, CIR, PRDM2, CAPG, FALZ, HLA-DPB2, NUPL2, and ZFP36. The measurement of FALZ (p = 0.029 gene expression level determined by qRT-PCR, showed statistically significant differences between the two groups. Gene expression profiling reveals novel genes in peripheral blood samples of mononuclear cells that could predict responders and non-responders to chemoradiation in patients with

  1. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  2. Microarray profiling of progesterone-regulated endometrial genes during the rhesus monkey secretory phase

    Directory of Open Access Journals (Sweden)

    Okulicz William C

    2004-07-01

    Full Text Available Abstract Background In the endometrium the steroid hormone progesterone (P, acting through its nuclear receptors, regulates the expression of specific target genes and gene networks required for endometrial maturation. Proper endometrial maturation is considered a requirement for embryo implantation. Endometrial receptivity is a complex process that is spatially and temporally restricted and the identity of genes that regulate receptivity has been pursued by a number of investigators. Methods In this study we have used high density oligonucleotide microarrays to screen for changes in mRNA transcript levels between normal proliferative and adequate secretory phases in Rhesus monkey artificial menstrual cycles. Biotinylated cRNA was prepared from day 13 and days 21–23 of the reproductive cycle and transcript levels were compared by hybridization to Affymetrix HG-U95A arrays. Results Of ~12,000 genes profiled, we identified 108 genes that were significantly regulated during the shift from a proliferative to an adequate secretory endometrium. Of these genes, 39 were up-regulated at days 21–23 versus day 13, and 69 were down-regulated. Genes up-regulated in P-dominant tissue included: secretoglobin (uteroglobin, histone 2A, polo-like kinase (PLK, spermidine/spermine acetyltransferase 2 (SAT2, secretory leukocyte protease inhibitor (SLPI and metallothionein 1G (MT1G, all of which have been previously documented as elevated in the Rhesus monkey or human endometrium during the secretory phase. Genes down-regulated included: transforming growth factor beta-induced (TGFBI or BIGH3, matrix metalloproteinase 11 (stromelysin 3, proenkephalin (PENK, cysteine/glycine-rich protein 2 (CSRP2, collagen type VII alpha 1 (COL7A1, secreted frizzled-related protein 4 (SFRP4, progesterone receptor membrane component 1 (PGRMC1, chemokine (C-X-C ligand 12 (CXCL12 and biglycan (BGN. In addition, many novel/unknown genes were also identified. Validation of array data

  3. Classification of Non-Small Cell Lung Cancer Using Significance Analysis of Microarray-Gene Set Reduction Algorithm

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2016-01-01

    Full Text Available Among non-small cell lung cancer (NSCLC, adenocarcinoma (AC, and squamous cell carcinoma (SCC are two major histology subtypes, accounting for roughly 40% and 30% of all lung cancer cases, respectively. Since AC and SCC differ in their cell of origin, location within the lung, and growth pattern, they are considered as distinct diseases. Gene expression signatures have been demonstrated to be an effective tool for distinguishing AC and SCC. Gene set analysis is regarded as irrelevant to the identification of gene expression signatures. Nevertheless, we found that one specific gene set analysis method, significance analysis of microarray-gene set reduction (SAMGSR, can be adopted directly to select relevant features and to construct gene expression signatures. In this study, we applied SAMGSR to a NSCLC gene expression dataset. When compared with several novel feature selection algorithms, for example, LASSO, SAMGSR has equivalent or better performance in terms of predictive ability and model parsimony. Therefore, SAMGSR is a feature selection algorithm, indeed. Additionally, we applied SAMGSR to AC and SCC subtypes separately to discriminate their respective stages, that is, stage II versus stage I. Few overlaps between these two resulting gene signatures illustrate that AC and SCC are technically distinct diseases. Therefore, stratified analyses on subtypes are recommended when diagnostic or prognostic signatures of these two NSCLC subtypes are constructed.

  4. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  5. MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus.

    Science.gov (United States)

    Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild

    2009-07-01

    Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions.

  6. Widespread ectopic expression of olfactory receptor genes

    Directory of Open Access Journals (Sweden)

    Yanai Itai

    2006-05-01

    Full Text Available Abstract Background Olfactory receptors (ORs are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.

  7. Mining gene expression data of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Pi Guo

    Full Text Available Microarray produces a large amount of gene expression data, containing various biological implications. The challenge is to detect a panel of discriminative genes associated with disease. This study proposed a robust classification model for gene selection using gene expression data, and performed an analysis to identify disease-related genes using multiple sclerosis as an example.Gene expression profiles based on the transcriptome of peripheral blood mononuclear cells from a total of 44 samples from 26 multiple sclerosis patients and 18 individuals with other neurological diseases (control were analyzed. Feature selection algorithms including Support Vector Machine based on Recursive Feature Elimination, Receiver Operating Characteristic Curve, and Boruta algorithms were jointly performed to select candidate genes associating with multiple sclerosis. Multiple classification models categorized samples into two different groups based on the identified genes. Models' performance was evaluated using cross-validation methods, and an optimal classifier for gene selection was determined.An overlapping feature set was identified consisting of 8 genes that were differentially expressed between the two phenotype groups. The genes were significantly associated with the pathways of apoptosis and cytokine-cytokine receptor interaction. TNFSF10 was significantly associated with multiple sclerosis. A Support Vector Machine model was established based on the featured genes and gave a practical accuracy of ∼86%. This binary classification model also outperformed the other models in terms of Sensitivity, Specificity and F1 score.The combined analytical framework integrating feature ranking algorithms and Support Vector Machine model could be used for selecting genes for other diseases.

