WorldWideScience

Sample records for microarrays current applications

  1. Current Knowledge on Microarray Technology - An Overview

    African Journals Online (AJOL)

    Erah

    This paper reviews basics and updates of each microarray technology and serves to .... through protein microarrays. Protein microarrays also known as protein chips are nothing but grids that ... conditioned media, patient sera, plasma and urine. Clontech ... based antibody arrays) is similar to membrane-based antibody ...

  2. Immobilization Techniques for Microarray: Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Satish Balasaheb Nimse

    2014-11-01

    Full Text Available The highly programmable positioning of molecules (biomolecules, nanoparticles, nanobeads, nanocomposites materials on surfaces has potential applications in the fields of biosensors, biomolecular electronics, and nanodevices. However, the conventional techniques including self-assembled monolayers fail to position the molecules on the nanometer scale to produce highly organized monolayers on the surface. The present article elaborates different techniques for the immobilization of the biomolecules on the surface to produce microarrays and their diagnostic applications. The advantages and the drawbacks of various methods are compared. This article also sheds light on the applications of the different technologies for the detection and discrimination of viral/bacterial genotypes and the detection of the biomarkers. A brief survey with 115 references covering the last 10 years on the biological applications of microarrays in various fields is also provided.

  3. Current Knowledge on Microarray Technology - An Overview

    African Journals Online (AJOL)

    Erah

    Review Article. Current Knowledge ... containing libraries of oligonucleotides robotically ... measurements, and averages over each oligonucleotide. ... quality of chips produced depends critically ..... Bae EK, Lee H, Lee JS, Noh EW. Isolation ...

  4. Diagnostic and analytical applications of protein microarrays

    DEFF Research Database (Denmark)

    Dufva, Hans Martin; Christensen, C.B.V.

    2005-01-01

    DNA microarrays have changed the field of biomedical sciences over the past 10 years. For several reasons, antibody and other protein microarrays have not developed at the same rate. However, protein and antibody arrays have emerged as a powerful tool to complement DNA microarrays during the post...

  5. Nanomedicine, microarrays and their applications in clinical microbiology

    Directory of Open Access Journals (Sweden)

    Özcan Deveci

    2010-12-01

    Full Text Available Growing interest in the future medical applications of nanotechnology is leading to the emergence of a new scientific field that called as “nanomedicine”. Nanomedicine may be defined as the investigating, treating, reconstructing and controlling human biology and health at the molecular level, using engineered nanodevices and nanostructures. Microarray technology is a revolutionary tool for elucidating roles of genes in infectious diseases, shifting from traditional methods of research to integrated approaches. This technology has great potential to provide medical diagnosis, monitor treatment and help in the development of new tools for infectious disease prevention and/or management. The aim of this paper is to provide an overview of the current application of microarray platforms and nanomedicine in the study of experimental microbiology and the impact of this technology in clinical settings.

  6. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.

    Science.gov (United States)

    Elingaramil, Sauli; Li, Xiaolong; He, Nongyue

    2013-07-01

    Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.

  7. Microarray technology for major chemical contaminants analysis in food: current status and prospects.

    Science.gov (United States)

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed.

  8. Carbohydrate microarrays

    DEFF Research Database (Denmark)

    Park, Sungjin; Gildersleeve, Jeffrey C; Blixt, Klas Ola

    2012-01-01

    In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray...... of substrate specificities of glycosyltransferases. This review covers the construction of carbohydrate microarrays, detection methods of carbohydrate microarrays and their applications in biological and biomedical research....

  9. Development and application of a microarray meter tool to optimize microarray experiments

    Directory of Open Access Journals (Sweden)

    Rouse Richard JD

    2008-07-01

    Full Text Available Abstract Background Successful microarray experimentation requires a complex interplay between the slide chemistry, the printing pins, the nucleic acid probes and targets, and the hybridization milieu. Optimization of these parameters and a careful evaluation of emerging slide chemistries are a prerequisite to any large scale array fabrication effort. We have developed a 'microarray meter' tool which assesses the inherent variations associated with microarray measurement prior to embarking on large scale projects. Findings The microarray meter consists of nucleic acid targets (reference and dynamic range control and probe components. Different plate designs containing identical probe material were formulated to accommodate different robotic and pin designs. We examined the variability in probe quality and quantity (as judged by the amount of DNA printed and remaining post-hybridization using three robots equipped with capillary printing pins. Discussion The generation of microarray data with minimal variation requires consistent quality control of the (DNA microarray manufacturing and experimental processes. Spot reproducibility is a measure primarily of the variations associated with printing. The microarray meter assesses array quality by measuring the DNA content for every feature. It provides a post-hybridization analysis of array quality by scoring probe performance using three metrics, a a measure of variability in the signal intensities, b a measure of the signal dynamic range and c a measure of variability of the spot morphologies.

  10. The application of DNA microarrays in gene expression analysis

    NARCIS (Netherlands)

    Hal, van N.L.W.; Vorst, O.; Houwelingen, van A.M.M.L.; Kok, E.J.; Peijnenburg, A.A.C.M.; Aharoni, A.; Tunen, van A.J.; Keijer, J.

    2000-01-01

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed.

  11. The application of DNA microarrays in gene expression analysis.

    Science.gov (United States)

    van Hal, N L; Vorst, O; van Houwelingen, A M; Kok, E J; Peijnenburg, A; Aharoni, A; van Tunen, A J; Keijer, J

    2000-03-31

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.

  12. Application of broad-spectrum resequencing microarray for genotyping rhabdoviruses.

    Science.gov (United States)

    Dacheux, Laurent; Berthet, Nicolas; Dissard, Gabriel; Holmes, Edward C; Delmas, Olivier; Larrous, Florence; Guigon, Ghislaine; Dickinson, Philip; Faye, Ousmane; Sall, Amadou A; Old, Iain G; Kong, Katherine; Kennedy, Giulia C; Manuguerra, Jean-Claude; Cole, Stewart T; Caro, Valérie; Gessain, Antoine; Bourhy, Hervé

    2010-09-01

    The rapid and accurate identification of pathogens is critical in the control of infectious disease. To this end, we analyzed the capacity for viral detection and identification of a newly described high-density resequencing microarray (RMA), termed PathogenID, which was designed for multiple pathogen detection using database similarity searching. We focused on one of the largest and most diverse viral families described to date, the family Rhabdoviridae. We demonstrate that this approach has the potential to identify both known and related viruses for which precise sequence information is unavailable. In particular, we demonstrate that a strategy based on consensus sequence determination for analysis of RMA output data enabled successful detection of viruses exhibiting up to 26% nucleotide divergence with the closest sequence tiled on the array. Using clinical specimens obtained from rabid patients and animals, this method also shows a high species level concordance with standard reference assays, indicating that it is amenable for the development of diagnostic assays. Finally, 12 animal rhabdoviruses which were currently unclassified, unassigned, or assigned as tentative species within the family Rhabdoviridae were successfully detected. These new data allowed an unprecedented phylogenetic analysis of 106 rhabdoviruses and further suggest that the principles and methodology developed here may be used for the broad-spectrum surveillance and the broader-scale investigation of biodiversity in the viral world.

  13. Application of Broad-Spectrum Resequencing Microarray for Genotyping Rhabdoviruses▿

    Science.gov (United States)

    Dacheux, Laurent; Berthet, Nicolas; Dissard, Gabriel; Holmes, Edward C.; Delmas, Olivier; Larrous, Florence; Guigon, Ghislaine; Dickinson, Philip; Faye, Ousmane; Sall, Amadou A.; Old, Iain G.; Kong, Katherine; Kennedy, Giulia C.; Manuguerra, Jean-Claude; Cole, Stewart T.; Caro, Valérie; Gessain, Antoine; Bourhy, Hervé

    2010-01-01

    The rapid and accurate identification of pathogens is critical in the control of infectious disease. To this end, we analyzed the capacity for viral detection and identification of a newly described high-density resequencing microarray (RMA), termed PathogenID, which was designed for multiple pathogen detection using database similarity searching. We focused on one of the largest and most diverse viral families described to date, the family Rhabdoviridae. We demonstrate that this approach has the potential to identify both known and related viruses for which precise sequence information is unavailable. In particular, we demonstrate that a strategy based on consensus sequence determination for analysis of RMA output data enabled successful detection of viruses exhibiting up to 26% nucleotide divergence with the closest sequence tiled on the array. Using clinical specimens obtained from rabid patients and animals, this method also shows a high species level concordance with standard reference assays, indicating that it is amenable for the development of diagnostic assays. Finally, 12 animal rhabdoviruses which were currently unclassified, unassigned, or assigned as tentative species within the family Rhabdoviridae were successfully detected. These new data allowed an unprecedented phylogenetic analysis of 106 rhabdoviruses and further suggest that the principles and methodology developed here may be used for the broad-spectrum surveillance and the broader-scale investigation of biodiversity in the viral world. PMID:20610710

  14. Application of Microarray technology in research and diagnostics

    DEFF Research Database (Denmark)

    Helweg-Larsen, Rehannah Borup

    The overall purpose of this thesis is to evaluate the use of microarray analysis to investigate the transcriptome of human cancers and human follicular cells and define the correlation between expression of human genes and specific cancer types as well as the developmental competence of the oocyte...

  15. Supervised group Lasso with applications to microarray data analysis

    Directory of Open Access Journals (Sweden)

    Huang Jian

    2007-02-01

    Full Text Available Abstract Background A tremendous amount of efforts have been devoted to identifying genes for diagnosis and prognosis of diseases using microarray gene expression data. It has been demonstrated that gene expression data have cluster structure, where the clusters consist of co-regulated genes which tend to have coordinated functions. However, most available statistical methods for gene selection do not take into consideration the cluster structure. Results We propose a supervised group Lasso approach that takes into account the cluster structure in gene expression data for gene selection and predictive model building. For gene expression data without biological cluster information, we first divide genes into clusters using the K-means approach and determine the optimal number of clusters using the Gap method. The supervised group Lasso consists of two steps. In the first step, we identify important genes within each cluster using the Lasso method. In the second step, we select important clusters using the group Lasso. Tuning parameters are determined using V-fold cross validation at both steps to allow for further flexibility. Prediction performance is evaluated using leave-one-out cross validation. We apply the proposed method to disease classification and survival analysis with microarray data. Conclusion We analyze four microarray data sets using the proposed approach: two cancer data sets with binary cancer occurrence as outcomes and two lymphoma data sets with survival outcomes. The results show that the proposed approach is capable of identifying a small number of influential gene clusters and important genes within those clusters, and has better prediction performance than existing methods.

  16. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification.

    Science.gov (United States)

    Oberthuer, André; Berthold, Frank; Warnat, Patrick; Hero, Barbara; Kahlert, Yvonne; Spitz, Rüdiger; Ernestus, Karen; König, Rainer; Haas, Stefan; Eils, Roland; Schwab, Manfred; Brors, Benedikt; Westermann, Frank; Fischer, Matthias

    2006-11-01

    To develop a gene expression-based classifier for neuroblastoma patients that reliably predicts courses of the disease. Two hundred fifty-one neuroblastoma specimens were analyzed using a customized oligonucleotide microarray comprising 10,163 probes for transcripts with differential expression in clinical subgroups of the disease. Subsequently, the prediction analysis for microarrays (PAM) was applied to a first set of patients with maximally divergent clinical courses (n = 77). The classification accuracy was estimated by a complete 10-times-repeated 10-fold cross validation, and a 144-gene predictor was constructed from this set. This classifier's predictive power was evaluated in an independent second set (n = 174) by comparing results of the gene expression-based classification with those of risk stratification systems of current trials from Germany, Japan, and the United States. The first set of patients was accurately predicted by PAM (cross-validated accuracy, 99%). Within the second set, the PAM classifier significantly separated cohorts with distinct courses (3-year event-free survival [EFS] 0.86 +/- 0.03 [favorable; n = 115] v 0.52 +/- 0.07 [unfavorable; n = 59] and 3-year overall survival 0.99 +/- 0.01 v 0.84 +/- 0.05; both P model, the PAM predictor classified patients of the second set more accurately than risk stratification of current trials from Germany, Japan, and the United States (P < .001; hazard ratio, 4.756 [95% CI, 2.544 to 8.893]). Integration of gene expression-based class prediction of neuroblastoma patients may improve risk estimation of current neuroblastoma trials.

  17. Parallel scan hyperspectral fluorescence imaging system and biomedical application for microarrays

    International Nuclear Information System (INIS)

    Liu Zhiyi; Ma Suihua; Liu Le; Guo Jihua; He Yonghong; Ji Yanhong

    2011-01-01

    Microarray research offers great potential for analysis of gene expression profile and leads to greatly improved experimental throughput. A number of instruments have been reported for microarray detection, such as chemiluminescence, surface plasmon resonance, and fluorescence markers. Fluorescence imaging is popular for the readout of microarrays. In this paper we develop a quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging system for microarray research. Hyperspectral imaging records the entire emission spectrum for every voxel within the imaged area in contrast to recording only fluorescence intensities of filter-based scanners. Coupled with data analysis, the recorded spectral information allows for quantitative identification of the contributions of multiple, spectrally overlapping fluorescent dyes and elimination of unwanted artifacts. The mechanism of quasi-confocal imaging provides a high signal-to-noise ratio, and parallel scan makes this approach a high throughput technique for microarray analysis. This system is improved with a specifically designed spectrometer which can offer a spectral resolution of 0.2 nm, and operates with spatial resolutions ranging from 2 to 30 μm . Finally, the application of the system is demonstrated by reading out microarrays for identification of bacteria.

  18. Application of microarray analysis on computer cluster and cloud platforms.

    Science.gov (United States)

    Bernau, C; Boulesteix, A-L; Knaus, J

    2013-01-01

    Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.

  19. Application of four dyes in gene expression analyses by microarrays

    Directory of Open Access Journals (Sweden)

    van Schooten Frederik J

    2005-07-01

    Full Text Available Abstract Background DNA microarrays are widely used in gene expression analyses. To increase throughput and minimize costs without reducing gene expression data obtained, we investigated whether four mRNA samples can be analyzed simultaneously by applying four different fluorescent dyes. Results Following tests for cross-talk of fluorescence signals, Alexa 488, Alexa 594, Cyanine 3 and Cyanine 5 were selected for hybridizations. For self-hybridizations, a single RNA sample was labelled with all dyes and hybridized on commercial cDNA arrays or on in-house spotted oligonucleotide arrays. Correlation coefficients for all combinations of dyes were above 0.9 on the cDNA array. On the oligonucleotide array they were above 0.8, except combinations with Alexa 488, which were approximately 0.5. Standard deviation of expression differences for replicate spots were similar on the cDNA array for all dye combinations, but on the oligonucleotide array combinations with Alexa 488 showed a higher variation. Conclusion In conclusion, the four dyes can be used simultaneously for gene expression experiments on the tested cDNA array, but only three dyes can be used on the tested oligonucleotide array. This was confirmed by hybridizations of control with test samples, as all combinations returned similar numbers of differentially expressed genes with comparable effects on gene expression.

  20. Fluorescent labeling of NASBA amplified tmRNA molecules for microarray applications

    Directory of Open Access Journals (Sweden)

    Kaplinski Lauris

    2009-05-01

    Full Text Available Abstract Background Here we present a novel promising microbial diagnostic method that combines the sensitivity of Nucleic Acid Sequence Based Amplification (NASBA with the high information content of microarray technology for the detection of bacterial tmRNA molecules. The NASBA protocol was modified to include aminoallyl-UTP (aaUTP molecules that were incorporated into nascent RNA during the NASBA reaction. Post-amplification labeling with fluorescent dye was carried out subsequently and tmRNA hybridization signal intensities were measured using microarray technology. Significant optimization of the labeled NASBA protocol was required to maintain the required sensitivity of the reactions. Results Two different aaUTP salts were evaluated and optimum final concentrations were identified for both. The final 2 mM concentration of aaUTP Li-salt in NASBA reaction resulted in highest microarray signals overall, being twice as high as the strongest signals with 1 mM aaUTP Na-salt. Conclusion We have successfully demonstrated efficient combination of NASBA amplification technology with microarray based hybridization detection. The method is applicative for many different areas of microbial diagnostics including environmental monitoring, bio threat detection, industrial process monitoring and clinical microbiology.

  1. A non-parametric meta-analysis approach for combining independent microarray datasets: application using two microarray datasets pertaining to chronic allograft nephropathy

    Directory of Open Access Journals (Sweden)

    Archer Kellie J

    2008-02-01

    Full Text Available Abstract Background With the popularity of DNA microarray technology, multiple groups of researchers have studied the gene expression of similar biological conditions. Different methods have been developed to integrate the results from various microarray studies, though most of them rely on distributional assumptions, such as the t-statistic based, mixed-effects model, or Bayesian model methods. However, often the sample size for each individual microarray experiment is small. Therefore, in this paper we present a non-parametric meta-analysis approach for combining data from independent microarray studies, and illustrate its application on two independent Affymetrix GeneChip studies that compared the gene expression of biopsies from kidney transplant recipients with chronic allograft nephropathy (CAN to those with normal functioning allograft. Results The simulation study comparing the non-parametric meta-analysis approach to a commonly used t-statistic based approach shows that the non-parametric approach has better sensitivity and specificity. For the application on the two CAN studies, we identified 309 distinct genes that expressed differently in CAN. By applying Fisher's exact test to identify enriched KEGG pathways among those genes called differentially expressed, we found 6 KEGG pathways to be over-represented among the identified genes. We used the expression measurements of the identified genes as predictors to predict the class labels for 6 additional biopsy samples, and the predicted results all conformed to their pathologist diagnosed class labels. Conclusion We present a new approach for combining data from multiple independent microarray studies. This approach is non-parametric and does not rely on any distributional assumptions. The rationale behind the approach is logically intuitive and can be easily understood by researchers not having advanced training in statistics. Some of the identified genes and pathways have been

  2. Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays

    Science.gov (United States)

    Bilek, Marcela M. M.

    2014-08-01

    Despite major research efforts in the field of biomaterials, rejection, severe immune responses, scar tissue and poor integration continue to seriously limit the performance of today's implantable biomedical devices. Implantable biomaterials that interact with their host via an interfacial layer of active biomolecules to direct a desired cellular response to the implant would represent a major and much sought after improvement. Another, perhaps equally revolutionary, development that is on the biomedical horizon is the introduction of cost-effective microarrays for fast, highly multiplexed screening for biomarkers on cell membranes and in a variety of analyte solutions. Both of these advances will rely on effective methods of functionalizing surfaces with bioactive molecules. After a brief introduction to other methods currently available, this review will describe recently developed approaches that use energetic ions extracted from plasma to facilitate simple, one-step covalent surface immobilization of bioactive molecules. A kinetic theory model of the immobilization process by reactions with long-lived, mobile, surface-embedded radicals will be presented. The roles of surface chemistry and microstructure of the ion treated layer will be discussed. Early progress on applications of this technology to create diagnostic microarrays and to engineer bioactive surfaces for implantable biomedical devices will be reviewed.

  3. Microarray applications to understand the impact of exposure to environmental contaminants in wild dolphins (Tursiops truncatus).

    Science.gov (United States)

    Mancia, Annalaura; Abelli, Luigi; Kucklick, John R; Rowles, Teresa K; Wells, Randall S; Balmer, Brian C; Hohn, Aleta A; Baatz, John E; Ryan, James C

    2015-02-01

    It is increasingly common to monitor the marine environment and establish geographic trends of environmental contamination by measuring contaminant levels in animals from higher trophic levels. The health of an ecosystem is largely reflected in the health of its inhabitants. As an apex predator, the common bottlenose dolphin (Tursiops truncatus) can reflect the health of near shore marine ecosystems, and reflect coastal threats that pose risk to human health, such as legacy contaminants or marine toxins, e.g. polychlorinated biphenyls (PCBs) and brevetoxins. Major advances in the understanding of dolphin biology and the unique adaptations of these animals in response to the marine environment are being made as a result of the development of cell-lines for use in in vitro experiments, the production of monoclonal antibodies to recognize dolphin proteins, the development of dolphin DNA microarrays to measure global gene expression and the sequencing of the dolphin genome. These advances may play a central role in understanding the complex and specialized biology of the dolphin with regard to how this species responds to an array of environmental insults. This work presents the creation, characterization and application of a new molecular tool to better understand the complex and unique biology of the common bottlenose dolphin and its response to environmental stress and infection. A dolphin oligo microarray representing 24,418 unigene sequences was developed and used to analyze blood samples collected from 69 dolphins during capture-release health assessments at five geographic locations (Beaufort, NC, Sarasota Bay, FL, Saint Joseph Bay, FL, Sapelo Island, GA and Brunswick, GA). The microarray was validated and tested for its ability to: 1) distinguish male from female dolphins; 2) differentiate dolphins inhabiting different geographic locations (Atlantic coasts vs the Gulf of Mexico); and 3) study in detail dolphins resident in one site, the Georgia coast, known to

  4. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    International Nuclear Information System (INIS)

    Xu Feng; Wu Jinhui; Wang Shuqi; Gurkan, Umut Atakan; Demirci, Utkan; Durmus, Naside Gozde

    2011-01-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  5. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu Feng; Wu Jinhui; Wang Shuqi; Gurkan, Umut Atakan; Demirci, Utkan [Department of Medicine, Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Durmus, Naside Gozde, E-mail: udemirci@rics.bwh.harvard.edu [School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI (United States)

    2011-09-15

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  6. SiPM as miniaturised optical biosensor for DNA-microarray applications

    Directory of Open Access Journals (Sweden)

    M.F. Santangelo

    2015-12-01

    Full Text Available A miniaturized optical biosensor for low-level fluorescence emitted by DNA strands labelled with CY5 is showed. Aim of this work is to demonstrate that a Si-based photodetector, having a low noise and a high sensitivity, can replace traditional detection systems in DNA-microarray applications. The photodetector used is a photomultiplier (SiPM, with 25 pixels. It exhibits a higher sensitivity than commercial optical readers and we experimentally found a detection limit for spotted dried samples of ∼1 nM. We measured the fluorescence signal in different operating conditions (angle of analysis, fluorophores concentrations, solution volumes and support. Once fixed the angle of analysis, for samples spotted on Al-TEOS slide dried, the system is proportional to the concentration of the analyte in the sample and is linear in the range 1 nM–1 μM. For solutions, the range of linearity ranges from 100 fM to 10 nM. The system potentialities and the device low costs suggest it as basic component for the design and fabrication of a cheap, easy and portable optical system. Keywords: Optical Biosensor, SiPM, DNA microarray, Fluorophore detection

  7. The Local Maximum Clustering Method and Its Application in Microarray Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2004-01-01

    Full Text Available An unsupervised data clustering method, called the local maximum clustering (LMC method, is proposed for identifying clusters in experiment data sets based on research interest. A magnitude property is defined according to research purposes, and data sets are clustered around each local maximum of the magnitude property. By properly defining a magnitude property, this method can overcome many difficulties in microarray data clustering such as reduced projection in similarities, noises, and arbitrary gene distribution. To critically evaluate the performance of this clustering method in comparison with other methods, we designed three model data sets with known cluster distributions and applied the LMC method as well as the hierarchic clustering method, the -mean clustering method, and the self-organized map method to these model data sets. The results show that the LMC method produces the most accurate clustering results. As an example of application, we applied the method to cluster the leukemia samples reported in the microarray study of Golub et al. (1999.

  8. Application of fluorescent monocytes for probing immune complexes on antigen microarrays.

    Directory of Open Access Journals (Sweden)

    Zoltán Szittner

    Full Text Available Microarrayed antigens are used for identifying serum antibodies with given specificities and for generating binding profiles. Antibodies bind to these arrayed antigens forming immune complexes and are conventionally identified by secondary labelled antibodies.In the body immune complexes are identified by bone marrow derived phagocytic cells, such as monocytes. In our work we were looking into the possibility of replacing secondary antibodies with monocytoid cells for the generation of antibody profiles. Using the human monocytoid cell line U937, which expresses cell surface receptors for immune complex components, we show that cell adhesion is completely dependent on the interaction of IgG heavy chains and Fcγ receptors, and this recognition is susceptible to differences between heavy chain structures and their glycosylation. We also report data on a possible application of this system in autoimmune diagnostics.Compared to secondary antibodies, fluorescent monocytesas biosensors are superior in reflecting biological functions of microarray-bound antibodies and represent an easy and robust alternative for profiling interactions between serum proteins and antigens.

  9. Application of Microarray-Based Comparative Genomic Hybridization in Prenatal and Postnatal Settings: Three Case Reports

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2011-01-01

    Full Text Available Microarray-based comparative genomic hybridization (array CGH is a newly emerged molecular cytogenetic technique for rapid evaluation of the entire genome with sub-megabase resolution. It allows for the comprehensive investigation of thousands and millions of genomic loci at once and therefore enables the efficient detection of DNA copy number variations (a.k.a, cryptic genomic imbalances. The development and the clinical application of array CGH have revolutionized the diagnostic process in patients and has provided a clue to many unidentified or unexplained diseases which are suspected to have a genetic cause. In this paper, we present three clinical cases in both prenatal and postnatal settings. Among all, array CGH played a major discovery role to reveal the cryptic and/or complex nature of chromosome arrangements. By identifying the genetic causes responsible for the clinical observation in patients, array CGH has provided accurate diagnosis and appropriate clinical management in a timely and efficient manner.

  10. DNA microarrays : a molecular cloning manual

    National Research Council Canada - National Science Library

    Sambrook, Joseph; Bowtell, David

    2002-01-01

    .... DNA Microarrays provides authoritative, detailed instruction on the design, construction, and applications of microarrays, as well as comprehensive descriptions of the software tools and strategies...

  11. Analyzing Multiple-Probe Microarray: Estimation and Application of Gene Expression Indexes

    KAUST Repository

    Maadooliat, Mehdi

    2012-07-26

    Gene expression index estimation is an essential step in analyzing multiple probe microarray data. Various modeling methods have been proposed in this area. Amidst all, a popular method proposed in Li and Wong (2001) is based on a multiplicative model, which is similar to the additive model discussed in Irizarry et al. (2003a) at the logarithm scale. Along this line, Hu et al. (2006) proposed data transformation to improve expression index estimation based on an ad hoc entropy criteria and naive grid search approach. In this work, we re-examined this problem using a new profile likelihood-based transformation estimation approach that is more statistically elegant and computationally efficient. We demonstrate the applicability of the proposed method using a benchmark Affymetrix U95A spiked-in experiment. Moreover, We introduced a new multivariate expression index and used the empirical study to shows its promise in terms of improving model fitting and power of detecting differential expression over the commonly used univariate expression index. As the other important content of the work, we discussed two generally encountered practical issues in application of gene expression index: normalization and summary statistic used for detecting differential expression. Our empirical study shows somewhat different findings from the MAQC project (MAQC, 2006).

  12. Application of fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, A.

    2007-11-30

    This report presents the results of a study commissioned by the Department for Business, Enterprise and Industry (BERR; formerly the Department of Trade and Industry) into the application of fault current limiters in the UK. The study reviewed the current state of fault current limiter (FCL) technology and regulatory position in relation to all types of current limiters. It identified significant research and development work with respect to medium voltage FCLs and a move to high voltage. Appropriate FCL technologies being developed include: solid state breakers; superconducting FCLs (including superconducting transformers); magnetic FCLs; and active network controllers. Commercialisation of these products depends on successful field tests and experience, plus material development in the case of high temperature superconducting FCL technologies. The report describes FCL techniques, the current state of FCL technologies, practical applications and future outlook for FCL technologies, distribution fault level analysis and an outline methodology for assessing the materiality of the fault level problem. A roadmap is presented that provides an 'action agenda' to advance the fault level issues associated with low carbon networks.

  13. Multi-test decision tree and its application to microarray data classification.

    Science.gov (United States)

    Czajkowski, Marcin; Grześ, Marek; Kretowski, Marek

    2014-05-01

    The desirable property of tools used to investigate biological data is easy to understand models and predictive decisions. Decision trees are particularly promising in this regard due to their comprehensible nature that resembles the hierarchical process of human decision making. However, existing algorithms for learning decision trees have tendency to underfit gene expression data. The main aim of this work is to improve the performance and stability of decision trees with only a small increase in their complexity. We propose a multi-test decision tree (MTDT); our main contribution is the application of several univariate tests in each non-terminal node of the decision tree. We also search for alternative, lower-ranked features in order to obtain more stable and reliable predictions. Experimental validation was performed on several real-life gene expression datasets. Comparison results with eight classifiers show that MTDT has a statistically significantly higher accuracy than popular decision tree classifiers, and it was highly competitive with ensemble learning algorithms. The proposed solution managed to outperform its baseline algorithm on 14 datasets by an average 6%. A study performed on one of the datasets showed that the discovered genes used in the MTDT classification model are supported by biological evidence in the literature. This paper introduces a new type of decision tree which is more suitable for solving biological problems. MTDTs are relatively easy to analyze and much more powerful in modeling high dimensional microarray data than their popular counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Generation and analyses of human synthetic antibody libraries and their application for protein microarrays.

    Science.gov (United States)

    Säll, Anna; Walle, Maria; Wingren, Christer; Müller, Susanne; Nyman, Tomas; Vala, Andrea; Ohlin, Mats; Borrebaeck, Carl A K; Persson, Helena

    2016-10-01

    Antibody-based proteomics offers distinct advantages in the analysis of complex samples for discovery and validation of biomarkers associated with disease. However, its large-scale implementation requires tools and technologies that allow development of suitable antibody or antibody fragments in a high-throughput manner. To address this we designed and constructed two human synthetic antibody fragment (scFv) libraries denoted HelL-11 and HelL-13. By the use of phage display technology, in total 466 unique scFv antibodies specific for 114 different antigens were generated. The specificities of these antibodies were analyzed in a variety of immunochemical assays and a subset was further evaluated for functionality in protein microarray applications. This high-throughput approach demonstrates the ability to rapidly generate a wealth of reagents not only for proteome research, but potentially also for diagnostics and therapeutics. In addition, this work provides a great example on how a synthetic approach can be used to optimize library designs. By having precise control of the diversity introduced into the antigen-binding sites, synthetic libraries offer increased understanding of how different diversity contributes to antibody binding reactivity and stability, thereby providing the key to future library optimization. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Application of a New Genetic Deafness Microarray for Detecting Mutations in the Deaf in China.

    Directory of Open Access Journals (Sweden)

    Hong Wu

    Full Text Available The aim of this study was to evaluate the GoldenGate microarray as a diagnostic tool and to elucidate the contribution of the genes on this array to the development of both nonsyndromic and syndromic sensorineural hearing loss in China.We developed a microarray to detect 240 mutations underlying syndromic and nonsyndromic sensorineural hearing loss. The microarray was then used for analysis of 382 patients with nonsyndromic sensorineural hearing loss (including 15 patients with enlarged vestibular aqueduct syndrome, 21 patients with Waardenburg syndrome, and 60 unrelated controls. Subsequently, we analyzed the sensitivity, specificity, and reproducibility of this new approach after Sanger sequencing-based verification, and also determined the contribution of the genes on this array to the development of distinct hearing disorders.The sensitivity and specificity of the microarray chip were 98.73% and 98.34%, respectively. Genetic defects were identified in 61.26% of the patients with nonsyndromic sensorineural hearing loss, and 9 causative genes were identified. The molecular etiology was confirmed in 19.05% and 46.67% of the patients with Waardenburg syndrome and enlarged vestibular aqueduct syndrome, respectively.Our new mutation-based microarray comprises an accurate and comprehensive genetic tool for the detection of sensorineural hearing loss. This microarray-based detection method could serve as a first-pass screening (before next-generation-sequencing screening for deafness-causing mutations in China.

  16. DNA Microarray Technology

    Science.gov (United States)

    Skip to main content DNA Microarray Technology Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features Funding Divisions Funding ...

  17. Fibre optic microarrays.

    Science.gov (United States)

    Walt, David R

    2010-01-01

    This tutorial review describes how fibre optic microarrays can be used to create a variety of sensing and measurement systems. This review covers the basics of optical fibres and arrays, the different microarray architectures, and describes a multitude of applications. Such arrays enable multiplexed sensing for a variety of analytes including nucleic acids, vapours, and biomolecules. Polymer-coated fibre arrays can be used for measuring microscopic chemical phenomena, such as corrosion and localized release of biochemicals from cells. In addition, these microarrays can serve as a substrate for fundamental studies of single molecules and single cells. The review covers topics of interest to chemists, biologists, materials scientists, and engineers.

  18. SSHscreen and SSHdb, generic software for microarray based gene discovery: application to the stress response in cowpea

    Directory of Open Access Journals (Sweden)

    Oelofse Dean

    2010-04-01

    Full Text Available Abstract Background Suppression subtractive hybridization is a popular technique for gene discovery from non-model organisms without an annotated genome sequence, such as cowpea (Vigna unguiculata (L. Walp. We aimed to use this method to enrich for genes expressed during drought stress in a drought tolerant cowpea line. However, current methods were inefficient in screening libraries and management of the sequence data, and thus there was a need to develop software tools to facilitate the process. Results Forward and reverse cDNA libraries enriched for cowpea drought response genes were screened on microarrays, and the R software package SSHscreen 2.0.1 was developed (i to normalize the data effectively using spike-in control spot normalization, and (ii to select clones for sequencing based on the calculation of enrichment ratios with associated statistics. Enrichment ratio 3 values for each clone showed that 62% of the forward library and 34% of the reverse library clones were significantly differentially expressed by drought stress (adjusted p value 88% of the clones in both libraries were derived from rare transcripts in the original tester samples, thus supporting the notion that suppression subtractive hybridization enriches for rare transcripts. A set of 118 clones were chosen for sequencing, and drought-induced cowpea genes were identified, the most interesting encoding a late embryogenesis abundant Lea5 protein, a glutathione S-transferase, a thaumatin, a universal stress protein, and a wound induced protein. A lipid transfer protein and several components of photosynthesis were down-regulated by the drought stress. Reverse transcriptase quantitative PCR confirmed the enrichment ratio values for the selected cowpea genes. SSHdb, a web-accessible database, was developed to manage the clone sequences and combine the SSHscreen data with sequence annotations derived from BLAST and Blast2GO. The self-BLAST function within SSHdb grouped

  19. APPLICATION OF CDNA MICROARRAY TO THE STUDY OF ARSENIC TOXICOLOGY AND CARCINOGENESIS

    Science.gov (United States)

    Arsenic (As) is a common environmental toxicant and known human carcinogen. Epidemiological studies link As exposure to various disorders and cancers. However, the molecular mechanisms for As toxicity and carcinogenicity are not completely known. The cDNA microarray, a high-th...

  20. Establishment and Application of a Visual DNA Microarray for the Detection of Food-borne Pathogens.

    Science.gov (United States)

    Li, Yongjin

    2016-01-01

    The accurate detection and identification of food-borne pathogenic microorganisms is critical for food safety nowadays. In the present work, a visual DNA microarray was established and applied to detect pathogens commonly found in food, including Salmonella enterica, Shigella flexneri, E. coli O157:H7 and Listeria monocytogenes in food samples. Multiplex PCR (mPCR) was employed to simultaneously amplify specific gene fragments, fimY for Salmonella, ipaH for Shigella, iap for L. monocytogenes and ECs2841 for E. coli O157:H7, respectively. Biotinylated PCR amplicons annealed to the microarray probes were then reacted with a streptavidin-alkaline phosphatase conjugate and nitro blue tetrazolium/5-bromo-4-chloro-3'-indolylphosphate, p-toluidine salt (NBT/BCIP); the positive results were easily visualized as blue dots formatted on the microarray surface. The performance of a DNA microarray was tested against 14 representative collection strains and mock-contamination food samples. The combination of mPCR and a visual micro-plate chip specifically and sensitively detected Salmonella enterica, Shigella flexneri, E. coli O157:H7 and Listeria monocytogenes in standard strains and food matrices with a sensitivity of ∼10(2) CFU/mL of bacterial culture. Thus, the developed method is advantageous because of its high throughput, cost-effectiveness and ease of use.

  1. Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.

    Science.gov (United States)

    Sitaraman, Kalavathy; Chatterjee, Deb K

    2011-01-01

    In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.

  2. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina.

    Science.gov (United States)

    Bidard, Frédérique; Imbeaud, Sandrine; Reymond, Nancie; Lespinet, Olivier; Silar, Philippe; Clavé, Corinne; Delacroix, Hervé; Berteaux-Lecellier, Véronique; Debuchy, Robert

    2010-06-18

    The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS), we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis.

  3. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina

    Directory of Open Access Journals (Sweden)

    Bidard Frédérique

    2010-06-01

    Full Text Available Abstract Background The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. Findings We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS, we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. Conclusions A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis.

  4. Characterization of Bovine Serum Albumin Blocking Efficiency on Epoxy-Functionalized Substrates for Microarray Applications.

    Science.gov (United States)

    Sun, Yung-Shin; Zhu, Xiangdong

    2016-10-01

    Microarrays provide a platform for high-throughput characterization of biomolecular interactions. To increase the sensitivity and specificity of microarrays, surface blocking is required to minimize the nonspecific interactions between analytes and unprinted yet functionalized surfaces. To block amine- or epoxy-functionalized substrates, bovine serum albumin (BSA) is one of the most commonly used blocking reagents because it is cheap and easy to use. Based on standard protocols from microarray manufactories, a BSA concentration of 1% (10 mg/mL or 200 μM) and reaction time of at least 30 min are required to efficiently block epoxy-coated slides. In this paper, we used both fluorescent and label-free methods to characterize the BSA blocking efficiency on epoxy-functionalized substrates. The blocking efficiency of BSA was characterized using a fluorescent scanner and a label-free oblique-incidence reflectivity difference (OI-RD) microscope. We found that (1) a BSA concentration of 0.05% (0.5 mg/mL or 10 μM) could give a blocking efficiency of 98%, and (2) the BSA blocking step took only about 5 min to be complete. Also, from real-time and in situ measurements, we were able to calculate the conformational properties (thickness, mass density, and number density) of BSA molecules deposited on the epoxy surface. © 2015 Society for Laboratory Automation and Screening.

  5. MeV+R: using MeV as a graphical user interface for Bioconductor applications in microarray analysis

    Science.gov (United States)

    Chu, Vu T; Gottardo, Raphael; Raftery, Adrian E; Bumgarner, Roger E; Yeung, Ka Yee

    2008-01-01

    We present MeV+R, an integration of the JAVA MultiExperiment Viewer program with Bioconductor packages. This integration of MultiExperiment Viewer and R is easily extensible to other R packages and provides users with point and click access to traditionally command line driven tools written in R. We demonstrate the ability to use MultiExperiment Viewer as a graphical user interface for Bioconductor applications in microarray data analysis by incorporating three Bioconductor packages, RAMA, BRIDGE and iterativeBMA. PMID:18652698

  6. Construction and application of a bovine immune-endocrine cDNA microarray.

    Science.gov (United States)

    Tao, Wenjing; Mallard, Bonnie; Karrow, Niel; Bridle, Byram

    2004-09-01

    A variety of commercial DNA arrays specific for humans and rodents are widely available; however, microarrays containing well-characterized genes to study pathway-specific gene expression are not as accessible for domestic animals, such as cattle, sheep and pigs. Therefore, a small-scale application-targeted bovine immune-endocrine cDNA array was developed to evaluate genetic pathways involved in the immune-endocrine axis of cattle during periods of altered homeostasis provoked by physiological or environmental stressors, such as infection, vaccination or disease. For this purpose, 167 cDNA sequences corresponding to immune, endocrine and inflammatory response genes were collected and categorized. Positive controls included 5 housekeeping genes (glyceraldehydes-3-phosphate dehydrogenase, hypoxanthine phosphoribosyltransferase, ribosomal protein L19, beta-actin, beta2-microglobulin) and bovine genomic DNA. Negative controls were a bacterial gene (Rhodococcus equi 17-kDa virulence-associated protein) and a partial sequence of the plasmid pACYC177. In addition, RNA extracted from un-stimulated, as well as superantigen (Staphylococcus aureus enterotoxin-A, S. aureus Cowan Pansorbin Cells) and mitogen-stimulated (LPS, ConA) bovine blood leukocytes was mixed, reverse transcribed and PCR amplified using gene-specific primers. The endocrine-associated genes were amplified from cDNA derived from un-stimulated bovine hypothalamus, pituitary, adrenal and thyroid gland tissues. The array was constructed in 4 repeating grids of 180 duplicated spots by coupling the PCR amplified 213-630 bp gene fragments onto poly-l-lysine coated glass slides. The bovine immune-endocrine arrays were standardized and preliminary gene expression profiles generated using Cy3 and Cy5 labelled cDNA from un-stimulated and ConA (5 microg/ml) stimulated PBMC of 4 healthy Holstein cows (2-4 replicate arrays/cow) in a time course study. Mononuclear cell-derived cytokine and chemokine (IL-2, IL-1alpha

  7. Nanotechnology: moving from microarrays toward nanoarrays.

    Science.gov (United States)

    Chen, Hua; Li, Jun

    2007-01-01

    Microarrays are important tools for high-throughput analysis of biomolecules. The use of microarrays for parallel screening of nucleic acid and protein profiles has become an industry standard. A few limitations of microarrays are the requirement for relatively large sample volumes and elongated incubation time, as well as the limit of detection. In addition, traditional microarrays make use of bulky instrumentation for the detection, and sample amplification and labeling are quite laborious, which increase analysis cost and delays the time for obtaining results. These problems limit microarray techniques from point-of-care and field applications. One strategy for overcoming these problems is to develop nanoarrays, particularly electronics-based nanoarrays. With further miniaturization, higher sensitivity, and simplified sample preparation, nanoarrays could potentially be employed for biomolecular analysis in personal healthcare and monitoring of trace pathogens. In this chapter, it is intended to introduce the concept and advantage of nanotechnology and then describe current methods and protocols for novel nanoarrays in three aspects: (1) label-free nucleic acids analysis using nanoarrays, (2) nanoarrays for protein detection by conventional optical fluorescence microscopy as well as by novel label-free methods such as atomic force microscopy, and (3) nanoarray for enzymatic-based assay. These nanoarrays will have significant applications in drug discovery, medical diagnosis, genetic testing, environmental monitoring, and food safety inspection.

  8. Development of a Feature and Template-Assisted Assembler and Application to the Analysis of a Foot-and-Mouth Disease Virus Genotyping Microarray.

    Directory of Open Access Journals (Sweden)

    Roger W Barrette

    Full Text Available Several RT-PCR and genome sequencing strategies exist for the resolution of Foot-and-Mouth Disease virus (FMDV. While these approaches are relatively straightforward, they can be vulnerable to failure due to the unpredictable nature of FMDV genome sequence variations. Sequence independent single primer amplification (SISPA followed by genotyping microarray offers an attractive unbiased approach to FMDV characterization. Here we describe a custom FMDV microarray and a companion feature and template-assisted assembler software (FAT-assembler capable of resolving virus genome sequence using a moderate number of conserved microarray features. The results demonstrate that this approach may be used to rapidly characterize naturally occurring FMDV as well as an engineered chimeric strain of FMDV. The FAT-assembler, while applied to resolving FMDV genomes, represents a new bioinformatics approach that should be broadly applicable to interpreting microarray genotyping data for other viruses or target organisms.

  9. Application of TMA (Tissue micro-array) in the observation of apoptotic cascade in postradiation damage in avian medicine

    International Nuclear Information System (INIS)

    Fridman, E.; Skarda, J.; Skardova, I.

    2006-01-01

    The study of apoptotic cascade by the use of relatively new technique in avian medicine: TMA may help in early detection and prevention of acquired immunodeficiency caused by the influence of a variety of pathogenic and non-pathogenic environmental factors, which may result in severe economical losses in conditions of intensive poultry farming. There has not been any report of applying this method in veterinary medicine. Tissue micro-array (TMA) technology allows rapid visualization of molecular targets in thousands of tissue specimens at a time, either at the DNA, RNA or protein level. The technique facilitates rapid translation of molecular discoveries to clinical applications. This technology has a number of advantages compared with conventional techniques: speed and high throughput, standardization and experimental uniformity, ease of use, all histochemical and molecular detection techniques can be used, decreased assay volume, preservation of original block, and conservation of valuable tissue etc. The aim of the present work were the study of immunosuppression and apoptotic cascade and possibilities of application of tissue micro-array in chicken in experimental condition and diagnostics in avian medicine in general. The selection of samples from avian primary immune organs: thymus and Bursa Fabric was done after gamma irradiation and infectious bursal virus infection (IBDV). (authors)

  10. Application of the AMLprofiler Diagnostic Microarray in the South African Setting

    Directory of Open Access Journals (Sweden)

    S. S. Kappala

    2017-01-01

    Full Text Available Acute myeloid leukemia (AML is characterized by proliferation of the myeloid lineage and accumulation of immature hematopoietic cells in the bone marrow and is typified by marked heterogeneity both in response to treatment and survival. AMLprofiler is a qualitative in vitro diagnostic microarray incorporating seven molecular biomarkers used to diagnose and predict posttherapy survival rates. In this study, we compared AMLprofiler to routine AML diagnostic methodologies employed in South Africa, focusing on consistency of the results, cost, and time to result. RNA was isolated from bone marrow and peripheral blood samples from patients with de novo AML and was processed using Affymetrix Gene Profiling Reagent kits. The results from AMLprofiler and standard methodologies were highly comparable. In addition, many samples were determined to be positive for biomarkers not routinely investigated in South Africa, namely, CEBPA double mutants, NPM1 variants, and altered expression levels of BAALC and EVI1. 38% of samples presented with no positive biomarker; AMLprofiler nonetheless enabled 26% of AML patients to be classified into either favorable or poor prognostic categories. This study highlights the comprehensive nature of the microarray. Decreased time to result and refinement of risk stratification are notable benefits.

  11. The development and application of a quantitative peptide microarray platform to SH2 domain specificity space

    Science.gov (United States)

    Engelmann, Brett Warren

    The Src homology 2 (SH2) domains evolved alongside protein tyrosine kinases (PTKs) and phosphatases (PTPs) in metazoans to recognize the phosphotyrosine (pY) post-translational modification. The human genome encodes 121 SH2 domains within 111 SH2 domain containing proteins that represent the primary mechanism for cellular signal transduction immediately downstream of PTKs. Despite pY recognition contributing to roughly half of the binding energy, SH2 domains possess substantial binding specificity, or affinity discrimination between phosphopeptide ligands. This specificity is largely imparted by amino acids (AAs) adjacent to the pY, typically from positions +1 to +4 C-terminal to the pY. Much experimental effort has been undertaken to construct preferred binding motifs for many SH2 domains. However, due to limitations in previous experimental methodologies these motifs do not account for the interplay between AAs. It was therefore not known how AAs within the context of individual peptides function to impart SH2 domain specificity. In this work we identified the critical role context plays in defining SH2 domain specificity for physiological ligands. We also constructed a high quality interactome using 50 SH2 domains and 192 physiological ligands. We next developed a quantitative high-throughput (Q-HTP) peptide microarray platform to assess the affinities four SH2 domains have for 124 physiological ligands. We demonstrated the superior characteristics of our platform relative to preceding approaches and validated our results using established biophysical techniques, literature corroboration, and predictive algorithms. The quantitative information provided by the arrays was leveraged to investigate SH2 domain binding distributions and identify points of binding overlap. Our microarray derived affinity estimates were integrated to produce quantitative interaction motifs capable of predicting interactions. Furthermore, our microarrays proved capable of resolving

  12. ArrayMining: a modular web-application for microarray analysis combining ensemble and consensus methods with cross-study normalization

    Directory of Open Access Journals (Sweden)

    Krasnogor Natalio

    2009-10-01

    Full Text Available Abstract Background Statistical analysis of DNA microarray data provides a valuable diagnostic tool for the investigation of genetic components of diseases. To take advantage of the multitude of available data sets and analysis methods, it is desirable to combine both different algorithms and data from different studies. Applying ensemble learning, consensus clustering and cross-study normalization methods for this purpose in an almost fully automated process and linking different analysis modules together under a single interface would simplify many microarray analysis tasks. Results We present ArrayMining.net, a web-application for microarray analysis that provides easy access to a wide choice of feature selection, clustering, prediction, gene set analysis and cross-study normalization methods. In contrast to other microarray-related web-tools, multiple algorithms and data sets for an analysis task can be combined using ensemble feature selection, ensemble prediction, consensus clustering and cross-platform data integration. By interlinking different analysis tools in a modular fashion, new exploratory routes become available, e.g. ensemble sample classification using features obtained from a gene set analysis and data from multiple studies. The analysis is further simplified by automatic parameter selection mechanisms and linkage to web tools and databases for functional annotation and literature mining. Conclusion ArrayMining.net is a free web-application for microarray analysis combining a broad choice of algorithms based on ensemble and consensus methods, using automatic parameter selection and integration with annotation databases.

  13. Cranial MRI: Current clinical applications

    International Nuclear Information System (INIS)

    Bradley, W.G. Jr.; Kortman, K.E.

    1987-01-01

    Human MR images were first published by the Nottingham group in 1980. Since that time, there have been steady improvements in image quality and significant reductions in imaging time. After initial studies by the Hammersmith group in London, investigators at UCSF published studies comparing CT with MR, clearly demonstrating the higher sensitivity of MR to pathologic intracranial processes. Since that time, several investigators have demonstrated the efficacy of MR in the evaluation of a wide range of intracranial pathologic processes, including neoplasms, demyelinating disease, trauma, and congenital abnormalities. In the authors' studies comparing MR with CT in 400 consecutive cases of suspected CNS pathology, MR detected abnormalities which were not seen on CT in 30 percent of these cases. MR has become established as the imaging modality of choice in the evaluation of a broad range of CNS abnormalities and is rapidly being implemented not only at university medical centers but also in community hospitals and free-standing clinics. This chapter deals with fundamental principles of MR image interpretation and provides insight into current clinical indications for MR in intracranial disorders

  14. [Application of chromosome microarray analysis for fetuses with multicystic dysplastic kidney].

    Science.gov (United States)

    Chen, Feifei; Lei, Tingying; Fu, Fang; Li, Ru; Zhang, Yongling; Jing, Xiangyi; Yang, Xin; Han, Jin; Zhen, Li; Pan, Min; Liao, Can

    2016-12-10

    To explore the genetic etiology of fetuses with multicystic dysplastic kidney (MCDK) by chromosome microarray analysis (CMA). Seventy-two fetuses with MCDK were analyzed with conventional cytogenetic technique, among which 30 fetuses with a normal karyotype were subjected to CMA analysis with Affymetrix CytoScan HD arrays by following the manufacturer's protocol. The data was analyzed with ChAS software. Conventional cytogenetic technique has revealed three fetuses (4.2%) with identifiable chromosomal aberrations. CMA analysis has detected pathogenic CNVs in 5 fetuses (16.7%), which included two well-known microdeletion or microduplication syndromes, i.e., 17q12 microdeletion syndrome and Williams-Beuren syndrome (WBS) and three submicroscopic imbalances at 4q35.2, 22q13.33, and 1p33. PEX26, FKBP6, TUBGCP6, ALG12, and CYP4A11 are likely the causative genes. CMA can identify the submicroscopic imbalances unidentifiable by conventional cytogenetic technique, and therefore has a significant role in prenatal diagnosis and genetic counseling. The detection rate of pathogenic CNVs in fetuses with MCDK was 16.7% by CMA. 17q12 microdeletion syndrome and WBS are associated with MCDK. Mutations of PEX26, FKBP6, TUBGCP6, ALG12, and CYP4A11 genes may be the causes for MCDK.

  15. Iterative Bayesian Model Averaging: a method for the application of survival analysis to high-dimensional microarray data

    Directory of Open Access Journals (Sweden)

    Raftery Adrian E

    2009-02-01

    Full Text Available Abstract Background Microarray technology is increasingly used to identify potential biomarkers for cancer prognostics and diagnostics. Previously, we have developed the iterative Bayesian Model Averaging (BMA algorithm for use in classification. Here, we extend the iterative BMA algorithm for application to survival analysis on high-dimensional microarray data. The main goal in applying survival analysis to microarray data is to determine a highly predictive model of patients' time to event (such as death, relapse, or metastasis using a small number of selected genes. Our multivariate procedure combines the effectiveness of multiple contending models by calculating the weighted average of their posterior probability distributions. Our results demonstrate that our iterative BMA algorithm for survival analysis achieves high prediction accuracy while consistently selecting a small and cost-effective number of predictor genes. Results We applied the iterative BMA algorithm to two cancer datasets: breast cancer and diffuse large B-cell lymphoma (DLBCL data. On the breast cancer data, the algorithm selected a total of 15 predictor genes across 84 contending models from the training data. The maximum likelihood estimates of the selected genes and the posterior probabilities of the selected models from the training data were used to divide patients in the test (or validation dataset into high- and low-risk categories. Using the genes and models determined from the training data, we assigned patients from the test data into highly distinct risk groups (as indicated by a p-value of 7.26e-05 from the log-rank test. Moreover, we achieved comparable results using only the 5 top selected genes with 100% posterior probabilities. On the DLBCL data, our iterative BMA procedure selected a total of 25 genes across 3 contending models from the training data. Once again, we assigned the patients in the validation set to significantly distinct risk groups (p

  16. Development and application of a fluorescence protein microarray for detecting serum alpha-fetoprotein in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Aiying; Yin, Chengzeng; Wang, Zhenshun; Zhang, Yonghong; Zhao, Yuanshun; Li, Ang; Sun, Huanqin; Lin, Dongdong; Li, Ning

    2016-12-01

    Objective To develop a simple, effective, time-saving and low-cost fluorescence protein microarray method for detecting serum alpha-fetoprotein (AFP) in patients with hepatocellular carcinoma (HCC). Method Non-contact piezoelectric print techniques were applied to fluorescence protein microarray to reduce the cost of prey antibody. Serum samples from patients with HCC and healthy control subjects were collected and evaluated for the presence of AFP using a novel fluorescence protein microarray. To validate the fluorescence protein microarray, serum samples were tested for AFP using an enzyme-linked immunosorbent assay (ELISA). Results A total of 110 serum samples from patients with HCC ( n = 65) and healthy control subjects ( n = 45) were analysed. When the AFP cut-off value was set at 20 ng/ml, the fluorescence protein microarray had a sensitivity of 91.67% and a specificity of 93.24% for detecting serum AFP. Serum AFP quantified via fluorescence protein microarray had a similar diagnostic performance compared with ELISA in distinguishing patients with HCC from healthy control subjects (area under receiver operating characteristic curve: 0.906 for fluorescence protein microarray; 0.880 for ELISA). Conclusion A fluorescence protein microarray method was developed for detecting serum AFP in patients with HCC.

  17. Emerging use of gene expression microarrays in plant physiology.

    Science.gov (United States)

    Wullschleger, Stan D; Difazio, Stephen P

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.

  18. Emerging Use of Gene Expression Microarrays in Plant Physiology

    Directory of Open Access Journals (Sweden)

    Stephen P. Difazio

    2006-04-01

    Full Text Available Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.