  8. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  9. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...... Arabidopsis microarray experiments. CONCLUSIONS: Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/....

  10. Evaluation of artificial time series microarray data for dynamic gene regulatory network inference.

    Science.gov (United States)

    Xenitidis, P; Seimenis, I; Kakolyris, S; Adamopoulos, A

    2017-08-07

    High-throughput technology like microarrays is widely used in the inference of gene regulatory networks (GRNs). We focused on time series data since we are interested in the dynamics of GRNs and the identification of dynamic networks. We evaluated the amount of information that exists in artificial time series microarray data and the ability of an inference process to produce accurate models based on them. We used dynamic artificial gene regulatory networks in order to create artificial microarray data. Key features that characterize microarray data such as the time separation of directly triggered genes, the percentage of directly triggered genes and the triggering function type were altered in order to reveal the limits that are imposed by the nature of microarray data on the inference process. We examined the effect of various factors on the inference performance such as the network size, the presence of noise in microarray data, and the network sparseness. We used a system theory approach and examined the relationship between the pole placement of the inferred system and the inference performance. We examined the relationship between the inference performance in the time domain and the true system parameter identification. Simulation results indicated that time separation and the percentage of directly triggered genes are crucial factors. Also, network sparseness, the triggering function type and noise in input data affect the inference performance. When two factors were simultaneously varied, it was found that variation of one parameter significantly affects the dynamic response of the other. Crucial factors were also examined using a real GRN and acquired results confirmed simulation findings with artificial data. Different initial conditions were also used as an alternative triggering approach. Relevant results confirmed that the number of datasets constitutes the most significant parameter with regard to the inference performance. Copyright © 2017 Elsevier

  11. Semi-supervised consensus clustering for gene expression data analysis

    OpenAIRE

    Wang, Yunli; Pan, Youlian

    2014-01-01

    Background Simple clustering methods such as hierarchical clustering and k-means are widely used for gene expression data analysis; but they are unable to deal with noise and high dimensionality associated with the microarray gene expression data. Consensus clustering appears to improve the robustness and quality of clustering results. Incorporating prior knowledge in clustering process (semi-supervised clustering) has been shown to improve the consistency between the data partitioning and do...

  12. Identification of late O{sub 3}-responsive genes in Arabidopsis thaliana by cDNA microarray analysis

    Energy Technology Data Exchange (ETDEWEB)

    D' Haese, D. [Univ. of Antwerp, Dept. of Biology, Antwerp (BE) and Univ. of Newcastle, School of Biology and Psychology, Div. of Biology, Newcastle-Upon-Tyne (United Kingdom); Horemans, N.; Coen, W. De; Guisez, Y. [Univ. of Antwerp, Dept. of Biology, Antwerp (Belgium)

    2006-09-15

    To better understand the response of a plant to 0{sub 3} stress, an integrated microarray analysis was performed on Arabidopsis plants exposed during 2 days to purified air or 150 nl l{sup -1} O{sub 3}, 8 h day-l. Agilent Arabidopsis 2 Oligo Microarrays were used of which the reliability was confirmed by quantitative real-time PCR of nine randomly selected genes. We confirmed the O{sub 3} responsiveness of heat shock proteins (HSPs), glutathione-S-tranferases and genes involved in cell wall stiffening and microbial defence. Whereas, a previous study revealed that during an early stage of the O{sub 3} stress response, gene expression was strongly dependent on jasmonic acid and ethylene, we report that at a later stage (48 h) synthesis of jasrnonic acid and ethylene was downregulated. In addition, we observed the simultaneous induction of salicylic acid synthesis and genes involved in programmed cell death and senescence. Also typically, the later stage of the response to O{sub 3} appeared to be the induction of the complete pathway leading to the biosynthesis of anthocyanin diglucosides and the induction of thioredoxin-based redox control. Surprisingly absent in the list of induced genes were genes involved in ASC-dependent antioxidation, few of which were found to be induced after 12 h of 0{sub 3} exposure in another study. We discuss these and other particular results of the microarray analysis and provide a map depicting significantly affected genes and their pathways highlighting their interrelationships and subcellular localization. (au)

  13. Microarray-based genomic surveying of gene polymorphisms in Chlamydia trachomatis

    OpenAIRE

    Brunelle, Brian W; Nicholson, Tracy L; Stephens, Richard S

    2004-01-01

    By comparing two fully sequenced genomes of Chlamydia trachomatis using competitive hybridization on DNA microarrays, a logarithmic correlation was demonstrated between the signal ratio of the arrays and the 75-99% range of nucleotide identities of the genes. Variable genes within 14 uncharacterized strains of C. trachomatis were identified by array analysis and verified by DNA sequencing. These genes may be crucial for understanding chlamydial virulence and pathogenesis.

  14. Gene expression in Pseudomonas aeruginosa swarming motility

    Directory of Open Access Journals (Sweden)

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  15. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...... patients, and seven healthy controls. Gene expression of about 10,000 genes were examined using oligonucleotide-based DNA chip microarrays. The analyses showed no significant differences in PBMC expression patterns from RF-positive and RF-negative patients. However, comparisons of gene expression patterns...

  16. Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat

    Directory of Open Access Journals (Sweden)

    Langridge Peter

    2006-10-01

    Full Text Available Abstract Background Our understanding of the mechanisms that govern the cellular process of meiosis is limited in higher plants with polyploid genomes. Bread wheat is an allohexaploid that behaves as a diploid during meiosis. Chromosome pairing is restricted to homologous chromosomes despite the presence of homoeologues in the nucleus. The importance of wheat as a crop and the extensive use of wild wheat relatives in breeding programs has prompted many years of cytogenetic and genetic research to develop an understanding of the control of chromosome pairing and recombination. The rapid advance of biochemical and molecular information on meiosis in model organisms such as yeast provides new opportunities to investigate the molecular basis of chromosome pairing control in wheat. However, building the link between the model and wheat requires points of data contact. Results We report here a large-scale transcriptomics study using the Affymetrix wheat GeneChip® aimed at providing this link between wheat and model systems and at identifying early meiotic genes. Analysis of the microarray data identified 1,350 transcripts temporally-regulated during the early stages of meiosis. Expression profiles with annotated transcript functions including chromatin condensation, synaptonemal complex formation, recombination and fertility were identified. From the 1,350 transcripts, 30 displayed at least an eight-fold expression change between and including pre-meiosis and telophase II, with more than 50% of these having no similarities to known sequences in NCBI and TIGR databases. Conclusion This resource is now available to support research into the molecular basis of pairing and recombination control in the complex polyploid, wheat.

  17. Expression profiling identifies genes involved in emphysema severity

    Directory of Open Access Journals (Sweden)

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  18. Molecular subsets in the gene expression signatures of scleroderma skin.

    Directory of Open Access Journals (Sweden)

    Ausra Milano

    2008-07-01

    Full Text Available Scleroderma is a clinically heterogeneous disease with a complex phenotype. The disease is characterized by vascular dysfunction, tissue fibrosis, internal organ dysfunction, and immune dysfunction resulting in autoantibody production.We analyzed the genome-wide patterns of gene expression with DNA microarrays in skin biopsies from distinct scleroderma subsets including 17 patients with systemic sclerosis (SSc with diffuse scleroderma (dSSc, 7 patients with SSc with limited scleroderma (lSSc, 3 patients with morphea, and 6 healthy controls. 61 skin biopsies were analyzed in a total of 75 microarray hybridizations. Analysis by hierarchical clustering demonstrates nearly identical patterns of gene expression in 17 out of 22 of the forearm and back skin pairs of SSc patients. Using this property of the gene expression, we selected a set of 'intrinsic' genes and analyzed the inherent data-driven groupings. Distinct patterns of gene expression separate patients with dSSc from those with lSSc and both are easily distinguished from normal controls. Our data show three distinct patient groups among the patients with dSSc and two groups among patients with lSSc. Each group can be distinguished by unique gene expression signatures indicative of proliferating cells, immune infiltrates and a fibrotic program. The intrinsic groups are statistically significant (p<0.001 and each has been mapped to clinical covariates of modified Rodnan skin score, interstitial lung disease, gastrointestinal involvement, digital ulcers, Raynaud's phenomenon and disease duration. We report a 177-gene signature that is associated with severity of skin disease in dSSc.Genome-wide gene expression profiling of skin biopsies demonstrates that the heterogeneity in scleroderma can be measured quantitatively with DNA microarrays. The diversity in gene expression demonstrates multiple distinct gene expression programs in the skin of patients with scleroderma.

  19. Gametogenesis in the Pacific oyster Crassostrea gigas: a microarrays-based analysis identifies sex and stage specific genes.

    Directory of Open Access Journals (Sweden)

    Nolwenn M Dheilly

    Full Text Available BACKGROUND: The Pacific oyster Crassostrea gigas (Mollusca, Lophotrochozoa is an alternative and irregular protandrous hermaphrodite: most individuals mature first as males and then change sex several times. Little is known about genetic and phenotypic basis of sex differentiation in oysters, and little more about the molecular pathways regulating reproduction. We have recently developed and validated a microarray containing 31,918 oligomers (Dheilly et al., 2011 representing the oyster transcriptome. The application of this microarray to the study of mollusk gametogenesis should provide a better understanding of the key factors involved in sex differentiation and the regulation of oyster reproduction. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression was studied in gonads of oysters cultured over a yearly reproductive cycle. Principal component analysis and hierarchical clustering showed a significant divergence in gene expression patterns of males and females coinciding with the start of gonial mitosis. ANOVA analysis of the data revealed 2,482 genes differentially expressed during the course of males and/or females gametogenesis. The expression of 434 genes could be localized in either germ cells or somatic cells of the gonad by comparing the transcriptome of female gonads to the transcriptome of stripped oocytes and somatic tissues. Analysis of the annotated genes revealed conserved molecular mechanisms between mollusks and mammals: genes involved in chromatin condensation, DNA replication and repair, mitosis and meiosis regulation, transcription, translation and apoptosis were expressed in both male and female gonads. Most interestingly, early expressed male-specific genes included bindin and a dpy-30 homolog and female-specific genes included foxL2, nanos homolog 3, a pancreatic lipase related protein, cd63 and vitellogenin. Further functional analyses are now required in order to investigate their role in sex differentiation in oysters

  20. Novel approach to select genes from RMA normalized microarray data using functional hearing tests in aging mice

    Science.gov (United States)

    D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D.