  19. The WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM and application for ambient dust

    Directory of Open Access Journals (Sweden)

    N. Reicher

    2018-01-01

    Full Text Available The WeIzmann Supercooled Droplets Observation on Microarray (WISDOM is a new setup for studying ice nucleation in an array of monodisperse droplets for atmospheric implications. WISDOM combines microfluidics techniques for droplets production and a cryo-optic stage for observation and characterization of freezing events of individual droplets. This setup is designed to explore heterogeneous ice nucleation in the immersion freezing mode, down to the homogeneous freezing of water (235 K in various cooling rates (typically 0.1–10 K min−1. It can also be used for studying homogeneous freezing of aqueous solutions in colder temperatures. Frozen fraction, ice nucleation active surface site densities and freezing kinetics can be obtained from WISDOM measurements for hundreds of individual droplets in a single freezing experiment. Calibration experiments using eutectic solutions and previously studied materials are described. WISDOM also allows repeatable cycles of cooling and heating for the same array of droplets. This paper describes the WISDOM setup, its temperature calibration, validation experiments and measurement uncertainties. Finally, application of WISDOM to study the ice nucleating particle (INP properties of size-selected ambient Saharan dust particles is presented.

  20. Multisegment one-step RT-PCR fluorescent labeling of influenza A virus genome for use in diagnostic microarray applications

    Energy Technology Data Exchange (ETDEWEB)

    Vasin, A V; Plotnikova, M A; Klotchenko, S A; Elpaeva, E A; Komissarov, A B; Egorov, V V; Kiselev, O I [Research Institute of Influenza of the Ministry of Health and Social Development of the Russian Federation, 15/17 Prof. Popova St., St. Petersburg (Russian Federation); Sandybaev, N T; Chervyakova, O V; Strochkov, V M; Taylakova, E T; Koshemetov, J K; Mamadaliev, S M, E-mail: vasin@influenza.spb.ru [Research Institute for Biological Safety Problems of the RK NBC/SC ME and S RK, Gvardeiskiy (Kazakhstan)

    2011-04-01

    Microarray technology is one of the most challenging methods of influenza A virus subtyping, which is based on the antigenic properties of viral surface glycoproteins - hemagglutinin and neuraminidase. On the example of biochip for detection of influenza A/H5N1 virus we showed the possibility of using multisegment RTPCR method for amplification of fluorescently labeled cDNA of all possible influenza A virus subtypes with a single pair of primers in influenza diagnostic microarrays.

  1. Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos).

    Science.gov (United States)

    Carlson, Ruth I; Cattet, Marc R L; Sarauer, Bryan L; Nielsen, Scott E; Boulanger, John; Stenhouse, Gordon B; Janz, David M

    2016-01-01

    A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic-pituitary-adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50-100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change.

  2. Development and application of an oligonucleotide microarray and real-time quantitative PCR for detection of wastewater bacterial pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Young [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6 (Canada)], E-mail: daeyoung.lee@ec.gc.ca; Lauder, Heather; Cruwys, Heather; Falletta, Patricia [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6 (Canada); Beaudette, Lee A. [Environmental Science and Technology Centre, Environment Canada, 335 River Road South, Ottawa, Ontario, K1A 0H3 (Canada)], E-mail: lee.beaudette@ec.gc.ca

    2008-07-15

    Conventional microbial water quality test methods are well known for their technical limitations, such as lack of direct pathogen detection capacity and low throughput capability. The microarray assay has recently emerged as a promising alternative for environmental pathogen monitoring. In this study, bacterial pathogens were detected in municipal wastewater using a microarray equipped with short oligonucleotide probes targeting 16S rRNA sequences. To date, 62 probes have been designed against 38 species, 4 genera, and 1 family of pathogens. The detection sensitivity of the microarray for a waterborne pathogen Aeromonas hydrophila was determined to be approximately 1.0% of the total DNA, or approximately 10{sup 3}A. hydrophila cells per sample. The efficacy of the DNA microarray was verified in a parallel study where pathogen genes and E. coli cells were enumerated using real-time quantitative PCR (qPCR) and standard membrane filter techniques, respectively. The microarray and qPCR successfully detected multiple wastewater pathogen species at different stages of the disinfection process (i.e. secondary effluents vs. disinfected final effluents) and at two treatment plants employing different disinfection methods (i.e. chlorination vs. UV irradiation). This result demonstrates the effectiveness of the DNA microarray as a semi-quantitative, high throughput pathogen monitoring tool for municipal wastewater.

  3. Plant-pathogen interactions: what microarray tells about it?

    Science.gov (United States)

    Lodha, T D; Basak, J

    2012-01-01

    Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant-pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.

  4. Pulsed eddy currents: principle and applications

    International Nuclear Information System (INIS)

    Bernard, A.; Coutanceau, N.

    1993-04-01

    Eddy currents are widely used as a non destructive testing technique specially for heat exchanger testing. The specificities of pulsed eddy current testing are analyzed in terms of probe design and signal processing. The specific applications are detailed. They are divided in two parts. First part, deals with the two main applications of the high peak energy supplied to the probe. One concerns the design of focused probes used for the detection of small defects in irradiated fuel rods. The other concerns the saturation of ferromagnetic materials in order to test the full thickness of the exchanger tubes. Second part, deals with applications of the wide and low frequency spectrum generated by the pulse source. It enables the testing of thick materials, and the detection of sub-surface defects. It has been tested on austenitic steel (nuclear pressure vessel nozzle), multilayered structures of aluminium alloys (aeronautics) and sleeved structures (nuclear pressure vessel head penetrations through thermal sleeves)

  5. Strategies for comparing gene expression profiles from different microarray platforms: application to a case-control experiment.

    Science.gov (United States)

    Severgnini, Marco; Bicciato, Silvio; Mangano, Eleonora; Scarlatti, Francesca; Mezzelani, Alessandra; Mattioli, Michela; Ghidoni, Riccardo; Peano, Clelia; Bonnal, Raoul; Viti, Federica; Milanesi, Luciano; De Bellis, Gianluca; Battaglia, Cristina

    2006-06-01

    Meta-analysis of microarray data is increasingly important, considering both the availability of multiple platforms using disparate technologies and the accumulation in public repositories of data sets from different laboratories. We addressed the issue of comparing gene expression profiles from two microarray platforms by devising a standardized investigative strategy. We tested this procedure by studying MDA-MB-231 cells, which undergo apoptosis on treatment with resveratrol. Gene expression profiles were obtained using high-density, short-oligonucleotide, single-color microarray platforms: GeneChip (Affymetrix) and CodeLink (Amersham). Interplatform analyses were carried out on 8414 common transcripts represented on both platforms, as identified by LocusLink ID, representing 70.8% and 88.6% of annotated GeneChip and CodeLink features, respectively. We identified 105 differentially expressed genes (DEGs) on CodeLink and 42 DEGs on GeneChip. Among them, only 9 DEGs were commonly identified by both platforms. Multiple analyses (BLAST alignment of probes with target sequences, gene ontology, literature mining, and quantitative real-time PCR) permitted us to investigate the factors contributing to the generation of platform-dependent results in single-color microarray experiments. An effective approach to cross-platform comparison involves microarrays of similar technologies, samples prepared by identical methods, and a standardized battery of bioinformatic and statistical analyses.

  6. PNA-PEG modified silicon platforms as functional bio-interfaces for applications in DNA microarrays and biosensors.

    Science.gov (United States)

    Cattani-Scholz, Anna; Pedone, Daniel; Blobner, Florian; Abstreiter, Gerhard; Schwartz, Jeffrey; Tornow, Marc; Andruzzi, Luisa

    2009-03-09

    promising substrates for DNA microarray applications.

  7. Evaluation of current and new biomarkers in severe preeclampsia: a microarray approach reveals the VSIG4 gene as a potential blood biomarker.

    Directory of Open Access Journals (Sweden)

    Julien Textoris

    Full Text Available Preeclampsia is a placental disease characterized by hypertension and proteinuria in pregnant women, and it is associated with a high maternal and neonatal morbidity. However, circulating biomarkers that are able to predict the prognosis of preeclampsia are lacking. Thirty-eight women were included in the current study. They consisted of 19 patients with preeclampsia (13 with severe preeclampsia and 6 with non-severe preeclampsia and 19 gestational age-matched women with normal pregnancies as controls. We measured circulating factors that are associated with the coagulation pathway (including fibrinogen, fibronectin, factor VIII, antithrombin, protein S and protein C, endothelial activation (such as soluble endoglin and CD146, and the release of total and platelet-derived microparticles. These markers enabled us to discriminate the preeclampsia condition from a normal pregnancy but were not sufficient to distinguish severe from non-severe preeclampsia. We then used a microarray to study the transcriptional signature of blood samples. Preeclampsia patients exhibited a specific transcriptional program distinct from that of the control group of women. Interestingly, we also identified a severity-related transcriptional signature. Functional annotation of the upmodulated signature in severe preeclampsia highlighted two main functions related to "ribosome" and "complement". Finally, we identified 8 genes that were specifically upmodulated in severe preeclampsia compared with non-severe preeclampsia and the normotensive controls. Among these genes, we identified VSIG4 as a potential diagnostic marker of severe preeclampsia. The determination of this gene may improve the prognostic assessment of severe preeclampsia.

  8. Current trends in context-aware applications

    Directory of Open Access Journals (Sweden)

    Andrea Loayza

    2013-12-01

    Full Text Available (Received: 2013/10/07 - Accepted: 2013/12/10Context-aware applications adapt their behavior and settings according to the environment conditions and to the user preferences. This state-of-the-art survey identifies the current trends related to the technics and tools for the development of this kind of software, as well as the areas of interest of the scientific community on the subject. It stands out the research on multimodal interfaces, localization, activity detection, interruptions control, predictive and wellbeing applications.

  9. Current trends in Bayesian methodology with applications

    CERN Document Server

    Upadhyay, Satyanshu K; Dey, Dipak K; Loganathan, Appaia

    2015-01-01

    Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics.Each chapter is self-contained and focuses on

  10. Current feedback operational amplifiers and their applications

    CERN Document Server

    Senani, Raj; Singh, A K; Singh, V K

    2013-01-01

    This book describes a variety of current feedback operational amplifier (CFOA) architectures and their applications in analog signal processing/generation. Coverage includes a comprehensive survey of commercially available, off-the-shelf integrated circuit CFOAs, as well as recent advances made on the design of CFOAs, including design innovations for bipolar and CMOS CFOAs.  This book serves as a single-source reference to the topic, as well as a catalog of over 200 application circuits which would be useful not only for students, educators and researchers in apprising them about the recent developments in the area but would also serve as a comprehensive repertoire of useful circuits for practicing engineers who might be interested in choosing an appropriate CFOA-based topology for use in a given application.

  11. Applications of Nanofluids: Current and Future

    Directory of Open Access Journals (Sweden)

    Kaufui V. Wong

    2010-01-01

    Full Text Available Nanofluids are suspensions of nanoparticles in fluids that show significant enhancement of their properties at modest nanoparticle concentrations. Many of the publications on nanofluids are about understanding their behavior so that they can be utilized where straight heat transfer enhancement is paramount as in many industrial applications, nuclear reactors, transportation, electronics as well as biomedicine and food. Nanofluid as a smart fluid, where heat transfer can be reduced or enhanced at will, has also been reported. This paper focuses on presenting the broad range of current and future applications that involve nanofluids, emphasizing their improved heat transfer properties that are controllable and the specific characteristics that these nanofluids possess that make them suitable for such applications.

  12. Targeted alpha therapy: Applications and current status

    International Nuclear Information System (INIS)

    Bruchertseifer, Frank

    2017-01-01

    Full text: The field of targeted alpha therapy has been developed rapidly in the last decade. Besides 223 Ra, 211 At and 212 Pb/ 212 Bi the alpha emitters 225 Ac and 213 Bi are promising therapeutic radionuclides for application in targeted alpha therapy of cancer and infectious diseases. The presentation will give a short overview about the current clinical treatments with alpha emitting radionuclides and will place an emphasis on the most promising clinical testing of peptides and antibodies labelled with 225 Ac and 213 Bi for treatment of metastatic castration-resistant prostate cancer patients with glioma and glioblastoma multiform, PSMA-positive tumor phenotype and bladder carcinoma in situ. (author)

  13. Genome Writing: Current Progress and Related Applications

    Directory of Open Access Journals (Sweden)

    Yueqiang Wang

    2018-02-01

    Full Text Available The ultimate goal of synthetic biology is to build customized cells or organisms to meet specific industrial or medical needs. The most important part of the customized cell is a synthetic genome. Advanced genomic writing technologies are required to build such an artificial genome. Recently, the partially-completed synthetic yeast genome project represents a milestone in this field. In this mini review, we briefly introduce the techniques for de novo genome synthesis and genome editing. Furthermore, we summarize recent research progresses and highlight several applications in the synthetic genome field. Finally, we discuss current challenges and future prospects. Keywords: Synthetic biology, Genome writing, Genome editing, Bioethics, Biosafety

  14. Geiger mode avalanche photodiodes for microarray systems

    Science.gov (United States)

    Phelan, Don; Jackson, Carl; Redfern, R. Michael; Morrison, Alan P.; Mathewson, Alan

    2002-06-01

    New Geiger Mode Avalanche Photodiodes (GM-APD) have been designed and characterized specifically for use in microarray systems. Critical parameters such as excess reverse bias voltage, hold-off time and optimum operating temperature have been experimentally determined for these photon-counting devices. The photon detection probability, dark count rate and afterpulsing probability have been measured under different operating conditions. An active- quench circuit (AQC) is presented for operating these GM- APDs. This circuit is relatively simple, robust and has such benefits as reducing average power dissipation and afterpulsing. Arrays of these GM-APDs have already been designed and together with AQCs open up the possibility of having a solid-state microarray detector that enables parallel analysis on a single chip. Another advantage of these GM-APDs over current technology is their low voltage CMOS compatibility which could allow for the fabrication of an AQC on the same device. Small are detectors have already been employed in the time-resolved detection of fluorescence from labeled proteins. It is envisaged that operating these new GM-APDs with this active-quench circuit will have numerous applications for the detection of fluorescence in microarray systems.

  15. ValWorkBench: an open source Java library for cluster validation, with applications to microarray data analysis.

    Science.gov (United States)

    Giancarlo, R; Scaturro, D; Utro, F

    2015-02-01

    The prediction of the number of clusters in a dataset, in particular microarrays, is a fundamental task in biological data analysis, usually performed via validation measures. Unfortunately, it has received very little attention and in fact there is a growing need for software tools/libraries dedicated to it. Here we present ValWorkBench, a software library consisting of eleven well known validation measures, together with novel heuristic approximations for some of them. The main objective of this paper is to provide the interested researcher with the full software documentation of an open source cluster validation platform having the main features of being easily extendible in a homogeneous way and of offering software components that can be readily re-used. Consequently, the focus of the presentation is on the architecture of the library, since it provides an essential map that can be used to access the full software documentation, which is available at the supplementary material website [1]. The mentioned main features of ValWorkBench are also discussed and exemplified, with emphasis on software abstraction design and re-usability. A comparison with existing cluster validation software libraries, mainly in terms of the mentioned features, is also offered. It suggests that ValWorkBench is a much needed contribution to the microarray software development/algorithm engineering community. For completeness, it is important to mention that previous accurate algorithmic experimental analysis of the relative merits of each of the implemented measures [19,23,25], carried out specifically on microarray data, gives useful insights on the effectiveness of ValWorkBench for cluster validation to researchers in the microarray community interested in its use for the mentioned task. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Current applications of graphene oxide in nanomedicine

    Directory of Open Access Journals (Sweden)

    Wu SY

    2015-08-01

    Full Text Available Si-Ying Wu, Seong Soo A An, John Hulme Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Sungnamsi, Republic of Korea Abstract: Graphene has attracted the attention of the entire scientific community due to its unique mechanical and electrochemical, electronic, biomaterial, and chemical properties. The water-soluble derivative of graphene, graphene oxide, is highly prized and continues to be intensely investigated by scientists around the world. This review seeks to provide an overview of the currents applications of graphene oxide in nanomedicine, focusing on delivery systems, tissue engineering, cancer therapies, imaging, and cytotoxicity, together with a short discussion on the difficulties and the trends for future research regarding this amazing material. Keywords: imaging, green, cancer, therapy, diagnostics, antibacterial, cytotoxicity, contrast agent, biofunctionalization

  17. Targeted alpha therapy: Applications and current status

    Energy Technology Data Exchange (ETDEWEB)

    Bruchertseifer, Frank, E-mail: frank.bruchertseifer@ec.europa.eu [European Commission, Joint Research Centre, Karlsruhe (Germany)

    2017-07-01

    Full text: The field of targeted alpha therapy has been developed rapidly in the last decade. Besides {sup 223}Ra, {sup 211}At and {sup 212}Pb/{sup 212}Bi the alpha emitters {sup 225}Ac and {sup 213}Bi are promising therapeutic radionuclides for application in targeted alpha therapy of cancer and infectious diseases. The presentation will give a short overview about the current clinical treatments with alpha emitting radionuclides and will place an emphasis on the most promising clinical testing of peptides and antibodies labelled with {sup 225}Ac and {sup 213}Bi for treatment of metastatic castration-resistant prostate cancer patients with glioma and glioblastoma multiform, PSMA-positive tumor phenotype and bladder carcinoma in situ. (author)

  18. Uso de microarrays na busca de perfis de expressão gênica: aplicação no estudo de fenótipos complexos Use of microarrays in the search of gene expression patterns: application to the study of complex phenotypes

    Directory of Open Access Journals (Sweden)

    Camila Guindalini

    2007-12-01

    Full Text Available Com o advento do seqüenciamento de genoma humano, novas tecnologias foram desenvolvidas e despontaram como promissoras ferramentas metodológicas e científicas para o avanço na compreensão dos mecanismos envolvidos em várias doenças complexas. Dentre elas, a técnica de análise em larga escala (conhecida como microarrays ou chips de DNA é particularmente eficaz em permitir uma visão global na busca de padrões de expressão gênica em amostras biológicas. Por meio da determinação da expressão de milhares de genes simultaneamente, a promissora tecnologia permite que pesquisadores comparem o comportamento molecular de diversos tipos de linhagens celulares e tecidos diferentes, quando expostos a uma determinada condição patológica ou experimental. A aplicação do método pode trazer novas perspectivas de análise de processos fisiológicos e facilitar a identificação de marcadores moleculares para o diagnóstico, prognóstico e para o tratamento farmacológico atual. Nesse artigo, apresentaremos conceitos teóricos e metodológicos que permeiam a tecnologia de microarrays, assim como suas vantagens, perspectivas e direcionamentos futuros. Com o intuito de exemplificar sua aplicabilidade e eficiência no estudo de fenômenos complexos, serão apresentados e também discutidos resultados iniciais sobre padrões de expressão gênica em amostra de cérebros post-mortem de pacientes psiquiátricos e sobre as conseqüências moleculares e funcionais de perturbações no sono, comumente associadas a transtornos psiquiátricos.Sequencing the human genome has prompted the development of new technologies, which have emerged as promising methodological and scientific tools for advancing the current knowledge about the causes and mechanisms involved in various complex disorders. Among those, the high-throughput technique known as microarray is particularly powerful in providing a global view of gene expression patterns in biological samples

  19. Preparation of oligonucleotide microarray for radiation-associated gene expression detection and its application in lung cancer cell lines

    International Nuclear Information System (INIS)

    Guo Wanfeng; Lin Ruxian; Huang Jian; Guo Guozhen; Wang Shengqi

    2005-01-01

    Objective: The response of tumor cell to radiation is accompanied by complex change in patterns of gene expression. It is highly probable that a better understanding of molecular and genetic changes can help to sensitize the radioresistant tumor cells. Methods: Oligonucleotide microarray provides a powerful tool for high-throughput identifying a wider range of genes involved in the radioresistance. Therefore, the authors designed one oligonucleotide microarray according to the biological effect of IR. By using different radiosensitive lung cancer cell lines, the authors identified genes showing altered expression in lung cancer cell lines. To provide independent confirmation of microarray data, semi-quantitative RT-PCR was performed on a selection of genes. Results: In radioresistant A549 cell lines, a total of 18 genes were selected as having significant fold-changes compared to NCI-H446, 8 genes were up-regulated and 10 genes were down-regulated. Subsequently, A549 and NCI-H446 cells were delivered by ionizing radiation. In A549 cell line, we found 22 (19 up-regulated and 3 down-regulated) and 26 (8 up-regulated and 18 down-regulated) differentially expressed genes at 6h and 24h after ionizing radiation. In NCI-H446 cell line, we identified 17 (9 up-regulated and 8 down-regulated) and 18 (6 up-regulated and 12 down-regulated) differentially expressed genes at 6 h and 24 h after ionizing radiation. The authors tested seven genes (MDM2, p53, XRCC5, Bcl-2, PIM2, NFKBIA and Cyclin B1) for RT-PCR, and found that the results were in good agreement with those from the microarray data except for NFKBIA gene, even though the value for each mRNA level might be different between the two measurements. In present study, the authors identified some genes with cell proliferation and anti-apoptosis, such as MdM2, BCL-2, PKCz and PIM2 expression levels increased in A549 cells and decreased in NCI-H446 cells after radiation, and other genes with DNA repair, such as XRCC5, ERCC5

  20. Current development and application of soybean genomics

    Institute of Scientific and Technical Information of China (English)

    Lingli HE; Jing ZHAO; Man ZHAO; Chaoying HE

    2011-01-01

    Soybean (Glycine max),an important domesticated species originated in China,constitutes a major source of edible oils and high-quality plant proteins worldwide.In spite of its complex genome as a consequence of an ancient tetraploidilization,platforms for map-based genomics,sequence-based genomics,comparative genomics and functional genomics have been well developed in the last decade,thus rich repertoires of genomic tools and resources are available,which have been influencing the soybean genetic improvement.Here we mainly review the progresses of soybean (including its wild relative Glycine soja) genomics and its impetus for soybean breeding,and raise the major biological questions needing to be addressed.Genetic maps,physical maps,QTL and EST mapping have been so well achieved that the marker assisted selection and positional cloning in soybean is feasible and even routine.Whole genome sequencing and transcriptomic analyses provide a large collection of molecular markers and predicted genes,which are instrumental to comparative genomics and functional genomics.Comparative genomics has started to reveal the evolution of soybean genome and the molecular basis of soybean domestication process.Microarrays resources,mutagenesis and efficient transformation systems become essential components of soybean functional genomics.Furthermore,phenotypic functional genomics via both forward and reverse genetic approaches has inferred functions of many genes involved in plant and seed development,in response to abiotic stresses,functioning in plant-pathogenic microbe interactions,and controlling the oil and protein content of seed.These achievements have paved the way for generation of transgenic or genetically modified (GM) soybean crops.

  1. Improved estimation of the noncentrality parameter distribution from a large number of t-statistics, with applications to false discovery rate estimation in microarray data analysis.

    Science.gov (United States)

    Qu, Long; Nettleton, Dan; Dekkers, Jack C M

    2012-12-01

    Given a large number of t-statistics, we consider the problem of approximating the distribution of noncentrality parameters (NCPs) by a continuous density. This problem is closely related to the control of false discovery rates (FDR) in massive hypothesis testing applications, e.g., microarray gene expression analysis. Our methodology is similar to, but improves upon, the existing approach by Ruppert, Nettleton, and Hwang (2007, Biometrics, 63, 483-495). We provide parametric, nonparametric, and semiparametric estimators for the distribution of NCPs, as well as estimates of the FDR and local FDR. In the parametric situation, we assume that the NCPs follow a distribution that leads to an analytically available marginal distribution for the test statistics. In the nonparametric situation, we use convex combinations of basis density functions to estimate the density of the NCPs. A sequential quadratic programming procedure is developed to maximize the penalized likelihood. The smoothing parameter is selected with the approximate network information criterion. A semiparametric estimator is also developed to combine both parametric and nonparametric fits. Simulations show that, under a variety of situations, our density estimates are closer to the underlying truth and our FDR estimates are improved compared with alternative methods. Data-based simulations and the analyses of two microarray datasets are used to evaluate the performance in realistic situations. © 2012, The International Biometric Society.

  2. From High-Throughput Microarray-Based Screening to Clinical Application: The Development of a Second Generation Multigene Test for Breast Cancer Prognosis

    Directory of Open Access Journals (Sweden)

    Carsten Denkert

    2013-08-01

    Full Text Available Several multigene tests have been developed for breast cancer patients to predict the individual risk of recurrence. Most of the first generation tests rely on proliferation-associated genes and are commonly carried out in central reference laboratories. Here, we describe the development of a second generation multigene assay, the EndoPredict test, a prognostic multigene expression test for estrogen receptor (ER positive, human epidermal growth factor receptor (HER2 negative (ER+/HER2− breast cancer patients. The EndoPredict gene signature was initially established in a large high-throughput microarray-based screening study. The key steps for biomarker identification are discussed in detail, in comparison to the establishment of other multigene signatures. After biomarker selection, genes and algorithms were transferred to a diagnostic platform (reverse transcription quantitative PCR (RT-qPCR to allow for assaying formalin-fixed, paraffin-embedded (FFPE samples. A comprehensive analytical validation was performed and a prospective proficiency testing study with seven pathological laboratories finally proved that EndoPredict can be reliably used in the decentralized setting. Three independent large clinical validation studies (n = 2,257 demonstrated that EndoPredict offers independent prognostic information beyond current clinicopathological parameters and clinical guidelines. The review article summarizes several important steps that should be considered for the development process of a second generation multigene test and offers a means for transferring a microarray signature from the research laboratory to clinical practice.

  3. Discovery of possible gene relationships through the application of self-organizing maps to DNA microarray databases.

    Science.gov (United States)

    Chavez-Alvarez, Rocio; Chavoya, Arturo; Mendez-Vazquez, Andres

    2014-01-01

    DNA microarrays and cell cycle synchronization experiments have made possible the study of the mechanisms of cell cycle regulation of Saccharomyces cerevisiae by simultaneously monitoring the expression levels of thousands of genes at specific time points. On the other hand, pattern recognition techniques can contribute to the analysis of such massive measurements, providing a model of gene expression level evolution through the cell cycle process. In this paper, we propose the use of one of such techniques--an unsupervised artificial neural network called a Self-Organizing Map (SOM)-which has been successfully applied to processes involving very noisy signals, classifying and organizing them, and assisting in the discovery of behavior patterns without requiring prior knowledge about the process under analysis. As a test bed for the use of SOMs in finding possible relationships among genes and their possible contribution in some biological processes, we selected 282 S. cerevisiae genes that have been shown through biological experiments to have an activity during the cell cycle. The expression level of these genes was analyzed in five of the most cited time series DNA microarray databases used in the study of the cell cycle of this organism. With the use of SOM, it was possible to find clusters of genes with similar behavior in the five databases along two cell cycles. This result suggested that some of these genes might be biologically related or might have a regulatory relationship, as was corroborated by comparing some of the clusters obtained with SOMs against a previously reported regulatory network that was generated using biological knowledge, such as protein-protein interactions, gene expression levels, metabolism dynamics, promoter binding, and modification, regulation and transport of proteins. The methodology described in this paper could be applied to the study of gene relationships of other biological processes in different organisms.

  4. Radioactive cDNA microarray in neurospsychiatry

    International Nuclear Information System (INIS)

    Choe, Jae Gol; Shin, Kyung Ho; Lee, Min Soo; Kim, Meyoung Kon

    2003-01-01

    Microarray technology allows the simultaneous analysis of gene expression patterns of thousands of genes, in a systematic fashion, under a similar set of experimental conditions, thus making the data highly comparable. In some cases arrays are used simply as a primary screen leading to downstream molecular characterization of individual gene candidates. In other cases, the goal of expression profiling is to begin to identify complex regulatory networks underlying developmental processes and disease states. Microarrays were originally used with cell lines or other simple model systems. More recently, microarrays have been used in the analysis of more complex biological tissues including neural systems and the brain. The application of cDNA arrays in neuropsychiatry has lagged behind other fields for a number of reasons. These include a requirement for a large amount of input probe RNA in fluorescent-glass based array systems and the cellular complexity introduced by multicellular brain and neural tissues. An additional factor that impacts the general use of microarrays in neuropsychiatry is the lack of availability of sequenced clone sets from model systems. While human cDNA clones have been widely available, high quality rat, mouse, and drosophilae, among others are just becoming widely available. A final factor in the application of cDNA microarrays in neuropsychiatry is cost of commercial arrays. As academic microarray facilitates become more commonplace custom made arrays will become more widely available at a lower cost allowing more widespread applications. In summary, microarray technology is rapidly having an impact on many areas of biomedical research. Radioisotope-nylon based microarrays offer alternatives that may in some cases be more sensitive, flexible, inexpensive, and universal as compared to other array formats, such as fluorescent-glass arrays. In some situations of limited RNA or exotic species, radioactive membrane microarrays may be the most

  5. Radioactive cDNA microarray in neurospsychiatry

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Jae Gol; Shin, Kyung Ho; Lee, Min Soo; Kim, Meyoung Kon [Korea University Medical School, Seoul (Korea, Republic of)

    2003-02-01

    Microarray technology allows the simultaneous analysis of gene expression patterns of thousands of genes, in a systematic fashion, under a similar set of experimental conditions, thus making the data highly comparable. In some cases arrays are used simply as a primary screen leading to downstream molecular characterization of individual gene candidates. In other cases, the goal of expression profiling is to begin to identify complex regulatory networks underlying developmental processes and disease states. Microarrays were originally used with cell lines or other simple model systems. More recently, microarrays have been used in the analysis of more complex biological tissues including neural systems and the brain. The application of cDNA arrays in neuropsychiatry has lagged behind other fields for a number of reasons. These include a requirement for a large amount of input probe RNA in fluorescent-glass based array systems and the cellular complexity introduced by multicellular brain and neural tissues. An additional factor that impacts the general use of microarrays in neuropsychiatry is the lack of availability of sequenced clone sets from model systems. While human cDNA clones have been widely available, high quality rat, mouse, and drosophilae, among others are just becoming widely available. A final factor in the application of cDNA microarrays in neuropsychiatry is cost of commercial arrays. As academic microarray facilitates become more commonplace custom made arrays will become more widely available at a lower cost allowing more widespread applications. In summary, microarray technology is rapidly having an impact on many areas of biomedical research. Radioisotope-nylon based microarrays offer alternatives that may in some cases be more sensitive, flexible, inexpensive, and universal as compared to other array formats, such as fluorescent-glass arrays. In some situations of limited RNA or exotic species, radioactive membrane microarrays may be the most

  6. MARS: Microarray analysis, retrieval, and storage system

    Directory of Open Access Journals (Sweden)

    Scheideler Marcel

    2005-04-01

    Full Text Available Abstract Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS, a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at http://genome.tugraz.at.

  7. Simulation of microarray data with realistic characteristics

    Directory of Open Access Journals (Sweden)

    Lehmussola Antti

    2006-07-01

    Full Text Available Abstract Background Microarray technologies have become common tools in biological research. As a result, a need for effective computational methods for data analysis has emerged. Numerous different algorithms have been proposed for analyzing the data. However, an objective evaluation of the proposed algorithms is not possible due to the lack of biological ground truth information. To overcome this fundamental problem, the use of simulated microarray data for algorithm validation has been proposed. Results We present a microarray simulation model which can be used to validate different kinds of data analysis algorithms. The proposed model is unique in the sense that it includes all the steps that affect the quality of real microarray data. These steps include the simulation of biological ground truth data, applying biological and measurement technology specific error models, and finally simulating the microarray slide manufacturing and hybridization. After all these steps are taken into account, the simulated data has realistic biological and statistical characteristics. The applicability of the proposed model is demonstrated by several examples. Conclusion The proposed microarray simulation model is modular and can be used in different kinds of applications. It includes several error models that have been proposed earlier and it can be used with different types of input data. The model can be used to simulate both spotted two-channel and oligonucleotide based single-channel microarrays. All this makes the model a valuable tool for example in validation of data analysis algorithms.

  8. Current new applications of laser plasmas

    International Nuclear Information System (INIS)

    Hauer, A.A.; Forslund, D.W.; McKinstrie, C.J.; Wark, J.S.; Hargis, P.J. Jr.; Hamil, R.A.; Kindel, J.M.

    1988-09-01

    This report describes several new applications of laser-produced plasmas that have arisen in the last few years. Most of the applications have been an outgrowth of the active research in laser/matter interaction inspired by the pursuit of laser fusion. Unusual characteristics of high-intensity laser/matter interaction, such as intense x-ray and particle emission, were noticed early in the field and are now being employed in a significant variety of applications outside the fusion filed. Applications range from biology to materials science to pulsed-power control and particle accelerators. 92 refs., 23 figs., 4 tabs

  9. Chromate conversion coatings and their current application

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-04-01

    Full Text Available This paper describes formation, composition and possible production technologies of application chromate coatings. Summation of common examples of applications of these coatings in corrosion protection of metals and alloys is provided. Individual chromate coatings are divided by their dominant anions either with CrVI or CrIII. Restrictions of chromate coatings with dominantly CrVI and related toxicity of hexavalent chromium is discussed in detail. In conclusion, examples of both chromium and other, alternative coatings are summed up. Application of these coatings as a protection for concrete hot-dip galvanized reinforcement is also reviewed.

  10. Application of a novel functional gene microarray to probe the functional ecology of ammonia oxidation in nitrifying activated sludge.

    Directory of Open Access Journals (Sweden)

    Michael D Short

    Full Text Available We report on the first study trialling a newly-developed, functional gene microarray (FGA for characterising bacterial and archaeal ammonia oxidisers in activated sludge. Mixed liquor (ML and media biofilm samples from a full-scale integrated fixed-film activated sludge (IFAS plant were analysed with the FGA to profile the diversity and relative abundance of ammonia-oxidising archaea and bacteria (AOA and AOB respectively. FGA analyses of AOA and AOB communities revealed ubiquitous distribution of AOA across all samples - an important finding for these newly-discovered and poorly characterised organisms. Results also revealed striking differences in the functional ecology of attached versus suspended communities within the IFAS reactor. Quantitative assessment of AOB and AOA functional gene abundance revealed a dominance of AOB in the ML and approximately equal distribution of AOA and AOB in the media-attached biofilm. Subsequent correlations of functional gene abundance data with key water quality parameters suggested an important functional role for media-attached AOB in particular for IFAS reactor nitrification performance and indicate possible functional redundancy in some IFAS ammonia oxidiser communities. Results from this investigation demonstrate the capacity of the FGA to resolve subtle ecological shifts in key microbial communities in nitrifying activated sludge and indicate its value as a tool for better understanding the linkages between the ecology and performance of these engineered systems.

  11. Current trend of robotics application in medical

    International Nuclear Information System (INIS)

    Olanrewaju, O A; Faieza, A A; Syakirah, K

    2013-01-01

    The applications of robotics in recent years has emerged beyond the field of manufacturing or industrial robots itself. Robotics applications are now widely used in medical, transport, underwater, entertainment and military sector. In medical field, these applications should be emphasized in view of the increasing challenges due to the variety of findings in the field of medicine which requires new inventions to ease work process. The objective of this review paper is to study and presents the past and on-going research in medical robotics with emphasis on rehabilitation (assistive care) and surgery robotics which are certainly the two main practical fields where robots application are commonly used presently. The study found that, rehabilitation and surgery robotics applications grow extensively with the finding of new invention, as well as research that is being undertaken and to be undertaken. The importance of medical robot in medical industry is intended to offer positive outcomes to assist human business through a complicated task that involves a long period, accuracy, focus and other routines that cannot be accomplished by human ability alone.

  12. Applications of Nanofluids: Current and Future

    OpenAIRE

    Kaufui V. Wong; Omar De Leon

    2010-01-01

    Nanofluids are suspensions of nanoparticles in fluids that show significant enhancement of their properties at modest nanoparticle concentrations. Many of the publications on nanofluids are about understanding their behavior so that they can be utilized where straight heat transfer enhancement is paramount as in many industrial applications, nuclear reactors, transportation, electronics as well as biomedicine and food. Nanofluid as a smart fluid, where heat transfer can be reduced or enhanced...

  13. Power transistor module for high current applications

    International Nuclear Information System (INIS)

    Cilyo, F.F.

    1975-01-01

    One of the parts needed for the control system of the 400-GeV accelerator at Fermilab was a power transistor with a safe operating area of 1800A at 50V, dc current gain of 100,000 and 20 kHz bandwidth. Since the commercially available discrete devices and power hybrid packages did not meet these requirements, a power transistor module was developed which performed satisfactorily. By connecting 13 power transistors in parallel, with due consideration for network and heat dissipation problems, and by driving these 13 with another power transistor, a super power transistor is made, having an equivalent current, power, and safe operating area capability of 13 transistors. For higher capabilities, additional modules can be conveniently added. (auth)

  14. Microwave Photonics: current challenges towards widespread application.

    Science.gov (United States)

    Capmany, José; Li, Guifang; Lim, Christina; Yao, Jianping

    2013-09-23

    Microwave Photonics, a symbiotic field of research that brings together the worlds of optics and radio frequency is currently facing several challenges in its transition from a niche to a truly widespread technology essential to support the ever-increasing values for speed, bandwidth, processing capability and dynamic range that will be required in next generation hybrid access networks. We outline these challenges, which are the subject of the contributions to this focus issue.

  15. New horizons in predictive toxicology: current status and application

    National Research Council Canada - National Science Library

    Wilson, A. G. E

    2012-01-01

    "In this comprehensive discussion of predictive toxicology and its applications, leading experts express their views on the technologies currently available and the potential for future developments...

  16. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    Science.gov (United States)

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  17. Sustainable Biomaterials: Current Trends, Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Girish Kumar Gupta

    2015-12-01

    Full Text Available Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  18. Sustainable Biomaterials: Current Trends, Challenges and Applications.

    Science.gov (United States)

    Kumar Gupta, Girish; De, Sudipta; Franco, Ana; Balu, Alina Mariana; Luque, Rafael

    2015-12-30

    Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  19. SLIMarray: Lightweight software for microarray facility management

    Directory of Open Access Journals (Sweden)

    Marzolf Bruz

    2006-10-01

    Full Text Available Abstract Background Microarray core facilities are commonplace in biological research organizations, and need systems for accurately tracking various logistical aspects of their operation. Although these different needs could be handled separately, an integrated management system provides benefits in organization, automation and reduction in errors. Results We present SLIMarray (System for Lab Information Management of Microarrays, an open source, modular database web application capable of managing microarray inventories, sample processing and usage charges. The software allows modular configuration and is well suited for further development, providing users the flexibility to adapt it to their needs. SLIMarray Lite, a version of the software that is especially easy to install and run, is also available. Conclusion SLIMarray addresses the previously unmet need for free and open source software for managing the logistics of a microarray core facility.

  20. DNA Microarray Technology; TOPICAL

    International Nuclear Information System (INIS)

    WERNER-WASHBURNE, MARGARET; DAVIDSON, GEORGE S.

    2002-01-01

    Collaboration between Sandia National Laboratories and the University of New Mexico Biology Department resulted in the capability to train students in microarray techniques and the interpretation of data from microarray experiments. These studies provide for a better understanding of the role of stationary phase and the gene regulation involved in exit from stationary phase, which may eventually have important clinical implications. Importantly, this research trained numerous students and is the basis for three new Ph.D. projects

  1. Microarray analysis in the archaeon Halobacterium salinarum strain R1.

    Directory of Open Access Journals (Sweden)

    Jens Twellmeyer

    Full Text Available BACKGROUND: Phototrophy of the extremely halophilic archaeon Halobacterium salinarum was explored for decades. The research was mainly focused on the expression of bacteriorhodopsin and its functional properties. In contrast, less is known about genome wide transcriptional changes and their impact on the physiological adaptation to phototrophy. The tool of choice to record transcriptional profiles is the DNA microarray technique. However, the technique is still rarely used for transcriptome analysis in archaea. METHODOLOGY/PRINCIPAL FINDINGS: We developed a whole-genome DNA microarray based on our sequence data of the Hbt. salinarum strain R1 genome. The potential of our tool is exemplified by the comparison of cells growing under aerobic and phototrophic conditions, respectively. We processed the raw fluorescence data by several stringent filtering steps and a subsequent MAANOVA analysis. The study revealed a lot of transcriptional differences between the two cell states. We found that the transcriptional changes were relatively weak, though significant. Finally, the DNA microarray data were independently verified by a real-time PCR analysis. CONCLUSION/SIGNIFICANCE: This is the first DNA microarray analysis of Hbt. salinarum cells that were actually grown under phototrophic conditions. By comparing the transcriptomics data with current knowledge we could show that our DNA microarray tool is well applicable for transcriptome analysis in the extremely halophilic archaeon Hbt. salinarum. The reliability of our tool is based on both the high-quality array of DNA probes and the stringent data handling including MAANOVA analysis. Among the regulated genes more than 50% had unknown functions. This underlines the fact that haloarchaeal phototrophy is still far away from being completely understood. Hence, the data recorded in this study will be subject to future systems biology analysis.

  2. Current topics in summability theory and applications

    CERN Document Server

    Rhoades, Billy

    2016-01-01

    This book discusses recent developments in and contemporary research on summability theory, including general summability methods, direct theorems on summability, absolute and strong summability, special methods of summability, functional analytic methods in summability, and related topics and applications. All contributing authors are eminent scientists, researchers and scholars in their respective fields, and hail from around the world. The book can be used as a textbook for graduate and senior undergraduate students, and as a valuable reference guide for researchers and practitioners in the fields of summability theory and functional analysis. Summability theory is generally used in analysis and applied mathematics. It plays an important part in the engineering sciences, and various aspects of the theory have long since been studied by researchers all over the world. .

  3. Image processing in radiology. Current applications

    International Nuclear Information System (INIS)

    Neri, E.; Caramella, D.; Bartolozzi, C.

    2008-01-01

    Few fields have witnessed such impressive advances as image processing in radiology. The progress achieved has revolutionized diagnosis and greatly facilitated treatment selection and accurate planning of procedures. This book, written by leading experts from many countries, provides a comprehensive and up-to-date description of how to use 2D and 3D processing tools in clinical radiology. The first section covers a wide range of technical aspects in an informative way. This is followed by the main section, in which the principal clinical applications are described and discussed in depth. To complete the picture, a third section focuses on various special topics. The book will be invaluable to radiologists of any subspecialty who work with CT and MRI and would like to exploit the advantages of image processing techniques. It also addresses the needs of radiographers who cooperate with clinical radiologists and should improve their ability to generate the appropriate 2D and 3D processing. (orig.)

  4. Current and future applications of Monte Carlo

    International Nuclear Information System (INIS)

    Zaidi, H.

    2003-01-01

    Full text: The use of radionuclides in medicine has a long history and encompasses a large area of applications including diagnosis and radiation treatment of cancer patients using either external or radionuclide radiotherapy. The 'Monte Carlo method'describes a very broad area of science, in which many processes, physical systems, and phenomena are simulated by statistical methods employing random numbers. The general idea of Monte Carlo analysis is to create a model, which is as similar as possible to the real physical system of interest, and to create interactions within that system based on known probabilities of occurrence, with random sampling of the probability density functions (pdfs). As the number of individual events (called 'histories') is increased, the quality of the reported average behavior of the system improves, meaning that the statistical uncertainty decreases. The use of the Monte Carlo method to simulate radiation transport has become the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides as well as the assessment of image quality and quantitative accuracy of radionuclide imaging. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the nuclear medicine community at large. Many of these questions will be answered when Monte Carlo techniques are implemented and used for more routine calculations and for in-depth investigations. In this paper, the conceptual role of the Monte Carlo method is briefly introduced and followed by a survey of its different applications in diagnostic and therapeutic

  5. Printing Proteins as Microarrays for High-Throughput Function Determination

    Science.gov (United States)

    MacBeath, Gavin; Schreiber, Stuart L.

    2000-09-01

    Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins. To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins. A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities. The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution. Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules.

  6. Study, design and manufacture eddy current probes for industry applications

    International Nuclear Information System (INIS)

    Nguyen Phuc; Nguyen Van Thuy; Vuong Binh Duong; Do Minh Duc; Trinh Dinh Truong; Tran Trong Duc; Do Tung Khanh; Dang Quang Trung

    2016-01-01

    This study is based on the studying, designing and manufacturing of eddy current probes for industry applications. The main tasks of this study include: i) Describes the overview and classification of eddy current probes (which can be classified into three categories based on the mode of operation: absolute eddy current probe, differential eddy current probe and reflect eddy current probe); ii) Describes the three methods of probe designing and manufacturing (including experimental, analytical and numerical designs); iii) Describes the designing and manufacturing of eddy current probes for industry applications, which based on experimental and analytical methods. Based on this study, we have successfully manufactured some current probes (including absolute eddy current probe, differential eddy current probe and reflect eddy current probe) for surface and tube inspections. (author)

  7. Extended -Regular Sequence for Automated Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jin Hee-Jeong

    2006-01-01

    Full Text Available Microarray study enables us to obtain hundreds of thousands of expressions of genes or genotypes at once, and it is an indispensable technology for genome research. The first step is the analysis of scanned microarray images. This is the most important procedure for obtaining biologically reliable data. Currently most microarray image processing systems require burdensome manual block/spot indexing work. Since the amount of experimental data is increasing very quickly, automated microarray image analysis software becomes important. In this paper, we propose two automated methods for analyzing microarray images. First, we propose the extended -regular sequence to index blocks and spots, which enables a novel automatic gridding procedure. Second, we provide a methodology, hierarchical metagrid alignment, to allow reliable and efficient batch processing for a set of microarray images. Experimental results show that the proposed methods are more reliable and convenient than the commercial tools.

  8. Technology-based suicide prevention: current applications and future directions.

    Science.gov (United States)

    Luxton, David D; June, Jennifer D; Kinn, Julie T

    2011-01-01

    This review reports on current and emerging technologies for suicide prevention. Technology-based programs discussed include interactive educational and social networking Web sites, e-mail outreach, and programs that use mobile devices and texting. We describe innovative applications such as virtual worlds, gaming, and text analysis that are currently being developed and applied to suicide prevention and outreach programs. We also discuss the benefits and limitations of technology-based applications and discuss future directions for their use.

  9. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...... for tissue engineering and drug screening applications....... cell differentiation into tissue-specifi c lineages. The use of 3D biomaterial microarrays can, if optimized correctly, result in a more than 1000-fold reduction in biomaterials and cells consumption when engineering optimal materials combinations, which makes these miniaturized systems very attractive...

  10. Design and application consideration of high temperature superconducting current leads

    International Nuclear Information System (INIS)

    Wu, J.L.

    1994-01-01

    As a potential major source of heat leak and the resultant cryogen boiloff, cryogenic current leads can significantly affect the refrigeration power requirement of cryogenic power equipment. Reduction of the heat leak associated with current leads can therefore contribute to the development and application of this equipment. Recent studies and tests have demonstrated that, due to their superconducting and low thermal conductivity properties, ceramic high temperature superconductor (HTSC) can be employed in current leads to significantly reduce the heat leak. However, realization of this benefit requires special design considerations pertaining to the properties and the fabrication technology of the relatively new ceramic superconductor materials. Since processing and fabrication technology are continuously being developed in the laboratories, data on material properties unrelated to critical states are quite limited. Therefore, design analysis and experiments have to be conducted in tandem to achieve a successful development. Due to the rather unique combination of superconducting and thermal conductivities which are orders of magnitude lower than copper, ceramic superconductors allow expansion of the operating scenarios of current leads. In addition to the conventional vapor-cooled lead type application, low heat leak conduction-cooled type current leads may be practical and are being developed. Furthermore, a current lead with an intermediate heat leak intercept has been successfully demonstrated in a multiple current lead assembly employing HTSC. These design and application considerations of high temperature superconducting current leads are addressed here

  11. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.

    Science.gov (United States)

    Jaakson, K; Zernant, J; Külm, M; Hutchinson, A; Tonisson, N; Glavac, D; Ravnik-Glavac, M; Hawlina, M; Meltzer, M R; Caruso, R C; Testa, F; Maugeri, A; Hoyng, C B; Gouras, P; Simonelli, F; Lewis, R A; Lupski, J R; Cremers, F P M; Allikmets, R

    2003-11-01

    Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics have been complicated by substantial allelic heterogeneity and by differences in screening methods. To overcome these limitations, we designed a genotyping microarray (gene chip) for ABCR that includes all approximately 400 disease-associated and other variants currently described, enabling simultaneous detection of all known ABCR variants. The ABCR genotyping microarray (the ABCR400 chip) was constructed by the arrayed primer extension (APEX) technology. Each sequence change in ABCR was included on the chip by synthesis and application of sequence-specific oligonucleotides. We validated the chip by screening 136 confirmed STGD patients and 96 healthy controls, each of whom we had analyzed previously by single strand conformation polymorphism (SSCP) technology and/or heteroduplex analysis. The microarray was >98% effective in determining the existing genetic variation and was comparable to direct sequencing in that it yielded many sequence changes undetected by SSCP. In STGD patient cohorts, the efficiency of the array to detect disease-associated alleles was between 54% and 78%, depending on the ethnic composition and degree of clinical and molecular characterization of a cohort. In addition, chip analysis suggested a high carrier frequency (up to 1:10) of ABCR variants in the general population. The ABCR genotyping microarray is a robust, cost-effective, and comprehensive screening tool for variation in one gene in which mutations are responsible for a substantial fraction of retinal disease. The ABCR chip is a prototype for the next generation of screening and diagnostic tools in ophthalmic genetics, bridging clinical and scientific research. Copyright 2003 Wiley

  12. Pulse current gas metal arc welding characteristics, control and applications

    CERN Document Server

    Ghosh, Prakriti Kumar

    2017-01-01

    This monograph is a first-of-its-kind compilation on high deposition pulse current GMAW process. The nine chapters of this monograph may serve as a comprehensive knowledge tool to use advanced welding engineering in prospective applications. The contents of this book will prove useful to the shop floor welding engineer in handling this otherwise critical welding process with confidence. It will also serve to inspire researchers to think critically on more versatile applications of the unique nature of pulse current in GMAW process to develop cutting edge welding technology.

  13. The electromagnetic spectrum: current and future applications in oncology.

    Science.gov (United States)

    Allison, Ron R

    2013-05-01

    The electromagnetic spectrum is composed of waves of various energies that interact with matter. When focused upon and directed at tumors, these energy sources can be employed as a means of lesion ablation. While the use of x-rays is widely known in this regard, a growing body of evidence shows that other members of this family can also achieve oncologic success. This article will review therapeutic application of the electromagnetic spectrum in current interventions and potential future applications.

  14. Nanomaterials in Food - Current and Future Applications and Regulatory Aspects

    Science.gov (United States)

    Aschberger, K.; Gottardo, S.; Amenta, V.; Arena, M.; Botelho Moniz, F.; Bouwmeester, H.; Brandhoff, P.; Mech, A.; Quiros Pesudo, L.; Rauscher, H.; Schoonjans, R.; Vittoria Vettori, M.; Peters, R.

    2015-05-01

    Nanotechnology can contribute to the development of innovative applications in the agriculture, food and feed sector by e.g. enabling improved delivery of nutrients or increased efficacy of agrichemicals. It is expected that applications will increase in the near future and may therefore become a relevant source of human exposure to nanomaterials (NM). To gain more up-to date information, RIKILT and the Joint Research Centre (JRC) were commissioned by the European Food Safety Authority (EFSA) to prepare an inventory of currently used and reasonably foreseen applications of NM in agriculture and food/feed production and carried out a review of regulatory aspects concerning NM in both EU and non-EU countries. An analysis of the information records in the inventory shows that nano-encapsulates, silver and titanium dioxide are the most frequent type of NM listed and that food additives and food contact materials are the most frequent types of application. A comparison between marketed applications and those in development indicates a trend from inorganic materials (e.g. silver) towards organic materials (nano-encapsulates, nanocomposites). Applications in novel food, feed additives, biocides and pesticides are currently mostly at a developmental stage. The review of EU and non-EU legislation shows that currently a few EU legal acts incorporate a definition of a nanomaterial and specific provisions for NM, whereas in many non-EU countries a broader approach is applied, which mainly builds on guidance for industry.

  15. Nanomaterials in Food - Current and Future Applications and Regulatory Aspects

    International Nuclear Information System (INIS)

    Aschberger, K; Gottardo, S; Amenta, V; Arena, M; Moniz, F Botelho; Mech, A; Pesudo, L Quiros; Rauscher, H; Bouwmeester, H; Brandhoff, P; Peters, R; Schoonjans, R; Vettori, M Vittoria

    2015-01-01

    Nanotechnology can contribute to the development of innovative applications in the agriculture, food and feed sector by e.g. enabling improved delivery of nutrients or increased efficacy of agrichemicals. It is expected that applications will increase in the near future and may therefore become a relevant source of human exposure to nanomaterials (NM). To gain more up-to date information, RIKILT and the Joint Research Centre (JRC) were commissioned by the European Food Safety Authority (EFSA) to prepare an inventory of currently used and reasonably foreseen applications of NM in agriculture and food/feed production and carried out a review of regulatory aspects concerning NM in both EU and non-EU countries. An analysis of the information records in the inventory shows that nano-encapsulates, silver and titanium dioxide are the most frequent type of NM listed and that food additives and food contact materials are the most frequent types of application. A comparison between marketed applications and those in development indicates a trend from inorganic materials (e.g. silver) towards organic materials (nano-encapsulates, nanocomposites). Applications in novel food, feed additives, biocides and pesticides are currently mostly at a developmental stage. The review of EU and non-EU legislation shows that currently a few EU legal acts incorporate a definition of a nanomaterial and specific provisions for NM, whereas in many non-EU countries a broader approach is applied, which mainly builds on guidance for industry. (paper)

  16. Plant cell engineering: current research, application and future prospects

    International Nuclear Information System (INIS)

    Wang Xunqing; Liu Luxiang

    2008-01-01

    This paper reviewed the current status of basic research in plant cell engineering, highlighted the application of embryo culture, double haploid (DH) technology, protoplast culture and somatic hybridization, somaclonal variation, rapid propagation, and bio-products production of plant-origin, and t he prospects. (authors)

  17. [Application of single nucleotide polymorphism-microarray and target gene sequencing in the study of genetic etiology of children with unexplained intellectual disability or developmental delay].

    Science.gov (United States)

    Gao, Z J; Jiang, Q; Cheng, D Z; Yan, X X; Chen, Q; Xu, K M

    2016-10-02

    Objective: To evaluate the application of single nucleotide polymorphism (SNP)-microarray and target gene sequencing technology in the clinical molecular genetic diagnosis of unexplained intellectual disability(ID) or developmental delay (DD). Method: Patients with ID or DD were recruited in the Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics between September 2015 and February 2016. The intellectual assessment of the patients was performed using 0-6-year-old pediatric examination table of neuropsychological development or Wechsler intelligence scale (>6 years). Patients with a DQ less than 49 or IQ less than 51 were included in this study. The patients were scanned by SNP-array for detection of genomic copy number variations (CNV), and the revealed genomic imbalance was confirmed by quantitative real time-PCR. Candidate gene mutation screening was carried out by target gene sequencing technology.Causal mutations or likely pathogenic variants were verified by polymerase chain reaction and direct sequencing. Result: There were 15 children with ID or DD enrolled, 9 males and 6 females. The age of these patients was 7 months-16 years and 9 months. SNP-array revealed that two of the 15 patients had genomic CNV. Both CNV were de novo micro deletions, one involved 11q24.1q25 and the other micro deletion located on 21q22.2q22.3. Both micro deletions were proved to have a clinical significance due to their association with ID, brain DD, unusual faces etc. by querying Decipher database. Thirteen patients with negative findings in SNP-array were consequently examined with target gene sequencing technology, genotype-phenotype correlation analysis and genetic analysis. Five patients were diagnosed with monogenic disorder, two were diagnosed with suspected genetic disorder and six were still negative. Conclusion: Sequential use of SNP-array and target gene sequencing technology can significantly increase the molecular genetic etiologic

  18. Rapid Diagnosis of Bacterial Meningitis Using a Microarray

    Directory of Open Access Journals (Sweden)

    Ren-Jy Ben

    2008-06-01

    Conclusion: The microarray method provides a more accurate and rapid diagnostic tool for bacterial meningitis compared to traditional culture methods. Clinical application of this new technique may reduce the potential risk of delay in treatment.