    2008-01-01

    Presbycusis – age-related hearing loss – is the number one communicative disorder and one of the top three chronic medical condition of our aged population. High-throughput technologies potentially can be used to identify differentially expressed genes that may be better diagnostic and therapeutic targets for sensory and neural disorders. Here we analyzed gene expression for a set of GABA receptors in the cochlea of aging CBA mice using the Affymetrix GeneChip MOE430A. Functional phenotypic hearing measures were made, including auditory brainstem response (ABR) thresholds and distortion-product otoacoustic emission (DPOAE) amplitudes (four age groups). Four specific criteria were used to assess gene expression changes from RMA normalized microarray data (40 replicates). Linear regression models were used to fit the neurophysiological hearing measurements to probe-set expression profiles. These data were first subjected to one-way ANOVA, and then linear regression was performed. In addition, the log signal ratio was converted to fold change, and selected gene expression changes were confirmed by relative real-time PCR. Major findings: expression of GABA-A receptor subunit α6 was upregulated with age and hearing loss, whereas subunit α1 was repressed. In addition, GABA-A receptor associated protein like-1 and GABA-A receptor associated protein like-2 were strongly downregulated with age and hearing impairment. Lastly, gene expression measures were correlated with pathway/network relationships relevant to the inner ear using Pathway Architect, to identify key pathways consistent with the gene expression changes observed. PMID:18455804

  1. from microarrays and quantitative trait loci to candidate genes

    Indian Academy of Sciences (India)

    Unknown

    2004-10-15

    Oct 15, 2004 ... to candidate genes – A research plan and preliminary results using Drosophila as a model organism and climatic ... Recent developments in molecular genetics ..... scientists in agriculture, medicine and psychology for test-.

  2. Microarray analysis of genes affected by salt stress in tomato

    African Journals Online (AJOL)

    LANDA

    isoforms of cytochrome P450, genes for polyamine biosynthesis (putrescine and proline) ..... CAB97048 mitochondrial half-ABC transporter [Arabidopsis thaliana] up .... AAC72194 pyruvate dehydrogenase E1 beta subunit isoform 3 [Zea mays].

  3. Gene expression profiling of brakeless mutant Drosophila embryos.

    Science.gov (United States)

    Crona, Filip; Singla, Bhumica; Mannervik, Mattias

    2015-12-01

    The transcriptional co-regulator Brakeless performs many important functions during Drosophila development, but few target genes have been identified. Here we use Affymetrix microarrays to identify Brakeless-regulated genes in 2-4 h old Drosophila embryos. Robust multi-array analysis (RMA) and statistical tests revealed 240 genes that changed their expression more than 1.5 fold. We find that up- and down-regulated genes fall into distinct gene ontology categories. In our associated study [2] we demonstrate that both up- and down-regulated genes can be direct Brakeless targets. Our results indicate that the co-repressor and co-activator activities of Brakeless may result in distinct biological responses. The microarray data complies with MIAME guidelines and is deposited in GEO under accession number GSE60048.

  4. A longitudinal study of gene expression in healthy individuals

    Directory of Open Access Journals (Sweden)

    Tessier Michel

    2009-06-01

    Full Text Available Abstract Background The use of gene expression in venous blood either as a pharmacodynamic marker in clinical trials of drugs or as a diagnostic test requires knowledge of the variability in expression over time in healthy volunteers. Here we defined a normal range of gene expression over 6 months in the blood of four cohorts of healthy men and women who were stratified by age (22–55 years and > 55 years and gender. Methods Eleven immunomodulatory genes likely to play important roles in inflammatory conditions such as rheumatoid arthritis and infection in addition to four genes typically used as reference genes were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, as well as the full genome as represented by Affymetrix HG U133 Plus 2.0 microarrays. Results Gene expression levels as assessed by qRT-PCR and microarray were relatively stable over time with ~2% of genes as measured by microarray showing intra-subject differences over time periods longer than one month. Fifteen genes varied by gender. The eleven genes examined by qRT-PCR remained within a limited dynamic range for all individuals. Specifically, for the seven most stably expressed genes (CXCL1, HMOX1, IL1RN, IL1B, IL6R, PTGS2, and TNF, 95% of all samples profiled fell within 1.5–2.5 Ct, the equivalent of a 4- to 6-fold dynamic range. Two subjects who experienced severe adverse events of cancer and anemia, had microarray gene expression profiles that were distinct from normal while subjects who experienced an infection had only slightly elevated levels of inflammatory markers. Conclusion This study defines the range and variability of gene expression in healthy men and women over a six-month period. These parameters can be used to estimate the number of subjects needed to observe significant differences from normal gene expression in clinical studies. A set of genes that varied by gender was also identified as were a set of genes with elevated

  5. A cDNA microarray, UniShrimpChip, for identification of genes relevant to testicular development in the black tiger shrimp (Penaeus monodon

    Directory of Open Access Journals (Sweden)

    Klinbunga Sirawut

    2011-04-01

    Full Text Available Abstract Background Poor reproductive maturation in captive male broodstock of the black tiger shrimp (Penaeus monodon is one of the serious problems to the farming industries. Without genome sequence, EST libraries of P. monodon were previously constructed to identify transcripts with important biological functions. In this study, a new version of cDNA microarray, UniShrimpChip, was constructed from the Peneaus monodon EST libraries of 12 tissues, containing 5,568 non-redundant cDNA clones from 10,536 unique cDNA in the P. monodon EST database. UniShrimpChip was used to study testicular development by comparing gene expression levels of wild brooders from the West and East coasts of Thailand and domesticated brooders with different ages (10-, 14-, 18-month-old. Results The overall gene expression patterns from the microarray experiments revealed distinct transcriptomic patterns between the wild and domesticated groups. Moreover, differentially expressed genes from the microarray comparisons were identified, and the expression patterns of eight selected transcripts were subsequently confirmed by reverse-transcriptase quantitative PCR (RT-qPCR. Among these, expression levels of six subunits (CSN2, 4, 5, 6, 7a, and 8 of the COP9 signalosome (CSN gene family in wild and different ages of domesticated brooders were examined by RT-qPCR. Among the six subunits, CSN5 and CSN6 were most highly expressed in wild brooders and least expressed in the 18-month-old domesticated group; therefore, their full-length cDNA sequences were characterized. Conclusions This study is the first report to employ cDNA microarray to study testicular development in the black tiger shrimp. We show that there are obvious differences between the wild and domesticated shrimp at the transcriptomic level. Furthermore, our study is the first to investigate the feasibility that the CSN gene family might have involved in reproduction and development of this economically important

  6. Multi-gene detection and identification of mosquito-borne RNA viruses using an oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Nathan D Grubaugh

    Full Text Available BACKGROUND: Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae, Alphavirus (Togaviridae, Orthobunyavirus (Bunyaviridae, and Phlebovirus (Bunyaviridae. METHODOLOGY/PRINCIPAL FINDINGS: The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. CONCLUSIONS/SIGNIFICANCE: We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish

  7. Expression profiling of cell cycle regulatory proteins in oropharyngeal carcinomas using tissue microarrays.

    Science.gov (United States)

    Ribeiro, Daniel A; Nascimento, Fabio D; Fracalossi, Ana Carolina C; Gomes, Thiago S; Oshima, Celina T F; Franco, Marcello F

    2010-01-01

    The aim of this study was to investigate the expressions of cell cycle regulatory proteins such as p53, p16, p21, and Rb in squamous cell carcinoma of the oropharynx and their relation to histological differentiation, staging of disease, and prognosis. Paraffin blocks from 21 primary tumors were obtained from archives of the Department of Pathology, Paulista Medical School, Federal University of Sao Paulo, UNIFESP/EPM. Immunohistochemistry was used to detect the expression of p53, p16, p21, and Rb by means of tissue microarrays. Expression of p53, p21, p16 and Rb was not correlated with the stage of disease, histopathological grading or recurrence in squamous cell carcinoma of the oropharynx. Taken together, our results suggest that p53, p16, p21 and Rb are not reliable biomarkers for prognosis of the tumor severity or recurrence in squamous cell carcinoma of the oropharynx as depicted by tissue microarrays and immunohistochemistry.

  8. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study

    Science.gov (United States)

    2012-01-01

    Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). Methods In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I

  9. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study

    Directory of Open Access Journals (Sweden)

    Cribbs David H

    2012-07-01

    Full Text Available Abstract Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD. Methods In a well-powered microarray study of young (20 to 59 years, aged (60 to 99 years, and AD (74 to 95 years cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%. In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets, with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc receptors and human

  10. Gene expression profiles of the small intestinal mucosa of dogs repeatedly infected with the cestode Echinococcus multilocularis

    Directory of Open Access Journals (Sweden)

    Hirokazu Kouguchi

    2018-04-01

    Full Text Available The data set presented in this article is related to a previous research article entitled “ The timing of worm exclusion in dogs repeatedly infected with the cestode Echinococcus multilocularis” (Kouguchi et al., 2016 [1]. This article describes the genes >2-fold up- or down-regulated in the first- and repeated-infection groups compared to the healthy controls group. The gene expression profiles were generated using the Agilent-021193 Canine (V2 Gene Expression Microarray (GPL15379. The raw and normalized microarray data have been deposited with the Gene Expression Omnibus (GEO database under accession number GSE105098. Keywords: E. multilocularis, Microarray, Dog, Echinococcosis, Vaccine