  19. cDNA microarray screening in food safety

    International Nuclear Information System (INIS)

    Roy, Sashwati; Sen, Chandan K.

    2006-01-01

    The cDNA microarray technology and related bioinformatics tools presents a wide range of novel application opportunities. The technology may be productively applied to address food safety. In this mini-review article, we present an update highlighting the late breaking discoveries that demonstrate the vitality of cDNA microarray technology as a tool to analyze food safety with reference to microbial pathogens and genetically modified foods. In order to bring the microarray technology to mainstream food safety, it is important to develop robust user-friendly tools that may be applied in a field setting. In addition, there needs to be a standardized process for regulatory agencies to interpret and act upon microarray-based data. The cDNA microarray approach is an emergent technology in diagnostics. Its values lie in being able to provide complimentary molecular insight when employed in addition to traditional tests for food safety, as part of a more comprehensive battery of tests

  20. The use of microarrays in microbial ecology

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, G.L.; He, Z.; DeSantis, T.Z.; Brodie, E.L.; Zhou, J.

    2009-09-15

    Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogenetic microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer

  1. Marine current energy devices: Current status and possible future applications in Ireland

    International Nuclear Information System (INIS)

    Rourke, Fergal O.; Boyle, Fergal; Reynolds, Anthony

    2010-01-01

    There is a growing demand for the use of renewable energy technologies to generate electricity due to concerns over climate change. The oceans provide a huge potential resource of energy. Energy extraction using marine current energy devices (MCEDs) offers a sustainable alternative to conventional sources and a predictable alternative to other renewable energy technologies. A MCED utilises the kinetic energy of the tides as opposed to the potential energy which is utilised by a tidal barrage. Over the past decade MCEDs have become an increasingly popular method of energy extraction. However, marine current energy technology is still not economically viable on a large scale due to its current stage of development. Ireland has an excellent marine current energy resource as it is an island nation and experiences excellent marine current flows. This paper reviews marine current energy devices, including a detailed up-to-date description of the current status of development. Issues such as network integration, economics, and environmental implications are addressed as well as the application and costs of MCEDs in Ireland. (author)

  2. Development of a Schistosoma mansoni shotgun O-glycan microarray and application to the discovery of new antigenic schistosome glycan motifs.

    Science.gov (United States)

    van Diepen, Angela; van der Plas, Arend-Jan; Kozak, Radoslaw P; Royle, Louise; Dunne, David W; Hokke, Cornelis H

    2015-06-01

    Upon infection with Schistosoma, antibody responses are mounted that are largely directed against glycans. Over the last few years significant progress has been made in characterising the antigenic properties of N-glycans of Schistosoma mansoni. Despite also being abundantly expressed by schistosomes, much less is understood about O-glycans and antibody responses to these have not yet been systematically analysed. Antibody binding to schistosome glycans can be analysed efficiently and quantitatively using glycan microarrays, but O-glycan array construction and exploration is lagging behind because no universal O-glycanase is available, and release of O-glycans has been dependent on chemical methods. Recently, a modified hydrazinolysis method has been developed that allows the release of O-glycans with free reducing termini and limited degradation, and we applied this method to obtain O-glycans from different S. mansoni life stages. Two-dimensional HPLC separation of 2-aminobenzoic acid-labelled O-glycans generated 362 O-glycan-containing fractions that were printed on an epoxide-modified glass slide, thereby generating the first shotgun O-glycan microarray containing naturally occurring schistosome O-glycans. Monoclonal antibodies and mass spectrometry showed that the O-glycan microarray contains well-known antigenic glycan motifs as well as numerous other, potentially novel, antibody targets. Incubations of the microarrays with sera from Schistosoma-infected humans showed substantial antibody responses to O-glycans in addition to those observed to the previously investigated N- and glycosphingolipid glycans. This underlines the importance of the inclusion of these often schistosome-specific O-glycans in glycan antigen studies and indicates that O-glycans contain novel antigenic motifs that have potential for use in diagnostic methods and studies aiming at the discovery of vaccine targets. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights

  3. Development of a Genome-Proxy Microarray for Profiling Marine Microbial Communities and its Application to a Time Series in Monterey Bay, California

    Science.gov (United States)

    2008-09-01

    AutoGenprep 960 ( AutoGen , Holliston, Massachusetts) auto- mated extraction robot, followed by treatment to digest Eschehchia coli DNA with ATP-dependent...Acknowledgements We thank Joseph DeRisi and David Wang for advice about array design, Andrew Gracey and George Somero for microarray training , Dennis Ryan for...computational assis- tance, Penny Chisholm for incubator space and inocula for growing the Prochlorococcus cultures, and Matthew Sullivan for training

  4. FiGS: a filter-based gene selection workbench for microarray data

    Directory of Open Access Journals (Sweden)

    Yun Taegyun

    2010-01-01

    Full Text Available Abstract Background The selection of genes that discriminate disease classes from microarray data is widely used for the identification of diagnostic biomarkers. Although various gene selection methods are currently available and some of them have shown excellent performance, no single method can retain the best performance for all types of microarray datasets. It is desirable to use a comparative approach to find the best gene selection result after rigorous test of different methodological strategies for a given microarray dataset. Results FiGS is a web-based workbench that automatically compares various gene selection procedures and provides the optimal gene selection result for an input microarray dataset. FiGS builds up diverse gene selection procedures by aligning different feature selection techniques and classifiers. In addition to the highly reputed techniques, FiGS diversifies the gene selection procedures by incorporating gene clustering options in the feature selection step and different data pre-processing options in classifier training step. All candidate gene selection procedures are evaluated by the .632+ bootstrap errors and listed with their classification accuracies and selected gene sets. FiGS runs on parallelized computing nodes that capacitate heavy computations. FiGS is freely accessible at http://gexp.kaist.ac.kr/figs. Conclusion FiGS is an web-based application that automates an extensive search for the optimized gene selection analysis for a microarray dataset in a parallel computing environment. FiGS will provide both an efficient and comprehensive means of acquiring optimal gene sets that discriminate disease states from microarray datasets.

  5. Computational biology of genome expression and regulation--a review of microarray bioinformatics.

    Science.gov (United States)

    Wang, Junbai

    2008-01-01

    Microarray technology is being used widely in various biomedical research areas; the corresponding microarray data analysis is an essential step toward the best utilizing of array technologies. Here we review two components of the microarray data analysis: a low level of microarray data analysis that emphasizes the designing, the quality control, and the preprocessing of microarray experiments, then a high level of microarray data analysis that focuses on the domain-specific microarray applications such as tumor classification, biomarker prediction, analyzing array CGH experiments, and reverse engineering of gene expression networks. Additionally, we will review the recent development of building a predictive model in genome expression and regulation studies. This review may help biologists grasp a basic knowledge of microarray bioinformatics as well as its potential impact on the future evolvement of biomedical research fields.

  6. Enhanced current and voltage regulators for stand-alone applications

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michele; Antonio DeSouza Ribeiro, Luiz

    2016-01-01

    State feedback decoupling permits to achieve a better dynamic response for Voltage Source in stand-alone applications. The design of current and voltage regulators is performed in the discrete-time domain since it provides better accuracy and allows direct pole placement. As the attainable...... bandwidth of the current loop is mainly limited by computational and PWM delays, a lead compensator structure is proposed to overcome this limitation. The design of the voltage regulator is based on the Nyquist criterion, verifying to guarantee a high sensitivity peak. Discrete-time domain implementation...

  7. Resistive coating for current conductors in cryogenic applications

    International Nuclear Information System (INIS)

    Hirayama, C.; Wagner, G.R.

    1982-01-01

    This invention relates to a resistive or semiconducting coating for use on current conductors in cryogenic applications. This includes copper-clad superconductor wire, copper wire used for stabilizing superconductor magnets, and for hyperconductors. The coating is a film of cuprous sulfide (Cu2S) that has been found not to degrade the properties of the conductors. It is very adherent to the respective conductors and satisfies the mechanical, thermal and electrical requirements of coatings for the conductors

  8. Nanotechnology: current uses and future applications in the food industry.

    Science.gov (United States)

    Thiruvengadam, Muthu; Rajakumar, Govindasamy; Chung, Ill-Min

    2018-01-01

    Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.

  9. Impedimetric biosensors for medical applications current progress and challenges

    CERN Document Server

    Rushworth, Jo V; Goode, Jack A; Pike, Douglas J; Ahmed, Asif; Millner, Paul

    2014-01-01

    In this monograph, the authors discuss the current progress in the medical application of impedimetric biosensors, along with the key challenges in the field. First, a general overview of biosensor development, structure and function is presented, followed by a detailed discussion of impedimetric biosensors and the principles of electrochemical impedance spectroscopy. Next, the current state-of-the art in terms of the science and technology underpinning impedance-based biosensors is reviewed in detail. The layer-by-layer construction of impedimetric sensors is described, including the design of electrodes, their nano-modification, transducer surface functionalization and the attachment of different bioreceptors. The current challenges of translating lab-based biosensor platforms into commercially-available devices that function with real patient samples at the POC are presented; this includes a consideration of systems integration, microfluidics and biosensor regeneration. The final section of this monograph ...

  10. Microarray Dot Electrodes Utilizing Dielectrophoresis for Cell Characterization

    Directory of Open Access Journals (Sweden)

    Fatimah Ibrahim

    2013-07-01

    Full Text Available During the last three decades; dielectrophoresis (DEP has become a vital tool for cell manipulation and characterization due to its non-invasiveness. It is very useful in the trend towards point-of-care systems. Currently, most efforts are focused on using DEP in biomedical applications, such as the spatial manipulation of cells, the selective separation or enrichment of target cells, high-throughput molecular screening, biosensors and immunoassays. A significant amount of research on DEP has produced a wide range of microelectrode configurations. In this paper; we describe the microarray dot electrode, a promising electrode geometry to characterize and manipulate cells via DEP. The advantages offered by this type of microelectrode are also reviewed. The protocol for fabricating planar microelectrodes using photolithography is documented to demonstrate the fast and cost-effective fabrication process. Additionally; different state-of-the-art Lab-on-a-Chip (LOC devices that have been proposed for DEP applications in the literature are reviewed. We also present our recently designed LOC device, which uses an improved microarray dot electrode configuration to address the challenges facing other devices. This type of LOC system has the capability to boost the implementation of DEP technology in practical settings such as clinical cell sorting, infection diagnosis, and enrichment of particle populations for drug development.

  11. Tissue Microarray Analysis Applied to Bone Diagenesis

    OpenAIRE

    Barrios Mello, Rafael; Regis Silva, Maria Regina; Seixas Alves, Maria Teresa; Evison, Martin; Guimarães, Marco Aurélio; Francisco, Rafaella Arrabaça; Dias Astolphi, Rafael; Miazato Iwamura, Edna Sadayo

    2017-01-01

    Taphonomic processes affecting bone post mortem are important in forensic, archaeological and palaeontological investigations. In this study, the application of tissue microarray (TMA) analysis to a sample of femoral bone specimens from 20 exhumed individuals of known period of burial and age at death is described. TMA allows multiplexing of subsamples, permitting standardized comparative analysis of adjacent sections in 3-D and of representative cross-sections of a large number of specimens....

  12. Identifying Fishes through DNA Barcodes and Microarrays.

    Directory of Open Access Journals (Sweden)

    Marc Kochzius

    2010-09-01

    Full Text Available International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection.This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S, cytochrome b (cyt b, and cytochrome oxidase subunit I (COI for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90% renders the DNA barcoding marker as rather unsuitable for this high-throughput technology.Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.

  13. 3D bioprinting and the current applications in tissue engineering.

    Science.gov (United States)

    Huang, Ying; Zhang, Xiao-Fei; Gao, Guifang; Yonezawa, Tomo; Cui, Xiaofeng

    2017-08-01

    Bioprinting as an enabling technology for tissue engineering possesses the promises to fabricate highly mimicked tissue or organs with digital control. As one of the biofabrication approaches, bioprinting has the advantages of high throughput and precise control of both scaffold and cells. Therefore, this technology is not only ideal for translational medicine but also for basic research applications. Bioprinting has already been widely applied to construct functional tissues such as vasculature, muscle, cartilage, and bone. In this review, the authors introduce the most popular techniques currently applied in bioprinting, as well as the various bioprinting processes. In addition, the composition of bioink including scaffolds and cells are described. Furthermore, the most current applications in organ and tissue bioprinting are introduced. The authors also discuss the challenges we are currently facing and the great potential of bioprinting. This technology has the capacity not only in complex tissue structure fabrication based on the converted medical images, but also as an efficient tool for drug discovery and preclinical testing. One of the most promising future advances of bioprinting is to develop a standard medical device with the capacity of treating patients directly on the repairing site, which requires the development of automation and robotic technology, as well as our further understanding of biomaterials and stem cell biology to integrate various printing mechanisms for multi-phasic tissue engineering. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Eddy Current Thermography: System Development and Its Application in NDT

    International Nuclear Information System (INIS)

    Nurliyana Shamimie Rusli; Ilham Mukriz Zainal Abidin; Sidek, H.A.A.

    2015-01-01

    Eddy Current Thermography (ECT) is an integrative technique which combines eddy current and thermographic NDT in order to provide an efficient method for defect detection. The technique is applicable to electrically conductive material and has the ability to detect surface and subsurface defect. ECT is a non-contact technique; has the ability to provide instantaneous response and high scanning speed that makes it reliable for defect detection and assessment. The technique combines electromagnetic excitation of the work-piece via a coil carrying current, heating of the material by induction and inspection by transient infrared thermography. In this paper, the development of ECT system is detailed, including coil design for global and local heating of samples, and optimisation of excitation parameters (frequency, power, heating duration etc). Results from 3D FEM simulation and experimental investigations are also presented to provide the overview of underlying phenomena and application of ECT. The work demonstrates the effectiveness of the developed ECT system and technique in defect detection and assessment. (author)

  15. Current status of postnatal depression smartphone applications available on application stores: an information quality analysis.

    Science.gov (United States)

    Zhang, Melvyn Wb; Ho, Roger Cm; Loh, Alvona; Wing, Tracey; Wynne, Olivia; Chan, Sally Wai Chi; Car, Josip; Fung, Daniel Shuen Sheng

    2017-11-14

    It is the aim of the current research to identify some common functionalities of postnatal application, and to determine the quality of the information content of postnatal depression application using validated scales that have been applied for applications in other specialties. To determine the information quality of the postnatal depression smartphone applications, the two most widely used smartphone application stores, namely Apple iTunes as well as Google Android Play store, were searched between 20May and 31 May. No participants were involved. The inclusion criteria for the application were that it must have been searchable using the keywords 'postnatal', 'pregnancy', 'perinatal', 'postpartum' and 'depression', and must be in English language. The Silberg Scale was used in the assessment of the information quality of the smartphone applications. The information quality score was the primary outcome measure. Our current results highlighted that while there is currently a myriad of applications, only 14 applications are specifically focused on postnatal depression. In addition, the majority of the currently available applications on the store have only disclosed their last date of modification as well as ownership. There remain very limited disclosures about the information of the authors, as well as the references for the information included in the application itself. The average score for the Silberg Scale for the postnatal applications we have analysed is 3.0. There remains a need for healthcare professionals and developers to jointly conceptualise new applications with better information quality and evidence base. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Mineralized Collagen: Rationale, Current Status, and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Zhi-Ye Qiu

    2015-07-01

    Full Text Available This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.

  17. Current high-temperature superconducting coils and applications in Japan

    International Nuclear Information System (INIS)

    Matsushita, T.

    2000-01-01

    In Japan, four projects for the application of Bi-based superconducting magnets to practical apparatus are currently underway. These projects involve the development of an insert magnet for a 1 GHz nuclear magnetic resonance spectrometer, a magnet for a silicon single-crystal pulling apparatus, a magnet for a magnetic separation system, and a 1 T pulse magnet for a superconducting magnet energy storage system. For example, the magnet for the silicon single-crystal pulling apparatus is of the class with stored energy of 1 MJ to be operated at around 20 K. This review focuses on the present status of the development of these magnets, followed by a discussion of the problems of the present superconducting tapes that need to be overcome for future applications. (author)

  18. PET imaging in pediatric neuroradiology: current and future applications

    International Nuclear Information System (INIS)

    Kim, Sunhee; Salamon, Noriko; Jackson, Hollie A.; Blueml, Stefan; Panigrahy, Ashok

    2010-01-01

    Molecular imaging with positron emitting tomography (PET) is widely accepted as an essential part of the diagnosis and evaluation of neoplastic and non-neoplastic disease processes. PET has expanded its role from the research domain into clinical application for oncology, cardiology and neuropsychiatry. More recently, PET is being used as a clinical molecular imaging tool in pediatric neuroimaging. PET is considered an accurate and noninvasive method to study brain activity and to understand pediatric neurological disease processes. In this review, specific examples of the clinical use of PET are given with respect to pediatric neuroimaging. The current use of co-registration of PET with MR imaging is exemplified in regard to pediatric epilepsy. The current use of PET/CT in the evaluation of head and neck lymphoma and pediatric brain tumors is also reviewed. Emerging technologies including PET/MRI and neuroreceptor imaging are discussed. (orig.)

  19. PET imaging in pediatric neuroradiology: current and future applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunhee [Children' s Hospital of Pittsburgh of UPMC, Department of Radiology, Pittsburgh, PA (United States); Salamon, Noriko [UCLA David Geffen School of Medicine at UCLA, Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA (United States); Jackson, Hollie A.; Blueml, Stefan [Keck School of Medicine of USC, Department of Radiology, Childrens Hospital Los Angeles, Los Angeles, CA (United States); Panigrahy, Ashok [Children' s Hospital of Pittsburgh of UPMC, Department of Radiology, Pittsburgh, PA (United States); Keck School of Medicine of USC, Department of Radiology, Childrens Hospital Los Angeles, Los Angeles, CA (United States)

    2010-01-15

    Molecular imaging with positron emitting tomography (PET) is widely accepted as an essential part of the diagnosis and evaluation of neoplastic and non-neoplastic disease processes. PET has expanded its role from the research domain into clinical application for oncology, cardiology and neuropsychiatry. More recently, PET is being used as a clinical molecular imaging tool in pediatric neuroimaging. PET is considered an accurate and noninvasive method to study brain activity and to understand pediatric neurological disease processes. In this review, specific examples of the clinical use of PET are given with respect to pediatric neuroimaging. The current use of co-registration of PET with MR imaging is exemplified in regard to pediatric epilepsy. The current use of PET/CT in the evaluation of head and neck lymphoma and pediatric brain tumors is also reviewed. Emerging technologies including PET/MRI and neuroreceptor imaging are discussed. (orig.)

  20. [Current status and clinical application prospect of Akabane's test].

    Science.gov (United States)

    Wang, Wenjie; Du, Yanjun

    2016-06-12

    The Akabane's test is one of the meridian diagnostic methods. Compared with the current meridian diagnostic methods, it has the advantages of convenience and efficiency, but it also has several disadvantages such as the accuracy is difficult to control, the outcome interpretation is limited, etc. In this paper, the influence factors of Akabane's test were analyzed one by one, especially proposed personal opinion on outcome interpretation, which could ascertain the location and nature of disease, leading to disease syndrome. With accurate syndrome, the treatment plan could be established. The application prospect of Akabane's test was initially explored, and it was proposed that wearable automation equipment could be one of the development directions.

  1. Small Wind Turbine Applications: Current Practice in Colorado

    International Nuclear Information System (INIS)

    Green, Jim

    1999-01-01

    Numerous small wind turbines are being used by homeowners in Colorado. Some of these installations are quite recent while others date back to the federal tax-credit era of the early 1980s. Through visits with small wind turbine owners in Colorado, I have developed case studies of six small wind energy applications focusing on the wind turbine technology, wind turbine siting, the power systems and electric loads, regulatory issues, and motivations about wind energy. These case studies offer a glimpse into the current state-of-the-art of small-scale wind energy and provide some insight into issues affecting development of a wider market

  2. Thermoelectric microgenerators. Current status and prospects of application

    Directory of Open Access Journals (Sweden)

    Strutynska L. T.

    2008-08-01

    Full Text Available Analysis of current status and prospects of using thermoelectric microgenerators, including organic-fueled ones, is performed. Developments of thermoelectric microgenerators presented in this review demonstrate that their increasingly wide use forms a separate, very important line of thermoelectricity – micropower generation with growing potential of practical applications for charging batteries, mobile phones, digital cameras and photocameras, power supply to small radio stations, other portable devices, including medical. The ways of increasing the efficiency of such devices and relevant lines of their wide use in practice are determined.

  3. Facilitating RNA structure prediction with microarrays.

    Science.gov (United States)

    Kierzek, Elzbieta; Kierzek, Ryszard; Turner, Douglas H; Catrina, Irina E

    2006-01-17

    Determining RNA secondary structure is important for understanding structure-function relationships and identifying potential drug targets. This paper reports the use of microarrays with heptamer 2'-O-methyl oligoribonucleotides to probe the secondary structure of an RNA and thereby improve the prediction of that secondary structure. When experimental constraints from hybridization results are added to a free-energy minimization algorithm, the prediction of the secondary structure of Escherichia coli 5S rRNA improves from 27 to 92% of the known canonical base pairs. Optimization of buffer conditions for hybridization and application of 2'-O-methyl-2-thiouridine to enhance binding and improve discrimination between AU and GU pairs are also described. The results suggest that probing RNA with oligonucleotide microarrays can facilitate determination of secondary structure.

  4. Mining meiosis and gametogenesis with DNA microarrays.

    Science.gov (United States)

    Schlecht, Ulrich; Primig, Michael

    2003-04-01

    Gametogenesis is a key developmental process that involves complex transcriptional regulation of numerous genes including many that are conserved between unicellular eukaryotes and mammals. Recent expression-profiling experiments using microarrays have provided insight into the co-ordinated transcription of several hundred genes during mitotic growth and meiotic development in budding and fission yeast. Furthermore, microarray-based studies have identified numerous loci that are regulated during the cell cycle or expressed in a germ-cell specific manner in eukaryotic model systems like Caenorhabditis elegans, Mus musculus as well as Homo sapiens. The unprecedented amount of information produced by post-genome biology has spawned novel approaches to organizing biological knowledge using currently available information technology. This review outlines experiments that contribute to an emerging comprehensive picture of the molecular machinery governing sexual reproduction in eukaryotes.

  5. Current and Perspective Applications of Dense Plasma Focus Devices

    Science.gov (United States)

    Gribkov, V. A.

    2008-04-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  6. Current and Perspective Applications of Dense Plasma Focus Devices

    International Nuclear Information System (INIS)

    Gribkov, V. A.

    2008-01-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement--MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy

  7. The current status of laser applications in dentistry.

    Science.gov (United States)

    Walsh, L J

    2003-09-01

    A range of lasers is now available for use in dentistry. This paper summarizes key current and emerging applications for lasers in clinical practice. A major diagnostic application of low power lasers is the detection of caries, using fluorescence elicited from hydroxyapatite or from bacterial by-products. Laser fluorescence is an effective method for detecting and quantifying incipient occlusal and cervical carious lesions, and with further refinement could be used in the same manner for proximal lesions. Photoactivated dye techniques have been developed which use low power lasers to elicit a photochemical reaction. Photoactivated dye techniques can be used to disinfect root canals, periodontal pockets, cavity preparations and sites of peri-implantitis. Using similar principles, more powerful lasers can be used for photodynamic therapy in the treatment of malignancies of the oral mucosa. Laser-driven photochemical reactions can also be used for tooth whitening. In combination with fluoride, laser irradiation can improve the resistance of tooth structure to demineralization, and this application is of particular benefit for susceptible sites in high caries risk patients. Laser technology for caries removal, cavity preparation and soft tissue surgery is at a high state of refinement, having had several decades of development up to the present time. Used in conjunction with or as a replacement for traditional methods, it is expected that specific laser technologies will become an essential component of contemporary dental practice over the next decade.

  8. High current pulsed linear ion accelerators for inertial fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Yonas, G.; Poukey, J.W.

    1978-01-01

    Pulsed ion beams have a number of advantages for use as inertial fusion drivers. Among these are classical interaction with targets and good efficiency of production. As has been pointed out by members of the accelerator community, multistage accelerators are attractive in this context because of lower current requirements, low power flow per energy conversion stage and low beam divergence at higher ion energies. On the other hand, current transport limits in conventional accelerators constrain them to the use of heavy ions at energies much higher than those needed to meet the divergence requirements, resulting in large, costly systems. We have studied methods of neutralizing ion beams with electrons within the accelerator volume to achieve higher currents. The aim is to arrive at an inexpensive accelerator that can advantageously use existing pulsed voltage technology while being conservative enough to achieve a high repetition rate. Typical output parameters for reactor applications would be an 0 + beam of 30 kA at 300 MeV. We will describe reactor scaling studies and the physics of neutralized linear accelerators using magnetic fields to control the electron dynamics. Recent results are discussed from PULSELAC, a five stage multikiloampere device being tested at Sandia Laboratories

  9. Liquid metal current collector applications and material compatibility

    International Nuclear Information System (INIS)

    Carr, S.L.; Stevens, H.O.

    1978-01-01

    The objective of this paper has been to summarize briefly the material considerations involved in the development of liquid metal current collectors for homopolar machinery applications. A significant amount of data in this regard has been obtained over the last several years by individual researchers for NaK exposure conditions. However, NaK material compatibility data over the entire time and temperature range of interest is highly desirable. At DTNSRDC, a 300 kW superconducting homopolar motor and generator are under test, both utilizing free surface tongue-and-groove current collectors with NaK as the working fluid. In addition to demonstrating the feasibility of other aspects of machine design, the intention is to use these machines as vehicles for testing of the several liquid metal current collector concepts which are considered worthwhile candidates for incorporation in future full-scale machines. It is likely that the optimal collector approach for a large low speed motor may be quite different from that for a smaller high speed generator, possibly involving the use of different liquid metals

  10. Application of microarray and functional-based screening methods for the detection of antimicrobial resistance genes in the microbiomes of healthy humans.

    Directory of Open Access Journals (Sweden)

    Roderick M Card

    Full Text Available The aim of this study was to screen for the presence of antimicrobial resistance genes within the saliva and faecal microbiomes of healthy adult human volunteers from five European countries. Two non-culture based approaches were employed to obviate potential bias associated with difficult to culture members of the microbiota. In a gene target-based approach, a microarray was employed to screen for the presence of over 70 clinically important resistance genes in the saliva and faecal microbiomes. A total of 14 different resistance genes were detected encoding resistances to six antibiotic classes (aminoglycosides, β-lactams, macrolides, sulphonamides, tetracyclines and trimethoprim. The most commonly detected genes were erm(B, blaTEM, and sul2. In a functional-based approach, DNA prepared from pooled saliva samples was cloned into Escherichia coli and screened for expression of resistance to ampicillin or sulphonamide, two of the most common resistances found by array. The functional ampicillin resistance screen recovered genes encoding components of a predicted AcrRAB efflux pump. In the functional sulphonamide resistance screen, folP genes were recovered encoding mutant dihydropteroate synthase, the target of sulphonamide action. The genes recovered from the functional screens were from the chromosomes of commensal species that are opportunistically pathogenic and capable of exchanging DNA with related pathogenic species. Genes identified by microarray were not recovered in the activity-based screen, indicating that these two methods can be complementary in facilitating the identification of a range of resistance mechanisms present within the human microbiome. It also provides further evidence of the diverse reservoir of resistance mechanisms present in bacterial populations in the human gut and saliva. In future the methods described in this study can be used to monitor changes in the resistome in response to antibiotic therapy.

  11. Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB.

    Science.gov (United States)

    Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N

    2009-10-27

    The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime. Gene ARMADA provides a

  12. Applications of CIVA NDE 10 on Eddy Current Modeling

    International Nuclear Information System (INIS)

    Nurul Ain Ahmad Latif; Ilham Mukhriz Zainal Abidin; AABdul Razak Hamzah

    2011-01-01

    CIVA NDE 10 is the simulation software and used as the platform to develop the models dedicated to Eddy Current testing (ET). It has various application in semi analytical modeling approaches. The focus of this paper is to simulate the signals response on the 40 % external groove of the Inconel 600 heat exchanger tubes with outside diameter of 22.22 mm. The inspection were simulated using 17 mm outside diameter differential probe with 100 kHz and 500 kHZ testing frequency. All the simulation results were validated using the experimental results integrated in the CIVA software. The configurations of the probe and tube consisting the flaw show the good agreement between the experimental and the simulated data. (author)

  13. Spectrum Analyzer Application for the Proton Synchrotron Wall Current Monitors

    CERN Document Server

    Limpens, Rik

    The Proton Synchrotron (PS) is a key component in CERN's accelerator complex, where it usually accelerates either protons or heavy ions. The new acquisition system for the PS ring wall current monitors has been installed to be able to perform higher frequency measurements of a beam bunch. This is an important improvement, since the oscillating signals are related to losses of a beam bunch. The main goal of this project is to develop a LabVIEW application running on a Real-Time target to perform continuous and triggered spectral acquisition of a PS beam bunch and to provide a data visualization and analysis tool for the operators and users of the machine.

  14. Nanomedicines for renal disease: current status and future applications

    DEFF Research Database (Denmark)

    Kamaly, Nazila; He, John C.; Ausiello, Dennis A.

    2016-01-01

    , alongside research efforts in tissue regeneration and organ-on-a-chip investigations, are likely to provide novel solutions to treat kidney diseases. Our understanding of renal anatomy and of how the biological and physico-chemical properties of nanomedicines (the combination of a nanocarrier and a drug......Treatment and management of kidney disease currently presents an enormous global burden, and the application of nanotechnology principles to renal disease therapy, although still at an early stage, has profound transformative potential. The increasing translation of nanomedicines to the clinic......) influence their interactions with renal tissues has improved dramatically. Tailoring of nanomedicines in terms of kidney retention and binding to key membranes and cell populations associated with renal diseases is now possible and greatly enhances their localization, tolerability, and efficacy. This Review...

  15. Advanced Gas Tungsten Arc Weld Surfacing Current Status and Application

    Directory of Open Access Journals (Sweden)

    Stephan Egerland

    2015-09-01

    Full Text Available Abstract Gas Shielded Tungsten Arc Welding (GTAW – a process well-known providing highest quality weld results joined though by lower performance. Gas Metal Arc Welding (GMAW is frequently chosen to increase productivity along with broadly accepted quality. Those industry segments, especially required to produce high quality corrosion resistant weld surfacing e.g. applying nickel base filler materials, are regularly in consistent demand to comply with "zero defect" criteria. In this conjunction weld performance limitations are overcome employing advanced 'hot-wire' GTAW systems. This paper, from a Welding Automation perspective, describes the technology of such devices and deals with the current status is this field – namely the application of dual-cathode hot-wire electrode GTAW cladding; considerably broadening achievable limits.

  16. Screening hybridomas for anabolic androgenic steroids by steroid analog antigen microarray.

    Science.gov (United States)

    Du, Hongwu; Chen, Guangyu; Bian, Yongzhong; Xing, Cenzan; Ding, Xue; Zhu, Mengliang; Xun, Yiping; Chen, Peng; Zhou, Yabin; Li, Shaoxu

    2015-01-01

    Currently, dozens of anabolic androgenic steroids (AAS) are forbidden in the World Anti-Doping Agency Prohibited List, however, despite extensive investigation, there are still lots of AAS without corresponding monoclonal antibodies. A steroid analog antigen microarray made up of ten AAS was fabricated to screen the hybridoma and it was found an original unsuccessful clone turned out to be a candidate anti-boldenone antibody, without any cross-reactions with endogenous AAS or 44 different AAS standard reference materials tested. Our findings suggested that steroid analog antigen microarray could be a promising tool to screen and characterize new applications of antibodies for structure analogs, and this also exhibits the potential to fast identify effective epitopes of hybridomas in a single assay.

  17. Current and emerging applications of 3D printing in medicine.

    Science.gov (United States)

    Liaw, Chya-Yan; Guvendiren, Murat

    2017-06-07

    Three-dimensional (3D) printing enables the production of anatomically matched and patient-specific devices and constructs with high tunability and complexity. It also allows on-demand fabrication with high productivity in a cost-effective manner. As a result, 3D printing has become a leading manufacturing technique in healthcare and medicine for a wide range of applications including dentistry, tissue engineering and regenerative medicine, engineered tissue models, medical devices, anatomical models and drug formulation. Today, 3D printing is widely adopted by the healthcare industry and academia. It provides commercially available medical products and a platform for emerging research areas including tissue and organ printing. In this review, our goal is to discuss the current and emerging applications of 3D printing in medicine. A brief summary on additive manufacturing technologies and available printable materials is also given. The technological and regulatory barriers that are slowing down the full implementation of 3D printing in the medical field are also discussed.

  18. Current perspectives of CASA applications in diverse mammalian spermatozoa.

    Science.gov (United States)

    van der Horst, Gerhard; Maree, Liana; du Plessis, Stefan S

    2018-03-26

    Since the advent of computer-aided sperm analysis (CASA) some four decades ago, advances in computer technology and software algorithms have helped establish it as a research and diagnostic instrument for the analysis of spermatozoa. Despite mammalian spermatozoa being the most diverse cell type known, CASA is a great tool that has the capacity to provide rapid, reliable and objective quantitative assessment of sperm quality. This paper provides contemporary research findings illustrating the scientific and commercial applications of CASA and its ability to evaluate diverse mammalian spermatozoa (human, primates, rodents, domestic mammals, wildlife species) at both structural and functional levels. The potential of CASA to quantitatively measure essential aspects related to sperm subpopulations, hyperactivation, morphology and morphometry is also demonstrated. Furthermore, applications of CASA are provided for improved mammalian sperm quality assessment, evaluation of sperm functionality and the effect of different chemical substances or pathologies on sperm fertilising ability. It is clear that CASA has evolved significantly and is currently superior to many manual techniques in the research and clinical setting.

  19. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective

    Directory of Open Access Journals (Sweden)

    Munees Ahemad

    2014-01-01

    Full Text Available Plant growth promoting rhizobacteria are the soil bacteria inhabiting around/on the root surface and are directly or indirectly involved in promoting plant growth and development via production and secretion of various regulatory chemicals in the vicinity of rhizosphere. Generally, plant growth promoting rhizobacteria facilitate the plant growth directly by either assisting in resource acquisition (nitrogen, phosphorus and essential minerals or modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens on plant growth and development in the forms of biocontrol agents. Various studies have documented the increased health and productivity of different plant species by the application of plant growth promoting rhizobacteria under both normal and stressed conditions. The plant-beneficial rhizobacteria may decrease the global dependence on hazardous agricultural chemicals which destabilize the agro-ecosystems. This review accentuates the perception of the rhizosphere and plant growth promoting rhizobacteria under the current perspectives. Further, explicit outlooks on the different mechanisms of rhizobacteria mediated plant growth promotion have been described in detail with the recent development and research. Finally, the latest paradigms of applicability of these beneficial rhizobacteria in different agro-ecosystems have been presented comprehensively under both normal and stress conditions to highlight the recent trends with the aim to develop future insights.

  20. Current applications of human pluripotent stem cells: possibilities and challenges.

    Science.gov (United States)

    Ho, Pai-Jiun; Yen, Men-Luh; Yet, Shaw-Fang; Yen, B Linju

    2012-01-01

    Stem cells are self-renewable cells with the differentiation capacity to develop into somatic cells with biological functions. This ability to sustain a renewable source of multi- and/or pluripotential differentiation has brought new hope to the field of regenerative medicine in terms of cell therapy and tissue engineering. Moreover, stem cells are invaluable tools as in vitro models for studying diverse fields, from basic scientific questions such as developmental processes and lineage commitment, to practical application including drug screening and testing. The stem cells with widest differentiation potential are pluripotent stem cells (PSCs), which are rare cells with the ability to generate somatic cells from all three germ layers. PSCs are considered the most optimal choice for therapeutic potential of stem cells, bringing new impetus to the field of regenerative medicine. In this article, we discuss the therapeutic potential of human PSCs (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), reviewing the current preclinical and clinical data using these stem cells. We describe the classification of different sources of hPSCs, ongoing research, and currently encountered clinical obstacles of these novel and versatile human stem cells.

  1. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    Science.gov (United States)

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power

  2. Fluxgate Magnetic Sensor and Its Application for Current Measurement

    International Nuclear Information System (INIS)

    Mitra-Djamal

    2007-01-01

    Conventionally electric current can be measured by connecting the instrument serially on the circuit. This method has disadvantage because its disturb the measured current flow. By using a magnetic sensor, current can be measured without disturbing the current flow, because it just measures the magnetic field of the measured current. This paper shows the use of fluxgate magnetic sensor for current measurement. It is shown that the sensor can measure widely range of current with resolution ≤ 2 %. (author)

  3. Medicina genómica: Aplicaciones del polimorfismo de un nucleótido y micromatrices de ADN Genomic Medicine: Polymorphisms and microarray applications

    Directory of Open Access Journals (Sweden)

    Monica P. Spalvieri

    2004-12-01

    but the large number of papers on this subject makes feasible their entrance into clinical practice. We illustrate here the use of SNPs as molecular markers in ethnical genotyping, gene expression in some diseases and as potential targets in pharmacological response, and also introduce the technology of arrays. Microarrays experiments allow the quantification and comparison of gene expression on a large scale, at the same time, by using special chips and array designs. Conventional methods provide data from up to 20 genes, while a single microarray may provide information about thousands of them simultaneously, leading to a more rapid and accurate genotyping. Biotechnology improvements will facilitate our knowledge of each gene sequence, the frequency and exact location of SNPs and their influence on cellular behavior. Although experimental efficiency and validity of results from microarrays are still controversial, the knowledge and characterization of a patient's genetic profile will lead, undoubtedly, to advances in prevention, diagnosis, prognosis and treatment of human diseases.

  4. First improvements in the detection and quantification of label-free nucleic acids by laser-induced breakdown spectroscopy: Application to the deoxyribonucleic acid micro-array technology

    International Nuclear Information System (INIS)

    Le Meur, Julien; Menut, Denis; Wodling, Pascal; Salmon, Laurent; Thro, Pierre-Yves; Chevillard, Sylvie; Ugolin, Nicolas

    2008-01-01

    The accurate quantification of nucleic acids is essential in many fields of modern biology and industry, and in some cases requires the use of fluorescence labeling. Yet, in addition to standardization problems and quantification reproducibility, labeling can modify the physicochemical properties of molecules or affect their stability. To address these limitations, we have developed a novel method to detect and quantify label-free nucleic acids. This method is based on stoichiometric proportioning of phosphorus in the nucleic acid skeleton, using laser-induced breakdown spectroscopy, and a specific statistical analysis, which indicates the error probability for each measurement. The results obtained appear to be quantitative, with a limit of detection of 10 5 nucleotides/μm 2 (i.e. 2 x 10 13 phosphorus atoms/cm 2 ). Initial micro-array analysis has given very encouraging results, which point to new ways of quantifying hybridized nucleic acids. This is essential when comparing molecules of different sequences, which is presently very difficult with fluorescence labeling

  5. First improvements in the detection and quantification of label-free nucleic acids by laser-induced breakdown spectroscopy: Application to the deoxyribonucleic acid micro-array technology

    Energy Technology Data Exchange (ETDEWEB)

    Le Meur, Julien [Laboratoire de Cancerologie Experimentale, Commissariat a l' Energie Atomique de Fontenay-aux-Roses, Direction des Sciences du Vivant, Departement de Radiobiologie et Radiopathologie, Fontenay-aux-Roses (France); Menut, Denis [Laboratoire de Reactivite des Surfaces et des Interfaces, Commissariat a l' Energie Atomique de Saclay, Direction de l' Energie Nucleaire, Departement de Physico-Chimie, Gif sur Yvette (France); Wodling, Pascal [Laboratoire d' Interaction Laser-Matiere, Commissariat a l' Energie Atomique de Saclay, Direction de l' Energie Nucleaire, Departement de Physico-Chimie, Gif sur Yvette (France); Salmon, Laurent [Laboratoire de Reactivite des Surfaces et des Interfaces, Commissariat a l' Energie Atomique de Saclay, Direction de l' Energie Nucleaire, Departement de Physico-Chimie, Gif sur Yvette (France); Thro, Pierre-Yves [Laboratoire d' Interaction Laser-Matiere, Commissariat a l' Energie Atomique de Saclay, Direction de l' Energie Nucleaire, Departement de Physico-Chimie, Gif sur Yvette (France); Chevillard, Sylvie [Laboratoire de Cancerologie Experimentale, Commissariat a l' Energie Atomique de Fontenay-aux-Roses, Direction des Sciences du Vivant, Departement de Radiobiologie et Radiopathologie, Fontenay-aux-Roses (France); Ugolin, Nicolas [Laboratoire de Cancerologie Experimentale, Commissariat a l' Energie Atomique de Fontenay-aux-Roses, Direction des Sciences du Vivant, Departement de Radiobiologie et Radiopathologie, Fontenay-aux-Roses (France)], E-mail: nugolin@cea.fr

    2008-04-15

    The accurate quantification of nucleic acids is essential in many fields of modern biology and industry, and in some cases requires the use of fluorescence labeling. Yet, in addition to standardization problems and quantification reproducibility, labeling can modify the physicochemical properties of molecules or affect their stability. To address these limitations, we have developed a novel method to detect and quantify label-free nucleic acids. This method is based on stoichiometric proportioning of phosphorus in the nucleic acid skeleton, using laser-induced breakdown spectroscopy, and a specific statistical analysis, which indicates the error probability for each measurement. The results obtained appear to be quantitative, with a limit of detection of 10{sup 5} nucleotides/{mu}m{sup 2} (i.e. 2 x 10{sup 13} phosphorus atoms/cm{sup 2}). Initial micro-array analysis has given very encouraging results, which point to new ways of quantifying hybridized nucleic acids. This is essential when comparing molecules of different sequences, which is presently very difficult with fluorescence labeling.

  6. Application of a cDNA microarray for profiling the gene expression of Echinococcus granulosus protoscoleces treated with albendazole and artemisinin.

    Science.gov (United States)

    Lü, Guodong; Zhang, Wenbao; Wang, Jianhua; Xiao, Yunfeng; Zhao, Jun; Zhao, Jianqin; Sun, Yimin; Zhang, Chuanshan; Wang, Junhua; Lin, Renyong; Liu, Hui; Zhang, Fuchun; Wen, Hao

    2014-12-01

    Cystic echinoccocosis (CE) is a neglected zoonosis that is caused by the dog-tapeworm Echinococcus granulosus. The disease is endemic worldwide. There is an urgent need for searching effective drug for the treatment of the disease. In this study, we sequenced a cDNA library constructed using RNA isolated from oncospheres, protoscoleces, cyst membrane and adult worms of E. granulosus. A total of 9065 non-redundant or unique sequences were obtained and spotted on chips as uniEST probes to profile the gene expression in protoscoleces of E. granulosus treated with the anthelmintic drugs albendazole and artemisinin, respectively. The results showed that 7 genes were up-regulated and 38 genes were down-regulated in the protoscoleces treated with albendazole. Gene analysis showed that these genes are responsible for energy metabolism, cell cycle and assembly of cell structure. We also identified 100 genes up-regulated and 6 genes down-regulated in the protoscoleces treated with artemisinin. These genes play roles in the transduction of environmental signals, and metabolism. Albendazole appeared its drug efficacy in damaging cell structure, while artemisinin was observed to increase the formation of the heterochromatin in protoscolex cells. Our results highlight the utility of using cDNA microarray methods to detect gene expression profiles of E. granulosus and, in particular, to understand the pharmacologic mechanism of anti-echinococcosis drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A Versatile Microarray Platform for Capturing Rare Cells

    Science.gov (United States)

    Brinkmann, Falko; Hirtz, Michael; Haller, Anna; Gorges, Tobias M.; Vellekoop, Michael J.; Riethdorf, Sabine; Müller, Volkmar; Pantel, Klaus; Fuchs, Harald

    2015-10-01

    Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) - about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences.

  8. permGPU: Using graphics processing units in RNA microarray association studies

    Directory of Open Access Journals (Sweden)

    George Stephen L

    2010-06-01

    Full Text Available Abstract Background Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. Results We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. Conclusions permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.

  9. Towards a programmable magnetic bead microarray in a microfluidic channel

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Bruus, Henrik; Hansen, Mikkel Fougt

    2007-01-01

    to use larger currents and obtain forces of longer range than from thin current lines at a given power limit. Guiding of magnetic beads in the hybrid magnetic separator and the construction of a programmable microarray of magnetic beads in the microfluidic channel by hydrodynamic focusing is presented....

  10. Laccase applications in biofuels production: current status and future prospects.

    Science.gov (United States)

    Kudanga, Tukayi; Le Roes-Hill, Marilize

    2014-08-01

    The desire to reduce dependence on the ever diminishing fossil fuel reserves coupled with the impetus towards green energy has seen increased research in biofuels as alternative sources of energy. Lignocellulose materials are one of the most promising feedstocks for advanced biofuels production. However, their utilisation is dependent on the efficient hydrolysis of polysaccharides, which in part is dependent on cost-effective and benign pretreatment of biomass to remove or modify lignin and release or expose sugars to hydrolytic enzymes. Laccase is one of the enzymes that are being investigated not only for potential use as pretreatment agents in biofuel production, mainly as a delignifying enzyme, but also as a biotechnological tool for removal of inhibitors (mainly phenolic) of subsequent enzymatic processes. The current review discusses the major advances in the application of laccase as a potential pretreatment strategy, the underlying principles as well as directions for future research in the search for better enzyme-based technologies for biofuel production. Future perspectives could include synergy between enzymes that may be required for optimal results and the adoption of the biorefinery concept in line with the move towards the global implementation of the bioeconomy strategy.

  11. Current use and potential of additive manufacturing for optical applications

    Science.gov (United States)

    Brunelle, Matthew; Ferralli, Ian; Whitsitt, Rebecca; Medicus, Kate

    2017-10-01

    Additive manufacturing, or 3D printing, has become widely used in recent years for the creation of both prototype and end-use parts. Because the parts are created in a layer-by-layer manner, the flexibility of additive manufacturing is unparalleled and has opened the design space to enable features like undercuts and internal channels which cannot exist on traditional, subtractively manufactured parts. This flexibility can also be leveraged for optical applications. This paper outlines some of the current uses of 3D printing in the optical manufacturing process at Optimax. Several materials and additive technologies are utilized, including polymer printing through fused deposition modeling, which creates parts by depositing a softened thermoplastic filament in a layerwise fashion. Stereolithography, which uses light to cure layers of a photopolymer resin, will also be discussed. These technologies are used to manufacture functional prototypes, fixtures, sealed housings, and other components. Additionally, metal printing through selective laser melting, which uses a laser to melt metal powder layers into a dense solid, will be discussed due to the potential to manufacture thermally stable opticalmechanical assembly frameworks and functional optics. Examples of several additively manufactured optical components will be shown.

  12. Current investigations into carbon nanotubes for biomedical application

    International Nuclear Information System (INIS)

    Li Xiaoming; Fan Yubo; Watari, Fumio

    2010-01-01

    The nano-dimensionality of nature has logically given rise to the interest in using nanomaterials in the biomedical field. Currently, a lot of investigations into carbon nanotubes (CNTs), as one of the typical nanomaterials, are being made for biomedical application. In this review, five parts, such as cellular functions induced by CNTs, apatite formation on CNTs, CNT-based tissue engineering scaffold, functionalized CNTs for the delivery of genes and drugs and CNT-based biosensors, are stated, which might indicate that CNTs, with a range of unique properties, appear suited as a biomaterial and may become a useful tool for tissue engineering. However, everything has two parts and CNTs is not an exception. There are still concerns about cytotoxicity and biodegradation of CNTs. Chemical fictionalization may be one of the effective ways to improve the 'disadvantages' and utilize the 'advantages' of CNTs. One of their 'disadvantages', unbiodegradable property, may be utilized by creating monitors in in vivo-engineered tissues or nanosized CNT-based biosensors. Other promising research points, for example proteins adsorbed on CNTs, use of CNTs in combination with other biomaterials to achieve the goals of tissue engineering, mineralization of CNTs and standard toxicological tests for CNTs, are also described in the conclusion and perspectives part. (topical review)

  13. Current developments and applications of HREM in materials science

    International Nuclear Information System (INIS)

    Hutchison, J.L.

    1993-01-01

    As the dimensions involved in the design and fabrication of advanced materials steadily decreases, the need for accurate structural characterization at the atomic level becomes greater. In this paper we will consider the contributions of high resolution electron microscopy to modern materials science. We will first of all review the current status of high resolution electron microscopy instrumentation, which has seen several significant advances in recent years. These include the development of versatile and elegant electron optical systems which are capable of producing small probes, down to 1 nm in size, combined with high spatial resolution. These instruments also successfully combine low aberration objective lenses with stable specimen tilting devices, essential for the careful characterization of nano scale crystalline structures involved in new materials. On the other hand, there is now renewed interest in the development of 'large installation' mega volt instruments operating at up to 1.3 MeV, and designed for resolutions approaching 0.1 nm. These installations are not without problems of course; they include both 'instrumental' problems of reliability, vibration, cost(') and also 'specimen' problems, especially electron irradiation damage. There are now several of these high voltage, high resolution microscopes in operation, and some of their recent results will be discussed. In the second part of the talk, we will describe some typical applications of atomic scale imaging in materials. These will include: defects and defect interactions in CVD-grown diamond films; defect in solid electrolytes, interface structures in semiconductors and other important systems. (author)

  14. Probe Selection for DNA Microarrays using OligoWiz

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Juncker, Agnieszka; Nielsen, Henrik Bjørn

    2007-01-01

    Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client-server appl......Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client......-server application that offers a detailed graphical interface and real-time user interaction on the client side, and massive computer power and a large collection of species databases (400, summer 2007) on the server side. Probes are selected according to five weighted scores: cross-hybridization, deltaT(m), folding...... computer skills and can be executed from any Internet-connected computer. The probe selection procedure for a standard microarray design targeting all yeast transcripts can be completed in 1 h....

  15. Polyadenylation state microarray (PASTA) analysis.

    Science.gov (United States)

    Beilharz, Traude H; Preiss, Thomas

    2011-01-01

    Nearly all eukaryotic mRNAs terminate in a poly(A) tail that serves important roles in mRNA utilization. In the cytoplasm, the poly(A) tail promotes both mRNA stability and translation, and these functions are frequently regulated through changes in tail length. To identify the scope of poly(A) tail length control in a transcriptome, we developed the polyadenylation state microarray (PASTA) method. It involves the purification of mRNA based on poly(A) tail length using thermal elution from poly(U) sepharose, followed by microarray analysis of the resulting fractions. In this chapter we detail our PASTA approach and describe some methods for bulk and mRNA-specific poly(A) tail length measurements of use to monitor the procedure and independently verify the microarray data.

  16. Application of digital PWM technology in current transducers

    International Nuclear Information System (INIS)

    Liu Huifang; Hu Zhimin; Li Rui

    2012-01-01

    With the development of DSP technology and mature use of PID technology,, a new program for DC or AC signal measurement is proposed. Combined with the DSP chip timer module and PID algorithm, PWM signals are generated to control the feedback circuit for the compensation current. Finally the measured current value can be obtained according to the ampere-turns compensation current and the measured current. Studies have shown that this technology enables new current transducers have high stability. (authors)

  17. Molecular subtyping of cancer: current status and moving toward clinical applications.

    Science.gov (United States)

    Zhao, Lan; Lee, Victor H F; Ng, Michael K; Yan, Hong; Bijlsma, Maarten F

    2018-04-12

    Cancer is a collection of genetic diseases, with large phenotypic differences and genetic heterogeneity between different types of cancers and even within the same cancer type. Recent advances in genome-wide profiling provide an opportunity to investigate global molecular changes during the development and progression of cancer. Meanwhile, numerous statistical and machine learning algorithms have been designed for the processing and interpretation of high-throughput molecular data. Molecular subtyping studies have allowed the allocation of cancer into homogeneous groups that are considered to harbor similar molecular and clinical characteristics. Furthermore, this has helped researchers to identify both actionable targets for drug design as well as biomarkers for response prediction. In this review, we introduce five frequently applied techniques for generating molecular data, which are microarray, RNA sequencing, quantitative polymerase chain reaction, NanoString and tissue microarray. Commonly used molecular data for cancer subtyping and clinical applications are discussed. Next, we summarize a workflow for molecular subtyping of cancer, including data preprocessing, cluster analysis, supervised classification and subtype characterizations. Finally, we identify and describe four major challenges in the molecular subtyping of cancer that may preclude clinical implementation. We suggest that standardized methods should be established to help identify intrinsic subgroup signatures and build robust classifiers that pave the way toward stratified treatment of cancer patients.

  18. An Introduction to MAMA (Meta-Analysis of MicroArray data) System.

    Science.gov (United States)

    Zhang, Zhe; Fenstermacher, David

    2005-01-01

    Analyzing microarray data across multiple experiments has been proven advantageous. To support this kind of analysis, we are developing a software system called MAMA (Meta-Analysis of MicroArray data). MAMA utilizes a client-server architecture with a relational database on the server-side for the storage of microarray datasets collected from various resources. The client-side is an application running on the end user's computer that allows the user to manipulate microarray data and analytical results locally. MAMA implementation will integrate several analytical methods, including meta-analysis within an open-source framework offering other developers the flexibility to plug in additional statistical algorithms.

  19. An application of residual current protective device at electrical installation

    International Nuclear Information System (INIS)

    Firman Silitonga

    2008-01-01

    In an electrical installation, a protection for overload and short circuit are always to be installed. In addition to the installation, it is necessary to be installed a protection device for residual current because both the short circuit and the overload device protection will not work for the residual current. The quantity of the residual current must be defined first at any electrical installation to define an appropriate residual current protection so that not every residual current will break the circuit down. This paper will explain a method how to install a residual protection device for 3500 VA or more at TN and TT of earthing system. (author)

  20. Spot detection and image segmentation in DNA microarray data.

    Science.gov (United States)

    Qin, Li; Rueda, Luis; Ali, Adnan; Ngom, Alioune

    2005-01-01

    Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitative information from the spots, which represent genes in a given experiment. For this process, the initial stages are important and they influence future steps in the analysis. Identifying the spots and separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this review, we present an overview of state-of-the-art methods for microarray image segmentation. We discuss the foundations of the circle-shaped approach, adaptive shape segmentation, histogram-based methods and the recently introduced clustering-based techniques. We analytically show that clustering-based techniques are equivalent to the one-dimensional, standard k-means clustering algorithm that utilises the Euclidean distance.

  1. Current Status of Non-Electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Shin, Young Joon; Lee, Jun; Lee, Tae Hoon

    2009-05-01

    IAEA Technical Meeting(I3-TM-37394) on 'Non-Electric Applications of Nuclear Energy' has been successfully held from March 3 to 6 in 2009 at KAERI/INTEC. The 24 experts from 12 countries participated in this meeting and provided 17 presentations and their opinions and comments in desalination, hydrogen production, and heat application sessions. All of the participants from 12 countries agreed that nuclear power should be the potential carbon-free energy source to replace crude oil and reduce greenhouse gas emissions in the fields of non-electric applications such as desalination, hydrogen production, district heating, and industrial processes applications

  2. Eliminating Ground Current in a Transformerless Photovoltaic Application

    DEFF Research Database (Denmark)

    Lopez, Ocar; Freijedo, Francisco D.; Yepes, Alejandro G.