  11. Gene expression profiles following high-dose exposure to gamma radiation in salmonella enterica serovar typhimurium

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Jung, Sun Wook; Joe, Min Ho; Kim, Dong Ho

    2008-01-01

    Microarrays can measure the expression of thousands of genes to identify the changes in expression between different biological states. To survey the change of whole Salmonella genes after a relatively high dose of gamma radiation (1 kGy), transcriptome dynamics were examined in the cells by using DNA microarrays. At least 75 genes were induced and 89 genes were reduced two-fold or more after irradiation. Several genes located in pSLT plasmid, cyo operon, and Gifsy prophage were induced along with many genes encoding uncharacterized proteins.While, the expression of genes involved in the virulence of Salmonella as well as metabolic functions were decreased. Although the radiation response as a whole could not be illustrated by using DNA microarrays, the data suggest that the response to high dose of irradiation might be more complex than the SOS response

  12. Gene expression profiles following high-dose exposure to gamma radiation in salmonella enterica serovar typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Jung, Sun Wook; Joe, Min Ho; Kim, Dong Ho [Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2008-08-15

    Microarrays can measure the expression of thousands of genes to identify the changes in expression between different biological states. To survey the change of whole Salmonella genes after a relatively high dose of gamma radiation (1 kGy), transcriptome dynamics were examined in the cells by using DNA microarrays. At least 75 genes were induced and 89 genes were reduced two-fold or more after irradiation. Several genes located in pSLT plasmid, cyo operon, and Gifsy prophage were induced along with many genes encoding uncharacterized proteins.While, the expression of genes involved in the virulence of Salmonella as well as metabolic functions were decreased. Although the radiation response as a whole could not be illustrated by using DNA microarrays, the data suggest that the response to high dose of irradiation might be more complex than the SOS response.

  13. Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis

    Directory of Open Access Journals (Sweden)

    Paniego Norma

    2008-01-01

    Full Text Available Abstract Background Considering that sunflower production is expanding to arid regions, tolerance to abiotic stresses as drought, low temperatures and salinity arises as one of the main constrains nowadays. Differential organ-specific sunflower ESTs (expressed sequence tags were previously generated by a subtractive hybridization method that included a considerable number of putative abiotic stress associated sequences. The objective of this work is to analyze concerted gene expression profiles of organ-specific ESTs by fluorescence microarray assay, in response to high sodium chloride concentration and chilling treatments with the aim to identify and follow up candidate genes for early responses to abiotic stress in sunflower. Results Abiotic-related expressed genes were the target of this characterization through a gene expression analysis using an organ-specific cDNA fluorescence microarray approach in response to high salinity and low temperatures. The experiment included three independent replicates from leaf samples. We analyzed 317 unigenes previously isolated from differential organ-specific cDNA libraries from leaf, stem and flower at R1 and R4 developmental stage. A statistical analysis based on mean comparison by ANOVA and ordination by Principal Component Analysis allowed the detection of 80 candidate genes for either salinity and/or chilling stresses. Out of them, 50 genes were up or down regulated under both stresses, supporting common regulatory mechanisms and general responses to chilling and salinity. Interestingly 15 and 12 sequences were up regulated or down regulated specifically in one stress but not in the other, respectively. These genes are potentially involved in different regulatory mechanisms including transcription/translation/protein degradation/protein folding/ROS production or ROS-scavenging. Differential gene expression patterns were confirmed by qRT-PCR for 12.5% of the microarray candidate sequences. Conclusion

  14. Prognostic value of matrix metalloproteinase 9 expression in patients with juvenile nasopharyngeal angiofibroma: tissue microarray analysis.

    Science.gov (United States)

    Sun, Xicai; Guo, Limin; Wang, Jingjing; Wang, Huan; Liu, Zhuofu; Liu, Juan; Yu, Huapeng; Hu, Li; Li, Han; Wang, Dehui

    2014-08-01

    Although JNA is a benign neoplasm histopathologically, it has a propensity for locally destructive growth and remains a higher postoperative recurrence rate. The aim of this study was to analyze the expression and localization of MMP-9 in JNA using tissue microarray to elucidate its correlation with clinicopathological features and recurrence. The expression of MMP-9 was assessed by immunohistochemistry in a tissue microarray from 70 patients with JNA and 10 control subjects. Correlation between the levels of MMP-9 expression and clinicopathologic variables, as well as tumor recurrence, were analyzed. MMP-9 was detected in perivascular and extravascular less differentiated cells and stromal cells of patients with JNA but not in the matured vascular endothelial cells of these patients. The presence of MMP-9 expression in JNA was correlated with patient's age (p=0.001). Spearman correlation analysis suggested that high expression of MMP-9 in JNA had negative correlation with patient's age (r=-0.412, p<0.001). The recurrence rate in JNA patients with high MMP-9 expression was significantly higher than those with low MMP-9 expression (p=0.002). In multivariate and ROC curve analysis, MMP-9 was a good prognostic factor for tumor recurrence of JNA. Higher MMP-9 expression is a poor prognostic factor for patients with JNA who have been surgically treated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  16. GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2015-01-01

    Full Text Available The huge amount of gene expression data generated by microarray and next-generation sequencing technologies present challenges to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for analyzing the gene expression signatures.