    2010-01-01

    For low-power grid-connected applications, a singlephase converter can be used. In photovoltaic (PV) applications, it is possible to remove the transformer in the inverter to reduce losses, costs, and size. Galvanic connection of the grid and the dc sources in transformerless systems can introduce...

  3. Nanomaterials in Food - Current and Future Applications and Regulatory Aspects

    NARCIS (Netherlands)

    Aschberger, K.; Gottardo, S.; Amenta, V.; Arena, M.; Botelho Moniz, F.; Bouwmeester, Hans; Brandhoff, P.; Mech, A.; Quiros Pesudo, L.; Rauscher, H.; Schoonjans, R.; Vittoria Vettori, M.; Peters, R.

    2015-01-01

    Nanotechnology can contribute to the development of innovative applications in the agriculture, food and feed sector by e.g. enabling improved delivery of nutrients or increased efficacy of agrichemicals. It is expected that applications will increase in the near future and may therefore become a

  4. Polysaccharide microarray technology for the detection of Burkholderia pseudomallei and Burkholderia mallei antibodies.

    Science.gov (United States)

    Parthasarathy, Narayanan; DeShazer, David; England, Marilyn; Waag, David M

    2006-11-01

    A polysaccharide microarray platform was prepared by immobilizing Burkholderia pseudomallei and Burkholderia mallei polysaccharides. This polysaccharide array was tested with success for detecting B. pseudomallei and B. mallei serum (human and animal) antibodies. The advantages of this microarray technology over the current serodiagnosis of the above bacterial infections were discussed.

  5. Direct calibration of PICKY-designed microarrays

    Directory of Open Access Journals (Sweden)

    Ronald Pamela C

    2009-10-01

    Full Text Available Abstract Background Few microarrays have been quantitatively calibrated to identify optimal hybridization conditions because it is difficult to precisely determine the hybridization characteristics of a microarray using biologically variable cDNA samples. Results Using synthesized samples with known concentrations of specific oligonucleotides, a series of microarray experiments was conducted to evaluate microarrays designed by PICKY, an oligo microarray design software tool, and to test a direct microarray calibration method based on the PICKY-predicted, thermodynamically closest nontarget information. The complete set of microarray experiment results is archived in the GEO database with series accession number GSE14717. Additional data files and Perl programs described in this paper can be obtained from the website http://www.complex.iastate.edu under the PICKY Download area. Conclusion PICKY-designed microarray probes are highly reliable over a wide range of hybridization temperatures and sample concentrations. The microarray calibration method reported here allows researchers to experimentally optimize their hybridization conditions. Because this method is straightforward, uses existing microarrays and relatively inexpensive synthesized samples, it can be used by any lab that uses microarrays designed by PICKY. In addition, other microarrays can be reanalyzed by PICKY to obtain the thermodynamically closest nontarget information for calibration.

  6. Normalization for triple-target microarray experiments

    Directory of Open Access Journals (Sweden)

    Magniette Frederic

    2008-04-01

    Full Text Available Abstract Background Most microarray studies are made using labelling with one or two dyes which allows the hybridization of one or two samples on the same slide. In such experiments, the most frequently used dyes are Cy3 and Cy5. Recent improvements in the technology (dye-labelling, scanner and, image analysis allow hybridization up to four samples simultaneously. The two additional dyes are Alexa488 and Alexa494. The triple-target or four-target technology is very promising, since it allows more flexibility in the design of experiments, an increase in the statistical power when comparing gene expressions induced by different conditions and a scaled down number of slides. However, there have been few methods proposed for statistical analysis of such data. Moreover the lowess correction of the global dye effect is available for only two-color experiments, and even if its application can be derived, it does not allow simultaneous correction of the raw data. Results We propose a two-step normalization procedure for triple-target experiments. First the dye bleeding is evaluated and corrected if necessary. Then the signal in each channel is normalized using a generalized lowess procedure to correct a global dye bias. The normalization procedure is validated using triple-self experiments and by comparing the results of triple-target and two-color experiments. Although the focus is on triple-target microarrays, the proposed method can be used to normalize p differently labelled targets co-hybridized on a same array, for any value of p greater than 2. Conclusion The proposed normalization procedure is effective: the technical biases are reduced, the number of false positives is under control in the analysis of differentially expressed genes, and the triple-target experiments are more powerful than the corresponding two-color experiments. There is room for improving the microarray experiments by simultaneously hybridizing more than two samples.

  7. Chitosan-Based Polymer Blends: Current Status and applications

    International Nuclear Information System (INIS)

    Hefian, E.A.E.; Nasef, M.M.

    2014-01-01

    This paper reviews the latest developments in chitosan-based blends and their potential applications in various fields. Various blends together with other derivatives, such as composites and graft copolymers, have been developed to overcome chitosans disadvantages, including poor mechanical properties and to improve its functionality towards specific applications. The progress made in blending chitosan with synthetic and natural polymers is presented. The versatility and unique characteristics, such as hydrophilicity, film-forming ability, biodegradability, biocompatibility, antibacterial activity and non-toxicity of chitosan has contributed to the successful development of various blends for medical, pharmaceutical, agricultural and environmental applications. (author)

  8. High current density aluminum stabilized conductor concepts for space applications

    International Nuclear Information System (INIS)

    Huang, X.; Eyssa, Y.M.; Hilal, M.A.

    1989-01-01

    Lightweight conductors are needed for space magnets to achieve values of E/M (energy stored per unit mass) comparable to the or higher than advanced batteries. High purity aluminum stabilized NbTi composite conductors cooled by 1.8 K helium can provide a winding current density up to 15 kA/cm/sup 2/ at fields up to 10 tesla. The conductors are edge cooled with enough surface area to provide recovery following a normalizing disturbance. The conductors are designed so that current diffusion time in the high purity aluminum is smaller than thermal diffusion time in helium. Conductor design, stability and current diffusion are considered in detail

  9. A cell spot microarray method for production of high density siRNA transfection microarrays

    Directory of Open Access Journals (Sweden)

    Mpindi John-Patrick

    2011-03-01

    Full Text Available Abstract Background High-throughput RNAi screening is widely applied in biological research, but remains expensive, infrastructure-intensive and conversion of many assays to HTS applications in microplate format is not feasible. Results Here, we describe the optimization of a miniaturized cell spot microarray (CSMA method, which facilitates utilization of the transfection microarray technique for disparate RNAi analyses. To promote rapid adaptation of the method, the concept has been tested with a panel of 92 adherent cell types, including primary human cells. We demonstrate the method in the systematic screening of 492 GPCR coding genes for impact on growth and survival of cultured human prostate cancer cells. Conclusions The CSMA method facilitates reproducible preparation of highly parallel cell microarrays for large-scale gene knockdown analyses. This will be critical towards expanding the cell based functional genetic screens to include more RNAi constructs, allow combinatorial RNAi analyses, multi-parametric phenotypic readouts or comparative analysis of many different cell types.

  10. Microarray-Based Identification of Transcription Factor Target Genes

    NARCIS (Netherlands)

    Gorte, M.; Horstman, A.; Page, R.B.; Heidstra, R.; Stromberg, A.; Boutilier, K.A.

    2011-01-01

    Microarray analysis is widely used to identify transcriptional changes associated with genetic perturbation or signaling events. Here we describe its application in the identification of plant transcription factor target genes with emphasis on the design of suitable DNA constructs for controlling TF

  11. Advanced Data Mining of Leukemia Cells Micro-Arrays

    Directory of Open Access Journals (Sweden)

    Richard S. Segall

    2009-12-01

    Full Text Available This paper provides continuation and extensions of previous research by Segall and Pierce (2009a that discussed data mining for micro-array databases of Leukemia cells for primarily self-organized maps (SOM. As Segall and Pierce (2009a and Segall and Pierce (2009b the results of applying data mining are shown and discussed for the data categories of microarray databases of HL60, Jurkat, NB4 and U937 Leukemia cells that are also described in this article. First, a background section is provided on the work of others pertaining to the applications of data mining to micro-array databases of Leukemia cells and micro-array databases in general. As noted in predecessor article by Segall and Pierce (2009a, micro-array databases are one of the most popular functional genomics tools in use today. This research in this paper is intended to use advanced data mining technologies for better interpretations and knowledge discovery as generated by the patterns of gene expressions of HL60, Jurkat, NB4 and U937 Leukemia cells. The advanced data mining performed entailed using other data mining tools such as cubic clustering criterion, variable importance rankings, decision trees, and more detailed examinations of data mining statistics and study of other self-organized maps (SOM clustering regions of workspace as generated by SAS Enterprise Miner version 4. Conclusions and future directions of the research are also presented.

  12. Significance analysis of lexical bias in microarray data

    Directory of Open Access Journals (Sweden)

    Falkow Stanley

    2003-04-01

    Full Text Available Abstract Background Genes that are determined to be significantly differentially regulated in microarray analyses often appear to have functional commonalities, such as being components of the same biochemical pathway. This results in certain words being under- or overrepresented in the list of genes. Distinguishing between biologically meaningful trends and artifacts of annotation and analysis procedures is of the utmost importance, as only true biological trends are of interest for further experimentation. A number of sophisticated methods for identification of significant lexical trends are currently available, but these methods are generally too cumbersome for practical use by most microarray users. Results We have developed a tool, LACK, for calculating the statistical significance of apparent lexical bias in microarray datasets. The frequency of a user-specified list of search terms in a list of genes which are differentially regulated is assessed for statistical significance by comparison to randomly generated datasets. The simplicity of the input files and user interface targets the average microarray user who wishes to have a statistical measure of apparent lexical trends in analyzed datasets without the need for bioinformatics skills. The software is available as Perl source or a Windows executable. Conclusion We have used LACK in our laboratory to generate biological hypotheses based on our microarray data. We demonstrate the program's utility using an example in which we confirm significant upregulation of SPI-2 pathogenicity island of Salmonella enterica serovar Typhimurium by the cation chelator dipyridyl.

  13. Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications

    Science.gov (United States)

    Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.

    2017-10-01

    We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.

  14. DNA microarray data and contextual analysis of correlation graphs

    Directory of Open Access Journals (Sweden)

    Hingamp Pascal

    2003-04-01

    Full Text Available Abstract Background DNA microarrays are used to produce large sets of expression measurements from which specific biological information is sought. Their analysis requires efficient and reliable algorithms for dimensional reduction, classification and annotation. Results We study networks of co-expressed genes obtained from DNA microarray experiments. The mathematical concept of curvature on graphs is used to group genes or samples into clusters to which relevant gene or sample annotations are automatically assigned. Application to publicly available yeast and human lymphoma data demonstrates the reliability of the method in spite of its simplicity, especially with respect to the small number of parameters involved. Conclusions We provide a method for automatically determining relevant gene clusters among the many genes monitored with microarrays. The automatic annotations and the graphical interface improve the readability of the data. A C++ implementation, called Trixy, is available from http://tagc.univ-mrs.fr/bioinformatics/trixy.html.

  15. A Java-based tool for the design of classification microarrays.

    Science.gov (United States)

    Meng, Da; Broschat, Shira L; Call, Douglas R

    2008-08-04

    Classification microarrays are used for purposes such as identifying strains of bacteria and determining genetic relationships to understand the epidemiology of an infectious disease. For these cases, mixed microarrays, which are composed of DNA from more than one organism, are more effective than conventional microarrays composed of DNA from a single organism. Selection of probes is a key factor in designing successful mixed microarrays because redundant sequences are inefficient and limited representation of diversity can restrict application of the microarray. We have developed a Java-based software tool, called PLASMID, for use in selecting the minimum set of probe sequences needed to classify different groups of plasmids or bacteria. The software program was successfully applied to several different sets of data. The utility of PLASMID was illustrated using existing mixed-plasmid microarray data as well as data from a virtual mixed-genome microarray constructed from different strains of Streptococcus. Moreover, use of data from expression microarray experiments demonstrated the generality of PLASMID. In this paper we describe a new software tool for selecting a set of probes for a classification microarray. While the tool was developed for the design of mixed microarrays-and mixed-plasmid microarrays in particular-it can also be used to design expression arrays. The user can choose from several clustering methods (including hierarchical, non-hierarchical, and a model-based genetic algorithm), several probe ranking methods, and several different display methods. A novel approach is used for probe redundancy reduction, and probe selection is accomplished via stepwise discriminant analysis. Data can be entered in different formats (including Excel and comma-delimited text), and dendrogram, heat map, and scatter plot images can be saved in several different formats (including jpeg and tiff). Weights generated using stepwise discriminant analysis can be stored for

  16. A review of current sleep screening applications for smartphones.

    Science.gov (United States)

    Behar, Joachim; Roebuck, Aoife; Domingos, João S; Gederi, Elnaz; Clifford, Gari D

    2013-07-01

    Sleep disorders are a common problem and contribute to a wide range of healthcare issues. The societal and financial costs of sleep disorders are enormous. Sleep-related disorders are often diagnosed with an overnight sleep test called a polysomnogram, or sleep study involving the measurement of brain activity through the electroencephalogram. Other parameters monitored include oxygen saturation, respiratory effort, cardiac activity (through the electrocardiogram), as well as video recording, sound and movement activity. Monitoring can be costly and removes the patients from their normal sleeping environment, preventing repeated unbiased studies. The recent increase in adoption of smartphones, with high quality on-board sensors has led to the proliferation of many sleep screening applications running on the phone. However, with the exception of simple questionnaires, no existing sleep-related application available for smartphones is based on scientific evidence. This paper reviews the existing smartphone applications landscape used in the field of sleep disorders and proposes possible advances to improve screening approaches.

  17. Stretchable electronics for wearable and high-current applications

    Science.gov (United States)

    Hilbich, Daniel; Shannon, Lesley; Gray, Bonnie L.

    2016-04-01

    Advances in the development of novel materials and fabrication processes are resulting in an increased number of flexible and stretchable electronics applications. This evolving technology enables new devices that are not readily fabricated using traditional silicon processes, and has the potential to transform many industries, including personalized healthcare, consumer electronics, and communication. Fabrication of stretchable devices is typically achieved through the use of stretchable polymer-based conductors, or more rigid conductors, such as metals, with patterned geometries that can accommodate stretching. Although the application space for stretchable electronics is extensive, the practicality of these devices can be severely limited by power consumption and cost. Moreover, strict process flows can impede innovation that would otherwise enable new applications. In an effort to overcome these impediments, we present two modified approaches and applications based on a newly developed process for stretchable and flexible electronics fabrication. This includes the development of a metallization pattern stamping process allowing for 1) stretchable interconnects to be directly integrated with stretchable/wearable fabrics, and 2) a process variation enabling aligned multi-layer devices with integrated ferromagnetic nanocomposite polymer components enabling a fully-flexible electromagnetic microactuator for large-magnitude magnetic field generation. The wearable interconnects are measured, showing high conductivity, and can accommodate over 20% strain before experiencing conductive failure. The electromagnetic actuators have been fabricated and initial measurements show well-aligned, highly conductive, isolated metal layers. These two applications demonstrate the versatility of the newly developed process and suggest potential for its furthered use in stretchable electronics and MEMS applications.

  18. Current status in biotechnological production and applications of glycolipid biosurfactants.

    Science.gov (United States)

    Paulino, Bruno Nicolau; Pessôa, Marina Gabriel; Mano, Mario Cezar Rodrigues; Molina, Gustavo; Neri-Numa, Iramaia Angélica; Pastore, Glaucia Maria

    2016-12-01

    Biosurfactants are natural compounds with surface activity and emulsifying properties produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. Glycolipids are promising biosurfactants, due to low toxicity, biodegradability, and chemical stability in different conditions and also because they have many biological activities, allowing wide applications in different fields. In this review, we addressed general information about families of glycolipids, rhamnolipids, sophorolipids, mannosylerythritol lipids, and trehalose lipids, describing their chemical and surface characteristics, recent studies using alternative substrates, and new strategies to improve of production, beyond their specificities. We focus in providing recent developments and trends in biotechnological process and medical and industrial applications.

  19. High-dose irradiated food: Current progress, applications, and prospects

    Science.gov (United States)

    Feliciano, Chitho P.

    2018-03-01

    Food irradiation as an established and mature technology has gained more attention in the food industry for ensuring food safety and quality. Primarily used for phytosanitary applications, its use has been expanded for developing various food products for varied purposes (e.g. ready-to-eat & ready-to-cook foods, hospital diets, etc.). This paper summarized and analyzed the recent progress and application of high-dose irradiation and discussed its prospects in the field of food product development, its safety and quality.

  20. Application of Eddy Currents in Medicine and their Modelling

    International Nuclear Information System (INIS)

    Krawczyk, A.; Wiak, S.; Zyss, T.; Sikora, R.

    1998-01-01

    The paper deals with the problems of interactions between the electromagnetic field and biological material, in particular the problem of eddy currents in human tissues and cells induced there for medical purposes, and the mathematical modeling of the phenomenon. The diagnostic and therapeutic effects of eddy currents are discussed and the advantages and drawbacks of these effects are given. A deeper analysis is devoted to the problem of transcranial magnetic stimulation (TMS) which is used in psychiatry as the treatment in depressive psychosis. (author)

  1. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    Science.gov (United States)

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved. © 2012 Blackwell Verlag GmbH.

  2. Potential energy savings by using direct current for residential applications

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2017-01-01

    improvement in the power converter units. However, for residential applications, the efficiency is not always improved. A grid connected residential microgrid, with renewable energy sources (RES), energy storage systems (ESS) and local loads, is presented in this work. The microgrid has been modelled...

  3. Magnesium Nanocomposites: Current Status and Prospects for Army Applications

    Science.gov (United States)

    2011-09-01

    significant property improvements due to precipitation hardening. Improvements in corrosion resistance have been obtained through the development of high...routinely produce Mg alloys with improved properties that are suitable for a broad range of applications. Although alloying and precipitation hardening...Thermal Gravimetry Analysis FESEM Field Emission Scanning Electron Microscope HCP Hexagonal Close Packed 31 MPa Megapascal TARDEC Tank and

  4. Massive Open Online Courses (MOOCs): Current Applications and Future Potential

    Science.gov (United States)

    Milheim, William D.

    2013-01-01

    Massive Open Online Courses (or MOOCs) are the subject of numerous recent articles in "The Chronicle of Higher Education," "The New York Times," and other publications related to their increasing use by a variety of universities to reach large numbers of online students. This article describes the current state of these online…

  5. Principles and applications of multiplane pulsed eddy currents

    International Nuclear Information System (INIS)

    David, B.; Champonnois, F.; Joffre, F.

    1989-01-01

    A pulsed device using eddy currents, producing 8 shape signals on the screen like a sine wave system, has been developed. The method has been applied to the well-known problem of defects in stainless claddings of PWR reactor vessels

  6. Microarrays: Molecular allergology and nanotechnology for personalised medicine (II).

    Science.gov (United States)

    Lucas, J M

    2010-01-01

    Progress in nanotechnology and DNA recombination techniques have produced tools for the diagnosis and investigation of allergy at molecular level. The most advanced examples of such progress are the microarray techniques, which have been expanded not only in research in the field of proteomics but also in application to the clinical setting. Microarrays of allergic components offer results relating to hundreds of allergenic components in a single test, and using a small amount of serum which can be obtained from capillary blood. The availability of new molecules will allow the development of panels including new allergenic components and sources, which will require evaluation for clinical use. Their application opens the door to component-based diagnosis, to the holistic perception of sensitisation as represented by molecular allergy, and to patient-centred medical practice by allowing great diagnostic accuracy and the definition of individualised immunotherapy for each patient. The present article reviews the application of allergenic component microarrays to allergology for diagnosis, management in the form of specific immunotherapy, and epidemiological studies. A review is also made of the use of protein and gene microarray techniques in basic research and in allergological diseases. Lastly, an evaluation is made of the challenges we face in introducing such techniques to clinical practice, and of the future perspectives of this new technology. Copyright 2010 SEICAP. Published by Elsevier Espana. All rights reserved.

  7. Current indications and new applications of intense pulsed light.

    Science.gov (United States)

    González-Rodríguez, A J; Lorente-Gual, R

    2015-06-01

    Intense pulsed light (IPL) systems have evolved since they were introduced into medical practice 20 years ago. Pulsed light is noncoherent, noncollimated, polychromatic light energy emitted at different wavelengths that target specific chromophores. This selective targeting capability makes IPL a versatile therapy with many applications, from the treatment of pigmented or vascular lesions to hair removal and skin rejuvenation. Its large spot size ensures a high skin coverage rate. The nonablative nature of IPL makes it an increasingly attractive alternative for patients unwilling to accept the adverse effects associated with other procedures, which additionally require prolonged absence from work and social activities. In many cases, IPL is similar to laser therapy in effectiveness, and its versatility, convenience, and safety will lead to an expanded range of applications and possibilities in coming years. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  8. Current status of electron beam processing system and its applications

    International Nuclear Information System (INIS)

    Taniguchi, S.

    2005-01-01

    The feature and application fields of electron beam processing systems (EPS), the selection of machine ratings and safety measures for EPS are described. EPS has the various features: a) Chemical reactions occurs independent of the temperature, b) it occurs without any added substances such as catalysts, c) mass productivity, d) easy operation, as is exemplified by switch ON and OFF, and e) easy maintenance, compared with radioisotope sources. After briefly explaining acceleration type (DC or AC), power supply (Van-de-Graaf or Cockcroft-walton and others), beam scanning to be used for large area irradiation, and some typical applications (cross-linking, radical polymerization, the paper describes necessary safety measures such as X-ray shielding, ozone control including ozone generation and its disposal, interlock system, warning buzzer, and monitoring and measuring. (S. Ohno)

  9. Current status of application of Moessbauer effect in geology and mineralogy

    International Nuclear Information System (INIS)

    Xu Binfu

    1995-01-01

    The paper briefly introduces the current status of the application of Moessbauer effect in geology and mineralogy. It shows that geology and mineralogy are very active fields in the application of Moessbauer effect

  10. Industrial applications and current trends in supercritical fluid technologies

    OpenAIRE

    Gamse Thomas

    2005-01-01

    Supercritical fluids have a great potential for wide fields of processes Although CO2 is still one of the most used supercritical gases, for special purposes propane or even fluorinated-chlorinated fluids have also been tested. The specific characteristics of supercritical fluids behaviour were analyzed such as for example the solubilities of different components and the phase equilibria between the solute and solvent. The application at industrial scale (decaffeinating of tea and coffee, hop...

  11. FIONDA (Filtering Images of Niobium Disks Application): Filter application for Eddy Current Scanner data analysis

    International Nuclear Information System (INIS)

    Boffo, C.; Bauer, P.

    2005-01-01

    As part of the material QC process, each Niobium disk from which a superconducting RF cavity is built must undergo an eddy current scan [1]. This process allows to discover embedded defects in the material that are not visible to the naked eye because too small or under the surface. Moreover, during the production process of SC cavities the outer layer of Nb is removed via chemical or electro-chemical etching, thus it is important to evaluate the quality of the subsurface layer (in the order of 100nm) where superconductivity will happen. The reference eddy current scanning machine is operated at DESY; at Fermilab we are using the SNS eddy current scanner on loan, courtesy of SNS. In the past year, several upgrades were implemented aiming at raising the SNS machine performance to that of the DESY reference machine [2]. As part of this effort an algorithm that enables the filtering of the results of the scans and thus improves the resolution of the process was developed. The description of the algorithm and of the software used to filter the scan results is presented in this note. This filter application is a useful tool when the coupling between the signal associated to the long range probe distance (or sample thickness) variation and that associated to inclusions masks the presence of defects. Moreover instead of using indirect criteria (such as appearance on screen), the filter targets precisely the topology variations of interest. This application is listed in the FermiTools database and is freely available

  12. Practical Application of Eddy Currents Generated by Wind

    International Nuclear Information System (INIS)

    Dirba, I; Kleperis, J

    2011-01-01

    When a conductive material is subjected to time-varying magnetic fluxes, eddy (Foucault) currents are generated in it and magnetic field of opposite polarity as the applied one arises. Due to the internal resistance of the conductive material, the eddy currents will be dissipated into heat (Joule heating). Conventional domestic water heaters utilize gas burners or electric resistance heating elements to heat the water in the tank and substantial part of the energy to use for it is wasted. In this paper the origin of electromagnetic induction heat generated by wind turbine in special heat exchange camera connected to water boiler is discussed and material evaluation performed using mathematical modelling (comparing the 2D finite element model with analytical and numerical calculation results).

  13. Practical Application of Eddy Currents Generated by Wind

    Science.gov (United States)

    Dirba, I.; Kleperis, J.

    2011-06-01

    When a conductive material is subjected to time-varying magnetic fluxes, eddy (Foucault) currents are generated in it and magnetic field of opposite polarity as the applied one arises. Due to the internal resistance of the conductive material, the eddy currents will be dissipated into heat (Joule heating). Conventional domestic water heaters utilize gas burners or electric resistance heating elements to heat the water in the tank and substantial part of the energy to use for it is wasted. In this paper the origin of electromagnetic induction heat generated by wind turbine in special heat exchange camera connected to water boiler is discussed and material evaluation performed using mathematical modelling (comparing the 2D finite element model with analytical and numerical calculation results).

  14. Practical Application of Eddy Currents Generated by Wind

    Energy Technology Data Exchange (ETDEWEB)

    Dirba, I; Kleperis, J, E-mail: imants.dirba@gmail.com [Institute of Solid State Physics of University of Latvia, 8 Kengaraga Street, Riga, LV-1063 (Latvia)

    2011-06-23

    When a conductive material is subjected to time-varying magnetic fluxes, eddy (Foucault) currents are generated in it and magnetic field of opposite polarity as the applied one arises. Due to the internal resistance of the conductive material, the eddy currents will be dissipated into heat (Joule heating). Conventional domestic water heaters utilize gas burners or electric resistance heating elements to heat the water in the tank and substantial part of the energy to use for it is wasted. In this paper the origin of electromagnetic induction heat generated by wind turbine in special heat exchange camera connected to water boiler is discussed and material evaluation performed using mathematical modelling (comparing the 2D finite element model with analytical and numerical calculation results).

  15. Application of Computational Methods in Planaria Research: A Current Update

    Directory of Open Access Journals (Sweden)

    Ghosh Shyamasree

    2017-07-01

    Full Text Available Planaria is a member of the Phylum Platyhelminthes including flatworms. Planarians possess the unique ability of regeneration from adult stem cells or neoblasts and finds importance as a model organism for regeneration and developmental studies. Although research is being actively carried out globally through conventional methods to understand the process of regeneration from neoblasts, biology of development, neurobiology and immunology of Planaria, there are many thought provoking questions related to stem cell plasticity, and uniqueness of regenerative potential in Planarians amongst other members of Phylum Platyhelminthes. The complexity of receptors and signalling mechanisms, immune system network, biology of repair, responses to injury are yet to be understood in Planaria. Genomic and transcriptomic studies have generated a vast repository of data, but their availability and analysis is a challenging task. Data mining, computational approaches of gene curation, bioinformatics tools for analysis of transcriptomic data, designing of databases, application of algorithms in deciphering changes of morphology by RNA interference (RNAi approaches, understanding regeneration experiments is a new venture in Planaria research that is helping researchers across the globe in understanding the biology. We highlight the applications of Hidden Markov models (HMMs in designing of computational tools and their applications in Planaria decoding their complex biology.

  16. Geosensors to Support Crop Production: Current Applications and User Requirements

    Directory of Open Access Journals (Sweden)

    Lammert Kooistra

    2011-06-01

    Full Text Available Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load.

  17. A review of current sleep screening applications for smartphones

    International Nuclear Information System (INIS)

    Behar, Joachim; Roebuck, Aoife; Domingos, João S; Gederi, Elnaz; Clifford, Gari D

    2013-01-01

    Sleep disorders are a common problem and contribute to a wide range of healthcare issues. The societal and financial costs of sleep disorders are enormous. Sleep-related disorders are often diagnosed with an overnight sleep test called a polysomnogram, or sleep study involving the measurement of brain activity through the electroencephalogram. Other parameters monitored include oxygen saturation, respiratory effort, cardiac activity (through the electrocardiogram), as well as video recording, sound and movement activity. Monitoring can be costly and removes the patients from their normal sleeping environment, preventing repeated unbiased studies. The recent increase in adoption of smartphones, with high quality on-board sensors has led to the proliferation of many sleep screening applications running on the phone. However, with the exception of simple questionnaires, no existing sleep-related application available for smartphones is based on scientific evidence. This paper reviews the existing smartphone applications landscape used in the field of sleep disorders and proposes possible advances to improve screening approaches. (topical review)

  18. Evolving PBPK applications in regulatory risk assessment: current situation and future goals

    Science.gov (United States)

    The presentation includes current applications of PBPK modeling in regulatory risk assessment and discussions on conflicts between assuring consistency with experimental data in current situation and the desire for animal-free model development.

  19. A fiber-optic current sensor for lightning measurement applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-05-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  20. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  1. Application of RF Superconductivity to High-Current Linac

    International Nuclear Information System (INIS)

    Chan, K.C.D.

    1998-01-01

    In 1997, the authors initiated a development program in Los Alamos for high-current superconducting proton-linac technology to build prototypes components of this linac to demonstrate the feasibility. The authors are building 700-MHz niobium cavities with elliptical shapes, as well as power couplers to transfer high RF power to these cavities. The cavities and power couplers will be integrated in cryostats as linac cryomodules. In this paper, they describe the linac design and the status of the development program

  2. The current status of agricultural radiation application in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byungyeoup; Kang, Siyong; Lee, Youngkeun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2006-04-15

    Since the middle of 1960s agricultural radiation applications have been growing rapidly with a huge resultant influence on the Korea economy. However, most applications used by radiation technologies in agricultural areas are drawn toward to mutation breeding of crops. We have started to research new applications of agricultural areas such as microorganism mutation, mass production of medical compounds, structure modifications of genes/proteins/natural polymers and so on since the late 1990s. In mutation breeding field, around 30 plant cultivars including 16 rice, 6 sesame, 4 hibiscus, 2 soybean, 1 barley and 2 box thorn (=Chinese matrimony vine, Lyci fructus) have been developed by the Korea Atomic Energy Research Institute(KAERI). Now, we are on going to establish new radiation plant breeding technologies with environmental stresses and a high quality in combination with new bio-technologies (e. g. application of tissue culture, in vitro selection, doubled haploids, molecular marker, and gene analysis, etc.) for developing high quality cultivars. The microbial applications of radiation is one of the most attractive R and D in agricultural field because microorganism can be used as a bio-controller which has some advantages such as long term controlling system, decrease in secondary environmental pollution, and tailored microbial pesticide for various crop diseases. According to the advantages as mentioned above, we have made efforts in improving the functions of microbial pesticide (e. g. selection of microorganisms for heavy metal resistant, high decomposition rate of pesticide, and control of plant pathogens etc.) by means of radiation technology. It is a common conception that a certain range of low doses of radiation can elevate the physiological activities of cells in plants and photosynthetic microorganisms, e. g. by accelerating cell proliferation, ameliorating germination and growth rates, increasing stress resistance, and improving crop yields etc. We

  3. The current status of agricultural radiation application in Korea

    International Nuclear Information System (INIS)

    Chung, Byungyeoup; Kang, Siyong; Lee, Youngkeun

    2006-01-01

    Since the middle of 1960s agricultural radiation applications have been growing rapidly with a huge resultant influence on the Korea economy. However, most applications used by radiation technologies in agricultural areas are drawn toward to mutation breeding of crops. We have started to research new applications of agricultural areas such as microorganism mutation, mass production of medical compounds, structure modifications of genes/proteins/natural polymers and so on since the late 1990s. In mutation breeding field, around 30 plant cultivars including 16 rice, 6 sesame, 4 hibiscus, 2 soybean, 1 barley and 2 box thorn (=Chinese matrimony vine, Lyci fructus) have been developed by the Korea Atomic Energy Research Institute(KAERI). Now, we are on going to establish new radiation plant breeding technologies with environmental stresses and a high quality in combination with new bio-technologies (e. g. application of tissue culture, in vitro selection, doubled haploids, molecular marker, and gene analysis, etc.) for developing high quality cultivars. The microbial applications of radiation is one of the most attractive R and D in agricultural field because microorganism can be used as a bio-controller which has some advantages such as long term controlling system, decrease in secondary environmental pollution, and tailored microbial pesticide for various crop diseases. According to the advantages as mentioned above, we have made efforts in improving the functions of microbial pesticide (e. g. selection of microorganisms for heavy metal resistant, high decomposition rate of pesticide, and control of plant pathogens etc.) by means of radiation technology. It is a common conception that a certain range of low doses of radiation can elevate the physiological activities of cells in plants and photosynthetic microorganisms, e. g. by accelerating cell proliferation, ameliorating germination and growth rates, increasing stress resistance, and improving crop yields etc. We

  4. Industrial applications and current trends in supercritical fluid technologies

    Directory of Open Access Journals (Sweden)

    Gamse Thomas

    2005-01-01

    Full Text Available Supercritical fluids have a great potential for wide fields of processes Although CO2 is still one of the most used supercritical gases, for special purposes propane or even fluorinated-chlorinated fluids have also been tested. The specific characteristics of supercritical fluids behaviour were analyzed such as for example the solubilities of different components and the phase equilibria between the solute and solvent. The application at industrial scale (decaffeinating of tea and coffee, hop extraction or removal of pesticides from rice, activity in supercritical extraction producing total extract from the raw material or different fractions by using the fractionated separation of beverages (rum, cognac, whisky, wine, beer cider, of citrus oils and of lipids (fish oils, tall oil were also discussed. The main interest is still for the extraction of natural raw materials producing food ingredients, nutraceuticals and phytopharmaceuticals but also cleaning purposes were tested such as the decontamination of soils the removal of residual solvents from pharmaceutical products, the extraction of flame retardants from electronic waste or precision degreasing and cleaning of mechanical and electronic parts. An increasing interest obviously exists for impregnation purposes based on supercritical fluids behaviour, as well as for the dying of fibres and textiles. The production of fine particles in the micron and submicron range, mainly for pharmaceutical products is another important application of supercritical fluids. Completely new products can be produced which is not possible under normal conditions. Supercritical fluid technology has always had to compete with the widespread opinion that these processes are very expensive due to very high investment costs in comparison with classical low-pressure equipment. Thus the opinion is that these processes should be restricted to high-added value products. A cost estimation for different plant sizes and

  5. Smartphone applications to aid weight loss and management: current perspectives

    Directory of Open Access Journals (Sweden)

    Sutton EF

    2016-07-01

    Full Text Available Elizabeth F Sutton, Leanne M Redman Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA Abstract: The development and dissemination of smart devices has cultivated a global environment of hyperconnectivity and increased our access to information. The paralleled launch and success of the Mobile Health industry has created a market of commercially available applications or “apps” along with tools or sensors, which allow the user to receive and collect personal health information. Apps and accompanying tools now allow an individual to “self-digitize” and, pertaining to weight management, monitor their body weight, caloric intake, physical activity, and more. These products possess the ability to improve the scalability of traditional in-person weight management services considering their near ubiquity, affordability, and capability to deliver information directly and personally to the user. However, similar to the dietary supplement market, the anecdotal value of these products has driven their popularity and acceptance by the general public without requirement of scientific validation or, in the area of weight management or diet/exercise, validation of the safety and efficacy by the Food and Drug Administration prior to market launch. By conducting a literature and clinical trial search, we found remarkably few active, completed, or published studies testing the efficacy of smart device applications using randomized controlled trials. Research efforts must be focused on illuminating the efficacy of behavioral interventions and remote self-monitoring for weight loss/maintenance treatment with true, randomized controlled trials. Keywords: smartphone, mobile phone, application, app, weight, weight loss, weight maintenance

  6. Ceramic high temperature superconductors for high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J

    1997-12-31

    Composite Reaction Texturing (CRT) is a technique which uses a fine distribution of pre-aligned seeds as nucleating sites for texturing oxide superconductors. It has successfully been applied to the texturing of Bi-2212 compounds. A furhter application of CRT is reported in which Y-123 is biaxially textured using seeds of other Rare Earth-123 compounds with higher melting points as nucleating sites. The resultant textured microstructure exhibits mainly low angle grain boundaries (up to 5 deg. misorientation). Results will be presented on the seed alignment techniques, the development of microstructure during reaction of the composite preform and preliminary measurements of electromagnetic properties. (au). 111 refs.

  7. Ceramic high temperature superconductors for high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.

    1996-12-31

    Composite Reaction Texturing (CRT) is a technique which uses a fine distribution of pre-aligned seeds as nucleating sites for texturing oxide superconductors. It has successfully been applied to the texturing of Bi-2212 compounds. A furhter application of CRT is reported in which Y-123 is biaxially textured using seeds of other Rare Earth-123 compounds with higher melting points as nucleating sites. The resultant textured microstructure exhibits mainly low angle grain boundaries (up to 5 deg. misorientation). Results will be presented on the seed alignment techniques, the development of microstructure during reaction of the composite preform and preliminary measurements of electromagnetic properties. (au). 111 refs.

  8. Ultrasound in obstetric anaesthesia: a review of current applications.

    LENUS (Irish Health Repository)

    Ecimovic, P

    2010-07-01

    Ultrasound equipment is increasingly used by non-radiologists to perform interventional techniques and for diagnostic evaluation. Equipment is becoming more portable and durable, with easier user-interface and software enhancement to improve image quality. While obstetric utilisation of ultrasound for fetal assessment has developed over more than 40years, the same technology has not found a widespread role in obstetric anaesthesia. Within the broader specialty of anaesthesia; vascular access, cardiac imaging and regional anaesthesia are the areas in which ultrasound is becoming increasingly established. In addition to ultrasound for neuraxial blocks, these other clinical applications may be of value in obstetric anaesthesia practice.

  9. Ceramic high temperature superconductors for high current applications

    International Nuclear Information System (INIS)

    Christiansen, J.

    1996-01-01

    Composite Reaction Texturing (CRT) is a technique which uses a fine distribution of pre-aligned seeds as nucleating sites for texturing oxide superconductors. It has successfully been applied to the texturing of Bi-2212 compounds. A furhter application of CRT is reported in which Y-123 is biaxially textured using seeds of other Rare Earth-123 compounds with higher melting points as nucleating sites. The resultant textured microstructure exhibits mainly low angle grain boundaries (up to 5 deg. misorientation). Results will be presented on the seed alignment techniques, the development of microstructure during reaction of the composite preform and preliminary measurements of electromagnetic properties. (au)

  10. Photoacoustic cavitation for theranostics: mechanism, current progress and applications

    International Nuclear Information System (INIS)

    Feng, Y; Qin, D; Wan, M

    2015-01-01

    As an emerging cavitation technology, photoacoustic cavitation (PAC) means the formation of bubbles in liquids using focused laser and pre-established ultrasound synchronously. Its significant advantages include the decreased threshold of each modality and the precise location of cavitation determined by the focused laser. In this paper, a brief review of PAC is presented, including the physical mechanism description, the classic experimental technology, the representative results in variety of media, and its applications in biomedical imaging and therapy. Moreover, some preliminary results of PAC in perfluoropentane (PFP) liquid and PFP droplets investigated by passive cavitation detection (PCD) in our group are also presented. (paper)

  11. Current applications of nanotechnology in dentistry: a review.

    Science.gov (United States)

    Bhavikatti, Shaeesta Khaleelahmed; Bhardwaj, Smiti; Prabhuji, M L V

    2014-01-01

    With the increasing demand for advances in diagnosis and treatment modalities, nanotechnology is being considered as a groundbreaking and viable research subject. This technology, which deals with matter in nanodimensions, has widened our views of poorly understood health issues and provided novel means of diagnosis and treatment. Researchers in the field of dentistry have explored the potential of nanoparticles in existing therapeutic modalities with moderate success. The key implementations in the field of dentistry include local drug delivery agents, restorative materials, bone graft materials, and implant surface modifications. This review provides detailed insights about current developments in the field of dentistry, and discusses potential future uses of nanotechnology.

  12. APPLICATIONS OF CURRENT TECHNOLOGY FOR CONTINUOUS MONITORING OF SPENT FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Drayer, R.

    2013-06-09

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each

  13. Applications of current technology for continuous monitoring of spent fuel

    International Nuclear Information System (INIS)

    Drayer, R.

    2013-01-01

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each

  14. Current status of research and related activities in NAA application

    International Nuclear Information System (INIS)

    Ab Khalik bin Haji Wood

    1999-01-01

    Current activities of Analytical Chemistry Group of MINT (Malaysia Institute for Nuclear Technology Research) laboratory for elemental analysis of trace amounts in environmental samples such as air particulate matter (on air filter), soils/sediments, water, flora/fauna, oil sludge/waste sludge, and tailing/blasting slag and others, utilizing particularly NAA (Neutron Activation Analysis) method are reviewed. The laboratory participates in the IAEA-organized Interlaboratory Comparison Studies to ensure the analytical system. Other activities include analytical chemistry services with ICP-mass spectrometry and GC/GCMS to compliment the NAA and, moreover, air and marine pollution studies with participation in the UNDP/RCA/IAEA project. (S. Ohno)

  15. Current applications of big data in obstetric anesthesiology.

    Science.gov (United States)

    Klumpner, Thomas T; Bauer, Melissa E; Kheterpal, Sachin

    2017-06-01

    The narrative review aims to highlight several recently published 'big data' studies pertinent to the field of obstetric anesthesiology. Big data has been used to study rare outcomes, to identify trends within the healthcare system, to identify variations in practice patterns, and to highlight potential inequalities in obstetric anesthesia care. Big data studies have helped define the risk of rare complications of obstetric anesthesia, such as the risk of neuraxial hematoma in thrombocytopenic parturients. Also, large national databases have been used to better understand trends in anesthesia-related adverse events during cesarean delivery as well as outline potential racial/ethnic disparities in obstetric anesthesia care. Finally, real-time analysis of patient data across a number of disparate health information systems through the use of sophisticated clinical decision support and surveillance systems is one promising application of big data technology on the labor and delivery unit. 'Big data' research has important implications for obstetric anesthesia care and warrants continued study. Real-time electronic surveillance is a potentially useful application of big data technology on the labor and delivery unit.

  16. Current leakage for low altitude satellites: modeling applications

    International Nuclear Information System (INIS)

    Konradi, A.; Mccoy, J.E.; Garriott, O.K.

    1979-01-01

    To simulate the behavior of a high voltage solar cell array in the ionospheric plasma environment, the large (90 ft x 55 ft diameter) vacuum chamber was used to measure the high-voltage plasma interactions of a 3 ft x 30 ft conductive panel. The chamber was filled with nitrogen and argon plasma at electron densities of up to 1,000,000 per cu cm. Measurements of current flow to the plasma were made in three configurations: (a) with one end of the panel grounded, (b) with the whole panel floating while a high bias was applied between the ends of the panel, and (c) with the whole panel at high negative voltage with respect to the chamber walls. The results indicate that a simple model with a constant panel conductivity and plasma resistance can adequately describe the voltage distribution along the panel and the plasma current flow. As expected, when a high potential difference is applied to the panel ends more than 95% of the panel floats negative with respect to the plasma

  17. Exploiting fluorescence for multiplex immunoassays on protein microarrays

    International Nuclear Information System (INIS)

    Herbáth, Melinda; Balogh, Andrea; Matkó, János; Papp, Krisztián; Prechl, József

    2014-01-01

    Protein microarray technology is becoming the method of choice for identifying protein interaction partners, detecting specific proteins, carbohydrates and lipids, or for characterizing protein interactions and serum antibodies in a massively parallel manner. Availability of the well-established instrumentation of DNA arrays and development of new fluorescent detection instruments promoted the spread of this technique. Fluorescent detection has the advantage of high sensitivity, specificity, simplicity and wide dynamic range required by most measurements. Fluorescence through specifically designed probes and an increasing variety of detection modes offers an excellent tool for such microarray platforms. Measuring for example the level of antibodies, their isotypes and/or antigen specificity simultaneously can offer more complex and comprehensive information about the investigated biological phenomenon, especially if we take into consideration that hundreds of samples can be measured in a single assay. Not only body fluids, but also cell lysates, extracted cellular components, and intact living cells can be analyzed on protein arrays for monitoring functional responses to printed samples on the surface. As a rapidly evolving area, protein microarray technology offers a great bulk of information and new depth of knowledge. These are the features that endow protein arrays with wide applicability and robust sample analyzing capability. On the whole, protein arrays are emerging new tools not just in proteomics, but glycomics, lipidomics, and are also important for immunological research. In this review we attempt to summarize the technical aspects of planar fluorescent microarray technology along with the description of its main immunological applications. (topical review)

  18. Brain-computer interfaces current trends and applications

    CERN Document Server

    Azar, Ahmad

    2015-01-01

    The success of a BCI system depends as much on the system itself as on the user’s ability to produce distinctive EEG activity. BCI systems can be divided into two groups according to the placement of the electrodes used to detect and measure neurons firing in the brain. These groups are: invasive systems, electrodes are inserted directly into the cortex are used for single cell or multi unit recording, and electrocorticography (EcoG), electrodes are placed on the surface of the cortex (or dura); noninvasive systems, they are placed on the scalp and use electroencephalography (EEG) or magnetoencephalography (MEG) to detect neuron activity. The book is basically divided into three parts. The first part of the book covers the basic concepts and overviews of Brain Computer Interface. The second part describes new theoretical developments of BCI systems. The third part covers views on real applications of BCI systems.

  19. Current application of chemometrics in traditional Chinese herbal medicine research.

    Science.gov (United States)

    Huang, Yipeng; Wu, Zhenwei; Su, Rihui; Ruan, Guihua; Du, Fuyou; Li, Gongke

    2016-07-15

    Traditional Chinese herbal medicines (TCHMs) are promising approach for the treatment of various diseases which have attracted increasing attention all over the world. Chemometrics in quality control of TCHMs are great useful tools that harnessing mathematics, statistics and other methods to acquire information maximally from the data obtained from various analytical approaches. This feature article focuses on the recent studies which evaluating the pharmacological efficacy and quality of TCHMs by determining, identifying and discriminating the bioactive or marker components in different samples with the help of chemometric techniques. In this work, the application of chemometric techniques in the classification of TCHMs based on their efficacy and usage was introduced. The recent advances of chemometrics applied in the chemical analysis of TCHMs were reviewed in detail. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. MR-guided focused ultrasound. Current and future applications

    International Nuclear Information System (INIS)

    Trumm, C.G.; Peller, M.; Clevert, D.A.; Stahl, R.; Reiser, M.; Napoli, A.; Matzko, M.

    2013-01-01

    High-intensity focused ultrasound (synonyms FUS and HIFU) under magnetic resonance imaging (MRI) guidance (synonyms MRgFUS and MR-HIFU) is a completely non-invasive technology for accurate thermal ablation of a target tissue while neighboring tissues and organs are preserved. The combination of FUS with MRI for planning, (near) real-time monitoring and outcome assessment of treatment markedly enhances the safety of the procedure. The MRgFUS procedure is clinically established in particular for the treatment of symptomatic uterine fibroids, followed by palliative ablation of painful bone metastases. Furthermore, promising results have been shown for the treatment of adenomyosis, malignant tumors of the prostate, breast and liver and for various intracranial applications, such as thermal ablation of brain tumors, functional neurosurgery and transient disruption of the blood-brain barrier. (orig.) [de

  1. [MR-guided focused ultrasound. Current and future applications].

    Science.gov (United States)

    Trumm, C G; Napoli, A; Peller, M; Clevert, D-A; Stahl, R; Reiser, M; Matzko, M

    2013-03-01

    High-intensity focused ultrasound (synonyms FUS and HIFU) under magnetic resonance imaging (MRI) guidance (synonyms MRgFUS and MR-HIFU) is a completely non-invasive technology for accurate thermal ablation of a target tissue while neighboring tissues and organs are preserved. The combination of FUS with MRI for planning, (near) real-time monitoring and outcome assessment of treatment markedly enhances the safety of the procedure. The MRgFUS procedure is clinically established in particular for the treatment of symptomatic uterine fibroids, followed by palliative ablation of painful bone metastases. Furthermore, promising results have been shown for the treatment of adenomyosis, malignant tumors of the prostate, breast and liver and for various intracranial applications, such as thermal ablation of brain tumors, functional neurosurgery and transient disruption of the blood-brain barrier.

  2. Current and future industrial application of electron accelerators in Thailand

    International Nuclear Information System (INIS)

    Siri-Upathum, Chyagrit

    2003-01-01

    Industrial applications of electron accelerators in Thailand, first introduced in 1997 for radiation sterilized products such as doctor gown, pampas, feminine napkin etc followed by installation of accelerators, one with energies at 20 MV and the other at 5 MV to produce new value added products like gem stones, topaz, tourmaline and zircon. The machines operate in pulse mode and is also used for irradiation services for food and sterilized products treatment. The need for low and medium energy accelerators in radiation technology is stressed. They are to be used for crosslinking of electrical wire and cable, heat shrinkable materials, low protein concentrated rubber latex, rubber wood furniture and parts, and silk protein degradation. The role of governmental organizations like Nuclear Research Institute (OAEP) and universities in stimulating the utilization of radiation processing in Thailand is strengthened. (S. Ohno)

  3. Current and future industrial application of electron accelerators in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, Chyagrit [Chulalongkorn Univ., Faculty of Engineering, Bangkok (Thailand)

    2003-02-01

    Industrial applications of electron accelerators in Thailand, first introduced in 1997 for radiation sterilized products such as doctor gown, pampas, feminine napkin etc followed by installation of accelerators, one with energies at 20 MV and the other at 5 MV to produce new value added products like gem stones, topaz, tourmaline and zircon. The machines operate in pulse mode and is also used for irradiation services for food and sterilized products treatment. The need for low and medium energy accelerators in radiation technology is stressed. They are to be used for crosslinking of electrical wire and cable, heat shrinkable materials, low protein concentrated rubber latex, rubber wood furniture and parts, and silk protein degradation. The role of governmental organizations like Nuclear Research Institute (OAEP) and universities in stimulating the utilization of radiation processing in Thailand is strengthened. (S. Ohno)

  4. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.

  5. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins.

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. © 2011 American Institute of Physics

  6. Magnetic resonance imaging of the shoulder: Rationale and current applications

    International Nuclear Information System (INIS)

    Holt, R.G.; Helms, C.A.; Steinbach, L.; Neumann, C.; Munk, P.L.; Genant, H.K.

    1990-01-01

    Because it can demonstrate a wide range of tissue contrast with excellent resolution, magnetic resonance (MR) imaging has revolutionized imaging in many areas of the musculoskeletal system and has generated excitement among those interested in the painful shoulder. Shoulder impingement syndrome and glenohumeral instability constitute the two major categories of shoulder derangements. Correct diagnosis requires the use of appropriate pulse sequences and imaging planes, proper patient positioning, and a satisfactory surface coil. In addition the imager must have a thorough understanding of shoulder anatomy and pathology. We present a summary of the current status of MR imaging of the shoulder including technical, anatomic, and pathologic considerations and a review of the pertinent literature. (orig.)

  7. Current Status and Application of Hazard Definition Technology

    Science.gov (United States)

    Greene, George C.

    1997-01-01

    A research is performed: to define wake non-encounter & hazard, to provide requirements for sensors, and to obtain input from the user community. This research includes: validating wake encounter simulation models, establishing a metric to quantify the upset potential of a wake encounter, applying hazard metric and simulation models to the commercial fleet for development of candidate acceptable encounter limits, and applying technology to near term problems to evaluate current status of technology. The following lessons are learned from this project: technology is not adequate to determine absolute spacing requirements; time, not distance, determines the duration of the wake hazard; Optimum standards depend on the traffic; Wing span is an important parameter for characterizing both generator and follower; and Short span "biz jets" are easily rolled.

  8. Application of alternating current for dimensionally electrochemical machining

    International Nuclear Information System (INIS)

    Kacheev, M.K.; Kovalev, L.M.

    1978-01-01

    The results of comparative experimental investigations in dimensionally electrochemical machining of 1Kh18N9T steel using alternating and direct currents are presented. The effect of the electrolyte rate in the inter-electrode clearance, electrode voltage and oscillation amplitude of the electrode-tool on the metal output from the electrodes and the relief of the machined surface is studied. It is shown that the a.c. electrochemical machining permits to achieve the greater dimensional accuracy than the d.c. machining when choosing the proper voltage and electrolyte composition. It is connected with the fact that the prevailing part of the metal output is obtained in the impulse-asymmetrical regime when the inter-electrode clearance is minimum

  9. SARAL/Altika for inland water: current and potential applications

    Science.gov (United States)

    Tarpanelli, Angelica; Brocca, Luca; Barbetta, Silvia; Moramarco, Tommaso; Santos da Silva, Joécila; Calmant, Stephane

    2015-04-01

    Although representing less than 1% of the total amount of water on Earth the freshwater is essential for terrestrial life and human needs. Over one third of the world's population is not served by adequate supplies of clean water and for this reason freshwater wars are becoming one of the most pressing environmental issues exacerbating the already difficult tensions between the riparian nations. Notwithstanding the foregoing, we have surprisingly poor knowledge of the spatial and temporal dynamics of surface discharge. In-situ gauging networks quantify the instantaneous water volume in the main river channels but provide few information about the spatial dynamics of surface water extent, such as floodplain flows and the dynamics of wetlands. The growing reduction of hydrometric monitoring networks over the world, along with the inaccessibility of many remote areas and the difficulties for data sharing among developing countries feed the need to develop new procedures for river discharge estimation based on remote sensing technology. The major challenge in this case is the possibility of using Earth Observation data without ground measurements. Radar altimeters are a valuable tool to retrieve hydrological information from space such as water level of inland water. More than a decade of research on the application of radar altimetry has demonstrated its advantages also for monitoring continental water, providing global coverage and regular temporal sampling. The high accuracy of altimetry data provided by the latest spatial missions and the convincing results obtained in the previous applications suggest that these data may be employed for hydraulic/hydrological applications as well. If used in synergy with the modeling, the potential benefits of the altimetry measurements can grow significantly. The new SARAL French-Indian mission, providing improvements in terms of vertical accuracy and spatial resolution of the onboard altimeter Altika, can offer a great

  10. Accelerator mass spectrometry-current status in techniques and applications

    International Nuclear Information System (INIS)

    Imamura, Mineo; Nagai, Hisao; Kobayashi, Koichi.

    1991-01-01

    Accelerator mass spectrometry (AMS) is the mass spectrometry by incorporating an accelerator. After samples are ionized, they are accelerated to a certain energy, and mass, energy, nuclear charge (atomic number) are distinguished, and ion counting is made one by one with a heavy ion detector. For the measurement of long half-life radioisotopes, mass spectrometry has been used because of the high sensitivity, but in low energy mass spectrometry, there are the difficulties due to the mixing of the molecular ions having nearly same mass and the existence of isobars. One of the methods solving these difficulties is an accelerator which enables background-free measurement. The progress of AMS is briefly described, and at present, it is carried out in about 30 facilities in the world. In AMS, the analysis is carried out in the order of the ionization of samples, the acceleration of beam, the electron stripping with a thin film, the sorting of the momentum and energy of beam and the identification of particles. The efficiency, sensitivity and accuracy of detection and the application are reported. (K.I.)

  11. Current applications of vibration monitoring and neutron noise analysis

    International Nuclear Information System (INIS)

    Damiano, B.; Kryter, R.C.

    1990-02-01

    Monitoring programs using vibration monitoring or neutron noise analysis have demonstrated the ability to detect and, in some cases, diagnose the nature of reactor vessel internals structural degradation. Detection of compromised mechanical integrity of reactor vessel internal components in its early stages allows corrective action to be taken before weakening or damage occurs. In addition to the economic benefits early detection and correction can provide, they can also help maintain plant safety. Information on the condition of reactor vessel internal components gained from a monitoring program supplements in-service inspection results and may be useful in justifying plant license extension. This report, which was prepared under the Nuclear Plant Aging Research Program sponsored by the US Nuclear Regulatory Commission, discusses the application of vibration monitoring and neutron noise analysis for monitoring light-water reactor vessel internals. The report begins by describing the effects of structural integrity loss on internals vibration and how measurable parameters can be used to detect and track the progress of degradation. This is followed by a description and comparison of vibration monitoring and neutron noise analysis, two methods for monitoring the mechanical integrity of reactor vessel internals condition monitoring programs in the United States, Federal Republic of Germany, and France, three countries having substantial commitments to nuclear power. The last section presents guidelines for US utilities wishing to establish reactor internals condition monitoring programs. 20 refs., 5 figs., 4 tabs

  12. Optical coherence tomography – current and future applications

    Science.gov (United States)

    Adhi, Mehreen; Duker, Jay S.

    2013-01-01

    Purpose of review Optical coherence tomography (OCT) has revolutionized the clinical practice of ophthalmology. It is a noninvasive imaging technique that provides high-resolution, cross-sectional images of the retina, retinal nerve fiber layer and the optic nerve head. This review discusses the present applications of the commercially available spectral-domain OCT (SD-OCT) systems in the diagnosis and management of retinal diseases, with particular emphasis on choroidal imaging. Future directions of OCT technology and their potential clinical uses are discussed. Recent findings Analysis of the choroidal thickness in healthy eyes and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies has been successfully achieved using SD-OCT devices with software improvements. Future OCT innovations such as longer-wavelength OCT systems including the swept-source technology, along with Doppler OCT and en-face imaging, may improve the detection of subtle microstructural changes in chorioretinal diseases by improving imaging of the choroid. Summary Advances in OCT technology provide for better understanding of pathogenesis, improved monitoring of progression and assistance in quantifying response to treatment modalities in diseases of the posterior segment of the eye. Further improvements in both hardware and software technologies should further advance the clinician’s ability to assess and manage chorioretinal diseases. PMID:23429598

  13. Selected finelings on current research into applications of ionizing radiation in food industry

    International Nuclear Information System (INIS)

    Salkova, Z.

    1979-01-01

    A review is presented of research of the application of ionizing radiation in the food industry, mainly for the inhibition of potato and onion germination and for radappertization of soft fruits. Current laws governing the irradiation of food are described and the current knowledge of the practical application of the new technology is indicated. (author)

  14. Spinal cord stimulation: Current applications for treatment of chronic pain.

    Science.gov (United States)

    Vannemreddy, Prasad; Slavin, Konstantin V

    2011-01-01

    Spinal cord stimulation (SCS) is thought to relieve chronic intractable pain by stimulating nerve fibers in the spinal cord. The resulting impulses in the fibers may inhibit the conduction of pain signals to the brain, according to the pain gate theory proposed by Melzack and Wall in 1965 and the sensation of pain is thus blocked. Although SCS may reduce pain, it will not eliminate it. After a period of concern about safety and efficacy, SCS is now regaining popularity among pain specialists for the treatment of chronic pain. The sympatholytic effect of SCS is one of its most interesting therapeutic properties. This effect is considered responsible for the effectiveness of SCS in peripheral ischemia, and at least some cases of complex regional pain syndrome. The sympatholytic effect has also been considered part of the management of other chronic pain states such as failed back surgery syndrome, phantom pain, diabetic neuropathy, and postherpetic neuralgia. In general, SCS is part of an overall treatment strategy and is used only after the more conservative treatments have failed. The concept of SCS has evolved rapidly following the technological advances that have produced leads with multiple contact electrodes and battery systems. The current prevalence of patients with chronic pain requiring treatment other than conventional medical management has significantly increased and so has been the need for SCS. With the cost benefit analysis showing significant support for SCS, it may be appropriate to offer this as an effective alternative treatment for these patients.

  15. Isotopic germanium targets for high beam current applications at GAMMASPHERE

    International Nuclear Information System (INIS)

    Greene, J. P.; Lauritsen, T.

    2000-01-01

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce 152 Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the 80 Se on 76 Ge reaction rather than the standard 48 Ca on 108 Pd reaction. Because the recoil velocity of the 152 Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the 76 Ge target stacks were mounted on a rotating target wheel. A description of the 76 Ge target stack preparation will be presented and the target performance described

  16. Additive Technology: Update on Current Materials and Applications in Dentistry.

    Science.gov (United States)

    Barazanchi, Abdullah; Li, Kai Chun; Al-Amleh, Basil; Lyons, Karl; Waddell, J Neil

    2017-02-01

    Additive manufacturing or 3D printing is becoming an alternative to subtractive manufacturing or milling in the area of computer-aided manufacturing. Research on material for use in additive manufacturing is ongoing, and a wide variety of materials are being used or developed for use in dentistry. Some materials, however, such as cobalt chromium, still lack sufficient research to allow definite conclusions about the suitability of their use in clinical dental practice. Despite this, due to the wide variety of machines that use additive manufacturing, there is much more flexibility in the build material and geometry when building structures compared with subtractive manufacturing. Overall additive manufacturing produces little material waste and is energy efficient when compared to subtractive manufacturing, due to passivity and the additive layering nature of the build process. Such features make the technique suitable to be used with fabricating structures out of hard to handle materials such as cobalt chromium. The main limitations of this technology include the appearance of steps due to layering of material and difficulty in fabricating certain material generally used in dentistry for use in 3D printing such as ceramics. The current pace of technological development, however, promises exciting possibilities. © 2016 by the American College of Prosthodontists.

  17. Workflows for microarray data processing in the Kepler environment

    Directory of Open Access Journals (Sweden)

    Stropp Thomas

    2012-05-01

    Full Text Available Abstract Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. Results We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data and therefore are close to

  18. Workflows for microarray data processing in the Kepler environment.

    Science.gov (United States)

    Stropp, Thomas; McPhillips, Timothy; Ludäscher, Bertram; Bieda, Mark

    2012-05-17

    Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R

  19. Workflows for microarray data processing in the Kepler environment

    Science.gov (United States)

    2012-01-01

    Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. Results We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or

  20. Comprehensive genetic assessment of the human embryo: can empiric application of microarray comparative genomic hybridization reduce multiple gestation rate by single fresh blastocyst transfer?

    Science.gov (United States)

    Sills, Eric Scott; Yang, Zhihong; Walsh, David J; Salem, Shala A

    2012-09-01

    The unacceptable multiple gestation rate currently associated with in vitro fertilization (IVF) would be substantially alleviated if the routine practice of transferring more than one embryo were reconsidered. While transferring a single embryo is an effective method to reduce the clinical problem of multiple gestation, rigid adherence to this approach has been criticized for negatively impacting clinical pregnancy success in IVF. In general, single embryo transfer is viewed cautiously by IVF patients although greater acceptance would result from a more effective embryo selection method. Selection of one embryo for fresh transfer on the basis of chromosomal normalcy should achieve the dual objective of maintaining satisfactory clinical pregnancy rates and minimizing the multiple gestation problem, because embryo aneuploidy is a major contributing factor in implantation failure and miscarriage in IVF. The initial techniques for preimplantation genetic screening unfortunately lacked sufficient sensitivity and did not yield the expected results in IVF. However, newer molecular genetic methods could be incorporated with standard IVF to bring the goal of single embryo transfer within reach. Aiming to make multiple embryo transfers obsolete and unnecessary, and recognizing that array comparative genomic hybridization (aCGH) will typically require an additional 12 h of laboratory time to complete, we propose adopting aCGH for mainstream use in clinical IVF practice. As aCGH technology continues to develop and becomes increasingly available at lower cost, it may soon be considered unusual for IVF laboratories to select a single embryo for fresh transfer without regard to its chromosomal competency. In this report, we provide a rationale supporting aCGH as the preferred methodology to provide a comprehensive genetic assessment of the single embryo before fresh transfer in IVF. The logistics and cost of integrating aCGH with IVF to enable fresh embryo transfer are also

  1. "Harshlighting" small blemishes on microarrays

    Directory of Open Access Journals (Sweden)

    Wittkowski Knut M

    2005-03-01

    Full Text Available Abstract Background Microscopists are familiar with many blemishes that fluorescence images can have due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray scans show similar artefacts, which affect the analysis, particularly when one tries to detect subtle changes. However, most blemishes are hard to find by the unaided eye, particularly in high-density oligonucleotide arrays (HDONAs. Results We present a method that harnesses the statistical power provided by having several HDONAs available, which are obtained under similar conditions except for the experimental factor. This method "harshlights" blemishes and renders them evident. We find empirically that about 25% of our chips are blemished, and we analyze the impact of masking them on screening for differentially expressed genes. Conclusion Experiments attempting to assess subtle expression changes should be carefully screened for blemishes on the chips. The proposed method provides investigators with a novel robust approach to improve the sensitivity of microarray analyses. By utilizing topological information to identify and mask blemishes prior to model based analyses, the method prevents artefacts from confounding the process of background correction, normalization, and summarization.

  2. MAGMA: analysis of two-channel microarrays made easy.

    Science.gov (United States)

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  3. Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray

    Directory of Open Access Journals (Sweden)

    Lan Shu

    2008-07-01

    Full Text Available Genomic microarrays are powerful research tools in bioinformatics and modern medicinal research because they enable massively-parallel assays and simultaneous monitoring of thousands of gene expression of biological samples. However, a simple microarray experiment often leads to very high-dimensional data and a huge amount of information, the vast amount of data challenges researchers into extracting the important features and reducing the high dimensionality. In this paper, a nonlinear dimensionality reduction kernel method based locally linear embedding(LLE is proposed, and fuzzy K-nearest neighbors algorithm which denoises datasets will be introduced as a replacement to the classical LLE’s KNN algorithm. In addition, kernel method based support vector machine (SVM will be used to classify genomic microarray data sets in this paper. We demonstrate the application of the techniques to two published DNA microarray data sets. The experimental results confirm the superiority and high success rates of the presented method.

  4. A Customized DNA Microarray for Microbial Source Tracking ...

    Science.gov (United States)

    It is estimated that more than 160, 000 miles of rivers and streams in the United States are impaired due to the presence of waterborne pathogens. These pathogens typically originate from human and other animal fecal pollution sources; therefore, a rapid microbial source tracking (MST) method is needed to facilitate water quality assessment and impaired water remediation. We report a novel qualitative DNA microarray technology consisting of 453 probes for the detection of general fecal and host-associated bacteria, viruses, antibiotic resistance, and other environmentally relevant genetic indicators. A novel data normalization and reduction approach is also presented to help alleviate false positives often associated with high-density microarray applications. To evaluate the performance of the approach, DNA and cDNA was isolated from swine, cattle, duck, goose and gull fecal reference samples, as well as soiled poultry liter and raw municipal sewage. Based on nonmetric multidimensional scaling analysis of results, findings suggest that the novel microarray approach may be useful for pathogen detection and identification of fecal contamination in recreational waters. The ability to simultaneously detect a large collection of environmentally important genetic indicators in a single test has the potential to provide water quality managers with a wide range of information in a short period of time. Future research is warranted to measure microarray performance i

  5. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    Science.gov (United States)

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  6. Integrating Biological Perspectives:. a Quantum Leap for Microarray Expression Analysis

    Science.gov (United States)

    Wanke, Dierk; Kilian, Joachim; Bloss, Ulrich; Mangelsen, Elke; Supper, Jochen; Harter, Klaus; Berendzen, Kenneth W.

    2009-02-01

    Biologists and bioinformatic scientists cope with the analysis of transcript abundance and the extraction of meaningful information from microarray expression data. By exploiting biological information accessible in public databases, we try to extend our current knowledge over the plant model organism Arabidopsis thaliana. Here, we give two examples of increasing the quality of information gained from large scale expression experiments by the integration of microarray-unrelated biological information: First, we utilize Arabidopsis microarray data to demonstrate that expression profiles are usually conserved between orthologous genes of different organisms. In an initial step of the analysis, orthology has to be inferred unambiguously, which then allows comparison of expression profiles between orthologs. We make use of the publicly available microarray expression data of Arabidopsis and barley, Hordeum vulgare. We found a generally positive correlation in expression trajectories between true orthologs although both organisms are only distantly related in evolutionary time scale. Second, extracting clusters of co-regulated genes implies similarities in transcriptional regulation via similar cis-regulatory elements (CREs). Vice versa approaches, where co-regulated gene clusters are found by investigating on CREs were not successful in general. Nonetheless, in some cases the presence of CREs in a defined position, orientation or CRE-combinations is positively correlated with co-regulated gene clusters. Here, we make use of genes involved in the phenylpropanoid biosynthetic pathway, to give one positive example for this approach.

  7. Employing image processing techniques for cancer detection using microarray images.

    Science.gov (United States)

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Lipid Microarray Biosensor for Biotoxin Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.; Edel, Joshua B.; Meyer, Grant D.; Craighead, Harold G.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates by TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4

  9. Advanced microarray technologies for clinical diagnostics

    NARCIS (Netherlands)

    Pierik, Anke

    2011-01-01

    DNA microarrays become increasingly important in the field of clinical diagnostics. These microarrays, also called DNA chips, are small solid substrates, typically having a maximum surface area of a few cm2, onto which many spots are arrayed in a pre-determined pattern. Each of these spots contains

  10. Carbohydrate Microarrays in Plant Science

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.

    2012-01-01

    Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important...... industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high...... for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities....

  11. New Gain Controllable Resistor-less Current-mode First Order Allpass Filter and its Application

    Directory of Open Access Journals (Sweden)

    W. Jaikla

    2012-04-01

    Full Text Available New first order allpass filter (APF in current mode, constructed from 2 CCCCTAs and grounded capacitor, is presented. The current gain and phase shift can be electronically /orthogonally controlled. Low input and high output impedances are achieved which make the circuit to be easily cascaded to the current-mode circuit without additional current buffers. The operation of the proposed filter has been verified through simulation results which confirm the theoretical analysis. The application example as current-mode quadrature oscillator with non-interactive current control for both of oscillation condition and oscillation frequency is included to show the usability of the proposed filter.

  12. The EADGENE Microarray Data Analysis Workshop

    DEFF Research Database (Denmark)

    de Koning, Dirk-Jan; Jaffrézic, Florence; Lund, Mogens Sandø

    2007-01-01

    Microarray analyses have become an important tool in animal genomics. While their use is becoming widespread, there is still a lot of ongoing research regarding the analysis of microarray data. In the context of a European Network of Excellence, 31 researchers representing 14 research groups from...... 10 countries performed and discussed the statistical analyses of real and simulated 2-colour microarray data that were distributed among participants. The real data consisted of 48 microarrays from a disease challenge experiment in dairy cattle, while the simulated data consisted of 10 microarrays...... statistical weights, to omitting a large number of spots or omitting entire slides. Surprisingly, these very different approaches gave quite similar results when applied to the simulated data, although not all participating groups analysed both real and simulated data. The workshop was very successful...

  13. APPLICATION OF CDNA MICROARRAY TECHNOLOGY TO IN VITRO TOXICOLOGY AND THE SELECTION OF GENES FOR A REAL TIME RT-PCR-BASED SCREEN FOR OXIDATIVE STRESS IN HEP-G2 CELLS

    Science.gov (United States)

    Large-scale analysis of gene expression using cDNA microarrays promises therapid detection of the mode of toxicity for drugs and other chemicals. cDNAmicroarrays were used to examine chemically-induced alterations of geneexpression in HepG2 cells exposed to oxidative ...

  14. Translating microarray data for diagnostic testing in childhood leukaemia

    International Nuclear Information System (INIS)

    Hoffmann, Katrin; Firth, Martin J; Beesley, Alex H; Klerk, Nicholas H de; Kees, Ursula R

    2006-01-01

    Recent findings from microarray studies have raised the prospect of a standardized diagnostic gene expression platform to enhance accurate diagnosis and risk stratification in paediatric acute lymphoblastic leukaemia (ALL). However, the robustness as well as the format for such a diagnostic test remains to be determined. As a step towards clinical application of these findings, we have systematically analyzed a published ALL microarray data set using Robust Multi-array Analysis (RMA) and Random Forest (RF). We examined published microarray data from 104 ALL patients specimens, that represent six different subgroups defined by cytogenetic features and immunophenotypes. Using the decision-tree based supervised learning algorithm Random Forest (RF), we determined a small set of genes for optimal subgroup distinction and subsequently validated their predictive power in an independent patient cohort. We achieved very high overall ALL subgroup prediction accuracies of about 98%, and were able to verify the robustness of these genes in an independent panel of 68 specimens obtained from a different institution and processed in a different laboratory. Our study established that the selection of discriminating genes is strongly dependent on the analysis method. This may have profound implications for clinical use, particularly when the classifier is reduced to a small set of genes. We have demonstrated that as few as 26 genes yield accurate class prediction and importantly, almost 70% of these genes have not been previously identified as essential for class distinction of the six ALL subgroups. Our finding supports the feasibility of qRT-PCR technology for standardized diagnostic testing in paediatric ALL and should, in conjunction with conventional cytogenetics lead to a more accurate classification of the disease. In addition, we have demonstrated that microarray findings from one study can be confirmed in an independent study, using an entirely independent patient cohort

  15. DNA microarray-based PCR ribotyping of Clostridium difficile.

    Science.gov (United States)

    Schneeberg, Alexander; Ehricht, Ralf; Slickers, Peter; Baier, Vico; Neubauer, Heinrich; Zimmermann, Stefan; Rabold, Denise; Lübke-Becker, Antina; Seyboldt, Christian

    2015-02-01

    This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Comparison of gene coverage of mouse oligonucleotide microarray platforms

    Directory of Open Access Journals (Sweden)

    Medrano Juan F

    2006-03-01

    reveals that the commercial microarray Sentrix, which is based on the MEEBO public oligoset, showed the best mouse genome coverage currently available. We also suggest the creation of guidelines to standardize the minimum set of information that vendors should provide to allow researchers to accurately evaluate the advantages and disadvantages of using a given platform.

  17. An application of the eddy-current method for inspections of austenitic cladding

    International Nuclear Information System (INIS)

    Kubis, S.; Herka, M.; Krajcovic, R.

    1999-01-01

    The application of the eddy-current method for inspections of austenitic cladding by means of pancake probes. Phase and amplitude characteristics of artificial defects and anticipated interference signals. Optimization of inspection parameters

  18. MEASURING RESULTS NUMERAL TREATMENT OF IMPULSIVE CURRENTS BY MEANS OF ROGOVSKY BELT APPLICATION

    Directory of Open Access Journals (Sweden)

    U. Batygin

    2009-01-01

    Full Text Available The technique of numerical processing of measurement results of pulse currents by means of Rogovsky belt application is offered in the given work. It is shown that at measurement of signals by digital oscillographs and further numerical transformation of target signals, the possibilities of Rogovsky belt without the application of additional devices that in turn allows to define parameters of pulse currents with any peak-time characteristics essentially expand.

  19. The Application of Electroanalgesia Current for the Relief of Orofacial Pain.

    Science.gov (United States)

    1981-09-01

    A-A124 939 THE APPLICATION OF ELECTRORNALGESIA CURRENT FOR THE i/1 RELIEF OF OROFACIAL PAIN (U) OREGON UNIV HEALTH SCIENCES CENTER PORTLAND BIOPHYSICS...COVERED THE APPLICATION OF ELECTROANALGESIA CURRENT FOR Fnl-Fbur 90 and evelpmen Conand September 198 THE RELIEF OF OROFACIAL PAIN Spebr18 27. PERFORMING...of a suitable animal preparation. An excellent site to initiate orofacial pain is found in the tissue vhich also has o - timal relevance, the tooth

  20. Annotating breast cancer microarray samples using ontologies

    Science.gov (United States)

    Liu, Hongfang; Li, Xin; Yoon, Victoria; Clarke, Robert

    2008-01-01

    As the most common cancer among women, breast cancer results from the accumulation of mutations in essential genes. Recent advance in high-throughput gene expression microarray technology has inspired researchers to use the technology to assist breast cancer diagnosis, prognosis, and treatment prediction. However, the high dimensionality of microarray experiments and public access of data from many experiments have caused inconsistencies which initiated the development of controlled terminologies and ontologies for annotating microarray experiments, such as the standard microarray Gene Expression Data (MGED) ontology (MO). In this paper, we developed BCM-CO, an ontology tailored specifically for indexing clinical annotations of breast cancer microarray samples from the NCI Thesaurus. Our research showed that the coverage of NCI Thesaurus is very limited with respect to i) terms used by researchers to describe breast cancer histology (covering 22 out of 48 histology terms); ii) breast cancer cell lines (covering one out of 12 cell lines); and iii) classes corresponding to the breast cancer grading and staging. By incorporating a wider range of those terms into BCM-CO, we were able to indexed breast cancer microarray samples from GEO using BCM-CO and MGED ontology and developed a prototype system with web interface that allows the retrieval of microarray data based on the ontology annotations. PMID:18999108

  1. Using logistic regression to improve the prognostic value of microarray gene expression data sets: application to early-stage squamous cell carcinoma of the lung and triple negative breast carcinoma.

    Science.gov (United States)

    Mount, David W; Putnam, Charles W; Centouri, Sara M; Manziello, Ann M; Pandey, Ritu; Garland, Linda L; Martinez, Jesse D

    2014-06-10

    Numerous microarray-based prognostic gene expression signatures of primary neoplasms have been published but often with little concurrence between studies, thus limiting their clinical utility. We describe a methodology using logistic regression, which circumvents limitations of conventional Kaplan Meier analysis. We applied this approach to a thrice-analyzed and published squamous cell carcinoma (SQCC) of the lung data set, with the objective of identifying gene expressions predictive of early death versus long survival in early-stage disease. A similar analysis was applied to a data set of triple negative breast carcinoma cases, which present similar clinical challenges. Important to our approach is the selection of homogenous patient groups for comparison. In the lung study, we selected two groups (including only stages I and II), equal in size, of earliest deaths and longest survivors. Genes varying at least four-fold were tested by logistic regression for accuracy of prediction (area under a ROC plot). The gene list was refined by applying two sliding-window analyses and by validations using a leave-one-out approach and model building with validation subsets. In the breast study, a similar logistic regression analysis was used after selecting appropriate cases for comparison. A total of 8594 variable genes were tested for accuracy in predicting earliest deaths versus longest survivors in SQCC. After applying the two sliding window and the leave-one-out analyses, 24 prognostic genes were identified; most of them were B-cell related. When the same data set of stage I and II cases was analyzed using a conventional Kaplan Meier (KM) approach, we identified fewer immune-related genes among the most statistically significant hits; when stage III cases were included, most of the prognostic genes were missed. Interestingly, logistic regression analysis of the breast cancer data set identified many immune-related genes predictive of clinical outcome. Stratification of

  2. Ultra-Low Heat-Leak, High-Temperature Superconducting Current Leads for Space Applications

    Science.gov (United States)

    Rey, Christopher M.

    2013-01-01

    NASA Goddard Space Flight Center has a need for current leads used in an adiabatic demagnetization refrigerator (ADR) for space applications. These leads must comply with stringent requirements such as a heat leak of approximately 100 W or less while conducting up to 10 A of electric current, from more than 90 K down to 10 K. Additionally, a length constraint of leak leads currently to NASA's specs.

  3. Metric learning for DNA microarray data analysis

    International Nuclear Information System (INIS)

    Takeuchi, Ichiro; Nakagawa, Masao; Seto, Masao

    2009-01-01

    In many microarray studies, gene set selection is an important preliminary step for subsequent main task such as tumor classification, cancer subtype identification, etc. In this paper, we investigate the possibility of using metric learning as an alternative to gene set selection. We develop a simple metric learning algorithm aiming to use it for microarray data analysis. Exploiting a property of the algorithm, we introduce a novel approach for extending the metric learning to be adaptive. We apply the algorithm to previously studied microarray data on malignant lymphoma subtype identification.

  4. Targeted deposition of antibodies on a multiplex CMOS microarray and optimization of a sensitive immunoassay using electrochemical detection.

    Directory of Open Access Journals (Sweden)

    John Cooper

    2010-03-01

    Full Text Available The CombiMatrix ElectraSense microarray is a highly multiplex, complementary metal oxide semiconductor with 12,544 electrodes that are individually addressable. This platform is commercially available as a custom DNA microarray; and, in this configuration, it has also been used to tether antibodies (Abs specifically on electrodes using complementary DNA sequences conjugated to the Abs.An empirical method is described for developing and optimizing immunoassays on the CombiMatrix ElectraSense microarray based upon targeted deposition of polypyrrole (Ppy and capture Ab. This process was automated using instrumentation that can selectively apply a potential or current to individual electrodes and also measure current generated at the electrodes by an enzyme-enhanced electrochemical (ECD reaction. By designating groups of electrodes on the array for different Ppy deposition conditions, we determined that the sensitivity and specificity of a sandwich immunoassay for staphylococcal enterotoxin B (SEB is influenced by the application of different voltages or currents and the application time. The sandwich immunoassay used a capture Ab adsorbed to the Ppy and a reporter Ab labeled for fluorescence detection or ECD, and results from these methods of detection were different.Using Ppy deposition conditions for optimum results, the lower limit of detection for SEB using the ECD assay was between 0.003 and 0.01 pg/ml, which represents an order of magnitude improvement over a conventional enzyme-linked immunosorbant assay. In the absence of understanding the variables and complexities that affect assay performance, this highly multiplexed electrode array provided a rapid, high throughput, and empirical approach for developing a sensitive immunoassay.

  5. Bioinformatics and Microarray Data Analysis on the Cloud.

    Science.gov (United States)

    Calabrese, Barbara; Cannataro, Mario

    2016-01-01

    High-throughput platforms such as microarray, mass spectrometry, and next-generation sequencing are producing an increasing volume of omics data that needs large data storage and computing power. Cloud computing offers massive scalable computing and storage, data sharing, on-demand anytime and anywhere access to resources and applications, and thus, it may represent the key technology for facing those issues. In fact, in the recent years it has been adopted for the deployment of different bioinformatics solutions and services both in academia and in the industry. Although this, cloud computing presents several issues regarding the security and privacy of data, that are particularly important when analyzing patients data, such as in personalized medicine. This chapter reviews main academic and industrial cloud-based bioinformatics solutions; with a special focus on microarray data analysis solutions and underlines main issues and problems related to the use of such platforms for the storage and analysis of patients data.

  6. DNA microarray technology in nutraceutical and food safety.

    Science.gov (United States)

    Liu-Stratton, Yiwen; Roy, Sashwati; Sen, Chandan K

    2004-04-15

    The quality and quantity of diet is a key determinant of health and disease. Molecular diagnostics may play a key role in food safety related to genetically modified foods, food-borne pathogens and novel nutraceuticals. Functional outcomes in biology are determined, for the most part, by net balance between sets of genes related to the specific outcome in question. The DNA microarray technology offers a new dimension of strength in molecular diagnostics by permitting the simultaneous analysis of large sets of genes. Automation of assay and novel bioinformatics tools make DNA microarrays a robust technology for diagnostics. Since its development a few years ago, this technology has been used for the applications of toxicogenomics, pharmacogenomics, cell biology, and clinical investigations addressing the prevention and intervention of diseases. Optimization of this technology to specifically address food safety is a vast resource that remains to be mined. Efforts to develop diagnostic custom arrays and simplified bioinformatics tools for field use are warranted.

  7. Homogeneous versus heterogeneous probes for microbial ecological microarrays.

    Science.gov (United States)

    Bae, Jin-Woo; Park, Yong-Ha

    2006-07-01

    Microbial ecological microarrays have been developed for investigating the composition and functions of microorganism communities in environmental niches. These arrays include microbial identification microarrays, which use oligonucleotides, gene fragments or microbial genomes as probes. In this article, the advantages and disadvantages of each type of probe are reviewed. Oligonucleotide probes are currently useful for probing uncultivated bacteria that are not amenable to gene fragment probing, whereas the functional gene fragments amplified randomly from microbial genomes require phylogenetic and hierarchical categorization before use as microbial identification probes, despite their high resolution for both specificity and sensitivity. Until more bacteria are sequenced and gene fragment probes are thoroughly validated, heterogeneous bacterial genome probes will provide a simple, sensitive and quantitative tool for exploring the ecosystem structure.

  8. Tumour auto-antibody screening: performance of protein microarrays using SEREX derived antigens

    International Nuclear Information System (INIS)

    Stempfer, René; Weinhäusel, Andreas; Syed, Parvez; Vierlinger, Klemens; Pichler, Rudolf; Meese, Eckart; Leidinger, Petra; Ludwig, Nicole; Kriegner, Albert; Nöhammer, Christa

    2010-01-01

    The simplicity and potential of minimal invasive testing using serum from patients make auto-antibody based biomarkers a very promising tool for use in diagnostics of cancer and auto-immune disease. Although several methods exist for elucidating candidate-protein markers, immobilizing these onto membranes and generating so called macroarrays is of limited use for marker validation. Especially when several hundred samples have to be analysed, microarrays could serve as a good alternative since processing macro membranes is cumbersome and reproducibility of results is moderate. Candidate markers identified by SEREX (serological identification of antigens by recombinant expression cloning) screenings of brain and lung tumour were used for macroarray and microarray production. For microarray production recombinant proteins were expressed in E. coli by autoinduction and purified His-tag (histidine-tagged) proteins were then used for the production of protein microarrays. Protein arrays were hybridized with the serum samples from brain and lung tumour patients. Methods for the generation of microarrays were successfully established when using antigens derived from membrane-based selection. Signal patterns obtained by microarrays analysis of brain and lung tumour patients' sera were highly reproducible (R = 0.92-0.96). This provides the technical foundation for diagnostic applications on the basis of auto-antibody patterns. In this limited test set, the assay provided high reproducibility and a broad dynamic range to classify all brain and lung samples correctly. Protein microarray is an efficient means for auto-antibody-based detection when using SEREX-derived clones expressing antigenic proteins. Protein microarrays are preferred to macroarrays due to the easier handling and the high reproducibility of auto-antibody testing. Especially when using only a few microliters of patient samples protein microarrays are ideally suited for validation of auto

  9. Rational design of DNA sequences for nanotechnology, microarrays and molecular computers using Eulerian graphs.

    Science.gov (United States)

    Pancoska, Petr; Moravek, Zdenek; Moll, Ute M

    2004-01-01

    Nucleic acids are molecules of choice for both established and emerging nanoscale technologies. These technologies benefit from large functional densities of 'DNA processing elements' that can be readily manufactured. To achieve the desired functionality, polynucleotide sequences are currently designed by a process that involves tedious and laborious filtering of potential candidates against a series of requirements and parameters. Here, we present a complete novel methodology for the rapid rational design of large sets of DNA sequences. This method allows for the direct implementation of very complex and detailed requirements for the generated sequences, thus avoiding 'brute force' filtering. At the same time, these sequences have narrow distributions of melting temperatures. The molecular part of the design process can be done without computer assistance, using an efficient 'human engineering' approach by drawing a single blueprint graph that represents all generated sequences. Moreover, the method eliminates the necessity for extensive thermodynamic calculations. Melting temperature can be calculated only once (or not at all). In addition, the isostability of the sequences is independent of the selection of a particular set of thermodynamic parameters. Applications are presented for DNA sequence designs for microarrays, universal microarray zip sequences and electron transfer experiments.

  10. Modified Current Differencing Unit and its Application for Electronically Reconfigurable Simple First-order Transfer Function

    Directory of Open Access Journals (Sweden)

    SOTNER, R.

    2015-02-01

    Full Text Available Modified current differencing unit (MCDU and its simple filtering application are introduced in this paper. Modification of the well-known current differencing unit consists in weighted difference of both input currents controlled by adjustable current gain, controllable intrinsic resistance of both current input terminals, and availability of additional voltage terminal(s. Definition of MCDU therefore requires four adjustable parameters (B1, B2, Rp, Rn. A presented active element offers and combines benefits of electronically controllable current conveyor of second generation and current differencing unit and allows synthesis of interesting adjustable applications, which are not available by classical approaches based on simple elements. MCDU brings variability of the transfer function into the structure. It provides several transfer types without necessity of input or output node change by simple electronic tuning. A presented structure represents so-called reconnection-less reconfigurable current-mode filter for realization of all-pass, inverting high-pass, low-pass and direct transfer response. Behavioral model of the MCDU was prepared and carefully tested in filtering application. Spice simulations and measurements confirmed theoretical assumptions.

  11. Gene Expression and Microarray Investigation of Dendrobium ...

    African Journals Online (AJOL)

    blood glucose > 16.7 mmol/L were used as the model group and treated with Dendrobium mixture. (DEN ... Keywords: Diabetes, Gene expression, Dendrobium mixture, Microarray testing ..... homeostasis in airway smooth muscle. Am J.

  12. Tissue Microarray TechnologyA Brief Review

    Directory of Open Access Journals (Sweden)

    Ramya S Vokuda

    2018-01-01

    Full Text Available In this era of modern revolutionisation in the field of medical laboratory technology, everyone is aiming at taking the innovations from laboratory to bed side. One such technique that is most relevant to the pathologic community is Tissue Microarray (TMA technology. This is becoming quite popular amongst all the members of this family, right from laboratory scientists to clinicians and residents to technologists. The reason for this technique to gain popularity is attributed to its cost effectiveness and time saving protocols. Though, every technique is accompanied by disadvantages, the benefits out number them. This technique is very versatile as many downstream molecular assays such as immunohistochemistry, cytogenetic studies, Fluorescent In situ-Hybridisation (FISH etc., can be carried out on a single slide with multiple numbers of samples. It is a very practical approach that aids effectively to identify novel biomarkers in cancer diagnostics and therapeutics. It helps in assessing the molecular markers on a large scale very quickly. Also, the quality assurance protocols in pathological laboratory has exploited TMA to a great extent. However, the application of TMA technology is beyond oncology. This review shall focus on the different aspects of this technology such as construction of TMA, instrumentation, types, advantages and disadvantages and utilisation of the technique in various disease conditions.

  13. Tissue Microarray Analysis Applied to Bone Diagenesis.

    Science.gov (United States)

    Mello, Rafael Barrios; Silva, Maria Regina Regis; Alves, Maria Teresa Seixas; Evison, Martin Paul; Guimarães, Marco Aurelio; Francisco, Rafaella Arrabaca; Astolphi, Rafael Dias; Iwamura, Edna Sadayo Miazato

    2017-01-04

    Taphonomic processes affecting bone post mortem are important in forensic, archaeological and palaeontological investigations. In this study, the application of tissue microarray (TMA) analysis to a sample of femoral bone specimens from 20 exhumed individuals of known period of burial and age at death is described. TMA allows multiplexing of subsamples, permitting standardized comparative analysis of adjacent sections in 3-D and of representative cross-sections of a large number of specimens. Standard hematoxylin and eosin, periodic acid-Schiff and silver methenamine, and picrosirius red staining, and CD31 and CD34 immunohistochemistry were applied to TMA sections. Osteocyte and osteocyte lacuna counts, percent bone matrix loss, and fungal spheroid element counts could be measured and collagen fibre bundles observed in all specimens. Decalcification with 7% nitric acid proceeded more rapidly than with 0.5 M EDTA and may offer better preservation of histological and cellular structure. No endothelial cells could be detected using CD31 and CD34 immunohistochemistry. Correlation between osteocytes per lacuna and age at death may reflect reported age-related responses to microdamage. Methodological limitations and caveats, and results of the TMA analysis of post mortem diagenesis in bone are discussed, and implications for DNA survival and recovery considered.

  14. PATMA: parser of archival tissue microarray

    Directory of Open Access Journals (Sweden)

    Lukasz Roszkowiak

    2016-12-01

    Full Text Available Tissue microarrays are commonly used in modern pathology for cancer tissue evaluation, as it is a very potent technique. Tissue microarray slides are often scanned to perform computer-aided histopathological analysis of the tissue cores. For processing the image, splitting the whole virtual slide into images of individual cores is required. The only way to distinguish cores corresponding to specimens in the tissue microarray is through their arrangement. Unfortunately, distinguishing the correct order of cores is not a trivial task as they are not labelled directly on the slide. The main aim of this study was to create a procedure capable of automatically finding and extracting cores from archival images of the tissue microarrays. This software supports the work of scientists who want to perform further image processing on single cores. The proposed method is an efficient and fast procedure, working in fully automatic or semi-automatic mode. A total of 89% of punches were correctly extracted with automatic selection. With an addition of manual correction, it is possible to fully prepare the whole slide image for extraction in 2 min per tissue microarray. The proposed technique requires minimum skill and time to parse big array of cores from tissue microarray whole slide image into individual core images.

  15. Architecture of a modular, multichannel readout system for dense electrochemical biosensor microarrays

    International Nuclear Information System (INIS)

    Ramfos, Ioannis; Birbas, Alexios; Blionas, Spyridon

    2015-01-01

    The architecture of a modular, multichannel readout system for dense electrochemical microarrays, targeting Lab-on-a-Chip applications, is presented. This approach promotes efficient component reusability through a hybrid multiplexing methodology, maintaining high levels of sampling performance and accuracy. Two readout modes are offered, which can be dynamically interchanged following signal profiling, to cater for both rapid signal transitions and weak current responses. Additionally, functional extensions to the described architecture are discussed, which provide the system with multi-biasing capabilities. A prototype integrated circuit of the proposed architecture’s analog core and a supporting board were implemented to verify the working principles. The system was evaluated using standard loads, as well as electrochemical sensor arrays. Through a range of operating conditions and loads, the prototype exhibited a highly linear response and accurately delivered the readout of input signals with fast transitions and wide dynamic ranges. (paper)

  16. Strategies of bringing drug product marketing applications to meet current regulatory standards.

    Science.gov (United States)

    Wu, Yan; Freed, Anita; Lavrich, David; Raghavachari, Ramesh; Huynh-Ba, Kim; Shah, Ketan; Alasandro, Mark

    2015-08-01

    In the past decade, many guidance documents have been issued through collaboration of global organizations and regulatory authorities. Most of these are applicable to new products, but there is a risk that currently marketed products will not meet the new compliance standards during audits and inspections while companies continue to make changes through the product life cycle for continuous improvement or market demands. This discussion presents different strategies to bringing drug product marketing applications to meet current and emerging standards. It also discusses stability and method designs to meet process validation and global development efforts.

  17. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Directory of Open Access Journals (Sweden)

    Damhuji Rifai

    2016-02-01

    Full Text Available Non-destructive eddy current testing (ECT is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  18. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  19. Development of a multiple HTS current lead assembly for corrector magnets application

    International Nuclear Information System (INIS)

    Wu, J.L.; Dederer, J.T.; Singh, S.K.

    1994-01-01

    Vapor-cooled current leads used for transmitting power to superconducting power equipment such as the corrector magnets in the SSC spools can introduce a significant heat leak into the cryostat which results in cryogen boil-off. Replenishing the boil-off or refrigerating and liquefying the vapors associated with the cooling of these leads may constitute a significant portion of the operating cost and/or the capital investment of the power equipment. Theoretical studies and experiments have demonstrated that the heat leak introduced by a current lead can be significantly reduced by using ceramic high temperature superconductor (HTSC) as part of the conductor in the current leads. A HTSC reduces heat leak in a current lead by being superconducting in the temperature range below its critical temperature and by having a low temperature thermal conductivity which is generally orders of magnitude lower than the copper alloys commonly used as the current lead conductors. This combination reduces Joule heating and heat conduction, resulting in lower heat leak to the cryostat. To demonstrate the advantages and large scale application of this technology, Westinghouse Science ampersand Technology Center has continued its efforts in High Temperature Superconducting (HTS) current lead development. The efforts include qualification testing and selection of commercial sources of HTSC for current leads and the successful development of a 12 x 100 A multiple HTS current lead assembly prototype for SSC Corrector Element Power Lead application. The efforts on the design, fabrication and testing of the multiple HTS lead assembly is reported below

  20. DNA microarray technique for detecting food-borne pathogens

    Directory of Open Access Journals (Sweden)

    Xing GAO

    2012-08-01

    Full Text Available Objective To study the application of DNA microarray technique for screening and identifying multiple food-borne pathogens. Methods The oligonucleotide probes were designed by Clustal X and Oligo 6.0 at the conserved regions of specific genes of multiple food-borne pathogens, and then were validated by bioinformatic analyses. The 5' end of each probe was modified by amino-group and 10 Poly-T, and the optimized probes were synthesized and spotted on aldehyde-coated slides. The bacteria DNA template incubated with Klenow enzyme was amplified by arbitrarily primed PCR, and PCR products incorporated into Aminoallyl-dUTP were coupled with fluorescent dye. After hybridization of the purified PCR products with DNA microarray, the hybridization image and fluorescence intensity analysis was acquired by ScanArray and GenePix Pro 5.1 software. A series of detection conditions such as arbitrarily primed PCR and microarray hybridization were optimized. The specificity of this approach was evaluated by 16 different bacteria DNA, and the sensitivity and reproducibility were verified by 4 food-borne pathogens DNA. The samples of multiple bacteria DNA and simulated water samples of Shigella dysenteriae were detected. Results Nine different food-borne bacteria were successfully discriminated under the same condition. The sensitivity of genomic DNA was 102 -103pg/ μl, and the coefficient of variation (CV of the reproducibility of assay was less than 15%. The corresponding specific hybridization maps of the multiple bacteria DNA samples were obtained, and the detection limit of simulated water sample of Shigella dysenteriae was 3.54×105cfu/ml. Conclusions The DNA microarray detection system based on arbitrarily primed PCR can be employed for effective detection of multiple food-borne pathogens, and this assay may offer a new method for high-throughput platform for detecting bacteria.

  1. Dynamic, electronically switchable surfaces for membrane protein microarrays.

    Science.gov (United States)

    Tang, C S; Dusseiller, M; Makohliso, S; Heuschkel, M; Sharma, S; Keller, B; Vörös, J

    2006-02-01

    Microarray technology is a powerful tool that provides a high throughput of bioanalytical information within a single experiment. These miniaturized and parallelized binding assays are highly sensitive and have found widespread popularity especially during the genomic era. However, as drug diagnostics studies are often targeted at membrane proteins, the current arraying technologies are ill-equipped to handle the fragile nature of the protein molecules. In addition, to understand the complex structure and functions of proteins, different strategies to immobilize the probe molecules selectively onto a platform for protein microarray are required. We propose a novel approach to create a (membrane) protein microarray by using an indium tin oxide (ITO) microelectrode array with an electronic multiplexing capability. A polycationic, protein- and vesicle-resistant copolymer, poly(l-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG), is exposed to and adsorbed uniformly onto the microelectrode array, as a passivating adlayer. An electronic stimulation is then applied onto the individual ITO microelectrodes resulting in the localized release of the polymer thus revealing a bare ITO surface. Different polymer and biological moieties are specifically immobilized onto the activated ITO microelectrodes while the other regions remain protein-resistant as they are unaffected by the induced electrical potential. The desorption process of the PLL-g-PEG is observed to be highly selective, rapid, and reversible without compromising on the integrity and performance of the conductive ITO microelectrodes. As such, we have successfully created a stable and heterogeneous microarray of biomolecules by using selective electronic addressing on ITO microelectrodes. Both pharmaceutical diagnostics and biomedical technology are expected to benefit directly from this unique method.

  2. Current controller considering harmonics compensation for grid connected converter in DPGS applications

    DEFF Research Database (Denmark)

    Barote, L.; Marinescu, C.; Teodorescu, Remus

    2012-01-01

    This paper deals with the design and implementation of PR current control method in the αβ stationary reference frame for the grid side converter in Distributed Power Generation Systems (DPGS) applications. The goals of this paper are to implement a control technique for the grid side inverter...... including a LC filter, a compensation technique for low-order harmonics and to examine the grid current harmonic content with and without harmonic compensation. A comparative study in terms of current harmonic distortion between two different values of PR proportional gain running in steady state condition...

  3. Application of wavelet analysis to signal processing methods for eddy-current test

    International Nuclear Information System (INIS)

    Chen, G.; Yoneyama, H.; Yamaguchi, A.; Uesugi, N.

    1998-01-01

    This study deals with the application of wavelet analysis to detection and characterization of defects from eddy-current and ultrasonic testing signals of a low signal-to-noise ratio. Presented in this paper are the methods for processing eddy-current testing signals of heat exchanger tubes of a steam generator in a nuclear power plant. The results of processing eddy-current testing signals of tube testpieces with artificial flaws show that the flaw signals corrupted by noise and/or non-defect signals can be effectively detected and characterized by using the wavelet methods. (author)

  4. Generalization of DNA microarray dispersion properties: microarray equivalent of t-distribution

    DEFF Research Database (Denmark)

    Novak, Jaroslav P; Kim, Seon-Young; Xu, Jun

    2006-01-01

    BACKGROUND: DNA microarrays are a powerful technology that can provide a wealth of gene expression data for disease studies, drug development, and a wide scope of other investigations. Because of the large volume and inherent variability of DNA microarray data, many new statistical methods have...

  5. CDNA Microarray Based Comparative Gene Expression Analysis of Primary Breast Tumors Versus In Vitro Transformed Neoplastic Breast Epithelium

    National Research Council Canada - National Science Library

    Szallasi, Zoltan

    2001-01-01

    .... The first group of clones is being sorted by their ability to form tumors. We are currently performing cDNA microarray analysis quantifying the expression level of about 15,000 genes in these cell lines...

  6. Current techniques in postmortem imaging with specific attention to paediatric applications

    International Nuclear Information System (INIS)

    Sieswerda-Hoogendoorn, Tessa; Rijn, Rick R. van

    2010-01-01

    In this review we discuss the decline of and current controversies regarding conventional autopsies and the use of postmortem radiology as an adjunct to and a possible alternative for the conventional autopsy. We will address the radiological techniques and applications for postmortem imaging in children. (orig.)

  7. Current techniques in postmortem imaging with specific attention to paediatric applications

    Energy Technology Data Exchange (ETDEWEB)

    Sieswerda-Hoogendoorn, Tessa; Rijn, Rick R. van [Academic Medical Centre Amsterdam, Department of Radiology, Amsterdam Zuid-Oost (Netherlands); Netherlands Forensic Institute, Department of Pathology and Toxicology, The Hague (Netherlands)

    2010-02-15

    In this review we discuss the decline of and current controversies regarding conventional autopsies and the use of postmortem radiology as an adjunct to and a possible alternative for the conventional autopsy. We will address the radiological techniques and applications for postmortem imaging in children. (orig.)

  8. 75 FR 27926 - Notice of Availability of Interpretive Rule on the Applicability of Current Water Conservation...

    Science.gov (United States)

    2010-05-19

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket No. EERE-2010-BT-NOA-0016] Notice of Availability of Interpretive Rule on the Applicability of Current Water Conservation Standards for Showerheads; Request for Comments AGENCY: Department of Energy. ACTION: Notice of availability and request for comments. SUMMARY...

  9. Thermal conductivity measurement of HTS tapes and stacks for current lead applications

    International Nuclear Information System (INIS)

    Schwarz, Michael; Weiss, Klaus-Peter; Heller, Reinhard; Fietz, Walter H.

    2009-01-01

    The use of high-temperature-superconductors (HTS) within current leads offers a high potential to save cooling-power. The principle of HTS current leads is well established, e.g. for particle accelerators (LHC-CERN) but also on the commercial sector, which offer HTS current leads ready for use in small scale magnets and magnets systems. Future fusion machines currently under construction like ITER, W7-X or JT-60SA also will use HTS current leads. At the moment the standard material for HTS current leads is a Bi 2 Sr 2 Ca 2 Cu 3 O x (BSCCO)-AgAu composite tape. The common way to receive high current capacity current leads is to form stacks by sintering or soldering these tapes together. The solder changes the thermal conductivity of the stacks compared to the single tape in the temperature range from 4 K to 60 K. To estimate the heat flux from the warm environment to the cold application the measurement of the thermal conductivity of the soldered stack is mandatory. Therefore the thermal conductivity of stacks with different number of tapes is investigated. To measure the thermal conduction in the current flow direction, the axial heat flow method is used. Combining these results with FEM simulations gives the possibility to estimate the thermal conductivity normal to the flat tape plane. The resulting anisotropic thermal conductivity can be used to model the behaviour of the HTS tape under thermal disturbances more accurately.

  10. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction.

    Science.gov (United States)

    Zhang, Wenqian; Yu, Ying; Hertwig, Falk; Thierry-Mieg, Jean; Zhang, Wenwei; Thierry-Mieg, Danielle; Wang, Jian; Furlanello, Cesare; Devanarayan, Viswanath; Cheng, Jie; Deng, Youping; Hero, Barbara; Hong, Huixiao; Jia, Meiwen; Li, Li; Lin, Simon M; Nikolsky, Yuri; Oberthuer, André; Qing, Tao; Su, Zhenqiang; Volland, Ruth; Wang, Charles; Wang, May D; Ai, Junmei; Albanese, Davide; Asgharzadeh, Shahab; Avigad, Smadar; Bao, Wenjun; Bessarabova, Marina; Brilliant, Murray H; Brors, Benedikt; Chierici, Marco; Chu, Tzu-Ming; Zhang, Jibin; Grundy, Richard G; He, Min Max; Hebbring, Scott; Kaufman, Howard L; Lababidi, Samir; Lancashire, Lee J; Li, Yan; Lu, Xin X; Luo, Heng; Ma, Xiwen; Ning, Baitang; Noguera, Rosa; Peifer, Martin; Phan, John H; Roels, Frederik; Rosswog, Carolina; Shao, Susan; Shen, Jie; Theissen, Jessica; Tonini, Gian Paolo; Vandesompele, Jo; Wu, Po-Yen; Xiao, Wenzhong; Xu, Joshua; Xu, Weihong; Xuan, Jiekun; Yang, Yong; Ye, Zhan; Dong, Zirui; Zhang, Ke K; Yin, Ye; Zhao, Chen; Zheng, Yuanting; Wolfinger, Russell D; Shi, Tieliu; Malkas, Linda H; Berthold, Frank; Wang, Jun; Tong, Weida; Shi, Leming; Peng, Zhiyu; Fischer, Matthias

    2015-06-25

    Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model. We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models. We demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice.

  11. Integrative missing value estimation for microarray data.

    Science.gov (United States)

    Hu, Jianjun; Li, Haifeng; Waterman, Michael S; Zhou, Xianghong Jasmine

    2006-10-12

    Missing value estimation is an important preprocessing step in microarray analysis. Although several methods have been developed to solve this problem, their performance is unsatisfactory for datasets with high rates of missing data, high measurement noise, or limited numbers of samples. In fact, more than 80% of the time-series datasets in Stanford Microarray Database contain less than eight samples. We present the integrative Missing Value Estimation method (iMISS) by incorporating information from multiple reference microarray datasets to improve missing value estimation. For each gene with missing data, we derive a consistent neighbor-gene list by taking reference data sets into consideration. To determine whether the given reference data sets are sufficiently informative for integration, we use a submatrix imputation approach. Our experiments showed that iMISS can significantly and consistently improve the accuracy of the state-of-the-art Local Least Square (LLS) imputation algorithm by up to 15% improvement in our benchmark tests. We demonstrated that the order-statistics-based integrative imputation algorithms can achieve significant improvements over the state-of-the-art missing value estimation approaches such as LLS and is especially good for imputing microarray datasets with a limited number of samples, high rates of missing data, or very noisy measurements. With the rapid accumulation of microarray datasets, the performance of our approach can be further improved by incorporating larger and more appropriate reference datasets.

  12. Integrative missing value estimation for microarray data

    Directory of Open Access Journals (Sweden)

    Zhou Xianghong

    2006-10-01

    Full Text Available Abstract Background Missing value estimation is an important preprocessing step in microarray analysis. Although several methods have been developed to solve this problem, their performance is unsatisfactory for datasets with high rates of missing data, high measurement noise, or limited numbers of samples. In fact, more than 80% of the time-series datasets in Stanford Microarray Database contain less than eight samples. Results We present the integrative Missing Value Estimation method (iMISS by incorporating information from multiple reference microarray datasets to improve missing value estimation. For each gene with missing data, we derive a consistent neighbor-gene list by taking reference data sets into consideration. To determine whether the given reference data sets are sufficiently informative for integration, we use a submatrix imputation approach. Our experiments showed that iMISS can significantly and consistently improve the accuracy of the state-of-the-art Local Least Square (LLS imputation algorithm by up to 15% improvement in our benchmark tests. Conclusion We demonstrated that the order-statistics-based integrative imputation algorithms can achieve significant improvements over the state-of-the-art missing value estimation approaches such as LLS and is especially good for imputing microarray datasets with a limited number of samples, high rates of missing data, or very noisy measurements. With the rapid accumulation of microarray datasets, the performance of our approach can be further improved by incorporating larger and more appropriate reference datasets.

  13. A Review of Current Clinical Applications of Three-Dimensional Printing in Spine Surgery.

    Science.gov (United States)

    Cho, Woojin; Job, Alan Varkey; Chen, Jing; Baek, Jung Hwan

    2018-02-01

    Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting.

  14. A Java-based tool for the design of classification microarrays

    Directory of Open Access Journals (Sweden)

    Broschat Shira L

    2008-08-01

    Full Text Available Abstract Background Classification microarrays are used for purposes such as identifying strains of bacteria and determining genetic relationships to understand the epidemiology of an infectious disease. For these cases, mixed microarrays, which are composed of DNA from more than one organism, are more effective than conventional microarrays composed of DNA from a single organism. Selection of probes is a key factor in designing successful mixed microarrays because redundant sequences are inefficient and limited representation of diversity can restrict application of the microarray. We have developed a Java-based software tool, called PLASMID, for use in selecting the minimum set of probe sequences needed to classify different groups of plasmids or bacteria. Results The software program was successfully applied to several different sets of data. The utility of PLASMID was illustrated using existing mixed-plasmid microarray data as well as data from a virtual mixed-genome microarray constructed from different strains of Streptococcus. Moreover, use of data from expression microarray experiments demonstrated the generality of PLASMID. Conclusion In this paper we describe a new software tool for selecting a set of probes for a classification microarray. While the tool was developed for the design of mixed microarrays–and mixed-plasmid microarrays in particular–it can also be used to design expression arrays. The user can choose from several clustering methods (including hierarchical, non-hierarchical, and a model-based genetic algorithm, several probe ranking methods, and several different display methods. A novel approach is used for probe redundancy reduction, and probe selection is accomplished via stepwise discriminant analysis. Data can be entered in different formats (including Excel and comma-delimited text, and dendrogram, heat map, and scatter plot images can be saved in several different formats (including jpeg and tiff. Weights

  15. Review Article: Current Knowledge on Microarray Technology - An ...

    African Journals Online (AJOL)

    Abstract. The completion of whole genome sequencing projects has led to a rapid increase in the availability of genetic information. ... It has emerged as one of the most important technology in the field of molecular biology and transcriptomics.