  17. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  18. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  19. Dynamic association rules for gene expression data analysis.

    Science.gov (United States)

    Chen, Shu-Chuan; Tsai, Tsung-Hsien; Chung, Cheng-Han; Li, Wen-Hsiung

    2015-10-14

    The purpose of gene expression analysis is to look for the association between regulation of gene expression levels and phenotypic variations. This association based on gene expression profile has been used to determine whether the induction/repression of genes correspond to phenotypic variations including cell regulations, clinical diagnoses and drug development. Statistical analyses on microarray data have been developed to resolve gene selection issue. However, these methods do not inform us of causality between genes and phenotypes. In this paper, we propose the dynamic association rule algorithm (DAR algorithm) which helps ones to efficiently select a subset of significant genes for subsequent analysis. The DAR algorithm is based on association rules from market basket analysis in marketing. We first propose a statistical way, based on constructing a one-sided confidence interval and hypothesis testing, to determine if an association rule is meaningful. Based on the proposed statistical method, we then developed the DAR algorithm for gene expression data analysis. The method was applied to analyze four microarray datasets and one Next Generation Sequencing (NGS) dataset: the Mice Apo A1 dataset, the whole genome expression dataset of mouse embryonic stem cells, expression profiling of the bone marrow of Leukemia patients, Microarray Quality Control (MAQC) data set and the RNA-seq dataset of a mouse genomic imprinting study. A comparison of the proposed method with the t-test on the expression profiling of the bone marrow of Leukemia patients was conducted. We developed a statistical way, based on the concept of confidence interval, to determine the minimum support and minimum confidence for mining association relationships among items. With the minimum support and minimum confidence, one can find significant rules in one single step. The DAR algorithm was then developed for gene expression data analysis. Four gene expression datasets showed that the proposed

  20. Identification of genes related to high royal jelly production in the honey bee (Apis mellifera) using microarray analysis.

    Science.gov (United States)

    Nie, Hongyi; Liu, Xiaoyan; Pan, Jiao; Li, Wenfeng; Li, Zhiguo; Zhang, Shaowu; Chen, Shenglu; Miao, Xiaoqing; Zheng, Nenggan; Su, Songkun

    2017-01-01

    China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs) to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47%) genes were up-regulated, whereas 168 (45.53%) were down-regulated in high royal jelly-yielding bees. Gene ontology (GO) analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production.

  1. Identification of genes related to high royal jelly production in the honey bee (Apis mellifera using microarray analysis

    Directory of Open Access Journals (Sweden)

    Hongyi Nie

    2017-10-01

    Full Text Available Abstract China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47% genes were up-regulated, whereas 168 (45.53% were down-regulated in high royal jelly-yielding bees. Gene ontology (GO analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production.

  2. Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord.

    Science.gov (United States)

    Tamplin, Owen J; Cox, Brian J; Rossant, Janet

    2011-12-15

    The node and notochord are key tissues required for patterning of the vertebrate body plan. Understanding the gene regulatory network that drives their formation and function is therefore important. Foxa2 is a key transcription factor at the top of this genetic hierarchy and finding its targets will help us to better understand node and notochord development. We performed an extensive microarray-based gene expression screen using sorted embryonic notochord cells to identify early notochord-enriched genes. We validated their specificity to the node and notochord by whole mount in situ hybridization. This provides the largest available resource of notochord-expressed genes, and therefore candidate Foxa2 target genes in the notochord. Using existing Foxa2 ChIP-seq data from adult liver, we were able to identify a set of genes expressed in the notochord that had associated regions of Foxa2-bound chromatin. Given that Foxa2 is a pioneer transcription factor, we reasoned that these sites might represent notochord-specific enhancers. Candidate Foxa2-bound regions were tested for notochord specific enhancer function in a zebrafish reporter assay and 7 novel notochord enhancers were identified. Importantly, sequence conservation or predictive models could not have readily identified these regions. Mutation of putative Foxa2 binding elements in two of these novel enhancers abrogated reporter expression and confirmed their Foxa2 dependence. The combination of highly specific gene expression profiling and genome-wide ChIP analysis is a powerful means of understanding developmental pathways, even for small cell populations such as the notochord. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. GeneCAT--novel webtools that combine BLAST and co-expression analyses

    DEFF Research Database (Denmark)

    Mutwil, Marek; Obro, Jens; Willats, William G T

    2008-01-01

    The gene co-expression analysis toolbox (GeneCAT) introduces several novel microarray data analyzing tools. First, the multigene co-expression analysis, combined with co-expressed gene networks, provides a more powerful data mining technique than standard, single-gene co-expression analysis. Second...... orthologs in the plant model organisms Arabidopsis thaliana and Hordeum vulgare (Barley). GeneCAT is equipped with expression data for the model plant A. thaliana, and first to introduce co-expression mining tools for the monocot Barley. GeneCAT is available at http://genecat.mpg.de....