  16. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  17. DNA microarray analysis of fim mutations in Escherichia coli

    DEFF Research Database (Denmark)

    Schembri, Mark; Ussery, David; Workman, Christopher

    2002-01-01

    Bacterial adhesion is often mediated by complex polymeric surface structures referred to as fimbriae. Type I fimbriae of Escherichia coli represent the archetypical and best characterised fimbrial system. These adhesive organelles mediate binding to D-mannose and are directly associated...... we have used DNA microarray analysis to examine the molecular events involved in response to fimbrial gene expression in E. coli K-12. Observed differential expression levels of the fim genes were in good agreement with our current knowledge of the stoichiometry of type I fimbriae. Changes in fim...

  18. Development of a high brightness, high current SRF photo-electron source for ERL applications

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Axel [Helmholtz-Zentrum Berlin (Germany); Collaboration: bERLinPro Team

    2016-07-01

    Energy recovery linacs (ERL) offer the potential to combine major beam properties of the two main domains of particle accelerators: The low emittance of linear accelerators and the high average beam current of storage rings, while also allowing to compress to short bunches below the ps regime. This makes among other applications ERLs an ideal candidate for future light sources. The beam properties of the ERL are given by the performance of the injection section and hence of the beam source. Helmholtz-Zentrum Berlin is currently designing and building a high average current all superconducting CW driven ERL as a prototype to demonstrate low normalized beam emittance of 1 mm*mrad at 100 mA and short pulses of about 2 ps. In this contribution we discuss the development of this class of a high brightness, high current SRF photo-electron source and present recent commissioning results. Also, alternative approaches at other laboratories are shortly reviewed.

  19. Exploring the current application of professional competencies in human resource management in the South African context

    Directory of Open Access Journals (Sweden)

    Nico Schutte

    2015-11-01

    Full Text Available Orientation: Human research (HR practitioners have an important role to play in the sustainability and competitiveness of organisations. Yet their strategic contribution and the value they add remain unrecognised. Research purpose: The main objective of this research was to explore the extent to which HR practitioners are currently allowed to display HR competencies in the workplace, and whether any significant differences exist between perceived HR competencies, based on the respondents’ demographic characteristics. Motivation for the study: Limited empirical research exists on the extent to which HR practitioners are allowed to display key competencies in the South African workplace. Research approach, design, and method: A quantitative research approach was followed. A Human Resource Management Professional Competence Questionnaire was administered to HR practitioners and managers (N = 481. Main findings: The results showed that HR competencies are poorly applied in selected South African workplaces. The competencies that were indicated as having the poorest application were talent management, HR metrics, HR business knowledge, and innovation. The white ethic group experienced a poorer application of all human research management (HRM competencies compared to the black African ethnic group. Practical/managerial implications: The findings of the research highlighted the need for management to evaluate the current application of HR practices in the workplace and also the extent to which HR professionals are involved as strategic business partners. Contribution/value-add: This research highlights the need for the current application of HR competencies in South African workplaces to be improved.

  20. The targeted heating and current drive applications for the ITER electron cyclotron system

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.; Darbos, C.; Gandini, F.; Gassmann, T.; Loarte, A.; Omori, T.; Purohit, D. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Saibene, G.; Gagliardi, M. [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Farina, D.; Figini, L. [Istituto di Fisica del Plasma CNR, 20125 Milano (Italy); Hanson, G. [US ITER Project Office, ORNL, 1055 Commerce Park, PO Box 2008, Oak Ridge, Tennessee 37831 (United States); Poli, E. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Takahashi, K. [Japan Atomic Energy Agency (JAEA), Naka, Ibaraki 311-0193 (Japan)

    2015-02-15

    A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H and CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H and CD systems. An initial attempt has been developed at prioritizing the allocated H and CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (∼12 MA), and Advanced (∼9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems.

  1. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  2. Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.

    Science.gov (United States)

    Yao, Jianchao; Chang, Chunqi; Salmi, Mari L; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J

    2008-06-18

    Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. This study shows that SCC is an alternative to the Pearson

  3. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tachibana, M. [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 (Japan); Kojima, K. [Department of Education, Yokohama Soei University, 1 Miho-tyou, Midori-ku, Yokohama, 226-0015 (Japan)

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  4. Current status and recent developments of industrial radioisotope applications in Japan

    International Nuclear Information System (INIS)

    Tominaga, Hiroshi

    1985-01-01

    The current status of application of radioisotopes to industry in Japan is briefly reviewed. Radioisotope gauges are widely used in industry, but most of the radioactive tracer applications are performed in laboratories. as for the recent developments, it is noted that the majority of them are related to high technologies in industry. Some typical examples are described. They include: high accuracy coke moisture guage--dual channel gauging on-line analyzers based on 252 Cf, simultaneous neutron and gamma radiography; tracer techniques in civil engineering field, electronics industry, automobile industry and iron and steel industry.(M.G.B.)

  5. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    International Nuclear Information System (INIS)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-01-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG 1 ) and MOSFET circuits (HCMFG 2 ) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed

  6. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Science.gov (United States)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  7. Application of radiotherapy for hepatocellular carcinoma in current clinical practice guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Rim, Chai Hong; Seong, Jin Sil [Dept. of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-09-15

    In oncologic practice, treatment guidelines provide appropriate treatment strategies based on evidence. Currently, many guidelines are used, including those of the European Association for the Study of the Liver and European Organization for Research and Treatment of Cancer (EASL-EORTC), National Comprehensive Cancer Network (NCCN), Asia-Pacific Primary Liver Cancer Expert (APPLE), and Korean Liver Cancer Study Group and National Cancer Centre (KLCSG-NCC). Although radiotherapy is commonly used in clinical practice, some guidelines do not accept it as a standard treatment modality. In this review, we will investigate the clinical practice guidelines currently used, and discuss the application of radiotherapy.

  8. Application of radiotherapy for hepatocellular carcinoma in current clinical practice guidelines

    International Nuclear Information System (INIS)

    Rim, Chai Hong; Seong, Jin Sil

    2016-01-01

    In oncologic practice, treatment guidelines provide appropriate treatment strategies based on evidence. Currently, many guidelines are used, including those of the European Association for the Study of the Liver and European Organization for Research and Treatment of Cancer (EASL-EORTC), National Comprehensive Cancer Network (NCCN), Asia-Pacific Primary Liver Cancer Expert (APPLE), and Korean Liver Cancer Study Group and National Cancer Centre (KLCSG-NCC). Although radiotherapy is commonly used in clinical practice, some guidelines do not accept it as a standard treatment modality. In this review, we will investigate the clinical practice guidelines currently used, and discuss the application of radiotherapy

  9. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Energy Technology Data Exchange (ETDEWEB)

    Bouda, N. R., E-mail: nybouda@iastate.edu; Pritchard, J.; Weber, R. J.; Mina, M. [Department of Electrical and Computer engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  10. Microarray Я US: a user-friendly graphical interface to Bioconductor tools that enables accurate microarray data analysis and expedites comprehensive functional analysis of microarray results.

    Science.gov (United States)

    Dai, Yilin; Guo, Ling; Li, Meng; Chen, Yi-Bu

    2012-06-08

    Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.

  11. Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play.

    Science.gov (United States)

    Savitz, J B; Rauch, S L; Drevets, W C

    2013-05-01

    In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders.

  12. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.

    Science.gov (United States)

    Lai, Qiwen; Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E; Thornton, Aaron W; Hill, Matthew R; Gu, Qinfen; Mao, Jianfeng; Huang, Zhenguo; Liu, Hua Kun; Guo, Zaiping; Banerjee, Amitava; Chakraborty, Sudip; Ahuja, Rajeev; Aguey-Zinsou, Kondo-Francois

    2015-09-07

    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bosia, G.; Ragona, R. [Department of Physics, Università di Torino (Italy); Helou, W.; Goniche, M.; Hillaret, J. [CEA/DSM/IRFM F-13 108 St Paul Les Durance (France)

    2014-02-12

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  14. Optimization of a cryogenic current comparator for the application as beam monitor

    International Nuclear Information System (INIS)

    Geithner, Rene

    2013-01-01

    Aim of the present thesis was to improve by the application of new materials and concepts the noise-limited resolution as well as the band width of a cryogenic current comparator for the measurement of the time behavior of smallest beam currents, consisting of a superconducting meander-shaped screening, a superconducting pick-up coil, a superconducting matching transformer, and a SQID sensor, and to reduce its sensitivity against mechanical oscillations. because of this the present thesis deals with the systematic study of the magnetic properties of ferromagnetic materials and their noise contributions for the application in pick-up coils respectively transformers. The main topic of this thesis layed thereby on the characterization of novel amorphous as well as nanocrystalline materials at low temperatures, for which hitherto no reliable values were present in the literature.

  15. Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play

    Science.gov (United States)

    Savitz, J B; Rauch, S L; Drevets, W C

    2013-01-01

    In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders. PMID:23546169

  16. BASE - 2nd generation software for microarray data management and analysis

    Directory of Open Access Journals (Sweden)

    Nordborg Nicklas

    2009-10-01

    Full Text Available Abstract Background Microarray experiments are increasing in size and samples are collected asynchronously over long time. Available data are re-analysed as more samples are hybridized. Systematic use of collected data requires tracking of biomaterials, array information, raw data, and assembly of annotations. To meet the information tracking and data analysis challenges in microarray experiments we reimplemented and improved BASE version 1.2. Results The new BASE presented in this report is a comprehensive annotable local microarray data repository and analysis application providing researchers with an efficient information management and analysis tool. The information management system tracks all material from biosource, via sample and through extraction and labelling to raw data and analysis. All items in BASE can be annotated and the annotations can be used as experimental factors in downstream analysis. BASE stores all microarray experiment related data regardless if analysis tools for specific techniques or data formats are readily available. The BASE team is committed to continue improving and extending BASE to make it usable for even more experimental setups and techniques, and we encourage other groups to target their specific needs leveraging on the infrastructure provided by BASE. Conclusion BASE is a comprehensive management application for information, data, and analysis of microarray experiments, available as free open source software at http://base.thep.lu.se under the terms of the GPLv3 license.

  17. BASE--2nd generation software for microarray data management and analysis.

    Science.gov (United States)

    Vallon-Christersson, Johan; Nordborg, Nicklas; Svensson, Martin; Häkkinen, Jari

    2009-10-12

    Microarray experiments are increasing in size and samples are collected asynchronously over long time. Available data are re-analysed as more samples are hybridized. Systematic use of collected data requires tracking of biomaterials, array information, raw data, and assembly of annotations. To meet the information tracking and data analysis challenges in microarray experiments we reimplemented and improved BASE version 1.2. The new BASE presented in this report is a comprehensive annotable local microarray data repository and analysis application providing researchers with an efficient information management and analysis tool. The information management system tracks all material from biosource, via sample and through extraction and labelling to raw data and analysis. All items in BASE can be annotated and the annotations can be used as experimental factors in downstream analysis. BASE stores all microarray experiment related data regardless if analysis tools for specific techniques or data formats are readily available. The BASE team is committed to continue improving and extending BASE to make it usable for even more experimental setups and techniques, and we encourage other groups to target their specific needs leveraging on the infrastructure provided by BASE. BASE is a comprehensive management application for information, data, and analysis of microarray experiments, available as free open source software at http://base.thep.lu.se under the terms of the GPLv3 license.

  18. Prehospital Ultrasound in Trauma: A Review of Current and Potential Future Clinical Applications

    Directory of Open Access Journals (Sweden)

    Tharwat El Zahran

    2018-01-01

    Full Text Available Ultrasound (US is an essential tool for evaluating trauma patients in the hospital setting. Many previous in-hospital studies have been extrapolated to out of hospital setting to improve diagnostic accuracy in prehospital and austere environments. This review article presents the role of prehospital US in blunt and penetrating trauma management with emphasis on its current clinical applications, challenges, and future implications of such use.

  19. Audiovisual quality assessment in communications applications: Current status, trends and challenges

    DEFF Research Database (Denmark)

    Korhonen, Jari

    2010-01-01

    Audiovisual quality assessment is one of the major challenges in multimedia communications. Traditionally, algorithm-based (objective) assessment methods have focused primarily on the compression artifacts. However, compression is only one of the numerous factors influencing the perception...... addressed in practical quality metrics is the co-impact of audio and video qualities. This paper provides an overview of the current trends and challenges in objective audiovisual quality assessment, with emphasis on communication applications...

  20. Mathematical and numerical models for eddy currents and magnetostatics with selected applications

    CERN Document Server

    Rappaz, Jacques

    2013-01-01

    This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problem

  1. A Novel Application of Zero-Current-Switching Quasiresonant Buck Converter for Battery Chargers

    OpenAIRE

    Kuo-Kuang Chen

    2011-01-01

    The main purpose of this paper is to develop a novel application of a resonant switch converter for battery chargers. A zero-current-switching (ZCS) converter with a quasiresonant converter (QRC) was used as the main structure. The proposed ZCS dc–dc battery charger has a straightforward structure, low cost, easy control, and high efficiency. The operating principles and design procedure of the proposed charger are thoroughly analyzed. The optimal values of the resonant components are compute...

  2. Quasi-Resonant Full-Wave Zero-Current Switching Buck Converter Design, Simulation and Application

    OpenAIRE

    Yanik, G.; Isen, E.

    2015-01-01

    —This paper presents a full wave quasi-resonant zerocurrent switching buck converter design, simulation and application. The converter control uses with zero-current switching (ZCS) technique to decrease the switching losses. Comparing to conventional buck converter, resonant buck converter includes a resonant tank equipped with resonant inductor and capacitor. The converter is analyzed in mathematical for each subintervals. Depending on the desired input and output electrical quantities, con...

  3. Low dark current p-on-n technology for space applications

    Science.gov (United States)

    Péré-Laperne, N.; Baier, N.; Cervera, C.; Santailler, J. L.; Lobre, C.; Cassillo, C.; Berthoz, J.; Destefanis, V.; Sam Giao, D.; Lamoure, A.

    2017-08-01

    Space applications are requiring low dark current in the long wave infrared at low operating temperature for low flux observation. The applications envisioned with this type of specification are namely scientific and planetary missions. Within the framework of the joint laboratory between Sofradir and the CEA-LETI, a specific development of a TV format focal plane array with a cut-off wavelength of 12.5μm at 40K has been carried out. For this application, the p on n technology has been used. It is based on an In doped HgCdTe absorbing material grown by Liquid Phase Epitaxy (LPE) and an As implanted junction area. This architecture allows decreasing both dark current and series resistance compared to the legacy n on p technology based on Hg vacancies. In this paper, the technological improvements are briefly described. These technological tunings led to a 35% decrease of dark current in the diffusion regime. CEA-LETI and Sofradir demonstrated the ability to use the p on n technology with a long cutoff wavelength in the infrared range.

  4. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Science.gov (United States)

    Perchoux, Julien; Quotb, Adam; Atashkhooei, Reza; Azcona, Francisco J.; Ramírez-Miquet, Evelio E.; Bernal, Olivier; Jha, Ajit; Luna-Arriaga, Antonio; Yanez, Carlos; Caum, Jesus; Bosch, Thierry; Royo, Santiago

    2016-01-01

    Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications. PMID:27187406

  5. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Julien Perchoux

    2016-05-01

    Full Text Available Optical feedback interferometry (OFI sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.

  6. Principles of gene microarray data analysis.

    Science.gov (United States)

    Mocellin, Simone; Rossi, Carlo Riccardo

    2007-01-01

    The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.

  7. Detection of selected plant viruses by microarrays

    OpenAIRE

    HRABÁKOVÁ, Lenka

    2013-01-01

    The main aim of this master thesis was the simultaneous detection of four selected plant viruses ? Apple mosaic virus, Plum pox virus, Prunus necrotic ringspot virus and Prune harf virus, by microarrays. The intermediate step in the process of the detection was optimizing of multiplex polymerase chain reaction (PCR).

  8. LNA-modified isothermal oligonucleotide microarray for ...

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... the advent of DNA microarray techniques (Lee et al. 2007). ... atoms of ribose to form a bicyclic ribosyl structure. It is the .... 532 nm and emission at 570 nm. The signal ..... sis and validation using real-time PCR. Nucleic Acids ...

  9. Gene Expression Analysis Using Agilent DNA Microarrays

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2009-01-01

    Hybridization of labeled cDNA to microarrays is an intuitively simple and a vastly underestimated process. If it is not performed, optimized, and standardized with the same attention to detail as e.g., RNA amplification, information may be overlooked or even lost. Careful balancing of the amount ...

  10. Microarrays (DNA Chips) for the Classroom Laboratory

    Science.gov (United States)

    Barnard, Betsy; Sussman, Michael; BonDurant, Sandra Splinter; Nienhuis, James; Krysan, Patrick

    2006-01-01

    We have developed and optimized the necessary laboratory materials to make DNA microarray technology accessible to all high school students at a fraction of both cost and data size. The primary component is a DNA chip/array that students "print" by hand and then analyze using research tools that have been adapted for classroom use. The…

  11. Comparing transformation methods for DNA microarray data

    NARCIS (Netherlands)

    Thygesen, Helene H.; Zwinderman, Aeilko H.

    2004-01-01

    Background: When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include

  12. Invited review current progress and limitations of spider silk for biomedical applications.

    Science.gov (United States)

    Widhe, Mona; Johansson, Jan; Hedhammar, My; Rising, Anna

    2012-06-01

    Spider silk is a fascinating material combining remarkable mechanical properties with low density and biodegradability. Because of these properties and historical descriptions of medical applications, spider silk has been proposed to be the ideal biomaterial. However, overcoming the obstacles to produce spider silk in sufficient quantities and in a manner that meets regulatory demands has proven to be a difficult task. Also, there are relatively few studies of spider silk in biomedical applications available, and the methods and materials used vary a lot. Herein we summarize cell culture- and in vivo implantation studies of natural and synthetic spider silk, and also review the current status and future challenges in the quest for a large scale production of spider silk for medical applications. Copyright © 2011 Wiley Periodicals, Inc.

  13. Introduction to the Issue on Current Trends in Terahertz Photonics and Applications

    DEFF Research Database (Denmark)

    2013-01-01

    Since the last special issue on terahertz science and technology, nearly three years have been passed. During this period, while there have been further developments in terahertz (THz) sources, detectors, materials, and applications, there have been new discoveries. The purpose of this issue of t...... reviews on recent THz research, the contributed papers cover a wide range of the cutting-edge research in the topics described earlier....... of the IEEE Journal of Selected Topics in Quantum Electronics (JSTQE) is to highlight the advances in materials, devices, and applications and new directions in the THz domain within the last three years. Broad technical areas include: 1) materials; 2) matamaterials, plasmonics, and plasmons; 3) techniques...... and effects; 4) generation and power scaling; 5) detectors; 6) devices; 7) applications. These key THz topics are discussed in both invited and contributed papers published in this issue, providing comprehensive overviews of the current status and future directions as well as publishing original results...

  14. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR Technology: Applications in Electrical Current Sensing

    Directory of Open Access Journals (Sweden)

    Càndid Reig

    2009-10-01

    Full Text Available The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR, from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications.

  15. Some applications of nanometer scale structures for current and future X-ray space research

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Abdali, S; Frederiksen, P K

    1994-01-01

    Nanometer scale structures such as multilayers, gratings and natural crystals are playing an increasing role in spectroscopic applications for X-ray astrophysics. A few examples are briefly described as an introduction to current and planned applications pursued at the Danish Space Research...... Institute in collaboration with the FOM Institute for Plasma Physics, Nieuwegein, the Max-Planck-Institut für Extraterrestrische Physik, Aussenstelle Berlin, the Space Research Institute, Russian Academy of Sciences, the Smithsonian Astrophysical Observatory, Ovonics Synthetic Materials Company and Lawrence...... Livermore National Laboratory. These examples include : 1. the application of multilayered Si crystals for simultaneous spectroscopy in two energy bands one centred around the SK-emission near 2.45 keV and the other below the CK absorption edge at 0.284 keV; 2. the use of in-depth graded period multilayer...

  16. High-current heavy-ion accelerator system and its application to material modification

    International Nuclear Information System (INIS)

    Kishimoto, Naoki; Takeda, Yoshihiko; Lee, C.G.; Umeda, Naoki; Okubo, Nariaki; Iwamoto, Eiji

    2001-01-01

    A high-current heavy-ion accelerator system has been developed to realize intense particle fluxes for material modification. The facility of a tandem accelerator attained 1 mA-class ion current both for negative low-energy ions and positive high-energy ions. The negative ion source of the key device is of the plasma-sputter type, equipped with mutli-cusp magnets and Cs supply. The intense negative ions are either directly used for material irradiation at 60 keV or further accelerated up to 6 MeV after charge transformation. Application of negative ions, which alleviates surface charging, enables us to conduct low-energy high-current irradiation on insulating substrates. Since positive ions above the MeV range are irrelevant for Coulomb repulsion, the facility as a whole meets the needs of high-current irradiation onto insulators over a wide energy range. Application of high flux ions provides technological merits not only for efficient implantation but also for essentially different material kinetics, which may become an important tool of material modification. Other advantages of the system are co-irradiation by intense laser and in-situ detection of kinetic processes. For examples of material modifications, we present nanoparticle fabrication in insulators, and synergistic phenomena by co-irradiation due to ions and photons. (author)

  17. A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application.

    Science.gov (United States)

    Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood

    2017-04-15

    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software.

  18. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    Science.gov (United States)

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  19. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams

  20. Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In modular uninterruptible power supplies (UPSs), several DC/AC modules are required to work in parallel. This structure allows the system to be more reliable and flexible. These DC/AC modules share the same DC bus and AC critical bus. Module differences, such as filter inductor, filter capacitor......, control parameters, and so on, will make it possible for the potential zero sequence current to flow among the modules. This undesired type of circulating current will bring extra losses to the power semiconductor devices in the system, which should be paid special attention in high power application...... scenarios. In this paper, plug’n’play modules and cycle control are discussed and validated through experimental results. Moreover, potential zero sequence circulating current impact on power semiconductor devices thermal performance is also analyzed in this paper....

  1. Research on Mechanical Shim Application with Compensated Prompt γ Current of Vanadium Detectors

    Directory of Open Access Journals (Sweden)

    Zhi Xu

    2017-02-01

    Full Text Available Mechanical shim is an advanced technology for reactor power and axial offset control with control rod assemblies. To address the adverse accuracy impact on the ex-core power range neutron flux measurements-based axial offset control resulting from the variable positions of control rod assemblies, the lead-lag-compensated in-core self-powered vanadium detector signals are utilized. The prompt γ current of self-powered detector is ignored normally due to its weakness compared with the delayed β current, although it promptly reflects the flux change of the core. Based on the features of the prompt γ current, a method for configuration of the lead-lag dynamic compensator is proposed. The simulations indicate that the method can improve dynamic response significantly with negligible adverse effects on the steady response. The robustness of the design implies that the method is of great value for engineering applications.

  2. Research on mechanical shim application with compensated prompt γ current of vanadium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhi [Suzhou Nuclear Power Research Institute, Suzhou (China)

    2017-02-15

    Mechanical shim is an advanced technology for reactor power and axial offset control with control rod assemblies. To address the adverse accuracy impact on the ex-core power range neutron flux measurements-based axial offset control resulting from the variable positions of control rod assemblies, the lead-lag-compensated in-core self-powered vanadium detector signals are utilized. The prompt γ current of self-powered detector is ignored normally due to its weakness compared with the delayed β current, although it promptly reflects the flux change of the core. Based on the features of the prompt γ current, a method for configuration of the lead-lag dynamic compensator is proposed. The simulations indicate that the method can improve dynamic response significantly with negligible adverse effects on the steady response. The robustness of the design implies that the method is of great value for engineering applications.

  3. Application of numerical analysis techniques to eddy current testing for steam generator tubes

    International Nuclear Information System (INIS)

    Morimoto, Kazuo; Satake, Koji; Araki, Yasui; Morimura, Koichi; Tanaka, Michio; Shimizu, Naoya; Iwahashi, Yoichi

    1994-01-01

    This paper describes the application of numerical analysis to eddy current testing (ECT) for steam generator tubes. A symmetrical and three-dimensional sinusoidal steady state eddy current analysis code was developed. This code is formulated by future element method-boundary element method coupling techniques, in order not to regenerate the mesh data in the tube domain at every movement of the probe. The calculations were carried out under various conditions including those for various probe types, defect orientations and so on. Compared with the experimental data, it was shown that it is feasible to apply this code to actual use. Furthermore, we have developed a total eddy current analysis system which consists of an ECT calculation code, an automatic mesh generator for analysis, a database and display software for calculated results. ((orig.))

  4. Application of eddy current inspection to the Inconel weld of BWR internals

    International Nuclear Information System (INIS)

    Machida, Eiji; Yusa, Noritaka

    2004-01-01

    In order to definite the basic specifications of application of ECT (Eddy Current Test) to Inconel weld of BWR internals, the inspection and numerical analysis were carried out. The characteristics of the existing ECT probe were studied by making sample as same as CRD stud tube, measuring the relative permeability and electric conductivity of Inconel and alloy and evaluating ECT probe. On the basis of the results obtained, the basic specifications were determined and a new eddy current probe for inspection was designed and produced. The new ECT probe was able to detect small notch in Inconel weld, to classify the defects by eddy current inspection signal and sizing the length and depth. It is concluded that the new ECT probe is able to apply the Inconel weld of BWR internals. (S.Y.)

  5. Application of an eddy current technique to steam generator U-bend characterization. Final report

    International Nuclear Information System (INIS)

    Cramer, W.E.; de la Pintiere, L.; Narita, S.; Bergander, M.J.

    1982-04-01

    Eddy current nondestructive testing techniques are used widely throughout the utility industry for the early detection of tube damage in critical power plant components such as steam generators. In this project, the application of an eddy current technique for the characterization of U-bend transitions in the first row tubing in Westinghouse 51 Series Steam Generators has been investigated. A method has been developed for detection of the opposite transition in the U-bend and for defining its severity. Investigation included two different types of U-bend transitions. Using the developed eddy current method for U-bend characterization, on-site inspection was performed on all tubes in the first row in four 51 Series steam generators in Power Plant Unit No. 2 and in one 51 Series steam generator in Power Plant Unit No. 1. The advantages and limitations of the developed method as well as the recommendations for further investigations are included

  6. Three-dimensional imaging and scanning: Current and future applications for pathology

    Directory of Open Access Journals (Sweden)

    Navid Farahani

    2017-01-01

    Full Text Available Imaging is vital for the assessment of physiologic and phenotypic details. In the past, biomedical imaging was heavily reliant on analog, low-throughput methods, which would produce two-dimensional images. However, newer, digital, and high-throughput three-dimensional (3D imaging methods, which rely on computer vision and computer graphics, are transforming the way biomedical professionals practice. 3D imaging has been useful in diagnostic, prognostic, and therapeutic decision-making for the medical and biomedical professions. Herein, we summarize current imaging methods that enable optimal 3D histopathologic reconstruction: Scanning, 3D scanning, and whole slide imaging. Briefly mentioned are emerging platforms, which combine robotics, sectioning, and imaging in their pursuit to digitize and automate the entire microscopy workflow. Finally, both current and emerging 3D imaging methods are discussed in relation to current and future applications within the context of pathology.

  7. Facilitating functional annotation of chicken microarray data

    Directory of Open Access Journals (Sweden)

    Gresham Cathy R

    2009-10-01

    Full Text Available Abstract Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO. However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and

  8. Development and Use of Integrated Microarray-Based Genomic Technologies for Assessing Microbial Community Composition and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; S.-K. Rhee; C. Schadt; T. Gentry; Z. He; X. Li; X. Liu; J. Liebich; S.C. Chong; L. Wu

    2004-03-17

    To effectively monitor microbial populations involved in various important processes, a 50-mer-based oligonucleotide microarray was developed based on known genes and pathways involved in: biodegradation, metal resistance and reduction, denitrification, nitrification, nitrogen fixation, methane oxidation, methanogenesis, carbon polymer decomposition, and sulfate reduction. This array contains approximately 2000 unique and group-specific probes with <85% similarity to their non-target sequences. Based on artificial probes, our results showed that at hybridization conditions of 50 C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. Detection limits were about 5-10ng genomic DNA in the absence of background DNA, and 50-100ng ({approx}1.3{sup o} 10{sup 7} cells) in the presence background DNA. Strong linear relationships between signal intensity and target DNA and RNA concentration were observed (r{sup 2} = 0.95-0.99). Application of this microarray to naphthalene-amended enrichments and soil microcosms demonstrated that composition of the microflora varied depending on incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in enrichments, the genes involved in naphthalene degradation from Gram-negative microorganisms such as Ralstonia, Comamonas, and Burkholderia were most abundant in the soil microcosms (as well as those for polyaromatic hydrocarbon and nitrotoluene degradation). Although naphthalene degradation is widely known and studied in Pseudomonas, Pseudomonas genes were not detected in either system. Real-time PCR analysis of 4 representative genes was consistent with microarray-based quantification (r{sup 2} = 0.95). Currently, we are also applying this microarray to the study of several

  9. The laboratory-clinician team: a professional call to action to improve communication and collaboration for optimal patient care in chromosomal microarray testing.

    Science.gov (United States)

    Wain, Karen E; Riggs, Erin; Hanson, Karen; Savage, Melissa; Riethmaier, Darlene; Muirhead, Andrea; Mitchell, Elyse; Packard, Bethanny Smith; Faucett, W Andrew

    2012-10-01

    The International Standards for Cytogenomic Arrays (ISCA) Consortium is a worldwide collaborative effort dedicated to optimizing patient care by improving the quality of chromosomal microarray testing. The primary effort of the ISCA Consortium has been the development of a database of copy number variants (CNVs) identified during the course of clinical microarray testing. This database is a powerful resource for clinicians, laboratories, and researchers, and can be utilized for a variety of applications, such as facilitating standardized interpretations of certain CNVs across laboratories or providing phenotypic information for counseling purposes when published data is sparse. A recognized limitation to the clinical utility of this database, however, is the quality of clinical information available for each patient. Clinical genetic counselors are uniquely suited to facilitate the communication of this information to the laboratory by virtue of their existing clinical responsibilities, case management skills, and appreciation of the evolving nature of scientific knowledge. We intend to highlight the critical role that genetic counselors play in ensuring optimal patient care through contributing to the clinical utility of the ISCA Consortium's database, as well as the quality of individual patient microarray reports provided by contributing laboratories. Current tools, paper and electronic forms, created to maximize this collaboration are shared. In addition to making a professional commitment to providing complete clinical information, genetic counselors are invited to become ISCA members and to become involved in the discussions and initiatives within the Consortium.

  10.  DNA microarray-based gene expression profiling in diagnosis, assessing prognosis and predicting response to therapy in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Przemysław Kwiatkowski

    2012-06-01

    Full Text Available  Colorectal cancer is the most common cancer of the gastrointestinal tract. It is considered as a biological model of a certain type of cancerogenesis process in which progression from an early to late stage adenoma and cancer is accompanied by distinct genetic alterations.Clinical and pathological parameters commonly used in clinical practice are often insufficient to determine groups of patients suitable for personalized treatment. Moreover, reliable molecular markers with high prognostic value have not yet been determined. Molecular studies using DNA-based microarrays have identified numerous genes involved in cell proliferation and differentiation during the process of cancerogenesis. Assessment of the genetic profile of colorectal cancer using the microarray technique might be a useful tool in determining the groups of patients with different clinical outcomes who would benefit from additional personalized treatment.The main objective of this study was to present the current state of knowledge on the practical application of gene profiling techniques using microarrays for determining diagnosis, prognosis and response to treatment in colorectal cancer.

  11. Microarray BASICA: Background Adjustment, Segmentation, Image Compression and Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jianping Hua

    2004-01-01

    Full Text Available This paper presents microarray BASICA: an integrated image processing tool for background adjustment, segmentation, image compression, and analysis of cDNA microarray images. BASICA uses a fast Mann-Whitney test-based algorithm to segment cDNA microarray images, and performs postprocessing to eliminate the segmentation irregularities. The segmentation results, along with the foreground and background intensities obtained with the background adjustment, are then used for independent compression of the foreground and background. We introduce a new distortion measurement for cDNA microarray image compression and devise a coding scheme by modifying the embedded block coding with optimized truncation (EBCOT algorithm (Taubman, 2000 to achieve optimal rate-distortion performance in lossy coding while still maintaining outstanding lossless compression performance. Experimental results show that the bit rate required to ensure sufficiently accurate gene expression measurement varies and depends on the quality of cDNA microarray images. For homogeneously hybridized cDNA microarray images, BASICA is able to provide from a bit rate as low as 5 bpp the gene expression data that are 99% in agreement with those of the original 32 bpp images.

  12. Pareto-Optimization of HTS CICC for High-Current Applications in Self-Field

    Directory of Open Access Journals (Sweden)

    Giordano Tomassetti

    2018-01-01

    Full Text Available The ENEA superconductivity laboratory developed a novel design for Cable-in-Conduit Conductors (CICCs comprised of stacks of 2nd-generation REBCO coated conductors. In its original version, the cable was made up of 150 HTS tapes distributed in five slots, twisted along an aluminum core. In this work, taking advantage of a 2D finite element model, able to estimate the cable’s current distribution in the cross-section, a multiobjective optimization procedure was implemented. The aim of optimization was to simultaneously maximize both engineering current density and total current flowing inside the tapes when operating in self-field, by varying the cross-section layout. Since the optimization process involved both integer and real geometrical variables, the choice of an evolutionary search algorithm was strictly necessary. The use of an evolutionary algorithm in the frame of a multiple objective optimization made it an obliged choice to numerically approach the problem using a nonstandard fast-converging optimization algorithm. By means of this algorithm, the Pareto frontiers for the different configurations were calculated, providing a powerful tool for the designer to achieve the desired preliminary operating conditions in terms of engineering current density and/or total current, depending on the specific application field, that is, power transmission cable and bus bar systems.

  13. Current-driven domain wall motion based memory devices: Application to a ratchet ferromagnetic strip

    Science.gov (United States)

    Sánchez-Tejerina, Luis; Martínez, Eduardo; Raposo, Víctor; Alejos, Óscar

    2018-04-01

    Ratchet memories, where perpendicular magnetocristalline anisotropy is tailored so as to precisely control the magnetic transitions, has been recently proven to be a feasible device to store and manipulate data bits. For such devices, it has been shown that the current-driven regime of domain walls can improve their performances with respect to the field-driven one. However, the relaxing time required by the traveling domain walls constitutes a certain drawback if the former regime is considered, since it results in longer device latencies. In order to speed up the bit shifting procedure, it is demonstrated here that the application of a current of inverse polarity during the DW relaxing time may reduce such latencies. The reverse current must be sufficiently high as to drive the DW to the equilibrium position faster than the anisotropy slope itself, but with an amplitude sufficiently low as to avoid DW backward shifting. Alternatively, it is possible to use such a reverse current to increase the proper range of operation for a given relaxing time, i.e., the pair of values of the current amplitude and pulse time that ensures single DW jumps for a certain latency time.

  14. Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice

    Directory of Open Access Journals (Sweden)

    Liu Bin

    2008-05-01

    Full Text Available Abstract Background We report the development of a microarray platform for rapid and cost-effective genetic mapping, and its evaluation using rice as a model. In contrast to methods employing whole-genome tiling microarrays for genotyping, our method is based on low-cost spotted microarray production, focusing only on known polymorphic features. Results We have produced a genotyping microarray for rice, comprising 880 single feature polymorphism (SFP elements derived from insertions/deletions identified by aligning genomic sequences of the japonica cultivar Nipponbare and the indica cultivar 93-11. The SFPs were experimentally verified by hybridization with labeled genomic DNA prepared from the two cultivars. Using the genotyping microarrays, we found high levels of polymorphism across diverse rice accessions, and were able to classify all five subpopulations of rice with high bootstrap support. The microarrays were used for mapping of a gene conferring resistance to Magnaporthe grisea, the causative organism of rice blast disease, by quantitative genotyping of samples from a recombinant inbred line population pooled by phenotype. Conclusion We anticipate this microarray-based genotyping platform, based on its low cost-per-sample, to be particularly useful in applications requiring whole-genome molecular marker coverage across large numbers of individuals.

  15. The IronChip evaluation package: a package of perl modules for robust analysis of custom microarrays

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2010-03-01

    Full Text Available Abstract Background Gene expression studies greatly contribute to our understanding of complex relationships in gene regulatory networks. However, the complexity of array design, production and manipulations are limiting factors, affecting data quality. The use of customized DNA microarrays improves overall data quality in many situations, however, only if for these specifically designed microarrays analysis tools are available. Results The IronChip Evaluation Package (ICEP is a collection of Perl utilities and an easy to use data evaluation pipeline for the analysis of microarray data with a focus on data quality of custom-designed microarrays. The package has been developed for the statistical and bioinformatical analysis of the custom cDNA microarray IronChip but can be easily adapted for other cDNA or oligonucleotide-based designed microarray platforms. ICEP uses decision tree-based algorithms to assign quality flags and performs robust analysis based on chip design properties regarding multiple repetitions, ratio cut-off, background and negative controls. Conclusions ICEP is a stand-alone Windows application to obtain optimal data quality from custom-designed microarrays and is freely available here (see "Additional Files" section and at: http://www.alice-dsl.net/evgeniy.vainshtein/ICEP/

  16. Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens.

    Science.gov (United States)

    Card, Roderick; Zhang, Jiancheng; Das, Priya; Cook, Charlotte; Woodford, Neil; Anjum, Muna F

    2013-01-01

    A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure.

  17. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-11-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i municipal clean water program; (ii agricultural nutrient management scenarios; (iii past and future land use changes, as well as (iv determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  18. Current applications and different approaches for microbial L-asparaginase production

    Directory of Open Access Journals (Sweden)

    Jorge Javier Muso Cachumba

    Full Text Available ABSTRACT L-asparaginase (EC 3.5.1.1 is an enzyme that catalysis mainly the asparagine hydrolysis in L-aspartic acid and ammonium. This enzyme is presented in different organisms, such as microorganisms, vegetal, and some animals, including certain rodent's serum, but not unveiled in humans. It can be used as important chemotherapeutic agent for the treatment of a variety of lymphoproliferative disorders and lymphomas (particularly acute lymphoblastic leukemia (ALL and Hodgkin's lymphoma, and has been a pivotal agent in chemotherapy protocols from around 30 years. Also, other important application is in food industry, by using the properties of this enzyme to reduce acrylamide levels in commercial fried foods, maintaining their characteristics (color, flavor, texture, security, etc. Actually, L-asparaginase catalyzes the hydrolysis of L-asparagine, not allowing the reaction of reducing sugars with this aminoacid for the generation of acrylamide. Currently, production of L-asparaginase is mainly based in biotechnological production by using some bacteria. However, industrial production also needs research work aiming to obtain better production yields, as well as novel process by applying different microorganisms to increase the range of applications of the produced enzyme. Within this context, this mini-review presents L-asparaginase applications, production by different microorganisms and some limitations, current investigations, as well as some challenges to be achieved for profitable industrial production.

  19. TH-F-202-02: Current Applications of MRI in Radiotherapy

    International Nuclear Information System (INIS)

    Li, G.

    2016-01-01

    MRI has excellent soft tissue contrast and can provide both anatomical and physiological information. It is becoming increasingly important in radiation therapy for treatment planning, image-guided radiation therapy, and treatment assessment. It is critically important at this time point to educate and update our medical physicists about MRI to prepare for the upcoming surge of MRI applications in radiation therapy. This session will review important basics of MR physics, pulse sequence designs, and current radiotherapy application, as well as showcase exciting new developments in MRI that can be potentially useful in radiation therapy. Learning Objectives: To learn basics of MR physics and understand the differences between various pulse sequences To review current applications of MRI in radiation therapy.To discuss recent MRI advances for future MRI guided radiation therapy Partly supported by NIH (1R21CA165384).; W. Miller, Research supported in part by Siemens Healthcare; G. Li, My clinical research is in part supported by NIH U54CA137788. I have a collaborative research project with Philips Healthcare.; J. Cai, jing cai

  20. TH-F-202-02: Current Applications of MRI in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, G. [Memorial Sloan Kettering Cancer Center (United States)

    2016-06-15

    MRI has excellent soft tissue contrast and can provide both anatomical and physiological information. It is becoming increasingly important in radiation therapy for treatment planning, image-guided radiation therapy, and treatment assessment. It is critically important at this time point to educate and update our medical physicists about MRI to prepare for the upcoming surge of MRI applications in radiation therapy. This session will review important basics of MR physics, pulse sequence designs, and current radiotherapy application, as well as showcase exciting new developments in MRI that can be potentially useful in radiation therapy. Learning Objectives: To learn basics of MR physics and understand the differences between various pulse sequences To review current applications of MRI in radiation therapy.To discuss recent MRI advances for future MRI guided radiation therapy Partly supported by NIH (1R21CA165384).; W. Miller, Research supported in part by Siemens Healthcare; G. Li, My clinical research is in part supported by NIH U54CA137788. I have a collaborative research project with Philips Healthcare.; J. Cai, jing cai.

  1. Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates.

    Science.gov (United States)

    Dubey, Manish K; Zehra, Andleeb; Aamir, Mohd; Meena, Mukesh; Ahirwal, Laxmi; Singh, Siddhartha; Shukla, Shruti; Upadhyay, Ram S; Bueno-Mari, Ruben; Bajpai, Vivek K

    2017-01-01

    Fungal glucose oxidase (GOD) is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production.

  2. [Development strategy of Paris based on combination of domestic patent and current resource application and development].

    Science.gov (United States)

    Zhao, Fei-Ya; Tao, Ai-En; Xia, Cong-Long

    2018-01-01

    Paris is a commonly used traditional Chinese medicine (TCM), and has antitumor, antibacterial, sedative, analgesic and hemostatic effects. It has been used as an ingredient of 81 Chinese patent medicines, with a wide application and large market demand. Based on the data retrieved from state Intellectual Property Office patent database, a comprehensive analysis was made on Paris patents, so as to explore the current features of Paris patents in the aspects of domestic patent output, development trend, technology field distribution, time dimension, technology growth rate and patent applicant, and reveal the development trend of China's Paris industry. In addition, based on the current Paris resource application and development, a sustainable, multi-channel and multi-level industrial development approach was built. According to the results, studies of Paris in China are at the rapid development period, with a good development trend. However, because wild Paris resources tend to be exhausted, the studies for artificial cultivation technology should be strengthened to promote the industrial development. Copyright© by the Chinese Pharmaceutical Association.

  3. Current Status and Outlook in the Application of Microalgae in Biodiesel Production and Environmental Protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China); University of Chinese Academy of Sciences, Beijing (China); Rong, Junfeng [SINOPEC Research Institute of Petroleum Processing, Beijing (China); Chen, Hui; He, Chenliu; Wang, Qiang, E-mail: wangqiang@ihb.ac.cn [Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (China)

    2014-08-19

    Microalgae have been currently recognized as a group of the most potential feedstocks for biodiesel production due to high productivity potential, efficient biosynthesis of lipids, and less competition with food production. Moreover, utilization of microalgae with environmental purposes (CO{sub 2} fixation, NO{sub x}, and wastewater treatment) and biorefinery has been reported. However, there are still challenges that need to be addressed to ensure stable large-scale production with positive net energy balance. This review gives an overview of the current status of the application of microalgae in biodiesel production and environmental protection. The practical problems not only facing the microalgae biodiesel production but also associated with microalgae application for environmental pollution control, in particular biological fixation of greenhouse gas (CO{sub 2} and NO{sub x}) and wastewater treatment are described in detail. Notably, the synergistic combination of various applications (e.g., food, medicine, wastewater treatment, and flue gas treatment) with biodiesel production could enhance the sustainability and economics of the algal biodiesel production system.

  4. Current status and outlook in the application of microalgae in biodiesel production and environmental protection

    Directory of Open Access Journals (Sweden)

    Xin eZhang

    2014-08-01

    Full Text Available Microalgae have been currently recognized as one group of the most potential feedstocks for biodiesel production due to high productivity potential, efficient biosynthesis of lipids and less competition with food production. Moreover, utilization of microalgae with environmental purposes (CO2 fixation, NOX and wastewater treatment and biorefinery have been reported. However, there are still challenges that need to be addressed to ensure stable large-scale production with positive net energy balance. This review gives an overview of the current status of the application of microalgae in biodiesel production and environmental protection. The practical problems not only facing the microalgae biodiesel production but also associated with microalgae application for environmental pollution control, in particular biological fixation of greenhouse gas (CO2 and NOX and wastewater treatment are described in detail. Notably, the synergistic combination of various applications (e.g. food, medicine, wastewater treatment and flue gas treatment with biodiesel production could enhance the sustainability and economics of the algal biodiesel production system.

  5. cluML: A markup language for clustering and cluster validity assessment of microarray data.

    Science.gov (United States)

    Bolshakova, Nadia; Cunningham, Pádraig

    2005-01-01

    cluML is a new markup language for microarray data clustering and cluster validity assessment. The XML-based format has been designed to address some of the limitations observed in traditional formats, such as inability to store multiple clustering (including biclustering) and validation results within a dataset. cluML is an effective tool to support biomedical knowledge representation in gene expression data analysis. Although cluML was developed for DNA microarray analysis applications, it can be effectively used for the representation of clustering and for the validation of other biomedical and physical data that has no limitations.

  6. Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.

    Science.gov (United States)

    Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben

    2017-06-06

    Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.

  7. Synthesis of O-glycopeptides and construction of glycopeptide microarrays

    DEFF Research Database (Denmark)

    Blixt, Klas Ola; Cló, Emiliano

    2013-01-01

    O-glycosylation of proteins is an important modification which affects biological function and immunity. In this chapter, we provide protocols for efficient solid-phase O-glycopeptide synthesis (SPGPS) and protocols for the construction of glycopeptide microarray chips for screening applications....

  8. SegMine workflows for semantic microarray data analysis in Orange4WS

    Directory of Open Access Journals (Sweden)

    Kulovesi Kimmo

    2011-10-01

    Full Text Available Abstract Background In experimental data analysis, bioinformatics researchers increasingly rely on tools that enable the composition and reuse of scientific workflows. The utility of current bioinformatics workflow environments can be significantly increased by offering advanced data mining services as workflow components. Such services can support, for instance, knowledge discovery from diverse distributed data and knowledge sources (such as GO, KEGG, PubMed, and experimental databases. Specifically, cutting-edge data analysis approaches, such as semantic data mining, link discovery, and visualization, have not yet been made available to researchers investigating complex biological datasets. Results We present a new methodology, SegMine, for semantic analysis of microarray data by exploiting general biological knowledge, and a new workflow environment, Orange4WS, with integrated support for web services in which the SegMine methodology is implemented. The SegMine methodology consists of two main steps. First, the semantic subgroup discovery algorithm is used to construct elaborate rules that identify enriched gene sets. Then, a link discovery service is used for the creation and visualization of new biological hypotheses. The utility of SegMine, implemented as a set of workflows in Orange4WS, is demonstrated in two microarray data analysis applications. In the analysis of senescence in human stem cells, the use of SegMine resulted in three novel research hypotheses that could improve understanding of the underlying mechanisms of senescence and identification of candidate marker genes. Conclusions Compared to the available data analysis systems, SegMine offers improved hypothesis generation and data interpretation for bioinformatics in an easy-to-use integrated workflow environment.

  9. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    Science.gov (United States)

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Creation of antifouling microarrays by photopolymerization of zwitterionic compounds for protein assay and cell patterning.

    Science.gov (United States)

    Sun, Xiuhua; Wang, Huaixin; Wang, Yuanyuan; Gui, Taijiang; Wang, Ke; Gao, Changlu

    2018-04-15

    Nonspecific binding or adsorption of biomolecules presents as a major obstacle to higher sensitivity, specificity and reproducibility in microarray technology. We report herein a method to fabricate antifouling microarray via photopolymerization of biomimetic betaine compounds. In brief, carboxybetaine methacrylate was polymerized as arrays for protein sensing, while sulfobetaine methacrylate was polymerized as background. With the abundant carboxyl groups on array surfaces and zwitterionic polymers on the entire surfaces, this microarray allows biomolecular immobilization and recognition with low nonspecific interactions due to its antifouling property. Therefore, low concentration of target molecules can be captured and detected by this microarray. It was proved that a concentration of 10ngmL -1 bovine serum albumin in the sample matrix of bovine serum can be detected by the microarray derivatized with anti-bovine serum albumin. Moreover, with proper hydrophilic-hydrophobic designs, this approach can be applied to fabricate surface-tension droplet arrays, which allows surface-directed cell adhesion and growth. These light controllable approaches constitute a clear improvement in the design of antifouling interfaces, which may lead to greater flexibility in the development of interfacial architectures and wider application in blood contact microdevices. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Detection of NASBA amplified bacterial tmRNA molecules on SLICSel designed microarray probes

    Directory of Open Access Journals (Sweden)

    Toome Kadri

    2011-02-01

    Full Text Available Abstract Background We present a comprehensive technological solution for bacterial diagnostics using tmRNA as a marker molecule. A robust probe design algorithm for microbial detection microarray is implemented. The probes were evaluated for specificity and, combined with NASBA (Nucleic Acid Sequence Based Amplification amplification, for sensitivity. Results We developed a new web-based program SLICSel for the design of hybridization probes, based on nearest-neighbor thermodynamic modeling. A SLICSel minimum binding energy difference criterion of 4 kcal/mol was sufficient to design of Streptococcus pneumoniae tmRNA specific microarray probes. With lower binding energy difference criteria, additional hybridization specificity tests on the microarray were needed to eliminate non-specific probes. Using SLICSel designed microarray probes and NASBA we were able to detect S. pneumoniae tmRNA from a series of total RNA dilutions equivalent to the RNA content of 0.1-10 CFU. Conclusions The described technological solution and both its separate components SLICSel and NASBA-microarray technology independently are applicative for many different areas of microbial diagnostics.

  12. Detection of NASBA amplified bacterial tmRNA molecules on SLICSel designed microarray probes

    LENUS (Irish Health Repository)

    Scheler, Ott

    2011-02-28

    Abstract Background We present a comprehensive technological solution for bacterial diagnostics using tmRNA as a marker molecule. A robust probe design algorithm for microbial detection microarray is implemented. The probes were evaluated for specificity and, combined with NASBA (Nucleic Acid Sequence Based Amplification) amplification, for sensitivity. Results We developed a new web-based program SLICSel for the design of hybridization probes, based on nearest-neighbor thermodynamic modeling. A SLICSel minimum binding energy difference criterion of 4 kcal\\/mol was sufficient to design of Streptococcus pneumoniae tmRNA specific microarray probes. With lower binding energy difference criteria, additional hybridization specificity tests on the microarray were needed to eliminate non-specific probes. Using SLICSel designed microarray probes and NASBA we were able to detect S. pneumoniae tmRNA from a series of total RNA dilutions equivalent to the RNA content of 0.1-10 CFU. Conclusions The described technological solution and both its separate components SLICSel and NASBA-microarray technology independently are applicative for many different areas of microbial diagnostics.

  13. The PowerAtlas: a power and sample size atlas for microarray experimental design and research

    Directory of Open Access Journals (Sweden)

    Wang Jelai

    2006-02-01

    Full Text Available Abstract Background Microarrays permit biologists to simultaneously measure the mRNA abundance of thousands of genes. An important issue facing investigators planning microarray experiments is how to estimate the sample size required for good statistical power. What is the projected sample size or number of replicate chips needed to address the multiple hypotheses with acceptable accuracy? Statistical methods exist for calculating power based upon a single hypothesis, using estimates of the variability in data from pilot studies. There is, however, a need for methods to estimate power and/or required sample sizes in situations where multiple hypotheses are being tested, such as in microarray experiments. In addition, investigators frequently do not have pilot data to estimate the sample sizes required for microarray studies. Results To address this challenge, we have developed a Microrarray PowerAtlas 1. The atlas enables estimation of statistical power by allowing investigators to appropriately plan studies by building upon previous studies that have similar experimental characteristics. Currently, there are sample sizes and power estimates based on 632 experiments from Gene Expression Omnibus (GEO. The PowerAtlas also permits investigators to upload their own pilot data and derive power and sample size estimates from these data. This resource will be updated regularly with new datasets from GEO and other databases such as The Nottingham Arabidopsis Stock Center (NASC. Conclusion This resource provides a valuable tool for investigators who are planning efficient microarray studies and estimating required sample sizes.

  14. A tiling microarray for global analysis of chloroplast genome expression in cucumber and other plants

    Directory of Open Access Journals (Sweden)

    Pląder Wojciech

    2011-09-01

    Full Text Available Abstract Plastids are small organelles equipped with their own genomes (plastomes. Although these organelles are involved in numerous plant metabolic pathways, current knowledge about the transcriptional activity of plastomes is limited. To solve this problem, we constructed a plastid tiling microarray (PlasTi-microarray consisting of 1629 oligonucleotide probes. The oligonucleotides were designed based on the cucumber chloroplast genomic sequence and targeted both strands of the plastome in a non-contiguous arrangement. Up to 4 specific probes were designed for each gene/exon, and the intergenic regions were covered regularly, with 70-nt intervals. We also developed a protocol for direct chemical labeling and hybridization of as little as 2 micrograms of chloroplast RNA. We used this protocol for profiling the expression of the cucumber chloroplast plastome on the PlasTi-microarray. Owing to the high sequence similarity of plant plastomes, the newly constructed microarray can be used to study plants other than cucumber. Comparative hybridization of chloroplast transcriptomes from cucumber, Arabidopsis, tomato and spinach showed that the PlasTi-microarray is highly versatile.

  15. Assessing the Clinical Utility of SNP Microarray for Prader-Willi Syndrome due to Uniparental Disomy.

    Science.gov (United States)

    Santoro, Stephanie L; Hashimoto, Sayaka; McKinney, Aimee; Mihalic Mosher, Theresa; Pyatt, Robert; Reshmi, Shalini C; Astbury, Caroline; Hickey, Scott E

    2017-01-01

    Maternal uniparental disomy (UPD) 15 is one of the molecular causes of Prader-Willi syndrome (PWS), a multisystem disorder which presents with neonatal hypotonia and feeding difficulty. Current diagnostic algorithms differ regarding the use of SNP microarray to detect PWS. We retrospectively examined the frequency with which SNP microarray could identify regions of homozygosity (ROH) in patients with PWS. We determined that 7/12 (58%) patients with previously confirmed PWS by methylation analysis and microsatellite-positive UPD studies had ROH (>10 Mb) by SNP microarray. Additional assessment of 5,000 clinical microarrays, performed from 2013 to present, determined that only a single case of ROH for chromosome 15 was not caused by an imprinting disorder or identity by descent. We observed that ROH for chromosome 15 is rarely incidental and strongly associated with hypotonic infants having features of PWS. Although UPD microsatellite studies remain essential to definitively establish the presence of UPD, SNP microarray has important utility in the timely diagnostic algorithm for PWS. © 2017 S. Karger AG, Basel.

  16. Detection of the specific binding on protein microarrays by oblique-incidence reflectivity difference method

    International Nuclear Information System (INIS)

    Lu, Heng; Wen, Juan; Wang, Xu; Yuan, Kun; Lu, Huibin; Zhou, Yueliang; Jin, Kuijuan; Yang, Guozhen; Li, Wei; Ruan, Kangcheng

    2010-01-01

    The specific binding between Cy5-labeled goat anti-mouse Immunoglobulin G (IgG) and mouse IgG with a concentration range from 625 to 10 4 µg ml −1 has been detected successfully by the oblique-incidence reflectivity difference (OI-RD) method in each procedure of microarray fabrication. The experimental data prove that the OI-RD method can be employed not only to distinguish the different concentrations in label-free fashion but also to detect the antibody–antigen capture. In addition, the differential treatment of the OI-RD signals can decrease the negative influences of glass slide as the microarray upholder. Therefore the OI-RD technique has promising applications for the label-free and high-throughput detection of protein microarrays

  17. A study of metaheuristic algorithms for high dimensional feature selection on microarray data

    Science.gov (United States)

    Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna

    2017-11-01

    Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.