  4. Methods for interpreting lists of affected genes obtained in a DNA microarray experiment

    Directory of Open Access Journals (Sweden)

    Hedegaard Jakob

    2009-07-01

    Full Text Available Abstract Background The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. Results Several conceptually different analytical approaches, using both commercial and public available software, were applied by the participating groups. The following tools were used: Ingenuity Pathway Analysis, MAPPFinder, LIMMA, GOstats, GOEAST, GOTM, Globaltest, TopGO, ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the approaches was to utilise the relation between probes/genes and their gene ontology and pathways to interpret the affected probes/genes. The lack of a well-annotated chicken genome did though limit the possibilities to fully explore the tools. The main results from these analyses showed that the biological interpretation is highly dependent on the statistical method used but that some common biological conclusions could be reached. Conclusion It is highly recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experiment.

  5. Identification of Putative Ortholog Gene Blocks Involved in Gestant and Lactating Mammary Gland Development: A Rodent Cross-Species Microarray Transcriptomics Approach

    Science.gov (United States)

    Rodríguez-Cruz, Maricela; Coral-Vázquez, Ramón M.; Hernández-Stengele, Gabriel; Sánchez, Raúl; Salazar, Emmanuel; Sanchez-Muñoz, Fausto; Encarnación-Guevara, Sergio; Ramírez-Salcedo, Jorge

    2013-01-01

    The mammary gland (MG) undergoes functional and metabolic changes during the transition from pregnancy to lactation, possibly by regulation of conserved genes. The objective was to elucidate orthologous genes, chromosome clusters and putative conserved transcriptional modules during MG development. We analyzed expression of 22,000 transcripts using murine microarrays and RNA samples of MG from virgin, pregnant, and lactating rats by cross-species hybridization. We identified 521 transcripts differentially expressed; upregulated in early (78%) and midpregnancy (89%) and early lactation (64%), but downregulated in mid-lactation (61%). Putative orthologous genes were identified. We mapped the altered genes to orthologous chromosomal locations in human and mouse. Eighteen sets of conserved genes associated with key cellular functions were revealed and conserved transcription factor binding site search entailed possible coregulation among all eight block sets of genes. This study demonstrates that the use of heterologous array hybridization for screening of orthologous gene expression from rat revealed sets of conserved genes arranged in chromosomal order implicated in signaling pathways and functional ontology. Results demonstrate the utilization power of comparative genomics and prove the feasibility of using rodent microarrays to identification of putative coexpressed orthologous genes involved in the control of human mammary gland development. PMID:24288657

  6. Multiplex cDNA quantification method that facilitates the standardization of gene expression data

    Science.gov (United States)

    Gotoh, Osamu; Murakami, Yasufumi; Suyama, Akira

    2011-01-01

    Microarray-based gene expression measurement is one of the major methods for transcriptome analysis. However, current microarray data are substantially affected by microarray platforms and RNA references because of the microarray method can provide merely the relative amounts of gene expression levels. Therefore, valid comparisons of the microarray data require standardized platforms, internal and/or external controls and complicated normalizations. These requirements impose limitations on the extensive comparison of gene expression data. Here, we report an effective approach to removing the unfavorable limitations by measuring the absolute amounts of gene expression levels on common DNA microarrays. We have developed a multiplex cDNA quantification method called GEP-DEAN (Gene expression profiling by DCN-encoding-based analysis). The method was validated by using chemically synthesized DNA strands of known quantities and cDNA samples prepared from mouse liver, demonstrating that the absolute amounts of cDNA strands were successfully measured with a sensitivity of 18 zmol in a highly multiplexed manner in 7 h. PMID:21415008

  7. Clustering gene expression data based on predicted differential effects of GV interaction.

    Science.gov (United States)

    Pan, Hai-Yan; Zhu, Jun; Han, Dan-Fu

    2005-02-01

    Microarray has become a popular biotechnology in biological and medical research. However, systematic and stochastic variabilities in microarray data are expected and unavoidable, resulting in the problem that the raw measurements have inherent "noise" within microarray experiments. Currently, logarithmic ratios are usually analyzed by various clustering methods directly, which may introduce bias interpretation in identifying groups of genes or samples. In this paper, a statistical method based on mixed model approaches was proposed for microarray data cluster analysis. The underlying rationale of this method is to partition the observed total gene expression level into various variations caused by different factors using an ANOVA model, and to predict the differential effects of GV (gene by variety) interaction using the adjusted unbiased prediction (AUP) method. The predicted GV interaction effects can then be used as the inputs of cluster analysis. We illustrated the application of our method with a gene expression dataset and elucidated the utility of our approach using an external validation.

  8. [Study of generational risk in deafness inflicted couples using deafness gene microarray technique].

    Science.gov (United States)

    Wang, Ping; Zhao, Jia; Yu, Shu-yuan; Jin, Peng; Zhu, Wei; DU, Bo

    2011-06-01

    To explored the significance of screening the gene mutations of deafness related in deaf-mute (deaf & dumb) family using DNA microarray. Total of 52 couples of deaf-mute were recruited from Changchun deaf-mute community. With an average age of (58.3 ± 6.7) years old (x(-) ± s). Blood samples were obtained with informed consent. Their genomic DNA was extracted from peripheral blood and PCR was performed. Nine of hot spot mutations in four most common deafness pathologic gene were examined with the DNA microarray, includi