  18. Prediction of Pectin Yield and Quality by FTIR and Carbohydrate Microarray Analysis

    DEFF Research Database (Denmark)

    Baum, Andreas; Dominiak, Malgorzata Maria; Vidal-Melgosa, Silvia

    2017-01-01

    and carbohydrate microarray analysis were performed directly on the crude lime peel extracts during the time course of the extractions. Multivariate analysis of the data was carried out to predict final pectin yields. Fourier transform infrared spectroscopy (FTIR) was found applicable for determining the optimal...... extraction time for the enzymatic and acidic extraction processes, respectively. The combined results of FTIR and carbohydrate microarray analysis suggested major differences in the crude pectin extracts obtained by enzymatic and acid extraction, respectively. Enzymatically extracted pectin, thus, showed......, and that FTIR and carbohydrate microarray analysis have potential to be developed into online process analysis tools for prediction of pectin extraction yields and pectin features from measurements on crude pectin extracts....

  19. Overview of superconducting RF technology and its application to high-current linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.

    1994-01-01

    Superconducting linacs may be a viable option for high-current applications such as copious neutron production like that needed for transmutation of radioactive waste. These linacs must run reliably for many years and allow easy routine maintenance. superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs. However, cost effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement

  20. Current state of low energy EB devices and its application technology

    International Nuclear Information System (INIS)

    Kinoshita, Shinobu

    2000-01-01

    This paper introduced the current state of low energy type EB (electron beam) devices with an acceleration voltage of 300 kV or below and specific application examples. As for EB devices, it introduced the ultra-compact new EB device (microbeam LV), experimental devices, and the pilot/production devices which have been recently developed by the manufacturer to which the author belongs. As the applications of low energy EB devices, it specifically introduced curing, graft polymerization, crosslinking, and sterilization/disinfection with soft electrons: (1) examples of EB curing; antistatic agents in antibacterial/antifungal property imparting processing, hard coat, printing and topcoat, high gloss/pattern transfer processing, and metal vapor deposition film, (2) example of graft polymerization; barrier imparting films, and (3) examples of crosslinking; shrinking films/tubes and foamed sheets. (A.O.)

  1. Advances for prosthetic technology from historical perspective to current status to future application

    CERN Document Server

    LeMoyne, Robert

    2016-01-01

    This book focuses on the advances in transtibial prosthetic technology and targets research in the evolution of the powered prosthesis such as the BiOM, which was derived from considerable research and development at the Massachusetts Institute of Technology. The concept of the book spans the historical evolution of prosthetic applications from passive to new and futuristic robotic prosthetic technologies.  The author describes the reasons for amputation, surgical procedures, and an historical perspective of the prosthesis for the lower limb. He also addresses the phases and sub-phases of gait and compensatory mechanisms arising for a transtibial prosthesis and links the compensatory mechanisms to long-term morbidities.  The general technologies for gait analysis central to prosthetic design and the inherent biomechanics foundations for analysis are also explored.  The book reports on recent-past to current-term applications with passive elastic prostheses.  The core of the book deals with futuristic robo...

  2. Current knowledge and potential applications of cavitation technologies for the petroleum industry.

    Science.gov (United States)

    Avvaru, Balasubrahmanyam; Venkateswaran, Natarajan; Uppara, Parasuveera; Iyengar, Suresh B; Katti, Sanjeev S

    2018-04-01

    Technologies based on cavitation, produced by either ultrasound or hydrodynamic means, are part of growing literature for individual refinery unit processes. In this review, we have explained the mechanism through which these cavitation technologies intensify individual unit processes such as enhanced oil recovery, demulsification of water in oil emulsions during desalting stage, crude oil viscosity reduction, oxidative desulphurisation/demetallization, and crude oil upgrading. Apart from these refinery processes, applications of this technology are also mentioned for other potential crude oil sources such as oil shale and oil sand extraction. The relative advantages and current situation of each application/process at commercial scale is explained. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The role of hybrid SPECT-CT in oncology: current and emerging clinical applications

    International Nuclear Information System (INIS)

    Chowdhury, F.U.; Scarsbrook, A.F.

    2008-01-01

    Single photon emission computed tomography - computed tomography (SPECT-CT) is an emerging dual-modality imaging technique with many established and potential clinical applications in the field of oncology. To date, there has been a considerable emphasis on the benefits of integrated positron emission tomography - computed tomography (PET-CT) in oncology, but relatively little focus on the clinical utility of SPECT-CT. As with PET-CT, accurate co-registration of anatomical and functional data from a combined SPECT-CT camera often provides complementary diagnostic information. Both sensitivity (superior disease localization) and specificity (exclusion of false-positives due to physiological tracer uptake) are improved, and the functional significance of indeterminate lesions detected on cross-sectional imaging can be defined. This article will review the scope of hybrid SPECT-CT in oncology and illustrate both current and emerging clinical applications

  4. An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics

    International Nuclear Information System (INIS)

    Taylor, Ronald C.

    2010-01-01

    Bioinformatics researchers are increasingly confronted with analysis of ultra large-scale data sets, a problem that will only increase at an alarming rate in coming years. Recent developments in open source software, that is, the Hadoop project and associated software, provide a foundation for scaling to petabyte scale data warehouses on Linux clusters, providing fault-tolerant parallelized analysis on such data using a programming style named MapReduce. An overview is given of the current usage within the bioinformatics community of Hadoop, a top-level Apache Software Foundation project, and of associated open source software projects. The concepts behind Hadoop and the associated HBase project are defined, and current bioinformatics software that employ Hadoop is described. The focus is on next-generation sequencing, as the leading application area to date.

  5. Current Applications of Chromatographic Methods in the Study of Human Body Fluids for Diagnosing Disorders.

    Science.gov (United States)

    Jóźwik, Jagoda; Kałużna-Czaplińska, Joanna

    2016-01-01

    Currently, analysis of various human body fluids is one of the most essential and promising approaches to enable the discovery of biomarkers or pathophysiological mechanisms for disorders and diseases. Analysis of these fluids is challenging due to their complex composition and unique characteristics. Development of new analytical methods in this field has made it possible to analyze body fluids with higher selectivity, sensitivity, and precision. The composition and concentration of analytes in body fluids are most often determined by chromatography-based techniques. There is no doubt that proper use of knowledge that comes from a better understanding of the role of body fluids requires the cooperation of scientists of diverse specializations, including analytical chemists, biologists, and physicians. This article summarizes current knowledge about the application of different chromatographic methods in analyses of a wide range of compounds in human body fluids in order to diagnose certain diseases and disorders.

  6. Features of Mobile Diabetes Applications: Review of the Literature and Analysis of Current Applications Compared Against Evidence-Based Guidelines

    Science.gov (United States)

    Fernandez-Luque, Luis; Årsand, Eirik; Hartvigsen, Gunnar

    2011-01-01

    = 101) were (1) insulin and medication recording, 63 (62%), (2) data export and communication, 61 (60%), (3) diet recording, 47 (47%), and (4) weight management, 43 (43%). From the literature search (n = 26), the most prevalent features were (1) PHR or Web server synchronization, 18 (69%), (2) insulin and medication recording, 17 (65%), (3) diet recording, 17 (65%), and (4) data export and communication, 16 (62%). Interestingly, although clinical guidelines widely refer to the importance of education, this is missing from the top functionalities in both cases. Conclusions While a wide selection of mobile applications seems to be available for people with diabetes, this study shows there are obvious gaps between the evidence-based recommendations and the functionality used in study interventions or found in online markets. Current results confirm personalized education as an underrepresented feature in diabetes mobile applications. We found no studies evaluating social media concepts in diabetes self-management on mobile devices, and its potential remains largely unexplored. PMID:21979293

  7. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-01-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10 9 n/cm 2 /s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin (∼ 5 cm iron). However, this approach has an extremely low neutron yield (n/p ∼ 1.0(-6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target ∼ 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies (∼ 2.5 MeV) have a much higher yield (n/p ∼ 1.0(-4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV

  8. The antibacterial peptide ABP-CM4: the current state of its production and applications.

    Science.gov (United States)

    Li, Jian Feng; Zhang, Jie; Xu, Xing Zhou; Han, Yang Yang; Cui, Xian Wei; Chen, Yu Qing; Zhang, Shuang Quan

    2012-06-01

    The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous efforts to develop new antibiotics with new modes of actions. Antibacterial peptide CM4 (ABP-CM4) is a small cationic peptide with broad-spectrum activities against bacteria, fungi, and tumor cells, which may possibly be used as a promising candidate for a new antibiotic. For pharmaceutical applications, a large quantity of antimicrobial peptides needs to be produced economically. In this communication, the progress in the structural characteristics, heterologous production, and biological evaluation of ABP-CM4 are reviewed.

  9. The Emerging Role of Tractography in Deep Brain Stimulation: Basic Principles and Current Applications

    Directory of Open Access Journals (Sweden)

    Nelson B. Rodrigues

    2018-01-01

    Full Text Available Diffusion tensor imaging (DTI is an MRI-based technique that delineates white matter tracts in the brain by tracking the diffusion of water in neural tissue. This methodology, known as “tractography”, has been extensively applied in clinical neuroscience to explore nervous system architecture and diseases. More recently, tractography has been used to assist with neurosurgical targeting in functional neurosurgery. This review provides an overview of DTI principles, and discusses current applications of tractography for improving and helping develop novel deep brain stimulation (DBS targets.

  10. Current Development of Silver Nanoparticle Preparation, Investigation, and Application in the Field of Medicine

    International Nuclear Information System (INIS)

    Murphy, M.; Ting, K.; Zhang, X.; Zheng, Z.; Ting, K.; Soo, Ch.; Zheng, Z.

    2014-01-01

    The invited review covers different research areas of silver nanoparticles (AgNPs), including the synthesis strategies of AgNPs, antimicrobial and anti-inflammatory properties of AgNPs, osteoconductive and osteoinductive activities of AgNP-based materials, and potential toxicity of AgNPs. The potential mechanisms of AgNP’s biological efficacy as well as its potential toxicity are discussed as well. In addition, the current development of AgNP applications, especially in the area of therapeutics, is also summarized.

  11. Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.

    Science.gov (United States)

    Kim, Hyun-Seok; Heo, Jun-Woo; Chol, Seok-Gyu; Ko, Dong-Sik; Rhee, Jin-Koo

    2015-07-01

    InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.

  12. Design and Application of Hybrid Magnetic Field-Eddy Current Probe

    Science.gov (United States)

    Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John

    2013-01-01

    The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.

  13. Nuclear chiral axial currents and applications to few-nucleon systems

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Alessandro [Old Dominion Univ., Norfolk, VA (United States)

    2017-08-01

    This Thesis is divided into three main parts. The first part discusses basic aspects of chiral effective field theory and the formalism, based on time ordered perturbation theory, used to to derive the nuclear potentials and currents from the chiral Lagrangians. The second part deals with the actual derivation, up to one loop, of the two-nucleon potential and one- and two-nucleon weak axial charge and current. In both derivations ultraviolet divergences generated by loop corrections are isolated using dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. A complete set of contact terms for the axial charge up to the relevant order in the power counting is constructed. The third part of this Thesis discusses two applications: (i) the calculation of the Gamow-Teller matrix element of tritium, used to constrain the single low-energy constant entering the axial current; (ii) the calculation of neutrino-deuteron inclusive cross sections at low energies. These results have confirmed previous predictions obtained in phenomenological approaches. These latter studies have played an important role in the analysis and interpretation of experiments at the Sudbury Neutrino Observatory.

  14. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    Science.gov (United States)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic

  15. Transformer inrush current reduction through sequential energization for wind farm applications

    Energy Technology Data Exchange (ETDEWEB)

    Abdulsalam, S.; Xu, W. [Alberta Univ., Edmonton, AB (Canada)

    2008-07-01

    Wind power is considered as one of the fastest growing technologies in the power industry. The electrical configuration of a wind farm consists of long spans of medium voltage collector feeders. Each wind generator is connected to the collector circuit/feeder through either a pad mount oil filled, or a nacelle-mounted dry type transformer. All collector feeders connect to a single collector substation where the connection to the high-voltage transmission is established through a step up transformer. With a large number of wind generators per feeder, large inrush current will flow due to simultaneous transformer energization which can cause high voltage sag at the point of common coupling. Wind farms are generally located in unpopulated remote areas where no access to strong network connection is feasible. It is common to have the PCC on a relatively weak location on the sub-transmission/distribution network. In order to meet interconnection standards requirements, the amount of voltage sag due to the energization of a number of transformers needs to be evaluated. This paper presented an effective solution to the mitigation of inrush currents and associated voltage sag for wind farm applications. The paper presented a diagram of a typical configuration of a wind farm electrical distribution system and also described the analytical methodologies for the evaluation of inrush current level together with simulation results. A simplified analysis and sizing criteria for the associated neutral resistor size was presented. It was concluded that the scheme could significantly reduce inrush current level when a large number of transformers are simultaneously energized. The presented application eliminates the need to sectionalize feeders, thereby simplifying them for the energization process. 6 refs., 5 figs.

  16. Improving comparability between microarray probe signals by thermodynamic intensity correction

    DEFF Research Database (Denmark)

    Bruun, G. M.; Wernersson, Rasmus; Juncker, Agnieszka

    2007-01-01

    different probes. It is therefore of great interest to correct for the variation between probes. Much of this variation is sequence dependent. We demonstrate that a thermodynamic model for hybridization of either DNA or RNA to a DNA microarray, which takes the sequence-dependent probe affinities...... determination of transcription start sites for a subset of yeast genes. In another application, we identify present/absent calls for probes hybridized to the sequenced Escherichia coli strain O157:H7 EDL933. The model improves the correct calls from 85 to 95% relative to raw intensity measures. The model thus...... makes applications which depend on comparisons between probes aimed at different sections of the same target more reliable....

  17. DNA Microarrays in Comparative Genomics and Transcriptomics

    DEFF Research Database (Denmark)

    Willenbrock, Hanni

    2007-01-01

    at identifying the exact breakpoints where DNA has been gained or lost. In this thesis, three popular methods are compared and a realistic simulation model is presented for generating artificial data with known breakpoints and known DNA copy number. By using simulated data, we obtain a realistic evaluation......During the past few years, innovations in the DNA sequencing technology has led to an explosion in available DNA sequence information. This has revolutionized biological research and promoted the development of high throughput analysis methods that can take advantage of the vast amount of sequence...... data. For this, the DNA microarray technology has gained enormous popularity due to its ability to measure the presence or the activity of thousands of genes simultaneously. Microarrays for high throughput data analyses are not limited to a few organisms but may be applied to everything from bacteria...

  18. Plasmonically amplified fluorescence bioassay with microarray format

    Science.gov (United States)

    Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.

    2015-05-01

    Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.

  19. Reverse phase protein microarray technology in traumatic brain injury.

    Science.gov (United States)

    Gyorgy, Andrea B; Walker, John; Wingo, Dan; Eidelman, Ofer; Pollard, Harvey B; Molnar, Andras; Agoston, Denes V

    2010-09-30

    Antibody based, high throughput proteomics technology represents an exciting new approach in understanding the pathobiologies of complex disorders such as cancer, stroke and traumatic brain injury. Reverse phase protein microarray (RPPA) can complement the classical methods based on mass spectrometry as a high throughput validation and quantification method. RPPA technology can address problematic issues, such as sample complexity, sensitivity, quantification, reproducibility and throughput, which are currently associated with mass spectrometry-based approaches. However, there are technical challenges, predominantly associated with the selection and use of antibodies, preparation and representation of samples and with analyzing and quantifying primary RPPA data. Here we present ways to identify and overcome some of the current issues associated with RPPA. We believe that using stringent quality controls, improved bioinformatics analysis and interpretation of primary RPPA data, this method will significantly contribute in generating new level of understanding about complex disorders at the level of systems biology. Published by Elsevier B.V.

  20. Exploring the use of internal and externalcontrols for assessing microarray technical performance

    Directory of Open Access Journals (Sweden)

    Game Laurence

    2010-12-01

    Full Text Available Abstract Background The maturing of gene expression microarray technology and interest in the use of microarray-based applications for clinical and diagnostic applications calls for quantitative measures of quality. This manuscript presents a retrospective study characterizing several approaches to assess technical performance of microarray data measured on the Affymetrix GeneChip platform, including whole-array metrics and information from a standard mixture of external spike-in and endogenous internal controls. Spike-in controls were found to carry the same information about technical performance as whole-array metrics and endogenous "housekeeping" genes. These results support the use of spike-in controls as general tools for performance assessment across time, experimenters and array batches, suggesting that they have potential for comparison of microarray data generated across species using different technologies. Results A layered PCA modeling methodology that uses data from a number of classes of controls (spike-in hybridization, spike-in polyA+, internal RNA degradation, endogenous or "housekeeping genes" was used for the assessment of microarray data quality. The controls provide information on multiple stages of the experimental protocol (e.g., hybridization, RNA amplification. External spike-in, hybridization and RNA labeling controls provide information related to both assay and hybridization performance whereas internal endogenous controls provide quality information on the biological sample. We find that the variance of the data generated from the external and internal controls carries critical information about technical performance; the PCA dissection of this variance is consistent with whole-array quality assessment based on a number of quality assurance/quality control (QA/QC metrics. Conclusions These results provide support for the use of both external and internal RNA control data to assess the technical quality of microarray

  1. Microarrays for the evaluation of cell-biomaterial surface interactions

    Science.gov (United States)

    Thissen, H.; Johnson, G.; McFarland, G.; Verbiest, B. C. H.; Gengenbach, T.; Voelcker, N. H.

    2007-01-01

    The evaluation of cell-material surface interactions is important for the design of novel biomaterials which are used in a variety of biomedical applications. While traditional in vitro test methods have routinely used samples of relatively large size, microarrays representing different biomaterials offer many advantages, including high throughput and reduced sample handling. Here, we describe the simultaneous cell-based testing of matrices of polymeric biomaterials, arrayed on glass slides with a low cell-attachment background coating. Arrays were constructed using a microarray robot at 6 fold redundancy with solid pins having a diameter of 375 μm. Printed solutions contained at least one monomer, an initiator and a bifunctional crosslinker. After subsequent UV polymerisation, the arrays were washed and characterised by X-ray photoelectron spectroscopy. Cell culture experiments were carried out over 24 hours using HeLa cells. After labelling with CellTracker ® Green for the final hour of incubation and subsequent fixation, the arrays were scanned. In addition, individual spots were also viewed by fluorescence microscopy. The evaluation of cell-surface interactions in high-throughput assays as demonstrated here is a key enabling technology for the effective development of future biomaterials.

  2. Screening for C3 deficiency in newborns using microarrays.

    Directory of Open Access Journals (Sweden)

    Magdalena Janzi

    Full Text Available BACKGROUND: Dried blood spot samples (DBSS from newborns are widely used in neonatal screening for selected metabolic diseases and diagnostic possibilities for additional disorders are continuously being evaluated. Primary immunodeficiency disorders comprise a group of more than one hundred diseases, several of which are fatal early in life. Yet, a majority of the patients are not diagnosed due to lack of high-throughput screening methods. METHODOLOGY/PRINCIPAL FINDINGS: We have previously developed a system using reverse phase protein microarrays for analysis of IgA levels in serum samples. In this study, we extended the applicability of the method to include determination of complement component C3 levels in eluates from DBSS collected at birth. Normal levels of C3 were readily detected in 269 DBSS from healthy newborns, while no C3 was detected in sera and DBSS from C3 deficient patients. CONCLUSIONS/SIGNIFICANCE: The findings suggest that patients with deficiencies of specific serum proteins can be identified by analysis of DBSS using reverse phase protein microarrays.

  3. Differentiation of the seven major lyssavirus species by oligonucleotide microarray.

    Science.gov (United States)

    Xi, Jin; Guo, Huancheng; Feng, Ye; Xu, Yunbin; Shao, Mingfu; Su, Nan; Wan, Jiayu; Li, Jiping; Tu, Changchun

    2012-03-01

    An oligonucleotide microarray, LyssaChip, has been developed and verified as a highly specific diagnostic tool for differentiation of the 7 major lyssavirus species. As with conventional typing microarray methods, the LyssaChip relies on sequence differences in the 371-nucleotide region coding for the nucleoprotein. This region was amplified using nested reverse transcription-PCR primers that bind to the 7 major lyssaviruses. The LyssaChip includes 57 pairs of species typing and corresponding control oligonucleotide probes (oligoprobes) immobilized on glass slides, and it can analyze 12 samples on a single slide within 8 h. Analysis of 111 clinical brain specimens (65 from animals with suspected rabies submitted to the laboratory and 46 of butchered dog brain tissues collected from restaurants) showed that the chip method was 100% sensitive and highly consistent with the "gold standard," a fluorescent antibody test (FAT). The chip method could detect rabies virus in highly decayed brain tissues, whereas the FAT did not, and therefore the chip test may be more applicable to highly decayed brain tissues than the FAT. LyssaChip may provide a convenient and inexpensive alternative for diagnosis and differentiation of rabies and rabies-related diseases.

  4. Characterization of adjacent breast tumors using oligonucleotide microarrays

    International Nuclear Information System (INIS)

    Unger, Meredith A; Rishi, Mazhar; Clemmer, Virginia B; Hartman, Jennifer L; Keiper, Elizabeth A; Greshock, Joel D; Chodosh, Lewis A; Liebman, Michael N; Weber, Barbara L

    2001-01-01

    Current methodology often cannot distinguish second primary breast cancers from multifocal disease, a potentially important distinction for clinical management. In the present study we evaluated the use of oligonucleotide-based microarray analysis in determining the clonality of tumors by comparing gene expression profiles. Total RNA was extracted from two tumors with no apparent physical connection that were located in the right breast of an 87-year-old woman diagnosed with invasive ductal carcinoma (IDC). The RNA was hybridized to the Affymetrix Human Genome U95A Gene Chip ® (12,500 known human genes) and analyzed using the Gene Chip Analysis Suite ® 3.3 (Affymetrix, Inc, Santa Clara, CA, USA) and JMPIN ® 3.2.6 (SAS Institute, Inc, Cary, NC, USA). Gene expression profiles of tumors from five additional patients were compared in order to evaluate the heterogeneity in gene expression between tumors with similar clinical characteristics. The adjacent breast tumors had a pairwise correlation coefficient of 0.987, and were essentially indistinguishable by microarray analysis. Analysis of gene expression profiles from different individuals, however, generated a pairwise correlation coefficient of 0.710. Transcriptional profiling may be a useful diagnostic tool for determining tumor clonality and heterogeneity, and may ultimately impact on therapeutic decision making

  5. Classification of mislabelled microarrays using robust sparse logistic regression.

    Science.gov (United States)

    Bootkrajang, Jakramate; Kabán, Ata

    2013-04-01

    Previous studies reported that labelling errors are not uncommon in microarray datasets. In such cases, the training set may become misleading, and the ability of classifiers to make reliable inferences from the data is compromised. Yet, few methods are currently available in the bioinformatics literature to deal with this problem. The few existing methods focus on data cleansing alone, without reference to classification, and their performance crucially depends on some tuning parameters. In this article, we develop a new method to detect mislabelled arrays simultaneously with learning a sparse logistic regression classifier. Our method may be seen as a label-noise robust extension of the well-known and successful Bayesian logistic regression classifier. To account for possible mislabelling, we formulate a label-flipping process as part of the classifier. The regularization parameter is automatically set using Bayesian regularization, which not only saves the computation time that cross-validation would take, but also eliminates any unwanted effects of label noise when setting the regularization parameter. Extensive experiments with both synthetic data and real microarray datasets demonstrate that our approach is able to counter the bad effects of labelling errors in terms of predictive performance, it is effective at identifying marker genes and simultaneously it detects mislabelled arrays to high accuracy. The code is available from http://cs.bham.ac.uk/∼jxb008. Supplementary data are available at Bioinformatics online.

  6. Current progress of targetron technology: development, improvement and application in metabolic engineering.

    Science.gov (United States)

    Liu, Ya-Jun; Zhang, Jie; Cui, Gu-Zhen; Cui, Qiu

    2015-06-01

    Targetrons are mobile group II introns that can recognize their DNA target sites by base-pairing RNA-DNA interactions with the aid of site-specific binding reverse transcriptases. Targetron technology stands out from recently developed gene targeting methods because of the flexibility, feasibility, and efficiency, and is particularly suitable for the genetic engineering of difficult microorganisms, including cellulolytic bacteria that are considered promising candidates for biomass conversion via consolidated bioprocessing. Along with the development of the thermotargetron method for thermophiles, targetron technology becomes increasingly important for the metabolic engineering of industrial microorganisms aiming at biofuel/chemical production. To summarize the current progress of targetron technology and provide new insights on the use of the technology, this paper reviews the retrohoming mechanisms of both mesophilic and thermophilic targetron methods based on various group II introns, investigates the improvement of targetron tools for high target efficiency and specificity, and discusses the current applications in the metabolic engineering for bacterial producers. Although there are still intellectual property and technical restrictions in targetron applications, we propose that targetron technology will contribute to both biochemistry research and the metabolic engineering for industrial productions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ultra-Low Dark Current HgCdTe Detector in SWIR for Space Applications

    Science.gov (United States)

    Cervera, C.; Boulade, O.; Gravrand, O.; Lobre, C.; Guellec, F.; Sanson, E.; Ballet, P.; Santailler, J. L.; Moreau, V.; Zanatta, J. P.; Fieque, B.; Castelein, P.

    2017-10-01

    This paper presents recent developments at Commissariat à l'Energie atomique, Laboratoire d'Electronique et de Technologie de l'Information infrared laboratory on processing and characterization of p-on- n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) in short-wave infrared (SWIR) spectral band for the astrophysics applications. These FPAs have been grown using both liquid phase epitaxy and molecular beam epitaxy on a lattice-matched CdZnTe substrate. This technology exhibits lower dark current and lower series resistance in comparison with n-on- p vacancy-doped architecture and is well adapted for low flux detection or high operating temperature. This architecture has been evaluated for space applications in long-wave infrared and very-long-wave infrared spectral bands with cut-off wavelengths from 10 μm up to 17 μm at 78 K and is now evaluated for the SWIR range. The metallurgical nature of the absorbing layer is also examined and both molecular beam epitaxy and liquid phase epitaxy have been investigated. Electro-optical characterizations have been performed on individual photodiodes from test arrays, whereas dark current investigation has been performed with a fully functional readout integrated circuit dedicated to low flux operations.

  8. A CURRENT MIRROR BASED TWO STAGE CMOS CASCODE OP-AMP FOR HIGH FREQUENCY APPLICATION

    Directory of Open Access Journals (Sweden)

    RAMKRISHNA KUNDU

    2017-03-01

    Full Text Available This paper presents a low power, high slew rate, high gain, ultra wide band two stage CMOS cascode operational amplifier for radio frequency application. Current mirror based cascoding technique and pole zero cancelation technique is used to ameliorate the gain and enhance the unity gain bandwidth respectively, which is the novelty of the circuit. In cascading technique a common source transistor drive a common gate transistor. The cascoding is used to enhance the output resistance and hence improve the overall gain of the operational amplifier with less complexity and less power dissipation. To bias the common gate transistor, a current mirror is used in this paper. The proposed circuit is designed and simulated using Cadence analog and digital system design tools of 45 nanometer CMOS technology. The simulated results of the circuit show DC gain of 63.62 dB, unity gain bandwidth of 2.70 GHz, slew rate of 1816 V/µs, phase margin of 59.53º, power supply of the proposed operational amplifier is 1.4 V (rail-to-rail ±700 mV, and power consumption is 0.71 mW. This circuit specification has encountered the requirements of radio frequency application.

  9. A general centroid determination methodology, with application to multilayer dielectric structures and thermally stimulated current measurements

    International Nuclear Information System (INIS)

    Miller, S.L.; Fleetwood, D.M.; McWhorter, P.J.; Reber, R.A. Jr.; Murray, J.R.

    1993-01-01

    A general methodology is developed to experimentally characterize the spatial distribution of occupied traps in dielectric films on a semiconductor. The effects of parasitics such as leakage, charge transport through more than one interface, and interface trap charge are quantitatively addressed. Charge transport with contributions from multiple charge species is rigorously treated. The methodology is independent of the charge transport mechanism(s), and is directly applicable to multilayer dielectric structures. The centroid capacitance, rather than the centroid itself, is introduced as the fundamental quantity that permits the generic analysis of multilayer structures. In particular, the form of many equations describing stacked dielectric structures becomes independent of the number of layers comprising the stack if they are expressed in terms of the centroid capacitance and/or the flatband voltage. The experimental methodology is illustrated with an application using thermally stimulated current (TSC) measurements. The centroid of changes (via thermal emission) in the amount of trapped charge was determined for two different samples of a triple-layer dielectric structure. A direct consequence of the TSC analyses is the rigorous proof that changes in interface trap charge can contribute, though typically not significantly, to thermally stimulated current

  10. Temperature Gradient Effect on Gas Discrimination Power of a Metal-Oxide Thin-Film Sensor Microarray

    Directory of Open Access Journals (Sweden)

    Joachim Goschnick

    2004-05-01

    Full Text Available Abstract: The paper presents results concerning the effect of spatial inhomogeneous operating temperature on the gas discrimination power of a gas-sensor microarray, with the latter based on a thin SnO2 film employed in the KAMINA electronic nose. Three different temperature distributions over the substrate are discussed: a nearly homogeneous one and two temperature gradients, equal to approx. 3.3 oC/mm and 6.7 oC/mm, applied across the sensor elements (segments of the array. The gas discrimination power of the microarray is judged by using the Mahalanobis distance in the LDA (Linear Discrimination Analysis coordinate system between the data clusters obtained by the response of the microarray to four target vapors: ethanol, acetone, propanol and ammonia. It is shown that the application of a temperature gradient increases the gas discrimination power of the microarray by up to 35 %.

  11. Classification across gene expression microarray studies

    Directory of Open Access Journals (Sweden)

    Kuner Ruprecht

    2009-12-01

    Full Text Available Abstract Background The increasing number of gene expression microarray studies represents an important resource in biomedical research. As a result, gene expression based diagnosis has entered clinical practice for patient stratification in breast cancer. However, the integration and combined analysis of microarray studies remains still a challenge. We assessed the potential benefit of data integration on the classification accuracy and systematically evaluated the generalization performance of selected methods on four breast cancer studies comprising almost 1000 independent samples. To this end, we introduced an evaluation framework which aims to establish good statistical practice and a graphical way to monitor differences. The classification goal was to correctly predict estrogen receptor status (negative/positive and histological grade (low/high of each tumor sample in an independent study which was not used for the training. For the classification we chose support vector machines (SVM, predictive analysis of microarrays (PAM, random forest (RF and k-top scoring pairs (kTSP. Guided by considerations relevant for classification across studies we developed a generalization of kTSP which we evaluated in addition. Our derived version (DV aims to improve the robustness of the intrinsic invariance of kTSP with respect to technologies and preprocessing. Results For each individual study the generalization error was benchmarked via complete cross-validation and was found to be similar for all classification methods. The misclassification rates were substantially higher in classification across studies, when each single study was used as an independent test set while all remaining studies were combined for the training of the classifier. However, with increasing number of independent microarray studies used in the training, the overall classification performance improved. DV performed better than the average and showed slightly less variance. In

  12. Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD: Current Updates

    Directory of Open Access Journals (Sweden)

    Manish K. Dubey

    2017-06-01

    Full Text Available Fungal glucose oxidase (GOD is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production.

  13. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications.

    Science.gov (United States)

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-05-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.

  14. Thermally stimulated currents in polycrystalline diamond films and their application to ultraviolet dosimetry

    International Nuclear Information System (INIS)

    Trajkov, E.; Prawer, S.

    1999-01-01

    Quantifying individual exposure to solar ultraviolet radiation (UVR) is imperative to understanding the epidemiology of UVR related skin cancer. The development of personal UVR dosimeters is hence essential for obtaining data regarding individual UVR exposure, which can then be used to establish appropriate protective measures for occupational and recreational exposure. Because diamond is a tissue equivalent material and has a wide band-gap, CVD polycrystalline diamond has been proposed for use in solar-blind UV dosimetry. It has been reported that the photoconductivity in polycrystalline diamond films is enhanced after UV illumination Photo-generated carriers can be trapped at some deep levels after illumination. Because these levels are deep the thermal release of carriers is a slow process at room temperature. Therefore the new carrier distribution reached after illumination can result in a metastable state because the temperature is too low to restore the initial equilibrium. The sample can be bought back to initial equilibrium by heating. If the current is recorded during heating of the samples one can observe current peaks corresponding to the thermal release of trapped carriers, the so-called thermally stimulated currents (TSC). From first-order kinetics, we find that the TSC intensity is proportional to the initial density of trapped carriers, n to . Since n to varies with the radiation dose, the measurement of TSC can find an application in radiation dosimetry since the measurement of TSC gives a direct measure of that dose. Nitrogen can be used to introduce deep traps in diamond. This investigation will involve examining the affect of the nitrogen concentration on the irradiation response of the films. Furthermore, we will analyse the fading rate of the TSC signal. If diamond films are to have a practical application in UVR dosimetry, then ideally we require a linear relationship between the dose response and the TSC, and we also require a low fading rate

  15. Fly ashes from coal and petroleum coke combustion: current and innovative potential applications.

    Science.gov (United States)

    González, Aixa; Navia, Rodrigo; Moreno, Natalia

    2009-12-01

    Coal fly ashes (CFA) are generated in large amounts worldwide. Current combustion technologies allow the burning of fuels with high sulfur content such as petroleum coke, generating non-CFA, such as petroleum coke fly ash (PCFA), mainly from fluidized bed combustion processes. The disposal of CFA and PCFA fly ashes can have severe impacts in the environment such as a potential groundwater contamination by the leaching of heavy metals and/or particulate matter emissions; making it necessary to treat or reuse them. At present CFA are utilized in several applications fields such as cement and concrete production, agriculture and soil stabilization. However, their reuse is restricted by the quality parameters of the end-product or requirements defined by the production process. Therefore, secondary material markets can use a limited amount of CFA, which implies the necessity of new markets for the unused CFA. Some potential future utilization options reviewed herein are zeolite synthesis and valuable metals extraction. In comparison to CFA, PCFA are characterized by a high Ca content, suggesting a possible use as neutralizers of acid wastewaters from mining operations, opening a new potential application area for PCFA that could solve contamination problems in emergent and mining countries such as Chile. However, this potential application may be limited by PCFA heavy metals leaching, mainly V and Ni, which are present in PCFA in high concentrations.

  16. Application and outcomes of therapy combining transcranial direct current stimulation and virtual reality: a systematic review.

    Science.gov (United States)

    Massetti, Thais; Crocetta, Tânia Brusque; Silva, Talita Dias da; Trevizan, Isabela Lopes; Arab, Claudia; Caromano, Fátima Aparecida; Monteiro, Carlos Bandeira de Mello

    2017-08-01

    To evaluate the methods and major outcomes of transcranial direct current stimulation (tDCS) combined with virtual reality (VR) therapy in randomized controlled trials. A systematic review was performed following PRISMA guidelines using PubMed, PubMed Central, Web of Science and CAPES periodic databases, with no time restriction. The studies were screened for the following inclusion criteria: human subjects, combination of VR and tDCS methods, and randomized controlled study design. All potentially relevant articles were independently reviewed by two researchers, who reached a consensus on which articles met the inclusion criteria. The PEDro scale was used to evaluate the studies. Eleven studies were included, all of which utilized a variety of tDCS and VR application methods. The main outcomes were found to be beneficial in intervention groups of different populations, including improvements in body sway, gait, stroke recovery, pain management and vegetative reactions. The use of tDCS combined with VR showed positive results in both healthy and impaired patients. Future studies with larger sample sizes and homogeneous participants are required to confirm the benefits of tDCS and VR. Implications for Rehabilitation tDCS with VR intervention can be an alternative to traditional rehabilitation programs. tDCS with VR is a promising type of intervention with a variety of positive effects. Application of tDCS with VR is appropriated to both healthy and impaired patients. There is no consensus of tDCS with VR application.

  17. Current Trends in the Studies of Allelochemicals for Their Application in Practice

    Directory of Open Access Journals (Sweden)

    Arsen V.Viter

    2015-06-01

    Full Text Available The allelochemicals have been largely used in agriculture, forestry, landscape design and ornamental plant growing for many decades. However, there is a lack of the comprehensive studies, where existing publications are analyzed and synthesized with regards to the theoretic aspects for such usage. The objective of this paper was to systemize the advances in the research on allelochemicals’ application in practice. Numerous novel methodological propositions have risen recently. We classified them into the physical, chemical, biological, biotechnological and cropgrowing approaches. The allelochemicals consist of the wide diversity of the substances according to their chemical nature. Among these substances we outlined, firstly, the unidentified plant exudates and the products of green manuring, secondly, the chemically characterized or purified substances, which include alcohols, organic acids, aliphatic compounds, aromatic, alicyclic and nitrogen-contain organic compounds. Several groups of the biotic sources of allelochemicals were described: dicotyledonous and monocotyledonous plants, particularly under their colonization by non-pathogenic strains of Fusarium oxysporum, marine flora and fungi, which exhibit the herbicidal activity. Different targets of the allelochemical application were listed in the paper and they were categorized into several groups: higher flora, animals, unicellular and multi-cellular fungi. We concluded that there is lack of the modern multifaceted knowledge bases for the information about the allelochemical application. Those knowledge bases must be useful in order to choose the appropriate biological method for solving each particular problem of plant cultivation. To that end we systemized the results of current investigation about the usage of allelochemicals in practice.

  18. Resonant converter topologies for constant-current power supplies and their applications

    International Nuclear Information System (INIS)

    Borage, Mangesh

    2013-01-01

    Power electronics, in general, and power supplies, in particular, is an important field of accelerator technology due to its widespread use, for instance in dc, ramp or pulse magnet power supplies, high voltage power supplies for electrostatic accelerators and RF amplifies, power supplies for vacuum pumps, vacuum gauges, beam diagnostic devices etc. It has been possible to meet stringent performance requirements with the continuing advancement in the field of power electronics. Resonant converters have been an active area of research in power electronics field due to variety of topologies, diverse, peculiar and useful characteristics. While the majority of the previous work on resonant converters has been directed towards developing methods of analysis and control techniques for the mentioned applications, very little has been done to explore their suitability for application as a constant-current power supply, which is either inherently required or can be advantageously applied in power supplies for various accelerator subsystems and other industrial applications such as electric arc welding, laser diode drivers, magnet illumination systems, battery charging, electrochemical processes etc.

  19. A Novel Application of Zero-Current-Switching Quasiresonant Buck Converter for Battery Chargers

    Directory of Open Access Journals (Sweden)

    Kuo-Kuang Chen

    2011-01-01

    Full Text Available The main purpose of this paper is to develop a novel application of a resonant switch converter for battery chargers. A zero-current-switching (ZCS converter with a quasiresonant converter (QRC was used as the main structure. The proposed ZCS dc–dc battery charger has a straightforward structure, low cost, easy control, and high efficiency. The operating principles and design procedure of the proposed charger are thoroughly analyzed. The optimal values of the resonant components are computed by applying the characteristic curve and electric functions derived from the circuit configuration. Experiments were conducted using lead-acid batteries. The optimal parameters of the resonance components were determined using the load characteristic curve diagrams. These values enable the battery charger to turn on and off at zero current, resulting in a reduction of switching losses. The results of the experiments show that when compared with the traditional pulse-width-modulation (PWM converter for a battery charger, the buck converter with a zero- current-switching quasiresonant converter can lower the temperature of the activepower switch.

  20. A novel multifunctional oligonucleotide microarray for Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Chen Feng

    2010-10-01

    Full Text Available Abstract Background Microarrays are invaluable tools for genome interrogation, SNP detection, and expression analysis, among other applications. Such broad capabilities would be of value to many pathogen research communities, although the development and use of genome-scale microarrays is often a costly undertaking. Therefore, effective methods for reducing unnecessary probes while maintaining or expanding functionality would be relevant to many investigators. Results Taking advantage of available genome sequences and annotation for Toxoplasma gondii (a pathogenic parasite responsible for illness in immunocompromised individuals and Plasmodium falciparum (a related parasite responsible for severe human malaria, we designed a single oligonucleotide microarray capable of supporting a wide range of applications at relatively low cost, including genome-wide expression profiling for Toxoplasma, and single-nucleotide polymorphism (SNP-based genotyping of both T. gondii and P. falciparum. Expression profiling of the three clonotypic lineages dominating T. gondii populations in North America and Europe provides a first comprehensive view of the parasite transcriptome, revealing that ~49% of all annotated genes are expressed in parasite tachyzoites (the acutely lytic stage responsible for pathogenesis and 26% of genes are differentially expressed among strains. A novel design utilizing few probes provided high confidence genotyping, used here to resolve recombination points in the clonal progeny of sexual crosses. Recent sequencing of additional T. gondii isolates identifies >620 K new SNPs, including ~11 K that intersect with expression profiling probes, yielding additional markers for genotyping studies, and further validating the utility of a combined expression profiling/genotyping array design. Additional applications facilitating SNP and transcript discovery, alternative statistical methods for quantifying gene expression, etc. are also pursued at

  1. Mindfulness-Based Mobile Applications: Literature Review and Analysis of Current Features

    Science.gov (United States)

    Plaza, Inmaculada; Demarzo, Marcelo Marcos Piva; Herrera-Mercadal, Paola

    2013-01-01

    Background Interest in mindfulness has increased exponentially, particularly in the fields of psychology and medicine. The trait or state of mindfulness is significantly related to several indicators of psychological health, and mindfulness-based therapies are effective at preventing and treating many chronic diseases. Interest in mobile applications for health promotion and disease self-management is also growing. Despite the explosion of interest, research on both the design and potential uses of mindfulness-based mobile applications (MBMAs) is scarce. Objective Our main objective was to study the features and functionalities of current MBMAs and compare them to current evidence-based literature in the health and clinical setting. Methods We searched online vendor markets, scientific journal databases, and grey literature related to MBMAs. We included mobile applications that featured a mindfulness-based component related to training or daily practice of mindfulness techniques. We excluded opinion-based articles from the literature. Results The literature search resulted in 11 eligible matches, two of which completely met our selection criteria–a pilot study designed to evaluate the feasibility of a MBMA to train the practice of “walking meditation,” and an exploratory study of an application consisting of mood reporting scales and mindfulness-based mobile therapies. The online market search eventually analyzed 50 available MBMAs. Of these, 8% (4/50) did not work, thus we only gathered information about language, downloads, or prices. The most common operating system was Android. Of the analyzed apps, 30% (15/50) have both a free and paid version. MBMAs were devoted to daily meditation practice (27/46, 59%), mindfulness training (6/46, 13%), assessments or tests (5/46, 11%), attention focus (4/46, 9%), and mixed objectives (4/46, 9%). We found 108 different resources, of which the most used were reminders, alarms, or bells (21/108, 19.4%), statistics tools

  2. Mindfulness-based mobile applications: literature review and analysis of current features.

    Science.gov (United States)

    Plaza, Inmaculada; Demarzo, Marcelo Marcos Piva; Herrera-Mercadal, Paola; García-Campayo, Javier

    2013-11-01

    Interest in mindfulness has increased exponentially, particularly in the fields of psychology and medicine. The trait or state of mindfulness is significantly related to several indicators of psychological health, and mindfulness-based therapies are effective at preventing and treating many chronic diseases. Interest in mobile applications for health promotion and disease self-management is also growing. Despite the explosion of interest, research on both the design and potential uses of mindfulness-based mobile applications (MBMAs) is scarce. Our main objective was to study the features and functionalities of current MBMAs and compare them to current evidence-based literature in the health and clinical setting. We searched online vendor markets, scientific journal databases, and grey literature related to MBMAs. We included mobile applications that featured a mindfulness-based component related to training or daily practice of mindfulness techniques. We excluded opinion-based articles from the literature. The literature search resulted in 11 eligible matches, two of which completely met our selection criteria-a pilot study designed to evaluate the feasibility of a MBMA to train the practice of "walking meditation," and an exploratory study of an application consisting of mood reporting scales and mindfulness-based mobile therapies. The online market search eventually analyzed 50 available MBMAs. Of these, 8% (4/50) did not work, thus we only gathered information about language, downloads, or prices. The most common operating system was Android. Of the analyzed apps, 30% (15/50) have both a free and paid version. MBMAs were devoted to daily meditation practice (27/46, 59%), mindfulness training (6/46, 13%), assessments or tests (5/46, 11%), attention focus (4/46, 9%), and mixed objectives (4/46, 9%). We found 108 different resources, of which the most used were reminders, alarms, or bells (21/108, 19.4%), statistics tools (17/108, 15.7%), audio tracks (15/108, 13

  3. Serious limitations of the QTL/Microarray approach for QTL gene discovery

    Directory of Open Access Journals (Sweden)

    Warden Craig H

    2010-07-01

    Full Text Available Abstract Background It has been proposed that the use of gene expression microarrays in nonrecombinant parental or congenic strains can accelerate the process of isolating individual genes underlying quantitative trait loci (QTL. However, the effectiveness of this approach has not been assessed. Results Thirty-seven studies that have implemented the QTL/microarray approach in rodents were reviewed. About 30% of studies showed enrichment for QTL candidates, mostly in comparisons between congenic and background strains. Three studies led to the identification of an underlying QTL gene. To complement the literature results, a microarray experiment was performed using three mouse congenic strains isolating the effects of at least 25 biometric QTL. Results show that genes in the congenic donor regions were preferentially selected. However, within donor regions, the distribution of differentially expressed genes was homogeneous once gene density was accounted for. Genes within identical-by-descent (IBD regions were less likely to be differentially expressed in chromosome 2, but not in chromosomes 11 and 17. Furthermore, expression of QTL regulated in cis (cis eQTL showed higher expression in the background genotype, which was partially explained by the presence of single nucleotide polymorphisms (SNP. Conclusions The literature shows limited successes from the QTL/microarray approach to identify QTL genes. Our own results from microarray profiling of three congenic strains revealed a strong tendency to select cis-eQTL over trans-eQTL. IBD regions had little effect on rate of differential expression, and we provide several reasons why IBD should not be used to discard eQTL candidates. In addition, mismatch probes produced false cis-eQTL that could not be completely removed with the current strains genotypes and low probe density microarrays. The reviewed studies did not account for lack of coverage from the platforms used and therefore removed genes

  4. Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray

    Directory of Open Access Journals (Sweden)

    Nobumasa Hitoshi

    2007-04-01

    Full Text Available Abstract Background Mycotoxins are fungal secondary metabolites commonly present in feed and food, and are widely regarded as hazardous contaminants. Citrinin, one of the very well known mycotoxins that was first isolated from Penicillium citrinum, is produced by more than 10 kinds of fungi, and is possibly spread all over the world. However, the information on the action mechanism of the toxin is limited. Thus, we investigated the citrinin-induced genomic response for evaluating its toxicity. Results Citrinin inhibited growth of yeast cells at a concentration higher than 100 ppm. We monitored the citrinin-induced mRNA expression profiles in yeast using the ORF DNA microarray and Oligo DNA microarray, and the expression profiles were compared with those of the other stress-inducing agents. Results obtained from both microarray experiments clustered together, but were different from those of the mycotoxin patulin. The oxidative stress response genes – AADs, FLR1, OYE3, GRE2, and MET17 – were significantly induced. In the functional category, expression of genes involved in "metabolism", "cell rescue, defense and virulence", and "energy" were significantly activated. In the category of "metabolism", genes involved in the glutathione synthesis pathway were activated, and in the category of "cell rescue, defense and virulence", the ABC transporter genes were induced. To alleviate the induced stress, these cells might pump out the citrinin after modification with glutathione. While, the citrinin treatment did not induce the genes involved in the DNA repair. Conclusion Results from both microarray studies suggest that citrinin treatment induced oxidative stress in yeast cells. The genotoxicity was less severe than the patulin, suggesting that citrinin is less toxic than patulin. The reproducibility of the expression profiles was much better with the Oligo DNA microarray. However, the Oligo DNA microarray did not completely overcome cross

  5. Accurate detection of carcinoma cells by use of a cell microarray chip.

    Directory of Open Access Journals (Sweden)

    Shohei Yamamura

    Full Text Available BACKGROUND: Accurate detection and analysis of circulating tumor cells plays an important role in the diagnosis and treatment of metastatic cancer treatment. METHODS AND FINDINGS: A cell microarray chip was used to detect spiked carcinoma cells among leukocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth, was made from polystyrene; and the formation of monolayers of leukocytes in the microchambers was observed. Cultured human T lymphoblastoid leukemia (CCRF-CEM cells were used to examine the potential of the cell microarray chip for the detection of spiked carcinoma cells. A T lymphoblastoid leukemia suspension was dispersed on the chip surface, followed by 15 min standing to allow the leukocytes to settle down into the microchambers. Approximately 29 leukocytes were found in each microchamber when about 600,000 leukocytes in total were dispersed onto a cell microarray chip. Similarly, when leukocytes isolated from human whole blood were used, approximately 89 leukocytes entered each microchamber when about 1,800,000 leukocytes in total were placed onto the cell microarray chip. After washing the chip surface, PE-labeled anti-cytokeratin monoclonal antibody and APC-labeled anti-CD326 (EpCAM monoclonal antibody solution were dispersed onto the chip surface and allowed to react for 15 min; and then a microarray scanner was employed to detect any fluorescence-positive cells within 20 min. In the experiments using spiked carcinoma cells (NCI-H1650, 0.01 to 0.0001%, accurate detection of carcinoma cells was achieved with PE-labeled anti-cytokeratin monoclonal antibody. Furthermore, verification of carcinoma cells in the microchambers was performed by double staining with the above monoclonal antibodies. CONCLUSION: The potential application of the cell microarray chip for the detection of CTCs was shown, thus demonstrating accurate detection by double staining for cytokeratin and EpCAM at the single carcinoma cell level.

  6. Performance and scalability of isolated DC-DC converter topologies in low voltage, high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaisanen, V.

    2012-07-01

    Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding

  7. Current status and applications of intergrated safety assessment and simulation code system for ISA

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, J. M.; Hortal, J.; Perea, M. Sanchez; Melendez, E. [Modeling and Simulation Area (MOSI), Nuclear Safety Council (CSN), Madrid (Spain); Queral, E.; Rivas-Lewicky, J. [Energy and Fuels Department, Technical University of Madrid (UPM), Madrid (Spain)

    2017-03-15

    This paper reviews current status of the unified approach known as integrated safety assessment (ISA), as well as the associated SCAIS (simulation codes system for ISA) computer platform. These constitute a proposal, which is the result of collaborative action among the Nuclear Safety Council (CSN), University of Madrid (UPM), and NFQ Solutions S.L, aiming to allow independent regulatory verification of industry quantitative risk assessments. The content elaborates on discussions of the classical treatment of time in conventional probabilistic safety assessment (PSA) sequences and states important conclusions that can be used to avoid systematic and unacceptable underestimation of the failure exceedance frequencies. The unified ISA method meets this challenge by coupling deterministic and probabilistic mutual influences. The feasibility of the approach is illustrated with some examples of its application to a real size plant.

  8. Particular treatments in Eddy current technique. Application to the control of corrugated tubes

    International Nuclear Information System (INIS)

    1982-11-01

    When the testing of a given product shows that, owing to a particular shape of this product or to its environment, disturbing effects can hide the presence of harmful defects, use must be made of testing artifices or particular treatments enabling an efficient examination to be made. On this score, many eddy current problems are solved by means of the following processes: - use of specific sensors adapted to the geometry of the product, - spectral analysis of the analog results of analyses, - combination of the results of analyses obtained simultaneously at different frequencies (multifrequency techniques). An example of an application is given for corrugated tubes achieved by hollow and helical milling of smooth tubes [fr

  9. Thermally stimulated current in PTFE and its application in radiation dosimetry

    International Nuclear Information System (INIS)

    Ozdemir, S.

    1985-01-01

    Thermally Stimulated Current (TSC) measurement was made on PTFE (Polytetrafluoro ethylene) in an attempt to develop an integrating radiation dosimeter material and the system. TSC spectra, dose response, energy response, fading and background charge stability characteristics were used as a measure of suitability of various untreated and heat treated PTFE samples for dosimetry applications. For practical TSC dosimetry system, it was discovered that the PTFE samples should be subjected to a specific heat treatment in order to produce samples with better dosimeter characteristics. A treatment at a temperature of 240 C produces a high dose response and low fading characteristics. It was found that the spurious charges due to storage and low sensitivity to irradiation caused the limitation in the measurement of low doses with PTFE samples for personnel protection. However, a TSC Dosimetry system using PTFE is proposed which is suitable for radiation doses in the radiotherapy range from *approx* 50 to *approx* 800 mGy. (author)

  10. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology

    Science.gov (United States)

    Christie, Katherine S.; Gilbert, Sophie L.; Brown, Casey L.; Hatfield, Michael; Hanson, Leanne

    2016-01-01

    Unmanned aircraft systems (UAS) – also called unmanned aerial vehicles (UAVs) or drones – are an emerging tool that may provide a safer, more cost-effective, and quieter alternative to traditional research methods. We review examples where UAS have been used to document wildlife abundance, behavior, and habitat, and illustrate the strengths and weaknesses of this technology with two case studies. We summarize research on behavioral responses of wildlife to UAS, and discuss the need to understand how recreational and commercial applications of this technology could disturb certain species. Currently, the widespread implementation of UAS by scientists is limited by flight range, regulatory frameworks, and a lack of validation. UAS are most effective when used to examine smaller areas close to their launch sites, whereas manned aircraft are recommended for surveying greater distances. The growing demand for UAS in research and industry is driving rapid regulatory and technological progress, which in turn will make them more accessible and effective as analytical tools.

  11. Metacognition fundaments, applications, and trends a profile of the current state-of-the-art

    CERN Document Server

    2015-01-01

    This book is devoted to the Metacognition arena. It highlights works that show relevant analysis, reviews, theoretical, and methodological proposals, as well as studies, approaches, applications, and tools that shape current state, define trends and inspire future research. As a result of the revision process fourteen manuscripts were accepted and organized into five parts as follows: ·     Conceptual: contains conceptual works oriented to: (1) review models of strategy instruction and tailor a hybrid strategy; (2) unveil second-order judgments and define a method to assess metacognitive judgments; (3) introduces a conceptual model to describe the metacognitive activity as an autopoietic system. ·     Framework: offers three works concerned with: (4) stimulate metacognitive skills and self-regulatory functions; (5) evaluate metacognitive skills and self-regulated learning at problem solving; (6) deal with executive management metacognition and strategic knowledge metacognition. ·     Studies: r...

  12. Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application.

    Science.gov (United States)

    Benrashid, Ehsan; McCoy, Christopher C; Youngwirth, Linda M; Kim, Jina; Manson, Roberto J; Otto, James C; Lawson, Jeffrey H

    2016-04-15

    Since the development of a dependable and durable synthetic non-autogenous vascular conduit in the mid-twentieth century, the field of vascular surgery has experienced tremendous growth. Concomitant with this growth, development in the field of bioengineering and the development of different tissue engineering techniques have expanded the armamentarium of the surgeon for treating a variety of complex cardiovascular diseases. The recent development of completely tissue engineered vascular conduits that can be implanted for clinical application is a particularly exciting development in this field. With the rapid advances in the field of tissue engineering, the great hope of the surgeon remains that this conduit will function like a true blood vessel with an intact endothelial layer, with the ability to respond to endogenous vasoactive compounds. Eventually, these engineered tissues may have the potential to supplant older organic but not truly biologic technologies, which are used currently. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Weak measurement from the electron displacement current: new path for applications

    International Nuclear Information System (INIS)

    Marian, D; Colomés, E; Oriols, X; Zanghì, N

    2015-01-01

    The interest on weak measurements is rapidly growing during the last years as a unique tool to better understand and predict new quantum phenomena. Up to now many theoretical and experimental weak-measurement techniques deal with (relativistic) photons or cold atoms, but there is much less investigation on (non-relativistic) electrons in up-to-date electronics technologies. We propose a way to perform weak measurements in nanoelectronic devices through the measurement of the total current (particle plus displacement component) in such devices. We study the interaction between an electron in the active region of a electron device with a metal surface working as a sensing electrode by means of the (Bohmian) conditional wave function. We perform numerical (Monte Carlo) simulations to reconstruct the Bohmian trajectories in the iconic double slit experiment. This work opens new paths for understanding the quantum properties of an electronic system as well as for exploring new quantum engineering applications in solid state physics. (paper)

  14. Current applications and future developments of positron emission tomography in head and neck cancer

    International Nuclear Information System (INIS)

    Lonneux, M.

    2005-01-01

    Positron emission tomography (PET-scan) is a well-established imaging modality in oncology. Using FDG, PET has also a wide range of applications in head and neck tumors for diagnosis, staging, monitoring of response to therapy, and detection of relapse. After a short technical introduction, the current indications of PET-FDG in head and neck tumors are reviewed. Present and future developments of PET are twofold: the use of new tracers for protein synthesis, cellular proliferation or detection of hypoxia etc., and the introduction of metabolic imaging as a adjunct to CT and MRI to determine target-volumes in radiation treatment planning. However, it has to be emphasized that a thorough clinical validation of the methods used is mandatory before their implementation in routine practice. (author)

  15. Augmented Reality in Neurosurgery: A Review of Current Concepts and Emerging Applications.

    Science.gov (United States)

    Guha, Daipayan; Alotaibi, Naif M; Nguyen, Nhu; Gupta, Shaurya; McFaul, Christopher; Yang, Victor X D

    2017-05-01

    Augmented reality (AR) superimposes computer-generated virtual objects onto the user's view of the real world. Among medical disciplines, neurosurgery has long been at the forefront of image-guided surgery, and it continues to push the frontiers of AR technology in the operating room. In this systematic review, we explore the history of AR in neurosurgery and examine the literature on current neurosurgical applications of AR. Significant challenges to surgical AR exist, including compounded sources of registration error, impaired depth perception, visual and tactile temporal asynchrony, and operator inattentional blindness. Nevertheless, the ability to accurately display multiple three-dimensional datasets congruently over the area where they are most useful, coupled with future advances in imaging, registration, display technology, and robotic actuation, portend a promising role for AR in the neurosurgical operating room.

  16. Graphene-Nanodiamond Heterostructures and their application to High Current Devices

    Science.gov (United States)

    Zhao, Fang; Vrajitoarea, Andrei; Jiang, Qi; Han, Xiaoyu; Chaudhary, Aysha; Welch, Joseph O.; Jackman, Richard B.

    2015-01-01

    Graphene on hydrogen terminated monolayer nanodiamond heterostructures provides a new way to improve carrier transport characteristics of the graphene, offering up to 60% improvement when compared with similar graphene on SiO2/Si substrates. These heterostructures offers excellent current-carrying abilities whilst offering the prospect of a fast, low cost and easy methodology for device applications. The use of ND monolayers is also a compatible technology for the support of large area graphene films. The nature of the C-H bonds between graphene and H-terminated NDs strongly influences the electronic character of the heterostructure, creating effective charge redistribution within the system. Field effect transistors (FETs) have been fabricated based on this novel herterostructure to demonstrate device characteristics and the potential of this approach. PMID:26350107

  17. Continuous Glucose Monitoring: Current Use in Diabetes Management and Possible Future Applications.

    Science.gov (United States)

    Vettoretti, Martina; Cappon, Giacomo; Acciaroli, Giada; Facchinetti, Andrea; Sparacino, Giovanni

    2018-05-01

    The recent announcement of the production of new low-cost continuous glucose monitoring (CGM) sensors, the approval of marketed CGM sensors for making treatment decisions, and new reimbursement criteria have the potential to revolutionize CGM use. After briefly summarizing current CGM applications, we discuss how, in our opinion, these changes are expected to extend CGM utilization beyond diabetes patients, for example, to subjects with prediabetes or even healthy individuals. We also elaborate on how the integration of CGM data with other relevant information, for example, health records and other medical device/wearable sensor data, will contribute to creating a digital data ecosystem that will improve our understanding of the etiology and complications of diabetes and will facilitate the development of data analytics for personalized diabetes management and prevention.

  18. Robotics and the spine: a review of current and ongoing applications.

    Science.gov (United States)

    Shweikeh, Faris; Amadio, Jordan P; Arnell, Monica; Barnard, Zachary R; Kim, Terrence T; Johnson, J Patrick; Drazin, Doniel

    2014-03-01

    Robotics in the operating room has shown great use and versatility in multiple surgical fields. Robot-assisted spine surgery has gained significant favor over its relatively short existence, due to its intuitive promise of higher surgical accuracy and better outcomes with fewer complications. Here, the authors analyze the existing literature on this growing technology in the era of minimally invasive spine surgery. In an attempt to provide the most recent, up-to-date review of the current literature on robotic spine surgery, a search of the existing literature was conducted to obtain all relevant studies on robotics as it relates to its application in spine surgery and other interventions. In all, 45 articles were included in the analysis. The authors discuss the current status of this technology and its potential in multiple arenas of spinal interventions, mainly spine surgery and spine biomechanics testing. There are numerous potential advantages and limitations to robotic spine surgery, as suggested in published case reports and in retrospective and prospective studies. Randomized controlled trials are few in number and show conflicting results regarding accuracy. The present limitations may be surmountable with future technological improvements, greater surgeon experience, reduced cost, improved operating room dynamics, and more training of surgical team members. Given the promise of robotics for improvements in spine surgery and spine biomechanics testing, more studies are needed to further explore the applicability of this technology in the spinal operating room. Due to the significant cost of the robotic equipment, studies are needed to substantiate that the increased equipment costs will result in significant benefits that will justify the expense.

  19. Energy dissipation of composite multifilamentary superconductors for high-current ramp-field magnet applications

    International Nuclear Information System (INIS)

    Gung, C.Y.

    1993-01-01

    Energy dissipation, which is also called AC loss, of a composite multifilamentary superconducting wire is one of the most fundamental concerns in building a stable superconducting magnet. Characterization and reduction of AC losses are especially important in designing a superconducting magnet for generating transient magnetic fields. The goal of this thesis is to improve the understanding of AC-loss properties of superconducting wires developed for high-current ramp-field magnet applications. The major tasks include: (1) building an advanced AC-loss measurement system, (2) measuring AC losses of superconducting wires under simulated pulse magnet operations, (3) developing an analytical model for explaining the new AC-loss properties found in the experiment, and (4) developing a computational methodology for comparing AC losses of a superconducting wire with those of a cable for a superconducting pulse magnet. A new experimental system using an isothermal calorimetric method was designed and constructed to measure the absolute AC losses in a composite superconductor. This unique experimental setup is capable of measuring AC losses of a brittle Nb 3 Sn wire carrying high AC current in-phase with a large-amplitude pulse magnetic field. Improvements of the accuracy and the efficiency of this method are discussed. Three different types of composite wire have been measured: a Nb 3 Sn modified jelly-roll (MJR) internal-tin wire used in a prototype ohmic heating coil, a Nb 3 Sn internal-tin wire developed for a fusion reactor ohmic heating coil, and a NbTi wire developed for the magnets in a particle accelerator. The cross sectional constructions of these wires represent typical commercial wires manufactured for pulse magnet applications

  20. A dynamic bead-based microarray for parallel DNA detection

    International Nuclear Information System (INIS)

    Sochol, R D; Lin, L; Casavant, B P; Dueck, M E; Lee, L P

    2011-01-01

    A microfluidic system has been designed and constructed by means of micromachining processes to integrate both microfluidic mixing of mobile microbeads and hydrodynamic microbead arraying capabilities on a single chip to simultaneously detect multiple bio-molecules. The prototype system has four parallel reaction chambers, which include microchannels of 18 × 50 µm 2 cross-sectional area and a microfluidic mixing section of 22 cm length. Parallel detection of multiple DNA oligonucleotide sequences was achieved via molecular beacon probes immobilized on polystyrene microbeads of 16 µm diameter. Experimental results show quantitative detection of three distinct DNA oligonucleotide sequences from the Hepatitis C viral (HCV) genome with single base-pair mismatch specificity. Our dynamic bead-based microarray offers an effective microfluidic platform to increase parallelization of reactions and improve microbead handling for various biological applications, including bio-molecule detection, medical diagnostics and drug screening

  1. Current research and potential applications of the Concealed Information Test: An overview

    Directory of Open Access Journals (Sweden)

    Gershon eBen-Shakhar

    2012-09-01

    Full Text Available Research interest in psychophysiological detection of deception has significantly increased since the September 11 terror attack in the USA. In particular, the Concealed Information Test (CIT, designed to detect memory traces that can connect suspects to a certain crime, has been extensively studied. In this paper I will briefly review several psychophysiological detection paradigms that have been studied, with a focus on the CIT. The theoretical background of the CIT, its strength and weaknesses, its potential applications as well as research finings related to its validity, (based on a recent mata-analytic study, will be discussed. Several novel research directions, with a focus on factors that may affect CIT detection in realistic settings (e.g., memory for crime details; the effect of emotional stress during crime execution will be described. Additionally, research focusing on mal-intentions and attempts to detect terror networks using information gathered from groups of suspects using both the standard CIT and the searching CIT will be reviewed. Finally, implications of current research to the actual application of the CIT will be discussed and several recommendations that can enhance the use of the CIT will be made.

  2. Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities

    Science.gov (United States)

    Zheng, Xiao-Shan; Jahn, Izabella Jolan; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2018-05-01

    To achieve an insightful look within biomolecular processes on the cellular level, the development of diseases as well as the reliable detection of metabolites and pathogens, a modern analytical tool is needed that is highly sensitive, molecular-specific and exhibits fast detection. Surface-enhanced Raman spectroscopy (SERS) is known to meet these requirements and, within this review article, the recent progress of label-free SERS in biological and biomedical applications is summarized and discussed. This includes the detection of biomolecules such as metabolites, nucleic acids and proteins. Further, the characterization and identification of microorganisms has been achieved by label-free SERS-based approaches. Eukaryotic cells can be characterized by SERS in order to gain information about the outer cell wall or to detect intracellular molecules and metabolites. The potential of SERS for medically relevant detection schemes is emphasized by the label-free detection of tissue, the investigation of body fluids as well as applications for therapeutic and illicit drug monitoring. The review article is concluded with an evaluation of the recent progress and current challenges in order to highlight the direction of label-free SERS in the future.

  3. Dose-current discharge correlation analysis in a Mather type Plasma Focus device for medical applications

    Science.gov (United States)

    Sumini, M.; Mostacci, D.; Tartari, A.; Mazza, A.; Cucchi, G.; Isolan, L.; Buontempo, F.; Zironi, I.; Castellani, G.

    2017-11-01

    In a Plasma Focus device the plasma collapses into the pinch where it reaches thermonuclear conditions for a few tens of nanoseconds, becoming a multi-radiation source. The nature of the radiation generated depends on the gas filling the chamber and the device working parameters. The self-collimated electron beam generated in the backward direction with respect to the plasma motion is one of the main radiation sources of interest also for medical applications. The electron beam may be guided against a high Z material target to produce an X-ray beam. This technique offers an ultra-high dose rate source of X-rays, able to deliver during the pinch a massive dose (up to 1 Gy per discharge for the PFMA-3 test device), as measured with EBT3 GafchromicⒸfilm tissue equivalent dosimeters. Given the stochastic behavior of the discharge process, a reliable on-line estimate of the dose-delivered is a very challenging task, in some way preventing a systematic application as a potentially interesting therapy device. This work presents an approach to linking the dose registered by the EBT3 GafchromicⒸfilms with the information contained in the signal recorded during the current discharge process. Processing the signal with the Wigner-Ville distribution, a spectrogram was obtained, displaying the information on intensity at various frequency scales, identifying the band of frequencies representative of the pinch events and define some patterns correlated with the dose.

  4. The Current Status of The Clinical Application of Radioisotope in Korea

    International Nuclear Information System (INIS)

    Lee, Myung Chul

    1987-01-01

    The medical application of radioisotope started in the western countries in the 1920's but the first successful clinical use of Nuclear Medicine in Korea was made in June, 1959, through the treatment of a patient with hyperthyroidism using radioactive iodine. However, keeping pace with the brilliant international development of nuclear medicine, nuclear medicine in Korea has remarkably grown scientifically; The Korean Society of Nuclear Medicine was organized in 1961, The Radiology Science Institute attached to the Korea Atomic Energy Research Institute, the predecessor of the Korea Cancer Center Hospital, was established in 1963, and The Korean Journal of Nuclear Medicine published its first issue in 1967. Furthermore, the active studies using radioisotopes and the vigorous interchanges of information with foreign countries had increased so steadily and remarkably that we could hold the 3rd Asia and Oceania Congress of Nuclear Medicine in 1984. In Korea, Nuclear Medicine has now settled as a field of a science which interests lots of medical doctors and scientists. However, I cannot deny the fact that the progress of the development of Nuclear Medicine in Korea tends to defer relatively to that of the western countries, which is naturally a very active one, in many respects. I here would like to analyze the current status of clinical application of radioisotope in Korea, find the problems and present their solutions

  5. Current state of commercial radiation detection equipment for homeland security applications

    International Nuclear Information System (INIS)

    Klann, R.T.; Shergur, J.; Mattesich, G.

    2009-01-01

    With the creation of the U.S. Department of Homeland Security (DHS) came the increased concern that terrorist groups would attempt to manufacture and use an improvised nuclear device or radiological dispersal device. As such, a primary mission of DHS is to protect the public against the use of these devices and to assist state and local responders in finding, locating, and identifying these types of devices and materials used to manufacture these devices. This assistance from DHS to state and local responders comes in the form of grant money to procure radiation detection equipment. In addition to this grant program, DHS has supported the development of American National Standards Institute standards for radiation detection equipment and has conducted testing of commercially available instruments. This paper identifies the types and kinds of commercially available equipment that can be used to detect and identify radiological material - for use in traditional search applications as well as primary and secondary screening of personnel, vehicles, and cargo containers. In doing so, key considerations for the conduct of operations are described as well as critical features of the instruments for specific applications. The current state of commercial instruments is described for different categories of detection equipment including personal radiation detectors, radioisotope identifiers, man-portable detection equipment, and radiation portal monitors. In addition, emerging technologies are also discussed, such as spectroscopic detectors and advanced spectroscopic portal monitors

  6. Current status and future view of generation of slow positrons and applications of available antiparticles

    International Nuclear Information System (INIS)

    Tomimasu, T.

    1988-01-01

    The positron is the antielectron and annihilates with an electron from the surrounding medium dominantly into two 511 keV γ-rays. The two annihilation γ-rays are modified by the momentum and energy distributions of the electrons in the annihilation site. The annihilation rates are proportional to the electron density in the site. Therefore, the two annihilation γ-rays and the average lifetime of positrons can provide unique informations on a wide variety of problems in condensed matter physics. Slow positrons with narrow energy spread are more useful, compared with white positrons from radioactive isotopes, to the positron annihilation experiment, the low energy positron diffraction, the positron microscope and so on. This review describes the current status and future view on (1) the applications of the positron annihilation to the condensed matter physics, (2) the generation of slow positrons using electron linacs, (3) the positron beam handling system including the pulse stretcher with a Penning trap and (4) the applications of available antiparticles including monoenergetic positrons, muons, pions and antiprotons to the analysis and evaluation of materials, the energy storage and positronium radiations. (author)

  7. Modelling Titanic and Clash of Clans Games: Theoretical Definition and Application in Current Social Systems

    Directory of Open Access Journals (Sweden)

    Jan Mertl

    2017-12-01

    Full Text Available This article develops research into Titanic games and the associated concepts anchored in game theory. It defines the conditions under which a Titanic game transitions into a Clash of Clans game and discusses the degree of punishment and its consequences for the nature of the game and the positions of the individual players. The game is analysed in significant detail, clearly showing what happens when diff erent strategies are chosen. At the same time, the article also looks at the context of social policy and social systems, where the application of the analysed games is very beneficial, and points to the example of the situation in the Czech health insurance system between 2000 and 2010. The identification of the proposed concepts and their possible existence in socio-economic reality enables us to substantially better see what games are being played or can be played, and as such to gain an understanding of what is happening. The article shows the diff erences between Titanic and Clash of Clans games and their possible application in current social systems.

  8. Current status and applications of somatic cell nuclear transfer in dogs.

    Science.gov (United States)

    Jang, Goo; Kim, Min Kyu; Lee, Byeong Chun

    2010-11-01

    Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities

    Directory of Open Access Journals (Sweden)

    Pawel Jozwik

    2015-05-01

    Full Text Available The paper presents an overview of current and prospective applications of Ni3Al based intermetallic alloys—modern engineering materials with special properties that are potentially useful for both structural and functional purposes. The bulk components manufactured from these materials are intended mainly for forging dies, furnace assembly, turbocharger components, valves, and piston head of internal combustion engines. The Ni3Al based alloys produced by a directional solidification are also considered as a material for the fabrication of jet engine turbine blades. Moreover, development of composite materials with Ni3Al based alloys as a matrix hardened by, e.g., TiC, ZrO2, WC, SiC and graphene, is also reported. Due to special physical and chemical properties; it is expected that these materials in the form of thin foils and strips should make a significant contribution to the production of high tech devices, e.g., Micro Electro-Mechanical Systems (MEMS or Microtechnology-based Energy and Chemical Systems (MECS; as well as heat exchangers; microreactors; micro-actuators; components of combustion chambers and gasket of rocket and jet engines as well components of high specific strength systems. Additionally, their catalytic properties may find an application in catalytic converters, air purification systems from chemical and biological toxic agents or in a hydrogen “production” by a decomposition of hydrocarbons.

  10. Current status of environmental, health, and safety issues of electrochemical capacitors for advanced vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L J; Hammel, C J

    1997-04-01

    Electrochemical capacitors are a candidate for traction power assists in hybrid electric vehicles (HEVs). Other advanced automotive applications, while not the primary focus of current development efforts, are also possible. These include load leveling high-energy batteries, power conditioning electronics, electrically hated catalysts, electric power steering, and engine starter power. Higher power and longer cycle life are expected for electrochemical capacitors than for batteries. Evaluation of environmental, health, and safety (EH and S) issues of electrochemical capacitors is an essential part of the development and commercialization of electrochemical capacitors for advanced vehicles. This report provides an initial EH and S assessment. This report presents electrochemical capacitor electrochemistry, materials selection, intrinsic material hazards, mitigation of those hazards, environmental requirements, pollution control options, and shipping requirements. Most of the information available for this assessment pertains to commercial devices intended for application outside the advanced vehicle market and to experiment or prototype devices. Electrochemical capacitors for power assists in HEVs are not produced commercially now. Therefore, materials for advanced vehicle electrochemical capacitors may change, and so would the corresponding EH and S issues. Although changes are possible, this report describes issues for likely electrochemical capacitor designs.

  11. T2* mapping for articular cartilage assessment: principles, current applications, and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Hesper, Tobias; Bittersohl, Daniela; Krauspe, Ruediger; Zilkens, Christoph [University Duesseldorf, Department of Orthopaedics Medical Faculty, Duesseldorf (Germany); Hosalkar, Harish S. [Center of Hip Preservation and Children' s Orthopaedics, San Diego, CA (United States); Welsch, Goetz H. [Medical University of Vienna, MR Center, Department of Radiology, Vienna (Austria); Bittersohl, Bernd [University Duesseldorf, Department of Orthopaedics Medical Faculty, Duesseldorf (Germany); Heinrich-Heine University, Medical School, Department of Orthopaedics, Duesseldorf (Germany)

    2014-10-15

    With advances in joint preservation surgery that are intended to alter the course of osteoarthritis by early intervention, accurate and reliable assessment of the cartilage status is critical. Biochemically sensitive MRI techniques can add robust biomarkers for disease onset and progression, and therefore, could be meaningful assessment tools for the diagnosis and follow-up of cartilage abnormalities. T2* mapping could be a good alternative because it would combine the benefits of biochemical cartilage evaluation with remarkable features including short imaging time and the ability of high-resolution three-dimensional cartilage evaluation - without the need for contrast media administration or special hardware. Several in vitro and in vivo studies, which have elaborated on the potential of cartilage T2* assessment in various cartilage disease patterns and grades of degeneration, have been reported. However, much remains to be understood and certain unresolved questions have become apparent with these studies that are crucial to the further application of this technique. This review summarizes the principles of the technique and current applications of T2* mapping for articular cartilage assessment. Limitations of recent studies are discussed and the potential implications for patient care are presented. (orig.)

  12. Application of eddy currents to post-irradiation examination of fuel rods

    International Nuclear Information System (INIS)

    Domizzi, G.; Ruch, M.; Ruggirello, G.; Spinosa, C.

    1997-01-01

    Postirradiation tests are performed on the fuel bundles of nuclear power plants, in order to evaluate their performance. The Zircaloy-4 cladding, the first containment of the fission products, is a very important part of these bundles. A fundamental step of these tests is the in-pool identification of the failed bars in the 'suspect' bundles. Later, once in the hot cell facility and prior to the destructive tests, it is necessary to characterize the defects in the cladding. The eddy current method provides a means for fast and reliable detection and characterisation of defects unobservable in visual inspection, such as tiny cracks, pores and anomalously hydride regions. The project for the application of this method in postirradiation tests has been divided into three stages, namely laboratory set up, in-pool tests, hot-cell application, the first one being described here. Techniques for the construction of synthetic defects (machined, micro cracks, abnormal hydride concentration, hydride blisters, oxide layers) were developed. A mechanical device for automatic probe movement was designed and constructed. Special external probes for the particular defects were developed. The inspection procedure was prepared. (author) [es

  13. Modelling and simulation of current fed dc to dc converter for PHEV applications using renewable source

    Science.gov (United States)

    Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.

    2017-11-01

    With the current rate of depletion of the fossil fuel the need to switch on to the renewable energy sources is the need of the hour. Thus the need for new and efficient converters arises so as to replace the existing less efficient diesel and petroleum IC engines with renewable energy sources. The PHEVs, which have been launched in the market, and Upcoming PHEVs have converters around 380V to 400V generated with a power range between 2KW to 2.8KW. The fundamental target of this paper is to plan a productive converter keeping in mind cost and size restriction. In this paper, a two-stage dc-dc converter is proposed. The proposed converter is utilized to venture up a voltage from 24V (photovoltaic source) to a yield voltage of 400V to take care of a power demand of 2.4kW for a plug-in hybrid electric vehicle (PHEV) application considering the real time scenario of PHEV. This paper talks about in detail why the current fed converter is utilized alongside a voltage doubler thus minimizing the transformer turns thereby reducing the overall size of the final product. Simulation results along with calculation for the duty cycle of the firing sequence for different value of transformer turns are presented for a prototype unit.

  14. Forced current sheet structure, formation and evolution: application to magnetic reconnection in the magnetosphere

    Directory of Open Access Journals (Sweden)

    V. I. Domrin

    2004-07-01

    Full Text Available By means of a simulation model, the earlier predicted nonlinear kinetic structure, a Forced Kinetic Current Sheet (FKCS, with extremely anisotropic ion distributions, is shown to appear as a result of a fast nonlinear process of transition from a previously existing equilibrium. This occurs under triggering action of a weak MHD disturbance that is applied at the boundary of the simulation box. In the FKCS, current is carried by initially cold ions which are brought into the CS by convection from both sides, and accelerated inside the CS. The process then appears to be spontaneously self-sustained, as a MHD disturbance of a rarefaction wave type propagates over the background plasma outside the CS. Comparable to the Alfvénic discontinuity in MHD, transformation of electromagnetic energy into the energy of plasma flows occurs at the FKCS. But unlike the MHD case, ``free" energy is produced here: dissipation should occur later, through particle interaction with turbulent waves generated by unstable ion distribution being formed by the FKCS action. In this way, an effect of magnetic field ``annihilation" appears, required for fast magnetic reconnection. Application of the theory to observations at the magnetopause and in the magnetotail is considered.

  15. Results of the new eddy current tester for steam generator applications

    International Nuclear Information System (INIS)

    Ribes, B.; Hernandez, J.; Barcenilla, V.

    2006-01-01

    As a result of the recent developing line of eddy current data acquisition systems a new product comes to the market named Teddy+. With only 4 kg of weight constitutes a great advance with regards to the equipments used for this type of inspections available in the market. This advances, have enabled, among others, to increase considerably the S/N ratio, avoid typical saturation problems in the eddy current signal, increase the inspection speed, eliminate the reference probe, detect the air/tube signal in real time, together with the possibility to integrate the tester inside the pusher thanks to its reduced size and to have integrated the mechanical systems control board as part of the tester. The software application in charge of data acquisition and analysis has been optimized making it possible a faster and efficient data access, incorporating a new tool to allow a data quality control on-line, which has accelerated the detection process of non-valid registers. The processes related with the supervision of different analysis have been automated enabling a simultaneous comparison of up to four different analysis types. At the same time the necessary tools to make the successive passes of the resolution process have been included in the analysis software according to EPRI guidelines. These innovations and improvements place the new SG inspection system from TECNATOM, as one of the most powerful and reliable existing in the market (orig.)

  16. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy.

    Science.gov (United States)

    Ganesan, Palanivel; Choi, Dong-Kug

    2016-01-01

    Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.

  17. Development of high-current pulsed heavy-ion-beam technology for applications to materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroaki; Ochiai, Yasushi; Masugata, Katsumi [University of Toyama, Toyama (Japan)

    2011-12-15

    Development of intense pulsed heavy ion beam technology for applications to materials processing is described. We have developed a magnetically insulated ion diode for the generation of intense pulsed metallic ion beams in which a vacuum arc plasma gun is used as the ion source. When the ion diode was successfully operated at a diode voltage of 220 kV and a diode current of 10 kA, an ion beam with an ion current density of >200 A/cm{sup 2} and a pulse duration of 40 ns was obtained. The ion composition was evaluated by using a Thomson parabola spectrometer, and the ion beam consisted of aluminum ions (Al{sup (1-3)+}) with an energy of 140 - 740 keV and protons with an energy of 160 - 190 keV; the purity was estimated to be 89%, which was much higher than that of the pulsed ion beam produced in a conventional ion diode. The development of a bipolar pulse accelerator (BPA) was reported in order to improve the purity of intense pulsed ion beams. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. When a bipolar pulse with a voltage of {+-}90 kV and a pulse duration of about 65 ns was applied to the drift tube of the BPA, the ion beam with an ion current density of 2 A/cm{sup 2} and a pulse duration of 30 ns was observed 25 mm downstream from the cathode surface, which suggested bipolar pulse acceleration.

  18. Design of a covalently bonded glycosphingolipid microarray

    DEFF Research Database (Denmark)

    Arigi, Emma; Blixt, Klas Ola; Buschard, Karsten

    2012-01-01

    , the major classes of plant and fungal GSLs. In this work, a prototype "universal" GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release...... of the fatty acyl moiety of the ceramide aglycone of selected mammalian GSLs with sphingolipid N-deacylase (SCDase). Derivatization of the free amino group of a typical lyso-GSL, lyso-G(M1), with a prototype linker assembled from succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester and 2...

  19. Linking probe thermodynamics to microarray quantification

    International Nuclear Information System (INIS)

    Li, Shuzhao; Pozhitkov, Alexander; Brouwer, Marius

    2010-01-01

    Understanding the difference in probe properties holds the key to absolute quantification of DNA microarrays. So far, Langmuir-like models have failed to link sequence-specific properties to hybridization signals in the presence of a complex hybridization background. Data from washing experiments indicate that the post-hybridization washing has no major effect on the specifically bound targets, which give the final signals. Thus, the amount of specific targets bound to probes is likely determined before washing, by the competition against nonspecific binding. Our competitive hybridization model is a viable alternative to Langmuir-like models. (comment)

  20. 多囊性肾发育不良胎儿的染色体微阵列分析%Application of chromosome microarray analysis for fetuses with multicystic dysplastic kidney

    Institute of Scientific and Technical Information of China (English)

    陈斐斐; 潘敏; 廖灿; 雷婷缨; 符芳; 李茹; 张永玲; 景象一; 杨昕; 韩瑾; 甄理

    2016-01-01

    目的:应用染色体微阵列分析技术(chromosome microarray analysis,CMA)在全基因组水平分析多囊性肾发育不良胎儿(multicystic dysplastic kidney,MCDK)的遗传学病因。方法选取产前超声提示 MCDK 伴或不伴其他肾外异常的胎儿样本72例进行常规 G 显带染色体核型分析,并对其中部分病例进行基因组 DNA 检测,应用 ChAS 软件和相关生物信息学数据库对结果进行分析。结果 G 显带染色体核型分析结果显示3例(4.2%)胎儿核型结果异常。在69例染色体核型分析结果为正常的胎儿中,对30例(43.5%)胎儿进行了 CMA 检测。CMA 在5例(16.7%)胎儿中检出了致病性拷贝数变异(copy number variations,CNVs),分别为17q12微缺失综合征、Williams-Beuren 综合征、4q35.2微缺失、22q13.33微重复和1p33微重复。对比 DECIPHER 及 OMIM 数据库分析,其中22q11区的PEX26基因、7q11.23区的FKBP6基因、22q13.33区的ALG12和TUBGCP6基因以及1p33区的CYP4A11基因为新发现的 MCDK候选基因。结论 CMA 可显著提高 MCDK 胎儿遗传学病因的检出率,不仅能够确定 G 显带核型分析所发现的异常片段来源、长度以及性质,还能够检测 G 显带核型分析所无法识别的微缺失/微重复,同时还能发现新的候选基因,为 MCDK 胎儿的产前诊断、咨询以及预后评估提供依据。%Objective To explore the genetic etiology of fetuses with multicystic dysplastic kidney (MCDK)by chromosome microarray analysis (CMA).Methods Seventy-two fetuses with MCDK were analyzed with conventional cytogenetic technique,among which 30 fetuses with a normal karyotype were subjected to CMA analysis with Affymetrix CytoScan HD arrays by following the manufacturer’s protocol. The data was analyzed with ChAS software.Results Conventional cytogenetic technique has revealed three fetuses (4.2%)with identifiable chromosomal aberrations.CMA analysis has detected pathogenic CNVs in 5 fetuses (1 6.7%),which

  1. Systematic spatial bias in DNA microarray hybridization is caused by probe spot position-dependent variability in lateral diffusion.

    Science.gov (United States)

    Steger, Doris; Berry, David; Haider, Susanne; Horn, Matthias; Wagner, Michael; Stocker, Roman; Loy, Alexander

    2011-01-01

    The hybridization of nucleic acid targets with surface-immobilized probes is a widely used assay for the parallel detection of multiple targets in medical and biological research. Despite its widespread application, DNA microarray technology still suffers from several biases and lack of reproducibility, stemming in part from an incomplete understanding of the processes governing surface hybridization. In particular, non-random spatial variations within individual microarray hybridizations are often observed, but the mechanisms underpinning this positional bias remain incompletely explained. This study identifies and rationalizes a systematic spatial bias in the intensity of surface hybridization, characterized by markedly increased signal intensity of spots located at the boundaries of the spotted areas of the microarray slide. Combining observations from a simplified single-probe block array format with predictions from a mathematical model, the mechanism responsible for this bias is found to be a position-dependent variation in lateral diffusion of target molecules. Numerical simulations reveal a strong influence of microarray well geometry on the spatial bias. Reciprocal adjustment of the size of the microarray hybridization chamber to the area of surface-bound probes is a simple and effective measure to minimize or eliminate the diffusion-based bias, resulting in increased uniformity and accuracy of quantitative DNA microarray hybridization.

  2. Design of an Enterobacteriaceae Pan-genome Microarray Chip

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2010-01-01

    -density microarray chip has been designed, using 116 Enterobacteriaceae genome sequences, taking into account the enteric pan-genome. Probes for the microarray were checked in silico and performance of the chip, based on experimental strains from four different genera, demonstrate a relatively high ability...... to distinguish those strains on genus, species, and pathotype/serovar levels. Additionally, the microarray performed well when investigating which genes were found in a given strain of interest. The Enterobacteriaceae pan-genome microarray, based on 116 genomes, provides a valuable tool for determination...

  3. Subjective and Objective Assessment of Perceived Audio Quality of Current Digital Audio Broadcasting Systems and Web-Casting Applications

    NARCIS (Netherlands)

    Pocta, P.; Beerends, J.G.

    2015-01-01

    This paper investigates the impact of different audio codecs typically deployed in current digital audio broadcasting (DAB) systems and web-casting applications, which represent a main source of quality impairment in these systems and applications, on the quality perceived by the end user. Both

  4. Comparing transformation methods for DNA microarray data

    Directory of Open Access Journals (Sweden)

    Zwinderman Aeilko H

    2004-06-01

    Full Text Available Abstract Background When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing (to account for nonlinear measurement effects, and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. Results We used the ratio between biological variance and measurement variance (which is an F-like statistic as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. Conclusions The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method.

  5. E-learning tools for education: regulatory aspects, current applications in radiology and future prospects.

    Science.gov (United States)

    Pinto, A; Selvaggi, S; Sicignano, G; Vollono, E; Iervolino, L; Amato, F; Molinari, A; Grassi, R

    2008-02-01

    E-learning, an abbreviation of electronic learning, indicates the provision of education and training on the Internet or the World Wide Web. The impact of networks and the Internet on radiology is undoubtedly important, as it is for medicine as a whole. The Internet offers numerous advantages compared with other mass media: it provides access to a large amount of information previously known only to individual specialists; it is flexible, permitting the use of images or video; and it allows linking to Web sites on a specific subject, thus contributing to further expand knowledge. Our purpose is to illustrate the regulatory aspects (including Internet copyright laws), current radiological applications and future prospects of e-learning. Our experience with the installation of an e-learning platform is also presented. We performed a PubMed search on the published literature (without time limits) dealing with e-learning tools and applications in the health sector with specific reference to radiology. The search included all study types in the English language with the following key words: e-learning, education, teaching, online exam, radiology and radiologists. The Fiaso study was referred to for the regulatory aspects of e-learning. The application of e-learning to radiology requires the development of a model that involves selecting and creating e-learning platforms, creating and technologically adapting multimedia teaching modules, creating and managing a unified catalogue of teaching modules, planning training actions, defining training pathways and Continuing Education in Medicine (CME) credits, identifying levels of teaching and technological complexity of support tools, sharing an organisational and methodological model, training the trainers, operators' participation and relational devices, providing training, monitoring progress of the activities, and measuring the effectiveness of training. Since 2004, a platform--LiveLearning--has been used at our

  6. On the rolling of hard-to-work iron-cobalt alloys with application of electric current of high density

    International Nuclear Information System (INIS)

    Klimov, K.M.; Mordukhovich, A.M.; Glezer, A.M.; Molotilov, B.V.

    1981-01-01

    Results on experimental fabrication of thin sheets of commercial iron-cobalt 49KF alloy (Se-Co-2%V) without preliminary quenching and intermediate annealings by rolling with application of high-density electric current are considered. It is shown that rolling with application of high-density electric current in the deformation zone permits to obtain thin sheets of difficult-to-form magnetically soft materials without preliminary thermal treatments. Electric current effect on metal in the deformation zone results in the increase of dislocation mobility and facilitates the cross glide [ru

  7. Advanced simulation capability for environmental management - current status and future applications

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, Mark; Scheibe, Timothy [Pacific Northwest National Laboratory, Richland, Washington (United States); Robinson, Bruce; Moulton, J. David; Dixon, Paul [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Marble, Justin; Gerdes, Kurt [U.S. Department of Energy, Office of Environmental Management, Washington DC (United States); Stockton, Tom [Neptune and Company, Inc, Los Alamos, New Mexico (United States); Seitz, Roger [Savannah River National Laboratory, Aiken, South Carolina (United States); Black, Paul [Neptune and Company, Inc, Lakewood, Colorado (United States)

    2013-07-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater (EM-12), is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach that is currently aimed at understanding and predicting contaminant fate and transport in natural and engineered systems. ASCEM is a modular and open source high-performance computing tool. It will be used to facilitate integrated approaches to modeling and site characterization, and provide robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of capabilities, with current emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) multi-process simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The integration of the Platform and HPC capabilities were tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities in 2012. The current maturity of the ASCEM computational and analysis capabilities has afforded the opportunity for collaborative efforts to develop decision analysis tools to support and optimize radioactive waste disposal. Recent advances in computerized decision analysis frameworks provide the perfect opportunity to bring this capability into ASCEM. This will allow radioactive waste

  8. Current Knowledge in lentil genomics and its application for crop improvement

    Directory of Open Access Journals (Sweden)

    Shiv eKumar

    2015-02-01

    Full Text Available Most of the lentil growing countries face a certain set of abiotic and biotic stresses causing substantial reduction in crop growth, yield, and production. Until-to date, lentil breeders have used conventional plant breeding techniques of selection-recombination-selection cycle to develop improved cultivars. These techniques have been successful in mainstreaming some of the easy-to-manage monogenic traits. However in case of complex quantitative traits, these conventional techniques are less precise. As most of the economic traits are complex, quantitative and often influenced by environments and genotype-environment (GE interaction, the genetic improvement of these traits becomes difficult. Genomics assisted breeding is relatively powerful and fast approach to develop high yielding varieties more suitable to adverse environmental conditions. New tools such as molecular markers and bioinformatics are expected to generate new knowledge and improve our understanding on the genetics of complex traits. In the past, the limited availability of genomic resources in lentil could not allow breeders to employ these tools in mainstream breeding program. The recent application of the Next Generation Sequencing (NGS and Genotyping by sequencing (GBS technologies has facilitated to speed up the lentil genome sequencing project and large discovery of genome-wide SNP markers. Recently, several linkage maps have been developed in lentil through the use of Expressed Sequenced Tag (EST-derived Simple Sequence Repeat (SSR and Single Nucleotide Polymorphism (SNP markers. These maps have emerged as useful genomic resources to identify QTL imparting tolerance to biotic and abiotic stresses in lentil. In this review, the current knowledge on available genomic resources and its application in lentil breeding program are discussed.

  9. Surfactant media for constant-current coulometry. Application for the determination of antioxidants in pharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Ziyatdinova, Guzel, E-mail: Ziyatdinovag@mail.ru [Analytical Chemistry Department, A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyevskaya, 18, Kazan 420008 (Russian Federation); Ziganshina, Endzhe; Budnikov, Herman [Analytical Chemistry Department, A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyevskaya, 18, Kazan 420008 (Russian Federation)

    2012-09-26

    Highlights: Black-Right-Pointing-Pointer Applicability of surfactants in constant-current coulometry is shown for the first time. Black-Right-Pointing-Pointer Reactions of antioxidants with electrogenerated titrants in surfactant media are investigated. Black-Right-Pointing-Pointer Water insoluble antioxidants can be determined in water media with addition of surfactants. Black-Right-Pointing-Pointer Coulometric determination of antioxidants in pharmaceutical dosage forms using surfactants media is developed. - Abstract: Effect of surfactant presence on electrochemical generation of titrants has been evaluated and discussed for the first time. Cationic (1-dodecylpyridinium and cetylpyridinium bromide), anionic (sodium dodecyl sulfate) and nonionic (Triton X100 and Brij{sup Registered-Sign} 35) surfactants as well as nonionic high molecular weight polymer (PEG 4000) do not react with the electrogenerated bromine, iodine and hexacyanoferrate(III) ions. The electrogenerated chlorine chemically interact with Triton X100 and Brij{sup Registered-Sign} 35. The allowable range of surfactants concentrations providing 100% current yield has been found. Chain-breaking low molecular weight antioxidants (ascorbic acid, rutin, {alpha}-tocopherol and retinol) were determined by reaction with the electrogenerated titrants in surfactant media. Nonionic and cationic surfactants can be used for the determination of antioxidants by reaction with the electrogenerated halogens. On contrary, cationic surfactants gives significantly overstated results of antioxidants determination with electrogenerated hexacyanoferrate(III) ions. The use of surfactants in coulometry of {alpha}-tocopherol and retinol provides their solubilization and allows to perform titration in water media. Simple, express and reliable coulometric approach for determination of {alpha}-tocopherol, rutin and ascorbic acid in pharmaceuticals using surfactant media has been developed. The relative standard deviation of the

  10. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy

    Directory of Open Access Journals (Sweden)

    Ganesan P

    2016-05-01

    Full Text Available Palanivel Ganesan,1,2 Dong-Kug Choi1,2 1Department of Applied Life Science, Nanotechnology Research Center, 2Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea Abstract: Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy. Keywords: nanodelivery technologies, skincare

  11. Virtual reality training in neurosurgery: Review of current status and future applications

    Science.gov (United States)

    Alaraj, Ali; Lemole, Michael G.; Finkle, Joshua H.; Yudkowsky, Rachel; Wallace, Adam; Luciano, Cristian; Banerjee, P. Pat; Rizzi, Silvio H.; Charbel, Fady T.

    2011-01-01

    Background: Over years, surgical training is changing and years of tradition are being challenged by legal and ethical concerns for patient safety, work hour restrictions, and the cost of operating room time. Surgical simulation and skill training offer an opportunity to teach and practice advanced techniques before attempting them on patients. Simulation training can be as straightforward as using real instruments and video equipment to manipulate simulated “tissue” in a box trainer. More advanced virtual reality (VR) simulators are now available and ready for widespread use. Early systems have demonstrated their effectiveness and discriminative ability. Newer systems enable the development of comprehensive curricula and full procedural simulations. Methods: A PubMed review of the literature was performed for the MESH words “Virtual reality, “Augmented Reality”, “Simulation”, “Training”, and “Neurosurgery”. Relevant articles were retrieved and reviewed. A review of the literature was performed for the history, current status of VR simulation in neurosurgery. Results: Surgical organizations are calling for methods to ensure the maintenance of skills, advance surgical training, and credential surgeons as technically competent. The number of published literature discussing the application of VR simulation in neurosurgery training has evolved over the last decade from data visualization, including stereoscopic evaluation to more complex augmented reality models. With the revolution of computational analysis abilities, fully immersive VR models are currently available in neurosurgery training. Ventriculostomy catheters insertion, endoscopic and endovascular simulations are used in neurosurgical residency training centers across the world. Recent studies have shown the coloration of proficiency with those simulators and levels of experience in the real world. Conclusion: Fully immersive technology is starting to be applied to the practice of

  12. Wearable Current-Based ECG Monitoring System with Non-Insulated Electrodes for Underwater Application

    Directory of Open Access Journals (Sweden)

    Stefan Gradl

    2017-12-01

    Full Text Available The second most common cause of diving fatalities is cardiovascular diseases. Monitoring the cardiovascular system in actual underwater conditions is necessary to gain insights into cardiac activity during immersion and to trigger preventive measures. We developed a wearable, current-based electrocardiogram (ECG device in the eco-system of the FitnessSHIRT platform. It can be used for normal/dry ECG measuring purposes but is specifically designed to allow underwater signal acquisition without having to use insulated electrodes. Our design is based on a transimpedance amplifier circuit including active current feedback. We integrated additional cascaded filter components to counter noise characteristics specific to the immersed condition of such a system. The results of the evaluation show that our design is able to deliver high-quality ECG signals underwater with no interferences or loss of signal quality. To further evaluate the applicability of the system, we performed an applied study with it using 12 healthy subjects to examine whether differences in the heart rate variability exist between sitting and supine positions of the human body immersed in water and outside of it. We saw significant differences, for example, in the RMSSD and SDSD between sitting outside the water (36 ms and sitting immersed in water (76 ms and the pNN50 outside the water (6.4% and immersed in water (18.2%. The power spectral density for the sitting positions in the TP and HF increased significantly during water immersion while the LF/HF decreased significantly. No significant changes were found for the supine position.

  13. Virtual reality training in neurosurgery: Review of current status and future applications.

    Science.gov (United States)

    Alaraj, Ali; Lemole, Michael G; Finkle, Joshua H; Yudkowsky, Rachel; Wallace, Adam; Luciano, Cristian; Banerjee, P Pat; Rizzi, Silvio H; Charbel, Fady T

    2011-01-01

    Over years, surgical training is changing and years of tradition are being challenged by legal and ethical concerns for patient safety, work hour restrictions, and the cost of operating room time. Surgical simulation and skill training offer an opportunity to teach and practice advanced techniques before attempting them on patients. Simulation training can be as straightforward as using real instruments and video equipment to manipulate simulated "tissue" in a box trainer. More advanced virtual reality (VR) simulators are now available and ready for widespread use. Early systems have demonstrated their effectiveness and discriminative ability. Newer systems enable the development of comprehensive curricula and full procedural simulations. A PubMed review of the literature was performed for the MESH words "Virtual reality, "Augmented Reality", "Simulation", "Training", and "Neurosurgery". Relevant articles were retrieved and reviewed. A review of the literature was performed for the history, current status of VR simulation in neurosurgery. Surgical organizations are calling for methods to ensure the maintenance of skills, advance surgical training, and credential surgeons as technically competent. The number of published literature discussing the application of VR simulation in neurosurgery training has evolved over the last decade from data visualization, including stereoscopic evaluation to more complex augmented reality models. With the revolution of computational analysis abilities, fully immersive VR models are currently available in neurosurgery training. Ventriculostomy catheters insertion, endoscopic and endovascular simulations are used in neurosurgical residency training centers across the world. Recent studies have shown the coloration of proficiency with those simulators and levels of experience in the real world. Fully immersive technology is starting to be applied to the practice of neurosurgery. In the near future, detailed VR neurosurgical modules

  14. Computational intelligence in gait research: a perspective on current applications and future challenges.

    Science.gov (United States)

    Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2009-09-01

    Our mobility is an important daily requirement so much so that any disruption to it severely degrades our perceived quality of life. Studies in gait and human movement sciences, therefore, play a significant role in maintaining the well-being of our mobility. Current gait analysis involves numerous interdependent gait parameters that are difficult to adequately interpret due to the large volume of recorded data and lengthy assessment times in gait laboratories. A proposed solution to these problems is computational intelligence (CI), which is an emerging paradigm in biomedical engineering most notably in pathology detection and prosthesis design. The integration of CI technology in gait systems facilitates studies in disorders caused by lower limb defects, cerebral disorders, and aging effects by learning data relationships through a combination of signal processing and machine learning techniques. Learning paradigms, such as supervised learning, unsupervised learning, and fuzzy and evolutionary algorithms, provide advanced modeling capabilities for biomechanical systems that in the past have relied heavily on statistical analysis. CI offers the ability to investigate nonlinear data relationships, enhance data interpretation, design more efficient diagnostic methods, and extrapolate model functionality. These are envisioned to result in more cost-effective, efficient, and easy-to-use systems, which would address global shortages in medical personnel and rising medical costs. This paper surveys current signal processing and CI methodologies followed by gait applications ranging from normal gait studies and disorder detection to artificial gait simulation. We review recent systems focusing on the existing challenges and issues involved in making them successful. We also examine new research in sensor technologies for gait that could be combined with these intelligent systems to develop more effective healthcare solutions.

  15. Chromosomal Localization of DNA Amplifications in Neuroblastoma Tumors Using cDNA Microarray Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Ben Beheshti

    2003-01-01

    Full Text Available Conventional comparative genomic hybridization (CGH profiling of neuroblastomas has identified many genomic aberrations, although the limited resolution has precluded a precise localization of sequences of interest within amplicons. To map high copy number genomic gains in clinically matched stage IV neuroblastomas, CGH analysis using a 19,200-feature cDNA microarray was used. A dedicated (freely available algorithm was developed for rapid in silico determination of chromosomal localizations of microarray cDNA targets, and for generation of an ideogram-type profile of copy number changes. Using these methodologies, novel gene amplifications undetectable by chromosome CGH were identified, and larger MYCN amplicon sizes (in one tumor up to 6 Mb than those previously reported in neuroblastoma were identified. The genes HPCAL1, LPIN1/KIAA0188, NAG, and NSE1/LOC151354 were found to be coamplified with MYCN. To determine whether stage IV primary tumors could be further subclassified based on their genomic copy number profiles, hierarchical clustering was performed. Cluster analysis of microarray CGH data identified three groups: 1 no amplifications evident, 2 a small MYCN amplicon as the only detectable imbalance, and 3 a large MYCN amplicon with additional gene amplifications. Application of CGH to cDNA microarray targets will help to determine both the variation of amplicon size and help better define amplification-dependent and independent pathways of progression in neuroblastoma.

  16. Detection of Alicyclobacillus species in fruit juice using a random genomic DNA microarray chip.

    Science.gov (United States)

    Jang, Jun Hyeong; Kim, Sun-Joong; Yoon, Bo Hyun; Ryu, Jee-Hoon; Gu, Man Bock; Chang, Hyo-Ihl

    2011-06-01

    This study describes a method using a DNA microarray chip to rapidly and simultaneously detect Alicyclobacillus species in orange juice based on the hybridization of genomic DNA with random probes. Three food spoilage bacteria were used in this study: Alicyclobacillus acidocaldarius, Alicyclobacillus acidoterrestris, and Alicyclobacillus cycloheptanicus. The three Alicyclobacillus species were adjusted to 2 × 10(3) CFU/ml and inoculated into pasteurized 100% pure orange juice. Cy5-dCTP labeling was used for reference signals, and Cy3-dCTP was labeled for target genomic DNA. The molar ratio of 1:1 of Cy3-dCTP and Cy5-dCTP was used. DNA microarray chips were fabricated using randomly fragmented DNA of Alicyclobacillus spp. and were hybridized with genomic DNA extracted from Bacillus spp. Genomic DNA extracted from Alicyclobacillus spp. showed a significantly higher hybridization rate compared with DNA of Bacillus spp., thereby distinguishing Alicyclobacillus spp. from Bacillus spp. The results showed that the microarray DNA chip containing randomly fragmented genomic DNA was specific and clearly identified specific food spoilage bacteria. This microarray system is a good tool for rapid and specific detection of thermophilic spoilage bacteria, mainly Alicyclobacillus spp., and is useful and applicable to the fruit juice industry.

  17. Automating dChip: toward reproducible sharing of microarray data analysis

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2008-05-01

    Full Text Available Abstract Background During the past decade, many software packages have been developed for analysis and visualization of various types of microarrays. We have developed and maintained the widely used dChip as a microarray analysis software package accessible to both biologist and data analysts. However, challenges arise when dChip users want to analyze large number of arrays automatically and share data analysis procedures and parameters. Improvement is also needed when the dChip user support team tries to identify the causes of reported analysis errors or bugs from users. Results We report here implementation and application of the dChip automation module. Through this module, dChip automation files can be created to include menu steps, parameters, and data viewpoints to run automatically. A data-packaging function allows convenient transfer from one user to another of the dChip software, microarray data, and analysis procedures, so that the second user can reproduce the entire analysis session of the first user. An analysis report file can also be generated during an automated run, including analysis logs, user comments, and viewpoint screenshots. Conclusion The dChip automation module is a step toward reproducible research, and it can prompt a more convenient and reproducible mechanism for sharing microarray software, data, and analysis procedures and results. Automation data packages can also be used as publication supplements. Similar automation mechanisms could be valuable to the research community if implemented in other genomics and bioinformatics software packages.

  18. Ab initio molecular dynamics: basic concepts, current trends and novel applications

    International Nuclear Information System (INIS)

    Tuckerman, Mark E

    2002-01-01

    The field of ab initio molecular dynamics (AIMD), in which finite temperature molecular dynamics (MD) trajectories are generated with forces obtained from accurate 'on the fly' electronic structure calculations, is a rapidly evolving and growing technology that allows chemical processes in condensed phases to be studied in an accurate and unbiased way. This article is intended to present the basics of the AIMD method as well as to provide a broad survey of the state of the art of the field and showcase some of its capabilities. Beginning with a derivation of the method from the Born-Oppenheimer approximation, issues including the density functional representation of electronic structure, basis sets, calculation of observables and the Car-Parrinello extended Lagrangian algorithm are discussed. A number of example applications, including liquid structure and dynamics and aqueous proton transport, are presented in order to highlight some of the current capabilities of the approach. Finally, advanced topics such as inclusion of nuclear quantum effects, excited states and scaling issues are addressed. (topical review)

  19. Ensemble forecasting for renewable energy applications - status and current challenges for their generation and verification

    Science.gov (United States)

    Pinson, Pierre

    2016-04-01

    The operational management of renewable energy generation in power systems and electricity markets requires forecasts in various forms, e.g., deterministic or probabilistic, continuous or categorical, depending upon the decision process at hand. Besides, such forecasts may also be necessary at various spatial and temporal scales, from high temporal resolutions (in the order of minutes) and very localized for an offshore wind farm, to coarser temporal resolutions (hours) and covering a whole country for day-ahead power scheduling problems. As of today, weather predictions are a common input to forecasting methodologies for renewable energy generation. Since for most decision processes, optimal decisions can only be made if accounting for forecast uncertainties, ensemble predictions and density forecasts are increasingly seen as the product of choice. After discussing some of the basic approaches to obtaining ensemble forecasts of renewable power generation, it will be argued that space-time trajectories of renewable power production may or may not be necessitate post-processing ensemble forecasts for relevant weather variables. Example approaches and test case applications will be covered, e.g., looking at the Horns Rev offshore wind farm in Denmark, or gridded forecasts for the whole continental Europe. Eventually, we will illustrate some of the limitations of current frameworks to forecast verification, which actually make it difficult to fully assess the quality of post-processing approaches to obtain renewable energy predictions.

  20. An overview of MR arthrography with emphasis on the current technique and applicational hints and tips

    International Nuclear Information System (INIS)

    Sahin, Guelden; Demirtas, Mehmet

    2006-01-01

    Magnetic resonance (MR) arthrography has been investigated in every major peripheral joint of the body, and has been proven to be effective in determining the integrity of intraarticular ligamentous and fibrocartilaginous structures and in the detection or assessment of osteochondral lesions and loose bodies in selected cases. Several methods could be used to create arthrogram effect during MR imaging, however, direct MR arthrography using diluted gadolinium as the contrast agent is the most commonly used technique and is the most reliable of all. MR arthrography is useful for demonstrating labrocapsular-ligamentous abnormalities and distinguishing partial thickness rotator cuff tears from focal full thickness tears in the shoulder, identifying or excluding recurrent tears following meniscal operations in the knee, demonstrating perforations of the triangular fibrocartilage complex (TFCC) and ligaments in the wrist, showing labral tears in the hip, diagnosing ligament tears in the ankle and identifying osteochondral lesions or loose bodies in any of the aforementioned joints. In this article, an overview of techniques of MR arthrography is provided with emphasis on direct MR arthrography using diluted gadolinium as the contrast agent. The current applications of the technique in major peripheral joints are reviewed, with emphasis given to the shoulder joint where the role of this technique has become well established